WorldWideScience

Sample records for edge structure study

  1. Study of the round edge disk hole's effects on the frequency and wakefield in disc structure

    International Nuclear Information System (INIS)

    Wang Lanfa; Hou Mi; Zhang Chuang

    2001-01-01

    The effects of the round edge beam hole on the frequency and wake field are studied using variational method, which allows for rounded iris disk hole without any approximation in shape treatment. The frequencies and wake fields of accelerating mode and dipole mode are studied for different edge radius cases, including the flat edge shape that is often used to approximately represent the actual structure geometry. The edge hole shape has weak effect on the frequency, but strong effect on the wakefield. The study shows that the amounts of wake fields are not precise enough with the assumption of the flat edge beam hole as of round edge. The shape assumption brings loss factor 15% err for the most dangerous EH 16 mode

  2. X-ray absorption near edge structure (XANES) study of some hydroxamic mixed ligand copper complexes

    International Nuclear Information System (INIS)

    Mishra, A; Parsai, N; Shrivastava, B D; Soni, N

    2012-01-01

    With the advent of modern bright synchrotron radiation sources, X-ray absorption spectra has emerged as a powerful technique for local structure determination, which can be applied to any type of material. The X-ray absorption measurements of four hydroxamic mixed ligand copper complexes have been performed at the recently developed BL-8 Dispersive EXAFS beamline at 2.5 GeV Indus-2 synchrotron at RRCAT, Indore, India. The X-ray absorption near edge structure (XANES) data obtained has been processed using data analysis program Athena. The energies of the K absorption edge, chemical shifts, edge-widths, shifts of the principal absorption maximum in the complexes have been determined. The values of the chemical shift suggest that copper is in oxidation state +2 in all of the complexes. The chemical shift data has been utilized to estimate effective nuclear charge on copper atom. The order of the chemical shifts has been correlated to the relative ionic character of the bonding in these complexes.

  3. ICRF edge modeling studies

    Energy Technology Data Exchange (ETDEWEB)

    Lehrman, I.S. (Grumman Corp. Research Center, Princeton, NJ (USA)); Colestock, P.L. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1990-04-01

    Theoretical models have been developed, and are currently being refined, to explain the edge plasma-antenna interaction that occurs during ICRF heating. The periodic structure of a Faraday shielded antenna is found to result in strong ponderomotive force in the vicinity of the antenna. A fluid model, which incorporates the ponderomotive force, shows an increase in transport to the Faraday shield. A kinetic model shows that the strong antenna near fields act to increase the energy of deuterons which strike the shield, thereby increasing the sputtering of shield material. Estimates of edge impurity harmonic heating show no significant heating for either in or out-of-phase antenna operation. Additionally, a particle model for electrons near the shield shows that heating results from the parallel electric field associated with the fast wave. A quasilinear model for edge electron heating is presented and compared to the particle calculations. The models' predictions are shown to be consistent with measurements of enhanced transport. (orig.).

  4. Temperature dependent evolution of the local electronic structure of atmospheric plasma treated carbon nanotubes: Near edge x-ray absorption fine structure study

    International Nuclear Information System (INIS)

    Roy, S. S.; Papakonstantinou, P.; Okpalugo, T. I. T.; Murphy, H.

    2006-01-01

    Near edge x-ray absorption fine structure (NEXAFS) spectroscopy has been employed to obtain the temperature dependent evolution of the electronic structure of acid treated carbon nanotubes, which were further modified by dielectric barrier discharge plasma processing in an ammonia atmosphere. The NEXAFS studies were performed from room temperature up to 900 deg. C. The presence of oxygen and nitrogen containing functional groups was observed in C K edge, N K edge, and O K edge NEXAFS spectra of the multiwalled carbon nanotubes. The N K edge spectra revealed three types of π* features, the source of which was decisively identified by their temperature dependent evolution. It was established that these features are attributed to pyridinelike, NO, and graphitelike structures, respectively. The O K edge indicated that both carbonyl (C=O), π*(CO), and ether C-O-C, σ*(CO), functionalities were present. Upon heating in a vacuum to 900 deg. C the π*(CO) resonances disappeared while the σ*(CO) resonances were still present confirming their higher thermal stability. Heating did not produce a significant change in the π* feature of the C K edge spectrum indicating that the tabular structure of the nanotubes is essentially preserved following the thermal decomposition of the functional groups on the nanotube surface

  5. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.

    Science.gov (United States)

    Ryou, Junga; Park, Jinwoo; Kim, Gunn; Hong, Suklyun

    2017-06-21

    Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the Γ point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs.

  6. A study of the Nb3Ge system by Ge K-edge extended x-ray absorption fine structure and x-ray absorption near-edge structure spectroscopy

    International Nuclear Information System (INIS)

    Saini, N L; Filippi, M; Wu Ziyu; Oyanagi, H; Ihara, H; Iyo, A; Agrestini, S; Bianconi, A

    2002-01-01

    The local structure of Nb 3 Ge intermetallic superconductor has been studied by Ge K-edge absorption spectroscopy. Extended x-ray absorption fine structure (EXAFS) experiments show two Ge-Nb distances. In addition to the crystallographic distance of ∼2.87 A, there exists a second Ge-Nb distance, shorter than the first by ∼0.2 A, assigned to a phase with short-range symmetry related to local displacements in the Nb-Nb chains. The x-ray absorption near-edge structure (XANES) spectrum has been simulated by full multiple-scattering calculations considering the local displacements determined by the EXAFS analysis. The XANES spectrum has been well reproduced by considering a cluster of 99 atoms within a radius of about 7 A from the central Ge atom and introducing determined local displacements

  7. Edge separation using diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Ravel, B.; Bouldin, C.E.; Renevier, H.; Hodeau, J.L.; Berar, J.F.

    1999-01-01

    We exploit the crystallographic sensitivity of the Diffraction Anomalous Fine-Structure (DAFS) measurement to separate the fine structure contributions of different atomic species with closely spaced resonant energies. In BaTiO 3 the Ti K edge and Ba Lm edges are separated by 281 eV, or about 8.2 Angstrom -1 ), thus severely limiting the information content of the Ti K edge signal. Using the site selectivity of DAFS we can separate the two fine structure spectra using an iterative Kramers-Kronig method, thus extending the range of the Ti K edge spectrum. This technique has application to many rare earth/transition metal compounds, including many magnetic materials of technological significance for which K and L edges overlap in energy. (au)

  8. Structure of spinel at high temperature using in-situ XANES study at the Al and Mg K-edge

    Energy Technology Data Exchange (ETDEWEB)

    Ligny, D de [Universite Claude Bernard Lyon 1, LPCML, 69622 Villeurbanne (France); Neuville, D R [Physique des Mineraux et Magmas, Geochimie-Cosmochimie, CNRS-IPGP, 4 place Jussieu, 75005 Paris (France); Flank, A-M; Lagarde, P, E-mail: deligny@pcml.univ-lyon1.f [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 France (France)

    2009-11-15

    We present structural information obtained on spinel at high temperature (298-2400 K) using in situ XANES at the Mg and Al K-edge. Spinel, {sup [4]}(Al{sub x},Mg{sub 1-x}){sup [6]}(Al{sub 2-x},Mg{sub x})O{sub 4}, with increasing temperature, show a substitution of Mg by Al and Al by Mg in their respective sites. This substitution corresponds to an inversion of the Mg and Al sites. Furthermore, both experiments at the Al and Mg K-edges are in good agreement with XANES calculation made using FDMNES code.

  9. Determination of interstitial oxygen atom position in U2N3+xOy by near edge structure study

    Science.gov (United States)

    Jiang, A. K.; Zhao, Y. W.; Long, Z.; Hu, Y.; Wang, X. F.; Yang, R. L.; Bao, H. L.; Zeng, R. G.; Liu, K. Z.

    2018-06-01

    The determination of interstitial oxygen atom site in U2N3+xOy film could facilitate the understanding of the oxidation mechanism of α-U2N3 and the effect of U2N3+xOy on anti-oxidation. By comparing the similarities and variances between N K edge and O K edge electron energy loss spectra (EELS) for oxidized α-U2N3 and UO2, the present work looks at the local structure of nitrogen and oxygen atoms in U2N3+xOy film, identifying the most possible position of interstitial O atom.

  10. Study on Coloration Mechanism of Chinese Ancient Ceramics by X-ray Absorption Near-edge Structure

    Science.gov (United States)

    Peng, Y. H.; Xie, Z.; He, J. F.; Liu, Q. H.; Pan, Z. Y.; Cheng, W. R.; Wei, S. Q.

    2013-04-01

    The Fe K-edge X-ray absorption near-edge structure (XANES) spectra of a series of ceramic shards were measured by fluorescence mode to reveal the color-generating techniques of Chinese porcelain. The analysis disclosed relationships among the chemical form of the iron, the firing conditions and the colors of the ceramics. The results indicate that the coloration for different ceramics depend on the valence states of iron as the main color element in glaze and the proportion of Fe2+ and Fe3+ was attributed to the baking technology. The findings provide important information for archaeologist on the coloration researches.

  11. [Chlorine speciation and concentration in cultivated soil in the northeastern China studied by X-ray absorption near edge structure].

    Science.gov (United States)

    Li, Jing; Lang, Chun-Yan; Ma, Ling-Ling; Xu, Dian-Dou; Zheng, Lei; Lu, Yu-Nanz; Cui Li-Rui; Zhang, Xiao-Meng

    2014-10-01

    A procedure has been proposed to determine chlorine speciation and concentration in soil with X-ray absorption near edge structure (XANES), and this method was applied to study the cultivated soil (bog, dark brown and black cultivated soil) in the Northeastern China. Qualitative analysis was carried out by least-squares fitting of sample spectra with standard spectra of three model compounds (NaCl, 3-chloropropionic acid, chlorophenol red). Linear correlation between the absolute fluorescence intensity of a series of NaCl standards and the Cl concentration was used as quantification standard for measuring the total Cl concentration in samples. The detection limits,relative standard deviation (RSD), recoveries were 2 mg · kg(-1), 0%-5% and 77%-133%, respectively. The average concentration of total Cl was 19 mg · kg(-1). The average relative content was as high as 61% of organochlorine with the concentration of 1-2 times as high as the concentration of inorganic chloride. The distribution trend of the total Cl, inorganic chloride and organic chlorine in different types of soil was: bog arable soil > dark brown soil > black soil. In conclusion, XANES is a reliable method to nondestructively characterize the speciation and concentration of chlorine in soil, which would provide some basic data for the future study of the chlorine's biogeochemical transformations.

  12. Structural evidence for the sorption of Ni(II) atoms on the edges of montmorillonite clay minerals: a polarized X-ray absorption fine structure study

    Science.gov (United States)

    Dähn, Rainer; Scheidegger, André M.; Manceau, Alain; Schlegel, Michel L.; Baeyens, Bart; Bradbury, Michael H.; Chateigner, Daniel

    The nature of surface complexes formed on Ni uptake onto montmorillonite (a dioctahedral smectite) has been investigated over an extended time period by polarized extended X-ray absorption fine structure (P-EXAFS) spectroscopy. Self-supporting films of Ni-sorbed montmorillonite were prepared by contacting Ni and montmorillonite at pH 7.2, high ionic strength (0.3 M NaClO 4), and low Ni concentration ([Ni] initial = 19.9 μM) for 14- and 360-d reaction time. The resulting Ni concentration on the clay varied from 4 to 7 μmol/g. Quantitative texture analysis indicates that the montmorillonite particles were well orientated with respect to the plane of the film. The full width at half maximum of the orientation distribution of the c* axes of individual clay platelets about the normal to the film plane was 44.3° (14-d reaction time) and 47.1° (360-d reaction time). These values were used to correct the coordination numbers determined by P-EXAFS for texture effects. Ni K-edge P-EXAFS spectra were recorded at angles between the incident beam and the film normal equal to 10, 35, 55, and 80°. Spectral analysis led to the identification of three nearest cationic subshells containing 2.0 ± 0.5 Al at 3.0 Å and 2.0 ± 0.5 Si at 3.12 Å and 4.0 ± 0.5 Si at 3.26 Å. These distances are characteristic of edge-sharing linkages between Al and Ni octahedra and of corner-sharing linkages between Ni octahedra and Si tetrahedra, as in clay structures. The angular dependence of the Ni-Al and Ni-Si contributions indicates that Ni-Al pairs are oriented parallel to the film plane, whereas Ni-Si pairs are not. The study reveals the formation of Ni inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and thus that heavy metals binding to edge sites is a possible sorption mechanism for dioctahedral smectites. Data analysis further suggests that either the number of neighboring Al atoms slightly increases from 1.6 to 2 or that the structural order

  13. Infrared study of the absorption edge of β-InN films grown on GaN/MgO structures

    Science.gov (United States)

    Pérez-Caro, M.; Rodríguez, A. G.; Vidal, M. A.; Navarro-Contreras, H.

    2010-07-01

    Infrared optical studies were carried out in a group of cubic InN samples grown by gas source molecular beam epitaxy on MgO (001) substrates. Room temperature (RT) reflectance and low-temperature (LT) transmittance measurements were performed by using fast Fourier transform infrared spectrometry. Reflectance fittings allowed to establish that β-InN films have large free-carrier concentrations present (>1019 cm-3), a result that is corroborated by Hall effect measurements. Each sample explored exhibited a different optical absorption edge. The Varshni parameters that describe adequately the optical absorption edge responses with temperature are obtained for the set of samples studied. The observed temperatures changes, from LT to RT, are the lowest reported for III-V semiconductor binary compounds. The temperature coefficient of the conduction band depends on the strength of the electron-phonon interaction (e-ph-i), as well as on the thermal expansion. It has been predicted that cubic InN has one of the smallest e-ph-i of all III-V compounds, which is corroborated by these results. The variation in values of absorption edges is clearly consistent with the Burstein-Moss and band renormalization effects, produced by high free electron concentrations. It is shown that the conduction band in β-InN, analogous to wurtzite InN, follows a nonparabolic behavior.

  14. Infrared study of the absorption edge of β-InN films grown on GaN/MgO structures

    International Nuclear Information System (INIS)

    Perez-Caro, M.; Rodriguez, A. G.; Vidal, M. A.; Navarro-Contreras, H.

    2010-01-01

    Infrared optical studies were carried out in a group of cubic InN samples grown by gas source molecular beam epitaxy on MgO (001) substrates. Room temperature (RT) reflectance and low-temperature (LT) transmittance measurements were performed by using fast Fourier transform infrared spectrometry. Reflectance fittings allowed to establish that β-InN films have large free-carrier concentrations present (>10 19 cm -3 ), a result that is corroborated by Hall effect measurements. Each sample explored exhibited a different optical absorption edge. The Varshni parameters that describe adequately the optical absorption edge responses with temperature are obtained for the set of samples studied. The observed temperatures changes, from LT to RT, are the lowest reported for III-V semiconductor binary compounds. The temperature coefficient of the conduction band depends on the strength of the electron-phonon interaction (e-ph-i), as well as on the thermal expansion. It has been predicted that cubic InN has one of the smallest e-ph-i of all III-V compounds, which is corroborated by these results. The variation in values of absorption edges is clearly consistent with the Burstein-Moss and band renormalization effects, produced by high free electron concentrations. It is shown that the conduction band in β-InN, analogous to wurtzite InN, follows a nonparabolic behavior.

  15. The local structure of Ca-Na pyroxenes. 2-Xanes studies at the Mg and A1 K edges

    International Nuclear Information System (INIS)

    Mottana, A.; Cibin, G.; Paris, E.; Giuli, G.; Florence Univ., Florence

    1999-01-01

    X-ray absorption spectra at the Mg and A1 K edges have been recorded on synthetic endmember diopside (Di) and jadeite (Jd) and on a series of natural Fe-poor Ca-Na clinopyroxenes compositionally straddling the Jd-Di join. The spectra of C2/c members of the series (C-omphacites) are different from having P2/n symmetry (P-omphacites). Differences can be explained by theoretical spectra calculated via the multiple-scattering formalism on atomic clusters with at least 89 atoms, extending to a. 0.62 nm away from the Mg viz. A1 absorber: Xanes detects in these systems medium- rather than short-range order-disorder relationships. Near-edge features of C-omphacites reflect the single-type of octahedral arrangement of the back scattering nearest-neighbours (six O atoms) around the absorber (Mg resp. A1) at the centre of the cluster (site M1). Others arise again from medium-range order. P-omphacites show more complicated spectra than C-omphacites. Their additional features reflect the increased local disorder around the probed atom (Mg resp. A1) induced by the two alternative M1, M11 configurations of the six O atoms forming the first co-ordination spheres. Mg and A1 are confirmed to be preferentially partitioned in the M1 resp. M11 site of the P-omphacite crystal structure, however never exclusively, but in a ratio close to 85:15 (plus or minus 10%) that implies a certain degree of local disorder. Changes in the relative heights of some prominent features are more evident in the A1 than in the Mg K-edge spectra. They are diagnostic to qualitatively distinguish C-from P-omphacites

  16. The local structure of Ca-Na pyroxenes. 2-Xanes studies at the Mg and A1 K edges

    Energy Technology Data Exchange (ETDEWEB)

    Mottana, A. [Rome Univ. Roma Tre, Rome (Italy). Dipt. di Scienze Geologiche; Murata, T. [Kyoto University of Education, Kyoto (Japan). Dept. of Physics; Marcelli, A. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Wu, Z.Y. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati]|[Laboratoire Piere Suee, Gif-sur Yvette Cedex, (France); Cibin, G. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Paris, E. [Camerino Univ., Camerino, MC (Italy). Dipt. di Scienze della Terra; Giuli, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Scienze della Terra]|[Florence Univ., Florence (Italy). Dipt. di Scienze della Terra

    1999-07-01

    X-ray absorption spectra at the Mg and A1 K edges have been recorded on synthetic end member diopside (Di) and jadeite (Jd) and on a series of natural Fe-poor Ca-Na clinopyroxenes compositionally straddling the Jd-Di join. The spectra of C2/c members of the series (C-omphacites) are different from having P2/n symmetry (P-omphacites). Differences can be explained by theoretical spectra calculated via the multiple-scattering formalism on atomic clusters with at least 89 atoms, extending to a. 0.62 nm away from the Mg viz. A1 absorber: Xanes detects in these systems medium- rather than short-range order-disorder relationships. Near-edge features of C-omphacites reflect the single-type of octahedral arrangement of the back scattering nearest-neighbours (six O atoms) around the absorber (Mg resp. A1) at the centre of the cluster (site M1). Others arise again from medium-range order. P-omphacites show more complicated spectra than C-omphacites. Their additional features reflect the increased local disorder around the probed atom (Mg resp. A1) induced by the two alternative M1, M11 configurations of the six O atoms forming the first co-ordination spheres. Mg and A1 are confirmed to be preferentially partitioned in the M1 resp. M11 site of the P-omphacite crystal structure, however never exclusively, but in a ratio close to 85:15 (plus or minus 10%) that implies a certain degree of local disorder. Changes in the relative heights of some prominent features are more evident in the A1 than in the Mg K-edge spectra. They are diagnostic to qualitatively distinguish C-from P-omphacites.

  17. The local structure of CaNa pyroxenes. I. XANES study at the Na K-edge

    International Nuclear Information System (INIS)

    Mottana, Annibale; Murata, T.; Wu, Ziyu; Marcelli, Augusto; Paris, E.

    1996-07-01

    X-ray absorption Na K-edge spectra have been recorded on synthetic end member jadeite and on a series of natural Ca-Na pyroxenes compositionally straddling the Jd-Di. The disordered C2/c members of the series are systematically different from the ordered P2/n members. These differences can be interpreted and explained by comparing the experimental spectra with theoretical spectra. These have been calculated by the multiple-scattering formalism from the atomic positional parameters determined by single-crystal X-ray diffraction structure refinement on the same samples. In the full multiple scattering region of the spectrum (1075 to 1095 eV) C-pyroxenes exhibit three features which reflect the 6-2 configuration of the O back-scattering atoms around the Na absorber located at the center of the cluster (site M2 of the jadeite structure). P-pyroxenes show more complicated spectra in which at least four features can be recognized; they reflect the two types of the configuration (6-2 and 4-2-2) of the oxygens around Na in the two independent M2 and M21 eight-fold coordinated sites of the omphacite structure. A weak, sometimes poorly resolved peak at 1079 eV diagnostic and discriminates C- from P-pyroxenes. The Garnet Ridge C2/c impure jadeite exhibits a spectrum which is intermediate between those of jadeite and omphacite. The Hedin-Lundqist potential proves best for these insulating materials and allows multiple-scattering calculations agreeing well with experiments. The assessment of the local electronic properties of compositionally and structurally complex minerals such as clinopyroxenes is thus enhanced

  18. The local structure of Ca{sub N}a pyroxenes. I. XANES study at the Na K-edge

    Energy Technology Data Exchange (ETDEWEB)

    Mottana, Annibale [Rome, Univ. III (Italy). Dipt. di Scienze Geologiche; Murata, T. [Kyoto, Univ. of Education (Japan). Dept. of Physics; Wu, Ziyu; Marcelli, Augusto [INFN, Frascati (Italy). Laboratori Nazionali di Frascati; Paris, E. [Camerino, Univ. (Italy). Dipt. di Scienze della Terra

    1996-07-01

    X-ray absorption Na K-edge spectra have been recorded on synthetic end member jadeite and on a series of natural Ca-Na pyroxenes compositionally straddling the Jd-Di. The disordered C2/c members of the series are systematically different from the ordered P2/n members. These differences can be interpreted and explained by comparing the experimental spectra with theoretical spectra. These have been calculated by the multiple-scattering formalism from the atomic positional parameters determined by single-crystal X-ray diffraction structure refinement on the same samples. In the full multiple scattering region of the spectrum (1075 to 1095 eV) C-pyroxenes exhibit three features which reflect the 6-2 configuration of the O back-scattering atoms around the Na absorber located at the center of the cluster (site M2 of the jadeite structure). P-pyroxenes show more complicated spectra in which at least four features can be recognized; they reflect the two types of the configuration (6-2 and 4-2-2) of the oxygens around Na in the two independent M2 and M21 eight-fold coordinated sites of the omphacite structure. A weak, sometimes poorly resolved peak at 1079 eV diagnostic and discriminates C- from P-pyroxenes. The Garnet Ridge C2/c impure jadeite exhibits a spectrum which is intermediate between those of jadeite and omphacite. The Hedin-Lundqist potential proves best for these insulating materials and allows multiple-scattering calculations agreeing well with experiments. The assessment of the local electronic properties of compositionally and structurally complex minerals such as clinopyroxenes is thus enhanced.

  19. Ge L{sub 3}-edge x-ray absorption near-edge structure study of structural changes accompanying conductivity drift in the amorphous phase of Ge{sub 2}Sb{sub 2}Te{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Mitrofanov, K. V. [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562 (Japan); Kolobov, A. V., E-mail: a.kolobov@aist.go.jp; Fons, P. [Nanoelectronics Research Institute and Green Nanoelectronics Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562, Japan and Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1, Kouto, Sayo, Hyogo 679-5198 (Japan); Wang, X.; Tominaga, J. [Nanoelectronics Research Institute and Green Nanoelectronics Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562 (Japan); Tamenori, Y.; Uruga, T. [Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1, Kouto, Sayo, Hyogo 679-5198 (Japan); Ciocchini, N.; Ielmini, D. [DEIB - Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy)

    2014-05-07

    A gradual uncontrollable increase in the resistivity of the amorphous phase of phase-change alloys, such as Ge{sub 2}Sb{sub 2}Te{sub 5}, known as drift, is a serious technological issue for application of phase-change memory. While it has been proposed that drift is related to structural relaxation, no direct structural results have been reported so far. Here, we report the results of Ge L{sub 3}-edge x-ray absorption measurements that suggest that the drift in electrical conductivity is associated with the gradual conversion of tetrahedrally coordinated Ge sites into pyramidal sites, while the system still remains in the amorphous phase. Based on electronic configuration arguments, we propose that during this process, which is governed by the existence of lone-pair electrons, the concentration of free carriers in the system decreases resulting in an increase in resistance despite the structural relaxation towards the crystalline phase.

  20. An X-ray absorption near-edge structure (XANES) study of the Sn L_3 edge in zirconium alloy oxide films formed during autoclave corrosion

    International Nuclear Information System (INIS)

    Hulme, Helen; Baxter, Felicity; Babu, R. Prasath; Denecke, Melissa A.; Gass, Mhairi; Steuwer, Axel; Norén, Katarina; Carlson, Stefan; Preuss, Michael

    2016-01-01

    Highlights: • Characterisation of tin speciation in zirconium alloy metal and oxide films using Sn L_3-XANES. • Chemical environment of tin in Zircaloy-4 and ZIRLO™ oxide films shown to be similar. • Tin in the oxide films is present in both the di- and tetravalent states and oxidises progressively with oxide-layer growth. - Abstract: Application of Sn L_3-XANES to study the oxidation state of alloying additions of tin (1–1.2 wt%) in <2 μm oxide layers formed on nuclear grade zirconium alloy has been demonstrated. Data obtained for metallic and corroded ZIRLO™ (1 wt% Sn) and Zircaloy-4 (1.2 wt% Sn) indicate tin has a similar chemical speciation in both metal alloys but this differs in the oxidised surface layers. By recording XANES at various incident angles to vary the photon penetration depth and amount of the oxide layer probed in the measurement, the authors found evidence that the oxidation of tin progresses with increasing oxide thickness.

  1. Lattice positions of Sn in Cu2ZnSnS4 nanoparticles and thin films studied by synchrotron X-ray absorption near edge structure analysis

    Science.gov (United States)

    Zillner, E.; Paul, A.; Jutimoosik, J.; Chandarak, S.; Monnor, T.; Rujirawat, S.; Yimnirun, R.; Lin, X. Z.; Ennaoui, A.; Dittrich, Th.; Lux-Steiner, M.

    2013-06-01

    Lattice positions of Sn in kesterite Cu2ZnSnS4 and Cu2SnS3 nanoparticles and thin films were investigated by XANES (x-ray absorption near edge structure) analysis at the S K-edge. XANES spectra were analyzed by comparison with simulations taking into account anti-site defects and vacancies. Annealing of Cu2ZnSnS4 nanoparticle thin films led to a decrease of Sn at its native and defect sites. The results show that XANES analysis at the S K-edge is a sensitive tool for the investigation of defect sites, being critical in kesterite thin film solar cells.

  2. Near-edge X-ray absorption fine structure studies of Cr{sub 1−x}M{sub x}N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mahbubur Rahman, M. [School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150 (Australia); Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh); Duan, Alex [School of Chemistry, The University of Melbourne, Parkville, VIC 3010 (Australia); Jiang, Zhong-Tao, E-mail: Z.Jiang@murdoch.edu.au [School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150 (Australia); Xie, Zonghan [School of Mechanical Engineering, University of Adelaide, SA 5005 (Australia); School of Engineering, Edith Cowan University, WA 6027 (Australia); Wu, Alex [School of Chemistry, The University of Melbourne, Parkville, VIC 3010 (Australia); Amri, Amun [Department of Chemical Engineering, Riau University, Pekanbaru (Indonesia); Cowie, Bruce [Australian Synchrotron, 800 Blackburn Rd., Clayton, VIC 3168 (Australia); Yin, Chun-Yang [Chemical and Analytical Sciences, Murdoch University, Murdoch, WA 6150 (Australia)

    2013-11-25

    Highlights: •Al or Si is doped on CrN and AlN coatings using magnetron sputtering system. •NEXAFS analysis is conducted to measure the Al and Si K-edges, and chromium L-edge. •Structural evolution of CrN matrix with addition of Al or Si element is investigated. -- Abstract: Cr{sub 1−x}M{sub x}N coatings, with doping concentrations (Si or Al) varying from 14.3 to 28.5 at.%, were prepared on AISI M2 tool steel substrates using a TEER UDP 650/4 closed field unbalanced magnetron sputtering system. Near-edge X-ray absorption fine structure (NEXAFS) characterization was carried out to measure the aluminum and silicon K-edges, as well as chromium L-edge, in the coatings. Two soft X-ray techniques, Auger electron yield (AEY) and total fluorescence yield (TFY), were employed to investigate the surface and inner structural properties of the materials in order to understand the structural evolution of CrN matrix with addition of Al (or Si) elements. Investigations on the local bonding states and grain boundaries of the coatings, using NEXAFS technique, provide significant information which facilitates understanding of the local electronic structure of the atoms and shed light on the origins of the high mechanical strength and oxidation resistance of these technologically important coatings.

  3. X-Ray Absorption Near-Edge Structure (XANES) of Calcium L3,2 Edges of Various Calcium Compounds and X-Ray Excited Optical Luminescence (XEOL) Studies of Luminescent Calcium Compounds

    International Nuclear Information System (INIS)

    Ko, J. Y. Peter; Zhou Xingtai; Sham, T.-K.; Heigl, Franziskus; Regier, Tom; Blyth, Robert

    2007-01-01

    X-ray absorption at calcium L3,2 edges of various calcium compounds were measured using a high resolution Spherical Grating Monochromator (SGM) at the Canadian Light Source (CLS). We observe that each compound has its unique fine structure of L3,2 edges. This uniqueness is due to differences in local structure of compounds. We also performed (X-ray Excited Optical Luminescence) XEOL of selected luminescent calcium compounds to investigate their optical properties. XEOL is a photon-in-photon-out technique in which the optical luminescence that is excited by tunable x-rays from a synchrotron light source is monitored. Depending on excitation energy of the x-ray, relative intensities of luminescence peaks vary. Recent findings of the results will be presented here

  4. Edge detection based on computational ghost imaging with structured illuminations

    Science.gov (United States)

    Yuan, Sheng; Xiang, Dong; Liu, Xuemei; Zhou, Xin; Bing, Pibin

    2018-03-01

    Edge detection is one of the most important tools to recognize the features of an object. In this paper, we propose an optical edge detection method based on computational ghost imaging (CGI) with structured illuminations which are generated by an interference system. The structured intensity patterns are designed to make the edge of an object be directly imaged from detected data in CGI. This edge detection method can extract the boundaries for both binary and grayscale objects in any direction at one time. We also numerically test the influence of distance deviations in the interference system on edge extraction, i.e., the tolerance of the optical edge detection system to distance deviation. Hopefully, it may provide a guideline for scholars to build an experimental system.

  5. Integrated core-edge-divertor modeling studies

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    An integrated calculation model for simulating the interaction of physics phenomena taking place in the plasma core, in the plasma edge and in the SOL and divertor of tokamaks has been developed and applied to study such interactions. The model synthesises a combination of numerical calculations (1) the power and particle balances for the core plasma, using empirical confinement scaling laws and taking into account radiation losses (2), the particle, momentum and power balances in the SOL and divertor, taking into account the effects of radiation and recycling neutrals, (3) the transport of feeling and recycling neutrals, explicitly representing divertor and pumping geometry, and (4) edge pedestal gradient scale lengths and widths, evaluation of theoretical predictions (5) confinement degradation due to thermal instabilities in the edge pedestals, (6) detachment and divertor MARFE onset, (7) core MARFE onsets leading to a H-L transition, and (8) radiative collapse leading to a disruption and evaluation of empirical fits (9) power thresholds for the L-H and H-L transitions and (10) the width of the edge pedestals. The various components of the calculation model are coupled and must be iterated to a self-consistent convergence. The model was developed over several years for the purpose of interpreting various edge phenomena observed in DIII-D experiments and thereby, to some extent, has been benchmarked against experiment. Because the model treats the interactions of various phenomena in the core, edge and divertor, yet is computationally efficient, it lends itself to the investigation of the effects of different choices of various edge plasma operating conditions on overall divertor and core plasma performance. Studies of the effect of feeling location and rate, divertor geometry, plasma shape, pumping and over 'edge parameters' on core plasma properties (line average density, confinement, density limit, etc.) have been performed for DIII-D model problems. A

  6. Optically Unraveling the Edge Chirality-Dependent Band Structure and Plasmon Damping in Graphene Edges.

    Science.gov (United States)

    Duan, Jiahua; Chen, Runkun; Cheng, Yuan; Yang, Tianzhong; Zhai, Feng; Dai, Qing; Chen, Jianing

    2018-05-01

    The nontrivial topological origin and pseudospinorial character of electron wavefunctions make edge states possess unusual electronic properties. Twenty years ago, the tight-binding model calculation predicted that zigzag termination of 2D sheets of carbon atoms have peculiar edge states, which show potential application in spintronics and modern information technologies. Although scanning probe microscopy is employed to capture this phenomenon, the experimental demonstration of its optical response remains challenging. Here, the propagating graphene plasmon provides an edge-selective polaritonic probe to directly detect and control the electronic edge state at ambient condition. Compared with armchair, the edge-band structure in the bandgap gives rise to additional optical absorption and strongly absorbed rim at zigzag edge. Furthermore, the optical conductivity is reconstructed and the anisotropic plasmon damping in graphene systems is revealed. The reported approach paves the way for detecting edge-specific phenomena in other van der Waals materials and topological insulators. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Parameter study of self-absorption effects in Total Reflection X-ray Fluorescence-X-ray Absorption Near Edge Structure analysis of arsenic

    International Nuclear Information System (INIS)

    Meirer, F.; Pepponi, G.; Streli, C.; Wobrauschek, P.; Kregsamer, P.; Zoeger, N.; Falkenberg, G.

    2008-01-01

    Total reflection X-ray Fluorescence (TXRF) analysis in combination with X-ray Absorption Near Edge Structure (XANES) analysis is a powerful method to perform chemical speciation studies at trace element levels. However, when measuring samples with higher concentrations and in particular standards, damping of the oscillations is observed. In this study the influence of self-absorption effects on TXRF-XANES measurements was investigated by comparing measurements with theoretical calculations. As(V) standard solutions were prepared at various concentrations and dried on flat substrates. The measurements showed a correlation between the damping of the oscillations and the As mass deposited. A Monte-Carlo simulation was developed using data of the samples shapes obtained from confocal white light microscopy. The results showed good agreement with the measurements; they confirmed that the key parameters are the density of the investigated atom in the dried residues and the shape of the residue, parameters that combined define the total mass crossed by a certain portion of the incident beam. The study presents a simple approach for an a priori evaluation of the self-absorption in TXRF X-ray absorption studies. The consequences for Extended X-ray Absorption Fine Structure (EXAFS) and XANES measurements under grazing incidence conditions are discussed, leading to the conclusion that the damping of the oscillations seems to make EXAFS of concentrated samples non feasible. For XANES 'fingerprint' analysis samples should be prepared with a deposited mass and sample shape leading to an acceptable absorption for the actual investigation

  8. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  9. X-ray absorption near edge structure study on Acutolysin-C, a zinc-metalloproteinase from Agkistrodon acutus venom: Insight into the acid-inactive mechanism

    International Nuclear Information System (INIS)

    Zhao Wei; Chu Wangsheng; Li Shujun; Liu Yiwei; Gao Bin; Niu Liwen; Teng Maikun; Benfatto, Maurizio; Hu Tiandou; Wu Ziyu

    2007-01-01

    Acutolysin-C, a snake-venom zinc metalloproteinase, displays a distinct pH-dependent proteolytic activity, which has been tentatively assigned to a structural change of the zinc-containing catalytic center. In this work we compare X-ray absorption near-edge structure (XANES) experimental spectra at the Zn K-edge and theoretical calculations of solutions at different pH values. The experimental data show clear differences confirmed by a best fit using the MXAN procedure. The results show that, when pH decreases from pH 8.0 to pH 3.0, the zinc-coordinating catalytic water molecule moves far from the Glu143 residue that is considered to play an essential role in the proteolytic process. Data suggests that this is the possible mechanism that deactivates the metalloproteinase

  10. The aquatic hyphomycete Heliscus lugdunensis protects its hyphae tip cells from cadmium: A micro X-ray fluorescence and X-ray absorption near edge structure spectroscopy study

    Science.gov (United States)

    Isaure, Marie-Pierre; Leyh, Benjamin; Salomé, Murielle; Krauss, Gerd-Joachim; Schaumlöffel, Dirk; Dobritzsch, Dirk

    2017-11-01

    Aquatic fungi can be used to evaluate the functioning of natural ecosystems. Heliscus lugdunensis is an early colonizer of allochthone leafs. Since this aquatic hyphomycete is able to develop in metal contaminated habitats and tolerates cadmium, it appears to be a good candidate to investigate adaptation to metal pollution. This study aimed at examining the sequestration of Cd in the hyphae of H. lugdunensis, and particularly the role of the tip cells. For that, H. lugdunensis growth was evaluated under various Cd concentrations, and a combination of synchrotron micro X-ray fluorescence and X-ray absorption near edge structure spectroscopy was carried out to determine the compartments of Cd accumulation and the Cd chemical species, respectively. Results showed that the hyphal tip cells were depleted in Cd, and that the metal was stored in older cells. Cd was mainly associated with sulfur ligands and to a lesser extent bound to phosphates and carboxyl/hydroxyl groups from cell wall and/or organic acids. Finally, the aquatic fungus was able to maintain the tip cell as a functional system, thus allowing the colonization of contaminated environments.

  11. First principles study of edge carboxylated graphene quantum dots

    Science.gov (United States)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-05-01

    The structure stability and electronic properties of edge carboxylated hexagonal and triangular graphene quantum dots are investigated using density functional theory. The calculated binding energies show that the hexagonal clusters with armchair edges have the highest stability among all the quantum dots. The binding energy of carboxylated graphene quantum dots increases by increasing the number of carboxyl groups. Our study shows that the total dipole moment significantly increases by adding COOH with the highest value observed in triangular clusters. The edge states in triangular graphene quantum dots with zigzag edges produce completely different energy spectrum from other dots: (a) the energy gap in triangular zigzag is very small as compared to other clusters and (b) the highest occupied molecular orbital is localized at the edges which is in contrast to other clusters where it is distributed over the cluster surface. The enhanced reactivity and the controllable energy gap by shape and edge termination make graphene quantum dots ideal for various nanodevice applications such as sensors. The infrared spectra are presented to confirm the stability of the quantum dots.

  12. The competitive growth of cubic domains in Ti(1-x)AlxN films studied by diffraction anomalous near-edge structure spectroscopy.

    Science.gov (United States)

    Pinot, Y; Tuilier, M-H; Pac, M-J; Rousselot, C; Thiaudière, D

    2015-11-01

    Titanium and aluminium nitride films deposited by magnetron sputtering generally grow as columnar domains made of oriented nanocrystallites with cubic or hexagonal symmetry depending on Al content, which are embedded in more disordered grain boundaries. The substitution of Al atoms for Ti in the cubic lattice of the films improves their resistance to wear and oxidation, allowing their use as protective coatings. Ti K-edge X-ray absorption spectroscopy, which probes both crystallized and more disordered grain boundaries, and X-ray diffraction anomalous fine structure, which is sensitive to short- and long-range order within a given crystallized domain, are carried out on a set of Ti(1-x)AlxN films deposited by magnetron sputtering on Si substrates. Attention is paid to the shape of the pre-edge region, which is sensitive to the symmetry of the site occupied by Ti atoms, either octahedral in face-centred-cubic Ti-rich (TiN, Ti0.54Al0.46N) samples or tetrahedral in hexagonal-close-packed Al-rich (Ti0.32Al0.68N) films. In order to obain information on the titanium environment in the well crystallized areas, subtraction of the smooth part of the energy-dependent structure factor for the Bragg reflections is applied to the pre-edge region of the diffraction anomalous data in order to restore their spectroscopic appearance. A flat pre-edge is related to the typical octahedral environment of Ti atoms for cubic reflections. The difference observed between pre-edge spectra associated with face-centred-cubic 200 and 111 Bragg reflections of Ti0.54Al0.46N is assigned to Ti enrichment of 111 large well ordered domains compared with the more disordered 200 ones. The sharp peak observed in the spectrum recorded from the hexagonal 002 peak of Ti0.32Al0.68N can be regarded as a standard for the pure tetrahedral Ti environment in hexagonal-close-packed nitride.

  13. Exposure of tungsten nano-structure to TEXTOR edge plasma

    International Nuclear Information System (INIS)

    Ueda, Y.; Miyata, K.; Ohtsuka, Y.; Lee, H.T.; Fukumoto, M.; Brezinsek, S.; Coenen, J.W.; Kreter, A.; Litnovsky, A.; Philipps, V.; Schweer, B.; Sergienko, G.; Hirai, T.; Taguchi, A.; Torikai, Y.; Sugiyama, K.; Tanabe, T.; Kajita, S.; Ohno, N.

    2011-01-01

    W nano-structures (fuzz), produced in the linear high plasma device, NAGDIS, were exposed to TEXTOR edge plasmas (ohmic He/D mixed plasma and pure D plasma) to study formation, erosion and C deposition on W fuzz in tokamak plasmas for the first time. Fuzz layers were either completely eroded or covered by C deposit. There was no clear indication of W fuzz growth under the present conditions. There was no significant difference of C deposition between 'thick' fuzz (500-600 nm in thickness) and 'thin' fuzz (300-400 nm) in the He/D plasma. On the W fuzz surface, C deposition was enhanced probably due to reduction of effective sputtering yield and effective reflection coefficient of carbon ions, similar to roughness effects. Formation and erosion of W fuzz in tokamak devices and role of impurities are discussed.

  14. Structural, electronic and magnetic properties of transition-metal embedded zigzag-edged graphene nanoribbons

    International Nuclear Information System (INIS)

    Yu Guodong; Lü Xiaoling; Jiang Liwei; Gao Wenzhu; Zheng Yisong

    2013-01-01

    By means of ab initio calculations within density-functional theory, the structural, electronic and magnetic properties of a zigzag-edged graphene nanoribbon (ZGNR) with 3d transition-metal atoms (TMAs) (Sc–Zn) embedded in the periodically distributed single vacancies are systematically studied. Different from the pristine ZGNR, all of these composite structures show the subband structures with nontrivial spin polarizations, regardless of the type and the embedding position of the TMA. Embedding one kind of these atoms (V, Cr, Ni, Cu or Zn) near one ribbon edge can cause a notable edge distortion. Except for the cases of Sc, Fe and Co doping, other kinds of TMAs embedded near an edge of the ribbon can suppress the inherent magnetism of the zigzag edge. By further analysis, we find that two effects are responsible for the suppression of edge magnetism. One is the variation of the occupied spin-polarized subbands due to the hybridization of the edge state of the ZGNR and 3d atomic states of the dopant. The other is the delocalization of the edge state caused by the exotic TMA. The unilateral magnetism of these TMA-embedded ZGNRs can be utilized to realize the spin-polarized electronic transport, which is the key electronic property in the context of spintronics applications of carbon-based materials. (paper)

  15. Near-Edge X-ray Absorption Fine Structure Studies of Electrospun Poly(dimethylsiloxane)/Poly (methyl methacrylate)/Multiwall Carbon Nanotube Composites

    Science.gov (United States)

    Winter, A. Douglas; Larios, Eduardo; Alamgir, Faisal M.; Jaye, Cherno; Fischer, Daniel; Campo, Eva M.

    2014-01-01

    This work describes the near conduction band edge structure of electrospun mats of MWCNT-PDMS-PMMA by near edge X-Ray absorption fine structure (NEXAFS) spectroscopy. Effects of adding nanofillers of different sizes were addressed. Despite observed morphological variations and inhomogeneous carbon nanotube distribution, spun mats appeared homogeneous under NEXAFS analysis. Spectra revealed differences in emissions from glancing and normal spectra; which may evidence phase separation within the bulk of the micron-size fibers. Further, dichroic ratios show polymer chains did not align, even in the presence of nanofillers. Addition of nanofillers affected emissions in the C-H, C=O and C-C regimes, suggesting their involvement in interfacial matrix-carbon nanotube bonding. Spectral differences at glancing angles between pristine and composite mats suggest that geometric conformational configurations are taking place between polymeric chains and carbon nanotubes. These differences appear to be carbon nanotube-dimension dependent, and are promoted upon room temperature mixing and shear flow during electrospinning. CH-π bonding between polymer chains and graphitic walls, as well as H-bonds between impurities in the as-grown CNTs and polymer pendant groups are proposed bonding mechanisms promoting matrix conformation. PMID:24308286

  16. Wrinkling reduction of membrane structure by trimming edges

    Directory of Open Access Journals (Sweden)

    Mingjun Liu

    2017-05-01

    Full Text Available Thin membranes have negligible bending stiffness, compressive stresses inevitably lead to wrinkling. Therefore, it is important to keep the surface of membrane structures flat in order to guarantee high precision. Edge-trimming is an effective method to passively diminish wrinkles, however a key difficulty in this process is the determination of the optimal trimming level. In this paper, regular polygonal membrane structures subjected to equal radial forces were analyzed, and a new stress field distribution model for arc-edge square membrane structure was proposed to predict the optimal trimming level. This model is simple and applicable to any polygonal membrane structures. Comparison among the results of the finite element analysis, and the experimental and analytical results showed that the proposed model accurately described the stress field distribution and guaranteed that there are no wrinkles appear inside the effective inscribed circle region for the optimal trimming level.

  17. Extended x-ray absorption fine structure spectroscopy and x-ray absorption near edge spectroscopy study of aliovalent doped ceria to correlate local structural changes with oxygen vacancies clustering

    Energy Technology Data Exchange (ETDEWEB)

    Shirbhate, S. C.; Acharya, S. A., E-mail: saha275@yahoo.com [Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033 (India); Yadav, A. K. [Atomic and molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-04-04

    This study provides atomic scale insight to understand the role of aliovalent dopants on oxygen vacancies clustering and dissociation mechanism in ceria system in order to enhance the performance of oxy-ion conductor. Dopants induced microscale changes in ceria are probed by extended X-ray absorption fine structure spectroscopy, X-ray absorption near edge spectra, and Raman spectroscopy. The results are explored to establish a correlation between atomic level structural changes (coordination number, interatomic spacing) → formation of dimer and trimer type cation-oxygen vacancies defect complex (intrinsic and extrinsic) → dissociation of oxygen vacancies from defect cluster → ionic conductivity temperature. It is a strategic approach to understand key physics of ionic conductivity mechanism in order to reduce operating temperature of electrolytes for intermediate temperature (300–450 °C) electrochemical devices for the first time.

  18. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.

    2011-01-01

    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  19. The interaction of copper ions with Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli: an X-ray absorption near-edge structure (XANES) spectroscopy study.

    Science.gov (United States)

    Zanzen, Ulrike; Bovenkamp-Langlois, Lisa; Klysubun, Wantana; Hormes, Josef; Prange, Alexander

    2018-04-01

    The antimicrobial properties of copper ions have been known for a long time. However, the exact mechanism of action of the transition metal on microorganisms has long been unclear. X-ray absorption near-edge structure (XANES) spectroscopy at the Cu K edge allows the determination of copper speciation in Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa that have been treated with Cu(II) and Cu(I) solutions. The death/inactivation of the bacteria was observed using plate counting and light microscopy. The Cu K-XANES spectra of the two Gram-negative bacteria are different than those of the Gram-positive strain. The results clearly show that the Cu + -S bond contributes to the antibacterial activity of copper, as in the case of silver. The detailed evaluation of the differentiated absorption spectra shows that Cu + (not Cu 2+ ) is the dominant ion that binds to the bacteria. Because Cu + is not the most common copper ion, copper is not as effective an antibacterial agent as silver, whose common valency is actually + 1. Any reaction of copper with phosphorus from the bacteria can be excluded after the evaluation of the absorption spectra.

  20. Manganese in photosynthetic oxygen evolution: An edge and EXAFS study

    International Nuclear Information System (INIS)

    Yachandra, V.K.; Guiles, R.D.; McDermott, A.; Britt, R.D.; Dexheimer, S.L.; Saver, K.; Klein, M.P.

    1985-01-01

    The authors edge studies have previously shown that the Mn edges in photosynthetic samples in the S 1 and S 2 states fall into the range for Mn III and Mn IV complexes, and that the K-edge energy increases appreciably on advancing S 1 to S 2 . This was the first evidence that manganese is directly involved in the storage of oxidizing equivalents. More recently, they have extended this result with better quality data from both spinach and a thermophilic cyanobacterium. The newer results show an interesting structure to the edges, including a 1s to 3d transition. The EXAFS results for spinach membranes show that the salient features of the Mn structure are the same in the S 1 and S 2 states. These features are a Mn neighbor at approx. =2.7 A and O or N neighbors at approx. =1.75 A and approx. =2.0 A. The EXAFS spectrum of the S 1 state of the thermophilic blue green algae are strikingly similar to that of spinach

  1. Soft edges--organizational structure in dental education.

    Science.gov (United States)

    Chambers, D W

    1995-03-01

    There is no one best organizational structure for dental schools or for their major subunits. The classical alternatives of functional and divisional organization are discussed in light of the rule that follows function, and the advantages and disadvantages of each are presented. Newer models--decentralization, matrix, and heterarchy--show how features of functional and divisional structure can be blended. Virtual organizations, systems theory, and networks are also considered as new expressions of classical structures. The principle of suboptimization (soft edges) is presented.

  2. Study of airfoil trailing edge bluntness noise

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2010-01-01

    This paper deals with airfoil trailing edge noise with special focus on airfoils with blunt trailing edges. Two methods are employed to calculate airfoil noise: The flow/acoustic splitting method and the semi-empirical method. The flow/acoustic splitting method is derived from compressible Navier...... design or optimization. Calculations from both methods are compared with exist experiments. The airfoil blunt noise is found as a function of trailing edge bluntness, Reynolds number, angle of attack, etc....

  3. Structure of density fluctuations in the edge plasma of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Rudyj, A; Carlson, A; Endler, M; Giannone, L.; Niedermeyer, H; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1990-01-01

    It is now generally believed that the anomalous particle and energy transport in tokamaks is caused by turbulent fluctuations. The physical nature of these fluctuations (mode type, the driving mechanism) have still to be identified experimentally before a self consistent transport theory can be developed. In contrast to the confinement region the plasma edge can be well diagnosed. H{sub {alpha}}-light, which is emitted at the edge, reacts to density and to some extend to temperature fluctuations. It delivers information about radially integrated spectra and correlations. Langmuir probes measure density and potential fluctuations with good spatial resolution. The edge transport governs the physics in the scrape-off layer and in the divertor which is extremely important for a reactor and therefore deserves a major experimental effort. In this paper we report on an attempt to gain detailed information about the spatial and temporal structure of the edge turbulence hoping to reduce the degrees of freedom for theoretical models to a manageable number. (author) 3 refs., 3 figs.

  4. Structure of density fluctuations in the edge plasma of ASDEX

    International Nuclear Information System (INIS)

    Rudyj, A.; Carlson, A.; Endler, M.; Giannone, L.; Niedermeyer, H.; Theimer, G.

    1990-01-01

    It is now generally believed that the anomalous particle and energy transport in tokamaks is caused by turbulent fluctuations. The physical nature of these fluctuations (mode type, the driving mechanism) have still to be identified experimentally before a self consistent transport theory can be developed. In contrast to the confinement region the plasma edge can be well diagnosed. H α -light, which is emitted at the edge, reacts to density and to some extend to temperature fluctuations. It delivers information about radially integrated spectra and correlations. Langmuir probes measure density and potential fluctuations with good spatial resolution. The edge transport governs the physics in the scrape-off layer and in the divertor which is extremely important for a reactor and therefore deserves a major experimental effort. In this paper we report on an attempt to gain detailed information about the spatial and temporal structure of the edge turbulence hoping to reduce the degrees of freedom for theoretical models to a manageable number. (author) 3 refs., 3 figs

  5. Edge-Strengthening of Structural Glass with Protective Coatings

    OpenAIRE

    Lindqvist Maria; Louter Christian; Lebet Jean-Paul

    2012-01-01

    In modern buildings, glass is increasingly used as a load-carrying material in structural components, such as glass beams. For glass beams especially the edge strength of glass is important. However, the strength of glass is not a material constant but depends on various parameters, which makes glass, amongst other things, a challenging building material. One of the parameters influencing glass strength is the combination of humidity and stress, which may cause stress corrosion. The aim of th...

  6. Si K EDGE STRUCTURE AND VARIABILITY IN GALACTIC X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Norbert S.; Corrales, Lia; Canizares, Claude R. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2016-08-10

    We survey the Si K edge structure in various absorbed Galactic low-mass X-ray binaries (LMXBs) to study states of silicon in the inter- and circum-stellar medium. The bulk of these LMXBs lie toward the Galactic bulge region and all have column densities above 10{sup 22} cm{sup −2}. The observations were performed using the Chandra High Energy Transmission Grating Spectrometer. The Si K edge in all sources appears at an energy value of 1844 ± 0.001 eV. The edge exhibits significant substructure that can be described by a near edge absorption feature at 1849 ± 0.002 eV and a far edge absorption feature at 1865 ± 0.002 eV. Both of these absorption features appear variable with equivalent widths up to several mÅ. We can describe the edge structure using several components: multiple edge functions, near edge absorption excesses from silicates in dust form, signatures from X-ray scattering optical depths, and a variable warm absorber from ionized atomic silicon. The measured optical depths of the edges indicate much higher values than expected from atomic silicon cross sections and interstellar medium abundances, and they appear consistent with predictions from silicate X-ray absorption and scattering. A comparison with models also indicates a preference for larger dust grain sizes. In many cases, we identify Si xiii resonance absorption and determine ionization parameters between log ξ = 1.8 and 2.8 and turbulent velocities between 300 and 1000 km s{sup −1}. This places the warm absorber in close vicinity of the X-ray binaries. In some data, we observe a weak edge at 1.840 keV, potentially from a lesser contribution of neutral atomic silicon.

  7. Experimental study of the plasma structure and characterization of the transport behaviour in the laminar zone of a stochastized plasma edge; Experimentelle Untersuchung der Plasmastruktur und Charakterisierung des Transportverhaltens in der laminaren Zone einer stochastisierten Plasmarandschicht

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, O.

    2006-07-15

    For a detailed study of the plasma structure and the transport characteristics of a stochastized plasma edge at the tokamak TEXTOR the dynamic ergodic divertor (DED) was constructed, by which differently shaped external disturbing fields are statically and dynamically generated. Aim of this thgesis is to study experimentally the radial and poloidal structure of the plasma edge stochastized by the DED disturbing field and to analyze its transport characteristics. For this spatially highly resolved radial profiles of the electron density and temperature were measured by means of radiation-emission spectroscopy on thermal helium at the high- and low-field side of TEXTOR. These experimental results yield a good stating base for the validation and further development of three-dimensional transport codes.

  8. Study of edge turbulence in tokamak plasmas

    International Nuclear Information System (INIS)

    Sarazin, Y.

    1997-01-01

    The aim of this work is to propose a new frame to study turbulent transport in plasmas. In order to avoid the restraint of scale separability the forcing by flux is used. A critical one-dimension self-organized cellular model is developed. In keeping with experience the average transport can be described by means of diffusion and convection terms whereas the local transport could not. The instability due to interchanging process is thoroughly studied and some simplified equations are derived. The proposed model agrees with the following experimental results: the relative fluctuations of density are maximized on the edge, the profile shows an exponential behaviour and the amplitude of density fluctuations depends on ionization source strongly. (A.C.)

  9. The origin of luminescence from di[4-(4-diphenylaminophenyl)phenyl]sulfone (DAPSF), a blue light emitter: an X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) study.

    Science.gov (United States)

    Zhang, Duo; Zhang, Hui; Zhang, Xiaohong; Sham, Tsun-Kong; Hu, Yongfeng; Sun, Xuhui

    2016-03-07

    The electronic structure and optical properties of di[4-(4-diphenylaminophenyl)phenyl]sulfone (denoted as DAPSF), a highly efficient fluorophor, have been investigated using X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) spectroscopy at excitation energies across the C, N, O K-edges and the sulfur K-edge. The results indicate that the blue luminescence is mainly related to the sulfur functional group.

  10. Contrast in edge vegetation structure modifies the predation risk of natural ground nests in an agricultural landscape.

    Directory of Open Access Journals (Sweden)

    Nicole A Schneider

    Full Text Available Nest predation risk generally increases nearer forest-field edges in agricultural landscapes. However, few studies test whether differences in edge contrast (i.e. hard versus soft edges based on vegetation structure and height affect edge-related predation patterns and if such patterns are related to changes in nest conspicuousness between incubation and nestling feeding. Using data on 923 nesting attempts we analyse factors influencing nest predation risk at different edge types in an agricultural landscape of a ground-cavity breeding bird species, the Northern Wheatear (Oenanthe oenanthe. As for many other bird species, nest predation is a major determinant of reproductive success in this migratory passerine. Nest predation risk was higher closer to woodland and crop field edges, but only when these were hard edges in terms of ground vegetation structure (clear contrast between tall vs short ground vegetation. No such edge effect was observed at soft edges where adjacent habitats had tall ground vegetation (crop, ungrazed grassland. This edge effect on nest predation risk was evident during the incubation stage but not the nestling feeding stage. Since wheatear nests are depredated by ground-living animals our results demonstrate: (i that edge effects depend on edge contrast, (ii that edge-related nest predation patterns vary across the breeding period probably resulting from changes in parental activity at the nest between the incubation and nestling feeding stage. Edge effects should be put in the context of the nest predator community as illustrated by the elevated nest predation risk at hard but not soft habitat edges when an edge is defined in terms of ground vegetation. These results thus can potentially explain previously observed variations in edge-related nest predation risk.

  11. Scanning tunneling microscopy and spectroscopy studies of graphite edges

    International Nuclear Information System (INIS)

    Niimi, Y.; Matsui, T.; Kambara, H.; Tagami, K.; Tsukada, M.; Fukuyama, Hiroshi

    2005-01-01

    We studied experimentally and theoretically the electronic local density of states (LDOS) near single-step edges at the surface of exfoliated graphite. In scanning tunneling microscopy measurements, we observed the (3x3)R30 o and honeycomb superstructures extending over 3-4-bar nm both from the zigzag and armchair edges. Calculations based on a density-functional-derived non-orthogonal tight-binding model show that these superstructures can coexist if the two types of edges admix each other in real graphite step edges. Scanning tunneling spectroscopy measurements near the zigzag edge reveal a clear peak in the LDOS at an energy below the Fermi energy by 20-bar meV. No such a peak was observed near the armchair edge. We concluded that this peak corresponds to the 'edge state' theoretically predicted for graphene ribbons, since a similar prominent LDOS peak due to the edge state is obtained by the first principles calculations

  12. Studies on absorption coefficient near edge of multi elements

    International Nuclear Information System (INIS)

    Eisa, M.H.; Shen, H.; Yao, H.Y.; Mi, Y.; Zhou, Z.Y.; Hu, T.D.; Xie, Y.N.

    2005-01-01

    X-ray absorption near edge structure (XANES) was used to study the near edge mass-absorption coefficients of seven elements, such as, Ti, V, Fe, Co, Ni, Cu and Zn. It is well known that, on the near edge absorption of element, when incident X-ray a few eV change can make the absorption coefficient an order magnitude alteration. So that, there are only a few points mass-absorption coefficient at the near edge absorption and that always average value in published table. Our results showed a wide range of data, the total measured data of mass-absorption coefficient of the seven elements was about 505. The investigation confirmed that XANES is useful technique for multi-element absorption coefficient measurement. Details of experimental methods and results are given and discussed. The experimental work has been performed at Beijing Synchrotron Radiation Facility. The measured values were compared with the published data. Good agreement between experimental results and published data is obtained

  13. Studies on absorption coefficient near edge of multi elements

    Science.gov (United States)

    Eisa, M. H.; Shen, H.; Yao, H. Y.; Mi, Y.; Zhou, Z. Y.; Hu, T. D.; Xie, Y. N.

    2005-12-01

    X-ray absorption near edge structure (XANES) was used to study the near edge mass-absorption coefficients of seven elements, such as, Ti, V, Fe, Co, Ni, Cu and Zn. It is well known that, on the near edge absorption of element, when incident X-ray a few eV change can make the absorption coefficient an order magnitude alteration. So that, there are only a few points mass-absorption coefficient at the near edge absorption and that always average value in published table. Our results showed a wide range of data, the total measured data of mass-absorption coefficient of the seven elements was about 505. The investigation confirmed that XANES is useful technique for multi-element absorption coefficient measurement. Details of experimental methods and results are given and discussed. The experimental work has been performed at Beijing Synchrotron Radiation Facility. The measured values were compared with the published data. Good agreement between experimental results and published data is obtained.

  14. Edge Effects on Community and Social Structure of Northern Temperate Deciduous Forest Ants

    Directory of Open Access Journals (Sweden)

    Valerie S. Banschbach

    2012-01-01

    Full Text Available Determining how ant communities are impacted by challenges from habitat fragmentation, such as edge effects, will help us understand how ants may be used as a bioindicator taxon. To assess the impacts of edge effects upon the ant community in a northern temperate deciduous forest, we studied edge and interior sites in Jericho, VT, USA. The edges we focused upon were created by recreational trails. We censused the ants at these sites for two consecutive growing seasons using pitfall traps and litter plot excavations. We also collected nests of the most common ant species at our study sites, Aphaenogaster rudis, for study of colony demography. Significantly greater total numbers of ants and ant nests were found in the edge sites compared to the interior sites but rarefaction analysis showed no significant difference in species richness. Aphaenogaster rudis was the numerically dominant ant in the habitats sampled but had a greater relative abundance in the interior sites than in the edge sites both in pitfall and litter plot data. Queen number of A. rudis significantly differed between the nests collected in the edge versus the interior sites. Habitat-dependent changes in social structure of ants represent another possible indicator of ecosystem health.

  15. X-ray absorption edges and E.X.A.F.S.: application to the study of electronic and atomic structures of titanium and vanadium carbides TiC(1-x) and VC(1-x)

    International Nuclear Information System (INIS)

    Moisy-Maurice, Virginie.

    1980-09-01

    This text presents a systematic study of the X-ray absorption fine structures evolution, at the K edge of titanium, with vacancy concentration in TiC(1-x). The absorption edges are situated in the 50 eV following the coefficient discontinuity: from the evaluation of their general aspect, it is deduced that the positive charge of titanium atoms decreases when vacancy concentration increases in TiC(1-x). This allowed us to determine the best band structure calculation model. The interpretation of EXAFS spectra (modulation of the absorption coefficient until 1500 eV above the edge) gives indications about the local atomic structure. Here, the contraction of the average titanium-carbon interatomic distances compared to the distances between crystallographic sites is of the order of the experimental resolution 0.02 A for Ti C(0.8). The study of the damping of the spectra in terms of Debye-Waller factors gave an evaluation of the relative static atomic mean square displacements between first neighbours. Last, it has been established that the disordering of vacancies in the order-disorder transition of V 8 C 7 is an atomic scale phenomenon [fr

  16. Edge-closed laminated structures for thin-film heads

    Science.gov (United States)

    Herman, D. A.; Argyle, B. E.; Lee, H.-P.; Trouilloud, P. O.; Petek, B.

    1991-04-01

    Magnetic film laminations containing nonmagnetic spacers have been explored with the hope of eliminating domain walls to diminish Barkhausen instabilities. Such laminates have limitations however, which originate in their ``edge-curling walls'' (ECWs).1 We have developed a new structure, free of ECWs, in which flux closure at opposing edges occurs via edge-shorting material added to circulate the easy-axis flux of the flat layers. We show experimentally with Kerr-effect imaging that (1) this edge-closed laminated (ECL) structure can support an (ECW-free) ``easy-axis'' (EA) magnetic state under conditions as modeled recently by Slonczewski,2 and (2) that this EA state is quite robust in the face of imperfect structure fabrication. This is, if the imperfections are not too severe, the resultant states depart minimally from the pure EA state and conduct hard-axis-driven flux nearly as well. Flat-film ECL elements in diamond, stripe, and recording-head-yoke shapes, plus experimental heads with ECL top yokes, were fabricated. Our domain images verify some key predictions from Slonczewski's static equilibrium modeling; additional results taken in applied magnetic fields extend the micromagnetic understanding. The sketch shows a typical domain pattem for a yoke-shaped element. The most stable state in the open portion of the yoke is the single domain shown. This remanent pattern was stable in the face of (slowly varying) external fields up to the 150 Oe that could be applied. The pole tip region contained a few 180° walls as indicated. On close inspection, these walls were seen to end in vestigial, nontouching, closure domains as predicted by the model when only partial flux closure occurs via the edge shorting material. The wall spacing in the tip varied somewhat following saturation-demagnetization cycles. The dynamic stability of this EA state was investigated in the experimental heads having ECL top yokes. The pseudodynamic LAMOM technique3 was applied using ``write

  17. Role of edges in the electronic and magnetic structures of nanographene

    International Nuclear Information System (INIS)

    Enoki, Toshiaki

    2012-01-01

    In graphene edges or nanographene, the presence of edges strongly affects the electronic structure depending on their edge shape (zigzag and armchair edges) as observed with the electron wave interference and the creation of non-bonding π-electron state (edge state). We investigate the edge-inherent electronic features and the magnetic properties of edge-sate spins in nanographene/graphene edges. Graphene nanostructures are fabricated by heat-induced conversion/fabrication of nanodiamond particles/graphite step edges; single-layer nanographene islands (mean size 10 nm) and armchair-edged nanographene ribbons (width 8 nm). Scanning tunneling microscopy (STM)/scanning tunneling spectroscopy observations demonstrate that edge states are created in zigzag edges in spite of the absence of such states in armchair edges. In addition, zigzag edges tend to be short and defective, whereas armchair edges are long and continuous in general. These findings suggest that a zigzag edge has lower aromatic stability than an armchair edge, consistent with Clar's aromatic sextet rule. The manner in which electron wave scattering takes place is different between zigzag and armchair edges. In the vicinity of an armchair edge, a honeycomb superlattice is observed in STM images together with a fine structure of threefold symmetry, in spite of the (√3×√3 )R30 o superlattice at a zigzag edge. The honeycomb lattice is a consequence of the intervalley K-K' transition that accompanies the electron wave interference taking place at the armchair edge. The Raman G-band is also affected by the interference, showing polarization angle dependence specifically at armchair edges. The magnetism of a three-dimensional disordered network of nanographene sheets is understood on the basis of the ferrimagnetic structure of the edge-state spins in individual constituent nanographene sheets. The strengthening of the inter-nanographene-sheet magnetic interaction brings about a spin glass state.

  18. Does the edge effect influence plant community structure in a tropical dry forest?

    Directory of Open Access Journals (Sweden)

    Diogo Gallo Oliveira

    2013-04-01

    Full Text Available Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges.

  19. Study of oxidation states of the transition metals in a series of Prussian blue analogs using x-ray absorption near edge structure (XANES) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Adak, S. [Department of Physics, New Mexico State University, Las Cruces, NM, 88003 (United States); Hartl, M., E-mail: monika.hartl@esss.se [European Spallation Source ESS AB, 22100, Lund (Sweden); Manuel Lujan Jr. Neutron Scattering Center (LANSCE-LC), Los Alamos National Laboratory, Los Alamos, NM, 87545 (United States); Daemen, L. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN, 37830 (United States); Manuel Lujan Jr. Neutron Scattering Center (LANSCE-LC), Los Alamos National Laboratory, Los Alamos, NM, 87545 (United States); Fohtung, E.; Nakotte, H. [Department of Physics, New Mexico State University, Las Cruces, NM, 88003 (United States)

    2017-01-15

    Highlights: • Systematic XANES measurements on Prussian blue analogs shows oxidation state of transition metals. • Cobal-iron bimetallic hexacyanometallates show unexpected oxidation states. • Iron(II) ions in hexacyanometallates(III) show varying spin state depending on their bond to the “N” end or “C” end of the cyanide ligand. • Thermal expansion coefficients have been linked to the XANES results. - Abstract: There have been renewed interests in metal-organic framework classes of materials such as Prussian blue analogues (PBAs) due to their potential usage in energy storage applications. In particular, due to their high surface areas, controllable structures and excellent electrochemical properties, PBAs such as hexacyanometalates M{sup II}{sub 3}[A{sup III}(CN){sub 6}]{sub 2*}nH{sub 2}O (M = Mn, Fe, Co, Ni, Cu, Zn; A = Co, Fe, Cr; n = no. of water molecules present), M{sup II}{sub 2}[Fe{sup II}(CN){sub 6}]{sub 2*}nH{sub 2}O (M = Mn, Co, Ni, Cu, Zn) and mixed hexacyanometalates(III) (Fe{sub 1-x}Co{sub x}){sub 3}[B{sup III}(CN){sub 6}]{sub 2}·nH{sub 2}O (x = 0.25, 0.5, 0.75; B = Co, Fe) could have possible usage as a new class of cathode and even anode materials for rechargeable batteries. Detailed knowledge of the oxidation states of the transition metals in PBAs is required to improve efficiency and durability of such devices. Furthermore, a link between the thermal expansion observed in these materials and the oxidation state of the transition metal is of interest to synthesize materials with a desired thermal expansion behavior, Here we demonstrate the use of Synchrotron based X-ray absorption near-edge structure (XANES) spectra to identify transition metal oxidation states. Our analysis reveals the presence of divalent, trivalent and/or mixed valence transition metals in the materials as well as high-spin and low-spin complexes.

  20. Characterization of Crystallographic Structures Using Bragg-Edge Neutron Imaging at the Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    Gian Song

    2017-12-01

    Full Text Available Over the past decade, wavelength-dependent neutron radiography, also known as Bragg-edge imaging, has been employed as a non-destructive bulk characterization method due to its sensitivity to coherent elastic neutron scattering that is associated with crystalline structures. Several analysis approaches have been developed to quantitatively determine crystalline orientation, lattice strain, and phase distribution. In this study, we report a systematic investigation of the crystal structures of metallic materials (such as selected textureless powder samples and additively manufactured (AM Inconel 718 samples, using Bragg-edge imaging at the Oak Ridge National Laboratory (ORNL Spallation Neutron Source (SNS. Firstly, we have implemented a phenomenological Gaussian-based fitting in a Python-based computer called iBeatles. Secondly, we have developed a model-based approach to analyze Bragg-edge transmission spectra, which allows quantitative determination of the crystallographic attributes. Moreover, neutron diffraction measurements were carried out to validate the Bragg-edge analytical methods. These results demonstrate that the microstructural complexity (in this case, texture plays a key role in determining the crystallographic parameters (lattice constant or interplanar spacing, which implies that the Bragg-edge image analysis methods must be carefully selected based on the material structures.

  1. Atomic-scale structures of interfaces between phyllosilicate edges and water

    NARCIS (Netherlands)

    Liu, X.; Lu, X.; Meijer, E.J.; Wang, R.; Zhou, H.

    2012-01-01

    We report first-principles molecular dynamics (FPMD) studies on the structures of interfaces between phyllosilicate edges and water. Using FPMD, the substrates and solvents are simulated at the same first-principles level, and the thermal motions are sampled via molecular dynamics. Both the neutral

  2. Study on edge-extraction of remote sensing image

    International Nuclear Information System (INIS)

    Wen Jianguang; Xiao Qing; Xu Huiping

    2005-01-01

    Image edge-extraction is an important step in image processing and recognition, and also a hot spot in science study. In this paper, based on primary methods of the remote sensing image edge-extraction, authors, for the first time, have proposed several elements which should be considered before processing. Then, the qualities of several methods in remote sensing image edge-extraction are systematically summarized. At last, taking Near Nasca area (Peru) as an example the edge-extraction of Magmatic Range is analysed. (authors)

  3. Numerical studies of edge localized instabilities in tokamaks

    International Nuclear Information System (INIS)

    Wilson, H.R.; Snyder, P.B.; Huysmans, G.T.A.; Miller, R.L.

    2002-01-01

    A new computational tool, edge localized instabilities in tokamaks equilibria (ELITE), has been developed to help our understanding of short wavelength instabilities close to the edge of tokamak plasmas. Such instabilities may be responsible for the edge localized modes observed in high confinement H-mode regimes, which are a serious concern for next step tokamaks because of the high transient power loads which they can impose on divertor target plates. ELITE uses physical insight gained from analytic studies of peeling and ballooning modes to provide an efficient way of calculating the edge ideal magnetohydrodynamic stability properties of tokamaks. This paper describes the theoretical formalism which forms the basis for the code

  4. Filament structures at the plasma edge on MAST

    International Nuclear Information System (INIS)

    Kirk, A; Ayed, N Ben; Counsell, G; Dudson, B; Eich, T; Herrmann, A; Koch, B; Martin, R; Meakins, A; Saarelma, S; Scannell, R; Tallents, S; Walsh, M; Wilson, H R

    2006-01-01

    The boundary of the tokamak core plasma, or scrape-off layer, is normally characterized in terms of average parameters such as density, temperature and e-folding lengths suggesting diffusive losses. However, as is shown in this paper, localized filamentary structures play an important role in determining the radial efflux in both L mode and during edge localized modes (ELMs) on MAST. Understanding the size, poloidal and toroidal localization and the outward radial extent of these filaments is crucial in order to calculate their effect on power loading both on the first wall and the divertor target plates in future devices. The spatial and temporal evolution of filaments observed on MAST in L-mode and ELMs have been compared and contrasted in order to confront the predictions of various models that have been proposed to predict filament propagation and in particular ELM energy losses

  5. Parameters Influencing Sulfur Speciation in Environmental Samples Using Sulfur K-Edge X-Ray Absorption Near-Edge Structure

    Directory of Open Access Journals (Sweden)

    Siwatt Pongpiachan

    2012-01-01

    Full Text Available This paper aims to enhance the credibility of applying the sulfur K-edge XANES spectroscopy as an innovative “fingerprint” for characterizing environmental samples. The sensitivities of sulfur K-edge XANES spectra of ten sulfur compound standards detected by two different detectors, namely, Lytle detector (LyD and Germanium detector (GeD, were studied and compared. Further investigation on “self-absorption” effect revealed that the maximum sensitivities of sulfur K-edge XANES spectra were achieved when diluting sulfur compound standards with boron nitride (BN at the mixing ratio of 0.1%. The “particle-size” effect on sulfur K-edge XANES spectrum sensitivities was examined by comparing signal-to-noise ratios of total suspended particles (TSP and particulate matter of less than 10 millionths of a meter (PM10 collected at three major cities of Thailand. The analytical results have demonstrated that the signal-to-noise ratios of sulfur K-edge XANES spectra were positively correlated with sulfate content in aerosols and negatively connected with particle sizes. The combination of hierarchical cluster analysis (HCA and principal component analysis (PCA has proved that sulfur K-edge XANES spectrum can be used to characterize German terrestrial soils and Andaman coastal sediments. In addition, this study highlighted the capability of sulfur K-edge XANES spectra as an innovative “fingerprint” to distinguish tsunami backwash deposits (TBD from typical marine sediments (TMS.

  6. Attenuation studies near K-absorption edges using Compton ...

    Indian Academy of Sciences (India)

    The results are consistent with theoretical values derived from the XCOM package. Keywords. Photon interaction; 241Am; gamma ray attenuation; Compton scattering; absorption edge; rare earth elements. PACS Nos 32.80.-t; 32.90.+a. 1. Introduction. Photon interaction studies at energies around the absorption edge have ...

  7. Lamb-Wave-Based Tomographic Imaging Techniques for Hole-Edge Corrosion Monitoring in Plate Structures

    Directory of Open Access Journals (Sweden)

    Dengjiang Wang

    2016-11-01

    Full Text Available This study presents a novel monitoring method for hole-edge corrosion damage in plate structures based on Lamb wave tomographic imaging techniques. An experimental procedure with a cross-hole layout using 16 piezoelectric transducers (PZTs was designed. The A0 mode of the Lamb wave was selected, which is sensitive to thickness-loss damage. The iterative algebraic reconstruction technique (ART method was used to locate and quantify the corrosion damage at the edge of the hole. Hydrofluoric acid with a concentration of 20% was used to corrode the specimen artificially. To estimate the effectiveness of the proposed method, the real corrosion damage was compared with the predicted corrosion damage based on the tomographic method. The results show that the Lamb-wave-based tomographic method can be used to monitor the hole-edge corrosion damage accurately.

  8. Finite element method calculations of GMI in thin films and sandwiched structures: Size and edge effects

    International Nuclear Information System (INIS)

    Garcia-Arribas, A.; Barandiaran, J.M.; Cos, D. de

    2008-01-01

    The impedance values of magnetic thin films and magnetic/conductor/magnetic sandwiched structures with different widths are computed using the finite element method (FEM). The giant magneto-impedance (GMI) is calculated from the difference of the impedance values obtained with high and low permeability of the magnetic material. The results depend considerably on the width of the sample, demonstrating that edge effects are decisive for the GMI performance. It is shown that, besides the usual skin effect that is responsible for GMI, an 'unexpected' increase of the current density takes place at the lateral edge of the sample. In magnetic thin films this effect is dominant when the permeability is low. In the trilayers, it is combined with the lack of shielding of the central conductor at the edge. The resulting effects on GMI are shown to be large for both kinds of samples. The conclusions of this study are of great importance for the successful design of miniaturized GMI devices

  9. Edge fluctuation studies in Heliotron J

    International Nuclear Information System (INIS)

    Mizuuchi, T.; Chechkin, V.V.; Ohashi, K.; Sorokovoy, E.L.; Chechkin, A.V.; Gonchar, V.Yu.; Takahashi, K.; Kobayashi, S.; Nagasaki, K.; Okada, H.; Yamamoto, S.; Sano, F.; Kondo, K.; Nishino, N.; Kawazome, H.; Shidara, H.; Kaneko, S.; Fukagawa, Y.; Morita, Y.; Nakazawa, S.; Nishio, S.; Tsuboi, S.; Yamada, M.

    2005-01-01

    Low frequency and small-scale fluctuations of density and potential near the last closed flux surface are investigated by using Langmuir probes for the second harmonic ECH plasmas in a helical-axis heliotron device, Heliotron J. The existence of a plasma layer with a radial electric field shear was indicated near the last closed flux surface. Near this layer, the reversal of phase velocity and de-correlation of the fluctuations were observed. On the other hand, it is suggested that a considerable fraction of the fluctuation induced particle flux is carried off through the intermittent events. Preliminary analyses to classify the PDFs of the ion-saturation current fluctuation as stable Levy distributions demonstrate that the Levy index decreases from the inner to the outer region of edge plasma, suggesting that the PDFs near the boundary region of Heliotron J are nearly Gaussian, whereas at the outer regions of plasma they become strongly non-Gaussian

  10. Probing the Structure of Our Solar System's Edge

    Science.gov (United States)

    Hensley, Kerry

    2018-02-01

    The boundary between the solar wind and the interstellar medium (ISM) at the distant edge of our solar system has been probed remotely and directly by spacecraft, but questions about its properties persist. What can models tell us about the structure of this region?The Heliopause: A Dynamic BoundarySchematic illustrating different boundaries of our solar system and the locations of the Voyager spacecraft. [Walt Feimer/NASA GSFCs Conceptual Image Lab]As our solar system travels through interstellar space, the magnetized solar wind flows outward and pushes back on the oncoming ISM, forming a bubble called the heliosphere. The clash of plasmas generates a boundary region called the heliopause, the shape of which depends strongly on the properties of the solar wind and the local ISM.Much of our understanding of the outer heliosphere and the local ISM comes from observations made by the International Boundary Explorer (IBEX) and the Voyager 1 and Voyager 2 spacecraft. IBEX makes global maps of the flux of neutral atoms, while Voyagers 1 and 2 record the plasma density and magnetic field parameters along their trajectories as they exit the solar system. In order to interpret the IBEX and Voyager observations, astronomers rely on complex models that must capture both global and local effects.Simulations of the plasma density in the meridional plane of the heliosphere due to the interaction of the solar wind with the ISM for the case of a relatively dense ISM with a weak magnetic field. [Adapted from Pogorelov et al. 2017]Modeling the Edge of the Solar SystemIn this study, Nikolai Pogorelov (University of Alabama in Huntsville) and collaborators use a hybrid magneto-hydrodynamical (MHD) and kinetic simulation to capture fully the physical processes happening in the outer heliosphere.MHD models have been used to understand many aspects of plasma flow in the heliosphere. However, they struggle to capture processes that are better described kinetically, like charge exchange

  11. Zn-K edge EXAFS study of human nails

    Energy Technology Data Exchange (ETDEWEB)

    Katsikini, M; Mavromati, E; Pinakidou, F; Paloura, E C [School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Gioulekas, D, E-mail: katsiki@auth.g [Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2009-11-15

    Extended X-ray absorption fine structure (EXAFS) spectroscopy at the Zn - K edge is applied for the study of the bonding geometry of Zn in human nails. The studied nail clippings belong to healthy donors and donors who suffer from lung diseases. Fitting of the first nearest neighboring shell of Zn reveals that it is bonded with N and S, at distances that take values in the ranges 2.00-2.04 A and 2.23-2.28A, respectively. Zn is four - fold coordinated and the ratio of the number of sulfur and nitrogen atoms (N{sub S}/N{sub N}) in the first coordination shell ranges from 0.52 to 1. The sample that belongs to the donor who suffers from lung fibrosis, a condition that is related to keratinization of the lung tissue, is characterized by the highest number of N{sub S}/N{sub N}. Simulation, using the FEFF8 code, of the Zn - K edge EXAFS spectra with models of tetrahedrally coordinated Zn with 1 (or 2) cysteine and 3 (or 2) histidines is satisfactory.

  12. Characterization of Unsteady Flow Structures Near Leading-Edge Slat. Part 1; PIV Measurements

    Science.gov (United States)

    Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan

    2004-01-01

    A comprehensive computational and experimental study has been performed at the NASA Langley Research Center as part of the Quiet Aircraft Technology (QAT) Program to investigate the unsteady flow near a leading-edge slat of a two-dimensional, high-lift system. This paper focuses on the experimental effort conducted in the NASA Langley Basic Aerodynamics Research Tunnel (BART) where Particle Image Velocimetry (PIV) data was acquired in the slat cove and at the slat trailing edge of a three-element, high-lift model at 4, 6, and 8 degrees angle of attack and a freestream Mach Number of 0.17. Instantaneous velocities obtained from PIV images are used to obtain mean and fluctuating components of velocity and vorticity. The data show the recirculation in the cove, reattachment of the shear layer on the slat lower surface, and discrete vortical structures within the shear layer emanating from the slat cusp and slat trailing edge. Detailed measurements are used to examine the shear layer formation at the slat cusp, vortex shedding at the slat trailing edge, and convection of vortical structures through the slat gap. Selected results are discussed and compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, and Jenkins (2004). The experimental dataset provides essential flow-field information for the validation of near-field inputs to noise prediction tools.

  13. Strain-Dependent Edge Structures in MoS2 Layers.

    Science.gov (United States)

    Tinoco, Miguel; Maduro, Luigi; Masaki, Mukai; Okunishi, Eiji; Conesa-Boj, Sonia

    2017-11-08

    Edge structures are low-dimensional defects unavoidable in layered materials of the transition metal dichalcogenides (TMD) family. Among the various types of such structures, the armchair (AC) and zigzag (ZZ) edge types are the most common. It has been predicted that the presence of intrinsic strain localized along these edges structures can have direct implications for the customization of their electronic properties. However, pinning down the relation between local structure and electronic properties at these edges is challenging. Here, we quantify the local strain field that arises at the edges of MoS 2 flakes by combining aberration-corrected transmission electron microscopy (TEM) with the geometrical-phase analysis (GPA) method. We also provide further insight on the possible effects of such edge strain on the resulting electronic behavior by means of electron energy loss spectroscopy (EELS) measurements. Our results reveal that the two-dominant edge structures, ZZ and AC, induce the formation of different amounts of localized strain fields. We also show that by varying the free edge curvature from concave to convex, compressive strain turns into tensile strain. These results pave the way toward the customization of edge structures in MoS 2 , which can be used to engineer the properties of layered materials and thus contribute to the optimization of the next generation of atomic-scale electronic devices built upon them.

  14. Overview of edge turbulence and zonal flow studies on TEXTOR

    International Nuclear Information System (INIS)

    Xu, Y.; Kraemer-Flecken, A.; Reiser, D.

    2008-01-01

    In the TEXTOR tokamak, the edge turbulence properties and turbulence-associated zonal flows have been systematically investigated both experimentally and theoretically. The experimental results include the investigation of self-organized criticality (SOC) behavior, the intermittent blob transport and the geodesic acoustic mode (GAM) zonal flows. During the Dynamic Ergodic Divertor (DED) operation in TEXTOR, the impact of an ergodized plasma boundary on edge turbulence, turbulent transport and the fluctuation propagation has also been studied in detail. The results show substantial influence by the DED on edge turbulence. The theoretical simulations for TEXTOR parameters show characteristic features of the GAM flows and strong reduction of the blob transport by the DED at the plasma periphery. Moreover, the modelling reveals the importance of the Reynolds stress in driving mean (or zonal) flows at the plasma edge in the ohmic discharge phase in TEXTOR. (author)

  15. Local structural disorder in REFeAsO oxypnictides by RE L3 edge XANES

    International Nuclear Information System (INIS)

    Xu, W; Chu, W S; Wu, Z Y; Marcelli, A; Di Gioacchino, D; Joseph, B; Iadecola, A; Bianconi, A; Saini, N L

    2010-01-01

    The REFeAsO (RE = La, Pr, Nd and Sm) system has been studied by RE L 3 x-ray absorption near edge structure (XANES) spectroscopy to explore the contribution of the REO spacers between the electronically active FeAs slabs in these materials. The XANES spectra have been simulated by full multiple scattering calculations to describe the different experimental features and their evolution with the RE size. The near edge feature just above the L 3 white line is found to be sensitive to the ordering/disordering of oxygen atoms in the REO layers. In addition, shape resonance peaks due to As and O scattering change systematically, indicating local structural changes in the FeAs slabs and the REO spacers due to RE size. The results suggest that interlayer coupling and oxygen order/disorder in the REO spacers may have an important role in the superconductivity and itinerant magnetism of the oxypnictides.

  16. Where the woodland ends: How edges affect landscape structure and physiological responses of Quercus agrifolia

    Science.gov (United States)

    de Chant, Timothy Paul

    Forests and woodlands are integral parts of ecosystems across the globe, but they are threatened by a variety of factors, including urbanization and introduced forest pathogens. These two forces are fundamentally altering ecosystems, both by removing forest cover and reshaping landscapes. Comprehending how these two processes have changed forest ecosystems is an important step toward understanding how the affected systems will function in the future. I investigated the range of edge effects that result from disturbance brought about by forest pathogens and urbanization in two coastal oak woodlands in Marin County, California. Oak woodlands are a dynamic part of California's landscape, reacting to changes in their biotic and abiotic environments across a range of spatial and temporal scales. Sudden Oak Death, caused by the introduced forest pathogen Phytophthora ramorum, has led to widespread mortality of many tree species in California's oak woodlands. I investigated how the remaining trees respond to such rapid changes in canopy structure (Chapter 2), and my results revealed a forest canopy quick to respond to the new openings. Urbanization, another disturbance regime, operates on a longer time scale. Immediately following urban development, forest edges are strikingly linear, but both forest processes and homeowner actions likely work in concert to disrupt the straight edge (Chapter 3). Forest edges grew more sinuous within 14 years of the initial disturbance, and continued to do so for the remainder of the study, another 21 years. Individual Quercus agrifolia trees also respond to urban edges decades after disturbance (Chapter 4), and their reaction is reflected in declining stable carbon isotope values (delta13C). This change suggests trees may have increased their stomatal conductance in response to greater water availability, reduced their photosynthetic rate as a result of stress, or some combination of both. Edges have far reaching and long lasting effects

  17. Structural and Dynamical Properties of 2:1 Phyllosilicates Edges and Nanoparticles

    Science.gov (United States)

    Newton, A. G.; Sposito, G.

    2012-12-01

    Classical mechanics simulations of bulk 2:1 phyllosilicate minerals provide atomic scale perspectives of the macroscopic sorption and diffusion phenomena in interlayer nanopores. An equivalent perspective of these interfacial phenomena in macropores bounded by the edges of stacked phyllosilicate particles is not possible due to the absence of a forcefield for the edges of phyllosilicate minerals. A valid forcefield to describe the phyllosilicate edge is essential to link the quantum and continuum mechanical models. The inherently disordered edge of 2:1 phyllosilicate minerals and rarity of well-crystallized samples further complicates the task of validating a forcefield for the phyllosilicate edge. Periodic bond chain theory identifies three tetrahedral-octahedral-tetrahedral (TOT) structures that parallel the edge faces of pseudohexagonal phyllosilicate particles. These TOT structures are the basis of atomistic models of the dominant edge interface and nanoparticles. The CLAYFF forcefield describes all pairwise atomic interactions with only minimal partial charge adjustments to maintain model neutrality, where necessary. Atomistic simulations in the isobaric-isothermal ensemble at nanosecond timescales predict equilibrium edge structures and dynamical properties of the aqueous interface. The CLAYFF forcefield and the limited adjustments to parameters predict edge and particle structures that are consistent with the results of ab initio MD simulations, support macroscopic observations of phyllosilicate reactivity, and provide legitimacy for disordered models of 2:1 phyllosilicates. The heterogeneous edge structures can be explained by the chemistry of the octahedral cation and surface charge anisotropy. In the plane of the octahedral sheet, the cations of the octahedral layer can assume four-, five-, and six-coordinate polyhedral geometries at the edge interface. These disordered edge structures create alternate alignments in the tetrahedral sheet. The structural

  18. Si K-edge XANES study of SiOxCyHz amorphous polymeric materials

    International Nuclear Information System (INIS)

    Chaboy, J.; Barranco, A.; Yanguas-Gil, A.; Yubero, F.; Gonzalez-Elipe, A. R.

    2007-01-01

    This work reports on x-ray absorption spectroscopy study at the Si K edge of several amorphous SiO x C y H z polymers prepared by plasma-enhanced chemical-vapor deposition with different C/O ratios. SiO 2 and SiC have been used as reference materials. The comparison of the experimental Si K-edge x-ray absorption near-edge structure spectra with theoretical computations based on multiple scattering theory has allowed us to monitor the modification of the local coordination around Si as a function of the overall C/O ratio in this kind of materials

  19. A new functional and structural generation of JK edge-triggered flip-flops

    International Nuclear Information System (INIS)

    Stefanescu, I.

    1977-01-01

    A new type of logical structure for a JK edge-triggered flip-flop is proposed by the author. The structure facilitates flip-flop realizations, named ''jk-JK edge-triggered flip-flops'', satisfying more functional requirements, and offering an increased flexibility in logical design, with respect to the conventional JK edge-triggered flip-flops. The function of new flip-flops covers the function of JK edge-triggered flip-flops, known as integrated circuits. (author)

  20. Effect of the edge type and strain on the structural, electronic and magnetic properties of the BNRs.

    Science.gov (United States)

    Bhattacharyya, Swastibrata; Kawazoe, Yoshiyuki; Singhl, Abhishek K

    2012-03-01

    We present the effect of edge structures on the edge energy and stress of BN nanoribbons. Ab initio density functional calculations show that the armchair edge is lower in energy than the zigzag edge by 0.43 eV/angstrom. Both types of the edges are under the compressive stress. The zigzag edges are mechanically more stable than the armchair edges. Based on the calculated edge energies, the equilibrium shape of the BN flakes are found to be regular hexagonal, and dominated by the armchair edges. The zigzag ribbons are found to be half-metallic, whereas the armchair ribbons are semiconducting.

  1. KRISTINA: Kinematic rib-based structural system for innovative adaptive trailing edge

    Science.gov (United States)

    Pecora, R.; Amoroso, F.; Magnifico, M.; Dimino, I.; Concilio, A.

    2016-04-01

    Nature teaches that the flight of the birds succeeds perfectly since they are able to change the shape of their wings in a continuous manner. The careful observation of this phenomenon has re-introduced in the recent research topics the study of "metamorphic" wing structures; these innovative architectures allow for the controlled wing shape adaptation to different flight conditions with the ultimate goal of getting desirable improvements such as the increase of aerodynamic efficiency or load control effectiveness. In this framework, the European research project SARISTU aimed at combining morphing and smart ideas to the leading edge, the trailing edge and the winglet of a large commercial airplane (EASA CS25 category) while assessing integrated technologies validation through high-speed wind tunnel test on a true scale outer wing segment. The design process of the adaptive trailing edge (ATED) addressed by SARISTU is here outlined, from the conceptual definition of the camber-morphing architecture up to the assessment of the device executive layout. Rational design criteria were implemented in order to preliminarily define ATED structural layout and the general configuration of the embedded mechanisms enabling morphing under the action of aerodynamic loads. Advanced FE analyses were then carried out and the robustness of adopted structural arrangements was proven in compliance with applicable airworthiness requirements.

  2. Characterization of Boroaluminosilicate Glass Surface Structures by B k-edge NEXAFS

    Energy Technology Data Exchange (ETDEWEB)

    R Schaut; R Lobello; K Mueller; C Pantano

    2011-12-31

    Techniques traditionally used to characterize bulk glass structure (NMR, IR, etc.) have improved significantly, but none provide direct measurement of local atomic coordination of glass surface species. Here, we used Near-Edge X-ray Absorption Fine Structure (NEXAFS) as a direct measure of atomic structure at multicomponent glass surfaces. Focusing on the local chemical structure of boron, we address technique-related issues of calibration, quantification, and interactions of the beam with the material. We demonstrate that beam-induced adsorption and structural damage can occur within the timeframe of typical measurements. The technique is then applied to the study of various fracture surfaces where it is shown that adsorption and reaction of water with boroaluminosilicate glass surfaces induces structural changes in the local coordination of boron, favoring B{sup IV} species after reaction.

  3. Structure analysis of edge-on spiral galaxies

    NARCIS (Netherlands)

    deGrijs, R; vanderKruit, PC

    The stellar distribution of a small sample of edge-on spiral galaxies is examined in B, V, R, and I by fitting model distributions to the light profiles, both perpendicular to the galaxy planes and along the major axes. We have developed a method to compare the fits for the models obtained for

  4. Spatial and Temporal Extent of Ion Spectral Structures at the Inner Edge of the Plasma Sheet

    Science.gov (United States)

    Ferradas, C.; Reeves, G. D.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Skoug, R. M.; Funsten, H. O.

    2017-12-01

    Several ion spectral structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift and loss in the highly dynamic environment of the inner magnetosphere. Their study helps us understand ion access and losses in this region. Several studies have found that these structures vary with geomagnetic activity, local time, and ion species, but their spatial and temporal extent remain undetermined. We use data from the Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometers onboard the Van Allen Probes to analyze the spectral structures in the energy range of 1- 50 keV. HOPE measurements on both Van Allen Probes spacecraft enable us to resolve the extent of these ion structures in space and time. As the structures respond to changes in the convection electric field on a variety of time scales, the lapping of the two spacecraft on time scales of minutes to hours helps determine their spatial and temporal evolution.

  5. Simulated Nano scale Peeling Process of Monolayer Graphene Sheet: Effect of Edge Structure and Lifting Position

    International Nuclear Information System (INIS)

    Sasaki, N.; Okamoto, H.; Masuda, S.; Itamura, N.; Miura, K.

    2010-01-01

    The nanoscale peeling of the graphene sheet on the graphite surface is numerically studied by molecular mechanics simulation. For center-lifting case, the successive partial peelings of the graphene around the lifting center appear as discrete jumps in the force curve, which induce the arched deformation of the graphene sheet. For edge-lifting case, marked atomic-scale friction of the graphene sheet during the nanoscale peeling process is found. During the surface contact, the graphene sheet takes the atomic-scale sliding motion. The period of the peeling force curve during the surface contact decreases to the lattice period of the graphite. During the line contact, the graphene sheet also takes the stick-slip sliding motion. These findings indicate the possibility of not only the direct observation of the atomic-scale friction of the graphene sheet at the tip/surface interface but also the identification of the lattice orientation and the edge structure of the graphene sheet.

  6. Probes for edge plasma studies of TFTR (invited)

    International Nuclear Information System (INIS)

    Manos, D.M.; Budny, R.V.; Kilpatrick, S.; Stangeby, P.; Zweben, S.

    1986-01-01

    Tokamak fusion test reactor (TFTR) probes are designed to study the interaction of the plasma with material surfaces such as the wall and limiters, and to study the transport of particles and energy between the core and edge. Present probe heads have evolved from prototypes in Princeton large torus (PLT), poloidal divertor experiment (PDX) [Princeton BETA experiment (PBX)], and the initial phase of TFTR operation. The newest heads are capable of making several simultaneous measurements and include Langmuir probes, heat flux probes, magnetic coils, rotating calorimeter fast ion probes, and sample exposure specimens. This paper describes these probe heads and presents some of the data they and their prototypes have acquired. The paper emphasizes measurement of transient plasma effects such as fast ion loss during auxiliary heating, the evolution of the edge plasma during heating, compression, and free expansion, and fluctuations in the edge plasma

  7. Tuning the band structure of graphene nanoribbons through defect-interaction-driven edge patterning

    Science.gov (United States)

    Du, Lin; Nguyen, Tam N.; Gilman, Ari; Muniz, André R.; Maroudas, Dimitrios

    2017-12-01

    We report a systematic analysis of pore-edge interactions in graphene nanoribbons (GNRs) and their outcomes based on first-principles calculations and classical molecular-dynamics simulations. We find a strong attractive interaction between nanopores and GNR edges that drives the pores to migrate toward and coalesce with the GNR edges, which can be exploited to form GNR edge patterns that impact the GNR electronic band structure and tune the GNR band gap. Our analysis introduces a viable physical processing strategy for modifying GNR properties by combining defect engineering and thermal annealing.

  8. The 1s x-ray absorption pre-edge structures in transition metal oxides

    NARCIS (Netherlands)

    de Groot, Frank|info:eu-repo/dai/nl/08747610X; Vanko, Gyoergy; Glatzel, Pieter

    2009-01-01

    We develop a general procedure to analyse the pre-edges in 1s x-ray absorption near edge structure (XANES) of transition metal oxides and coordination complexes. Transition metal coordination complexes can be described from a local model with one metal ion. The 1s 3d quadrupole transitions are

  9. Pyrimidine and halogenated pyrimidines near edge x-ray absorption fine structure spectra at C and N K-edges: experiment and theory

    International Nuclear Information System (INIS)

    Bolognesi, P.; O'Keeffe, P.; Ovcharenko, Y.; Coreno, M.; Avaldi, L.; Feyer, V.; Plekan, O.; Prince, K. C.; Zhang, W.; Carravetta, V.

    2010-01-01

    The inner shell excitation of pyrimidine and some halogenated pyrimidines near the C and N K-edges has been investigated experimentally by near edge x-ray absorption fine structure spectroscopy and theoretically by density functional theory calculations. The selected targets, 5-Br-pyrimidine, 2-Br-pyrimidine, 2-Cl-pyrimidine, and 5-Br-2-Cl-pyrimidine, allow the effects of the functionalization of the pyrimidine ring to be studied either as a function of different halogen atoms bound to the same molecular site or as a function of the same halogen atom bound to different molecular sites. The results show that the individual characteristics of the different spectra of the substituted pyrimidines can be rationalized in terms of variations in electronic and geometrical structures of the molecule depending on the localization and the electronegativity of the substituent.

  10. Study on Trailing Edge Ramp of Supercritical Airfoil

    Science.gov (United States)

    2016-03-30

    China Abstract Trailing edge flow control method could improve the performance of supercritical airfoil with a small modification on the original...stall behaviour . As a result, the non-separation ramp could increase the thickness of airfoil, which benefits wing structure and aerodynamic...direction based on the original RAE2822 airfoil, which will thicken the airfoil. The interpolation is implemented as shown in Eqn. 1. This modification could

  11. The catalog of edge-on disk galaxies from SDSS. I. The catalog and the structural parameters of stellar disks

    Energy Technology Data Exchange (ETDEWEB)

    Bizyaev, D. V. [Apache Point Observatory and New Mexico State University, Sunspot, NM, 88349 (United States); Kautsch, S. J. [Nova Southeastern University, Fort Lauderdale, FL 33314 (United States); Mosenkov, A. V. [Central Astronomical Observatory of RAS (Russian Federation); Reshetnikov, V. P.; Sotnikova, N. Ya.; Yablokova, N. V. [St. Petersburg State University (Russian Federation); Hillyer, R. W. [Christopher Newport University, Newport News, VA 23606 (United States)

    2014-05-20

    We present a catalog of true edge-on disk galaxies automatically selected from the Seventh Data Release of the Sloan Digital Sky Survey (SDSS). A visual inspection of the g, r, and i images of about 15,000 galaxies allowed us to split the initial sample of edge-on galaxy candidates into 4768 (31.8% of the initial sample) genuine edge-on galaxies, 8350 (55.7%) non-edge-on galaxies, and 1865 (12.5%) edge-on galaxies not suitable for simple automatic analysis because these objects either show signs of interaction and warps, or nearby bright stars project on it. We added more candidate galaxies from RFGC, EFIGI, RC3, and Galaxy Zoo catalogs found in the SDSS footprints. Our final sample consists of 5747 genuine edge-on galaxies. We estimate the structural parameters of the stellar disks (the stellar disk thickness, radial scale length, and central surface brightness) in the galaxies by analyzing photometric profiles in each of the g, r, and i images. We also perform simplified three-dimensional modeling of the light distribution in the stellar disks of edge-on galaxies from our sample. Our large sample is intended to be used for studying scaling relations in the stellar disks and bulges and for estimating parameters of the thick disks in different types of galaxies via the image stacking. In this paper, we present the sample selection procedure and general description of the sample.

  12. ICRF [Ion Cyclotron Range of Frequencies] edge modeling studies

    International Nuclear Information System (INIS)

    Lehrman, I.S.; Colestock, P.L.

    1989-01-01

    Theoretical models have been developed, and are currently being refined, to explain the edge plasma-antenna interaction that occurs during ICRF heating. The periodic structure of a Faraday shielded antenna is found to result in strong ponderomotive force in the vicinity of the antenna. A fluid model, which incorporates the ponderomotive force, shows an increase in transport to the Faraday shield. A kinetic model shows that the strong antenna near fields act to increase the energy of deuterons which strike the shield, thereby increasing the sputtering of shield material. Estimates of edge impurity harmonic heating no significant heating for either in or out-of-phase antenna operation. Additionally, a particle model for electrons near the shield shows that heating results from the parallel electric field associated with the fast wave. A quasilinear model for edge electron heating is presented and compared to the particle calculations. The models' predictions are shown to be consistent with measurements of enhanced transport. 19 refs., 9 figs

  13. Measuring the X-shaped structures in edge-on galaxies

    Science.gov (United States)

    Savchenko, S. S.; Sotnikova, N. Ya.; Mosenkov, A. V.; Reshetnikov, V. P.; Bizyaev, D. V.

    2017-11-01

    We present a detailed photometric study of a sample of 22 edge-on galaxies with clearly visible X-shaped structures. We propose a novel method to derive geometrical parameters of these features, along with the parameters of their host galaxies based on the multi-component photometric decomposition of galactic images. To include the X-shaped structure into our photometric model, we use the imfit package, in which we implement a new component describing the X-shaped structure. This method is applied for a sample of galaxies with available Sloan Digital Sky Survey and Spitzer IRAC 3.6 μm observations. In order to explain our results, we perform realistic N-body simulations of a Milky Way-type galaxy and compare the observed and the model X-shaped structures. Our main conclusions are as follows: (1) galaxies with strong X-shaped structures reside in approximately the same local environments as field galaxies; (2) the characteristic size of the X-shaped structures is about 2/3 of the bar size; (3) there is a correlation between the X-shaped structure size and its observed flatness: the larger structures are more flattened; (4) our N-body simulations qualitatively confirm the observational results and support the bar-driven scenario for the X-shaped structure formation.

  14. Initial Studies of Core and Edge Transport of NSTX Plasmas

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Bell, M.G.; Bell, R.E.; Bush, C.E.; Bourdelle, C.; Darrow, D.; Dorland, W.; Ejiri, A.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; Kubota, S.; Kugel, H.W.; LeBlanc, B.P.; Maingi, R.; Maqueda, R.J.; Menard, J.E.; Mueller, D.; Rosenberg, A.; Sabbagh, S.A.; Stutman, D.; Taylor, G.; Johnson, D.W.; Kaita, R.; Ono, M.; Paoletti, F.; Peebles, W.; Peng, Y-K.M.; Roquemore, A.L.; Skinner, C.H.; Soukhanovskii, V.A.

    2001-01-01

    Rapidly developing diagnostic, operational, and analysis capability is enabling the first detailed local physics studies to begin in high-beta plasmas of the National Spherical Torus Experiment (NSTX). These studies are motivated in part by energy confinement times in neutral-beam-heated discharges that are favorable with respect to predictions from the ITER-89P scaling expression. Analysis of heat fluxes based on profile measurements with neutral-beam injection (NBI) suggest that the ion thermal transport may be exceptionally low, and that electron thermal transport is the dominant loss channel. This analysis motivates studies of possible sources of ion heating not presently accounted for by classical collisional processes. Gyrokinetic microstability studies indicate that long wavelength turbulence with k(subscript ''theta'') rho(subscript ''i'') ∼ 0.1-1 may be suppressed in these plasmas, while modes with k(subscript ''theta'') rho(subscript ''i'') ∼ 50 may be robust. High-harmonic fast-wave (HHFW) heating efficiently heats electrons on NSTX, and studies have begun using it to assess transport in the electron channel. Regarding edge transport, H-mode [high-confinement mode] transitions occur with either NBI or HHFW heating. The power required for low-confinement mode (L-mode) to H-mode transitions far exceeds that expected from empirical edge-localized-mode-free H-mode scaling laws derived from moderate aspect ratio devices. Finally, initial fluctuation measurements made with two techniques are permitting the first characterizations of edge turbulence

  15. Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model

    International Nuclear Information System (INIS)

    Zhang, M.-X.; Kelly, P.M.; Easton, M.A.; Taylor, J.A.

    2005-01-01

    The edge-to-edge matching model for describing the interfacial crystallographic characteristics between two phases that are related by reproducible orientation relationships has been applied to the typical grain refiners in aluminum alloys. Excellent atomic matching between Al 3 Ti nucleating substrates, known to be effective nucleation sites for primary Al, and the Al matrix in both close packed directions and close packed planes containing these directions have been identified. The crystallographic features of the grain refiner and the Al matrix are very consistent with the edge-to-edge matching model. For three other typical grain refiners for Al alloys, TiC (when a = 0.4328 nm), TiB 2 and AlB 2 , the matching only occurs between the close packed directions in both phases and between the second close packed plane of the Al matrix and the second close packed plane of the refiners. According to the model, it is predicted that Al 3 Ti is a more powerful nucleating substrate for Al alloy than TiC, TiB 2 and AlB 2 . This agrees with the previous experimental results. The present work shows that the edge-to-edge matching model has the potential to be a powerful tool in discovering new and more powerful grain refiners for Al alloys

  16. Self-similar spectral structures and edge-locking hierarchy in open-boundary spin chains

    International Nuclear Information System (INIS)

    Haque, Masudul

    2010-01-01

    For an anisotropic Heisenberg (XXZ) spin chain, we show that an open boundary induces a series of approximately self-similar features at different energy scales, high up in the eigenvalue spectrum. We present a nonequilibrium phenomenon related to this fractal structure, involving states in which a connected block near the edge is polarized oppositely to the rest of the chain. We show that such oppositely polarized blocks can be 'locked' to the edge of the spin chain and that there is a hierarchy of edge-locking effects at various orders of the anisotropy. The phenomenon enables dramatic control of quantum-state transmission and magnetization control.

  17. Structural breakdown of specialized plant-herbivore interaction networks in tropical forest edges

    Directory of Open Access Journals (Sweden)

    Bruno Ximenes Pinho

    2017-10-01

    Full Text Available Plant-herbivore relationships are essential for ecosystem functioning, typically forming an ecological network with a compartmentalized (i.e. modular structure characterized by highly specialized interactions. Human disturbances can favor habitat generalist species and thus cause the collapse of this modular structure, but its effects are rarely assessed using a network-based approach. We investigate how edge proximity alters plant-insect herbivore networks by comparing forest edge and interior in a large remnant (3.500 ha of the Brazilian Atlantic forest. Given the typical dominance of pioneer plants and generalist herbivores in edge-affected habitats, we test the hypothesis that the specialized structure of plant-herbivore networks collapse in forest edges, resulting in lower modularity and herbivore specialization. Despite no differences in the number of species and interactions, the network structure presented marked differences between forest edges and interior. Herbivore specialization, modularity and number of modules were significantly higher in forest interior than edge-affected habitats. When compared to a random null model, two (22.2% and eight (88.8% networks were significantly modular in forest edge and interior, respectively. The loss of specificity and modularity in plant-herbivore networks in forest edges may be related to the loss of important functions, such as density-dependent control of superior plant competitors, which is ultimately responsible for the maintenance of biodiversity and ecosystem functions. Our results support previous warnings that focusing on traditional community measures only (e.g. species diversity may overlook important modifications in species interactions and ecosystem functioning.

  18. Mechanical properties and electronic structure of edge-doped graphene nanoribbons with F, O, and Cl atoms.

    Science.gov (United States)

    Piriz, Sebastián; Fernández-Werner, Luciana; Pardo, Helena; Jasen, Paula; Faccio, Ricardo; Mombrú, Álvaro W

    2017-08-16

    In this study, we present the structural, electronic, and mechanical properties of edge-doped zigzag graphene nanoribbons (ZGNRs) doped with fluorine, oxygen, and chlorine atoms. To the best of our knowledge, to date, no experimental results concerning the mechanical properties of graphene-derived nanoribbons have been reported in the literature. Simulations indicate that Cl- and F-doped ZGNRs present an equivalent 2-dimensional Young's modulus E 2D , which seems to be higher than those of graphene and H-doped ZGNRs. This is a consequence of the electronic structure of the system, particularly originating from strong interactions between the dopant atoms localized at the edges. The interaction between dopant atoms located at the edges is higher for Cl and lower for F and O atoms. This is the origin of the observed trend, in which E > E > E for all the analyzed ZGNRs.

  19. Electronic and local atomistic structure of MgSiO3 glass under pressure: a study of X-ray Raman scattering at the silicon and magnesium L-edges

    Science.gov (United States)

    Fukui, Hiroshi; Hiraoka, Nozomu

    2018-02-01

    We applied X-ray Raman scattering technique to MgSiO3 glass, a precursor to magnesium silicate melts, with respect to magnesium and silicon under high-pressure conditions as well as some polycrystalline phases of MgSiO3 at ambient conditions. We also performed ab initio calculations to interpret the X-ray Raman spectra. Experimentally obtained silicon L-edge spectra indicate that the local environment around silicon started changing at pressure above 10 GPa, where the electronic structure of oxygen is known to change. In contrast, the shape of the magnesium L-edge spectrum changed below 10 GPa. This indicates that the magnesium sites in MgSiO3 glass first distort and that the local structure around magnesium shows a wide variation under pressure. The framework structure consisting of silicon and oxygen changed above 10 GPa, where the coordination number of silicon was more than four. Our results imply that 6-oxygen-coordinated silicon was formed above 20 GPa.

  20. Determination of Cr(VI) in wood specimen: A XANES study at the Cr K edge

    International Nuclear Information System (INIS)

    Strub, E.; Plarre, R.; Radtke, M.; Reinholz, U.; Riesemeier, H.; Schoknecht, U.; Urban, K.; Juengel, P.

    2008-01-01

    The content of chromium in different oxidation states in chromium-treated wood was studied with XANES (X-ray absorption near-edge structure) measurements at the Cr K absorption edge. It could be shown that wood samples treated with Cr(VI) (pine and beech) did still contain a measurable content of Cr(VI) after four weeks conditioning. If such wood samples were heat exposed for 2 h with 135 deg. C prior conditioning, Cr(VI) was no longer detected by XANES, indicating a complete reduction to chromium (III)

  1. Effects of the edge shape and the width on the structural and electronic properties of silicene nanoribbons

    International Nuclear Information System (INIS)

    Song Yuling; Zhang Yan; Zhang Jianmin; Lu Daobang

    2010-01-01

    Under the generalized gradient approximation (GGA), the structural and electronic properties are studied for H-terminated silicene nanoribbons (SiNRs) with either zigzag edge (ZSiNRs) or armchair edge (ASiNRs) by using the first-principles projector-augmented wave potential within the density function theory (DFT) framework. The results show that the length of the Si-H bond is always 1.50 A, but the edge Si-Si bonds are shorter than the inner ones with identical orientation, implying a contraction relaxation of edge Si atoms. An edge state appears at the Fermi level E F in broader ZSiNRs, but does not appear in all ASiNRs due to their dimer Si-Si bond at edge. With increasing width of ASiNRs, the direct band gaps exhibit not only an oscillation behavior, but also a periodic feature of Δ 3n > Δ 3n+1 > Δ 3n+2 for a certain integer n. The charge density contours analysis shows that the Si-H bond is an ionic bond due to a relative larger electronegativity of H atom. However, all kinds of the Si-Si bonds display a typical covalent bonding feature, although their strength depends on not only the bond orientation but also the bond position. That is, the larger deviation of the Si-Si bond orientation from the nanoribbon axis as well as the closer of the Si-Si bond to the nanoribbon edge, the stronger strength of the Si-Si bond. Besides the contraction of the nanoribbon is mainly in its width direction especially near edge, the addition contribution from the terminated H atoms may be the other reason.

  2. Filamentary Alfvénic structures excited at the edges of equatorial plasma bubbles

    Directory of Open Access Journals (Sweden)

    R. Pottelette

    2007-11-01

    Full Text Available Recent observations performed by the French DEMETER satellite at altitudes of about 710 km suggest that the generation of equatorial plasma bubbles correlates with the presence of filamentary structures of field aligned currents carried by Alfvén waves. These localized structures are located at the bubble edges. We study the dynamics of the equatorial plasma bubbles, taking into account that their motion is dictated by gravity driven and displacement currents. Ion-polarization currents appear to be crucial for the accurate description of the evolution of plasma bubbles in the high altitude ionosphere. During their eastward/westward motion the bubbles intersect gravity driven currents flowing transversely with respect to the background magnetic field. The circulation of these currents is prohibited by large density depressions located at the bubble edges acting as perfect insulators. As a result, in these localized regions the transverse currents have to be locally closed by field aligned currents. Such a physical process generates kinetic Alfvén waves which appear to be stationary in the plasma bubble reference frame. Using a two-dimensional model and "in situ" wave measurements on board the DEMETER spacecraft, we give estimates for the magnitude of the field aligned currents and the associated Alfvén fields.

  3. Bifurcations of edge states—topologically protected and non-protected—in continuous 2D honeycomb structures

    International Nuclear Information System (INIS)

    Fefferman, C L; Lee-Thorp, J P; Weinstein, M I

    2016-01-01

    Edge states are time-harmonic solutions to energy-conserving wave equations, which are propagating parallel to a line-defect or ‘edge’ and are localized transverse to it. This paper summarizes and extends the authors’ work on the bifurcation of topologically protected edge states in continuous two-dimensional (2D) honeycomb structures. We consider a family of Schrödinger Hamiltonians consisting of a bulk honeycomb potential and a perturbing edge potential. The edge potential interpolates between two different periodic structures via a domain wall. We begin by reviewing our recent bifurcation theory of edge states for continuous 2D honeycomb structures (http://arxiv.org/abs/1506.06111). The topologically protected edge state bifurcation is seeded by the zero-energy eigenstate of a one-dimensional Dirac operator. We contrast these protected bifurcations with (more common) non-protected bifurcations from spectral band edges, which are induced by bound states of an effective Schrödinger operator. Numerical simulations for honeycomb structures of varying contrasts and ‘rational edges’ (zigzag, armchair and others), support the following scenario: (a) for low contrast, under a sign condition on a distinguished Fourier coefficient of the bulk honeycomb potential, there exist topologically protected edge states localized transverse to zigzag edges. Otherwise, and for general edges, we expect long lived edge quasi-modes which slowly leak energy into the bulk. (b) For an arbitrary rational edge, there is a threshold in the medium-contrast (depending on the choice of edge) above which there exist topologically protected edge states. In the special case of the armchair edge, there are two families of protected edge states; for each parallel quasimomentum (the quantum number associated with translation invariance) there are edge states which propagate in opposite directions along the armchair edge. (paper)

  4. Bifurcations of edge states—topologically protected and non-protected—in continuous 2D honeycomb structures

    Science.gov (United States)

    Fefferman, C. L.; Lee-Thorp, J. P.; Weinstein, M. I.

    2016-03-01

    Edge states are time-harmonic solutions to energy-conserving wave equations, which are propagating parallel to a line-defect or ‘edge’ and are localized transverse to it. This paper summarizes and extends the authors’ work on the bifurcation of topologically protected edge states in continuous two-dimensional (2D) honeycomb structures. We consider a family of Schrödinger Hamiltonians consisting of a bulk honeycomb potential and a perturbing edge potential. The edge potential interpolates between two different periodic structures via a domain wall. We begin by reviewing our recent bifurcation theory of edge states for continuous 2D honeycomb structures (http://arxiv.org/abs/1506.06111). The topologically protected edge state bifurcation is seeded by the zero-energy eigenstate of a one-dimensional Dirac operator. We contrast these protected bifurcations with (more common) non-protected bifurcations from spectral band edges, which are induced by bound states of an effective Schrödinger operator. Numerical simulations for honeycomb structures of varying contrasts and ‘rational edges’ (zigzag, armchair and others), support the following scenario: (a) for low contrast, under a sign condition on a distinguished Fourier coefficient of the bulk honeycomb potential, there exist topologically protected edge states localized transverse to zigzag edges. Otherwise, and for general edges, we expect long lived edge quasi-modes which slowly leak energy into the bulk. (b) For an arbitrary rational edge, there is a threshold in the medium-contrast (depending on the choice of edge) above which there exist topologically protected edge states. In the special case of the armchair edge, there are two families of protected edge states; for each parallel quasimomentum (the quantum number associated with translation invariance) there are edge states which propagate in opposite directions along the armchair edge.

  5. Improving the opto-microwave performance of SiGe/Si phototransistor through edge-illuminated structure

    Science.gov (United States)

    Tegegne, Z. G.; Viana, C.; Polleux, J. L.; Grzeskowiak, M.; Richalot, E.

    2016-03-01

    This paper demonstrates the experimental study of edge and top illuminated SiGe phototransistors (HPT) implemented using the existing industrial SiGe2RF Telefunken GmbH BiCMOS technology for opto-microwave (OM) applications using 850nm Multi-Mode Fibers (MMF). Its technology and structure are described. Two different optical window size HPTs with top illumination (5x5μm2, 10x10μm2) and an edge illuminated HPTs having 5μm x5μm size are presented and compared. A two-step post fabrication process was used to create an optical access on the edge of the HPT for lateral illumination with a lensed MMF through simple polishing and dicing techniques. We perform Opto-microwave Scanning Near-field Optical Microscopy (OM-SNOM) analysis on edge and top illuminated HPTs in order to observe the fastest and the highest sensitive regions of the HPTs. This analysis also allows understanding the parasitic effect from the substrate, and thus draws a conclusion on the design aspect of SiGe/Si HPT. A low frequency OM responsivity of 0.45A/W and a cutoff frequency, f-3dB, of 890MHz were measured for edge illuminated HPT. Compared to the top illuminated HPT of the same size, the edge illuminated HPT improves the f-3dB by a factor of more than two and also improves the low frequency responsivity by a factor of more than four. These results demonstrate that a simple etched HPT is still enough to achieve performance improvements compared to the top illuminated HPT without requiring a complex coupling structure. Indeed, it also proves the potential of edge coupled SiGe HPT in the ultra-low-cost silicon based optoelectronics circuits with a new approach of the optical packaging and system integration to 850nm MMF.

  6. Big-data-based edge biomarkers: study on dynamical drug sensitivity and resistance in individuals.

    Science.gov (United States)

    Zeng, Tao; Zhang, Wanwei; Yu, Xiangtian; Liu, Xiaoping; Li, Meiyi; Chen, Luonan

    2016-07-01

    Big-data-based edge biomarker is a new concept to characterize disease features based on biomedical big data in a dynamical and network manner, which also provides alternative strategies to indicate disease status in single samples. This article gives a comprehensive review on big-data-based edge biomarkers for complex diseases in an individual patient, which are defined as biomarkers based on network information and high-dimensional data. Specifically, we firstly introduce the sources and structures of biomedical big data accessible in public for edge biomarker and disease study. We show that biomedical big data are typically 'small-sample size in high-dimension space', i.e. small samples but with high dimensions on features (e.g. omics data) for each individual, in contrast to traditional big data in many other fields characterized as 'large-sample size in low-dimension space', i.e. big samples but with low dimensions on features. Then, we demonstrate the concept, model and algorithm for edge biomarkers and further big-data-based edge biomarkers. Dissimilar to conventional biomarkers, edge biomarkers, e.g. module biomarkers in module network rewiring-analysis, are able to predict the disease state by learning differential associations between molecules rather than differential expressions of molecules during disease progression or treatment in individual patients. In particular, in contrast to using the information of the common molecules or edges (i.e.molecule-pairs) across a population in traditional biomarkers including network and edge biomarkers, big-data-based edge biomarkers are specific for each individual and thus can accurately evaluate the disease state by considering the individual heterogeneity. Therefore, the measurement of big data in a high-dimensional space is required not only in the learning process but also in the diagnosing or predicting process of the tested individual. Finally, we provide a case study on analyzing the temporal expression

  7. Investigation of turbulent structures in the edge of magnetized plasmas

    International Nuclear Information System (INIS)

    Nold, Bernhard

    2012-01-01

    Rising energy cost and progressing climate change will exacerbate existing and give birth to new conflicts. Energy savings and the development of new technologies can counteract the reasons for these conflicts. Beside renewable energy sources, nuclear fusion can help to meet this challenge. To build future fusion power plants smaller and more efficient, the magnetic confinement must be improved and the load on plasma facing components reduced. To this end, better understanding is required of turbulent transport processes in magnetized plasmas. Within the frame of the present work, the properties and dynamics of turbulent density structures (''blobs'') have been investigated, as well as their interaction with shear flows. Langmuir-probe measurements have been conducted in the tokamak ASDEX Upgrade and in the stellarator TJ-K, and compared with GEMR plasma turbulence simulations. It has been shown, that blobs are generated at the last closed flux surface (LCFS) of ASDEX Upgrade. They propagate perpendicular to the magnetic field lines in the radial and poloidal directions. The poloidal E x B-drift depends on the radial variation of the plasma potential. The latter is given by the electron temperature profile in front of the electrically conducting wall. Experimental results show, that this can lead to a shear layer inside the scrape-off layer (SOL) of a divertor tokamak due to inhomogeneous connection lengths to the wall. Blobs can hardly cross such a shear layer unchanged. This investigation shows how blobs can exchange particles and energy across a shear layer without changing their shapes and velocities substantially. However, the dynamics of the structures are different between both sides of the shear layer. Parallel drift-wave dynamics are dominant on the plasma core side, i.e. density and potential of the blobs are in phase. Outside of the shear layer, the interchange mechanism dominates due to shorter parallel connection lengths to the wall. The poloidal

  8. X-ray absorption near-edge spectroscopic study of nickel catalysts

    International Nuclear Information System (INIS)

    Soldatov, Alexander V.; Smolentsev, Grigory; Kravtsova, Antonina; Yalovega, Galina; Feiters, Martin C.; Metselaar, Gerald A.; Joly, Yves

    2006-01-01

    Ni-isocyanide and Ni-acac complexes have been studied by X-ray absorption spectroscopy. Theoretical analysis has been done using self-consistent full multiple scattering (MS) approach within both muffin-tin (MT) model of the potential and non-MT finite deference method. For the isocyanide complex, it was shown that MS theoretical spectra reproduce all structural details of the X-ray absorption near-edge structure (XANES), but also that it is important to consider the non-MT effects in the potential for a correct simulation of the shape of the pre-edge structures. The contribution of a non-constant potential in the interstitial regions is extremely important for the interpretation of the XANES of Ni(acac) 2

  9. Electronic structure of Cr doped Fe3O4 thin films by X-ray absorption near-edge structure spectroscopy

    Science.gov (United States)

    Chen, Chi-Liang; Dong, Chung-Li; Asokan, Kandasami; Chern, G.; Chang, C. L.

    2018-04-01

    Present study reports the electronic structures of Cr doped Fe3O4 (Fe3-xCrxO4 (0 ≤ x ≤ 3) grown on MgO (100) substrates in the form of thin films fabricated by a plasma-oxygen assisted Molecular Beam Epitaxy (MBE). X-ray absorption near-edge structure (XANES) spectra at Cr & Fe L-, and O K-edges were used to understand the electronic structure: changes in the bonding nature, valence states, and site occupancies. Cr doping in Fe3O4 results in the change of charge transfer, crystal structure, and selective occupation of ions in octahedral and tetrahedral sites. Such change modifies the electrical and magnetic properties due to the covalency of Cr ions. The physical and chemical properties of ferrites are strongly dependent on the lattice site, ion size of dopant, and magnetic nature present at different structural symmetry of the spinel structure.

  10. Two-dimensional numerical study of ELMs-induced erosion of tungsten divertor target tiles with different edge shapes

    International Nuclear Information System (INIS)

    Huang, Yan; Sun, Jizhong; Hu, Wanpeng; Sang, Chaofeng; Wang, Dezhen

    2016-01-01

    Highlights: • Thermal performance of three edge-shaped divertor tiles was assessed numerically. • All the divertor tiles exposed to type-I ELMs like ITER's will melt. • The rounded edge tile thermally performs the best in all tiles of interest. • The incident energy flux density was evaluated with structural effects considered. - Abstract: Thermal performance of the divertor tile with different edge shapes was assessed numerically along the poloidal direction by a two-dimensional heat conduction model with considering the geometrical effects of castellated divertor tiles on the properties of its adjacent plasma. The energy flux density distribution arriving at the castellated divertor tile surface was evaluated by a two-dimension-in-space and three-dimension-in-velocity particle-in-cell plus Monte Carlo Collisions code and then the obtained energy flux distribution was used as input for the heat conduction model. The simulation results showed that the divertor tiles with any edge shape of interest (rectangular edge, slanted edge, and rounded edge) would melt, especially, in the edge surface region of facing plasma poloidally under typical heat flux density of a transient event of type-I ELMs for ITER, deposition energy of 1 MJ/m"2 in a duration of 600 μs. In comparison with uniform energy deposition, the vaporizing erosion was reduced greatly but the melting erosion was aggravated noticeably in the edge area of plasma facing diveror tile. Of three studied edge shapes, the simulation results indicated that the divertor plate with rounded edge was the most resistant to the thermal erosion.

  11. Edge structures and properties of triangular antidots in single-layer MoS2

    KAUST Repository

    Gan, Li Yong; Cheng, Yingchun; Schwingenschlö gl, Udo; Yao, Yingbang; Zhao, Yong; Zhang, Xixiang; Huang, Wei

    2016-01-01

    Density functional theory and experiments are employed to shed light on the edge structures of antidots in O etched single-layer MoS2. The equilibrium morphology is found to be the zigzag Mo edge with each Mo atom bonded to two O atoms, in a wide range of O chemical potentials. Scanning electron microscopy shows that the orientation of the created triangular antidots is opposite to the triangular shape of the single-layer MoS2 samples, in agreement with the theoretical predictions. Furthermore, edges induced by O etching turn out to be p-doped, suggesting an effective strategy to realize p-type MoS2 devices. Published by AIP Publishing.

  12. Edge structures and properties of triangular antidots in single-layer MoS2

    KAUST Repository

    Gan, Li Yong

    2016-08-30

    Density functional theory and experiments are employed to shed light on the edge structures of antidots in O etched single-layer MoS2. The equilibrium morphology is found to be the zigzag Mo edge with each Mo atom bonded to two O atoms, in a wide range of O chemical potentials. Scanning electron microscopy shows that the orientation of the created triangular antidots is opposite to the triangular shape of the single-layer MoS2 samples, in agreement with the theoretical predictions. Furthermore, edges induced by O etching turn out to be p-doped, suggesting an effective strategy to realize p-type MoS2 devices. Published by AIP Publishing.

  13. The effect of spin-orbit coupling in band structure and edge states of bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sahdan, Muhammad Fauzi; Darma, Yudi, E-mail: yudi@fi.itb.ac.id [Department of Physics, InstitutTeknologi Bandung, Jalan Ganesa 10, Bandung 40132 (Indonesia)

    2015-04-16

    Topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of bilayer grapheme and also its edge states by using this model with analytical approach. The results of our calculation show that the gap opening occurs at K and K’ point in bilayer graphene.In addition, a pair of gapless edge modes occurs both in the zigzag and arm-chair configurations are no longer exist. There are gap created at the edge even though thery are very small.

  14. Edge structures and properties of triangular antidots in single-layer MoS2

    International Nuclear Information System (INIS)

    Gan, Li-Yong; Cheng, Yingchun; Huang, Wei; Schwingenschlögl, Udo; Yao, Yingbang; Zhao, Yong; Zhang, Xi-xiang

    2016-01-01

    Density functional theory and experiments are employed to shed light on the edge structures of antidots in O etched single-layer MoS 2 . The equilibrium morphology is found to be the zigzag Mo edge with each Mo atom bonded to two O atoms, in a wide range of O chemical potentials. Scanning electron microscopy shows that the orientation of the created triangular antidots is opposite to the triangular shape of the single-layer MoS 2 samples, in agreement with the theoretical predictions. Furthermore, edges induced by O etching turn out to be p-doped, suggesting an effective strategy to realize p-type MoS 2 devices.

  15. Edge structures and properties of triangular antidots in single-layer MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Li-Yong, E-mail: ganly@swjtu.edu.cn, E-mail: iamyccheng@njtech.edu.cn, E-mail: udo.schwingenschlogl@kaust.edu.sa [Key Laboratory of Advanced Technology of Materials (Ministry of Education), Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, Yingchun, E-mail: ganly@swjtu.edu.cn, E-mail: iamyccheng@njtech.edu.cn, E-mail: udo.schwingenschlogl@kaust.edu.sa; Huang, Wei [Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials - SICAM, Nanjing Tech University - NanjingTech, 30 South Puzhu Road, Nanjing 211816 (China); Schwingenschlögl, Udo, E-mail: ganly@swjtu.edu.cn, E-mail: iamyccheng@njtech.edu.cn, E-mail: udo.schwingenschlogl@kaust.edu.sa [Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Yao, Yingbang [Advanced Nanofabrication and Imaging Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); School of Materials and Energy, Guangdong University of Technology, Guangdong 510006 (China); Zhao, Yong [Key Laboratory of Advanced Technology of Materials (Ministry of Education), Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031 Sichuan (China); Zhang, Xi-xiang [Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Advanced Nanofabrication and Imaging Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia)

    2016-08-29

    Density functional theory and experiments are employed to shed light on the edge structures of antidots in O etched single-layer MoS{sub 2}. The equilibrium morphology is found to be the zigzag Mo edge with each Mo atom bonded to two O atoms, in a wide range of O chemical potentials. Scanning electron microscopy shows that the orientation of the created triangular antidots is opposite to the triangular shape of the single-layer MoS{sub 2} samples, in agreement with the theoretical predictions. Furthermore, edges induced by O etching turn out to be p-doped, suggesting an effective strategy to realize p-type MoS{sub 2} devices.

  16. Study of X-ray L2 absorption edges of Gd, Dy, Ho and Er in metals and compounds

    International Nuclear Information System (INIS)

    Agarwal, B.K.; Agarwal, B.R.K.

    1978-01-01

    The positions and shapes of L2 X-ray absorption edges of Gd, Dy, Ho and Er have been studied in metals and in oxides and chlorides, using a forty centimetre bent mica crystal spectrograph. It has been found that the L2 edge shifts towards the high energy side in the compounds and that the chemical shift ΔE depends on the degree of covalency involved. The white line structure at the edge has been analysed in terms of transitions of L2 shell electron to optical nd (n >= 5) states. (author)

  17. Validation of Temperature Histories for Structural Steel Welds Using Estimated Heat-Affected-Zone Edges

    Science.gov (United States)

    2016-10-12

    Metallurgy , 2nd Ed., John Wiley & Sons, Inc., 2003. DOI: 10.1002/0471434027. 2. O. Grong, Metallurgical Modelling of Welding , 2ed., Materials Modelling...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6394--16-9690 Validation of Temperature Histories for Structural Steel Welds Using...PAGES 17. LIMITATION OF ABSTRACT Validation of Temperature Histories for Structural Steel Welds Using Estimated Heat-Affected-Zone Edges S.G. Lambrakos

  18. White line structure in the x-ray Lsub(III) absorption edge of holmium

    International Nuclear Information System (INIS)

    Agarwal, B.K.; Agarwal, B.R.K.

    1978-01-01

    The white line at the Ho Lsub(III) absorption edge has been recorded in Ho metal, Ho 2 O 3 and HoCl 3 . The white line structure in Ho 2 O 3 has been analysed by regarding it as due to the transition into bound states of the Lsub(III) excited ion. The extended fine structure has been used to obtain information on the bond lengths in the compounds. (author)

  19. Influence of point defects on the near edge structure of hexagonal boron nitride

    Science.gov (United States)

    McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.

    2017-10-01

    Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.

  20. Active probing of plasma edge turbulence and feedback studies on the Texas Experimental Tokamak (TEXT)

    International Nuclear Information System (INIS)

    Uckan, T.; Richards, B.; Bengtson, R.D.

    1993-01-01

    The edge fluctuations play a critical role in the overall tokamak confinement. Experiments on TEXT show that electrostatic fluctuations in the edge plasma are the dominant mechanism for energy and particle transport. The basic mechanisms responsible for the edge turbulence are the subject of ongoing research in fusion devices. To understand the driving forces responsible for edge fluctuations, a novel experiment is underway on TEXT to actively modify the turbulence at the plasma edge by launching waves using electrostatic probes in the shadow of the limiter. This technique permits active probing of the spectral properties of the edge turbulence. This new approach to the study of edge fluctuations can provide more insight into the basic dynamics of the turbulence and may, in turn, enable detailed comparison with the theory. These experiments, which rely on the use of oscillating electric fields at the plasma edge, complement edge fluctuation control studies that are presently limited to the use of applied dc biasing to influence the edge electric field profile. These experiments have been extended to control of the edge plasma fluctuation level, using feedback to explore its effects on the edge turbulence characteristics as well as on confinement. (author) 8 refs., 7 figs

  1. Active probing of plasma edge turbulence and feedback studies on the Texas Experimental Tokamak (TEXT)

    International Nuclear Information System (INIS)

    Uckan, T.; Carreras, B.A.; Richards, B.; Bengtson, R.D.; Crockett, D.B.; Gentle, K.W.; Li, G.X.; Hurwitz, P.D.; Rowan, W.L.; Tsui, H.Y.W.; Wootton, A.J.

    1993-01-01

    The edge fluctuations play a critical role in the overall tokamak confinement. Experiments on TEXT show that electrostatic fluctuations in the edge plasma are the dominant mechanism for energy and particle transport. The basic mechanisms responsible for the edge turbulence are the subject of ongoing research in fusion devices. To understand the driving forces responsible for edge fluctuations, a novel experiment is underway on TEXT to actively modify the turbulence at the plasma edge by launching waves using electrostatic probes in the shadow of the limiter. This technique permits active probing of the spectral properties of the edge turbulence. This new approach to the study of edge fluctuations can provide more insight into the basic dynamics of the turbulence and may, in turn, enable detailed comparison with the theory. These experiments, which rely on the use of oscillating electric fields at the plasma edge, complement edge fluctuation control studies that are presently limited to the use of applied dc biasing to influence the edge electric field profile. These experiments have been extended to control of the edge plasma fluctuation level, using feedback to explore its effects on the edge turbulence characteristics as well as on confinement

  2. High-resolution Al L2,3-edge x-ray absorption near edge structure spectra of Al-containing crystals and glasses: coordination number and bonding information from edge components

    International Nuclear Information System (INIS)

    Weigel, C; Calas, G; Cormier, L; Galoisy, L; Henderson, G S

    2008-01-01

    High-resolution Al L 2,3 -edge x-ray absorption near edge structure (XANES) spectra have been measured in selected materials containing aluminium in 4-, 5- and 6-coordination. A shift of 1.5 eV is observed between the onset of [4] Al and [6] Al L 2,3 -edge XANES, in agreement with the magnitude of the shift observed at the Al K-edge. The differences in the position and shape of low-energy components of Al L 2,3 -edge XANES spectra provide a unique fingerprint of the geometry of the Al site and of the nature of Al-O chemical bond. The high resolution allows the calculation of electronic parameters such as the spin-orbit coupling and exchange energy using intermediate coupling theory. The electron-hole exchange energy decreases in tetrahedral as compared to octahedral symmetry, in relation with the increased screening of the core hole in the former. Al L 2,3 -edge XANES spectra confirm a major structural difference between glassy and crystalline NaAlSi 2 O 6 , with Al in 4- and 6-coordination, respectively, Al coordination remaining unchanged in NaAl 1-x Fe x Si 2 O 6 glasses, as Fe is substituted for Al

  3. Electronic and magnetic properties of MoSe2 armchair nanoribbons controlled by the different edge structures

    Science.gov (United States)

    Zhang, Hui; Zhao, Xu; Gao, Yonghui; Wang, Haiyang; Wang, Tianxing; Wei, Shuyi

    2018-03-01

    Tow-dimensional materials obviously have potential applications in next-generation nanodevices because of their extraordinary physical and chemical properties and the demands of the market. Using first-principle calculation based on density functional theory, we explore electronic and magnetic properties of the different nanoribbons with various edge structures, namely, with hydrogenation or not. In addition, we also calculate the binding energy to analyze the stability of the nanoribbon. Our calculations tell us that the passivated nanoribbons have the positive binding energies, which indicates the passivated nanoribbons are relative stable and hydrogenation can improve the stability of the bare nanoribbons due to the reduction of the dangling bonds. Among of them, full hydrogenation has the highest stability. We find all the nanoribbons with full and without hydrogenation are nonmagnetic semiconductors. It is worth mentioning that hydrogenation can induce the bare nanoribbons to transform gradually from indirect band gap semiconductor to direct band gap semiconductor, even to half-metal. In addition, the magnetic moment of the bare nanoribbon change bit by bit as the rate of hydrogenation increases. When the edge atoms are fully hydrogenated, the magnetic moment return to zero. What's more, our research results still confirm that electronic and magnetic properties of the nanorribons without and with different edge passivation are mainly contributed by the atoms at the edges. These studies about MoSe2 nanoribbons will shed light on the further development of the relevant nanodevices in versatile applications, such as spintronics and energy harvesting.

  4. Control of Flow Structure on Non-Slender Delta Wing: Bio-inspired Edge Modifications, Passive Bleeding, and Pulsed Blowing

    Science.gov (United States)

    Yavuz, Mehmet Metin; Celik, Alper; Cetin, Cenk

    2016-11-01

    In the present study, different flow control approaches including bio-inspired edge modifications, passive bleeding, and pulsed blowing are introduced and applied for the flow over non-slender delta wing. Experiments are conducted in a low speed wind tunnel for a 45 degree swept delta wing using qualitative and quantitative measurement techniques including laser illuminated smoke visualization, particle image velocimety (PIV), and surface pressure measurements. For the bio-inspired edge modifications, the edges of the wing are modified to dolphin fluke geometry. In addition, the concept of flexion ratio, a ratio depending on the flexible length of animal propulsors such as wings, is introduced. For passive bleeding, directing the free stream air from the pressure side of the planform to the suction side of the wing is applied. For pulsed blowing, periodic air injection through the leading edge of the wing is performed in a square waveform with 25% duty cycle at different excitation frequencies and compared with the steady and no blowing cases. The results indicate that each control approach is quite effective in terms of altering the overall flow structure on the planform. However, the success level, considering the elimination of stall or delaying the vortex breakdown, depends on the parameters in each method.

  5. Edge-localized mode avoidance and pedestal structure in I-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Walk, J. R., E-mail: jrwalk@psfc.mit.edu; Hughes, J. W.; Hubbard, A. E.; Terry, J. L.; Whyte, D. G.; White, A. E.; Baek, S. G.; Reinke, M. L.; Theiler, C.; Churchill, R. M.; Rice, J. E. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139-4307 (United States); Snyder, P. B.; Osborne, T. [General Atomics, San Diego, CA 92186-5608 (United States); Dominguez, A [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Cziegler, I. [UCSD Center for Momentum Transport and Flow Organization, La Jolla, CA 92093-0417 (United States)

    2014-05-15

    I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle P{sub net}/n{sup ¯}{sub e}, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of P{sub net}/n{sup ¯}{sub e}. This is consistent with targets for increased performance in I-mode, elevating pedestal β{sub p} and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs

  6. Structural characteristics of the shock-induced boundary layer separation extended to the leading edge

    Science.gov (United States)

    Tao, Y.; Liu, W. D.; Fan, X. Q.; Zhao, Y. L.

    2017-07-01

    For a better understanding of the local unstart of supersonic/hypersonic inlet, a series of experiments has been conducted to investigate the shock-induced boundary layer separation extended to the leading edge. Using the nanoparticle-based planar laser scattering, we recorded the fine structures of these interactions under different conditions and paid more attention to their structural characteristics. According to their features, these interactions could be divided into four types. Specifically, Type A wave pattern is similar to the classic shock wave/turbulent boundary layer interaction, and Type B wave configuration consists of an overall Mach reflection above the large scale separation bubble. Due to the gradual decrease in the size of the separation bubble, the separation bubble was replaced by several vortices (Type C wave pattern). Besides, for Type D wave configuration which exists in the local unstart inlet, there appears to be some flow spillage around the leading edge.

  7. Approach for Structurally Clearing an Adaptive Compliant Trailing Edge Flap for Flight

    Science.gov (United States)

    Miller, Eric J.; Lokos, William A.; Cruz, Josue; Crampton, Glen; Stephens, Craig A.; Kota, Sridhar; Ervin, Gregory; Flick, Pete

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) flap was flown on the National Aeronautics and Space Administration (NASA) Gulfstream GIII testbed at the NASA Armstrong Flight Research Center. This smoothly curving flap replaced the existing Fowler flaps creating a seamless control surface. This compliant structure, developed by FlexSys Inc. in partnership with the Air Force Research Laboratory, supported NASA objectives for airframe structural noise reduction, aerodynamic efficiency, and wing weight reduction through gust load alleviation. A thorough structures airworthiness approach was developed to move this project safely to flight. A combination of industry and NASA standard practice require various structural analyses, ground testing, and health monitoring techniques for showing an airworthy structure. This paper provides an overview of compliant structures design, the structural ground testing leading up to flight, and the flight envelope expansion and monitoring strategy. Flight data will be presented, and lessons learned along the way will be highlighted.

  8. Microanalysis of iron oxidation state in iron oxides using X Ray Absorption Near Edge Structure (XANES)

    Science.gov (United States)

    Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.

    1993-01-01

    An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.

  9. Iridium Coating Deposited by Double Glow Plasma Technique — Effect of Glow Plasma on Structure of Coating at Single Substrate Edge

    International Nuclear Information System (INIS)

    Wu Wangping; Chen Zhaofeng; Liu Yong

    2012-01-01

    Double glow plasma technique has a high deposition rate for preparing iridium coating. However, the glow plasma can influence the structure of the coating at the single substrate edge. In this study, the iridium coating was prepared by double glow plasma on the surface of single niobium substrate. The microstructure of iridium coating at the substrate edge was observed by scanning electron microscopy. The composition of the coating was confirmed by energy dispersive spectroscopy and X-ray diffraction. There was a boundary between the coating and the substrate edge. The covered area for the iridium coating at the substrate edge became fewer and fewer from the inner area to the outer flange-area. The bamboo sprout-like particles on the surface of the substrate edge were composed of elemental niobium. The substrate edge was composed of the Nb coating and there was a transition zone between the Ir coating and the Nb coating. The interesting phenomenon of the substrate edge could be attributed to the effects of the bias voltages and the plasma cloud in the deposition chamber. The substrate edge effect could be mitigated or eliminated by adding lots of small niobium plates around the substrate in a deposition process. (plasma technology)

  10. Theoretical Mn K-edge XANES for Li2MnO3: DFT + U study

    International Nuclear Information System (INIS)

    Tamura, Tomoyuki; Ohwaki, Tsukuru; Ito, Atsushi; Ohsawa, Yasuhiko; Kobayashi, Ryo; Ogata, Shuji

    2012-01-01

    Spectral features of Mn K-edge x-ray absorption near-edge structure (XANES) for Li 2 MnO 3 were calculated using the first-principles full projector augmented wave method with the general gradient approximation plus U method. We demonstrated that the U parameter affects the spectral features in the pre-edge region while it does not affect those in the major absorption region. From the comparison with the experimental spectra and those of reference compounds, we showed that the spectral features of Mn K-edge XANES and the differences in the valence state can be reproduced well. (paper)

  11. Edge Detection from RGB-D Image Based on Structured Forests

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2016-01-01

    Full Text Available This paper looks into the fundamental problem in computer vision: edge detection. We propose a new edge detector using structured random forests as the classifier, which can make full use of RGB-D image information from Kinect. Before classification, the adaptive bilateral filter is used for the denoising processing of the depth image. As data sources, information of 13 channels from RGB-D image is computed. In order to train the random forest classifier, the approximation measurement of the information gain is used. All the structured labels at a given node are mapped to a discrete set of labels using the Principal Component Analysis (PCA method. NYUD2 dataset is used to train our structured random forests. The random forest algorithm is used to classify the RGB-D image information for extracting the edge of the image. In addition to the proposed methodology, the quantitative comparisons of different algorithms are presented. The results of the experiments demonstrate the significant improvements of our algorithm over the state of the art.

  12. Numerical simulation of residual stresses at holes near edges and corners in tempered glass: A parametric study

    DEFF Research Database (Denmark)

    Pourmoghaddam, Navid; Nielsen, Jens Henrik; Schneider, Jens

    2016-01-01

    This work presents 3D results of the thermal tempering simulation by the Finite Element Method in order to calculate the residual stresses in the area of the holes near edges and corners of a tem-pered glass plate. A viscoelastic material behavior of the glass is considered for the tempering...... process. The structural relaxation is taken into account using Narayanaswamy’s model. The motiva-tion for this work is to study the effect of the reduction of the hole and edge minimum distances, which are defined according to EN 12150-1. It is the objective of the paper to demonstrate and elucidate...... the influence of the hole and edge distances on the minimal residual compressive stress-es at holes after the tempering process. The residual stresses in the area of the holes are calculat-ed varying the following parameters: the hole diameter, the plate thickness and the interaction between holes and edges...

  13. Core and edge toroidal rotation study in JT-60U

    International Nuclear Information System (INIS)

    Yoshida, M.; Sakamoto, Y.; Honda, M.; Kamada, Y.; Takenaga, H.; Oyama, N.; Urano, H.

    2012-01-01

    The relation between toroidal rotation velocities (V t ) in the core and edge regions is investigated in H-mode plasmas with a small external torque input from the viewpoint of momentum transport. The toroidal rotation velocity in the core region (core-V t ) gradually varies on a timescale of ∼20 ms after a rapid change in the toroidal rotation velocity in the edge region (edge-V t ) at the L–H transition. This timescale of ∼20 ms is consistent with a transport timescale using the momentum diffusivity (χ φ ) and convection velocity (V conv ). In steady state, a linear correlation between the core- and edge-V t is observed in H-mode plasmas when the ion pressure gradient (∇P i ) is small. This relation between core- and edge-V t is also explained by momentum transport. The V t profiles with a large ∇P i are reproduced in the core region of r/a ∼ 0.2–0.7 by adopting a residual stress term 'Π res = α k χ φ ∇P i ' proposed in this paper. Here r/a is the normalized plasma radius and α k1 is a radial constant. Using this formula, V t profiles are reproduced over a wide range of plasma conditions. Parameter dependences of the edge-V t are investigated at a constant ripple loss power, ripple amplitude and plasma current. A reduction in the CTR-rotation is observed with decreasing ion temperature gradient (∇T i ). Here CTR refers to the counter-I P direction.

  14. Temperature and emission-line structure at the edges of H II regions

    International Nuclear Information System (INIS)

    Mallik, D.C.V.

    1975-01-01

    Models of ionization fronts located at the edges of expanding H ii regions are presented. These fronts are of the weak D-type and are preceded by shocks in the H i clouds. Since the energy input time is smaller than the cooling time, the gas is found to heat up to a high temperature immediately following ionization. At the trailing edge of the front, the temperature decreases and the ionized gas merges with the main bulk of the nebula where the physical processes are in equilibrium. The emission in O ii and N ii lines is greatly enhanced because of the high temperature at the front. The emission in these and other important lines is calculated and compared with Hβ. Effects of different velocities of flow, of different exciting stars, and of different gas densities on the structure of the fronts are also investigated

  15. Resistive foil edge grading for accelerator and other high voltage structures

    Science.gov (United States)

    Caporaso, George J.; Sampayan, Stephen F.; Sanders, David M.

    2014-06-10

    In a structure or device having a pair of electrical conductors separated by an insulator across which a voltage is placed, resistive layers are formed around the conductors to force the electric potential within the insulator to distribute more uniformly so as to decrease or eliminate electric field enhancement at the conductor edges. This is done by utilizing the properties of resistive layers to allow the voltage on the electrode to diffuse outwards, reducing the field stress at the conductor edge. Preferably, the resistive layer has a tapered resistivity, with a lower resistivity adjacent to the conductor and a higher resistivity away from the conductor. Generally, a resistive path across the insulator is provided, preferably by providing a resistive region in the bulk of the insulator, with the resistive layer extending over the resistive region.

  16. Structural study of glasses in the binary system NaPO{sub 3}-MoO{sub 3} by X-ray absorption spectroscopy at the Mo K and L{sub 3} edges

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Gael, E-mail: gael@unifal-mg.edu.br [Department of Science and Technology, UNIFAL-MG, Rua Corumba 72, CEP 37701-100, Pocos de Caldas, MG (Brazil); Cassanjes, Fabia C. [Department of Science and Technology, UNIFAL-MG, Rua Corumba 72, CEP 37701-100, Pocos de Caldas, MG (Brazil)

    2010-04-15

    Glasses were prepared in the binary system (100 - x)NaPO{sub 3}-xMoO{sub 3} with x varying from 0 to 50 mol%. An increase in the MoO{sub 3} concentration promotes a strong absorption in the visible and near infrared attributed to Mo reduction during glass synthesis. X-ray absorption measurements were performed at the Mo K and L{sub 3} edges to investigate both the coordination number and oxidation state of Mo in these glasses. The evolution of the pre-peak observed at the K edge suggests that Mo atoms are six-fold coordinated in these glasses. This hypothesis was confirmed by data obtained at the Mo-L{sub 3}-absorption edge. Since the final electronic states at the L{sub 3}-absorption edge are mostly orbitals of d-character which are splitted by the ligand field, the amplitude of the d-orbital splitting could be estimated and the related coordination number of Mo obtained. Finally, the oxidation state of Mo could be related with a change of the white line intensity at the Mo-L{sub 3} edge. These results confirm that the optical absorption in the visible is due to Mo reduction and that transparent samples prepared by slow cooling contain less reduced Mo species.

  17. Self-consistent study of localization near band edges

    International Nuclear Information System (INIS)

    Brezini, A.

    1982-02-01

    The localization criterion of Kumar et al. is applied to the case of a uniform distribution for the site energies and particular attention is given to the behaviour of the mobility edge in the limit of weak disorder. The results are similar to other theories but disagree with that of Abou-Chacra and Thouless in the limit of zero disorder. (author)

  18. Ab initio study of interaction of helium with edge and screw dislocations in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Bakaev, Alexander, E-mail: bakaev_vic@mail.ru [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol 2400 (Belgium); Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation); Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden (Germany); Terentyev, Dmitry [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol 2400 (Belgium); Grigorev, Petr [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol 2400 (Belgium); Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation); Ghent University, Applied Physics EA17 FUSION-DC, St. Pietersnieuwstraat, 41 B4, B-9000 Gent (Belgium); Posselt, Matthias [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden (Germany); Zhurkin, Evgeny E. [Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation)

    2017-02-15

    Highlights: • Both screw (SD) and edge dislocations (ED) offer trapping sites for He in tungsten. • He atom is attracted to SD and ED with the interaction energy of ~1.3 and ~3.0 eV, respectively. • The attraction of He to dislocations can contribute to the nucleation of He clusters at high T. - Abstract: The interaction of a single He atom with edge and screw dislocations in tungsten has been studied using ab initio calculations. It was revealed that He is strongly attracted to the core of both dislocations with the interaction energy of −1.3 and −3.0 eV for screw and edge dislocations, respectively, which corresponds to the detrapping temperature in thermal desorption spectroscopy experiments of about 500 K and 1050 K, respectively. The lowest energy positions for He around the dislocation cores are identified and the atomic structures are rationalized on the basis of elasticity theory considerations. Both types of dislocations exhibit a higher binding energy for He as compared to the He-He binding (known as self-trapping) and are weaker traps as compared to a single vacancy. It is, thus, concluded that the strong attraction to dislocation lines can contribute to the nucleation of He clusters in the temperature range which already excludes He self-trapping.

  19. Ab initio study of interaction of helium with edge and screw dislocations in tungsten

    International Nuclear Information System (INIS)

    Bakaev, Alexander; Terentyev, Dmitry; Grigorev, Petr; Posselt, Matthias; Zhurkin, Evgeny E.

    2017-01-01

    Highlights: • Both screw (SD) and edge dislocations (ED) offer trapping sites for He in tungsten. • He atom is attracted to SD and ED with the interaction energy of ~1.3 and ~3.0 eV, respectively. • The attraction of He to dislocations can contribute to the nucleation of He clusters at high T. - Abstract: The interaction of a single He atom with edge and screw dislocations in tungsten has been studied using ab initio calculations. It was revealed that He is strongly attracted to the core of both dislocations with the interaction energy of −1.3 and −3.0 eV for screw and edge dislocations, respectively, which corresponds to the detrapping temperature in thermal desorption spectroscopy experiments of about 500 K and 1050 K, respectively. The lowest energy positions for He around the dislocation cores are identified and the atomic structures are rationalized on the basis of elasticity theory considerations. Both types of dislocations exhibit a higher binding energy for He as compared to the He-He binding (known as self-trapping) and are weaker traps as compared to a single vacancy. It is, thus, concluded that the strong attraction to dislocation lines can contribute to the nucleation of He clusters in the temperature range which already excludes He self-trapping.

  20. Study on edge plasma physics and particle control in the Heliotron-E device

    Energy Technology Data Exchange (ETDEWEB)

    Mizuuchi, T; Obiki, T; Noda, N; Matsuura, H; Kondo, K; Akaishi, K; Motojima, O; Kaneko, H; Zushi, H; Takeiri, Y

    1989-04-01

    The edge plasma physics and the particle control under the intrinsic magnetic limiter configuration of a helical system have been studied with the Heliotron-E device, where currentless plasmas of T/sub e//le/1-2 keV, T/sub i//le/1 keV and anti n/sub e//le/2x10/sup 20//m/sup 3/ are produced by a combination of ECRH, NBI and/or ICRH. It is indicated that the separatrix region of the heliotron device is able to act as a divertor magnetic field. According to calculations of the magnetic field line in the edge region, the separatrix region has some different characteristics from the scrape-off layer in tokamak devices; the existence of a fine structure in the separatrix region and asymmetry of the region in toroidal and poloidal directions are observed. A localized pattern of the heat load on the first wall is experimentally observed. This agrees with the heat-load profile expected from the magnetic configuration and the distribution of the plasma in the edge region. A carbonization of the first wall is successfully applied to the Heliotron E device for reduction of metallic impurity contents. The heat load at the divertor trace decreased and that on the other part of the first wall increased in the high recycling conditions after the carbonization. (orig.).

  1. Effects of interface edge configuration on residual stress in the bonded structures for a divertor application

    International Nuclear Information System (INIS)

    Kitamura, K.; Nagata, K.; Shibui, M.; Tachikawa, N.; Araki, M.

    1998-01-01

    Residual stresses in the interface region, that developed at the cool down during the brazing, were evaluated for several bonded structures to assess the mechanical strength of the bonded interface, using thermoelasto-plastic stress analysis. Normal stress components of the residual stresses around the interface edge of graphite-copper (C-Cu) bonded structures were compared for three types of bonded features such as flat-type, monoblock-type and saddle-type. The saddle-type structure was found to be favorable for its relatively low residual stress, easy fabrication accuracy on bonded interface and armor replacement. Residual stresses around the interface edge in three armor materials/copper bonded structures for a divertor plate were also examined for the C-Cu, tungsten-copper (W-Cu) and molybdenum alloy-copper (TZM-Cu), varying the interface wedge angle from 45 to 135 . An optimal bonded configuration for the least value of residual stress was found to have a wedge angle of 45 for the C-Cu, and 135 for both the W-Cu and TZM-Cu bonded ones. (orig.)

  2. Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Mohamed A. K.; Veysi, Mehdi; Capolino, Filippo [Department of Electrical Engineering and Computer Science, University of California, Irvine, California 92697 (United States); Figotin, Alexander [Department of Mathematics, University of California, Irvine, California 92697 (United States)

    2016-03-15

    We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventional Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.

  3. Assessing Anthropogenic Influence and Edge Effect Influence on Forested Riparian Buffer Spatial Configuration and Structure: An Example Using Lidar Remote Sensing Methods

    Science.gov (United States)

    Wasser, L. A.; Chasmer, L. E.

    2012-12-01

    Forested riparian buffers (FRB) perform numerous critical ecosystem services. However, globally, FRB spatial configuration and structure have been modified by anthropogenic development resulting in widespread ecological degradation as seen in the Gulf of Mexico and the Chesapeake Bay. Riparian corridors within developed areas are particularly vulnerable to disturbance given two edges - the naturally occurring stream edge and the matrix edge. Increased edge length predisposes riparian vegetation to "edge effects", characterized by modified physical and environmental conditions at the interface between the forested buffer and the adjacent landuse, or matrix and forest fragment degradation. The magnitude and distance of edge influence may be further influenced by adjacent landuse type and the width of the buffer corridor at any given location. There is a need to quantify riparian buffer spatial configuration and structure over broad geographic extents and within multiple riparian systems in support of ecologically sound management and landuse decisions. This study thus assesses the influence of varying landuse types (agriculture, suburban development and undeveloped) on forested riparian buffer 3-dimensional structure and spatial configuration using high resolution Light Detection and Ranging (LiDAR) data collected within a headwater watershed. Few studies have assessed riparian buffer structure and width contiguously for an entire watershed, an integral component of watershed planning and restoration efforts such as those conducted throughout the Chesapeake Bay. The objectives of the study are to 1) quantify differences in vegetation structure at the stream and matrix influenced riparian buffer edges, compared to the forested interior and 2) assess continuous patterns of changes in vegetation structure throughout the buffer corridor beginning at the matrix edge and ending at the stream within buffers a) of varying width and b) that are adjacent to varying landuse

  4. Realistic edge field model code REFC for designing and study of isochronous cyclotron

    International Nuclear Information System (INIS)

    Ismail, M.

    1989-01-01

    The focussing properties and the requirements for isochronism in cyclotron magnet configuration are well-known in hard edge field model. The fact that they quite often change considerably in realistic field can be attributed mainly to the influence of the edge field. A solution to this problem requires a field model which allows a simple construction of equilibrium orbit and yield simple formulae. This can be achieved by using a fitted realistic edge field (Hudson et al 1975) in the region of the pole edge and such a field model is therefore called a realistic edge field model. A code REFC based on realistic edge field model has been developed to design the cyclotron sectors and the code FIELDER has been used to study the beam properties. In this report REFC code has been described along with some relevant explaination of the FIELDER code. (author). 11 refs., 6 figs

  5. Effect of trailing edge ramp on cavity flow structures and pressure drag

    International Nuclear Information System (INIS)

    Pey, Yin Yin; Chua, Leok Poh; Siauw, Wei Long

    2014-01-01

    Highlights: • Trailing edge ramps were used to reduce unsteadiness and pressure drag of a cavity. • Proper Orthogonal Decomposition was used to educe the coherent structures. • The 30° ramp was successful in redistributing the energy content within the cavity. • The 30° ramp guides the flow smoothly out of the cavity, reducing flow impingement. • A substantial reduction of pressure drag was achieved by the 30° ramp. -- Abstract: The effects of trailing edge ramp modifications on time-averaged velocity and pressure distributions within a cavity with a length to depth ratio of 2, at a speed of 15 m/s were investigated. The ramp angles were varied at 30°, 45° and 60° and ramp heights were varied at 0.25 times and 0.5 times of cavity depth. The mean flow within the cavity differed significantly from the baseline case when ramp angle was 30° and 45° with ramp height 0.5 times of cavity depth. At these 2 configurations, moment about the center of the cavity floor was reduced significantly. These could be attributed to the more steady flow within the cavity as compared to the baseline case. Spatial correlation of velocity in the cavity of ramp angle 30° showed that internal cavity flow was less sensitive to flow changes in the shear layer as compared to the baseline case. In the same cavity, snapshot Proper Orthogonal Decomposition revealed a redistribution of energy content where energetic structures exist only in the shear layer as opposed to energetic structures in both the shear layer and internal cavity for the baseline case. A reduction of pressure drag was also observed as the gentle ramp angle of 30° guides the flow smoothly out of the cavity and reduces trailing edge impingement

  6. Evaluation of potential substrates for restenosis and thrombosis in overlapped versus edge-to-edge juxtaposed bioabsorbable scaffolds: Insights from a computed fluid dynamic study.

    Science.gov (United States)

    Rigatelli, Gianluca; Zuin, Marco; Dell'Avvocata, Fabio; Cardaioli, Paolo; Vassiliev, Dobrin; Ferenc, Miroslaw; Nghia, Nguyen Tuan; Nguyen, Thach; Foin, Nicholas

    2018-04-01

    Multiple BRSs and specifically the Absorb scaffold (BVS) (Abbott Vascular, Santa Clara, CA USA) have been often used to treat long diffuse coronary artery lesions. We evaluate by a computational fluid dynamic(CFD) study the impact on the intravascular fluid rheology on multiple bioabsorbable scaffolds (BRS) by standard overlapping versus edge-to-edge technique. We simulated the treatment of a real long significant coronary lesion (>70% luminal narrowing) involving the left anterior descending artery (LAD) treated with a standard or edge-to-edge technique, respectively. Simulations were performed after BVS implantations in two different conditions: 1) Edge-to-edge technique, where the scaffolds are kissed but not overlapped resulting in a luminal encroachment of 0.015cm (150μm); 2) Standard overlapping, where the scaffolds are overlapped resulting in a luminal encroachment of 0.030cm (300μm). After positioning the BVS across the long lesion, the implantation procedure was performed in-silico following all the usual procedural steps. Analysis of the wall shear stress (WSS) suggested that at the vessel wall level the WSS were lower in the overlapping zones overlapping compared to the edge-to-edge zone (∆=0.061Pa, p=0.01). At the struts level the difference between the two WSS was more striking (∆=1.065e-004 p=0.01) favouring the edge-to-edge zone. Our study suggested that at both vessel wall and scaffold struts levels, there was lowering WSS when multiple BVS were implanted with the standard overlapping technique compared to the "edge-to-edge" technique. This lower WSS might represent a substrate for restenosis, early and late BVS thrombosis, potentially explaining at least in part the recent evidences of devices poor performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Structural design optimization of a morphing trailing edge flap for wind turbine blades

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Lin, Yu-Huan; Aagaard Madsen, Helge

    A flap actuation system, the Controllable Rubber Trailing Edge Flap (CRTEF), for distributed load control on a wind turbine blade had been developed in the period from 2006 to 2013 at DTU (http://www.induflap.dk/). The purpose of the presented work is to optimize the structural design of the flex......A flap actuation system, the Controllable Rubber Trailing Edge Flap (CRTEF), for distributed load control on a wind turbine blade had been developed in the period from 2006 to 2013 at DTU (http://www.induflap.dk/). The purpose of the presented work is to optimize the structural design...... of the flexible part of the CRTEF based on a realistic blade section geometry in order to meet the required objectives and constraints. The objectives include the deflection requirements and the energy efficiency, while the constraints include the bending stiffness of the structure, the local shape deformations......, critical material strength, and manufacturing limitations. A model with arches forming concave on the flap surface and enclosing the voids to be pressurized results in the bending movement of the flap when pressure is applied on the voids to straighten the arches. The model is designed using SolidWorks...

  8. Case Studies of Leading Edge Small Urban High Schools. Relevance Strategic Designs: 4. Boston Arts Academy

    Science.gov (United States)

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  9. Case Studies of Leading Edge Small Urban High Schools. Relevance Strategic Designs: 6. Perspectives Charter School

    Science.gov (United States)

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  10. 3D Measurement Technology by Structured Light Using Stripe-Edge-Based Gray Code

    International Nuclear Information System (INIS)

    Wu, H B; Chen, Y; Wu, M Y; Guan, C R; Yu, X Y

    2006-01-01

    The key problem of 3D vision measurement using triangle method based on structured light is to acquiring projecting angle of projecting light accurately. In order to acquire projecting angle thereby determine the corresponding relationship between sampling point and image point, method for encoding and decoding structured light based on stripe edge of Gray code is presented. The method encoded with Gray code stripe and decoded with stripe edge acquired by sub-pixel technology instead of pixel centre, so latter one-bit decoding error was removed. Accuracy of image sampling point location and correspondence between image sampling point and object sampling point achieved sub-pixel degree. In addition, measurement error caused by dividing projecting angle irregularly by even-width encoding stripe was analysed and corrected. Encoding and decoding principle and decoding equations were described. Finally, 3dsmax and Matlab software were used to simulate measurement system and reconstruct measured surface. Indicated by experimental results, measurement error is about 0.05%

  11. Solid energy calibration standards for P K-edge XANES: electronic structure analysis of PPh4Br.

    Science.gov (United States)

    Blake, Anastasia V; Wei, Haochuan; Donahue, Courtney M; Lee, Kyounghoon; Keith, Jason M; Daly, Scott R

    2018-03-01

    P K-edge X-ray absorption near-edge structure (XANES) spectroscopy is a powerful method for analyzing the electronic structure of organic and inorganic phosphorus compounds. Like all XANES experiments, P K-edge XANES requires well defined and readily accessible calibration standards for energy referencing so that spectra collected at different beamlines or under different conditions can be compared. This is especially true for ligand K-edge X-ray absorption spectroscopy, which has well established energy calibration standards for Cl (Cs 2 CuCl 4 ) and S (Na 2 S 2 O 3 ·5H 2 O), but not neighboring P. This paper presents a review of common P K-edge XANES energy calibration standards and analysis of PPh 4 Br as a potential alternative. The P K-edge XANES region of commercially available PPh 4 Br revealed a single, highly resolved pre-edge feature with a maximum at 2146.96 eV. PPh 4 Br also showed no evidence of photodecomposition when repeatedly scanned over the course of several days. In contrast, we found that PPh 3 rapidly decomposes under identical conditions. Density functional theory calculations performed on PPh 3 and PPh 4 + revealed large differences in the molecular orbital energies that were ascribed to differences in the phosphorus oxidation state (III versus V) and molecular charge (neutral versus +1). Time-dependent density functional theory calculations corroborated the experimental data and allowed the spectral features to be assigned. The first pre-edge feature in the P K-edge XANES spectrum of PPh 4 Br was assigned to P 1s → P-C π* transitions, whereas those at higher energy were P 1s → P-C σ*. Overall, the analysis suggests that PPh 4 Br is an excellent alternative to other solid energy calibration standards commonly used in P K-edge XANES experiments.

  12. Study of edge effects in the breakdown process of p sup + on n-bulk silicon diodes

    CERN Document Server

    Militaru, O; Bozzi, C; Rold, M D; Dell'Orso, R; Dutta, S; Messineo, A; Mihul, A; Tonelli, G; Verdini, P G; Wheadon, R; Xie, Z

    2000-01-01

    The paper describes the role of the n sup + edge implants in the breakdown process of p sup + on n-bulk silicon diodes. Laboratory measurements and simulation studies are presented on a series of test structures aimed at an optimization of the design in the edge region. The dependence of the breakdown voltage on the geometrical parameters of the devices is discussed in detail. Design rules are extracted for the use of n sup + -layers along the scribe line to avoid surface conduction of current generated by the exposed edges. The effect of neutron irradiation has been studied up to a fluence of 1.8x10 sup 1 sup 5 cm sup - sup 2.

  13. Structural and mechanism design of an active trailing-edge flap blade

    DEFF Research Database (Denmark)

    Lee, Jae Hwan; Natarajan, Balakumaran; Eun, Won Jong

    2013-01-01

    , as the blade is able to withstand increased centrifugal force. The cross-section of the active blade is designed first. A stress/strain recovery analysis is then conducted to verify its structural integrity. A one-dimensional beam analysis is also carried out to assist with the construction of the fan diagram...... of the rotor through modification of unsteady aerodynamic loads. Piezoelectric actuators installed inside the blade manipulate the motion of the trailing edge flap. The proposed blade rotates at higher speed and additional structures are included to support the actuators and the flap. This improves the design....... To select the actuator and design the flap actuation region, the flap hinge moment is estimated via a CFD analysis. To obtain the desired flap deflection of ±4°, three actuators are required. The design of the flap actuation region is validated using a test bed with a skin hinge. However, because the skin...

  14. On the study of wavy leading-edge vanes to achieve low fan interaction noise

    Science.gov (United States)

    Tong, Fan; Qiao, Weiyang; Xu, Kunbo; Wang, Liangfeng; Chen, Weijie; Wang, Xunnian

    2018-04-01

    The application of wavy leading-edge vanes to reduce a single-stage axial fan noise is numerically studied. The aerodynamic and acoustic performance of the fan is numerically investigated using a hybrid unsteady Reynolds averaged Navier-Stokes (URANS)/acoustic analogy method (Goldstein equations). First, the hybrid URANS/Goldstein method is developed and successfully validated against experiment results. Next, numerical simulations are performed to investigate the noise reduction effects of the wavy leading-edge vanes. The aerodynamic and acoustic performance is assessed for a fan with vanes equipped with two different wavy leading-edge profiles and compared with the performance of conventional straight leading-edge vanes. Results indicate that a fan with wavy leading-edge vanes produces lower interaction noise than the baseline fan without a significant loss in aerodynamic performance. In fact, it is demonstrated that wavy leading-edge vanes have the potential to lead to both aerodynamic and acoustic improvements. The two different wavy leading-edge profiles are shown to successfully reduce the fan tone sound power level by 1.2 dB and 4.3 dB, respectively. Fan efficiency is also improved by about 1% with one of the tested wavy leading-edge profiles. Large eddy simulation (LES) is also performed for a simplified fan stage model to assess the effects of wavy leading-edge vanes on the broadband fan noise. Results indicate that the overall sound power level of a fan can be reduced by about 4 dB with the larger wavy leading-edge profile. Finally, the noise reduction mechanisms are investigated and analysed. It is found that the wavy leading-edge profiles can induce significant streamwise vorticity around the leading-edge protuberances and reduce pressure fluctuations (especially at locations of wavy leading-edge hills) and unsteady forces on the stator vanes. The underlying mechanism of the reduced pressure fluctuations is also discussed by examining the magnitude

  15. CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge.

    Science.gov (United States)

    Aftab, S M A; Ahmad, K A

    2017-01-01

    The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE) effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD) study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c), the wavelength (0.25c) is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil.

  16. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588 (Japan); Fujii, Kentaro; Yokoya, Akinari [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Fukuda, Yoshihiro; Saitoh, Yuji [Synchrotron Radiation Research Center, Japan Atomic Energy Agency, Sayo-gun, Hyougo 679-5148 (Japan)

    2014-08-07

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5{sup ′}-monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5{sup ′}-monophosphate, and adenosine 5{sup ′}-triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety.

  17. Study of the plasma edge turbulence in tokamaks

    International Nuclear Information System (INIS)

    Garbet, X.; Laurent, L.; Mourgues, F.; Roubin, J.P.; Samain, A.

    1990-01-01

    The plasma edge in tokamaks is known to be very turbulent. We investigate here the non linear stability of a test mode in presence of an helical potential perturbation, i.e. a pump mode, which simulates the plasma turbulence. The particle trajectories in this perturbed equilibrium are derived using an hamiltonian formalism. The electrons appear to have trapped trajectories in the potential well of the pump mode, while the ions experience a large convective motion. These two effects have a large influence on the test mode stability. First, non linearly trapped electrons supply an energy source for the test mode. Second, the ion convective motion introduces a radial scale of the test mode larger than the ion Larmor radius, in agreement with experimental data. These two phenomena allow a bifurcation in the turbulence level and provide therefore an explanation for the L-H transition

  18. Two-photon spectroscopy study of edge absorption peculiarities in oxygen-octahedric ferroelectrics

    International Nuclear Information System (INIS)

    Shablaev, S.I.; Danishevskij, A.M.; Subashiev, V.K.

    1984-01-01

    Two-photon absorption (TPA) spectra of ferroelectric crystals with BaTiO 3 , KTaO 3 and SrTiO 3 perovskite strUcture Were obtained. The detailed investigation of temperature dependence of edge spectrum regions was conducted and on the basis of their analysis the indirect character of edge absorption was concluded for all mentioned crystals. TPA spectra of BaTiO 3 and KTaO 3 are characterized by the regions corresponding to one indirect edge TPA spectra of SrTiO 3 - to two indirect edges. The corresponding inter-zone gaps were determined for all investigated crystals, the energy of phonons, participating in indirect two photon transitions, inter-zone gaps, corresponding to direct transitions were determined as well

  19. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  20. Structural and mechanism design of an active trailing-edge flap blade

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hwan [Samsung Techwin R and D Center, Seongnam (Korea, Republic of); Natarajan, Balakumaran; Eun, Won Jong; Shin, Sang Joon [Seoul National University, Seoul (Korea, Republic of); R, Viswamurthy S. [National Aerospace Laboratories, Bangalore (India); Park, Jae Sang [Agency for Defense Development, Daejeon (Korea, Republic of); Kim, Tae Song [Technical University of Denmark, Risoe Campus, Roskilde (Denmark)

    2013-09-15

    A conventional rotor control system restricted at 1/rev frequency component is unable to vary the hub vibratory loads and the aero acoustic noise, which exist in high frequency components. Various active rotor control methodologies have been examined in the literature to alleviate the problem of excessive hub vibratory loads and noise. The active control device manipulates the blade pitch angle with arbitrary higher harmonic frequencies individually. In this paper, an active trailing-edge flap blade, which is one of the active control methods, is developed to reduce vibratory loads and noise of the rotor through modification of unsteady aerodynamic loads. Piezoelectric actuators installed inside the blade manipulate the motion of the trailing edge flap. The proposed blade rotates at higher speed and additional structures are included to support the actuators and the flap. This improves the design, as the blade is able to withstand increased centrifugal force. The cross-section of the active blade is designed first. A stress/strain recovery analysis is then conducted to verify its structural integrity. A one-dimensional beam analysis is also carried out to assist with the construction of the fan diagram. To select the actuator and design the flap actuation region, the flap hinge moment is estimated via a CFD analysis. To obtain the desired flap deflection of ±4 .deg. , three actuators are required. The design of the flap actuation region is validated using a test bed with a skin hinge. However, because the skin hinge induces additional flap hinge moment, it does not provide sufficient deflection angle. Therefore, the flap hinge is replaced by a pin-type hinge, and the results are evaluated.

  1. Preliminary results of structural profiling of the Kras edge and Istria (Kozina – Srmin Motorway, Sečovlje

    Directory of Open Access Journals (Sweden)

    2002-06-01

    Full Text Available On the section Kozina-Srmin the new motorway Ljubljana-Koper is crossing the Kras edge, which in geologic terminology is refered to as the Kras thrust edge. In the widest sense it comprises the area between the edge of the Trieste-Komen plateau and the Savudrija ridge, creating the boundary between the Adriatic foreland and the External Dinarides. Detailed geologic mapping of the motorway section Kozina-Srmin slowed that the Kras thrust edge is not a monophase tectonic structure, but has been formed through several different deformation phases from the Eocene until today. Besides smaller onesthese phases include responses of three significant events; the Dinaric nappe thrusting, displacements along the strice-slipe faults with NW-SE trending and underthrusting of the Istria toward the NE. The latter event destroyed the primary of the SW boundary ofthe External Dinarides between Southern Alps and the Velebit arc.

  2. Scaling study of edge plasma parameters using a multi-device database

    International Nuclear Information System (INIS)

    Tsui, H.Y.W.; Miner, W.H.; Wootton, A.J.

    1995-01-01

    A database consisting of edge equilibrium, turbulence and transport related plasma parameters has been compiled. Scaling laws for edge density, electron temperature, and radial particle flux are derived in an initial study using a subset of data obtained from tokamaks Phaedrus-T, Tokamak de Varennes, TEXT and TEXT-U. A comparison of edge particle transport in divertor and limiter plasmas shows that the magnetic topology of a separatrix or a divertor improves particle confinement. The particle diffusion coefficient varies radially in a manner opposite to that of Bohm diffusion. ((orig.))

  3. Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects for Optical Amplification

    Science.gov (United States)

    2016-01-26

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0003 TR-2016-0003 EXPERIMENTAL STUDY OF ELECTRONIC QUANTUM INTERFERENCE , PHOTONIC CRYSTAL CAVITY, PHOTONIC BAND...EDGE EFFECTS FOR OPTICAL AMPLIFICATION Shawn-Yu Lin Rensselaer Polytechnic Institute 110 8th Street Troy, New York 12180 26 Jan 2016 Final Report...2014 – 11 Jan 2016 4. TITLE AND SUBTITLE Experimental Study of Electronic Quantum Interference , Photonic Crystal Cavity, Photonic Band Edge Effects

  4. A computational parametric study on edge loading in ceramic-on-ceramic total hip joint replacements.

    Science.gov (United States)

    Liu, Feng; Feng, Li; Wang, Junyuan

    2018-07-01

    Edge loading in ceramic-on-ceramic total hip joint replacement is an adverse condition that occurs as the result of a direct contact between the head and the cup rim. It has been associated with translational mismatch in the centres of rotation of the cup and head, and found to cause severe wear and early failure of the implants. Edge loading has been considered in particular in relation to dynamic separation of the cup and head centres during a gait cycle. Research has been carried out both experimentally and computationally to understand the mechanism including the influence of bearing component positioning on the occurrence and severity of edge loading. However, it is experimentally difficult to measure both the load magnitude and duration of edge loading as it occurs as a short impact within the tight space of hip joints. Computationally, a dynamic contact model, for example, developed using the MSC ADAMS software for a multi-body dynamics simulation can be particularly useful for calculating the loads and characterising the edge loading. The aim of the present study was to further develop the computational model, and improve the predictions of contact force and the understanding of mechanism in order to provide guidance on design and surgical factors to avoid or to reduce edge loading and wear. The results have shown that edge loading can be avoided for a low range of translational mismatch in the centres of rotation of the cup and head during gait at the level of approximately 1.0 mm for a cup at 45° inclination, keeping a correct cup inclination at 45° is important to reduce the edge loading severity, and edge loading can be avoided for a certain range of translational mismatch of the cup and head centres with an increased swing phase load. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The role of the intense vorticity structures in the turbulent structure of the jet edge

    Science.gov (United States)

    Reis, Ricardo J. N.; da Silva, Carlos B.; Pereira, José C. F.

    In free shear flows (jets, mixing layers and wakes) there is an highly contorted interface dividing the turbulent from the non-turbulent flow: the turbulent/non-turbulent (T/NT) interface. Across this interface important exchanges of mass, momentum and heat take place, in a process known as turbulent entrainment. Recently, the classical idea of the turbulent entrainment caused by engulfing [1] have been questioned, and it has been shown that the entrainment is mainly caused by small scale eddy motions (nibbling) [2, 3]). However, it is still argued that the entrainment rate is still largely governed by the large scale motions induced by the intense vorticity structures (IVS). The goal of the present work is to assess characterize the geometry and analyze the influence of these large scales structures in shaping the turbulent/nonturbulent interface.

  6. Edge effects in composites

    International Nuclear Information System (INIS)

    Guz, A.N.; Kokhanenko, Yu.V.

    1995-01-01

    In the present article we survey papers on edge effects investigated by the rigorous approach. We interpret edge effects as stressed states created in a composite as a result of zones in which the stresses exhibit a rapidly changing behavior in comparison with the slow variation of the stresses outside such zones. Here the range of the edge effect is defined as the distance from the point of its inception to the boundary of the edge zone in a given direction. The transition of the stresses to the slowly varying state is determined within prescribed error limits. The size and configuration of the edge zone depends on the tolerated error. Clearly, the main difficulty associated with the rigorous approach is finding solutions of the elasticity problems. The finite-difference approach is suggested for the approximate solution of these problems. In light of the comparative time consumption of the finite-difference approach, it is best directed at certain classes of problems rather than at particular individual problems. Not too many papers on the investigation of edge effects by the rigorous approach have been published to date. Below, following in their footsteps, we formulate edge effect problems in composites, determine classes of problems, and investigate edge effects in composite materials and structural elements using them in Cartesian (planar and three-dimensional problems) and cylindrical (axisymmetric problems) coordinate frames. We note that the division of approaches to the study of edge effects into qualitative (nonrigorous) and quantitative (rigorous) reflects the authors own point of view. Of course, other schemes of classification of the approaches to the investigation of the regions of rapidly varying states in composites are possible

  7. Edge Matters

    DEFF Research Database (Denmark)

    Earon, Ofri

    2013-01-01

    of this container is to separate inside from outside and to protect and provide privacy, psychological as well as physical (Venturi, 1966). But, if dwelling phenomenon takes place both inside and outside the private house – why is the urban house an enclosed box? What is the differentiation between inside...... and outside the contemporary urban house? And what is the interplay between them? The research argues for re-thinking the edge zone between inside and outside the urban house. Therefore, although, residential buildings in the city are the objects of study, the focal point here is the edge zone along...... the building. The research explores and develops the architectural characteristics of correlations between the resident, the singular unit, the building and the given location at the edge zone. It approaches the edge zone of the urban house as a platform for dynamic interactions between these behaviours...

  8. Schottky barrier and band edge engineering via the interfacial structure and strain for the Pt/TiO2 heterostructure.

    Science.gov (United States)

    Ma, Xiangchao; Wu, Xin; Wang, Yucheng; Dai, Ying

    2017-07-19

    Charge transfer across the Pt/TiO 2 interface, which is mainly determined by the interface Schottky barrier height (SBH), is an important process in the (photo)catalytic and electronic applications of the Pt/TiO 2 composite. Therefore, systematic investigation of the factors that affect the interface SBH is indispensable for understanding and optimizing its performance. In this work, a systematic study of the effects of the interfacial structure and strain on the SBH of the Pt/TiO 2 (001) interface has been carried out based on the first-principles calculations. The results of interface adhesion energy show that two different interfacial structures for the Pt/TiO 2 (001) heterointerface may exist experimentally, namely, O-Pt bonding and Ti-Pt bonding. Moreover, the interfacial structures result in not only different values for the SBH, but also different dependences of the SBH on strain. Detailed investigations show that these versatile modulations of the SBH with the structure and strain are mainly attributed to the strong dependence of the band edges of TiO 2 and the interfacial potential alignments on the strain and structure, suggesting that these results are general and may be applicable to other metal/TiO 2 heterostructures.

  9. X-ray absorption near-edge structure of GaN with high Mn concentration grown on SiC

    Science.gov (United States)

    Sancho-Juan, O.; Cantarero, A.; Garro, N.; Cros, A.; Martínez-Criado, G.; Salomé, M.; Susini, J.; Olguín, D.; Dhar, S.

    2009-07-01

    By means of x-ray absorption near-edge structure (XANES) several Ga1-xMnxN (0.03edges. All samples studied present a similar Mn ionization state, very close to 2+, and tetrahedral coordination. In order to interpret the near-edge structure, we have performed ab initio calculations using the full potential linear augmented plane wave method as implemented in the Wien2k code. The calculations show the appearance of a Mn bonding \\mathrm {t_{2}}\\uparrow band localized in the gap region, and the corresponding anti-bonding state \\mathrm {t_{2}}\\downarrow , which seem to be responsible for the double structure which appears at the pre-edge absorption region. The shoulders and main absorption peak of the XANES spectra are attributed to transitions from the Mn(1s) band to the conduction bands, which are partially dipole allowed because of the Mn(4p) contribution to these bands.

  10. X-ray absorption near-edge structure of GaN with high Mn concentration grown on SiC

    Energy Technology Data Exchange (ETDEWEB)

    Sancho-Juan, O; Cantarero, A; Garro, N; Cros, A [Materials Science Institute, University of Valencia, PO Box 22085, E46071 Valencia (Spain); Martinez-Criado, G; Salome, M; Susini, J [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble (France); Olguin, D [Dept. de Fisica, CINVESTAV-IPN, 07300 Mexico D F (Mexico); Dhar, S [Experimentalphysik, Universitaet Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg (Germany)

    2009-07-22

    By means of x-ray absorption near-edge structure (XANES) several Ga{sub 1-x}Mn{sub x}N (0.03edges. All samples studied present a similar Mn ionization state, very close to 2+, and tetrahedral coordination. In order to interpret the near-edge structure, we have performed ab initio calculations using the full potential linear augmented plane wave method as implemented in the Wien2k code. The calculations show the appearance of a Mn bonding t{sub 2}arrow up band localized in the gap region, and the corresponding anti-bonding state t{sub 2}arrow down, which seem to be responsible for the double structure which appears at the pre-edge absorption region. The shoulders and main absorption peak of the XANES spectra are attributed to transitions from the Mn(1s) band to the conduction bands, which are partially dipole allowed because of the Mn(4p) contribution to these bands.

  11. First-principles study of graphene edge properties and flake shapes

    OpenAIRE

    Gan, Chee Kwan; Srolovitz, David J.

    2009-01-01

    We use density functional theory to determine the equilibrium shape of graphene flakes, through the calculation of the edge orientation dependence of the edge energy and edge stress of graphene nanoribbons. The edge energy is a nearly linear function of edge orientation angle; increasing from the armchair orientation to the zigzag orientation. Reconstruction of the zigzag edge lowers its energy to less than that of the armchair edge. The edge stress for all edge orientations is compressive, h...

  12. Dipole moments associated with edge atoms; a comparative study on stepped Pt, Au and W surfaces

    International Nuclear Information System (INIS)

    Besocke, K.; Krahl-Urban, B.; Wagner, H.

    1977-01-01

    Work function measurements have been performed on stepped Pt and Au surfaces with (111) terraces and on W surfaces with (110) terraces. In each case the work function decreases linearly with increasing step density and depends on the step orientation. The work function changes are attributed to dipole moments associated with the step edges. The dipole moments per unit step length are larger for open edge structures than for densely packed ones. The dipole moments for Pt are about twice as large as for Au and W. (Auth.)

  13. Contrasting genetic structure of rear edge and continuous range populations of a parasitic butterfly infected by Wolbachia

    Directory of Open Access Journals (Sweden)

    Patricelli Dario

    2013-01-01

    Full Text Available Abstract Background Climatic oscillations are among the long-term factors shaping the molecular features of animals and plants and it is generally supposed that the rear edges (i.e., the low-latitude limits of distribution of any given specialised species situated closer to glacial refugia are vital long-term stores of genetic diversity. In the present study, we compared the genetic structure of several populations of an endangered and obligate myrmecophilous butterfly (Maculinea arion from two distinct and geographically distant parts of its European distribution (i.e., Italy and Poland, which fully represent the ecological and morphological variation occurring across the continent. Results We sequenced the COI mitochondrial DNA gene (the ‘barcoding gene’ and the EF-1α nuclear gene and found substantial genetic differentiation among M. arion Italian populations in both markers. Eleven mtDNA haplotypes were present in Italy. In contrast, almost no mtDNA polymorphisms was found in the Polish M. arion populations, where genetic differentiation at the nuclear gene was low to moderate. Interestingly, the within-population diversity levels in the EF-1α gene observed in Italy and in Poland were comparable. The genetic data did not support any subspecies divisions or any ecological specialisations. All of the populations studied were infected with a single strain of Wolbachia and our screening suggested 100% prevalence of the bacterium. Conclusions Differences in the genetic structure of M. arion observed in Italy and in Poland may be explained by the rear edge theory. Although we were not able to pinpoint any specific evolutionarily significant units, we suggest that the Italian peninsula should be considered as a region of special conservation concern and one that is important for maintaining the genetic diversity of M. arion in Europe. The observed pattern of mtDNA differentiation among the populations could not be explained by an

  14. Study of edge plasma properties comparing operation in hydrogen and helium in RFX

    International Nuclear Information System (INIS)

    Spolaore, M.; Antoni, V.; Bagatin, M.; Desideri, D.; Fattorini, L.; Martines, E.; Serianni, G.; Tramontin, L.; Vianello, N.

    2001-01-01

    The properties of the edge plasma in the reversed field pinch RFX have been investigated by comparing the operation in helium with those normally performed in hydrogen. It has been found that a spontaneous velocity shear layer takes place in the edge region also in helium discharges. The edge structure of hydrogen and helium discharges have been interpreted using a momentum balance equation, which takes into account anomalous viscosity and friction with neutrals. The electrostatic turbulence properties are also compared: it is found that electrostatic turbulence drives most of the particle losses and a small fraction of the energy losses also for the He discharges. The modifications of the mean profiles, including the ExB velocity, during PPCD are briefly discussed and compared with the results obtained in hydrogen

  15. Order-disorder in olivine minerals by synchrotron X-ray absorption near-edge structure (Xane) spectroscopy at the Mg, Fe and Ca K edges

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Marcelli, A.; Cibin, G. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Mottana, A. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Rome Univ. Roma Tre, Rome (Italy). Dipt. di Scienze Geologiche; Paris, E.; Giuli, G [INFM, Camerino Univ., Camerino, MC (Italy). Dipt. di Scienze della Terra

    1999-07-01

    In this paper, are presented new, high-resolution experimental spectra at the Mg and Fe K edges for the two Fe-Mg end members F o and F a, and for three other olivines. Two are the Ca end members of the family, namely monticellite (Mtc: CaMgSiO4) and kirschsteinite (Krs: CaFeSiO4). The main purpose of this work is to investigate the effects of Mg, Fe, and Ca partition in the Pbnm (or {alpha}) olivine structure on the electronic properties, as well as the relationships that exist between chemical substitutions and features occurring in Xanes spectra. One wants to explore the relationships that intervene between LRO, as determined by XRD, and SRO, as determined by Xanes, on the endmembers and on a well-known intermediate member as well, and deduce from it a model for the behavior of the entire olivine solid-solution system.

  16. Order-disorder in olivine minerals by synchrotron X-ray absorption near-edge structure (Xane) spectroscopy at the Mg, Fe and Ca K edges

    International Nuclear Information System (INIS)

    Wu, Z.; Marcelli, A.; Cibin, G.; Mottana, A.; Rome Univ. Roma Tre, Rome; Paris, E.; Giuli, G.

    1999-01-01

    In this paper, are presented new, high-resolution experimental spectra at the Mg and Fe K edges for the two Fe-Mg endmembers F o and F a, and for three other olivines. Two are the Ca endmembers of the family, namely monticellite (Mtc: CaMgSiO4) and kirschsteinite (Krs: CaFeSiO4). The main purpose of this work is to investigate the effects of Mg, Fe, and Ca partition in the Pbnm (or α) olivine structure on the electronic properties, as well as the relationships that exist between chemical substitutions and features occurring in Xanes spectra. One wants to explore the relationships that intervene between LRO, as determined by XRD, and SRO, as determined by Xanes, on the endmembers and on a well-known intermediate member as well, and deduce from it a model for the behavior of the entire olivine solid-solution system

  17. An evaluation of edge effects in nutritional accessibility and availability measures: a simulation study.

    Science.gov (United States)

    Van Meter, Emily M; Lawson, Andrew B; Colabianchi, Natalie; Nichols, Michele; Hibbert, James; Porter, Dwayne E; Liese, Angela D

    2010-07-27

    This paper addresses the statistical use of accessibility and availability indices and the effect of study boundaries on these measures. The measures are evaluated via an extensive simulation based on cluster models for local outlet density. We define outlet to mean either food retail store (convenience store, supermarket, gas station) or restaurant (limited service or full service restaurants). We designed a simulation whereby a cluster outlet model is assumed in a large study window and an internal subset of that window is constructed. We performed simulations on various criteria including one scenario representing an urban area with 2000 outlets as well as a non-urban area simulated with only 300 outlets. A comparison is made between estimates obtained with the full study area and estimates using only the subset area. This allows the study of the effect of edge censoring on accessibility measures. The results suggest that considerable bias is found at the edges of study regions in particular for accessibility measures. Edge effects are smaller for availability measures (when not smoothed) and also for short range accessibility It is recommended that any study utilizing these measures should correct for edge effects. The use of edge correction via guard areas is recommended and the avoidance of large range distance-based accessibility measures is also proposed.

  18. An evaluation of edge effects in nutritional accessibility and availability measures: a simulation study

    Directory of Open Access Journals (Sweden)

    Porter Dwayne E

    2010-07-01

    Full Text Available Abstract Background This paper addresses the statistical use of accessibility and availability indices and the effect of study boundaries on these measures. The measures are evaluated via an extensive simulation based on cluster models for local outlet density. We define outlet to mean either food retail store (convenience store, supermarket, gas station or restaurant (limited service or full service restaurants. We designed a simulation whereby a cluster outlet model is assumed in a large study window and an internal subset of that window is constructed. We performed simulations on various criteria including one scenario representing an urban area with 2000 outlets as well as a non-urban area simulated with only 300 outlets. A comparison is made between estimates obtained with the full study area and estimates using only the subset area. This allows the study of the effect of edge censoring on accessibility measures. Results The results suggest that considerable bias is found at the edges of study regions in particular for accessibility measures. Edge effects are smaller for availability measures (when not smoothed and also for short range accessibility Conclusions It is recommended that any study utilizing these measures should correct for edge effects. The use of edge correction via guard areas is recommended and the avoidance of large range distance-based accessibility measures is also proposed.

  19. Experimental studies of edge turbulence and confinement in Alcator C-Moda)

    Science.gov (United States)

    Cziegler, I.; Terry, J. L.; Hughes, J. W.; LaBombard, B.

    2010-05-01

    The steep gradient edge region and scrape-off-layer (SOL) on the low-field-side of Alcator C-Mod [I. H. Hutchinson, R. Boivin, F. Bombarda et al., Phys. Plasmas 1, 1511 (1994)] tokamak plasmas are studied using gas-puff-imaging diagnostics. In L-mode plasmas, the region extending ˜2 cm inside the magnetic separatrix has fluctuations showing a broad, turbulent spectrum, propagating in the electron diamagnetic drift direction, whereas features in the open field line region propagate in the ion diamagnetic drift direction. This structure is robust against toroidal field strength, poloidal null-point geometry, plasma current, and plasma density. Global parameter dependence of spectral and spatial structure of the turbulence inside the separatrix is explored and characterized, and both the intensity and spectral distributions are found to depend strongly on the plasma density normalized to the tokamak density limit. In H-mode discharges the fluctuations at and inside the magnetic separatrix show fundamentally different trends compared to L-mode, with the electron diamagnetic direction propagating turbulence greatly reduced in ELM-free [F. Wagner et al., Proceedings of the Thirteenth Conference on Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1982), Vol. I, p. 277], and completely dominated by the modelike structure of the quasicoherent mode in enhanced D-alpha regimes [A. E. Hubbard, R. L. Boivin, R. S. Granetz et al., Phys. Plasmas 8, 2033 (2001)], while the normalized SOL turbulence is largely unaffected.

  20. Microscopic bosonization of band structures: x-ray processes beyond the Fermi edge

    Science.gov (United States)

    Snyman, Izak; Florens, Serge

    2017-11-01

    Bosonization provides a powerful analytical framework to deal with one-dimensional strongly interacting fermion systems, which makes it a cornerstone in quantum many-body theory. However, this success comes at the expense of using effective infrared parameters, and restricting the description to low energy states near the Fermi level. We propose a radical extension of the bosonization technique that overcomes both limitations, allowing computations with microscopic lattice Hamiltonians, from the Fermi level down to the bottom of the band. The formalism rests on the simple idea of representating the fermion kinetic term in the energy domain, after which it can be expressed in terms of free bosonic degrees of freedom. As a result, one- and two-body fermionic scattering processes generate anharmonic boson-boson interactions, even in the forward channel. We show that up to moderate interaction strengths, these non-linearities can be treated analytically at all energy scales, using the x-ray emission problem as a showcase. In the strong interaction regime, we employ a systematic variational solution of the bosonic theory, and obtain results that agree quantitatively with an exact diagonalization of the original one-particle fermionic model. This provides a proof of the fully microscopic character of bosonization, on all energy scales, for an arbitrary band structure. Besides recovering the known x-ray edge singularity at the emission threshold, we find strong signatures of correlations even at emission frequencies beyond the band bottom.

  1. Characterizing edge and stacking structures of exfoliated graphene by photoelectron diffraction

    International Nuclear Information System (INIS)

    Matsui, Fumihiko; Ishii, Ryo; Matsuda, Hiroyuki; Morita, Makoto; Kitagawa, Satoshi; Koh, Shinji; Daimon, Hiroshi; Matsushita, Tomohiro

    2013-01-01

    The two-dimensional C 1s photoelectron intensity angular distributions (PIADs) and spectra of exfoliated graphene flakes and crystalline graphite were measured using a focused soft X-ray beam. Suitable graphene samples were selected by thickness characterization using Raman spectromicroscopy after transferring mechanically exfoliated graphene flakes onto a 90-nm-thick SiO 2 film. In every PIAD, a Kagomé interference pattern was observed, particularly clearly in the monolayer graphene PIAD. Its origin is the overlap of the diffraction rings formed by an in-plane C-C bond honeycomb lattice. Thus, the crystal orientation of each sample can be determined. In the case of bilayer graphene, PIAD was threefold-symmetric, while those of monolayer graphene and crystalline graphite were sixfold-symmetric. This is due to the stacking structure of bilayer graphene. From comparisons with the multiple scattering PIAD simulation results, the way of layer stacking as well as the termination types in the edge regions of bilayer graphene flakes were determined. Furthermore, two different C 1s core levels corresponding to the top and bottom layers of bilayer graphene were identified. A chemical shift to a higher binding energy by 0.25 eV for the bottom layer was attributed to interfacial interactions. (author)

  2. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect

    International Nuclear Information System (INIS)

    Truong, Tien Van; Yoon, Kwang Joon; Byun, Doyoung; Kim, Min Jun; Park, Hoon Cheol

    2013-01-01

    The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff

  3. A new fabrication process for uniform SU-8 thick photoresist structures by simultaneously removing edge bead and air bubbles

    International Nuclear Information System (INIS)

    Lee, Hun; Lee, Kangsun; Ahn, Byungwook; Xu, Jing; Xu, Linfeng; Oh, Kwang W

    2011-01-01

    This paper proposes a new SU-8 fabrication process to simultaneously remove edge bead and tiny air bubbles by spraying out edge bead removal (EBR) fluid over the entire surface of photoresist. In particular, the edge bead and air bubbles can cause an air gap between a film mask and a photoresist surface during UV exposure. The diffraction effect of UV light by the air gap leads to inaccurate and non-uniform SU-8 patterns. In this study, we demonstrate a simple method using EBR treatment to simultaneously eliminate the edge bead at the edge of wafer and tiny air bubbles inside SU-8. The profiles of thickness variation of SU-8 films with/without the EBR treatment are measured. The results show that the proposed EBR treatment can successfully remove the edge bead and air bubbles over the entire SU-8 films. The average pattern uniformity of SU-8 is improved from 50.5% to 11.3% in the case of 200 µm thickness. This method is simple and inexpensive, compared to a standard EBR process, because it does not require specialized equipment and it can be applied regardless of substrate geometry (e.g. circular wafer and rectangular slide glass).

  4. Experimental studies of processes with vibrationally excited hydrogen molecules that are important for tokamak edge plasma

    International Nuclear Information System (INIS)

    Cadez, I.; Markelj, S.; Rupnik, Z.; Pelicon, P.

    2006-01-01

    We are currently conducting a series of different laboratory experimental studies of processes involving vibrationally excited hydrogen molecules that are relevant to fusion edge plasma. A general overview of our activities is presented together with results of studies of hydrogen recombination on surfaces. This includes vibrational spectroscopy of molecules formed by recombination on metal surfaces exposed to the partially dissociated hydrogen gas and recombination after hydrogen permeation through metal membrane. The goal of these studies is to provide numerical parameters needed for edge plasma modelling and better understanding of plasma wall interaction processes. (author)

  5. Dynamics of the pedestal structure in the edge transport barrier in CHS

    International Nuclear Information System (INIS)

    Kado, S.; Oishi, T.; Tanaka, S.

    2006-10-01

    The dynamic behavior of the edge pedestal in the edge transport barrier (ETB) formation discharge (H-mode) in the compact helical system (CHS) is investigated. Edge Harmonic Oscillations (EHOs) having a fundamental frequency of 2-4.5 kHz, depending on the magnetic configuration, and their second harmonic are observed when the density gradient of the pedestal reaches a certain threshold. There are two groups of so-called EHOs in the CHS. One is located in the edge region where the ι=1 surface exists, and the other is in the core region (although we also call it EHO in this paper) around the half radius where the ι=0.5 surface exists. The magnetic probe signal is revealed to reflect the latter mode, showing the poloidal mode number of 2, while that for the edge BES channel is 1. The density build-up saturates simultaneously with the increase of EHOs in the edge BES channel, which suggests that to a considerable extend the mode increases the particle transport. (author)

  6. Structural evolution of fluorinated graphene upon molten-alkali treatment probed by X-ray absorption near-edge structure spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xianqing, E-mail: lxq@gxu.edu.cn [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Pan, Deyou; Lao, Ming; Liang, Shuiying [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Huang, Dan; Zhou, Wenzheng; Guo, Jin [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China)

    2017-05-15

    Highlights: • Structural evolution of FG during the molten-alkali treatment was studied. • XANES results reveal the transformation of surface functional groups of HFG. • The local and electronic structure of HFG can be tuned by varying the alkali-FG ratio. - Abstract: The structural evolution of fluorinated graphene (FG) nanosheets upon molten-alkali treatment has been systematically investigated utilizing X-ray absorption near-edge structure (XANES) spectroscopy. It is found that the hydroxyl groups can progressively displace fluorine atoms to form covalent bonds to the graphene sheets under designed molten-alkali condition. The XANES spectra also reveal the formation of epoxide groups through intramolecular dehydration of neighbouring hydroxyl groups after substitution reaction. At high alkali-FG weight ratio, the restoration of the π-conjugated structure in graphene sheets can be observed due to the gradual decomposition of epoxide groups. Our experimental results indicate that the surface chemistry and electronic structure of hydroxyl-functionalized FG (HFG) can be readily tuned by varying the ratio of reactants.

  7. CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge.

    Directory of Open Access Journals (Sweden)

    S M A Aftab

    Full Text Available The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c, the wavelength (0.25c is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil.

  8. In-vitro studies of change in edge detection with changes in bone density

    International Nuclear Information System (INIS)

    Pocock, N.; Noakes, K.; Griffiths, M.

    1999-01-01

    Full text: Dual energy X-ray absorptiometry (DXA) requires edge detection software to identify the skeletal regions for quantitation of bone mineral density (BMD) and bone mineral content (BMC). As bone mass decreases, the detection of bone edges becomes more difficult and this potentially could cause errors in DXA estimations of areal BMD or BMC. To address this issue, we have used an in-vitro model to study the effects of 'bone loss' on calculated bone area, BMD and BMC. Multiple vertebral phantoms, of equal cross-sectional area but incrementally decreased areal BMD, were constructed using calcium sulphate hemihydrate. The weight of each phantom vertebra, measured accurately using an electronic balance, was used as an index of its true 'bone mass equivalent' (BME). The phantoms were scanned and analysed in the lumbar spine mode using a Lunar DPX-L (L) and Hologic QDR-1000 (H). The changes in BME were compared to changes in measured area, BMC and areal BMD. The results demonstrate that, in an in-vitro model, as bone mass decreases, measured bone area and consequently BMC will decrease as the edge detection algorithms have greater difficulty in detecting the true edges. In conclusion, in an in-vitro model, the DXA edge detection algorithms will underestimate bone area as bone mass decreases. This has potential implications for monitoring changes in bone mass in vivo

  9. Evaluation of slim-edge, multi-guard, and punch-through-protection structures before and after proton irradiation

    Science.gov (United States)

    Mitsui, S.; Unno, Y.; Ikegami, Y.; Takubo, Y.; Terada, S.; Hara, K.; Takahashi, Y.; Jinnouchi, O.; Nagai, R.; Kishida, T.; Yorita, K.; Hanagaki, K.; Takashima, R.; Kamada, S.; Yamamura, K.

    2013-01-01

    Planar geometry silicon pixel and strip sensors for the high luminosity upgrade of the LHC (HL-LHC) require a high bias voltage of 1000 V in order to withstand a radiation damage caused by particle fluences of 1×1016 1 MeV neq/cm2 and 1×1015 1 MeV neq/cm2 for pixel and strip detectors, respectively. In order to minimize the inactive edge space that can withstand a bias voltage of 1000 V, edge regions susceptible to microdischarge (MD) should be carefully optimized. We fabricated diodes with various edge distances (slim-edge diodes) and with 1-3 multiple guard rings (multi-guard diodes). AC coupling insulators of strip sensors are vulnerable to sudden heavy charge deposition, such as an accidental beam splash, which may destroy the readout AC capacitors. Thus various types of punch-through-protection (PTP) structures were implemented in order to find the most effective structure to protect against heavy charge deposition. These samples were irradiated with 70 MeV protons at fluences of 5×1012 1 MeV neq/cm2-1×1016 1 MeV neq/cm2. Their performances were evaluated before and after irradiation in terms of an onset voltage of the MD, a turn-on voltage of the PTP, and PTP saturation resistance.

  10. Grazing exit versus grazing incidence geometry for x-ray absorption near edge structure analysis of arsenic traces

    International Nuclear Information System (INIS)

    Meirer, F.; Streli, C.; Wobrauschek, P.; Zoeger, N.; Pepponi, G.

    2009-01-01

    In the presented study the grazing exit x-ray fluorescence was tested for its applicability to x-ray absorption near edge structure analysis of arsenic in droplet samples. The experimental results have been compared to the findings of former analyses of the same samples using a grazing incidence (GI) setup to compare the performance of both geometries. Furthermore, the investigations were accomplished to gain a better understanding of the so called self-absorption effect, which was observed and investigated in previous studies using a GI geometry. It was suggested that a normal incidence-grazing-exit geometry would not suffer from self-absorption effects in x-ray absorption fine structure (XAFS) analysis due to the minimized path length of the incident beam through the sample. The results proved this assumption and in turn confirmed the occurrence of the self-absorption effect for GI geometry. Due to its lower sensitivity it is difficult to apply the GE geometry to XAFS analysis of trace amounts (few nanograms) of samples but the technique is well suited for the analysis of small amounts of concentrated samples

  11. Structural disorder and electronic hybridization in NicMg1-cO solid solutions probed by XANES at the oxygen K edge

    International Nuclear Information System (INIS)

    Chen Dongliang; Zhong Jun; Chu Wangsheng; Wu Ziyu; Kuzmin, Alexei; Mironova-Ulmane, Nina; Marcelli, Augusto

    2007-01-01

    A series of Ni c Mg 1-c O solid solutions has been studied for the first time looking at the structural disorder by means of x-ray absorption near-edge-structure (XANES) spectroscopy at the oxygen K edge. The experimental XANES signals were analysed within the full multiple scattering formalism and were interpreted taking into account clusters of up to 15 coordination shells around an absorbing oxygen atom. The substitution of nickel atoms by magnesium atoms results in a dramatic decrease of the empty density of states in the conduction band close to the Fermi level due to an exchange of the 3d(Ni)-2p(O) interaction with 3p(Mg)-2p(O). Besides, a simultaneous small decrease of the 3d(Ni)-2p(O) hybridization is also induced by the lattice expansion, determined by the difference in ionic radii between nickel and magnesium ions

  12. Structural disorder and electronic hybridization in Ni{sub c}Mg{sub 1-c}O solid solutions probed by XANES at the oxygen K edge

    Energy Technology Data Exchange (ETDEWEB)

    Chen Dongliang [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhong Jun [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chu Wangsheng [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu Ziyu [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Kuzmin, Alexei [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Mironova-Ulmane, Nina [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Marcelli, Augusto [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, PO Box 13, 00044 Frascati (Italy)

    2007-09-05

    A series of Ni{sub c}Mg{sub 1-c}O solid solutions has been studied for the first time looking at the structural disorder by means of x-ray absorption near-edge-structure (XANES) spectroscopy at the oxygen K edge. The experimental XANES signals were analysed within the full multiple scattering formalism and were interpreted taking into account clusters of up to 15 coordination shells around an absorbing oxygen atom. The substitution of nickel atoms by magnesium atoms results in a dramatic decrease of the empty density of states in the conduction band close to the Fermi level due to an exchange of the 3d(Ni)-2p(O) interaction with 3p(Mg)-2p(O). Besides, a simultaneous small decrease of the 3d(Ni)-2p(O) hybridization is also induced by the lattice expansion, determined by the difference in ionic radii between nickel and magnesium ions.

  13. Desorption, dissociation and orientation of oxygen admolecules on a reconstructed platinum(110)(1x2) surface studied by thermal desorption and near-edge X-ray-absorption fine-structure

    International Nuclear Information System (INIS)

    Ohno, Yuichi; Matsushima, Tatsuo; Tanaka, Shin-ichiro; Kamada, Masao

    1993-01-01

    The desorption, dissociation and orientation of oxygen admolecules on a reconstructed Pt(110)(1x2) were studied by means of TDS combined with isotope tracer, NEXAFS, and angle-resolved TDS. The admolecules below half a monolayer lie on the bottom of the trough, being oriented along it. The molecules adsorbed additionally are lying on declining terraces. The desorption flux of the former species shows a simple cosine distribution, suggesting that the molecule is not localized on the bottom in the desorption event. (author)

  14. Design lithium storage materials by lithium adatoms adsorption at the edges of zigzag silicene nanoribbon: A first principle study

    Science.gov (United States)

    Guo, Gang; Mao, Yuliang; Zhong, Jianxin; Yuan, Jianmei; Zhao, Hongquan

    2017-06-01

    First-principles spin-polarized calculations are performed to design lithium storage materials using the active edges of zigzag silicene nanoribbon (ZSiNR). We predict that edge-adsorption of Li adatoms on zigzag silicene nanoribbon is preferred in energy to form new type lithium storage materials. Significant charge transfer from Li adatoms to Si atoms at the edges of ZSiNR is found, indicating the main ionic interactions. It is found that the band structures of ZSiNR with Li adsorptions are sensitive with the variation of sites of adatoms at the two edges. Ferro-magnetic to antiferro-magnetic change is found in ZSiNR with symmetrical adsorption of Li adatoms at its two edges. Other unsymmetrical Li adsorptions at the edges of ZSiNR prefer to stay in ferro-magnetic state as that in narrow pristine ZSiNR.

  15. Role of step edges on the structure formation of α-6T on Ag(441)

    Science.gov (United States)

    Wagner, Thorsten; Fritz, Daniel Roman; Rudolfová, Zdena; Zeppenfeld, Peter

    2018-01-01

    Controlling the orientation of organic molecules on surfaces is important in order to tune the physical properties of the organic thin films and, thereby, increase the performance of organic thin film devices. Here, we present a scanning tunneling microscopy (STM) and photoelectron emission microscopy (PEEM) study of the deposition of the organic dye pigment α-sexithiophene (α-6T) on the vicinal Ag(441) surface. In the presence of the steps on the Ag(441) surface, the α-6T molecules exclusively align parallel to the step edges oriented along the [1 1 bar0]-direction of the substrate. The STM results further reveal that the adsorption of the α-6T molecules is accompanied by various restructuring of the substrate surface: Initially, the molecules prefer the Ag(551) building blocks of the Ag(441) surface. The Ag(551) termination of the terraces is then changed to a predominately Ag(331) one upon completion of the first α-6T monolayer. When closing the two layer thick wetting layer, the original ratio of Ag(331) and Ag(551) building blocks ( ≈ 1:1) is recovered, but a phase separation into microfacets, which are composed either of Ag(331) or of Ag(551) building blocks, is found.

  16. Design lithium storage materials by lithium adatoms adsorption at the edges of zigzag silicene nanoribbon: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Gang [Hunan Key Laboratory for Micro–Nano Energy Materials and Devices, School of Physics and Optoelectronic Engineering, Xiangtan University, Hunan, 411105 (China); Mao, Yuliang, E-mail: ylmao@xtu.edu.cn [Hunan Key Laboratory for Micro–Nano Energy Materials and Devices, School of Physics and Optoelectronic Engineering, Xiangtan University, Hunan, 411105 (China); Zhong, Jianxin [Hunan Key Laboratory for Micro–Nano Energy Materials and Devices, School of Physics and Optoelectronic Engineering, Xiangtan University, Hunan, 411105 (China); Yuan, Jianmei [Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematics and Computational Science, Xiangtan University, Hunan, 411105 (China); Zhao, Hongquan, E-mail: hqzhao@cigit.ac.cn [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 401120 (China)

    2017-06-01

    Highlights: • Edge-adsorption of Li adatoms on zigzag silicene nanoribbon is preferred in energy to form new type lithium storage materials. • Significant charge transfer from Li adatoms to Si atoms is found, indicating the main ionic interactions. • The band structures of zigzag silicene nanoribbon are sensitive with the variation of sites of Li adatoms at the two edges. • The local magnetic moments at the two edges of zigzag silicene nanoribbon are suppressed by the adsorptions of Li adatoms. - Abstract: First-principles spin-polarized calculations are performed to design lithium storage materials using the active edges of zigzag silicene nanoribbon (ZSiNR). We predict that edge-adsorption of Li adatoms on zigzag silicene nanoribbon is preferred in energy to form new type lithium storage materials. Significant charge transfer from Li adatoms to Si atoms at the edges of ZSiNR is found, indicating the main ionic interactions. It is found that the band structures of ZSiNR with Li adsorptions are sensitive with the variation of sites of adatoms at the two edges. Ferro-magnetic to antiferro-magnetic change is found in ZSiNR with symmetrical adsorption of Li adatoms at its two edges. Other unsymmetrical Li adsorptions at the edges of ZSiNR prefer to stay in ferro-magnetic state as that in narrow pristine ZSiNR.

  17. Design lithium storage materials by lithium adatoms adsorption at the edges of zigzag silicene nanoribbon: A first principle study

    International Nuclear Information System (INIS)

    Guo, Gang; Mao, Yuliang; Zhong, Jianxin; Yuan, Jianmei; Zhao, Hongquan

    2017-01-01

    Highlights: • Edge-adsorption of Li adatoms on zigzag silicene nanoribbon is preferred in energy to form new type lithium storage materials. • Significant charge transfer from Li adatoms to Si atoms is found, indicating the main ionic interactions. • The band structures of zigzag silicene nanoribbon are sensitive with the variation of sites of Li adatoms at the two edges. • The local magnetic moments at the two edges of zigzag silicene nanoribbon are suppressed by the adsorptions of Li adatoms. - Abstract: First-principles spin-polarized calculations are performed to design lithium storage materials using the active edges of zigzag silicene nanoribbon (ZSiNR). We predict that edge-adsorption of Li adatoms on zigzag silicene nanoribbon is preferred in energy to form new type lithium storage materials. Significant charge transfer from Li adatoms to Si atoms at the edges of ZSiNR is found, indicating the main ionic interactions. It is found that the band structures of ZSiNR with Li adsorptions are sensitive with the variation of sites of adatoms at the two edges. Ferro-magnetic to antiferro-magnetic change is found in ZSiNR with symmetrical adsorption of Li adatoms at its two edges. Other unsymmetrical Li adsorptions at the edges of ZSiNR prefer to stay in ferro-magnetic state as that in narrow pristine ZSiNR.

  18. Edge passivation induced single-edge ferromagnetism of zigzag MoS_2 nanoribbons

    International Nuclear Information System (INIS)

    Wang, Rui; Sun, Hui; Ma, Ben; Hu, Jingguo; Pan, Jing

    2017-01-01

    We performed density functional theory study on electronic structure, magnetic properties and stability of zigzag MoS_2 nanoribbons (ZMoS_2NRs) with and without oxygen (O) passivation. The bare ZMoS_2NRs are magnetic metal with ferromagnetic edge states, edge passivation decreases their magnetism because of the decrease of edge unsaturated electrons. Obviously, the electronic structure and magnetic properties of ZMoS_2NRs greatly depend on edge states. When both edges are passivated by O atoms, ZMoS_2NRs are nonmagnetic metals. When either edge is passivated by O atoms, the systems exhibit single-edge ferromagnetism and magnetism concentrates on the non-passivated edge. Edge passivation can not only tune the magnetism of ZMoS_2NRs, but also enhance their stability by eliminating dangling bonds. These interesting findings on ZMoS_2NRs may open the possibility of their application in nanodevices and spintronics. - Highlights: • Edge passivation for tuning magnetism of zigzag MoS_2 nanoribbons (ZMoS_2NRs) is proposed. • Edge passivation can tune ZMoS_2NRs from nonmagnetic metal to ferromagnetic metal. • When either edge is passivated, the systems exhibit single-edge ferromagnetic states. • These findings may inspire great interest in the community of ZMoS_2NRs and motivate numerous experimental researches.

  19. Gravimetric study on the western edge of the Rio de La Plata craton

    International Nuclear Information System (INIS)

    Rame, G; Miro, R

    2010-01-01

    This work is about the gravimetric study on the western edge of the Rio de la Plata craton which belongs to the Gondwana fragment in the south of Brazil, Uruguay and central eastern of Argentina. The work consisted of a survey of 332 gravimetric and topographic stations extended from the western edge of the Sierra Chica de Cordoba up to 200 km east on the pampas. The gravity values observed (gobs) were obtained using a LaCoste §Rom berg gravimeter G-961 and 200T Sodin both with 0.01 mGal, referred to IGSN71 (International Gravity Standardization Net 1971) network

  20. Mass and performance optimization of an airplane wing leading edge structure against bird strike using Taguchi-based grey relational analysis

    Directory of Open Access Journals (Sweden)

    Hassan Pahange

    2016-08-01

    Full Text Available Collisions between birds and aircraft are one of the most dangerous threats to flight safety. In this study, smoothed particles hydrodynamics (SPH method is used for simulating the bird strike to an airplane wing leading edge structure. In order to verify the model, first, experiment of bird strike to a flat aluminum plate is simulated, and then bird impact on an airplane wing leading edge structure is investigated. After that, considering dimensions of wing internal structural components like ribs, skin and spar as design variables, we try to minimize structural mass and wing skin deformation simultaneously. To do this, bird strike simulations to 18 different wing structures are made based on Taguchi’s L18 factorial design of experiment. Then grey relational analysis is used to minimize structural mass and wing skin deformation due to the bird strike. The analysis of variance (ANOVA is also applied and it is concluded that the most significant parameter for the performance of wing structure against impact is the skin thickness. Finally, a validation simulation is conducted under the optimal condition to show the improvement of performance of the wing structure.

  1. Effect of the van der Waals interaction on the electron energy-loss near edge structure theoretical calculation.

    Science.gov (United States)

    Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu

    2017-07-01

    The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Structural and aerodynamic considerations of an active piezoelectric trailing-edge tab on a helicopter rotor

    Science.gov (United States)

    Murray, Gabriel Jon

    This dissertation is concerned with an active tab for use on a rotorcraft for noise and vibration reduction. The tab is located at the trailing edge of the airfoil. The tab consists of a shim sandwiched by layers of the piezoelectric actuators, macro fiber composites, of varying length. This configuration is similar to a bimorph. The modus operandi is similar to that of a trailing edge flap. The actuators deform the tab, bending it to achieve a tip displacement. This provides a change in the lift, moment, and drag coefficients of the airfoil. By actuating the system at 3/rev to 5/rev, reductions in noise and vibration can be realized. The system was examined and designed around using the UH-60 Blackhawk as the model rotorcraft. The tab is envisioned to operate between 65% to 85% of the main rotor span. The tab's chordwise dimensions considered were 20% and 15% of the blade chord. In order to assess the potential of the tab to change the lift and moment coefficients of the airfoil-tab system, a steady computational fluid dynamics study was conducted. The results were generated via the University of Maryland's Transonic Unsteady Navier-Stokes code. Various tab deflection angles, Mach numbers, and angle-of-attack values were computed. These results were compared to a trailing edge flap of similar size. The comparison shows that the tab produces lift and moment increments similar to that of the trailing edge flap. The design of the tab---composed of both active piezoelectric actuators and passive materials---was conducted using finite element analysis. The objectives were to maximize the tip deflection due to the actuators, while minimizing the deformation due to inertial and aerodynamic forces and loads. The inertial loads (acceleration terms) come from both blade motion, such as flapping and pitch, as well as the rotation of the rotor (centrifugal force). All of these previously mentioned terms cause the tab to undergo undesirable deflections. The original concept

  3. A comparative study on the edge states in phosphorene quantum dots and rings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Z.T., E-mail: jiangzhaotan@bit.edu.cn; Liang, F.X.; Zhang, X.D.

    2017-01-30

    Using the tight-binding Hamiltonian approach, we comparatively investigate the energy spectrums of triangular zigzag phosphorene quantum dots (PQDs) and rings (PQRs), as well as their potential applications. In comparison with the outer edge states in the PQD, new extra inner edge states can be produced in the PQR by its internal hole. A transition from the uncoupled to coupled edge states can be induced by decreasing the width between the outer and inner edges of the PQR. Also, the edge states in PQD/PQR are all anisotropically localized in one side, rather than three sides as in triangular graphene quantum dots (QDs) and rings (QRs). Furthermore, the PQD/PQR energy levels can be anisotropically manipulated by the external electric fields and strains, clearly demonstrating their potential applications in field effect transistors or electromechanical devices. In the meanwhile, we also consider the electron probability distributions corresponding to the different energy levels, clearly exposing the characteristics of the PQD/PQR energy levels. The comparison between the asymmetrical triangular PQDs/PQRs and the symmetrical triangular QDs/QRs in graphene should be instructive for understanding the similar triangular QDs/QRs in other two-dimensional layered materials, as well as other types of QDs/QRs of different shapes. - Highlights: • We make a comparative study on the energy levels of the phosphorene quantum dots and rings. • The energy levels can be anisotropically controlled by the electric field and the strains, different from those in graphene counterparts. • The edge states in phosphorene triangular quantum dot and rings are anisotropic. • A helpful reference for understanding phosphorene nanostructures of other shapes and designing devices.

  4. Edge Principal Components and Squash Clustering: Using the Special Structure of Phylogenetic Placement Data for Sample Comparison

    Science.gov (United States)

    Matsen IV, Frederick A.; Evans, Steven N.

    2013-01-01

    Principal components analysis (PCA) and hierarchical clustering are two of the most heavily used techniques for analyzing the differences between nucleic acid sequence samples taken from a given environment. They have led to many insights regarding the structure of microbial communities. We have developed two new complementary methods that leverage how this microbial community data sits on a phylogenetic tree. Edge principal components analysis enables the detection of important differences between samples that contain closely related taxa. Each principal component axis is a collection of signed weights on the edges of the phylogenetic tree, and these weights are easily visualized by a suitable thickening and coloring of the edges. Squash clustering outputs a (rooted) clustering tree in which each internal node corresponds to an appropriate “average” of the original samples at the leaves below the node. Moreover, the length of an edge is a suitably defined distance between the averaged samples associated with the two incident nodes, rather than the less interpretable average of distances produced by UPGMA, the most widely used hierarchical clustering method in this context. We present these methods and illustrate their use with data from the human microbiome. PMID:23505415

  5. Local structure in LaMnO3 and CaMnO3 perovskites: A quantitative structural refinement of Mn K-edge XANES data

    International Nuclear Information System (INIS)

    Monesi, C.; Meneghini, C.; Bardelli, F.; Benfatto, M.; Mobilio, S.; Manju, U.; Sarma, D.D.

    2005-01-01

    Hole-doped perovskites such as La 1-x Ca x MnO 3 present special magnetic and magnetotransport properties, and it is commonly accepted that the local atomic structure around Mn ions plays a crucial role in determining these peculiar features. Therefore experimental techniques directly probing the local atomic structure, like x-ray absorption spectroscopy (XAS), have been widely exploited to deeply understand the physics of these compounds. Quantitative XAS analysis usually concerns the extended region [extended x-ray absorption fine structure (EXAFS)] of the absorption spectra. The near-edge region [x-ray absorption near-edge spectroscopy (XANES)] of XAS spectra can provide detailed complementary information on the electronic structure and local atomic topology around the absorber. However, the complexity of the XANES analysis usually prevents a quantitative understanding of the data. This work exploits the recently developed MXAN code to achieve a quantitative structural refinement of the Mn K-edge XANES of LaMnO 3 and CaMnO 3 compounds; they are the end compounds of the doped manganite series La x Ca 1-x MnO 3 . The results derived from the EXAFS and XANES analyses are in good agreement, demonstrating that a quantitative picture of the local structure can be obtained from XANES in these crystalline compounds. Moreover, the quantitative XANES analysis provides topological information not directly achievable from EXAFS data analysis. This work demonstrates that combining the analysis of extended and near-edge regions of Mn K-edge XAS spectra could provide a complete and accurate description of Mn local atomic environment in these compounds

  6. COMPARATIVE STUDY OF EDGE BASED LSB MATCHING STEGANOGRAPHY FOR COLOR IMAGES

    Directory of Open Access Journals (Sweden)

    A.J. Umbarkar

    2016-02-01

    Full Text Available Steganography is a very pivotal technique mainly used for covert transfer of information over a covert communication channel. This paper proposes a significant comparative study of the spatial LSB domain technique that focuses on sharper edges of the color as well as gray scale images for the purpose of data hiding and hides secret message first in sharper edge regions and then in smooth regions of the image. Message embedding depends on content of the image and message size. The experimental results illustrate that, for low embedding rate the method hides the message in sharp edges of cover image to get better stego image visualization quality. For high embedding rate, smooth regions and edges of the cover image are used for the purpose of data hiding. In this steganography method, color image and textured kind of image preserves better visual quality of stego image. The novelty of the comparative study is that, it helps to analyze the efficiency and performance of the method as it gives better results because it directly works on color images instead of converting to gray scale image.

  7. Signal formation and active edge studies of 3D silicon detector technology

    CERN Document Server

    Kok, Angela

    3D detectors and devices with an ‘active edge’ were fabricated at the Stanford Nanofabrication Facility. Characteristics such as time response and edge sensitivity were studied. The induced signals from a 3D detector were studied using a fast, low-noise transimpedance amplifier. The rise time of the output signal obtained for a minimum ionising particle was faster than 4 ns at room temperature and 2 ns at 130K. This is in agreement with earlier calculations of 3D detectors that predicted the charge collection time to be between one to two ns. The first understanding of signal formation in a 3D detector was achieved by comparing measurements with a full system simulation. The differences in collection behaviour between electrons and holes were also understood and verified by measurement. Edge sensitivity was measured at the CERN SPS, using a high energy muon beam and a silicon telescope. The detector was measured to be efficient up to less than 4 μm from its physical edge. This confirmed that active edge ...

  8. Tape edge study in a linear tape drive with single-flanged guides

    International Nuclear Information System (INIS)

    Goldade, A.V.; Bhushan, Bharat

    2004-01-01

    Improved tape guiding and tape dimensional stability are essential for magnetic tape linear recoding formats to take advantage of vastly increased track density and thereby achieve higher storage capacities. Tape guiding is dependent on numerous parameters, such as type of the guides and tape path geometry, quality of virgin tape edge, drive operating parameters (e.g., tape speed and tape tension), mechanical properties of the tape, and tape geometry (e.g., cupping and curvature). The objective of the present study is to evaluate guiding and tribological performance of single-flanged guides with porous air bearings in a linear tape drive. A comparison of guiding performance of the dual flanged stationary guides and single-flanged guides with porous air bearings is performed. The effect of tape path geometry, drive operating conditions (speed and tension) and tape edge quality of factory-slit tapes on tape guiding are evaluated during short-term tests. A lateral force measurement technique is used to measure the force exerted by the tape edge on the guide flange. A technique for the lateral tape motion measurement is used to study the effect of continuous sliding on tape guiding. Wear tests up to 5000 cycles are conducted and coefficient of friction and lateral tape motion are monitored to study the effect of drive operating conditions (speed and tension), edge quality of factory-slit tapes and tape thickness on tape guiding. Optical microscopy, atomic force microscopy and scanning electron microscopy are employed to study and quantify the quality of tape edge

  9. Edge transport studies in the edge and scrape-off layer of the National Spherical Torus Experiment with Langmuir probes

    Energy Technology Data Exchange (ETDEWEB)

    Boedo, J. A., E-mail: jboedo@ucsd.edu; Rudakov, D. L. [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093 (United States); Myra, J. R.; D' Ippolito, D. A. [Lodestar Research Corp, 2400 Central Ave., Boulder, Colorado 80301 (United States); Zweben, S.; Maingi, R.; Maqueda, R. J.; Bell, R.; Kugel, H.; Leblanc, B.; Roquemore, L. A. [Princeton University, PO Box 451, Princeton, New Jersey 08543 (United States); Soukhanovskii, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Ahn, J. W.; Canik, J. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37830 (United States); Crocker, N. [University of California Los Angeles, PO Box 957099, Los Angeles, California 90095 (United States)

    2014-04-15

    Transport and turbulence profiles were directly evaluated using probes for the first time in the edge and scrape-off layer (SOL) of NSTX [Ono et al., Nucl. Fusion 40, 557 (2000)] in low (L) and high (H) confinement, low power (P{sub in}∼ 1.3 MW), beam-heated, lower single-null discharges. Radial turbulent particle fluxes peak near the last closed flux surface (LCFS) at ≈4×10{sup 21} s{sup −1} in L-mode and are suppressed to ≈0.2×10{sup 21} s{sup −1} in H mode (80%–90% lower) mostly due to a reduction in density fluctuation amplitude and of the phase between density and radial velocity fluctuations. The radial particle fluxes are consistent with particle inventory based on SOLPS fluid modeling. A strong intermittent component is identified. Hot, dense plasma filaments 4–10 cm in diameter, appear first ∼2 cm inside the LCFS at a rate of ∼1×10{sup 21} s{sup −1} and leave that region with radial speeds of ∼3–5 km/s, decaying as they travel through the SOL, while voids travel inward toward the core. Profiles of normalized fluctuations feature levels of 10% inside LCFS to ∼150% at the LCFS and SOL. Once properly normalized, the intermittency in NSTX falls in similar electrostatic instability regimes as seen in other devices. The L-H transition causes a drop in the intermittent filaments velocity, amplitude and number in the SOL, resulting in reduced outward transport away from the edge and a less dense SOL.

  10. Energetics of edge oxidization of graphene nanoribbons

    Science.gov (United States)

    Yasuma, Airi; Yamanaka, Ayaka; Okada, Susumu

    2018-06-01

    On the basis of the density functional theory, we studied the geometries and energetics of O atoms adsorbed on graphene edges for simulating the initial stage of the edge oxidization of graphene. Our calculations showed that oxygen atoms are preferentially adsorbed onto the graphene edges with the zigzag portion, resulting in a large adsorption energy of about 5 eV. On the other hand, the edges with armchair shape are rarely oxidized, or the oxidization causes substantial structural reconstructions, because of the stable covalent bond at the armchair edge with the triple bond nature. Furthermore, the energetics sensitively depends on the edge angles owing to the inhomogeneity of the charge density at the edge atomic sites.

  11. Using Edge Voxel Information to Improve Motion Regression for rs-fMRI Connectivity Studies.

    Science.gov (United States)

    Patriat, Rémi; Molloy, Erin K; Birn, Rasmus M

    2015-11-01

    Recent fMRI studies have outlined the critical impact of in-scanner head motion, particularly on estimates of functional connectivity. Common strategies to reduce the influence of motion include realignment as well as the inclusion of nuisance regressors, such as the 6 realignment parameters, their first derivatives, time-shifted versions of the realignment parameters, and the squared parameters. However, these regressors have limited success at noise reduction. We hypothesized that using nuisance regressors consisting of the principal components (PCs) of edge voxel time series would be better able to capture slice-specific and nonlinear signal changes, thus explaining more variance, improving data quality (i.e., lower DVARS and temporal SNR), and reducing the effect of motion on default-mode network connectivity. Functional MRI data from 22 healthy adult subjects were preprocessed using typical motion regression approaches as well as nuisance regression derived from edge voxel time courses. Results were evaluated in the presence and absence of both global signal regression and motion censoring. Nuisance regressors derived from signal intensity time courses at the edge of the brain significantly improved motion correction compared to using only the realignment parameters and their derivatives. Of the models tested, only the edge voxel regression models were able to eliminate significant differences in default-mode network connectivity between high- and low-motion subjects regardless of the use of global signal regression or censoring.

  12. Experimental study of contact edge roughness on sub-100 nm various circular shapes

    Science.gov (United States)

    Lee, Tae Y.; Ihm, Dongchul; Kang, Hyo C.; Lee, Jum B.; Lee, Byoung H.; Chin, Soo B.; Cho, Do H.; Song, Chang L.

    2005-05-01

    The measurement of edge roughness has become a hot issue in the semiconductor industry. Especially the contact roughness is being more critical as design rule shrinks. Major vendors offer a variety of features to measure the edge roughness in their CD-SEMs. For the line and space patterns, features such as Line Edge Roughness (LER) and Line Width Roughness (LWR) are available in current CD-SEMs. However the features currently available in commercial CD-SEM cannot provide a proper solution in monitoring the contact roughness. We had introduced a new parameter R, measurement algorithm and definition of contact edge roughness to quantify CER and CSR in previous paper. The parameter, R could provide an alternative solution to monitor contact or island pattern roughness. In this paper, we investigated to assess optimum number of CD measurement (1-D) and fitting method for CER or CSR. The study was based on a circular contact shape. Some new ideas to quantify CER or CSR were also suggested with preliminary experimental results.

  13. Does the edge effect influence plant community structure in a tropical dry forest? O efeito de borda influencia a estrutura da comunidade vegetal em uma floresta tropical seca?

    Directory of Open Access Journals (Sweden)

    Diogo Gallo Oliveira

    2013-04-01

    Full Text Available Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges.Efeitos de borda são considerados fator-chave na regulação da estrutura de comunidades vegetais em diferentes ecossistemas. Entretanto, apesar dos poucos estudos relacionados, o efeito de borda parece não ser determinante em regiões semiáridas, como a floresta tropical seca brasileira, conhecida como Caatinga. Este estudo testou a hipótese nula de que a comunidade vegetal arbustivo-arbórea não sofre alterações em sua estrutura, riqueza e composição devido ao efeito de borda. Foram instaladas 24 parcelas (20 x 20 m em um fragmento de Caatinga arbórea, sendo 12 parcelas na borda do fragmento e 12 parcelas no seu interior. A riqueza, abundância e composição das espécies não diferiram estatisticamente entre as parcelas de borda e interior. Os resultados deste estudo corroboram um possível padr

  14. The Fine Transverse Structure of a Vortex Flow Beyond the Edge of a Disc Rotating in a Stratified Fluid

    Science.gov (United States)

    Chashechkin, Yu. D.; Bardakov, R. N.

    2018-02-01

    By the methods of schlieren visualization, the evolution of elements of the fine structure of transverse vortex loops formed in the circular vortex behind the edge of a disk rotating in a continuously stratified fluid is traced for the first time. An inhomogeneous distribution of the density of a table-salt solution in a basin was formed by the continuous-squeezing method. The development of periodic perturbations at the outer boundary of the circular vortex and their transformation at the vortex-loop vertex are traced. A slow change in the angular size of the structural elements in the supercritical-flow mode is noted.

  15. Detailed Analysis of Amplitude and Slope Diffraction Coefficients for knife-edge structure in S-UTD-CH Model

    Directory of Open Access Journals (Sweden)

    Eray Arik

    2017-03-01

    Full Text Available In urban, rural and indoor applications, diffraction mechanism is very important to predict the field strength and calculate the coverage accurately. The diffraction mechanism takes place on NLOS (non-line-of-sight cases like rooftop, vertex, corner, edge and sharp surfaces. S-UTD-CH model computes three type of electromagnetic wave incidence such as direct, reflected and diffracted waves, respectively. As obstacles in diffraction geometry are in the same or closer height, contribution of the diffraction mechanism is dominant. To predict the diffracted fields accurately, amplitude and slope diffraction coefficients and the derivative of these coefficients have to be taken correctly. In this paper, all the derivations about diffraction coefficients are made for knife edge type structures and extensive simulations are performed in order to analyze the amplitude and diffraction coefficients. In plane angle diffraction, contributions of amplitude and slope diffraction coefficient are maxima.

  16. Analysis of sulfidic linkages formed in natural rubber latex medical gloves by using X-ray absorption near edge structure

    Science.gov (United States)

    Chankrachang, M.; Limphirat, W.; Yongyingsakthavorn, P.; Nontakaew, U.; Tohsan, A.

    2017-09-01

    A study of sulfidic linkages formed in natural rubber (NR) latex medical gloves by using X-ray Absorption Near Edge Structure (XANES) is presented in this paper. The NR latex compound was prepared by using prevulcanization method, that is, it was prevulcanized at room temperature for 24 hrs before utilization. After the 24 hrs of prevulcanization, the latex film samples were obtained by dipping process. The dipped films were subjected to vulcanize at 110°C for 5 to 25 min. It was observed that after the compound was prevulcanized for 24 hrs, polysulfidic linkages were mainly formed in the sample. It was however found that after curing at 110°C for 5-25 min, the polysulfidic linkages are tended to change into disulfide linkages. Especially, in the case of 25 minutes cured sample, disulfide linkages are found to be the main linkages. In term of tensile strength, it was observed that when cure time increased from 5 - 10 min, tensile strengths were also increased. But when the cure time of the film is 25 minutes, tensile strength was slightly dropped. The dropped of tensile strength when cure time is longer than 10 minutes can be ascribed to a degradation of polysulfidic and disulfidic linkages during curing. Therefore, by using XANES analysis, it was found to be very useful to understand the cure characteristic, thus it can be very helpful to optimize cure time and tensile properties of the product.

  17. Structure and stability of threading edge and screw dislocations in bulk GaN

    Czech Academy of Sciences Publication Activity Database

    Gröger, Roman; Leconte, L.; Ostapovets, Andriy

    2015-01-01

    Roč. 99, MAR (2015), s. 195-202 ISSN 0927-0256 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA MŠk(CZ) EE2.3.30.0063 Institutional support: RVO:68081723 Keywords : Threading dislocation * Edge * Screw * GaN Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.086, year: 2015

  18. Edge transport and mode structure of a QCM-like fluctuation driven by the Shoelace antenna

    Science.gov (United States)

    Golfinopoulos, T.; LaBombard, B.; Brunner, D.; Terry, J. L.; Baek, S. G.; Ennever, P.; Edlund, E.; Han, W.; Burke, W. M.; Wolfe, S. M.; Irby, J. H.; Hughes, J. W.; Fitzgerald, E. W.; Granetz, R. S.; Greenwald, M. J.; Leccacorvi, R.; Marmar, E. S.; Pierson, S. Z.; Porkolab, M.; Vieira, R. F.; Wukitch, S. J.; The Alcator C-Mod Team

    2018-05-01

    The Shoelace antenna was built to drive edge fluctuations in the Alcator C-Mod tokamak, matching the wavenumber (k\\perp≈1.5 cm‑1) and frequency (30≲ f ≲ 200 kHz) of the quasi-coherent mode (QCM), which is responsible for regulating transport across the plasma boundary in the steady-state, ELM-free Enhanced D α (EDA) H-mode. Initial experiments in 2012 demonstrated that the antenna drove a resonant response in the edge plasma in steady-state EDA and transient, non-ELMy H-modes, but transport measurements were unavailable. In 2016, the Shoelace antenna was relocated to enable direct measurements of driven transport by a reciprocating Mirror Langmuir Probe, while also making available gas puff imaging and reflectometer data to provide additional radial localization of the driven fluctuation. This new data suggests a  ∼4 mm-wide mode layer centered on or just outside the separatrix. Fluctuations coherent with the antenna produced a radial electron flux with {Γ_e}/{n_e}∼4 m s‑1 in EDA H-mode, smaller than but comparable to the QCM level. But in transient ELM-free H-mode, {Γ_e}/{n_e} was an order of magnitude smaller, and driven fluctuations reduced by a factor of ≳ 3. The driven mode is quantitatively similar to the intrinsic QCM across measured spectral quantities, except that it is more coherent and weaker. This work informs the prospect of achieving control of edge transport by direct coupling to edge modes, as well as the use of such active coupling for diagnostic purposes.

  19. SEARCHING FOR URBAN PATTERNS; AN ASSESSMENT OF HISTORIC EDGES AND ITS SURROUNDING CONTEXT: HISTORIC CAIRO AS A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Nabil Mohareb

    2016-07-01

    Full Text Available This paper analyzes the urban edges of historic cities. Managing these edges would enhance the success of any intervention projects inside the historic fabric. The paper develops and tests a method of analytical assessment framework that is applicable for quantitative analysis within an urban edge. It is capable of measuring micro and macro levels of analysis of historic urban edges with reference to their spatial configuration. In addition, the paper searches for repetitive spatial configuration patterns. The main case study is Historic Cairo. The paper reveals that there are apparent patterns of cause and effect of both spatial configurations and related activities along the urban edges, forming different type of barriers. The paper discovers the repetitive spatial, architectural, and land-use patterns that exist on various edges. These patterns enable the possibility of learning and acquiring from other successful interventions that have been applied to similar patterns, without being limited to cultural or contextual differences.

  20. Surface modification study of borate materials from B K-edge X-ray absorption spectroscopy

    Science.gov (United States)

    Kasrai, Masoud; Fleet, Michael E.; Muthupari, Swaminathan; Li, D.; Bancroft, G. M.

    The B K-edge X-ray absorption near-edge structure (XANES) spectra of two borates with tetrahedrally-coordinated B [[4]B; natural danburite (CaB2Si2O8) and synthetic boron phosphate (BPO4)] have been recorded in total electron yield (TEY) and fluorescence yield (FY) modes to investigate the surface and bulk structure of these materials. The TEY XANES measurement shows that danburite is susceptible to surface damage involving conversion of [4]B sites to [3]B sites by reaction with moisture and/or mechanical abrasion (grinding, polishing, etc.). The bulk of the mineral is essentially unaffected. Commercial boron phosphate powder exhibits more extensive surface and bulk damage, which increases with air exposure but is recovered on heating at 650°C. In contrast to ELNES, the XANES technique is not affected by beam damage and when collected in the FY mode is capable of yielding meaningful information on the coordination and intermediate-range structure of B in borate and borosilicate materials.

  1. Effect of the van der Waals interaction on the electron energy-loss near edge structure theoretical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp

    2017-07-15

    The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1 eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation. - Highlights: • Effect of van der Waals (vdW) interaction in ELNES calculation is investigated. • The vdW interaction influences more to the excited state owing to the presence of excited electron. • The vdW interaction makes spectral shift to lower energy side by 0.1–0.01 eV. • The vdW interaction is negligible in gaseous materials due to long intermolecular distance.

  2. A study for the improvement on knife-edge-type metal-seal flange

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Nakamura, Kazuyuki; Murakami, Yoshio; Naganuma, Masamitsu; Kitamura, Kazunori; Uchida, Takao; Kondo, Mitsunori.

    1989-01-01

    Present paper describes the performance characteristics of the knife-edge-type metal-seal flange. The aim of the study is to try to make efficient the combination function of flange. Parameters on improved flange are smaller than that of conventional flange as follows; -number of bolt: 1/2∼1/3, tightness torque: 3/5, flange thickness: 7/10. (author)

  3. Hyper thin 3D edge measurement of honeycomb core structures based on the triangular camera-projector layout & phase-based stereo matching.

    Science.gov (United States)

    Jiang, Hongzhi; Zhao, Huijie; Li, Xudong; Quan, Chenggen

    2016-03-07

    We propose a novel hyper thin 3D edge measurement technique to measure the profile of 3D outer envelope of honeycomb core structures. The width of the edges of the honeycomb core is less than 0.1 mm. We introduce a triangular layout design consisting of two cameras and one projector to measure hyper thin 3D edges and eliminate data interference from the walls. A phase-shifting algorithm and the multi-frequency heterodyne phase-unwrapping principle are applied for phase retrievals on edges. A new stereo matching method based on phase mapping and epipolar constraint is presented to solve correspondence searching on the edges and remove false matches resulting in 3D outliers. Experimental results demonstrate the effectiveness of the proposed method for measuring the 3D profile of honeycomb core structures.

  4. Photoionization of the Fe lons: Structure of the K-Edge

    Science.gov (United States)

    Palmeri, P.; Mendoza, C.; Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    X-ray absorption and emission features arising from the inner-shell transitions in iron are of practical importance in astrophysics due to the Fe cosmic abundance and to the absence of traits from other elements in the nearby spectrum. As a result, the strengths and energies of such features can constrain the ionization stage, elemental abundance, and column density of the gas in the vicinity of the exotic cosmic objects, e.g. active galactic nuclei (AGN) and galactic black hole candidates. Although the observational technology in X-ray astronomy is still evolving and currently lacks high spectroscopic resolution, the astrophysical models have been based on atomic calculations that predict a sudden and high step-like increase of the cross section at the K-shell threshold (see for instance. New Breit-Pauli R-matrix calculations of the photoionization cross section of the ground states of Fe XVII in the region near the K threshold are presented. They strongly support the view that the previously assumed sharp edge behaviour is not correct. The latter has been caused by the neglect of spectator Auger channels in the decay of the resonances converging to the K threshold. These decay channels include the dominant KLL channels and give rise to constant widths (independent of n). As a consequence, these series display damped Lorentzian components that rapidly blend to impose continuity at threshold, thus reformatting the previously held picture of the edge. Apparent broadened iron edges detected in the spectra of AGN and galactic black hole candidates seem to indicate that these quantum effects may be at least partially responsible for the observed broadening.

  5. Case Studies of Leading Edge Small Urban High Schools. Relevance Strategic Designs: 5. Life Academy of Health and Bioscience

    Science.gov (United States)

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  6. Case Studies of Leading Edge Small Urban High Schools. Relevance Strategic Designs: 8. High Tech High School

    Science.gov (United States)

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  7. Case Studies of Leading Edge Small Urban High Schools. Personalization Strategic Designs: 9. MetWest High School

    Science.gov (United States)

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  8. Case Studies of Leading Edge Small Urban High Schools. Relevance Strategic Designs: 7. TechBoston Academy

    Science.gov (United States)

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  9. Case Studies of Leading Edge Small Urban High Schools. Core Academic Strategic Designs: 3. University Park Campus School

    Science.gov (United States)

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  10. Case Studies of Leading Edge Small Urban High Schools. Core Academic Strategic Designs: 1. Academy of the Pacific Rim

    Science.gov (United States)

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  11. Case Studies of Leading Edge Small Urban High Schools. Core Academic Strategic Designs: 2. Noble Street Charter High School

    Science.gov (United States)

    Shields, Regis Anne; Ireland, Nicole; City, Elizabeth; Derderian, Julie; Miles, Karen Hawley

    2008-01-01

    This report is one of nine detailed case studies of small urban high schools that served as the foundation for the Education Resource Strategies (ERS) report "Strategic Designs: Lessons from Leading Edge Small Urban High Schools." These nine schools were dubbed "Leading Edge Schools" because they stand apart from other high…

  12. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, U.E.A. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: ursula.fittschen@chemie.uni-hamburg.de; Meirer, F. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: fmeirer@ati.ac.at; Streli, C. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: streli@ati.ac.at; Wobrauschek, P. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: wobi@ati.ac.at; Thiele, J. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: Julian.Thiele@gmx.de; Falkenberg, G. [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany)], E-mail: falkenbe@mail.desy.de; Pepponi, G. [ITC-irst, Via Sommarive 18, 38050 Povo (Trento) (Italy)], E-mail: pepponi@itc.it

    2008-12-15

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 {mu}m, 8.0-2.0 {mu}m, 2.0-0.13 {mu}m 0.13-0.015 {mu}m (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 {mu}m, 1-2 {mu}m, 2-4 {mu}m, 4-8 {mu}m, 8-16 {mu}m. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in

  13. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    International Nuclear Information System (INIS)

    Fittschen, U.E.A.; Meirer, F.; Streli, C.; Wobrauschek, P.; Thiele, J.; Falkenberg, G.; Pepponi, G.

    2008-01-01

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 μm, 8.0-2.0 μm, 2.0-0.13 μm 0.13-0.015 μm (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 μm, 1-2 μm, 2-4 μm, 4-8 μm, 8-16 μm. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in all particle size fractions

  14. Study of plasma discharge evolution and edge turbulence with fast visible imaging in the Aditya tokamak

    International Nuclear Information System (INIS)

    Banerjee, Santanu; Manchanda, R.; Chowdhuri, M.B.

    2015-01-01

    Study of discharge evolution through the different phases of a tokamak plasma shot viz., the discharge initiation, current ramp-up, current flat-top and discharge termination, is essential to address many inherent issues of the operation of a Tokamak. Fast visible imaging of the tokamak plasma can provide valuable insight in this regard. Further, edge turbulence is considered to be one of the quintessential areas of tokamak research as the edge plasma is at the immediate vicinity of the plasma core and plays vital role in the core plasma confinement. The edge plasma also bridges the core and the scrape off layer (SOL) of the tokamak and hence has a bearing on the particle and heat flux escaping the plasma column. Two fast visible imaging systems are installed on the Aditya tokamak. One of the system is for imaging the plasma evolution with a wide angle lens covering a major portion of the vacuum vessel. The imaging fiber bundle along with the objective lens is installed inside a radial re-entrant viewport, specially designed for the purpose. Another system is intended for tangential imaging of the plasma column. Formation of the plasma column and its evolution are studied with the fast visible imaging in Aditya. Features of the ECRH and LHCD operations on Aditya will be discussed. 3D filaments can, be seen at the plasma edge all along the discharge and they get amplified in intensity at the plasma termination phase. Statistical analysis of these filaments, which are essentially plasma blobs will be presented. (author)

  15. An Edge-Sensing Predictor in Wavelet Lifting Structures for Lossless Image Coding

    Directory of Open Access Journals (Sweden)

    Ömer N. Gerek

    2007-02-01

    Full Text Available The introduction of lifting implementations for image wavelet decomposition generated possibilities of several applications and several adaptive decomposition variations. The prediction step of a lifting stage constitutes the interesting part of the decomposition since it aims to reduce the energy of one of the decomposition bands by making predictions using the other decomposition band. In that aspect, more successful predictions yield better efficiency in terms of reduced energy in the lower band. In this work, we present a prediction filter whose prediction domain pixels are selected adaptively according to the local edge characteristics of the image. By judicuously selecting the prediction domain from pixels that are expected to have closer relation to the estimated pixel, the prediction error signal energy is reduced. In order to keep the adaptation rule symmetric for the encoder and the decoder sides, lossless compression applications are examined. Experimental results show that the proposed algorithm provides good compression results. Furthermore, the edge calculation is computationally inexpensive and comparable to the famous Daubechies 5/3 lifting implementation.

  16. Coupled-cluster response theory for near-edge x-ray-absorption fine structure of atoms and molecules

    DEFF Research Database (Denmark)

    Coriani, Sonia; Christiansen, Ove; Fransson, Thomas

    2012-01-01

    triple corrected excitation energies CCSDR(3). This work is a first step toward the extension of these theoretical electronic structure methods of well-established high accuracy in UV-vis absorption spectroscopies to applications concerned with x-ray radiation. From the imaginary part of the linear...... response function, the near K-edge x-ray absorption spectra of neon, water, and carbon monoxide are determined and compared with experiment. Results at the CCSD level show relative peak intensities in good agreement with experiment with discrepancies in transition energies due to incomplete treatment...

  17. Distribution of solute atoms in β- and spinel Si6-zAlzOzN8-z by Al K-edge x-ray absorption near-edge structure

    International Nuclear Information System (INIS)

    Tatsumi, Kazuyoshi; Mizoguchi, Teruyasu; Yoshioka, Satoru; Tanaka, Isao; Yamamoto, Tomoyuki; Suga, Takeo; Sekine, Toshimori

    2005-01-01

    Local environments of solutes in β- and spinel Si 6-z Al z O z N 8-z are investigated by means of Al K x-ray absorption near-edge structure. The experimental spectra are found to be the same throughout the wide solubility range. This suggests that the local environments of Al are independent of the solute concentration. First-principles band-structure calculations are systematically made to interpret the experimental spectra. Effect of a core hole was included into the calculation. Theoretical spectra were obtained using variety of different model structures constructed by a set of plane-wave pseudopotentials calculations in our previous study [K. Tatsumi, I. Tanaka, H. Adachi, and M. Yoshiya, Phys. Rev. B 66, 165210 (2002)]. The numbers of models were 51 and 45 for both β and spinel, respectively. They are classified and averaged according to the local atomic structure of Al solutes. The combination of experimental spectra and theoretical results can unambiguously lead to the conclusion that Al atoms are preferentially coordinated by O atoms in both β and spinel phases. This is consistent with the conclusion obtained by the first-principles total-energy calculations. In the spinel phase, Al atoms are found to be located preferentially at the octahedral cationic site. This agrees with the conclusion in a recent report on the nuclear magnetic resonance experiment

  18. The structure of the solution obtained with Reynolds-stress-transport models at the free-stream edges of turbulent flows

    Science.gov (United States)

    Cazalbou, J.-B.; Chassaing, P.

    2002-02-01

    The behavior of Reynolds-stress-transport models at the free-stream edges of turbulent flows is investigated. Current turbulent-diffusion models are found to produce propagative (possibly weak) solutions of the same type as those reported earlier by Cazalbou, Spalart, and Bradshaw [Phys. Fluids 6, 1797 (1994)] for two-equation models. As in the latter study, an analysis is presented that provides qualitative information on the flow structure predicted near the edge if a condition on the values of the diffusion constants is satisfied. In this case, the solution appears to be fairly insensitive to the residual free-stream turbulence levels needed with conventional numerical methods. The main specific result is that, depending on the diffusion model, the propagative solution can force turbulence toward definite and rather extreme anisotropy states at the edge (one- or two-component limit). This is not the case with the model of Daly and Harlow [Phys. Fluids 13, 2634 (1970)]; it may be one of the reasons why this "old" scheme is still the most widely used, even in recent Reynolds-stress-transport models. In addition, the analysis helps us to interpret some difficulties encountered in computing even very simple flows with Lumley's pressure-diffusion model [Adv. Appl. Mech. 18, 123 (1978)]. A new realizability condition, according to which the diffusion model should not globally become "anti-diffusive," is introduced, and a recalibration of Lumley's model satisfying this condition is performed using information drawn from the analysis.

  19. Pneumatic artificial muscles for trailing edge flap actuation: a feasibility study

    Science.gov (United States)

    Woods, Benjamin K. S.; Kothera, Curt S.; Sirohi, Jayant; Wereley, Norman M.

    2011-10-01

    In this study a novel aircraft trailing edge flap actuation system was developed and tested. Pneumatic artificial muscles (PAMs) were used as the driving elements of this system to demonstrate their feasibility and utility as an alternative aerospace actuation technology. A prototype flap/actuator system was integrated into a model wing section and tested on the bench-top under simulated airloads for flight at 100 m s-1 (M = 0.3) and in an open-jet wind tunnel at free stream velocities ranging up to 45 m s-1 (M = 0.13). Testing was performed for actuator pressures ranging from 0.069 to 0.62 MPa (10-90 psi) and actuation frequencies from 0.1 to 31 Hz. Results show that the PAM-driven trailing edge flap system can generate substantial and sustainable dynamic deflections, thereby proving the feasibility of using pneumatic artificial muscle actuators in a trailing edge flap system. Key issues limiting system performance are identified, that should be resolved in future research.

  20. Pneumatic artificial muscles for trailing edge flap actuation: a feasibility study

    International Nuclear Information System (INIS)

    Woods, Benjamin K S; Wereley, Norman M; Kothera, Curt S; Sirohi, Jayant

    2011-01-01

    In this study a novel aircraft trailing edge flap actuation system was developed and tested. Pneumatic artificial muscles (PAMs) were used as the driving elements of this system to demonstrate their feasibility and utility as an alternative aerospace actuation technology. A prototype flap/actuator system was integrated into a model wing section and tested on the bench-top under simulated airloads for flight at 100 m s −1 (M = 0.3) and in an open-jet wind tunnel at free stream velocities ranging up to 45 m s −1 (M = 0.13). Testing was performed for actuator pressures ranging from 0.069 to 0.62 MPa (10–90 psi) and actuation frequencies from 0.1 to 31 Hz. Results show that the PAM-driven trailing edge flap system can generate substantial and sustainable dynamic deflections, thereby proving the feasibility of using pneumatic artificial muscle actuators in a trailing edge flap system. Key issues limiting system performance are identified, that should be resolved in future research

  1. Blind deblurring of spiral CT images - comparative studies on edge-to-noise ratios

    International Nuclear Information System (INIS)

    Jiang Ming; Wan Ge; Skinner, Margaret W.; Rubinstein, Jay T.; Vannier, Michael W.

    2002-01-01

    A recently developed blind deblurring algorithm based on the edge-to-noise ratio has been applied to improve the quality of spiral CT images. Since the discrepancy measure used to quantify the edge and noise effects is not symmetric, there are several ways to formulate the edge-to-noise ratio. This article is to investigate the performance of those ratios with phantom and patient data. In the phantom study, it is shown that all the ratios share similar properties, validating the blind deblurring algorithm. The image fidelity improvement varies from 29% to 33% for different ratios, according to the root mean square error (RMSE) criterion; the optimal iteration number determined for each ratio varies from 25 to 35. Those ratios that are associated with most satisfactory performance are singled out for the image fidelity improvement of about 33% in the numerical simulation. After automatic blind deblurring with the selected ratios, the spatial resolution of CT is substantially refined in all the cases tested

  2. Resonant inelastic x-ray scattering on iso-C2H2Cl2 around the chlorine K-edge: Structural and dynamical aspects

    International Nuclear Information System (INIS)

    Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Simon, Marc; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok

    2014-01-01

    We report a theoretical and experimental study of the high resolution resonant K α X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K α emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state

  3. Resonant inelastic x-ray scattering on iso-C2H2Cl2 around the chlorine K-edge: Structural and dynamical aspects

    Science.gov (United States)

    Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; Kavčič, Matjaž; Céolin, Denis; Khoury, Antonio; Simon, Marc

    2014-10-01

    We report a theoretical and experimental study of the high resolution resonant Kα X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the Kα emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.

  4. Resonant inelastic x-ray scattering on iso-C₂H₂Cl₂ around the chlorine K-edge: structural and dynamical aspects.

    Science.gov (United States)

    Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; Kavčič, Matjaž; Céolin, Denis; Khoury, Antonio; Simon, Marc

    2014-10-14

    We report a theoretical and experimental study of the high resolution resonant K(α) X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K(α) emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.

  5. Structure of edge-state inner products in the fractional quantum Hall effect

    Science.gov (United States)

    Fern, R.; Bondesan, R.; Simon, S. H.

    2018-04-01

    We analyze the inner products of edge state wave functions in the fractional quantum Hall effect, specifically for the Laughlin and Moore-Read states. We use an effective description for these inner products given by a large-N expansion ansatz proposed in a recent work by J. Dubail, N. Read, and E. Rezayi [Phys. Rev. B 86, 245310 (2012), 10.1103/PhysRevB.86.245310]. As noted by these authors, the terms in this ansatz can be constrained using symmetry, a procedure we perform to high orders. We then check this conjecture by calculating the overlaps exactly for small system sizes and compare the numerics with our high-order expansion. We find the effective description to be very accurate.

  6. Numerical study on film cooling and convective heat transfer characteristics in the cutback region of turbine blade trailing edge

    Directory of Open Access Journals (Sweden)

    Xie Yong-Hui

    2016-01-01

    Full Text Available Gas turbine blade trailing edge is easy to burn out under the exposure of high-temperature gas due to its thin shape. The cooling of this area is an important task in gas turbine blade design. The structure design and analysis of trailing edge is critical because of the complexity of geometry, arrangement of cooling channels, design requirement of strength, and the working condition of high heat flux. In the present paper, a 3-D model of the trailing edge cooling channel is constructed and both structures with and without land are numerically investigated at different blowing ratio. The distributions of film cooling effectiveness and convective heat transfer coefficient on cutback and land surface are analyzed, respectively. According to the results, it is obtained that the distributions of film cooling effectiveness and convective heat transfer coefficient both show the symmetrical characteristics as a result of the periodic structure of the trailing edge. The increase of blowing ratio significantly improves the film cooling effectiveness and convective heat transfer coefficient on the cutback surface, which is beneficial to the cooling of trailing edge. It is also found that the land structure is advantageous for enhancing the streamwise film cooling effectiveness of the trailing edge surface while the film cooling effectiveness on the land surface remains at a low level. Convective heat transfer coefficient exhibits a strong dependency with the blowing ratio, which suggests that film cooling effectiveness and convective heat transfer coefficient must be both considered and analyzed in the design of trailing edge cooling structure.

  7. Effects of substrate anisotropy and edge diffusion on submonolayer growth during molecular beam epitaxy: A Kinetic Monte Carlo study

    International Nuclear Information System (INIS)

    Devkota, J.; Shrestha, S.P.

    2007-12-01

    We have performed Kinetic Monte Carlo simulation work to study the effect of diffusion anisotropy, bonding anisotropy and edge diffusion on island formation at different temperatures during the sub-monolayer film growth in Molecular Beam Epitaxy. We use simple cubic solid on solid model and event based Bortz, Kalos and Labowitch (BKL) algorithm on the Kinetic Monte Carlo method to simulate the physical phenomena. We have found that the island morphology and growth exponent are found to be influenced by substrate anisotropy as well as edge diffusion, however they do not play a significant role in island elongation. The growth exponent and island size distribution are observed to be influenced by substrate anisotropy but are negligibly influenced by edge diffusion. We have found fractal islands when edge diffusion is excluded and compact islands when edge diffusion is included. (author)

  8. Progressive buckling analysis for a cylindrical shell structure with the free edge subjected to moving thermal cycles

    International Nuclear Information System (INIS)

    Koo, Gyeong-Hoi; Lee, Jae-Han

    2004-01-01

    In the KALIMER (Korea Advanced Liquid Metal Reactor) design, the reactor baffle structure is adopted to prevent the hot pool sodium from directly contacting the reactor vessel and to guide the hot sodium overflow in severe transient operating conditions. The parts in the vicinity of the hot pool free surface region could be repeatedly subjected to a moving axial temperature gradient and this might result in thermal ratcheting deformation. In this paper, the progressive thermal buckling behaviour following thermal ratcheting due to the moving axial temperature gradients in a cylindrical shell structure with an open free edge is investigated using numerical inelastic analysis with Chaboche's model. To do this, the analyses of the moving temperature distribution are carried out with a simple model and the severe moving axial temperature gradients are assumed to be sufficient for the evolution of thermal ratcheting

  9. Edge and Core Impurity Transport Study with Spectroscopic Instruments in LHD

    International Nuclear Information System (INIS)

    Morita, Shigeru; Goto, Motoshi; Kobayashi, Masahiro; Muto, Sadatsugu; Chowdhuri, Malay Bikas; Chunfeng, Dong; Hangyu, Zhou; Zhengying, Cui; Fujii, Keisuke; Hasuo, Masahiro; Iwamae, Atsushi; Furuzawa, Akihiro; Sakurai, Ikuya; Tawara, Yuzuru; Yinxian, Jie; Baonian, Wan; Zhenwei, Wu; Koubiti, Mohammed; Yamaguchi, Naohiro

    2009-01-01

    Impurity transport was investigated at both edge and core regions in large helical device (LHD) with developed spectroscopic instruments which can measure one- and two-dimensional distributions of impurities. The edge impurity behavior was studied recently using four carbon resonant transitions in different ionization stages of CIII (977A), CIV (1548A), CV (40.3A) and CVI (33.7A). When the line-averaged electron density, n e , is increased from 1 to 6 x 10 13 cm -3 , the ratio of (CIII+CIV)/n e increases while the ratio of (CV+CVI)/n e decreases. Here, CIII+CIV (CV+CVI) expresses the sum of CIII (CV) and CIV (CVI) intensities. The CIII+CIV indicates the carbon influx and the CV+CVI indicates the emissions through the transport in the ergodic layer. The result thus gives experimental evidence on the impurity screening by the ergodic layer in LHD, which is also supported by a three-dimensional edge particle simulation. The core impurity behavior is also studied in high-density discharges (n e ≤ 1x 10 15 cm -3 ) with multi H 2 -pellets injection. It is found that the ratio of V/D (V: convection velocity, D: diffusion coefficient) decreases after pellet injection and Z eff profile shows a flat one at values of 1.1-1.2. These results confirm no impurity accumulation occurs in high-density discharges. As a result, the iron density, n Fe , is analyzed to be 6 x 10 -7 ( = n Fe /n e ) of which the amount can be negligible as radiation source even in such high-density discharges. One- and two-dimensional impurity distributions from space-resolved VUV and EUV spectrometers newly developed for further impurity transport study are also presented with their preliminary results. (magnetically confined plasma)

  10. A short course on topological insulators band structure and edge states in one and two dimensions

    CERN Document Server

    Asbóth, János K; Pályi, András

    2016-01-01

    This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological insulators. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. The present approach uses noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the discussion of simple toy models is followed by the formulation of the general arguments regarding topological insulators. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.

  11. Facile and tunable synthesis of hierarchical mesoporous silica materials ranging from flower structure with wrinkled edges to hollow structure with coarse surface

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Nanjing, E-mail: nanjing.hao@dartmouth.edu [Dartmouth College, Thayer School of Engineering (United States); Li, Laifeng; Tang, Fangqiong, E-mail: tangfq@mail.ipc.ac.cn [Chinese Academy of Sciences, Technical Institute of Physics and Chemistry (China)

    2016-11-15

    Mesoporous silica materials have attracted great attention in many fields. However, facile and tunable synthesis of hierarchical mesoporous silica structures is still a big challenge, and thus the development of them still lags behind. Herein, well-defined mesoporous silica flower structure with wrinkled edges and mesoporous silica hollow structure with coarse surface were synthesized simply by using poly(vinylpyrrolidone) and hexadecylamine as cotemplates in different water/ethanol solvent systems. The shape evolution from flower to hollow can be easily realized by tuning the volume ratio of water to ethanol, and the yields of both materials can reach gram scale. The formation mechanisms of mesoporous silica flower and hollow structures were also experimentally investigated and discussed. These novel hierarchical structures having unique physicochemical properties may bring many interesting insights into scientific research and technological application.

  12. Visible-light imaging MHD studies of the edge plasma in the JIPP-T-IIU tokamak

    International Nuclear Information System (INIS)

    Yamazaki, K.; Haba, K.; Hirokura, S.

    1984-06-01

    MHD activity and turbulence near the plasma edge are studied on the JIPP-T-IIU tokamak using a new high-speed visible-light image-converter video-camera system. Different from conventional cinefilm and photo-diode array systems, this system is convenient for the instantaneous display of the high-speed optical plasma images after plasma discharges. The effectiveness of this instrument for the research of the plasma wall interaction is demonstrated in this experiment. The observed characteristics on the edge-plasma behavior are as follows: (1) The helical mode structure of the luminous plasma boundary suggesting plasma-surface interaction is identified in the case of OH or ICRF-heated discharge. (2) In the LH-current drive case, no clear large-scale coherent modes are identified, however, on the initial stage a medium-scale turbulence (lambda-- a few cm, f -- ten kHz) is found. (3) Before current disruptions, an m=2 or m=3 helical mode is found and up-down asymmetric light emissions are often observed during disruptions. (author)

  13. International countertrade arrangements and their legal structure: Double edge sword or future of the modern trade

    Directory of Open Access Journals (Sweden)

    Milenković-Kerković Tamara

    2011-01-01

    Full Text Available The experiences and the practice of many countries show that countertrade could be used as the significant method for incensement of the export as well as for the promotion of the foreign investments even in the period of deep financial crises. Contemporary governments' pro-active countertrade orientation in USA, Israel, Sweden, Norway, Japan and other developed countries highlights the inadequacy of the obsolete and stereotypical concept of the countertrade as the compensation transaction based on the 'trade without money' concept. Besides this, the practices proved that countertrade transactions are the consequence and the indicator of economic shocks. Therefore, the study of the special legal issues that may arise in countertrade transactions will be very important not only for the domestic legal doctrine but also for the commercial practice. As national laws do not contain provisions specific for countertrade, it is of particular importance to analyze legal question such as structuring and drafting of countertrade arrangements as well as to study the question of the legal nature of the contractual link between legal instruments which form multicontractual mechanism of countertrade transactions. The character of the legal connection among the legal instruments in countertrade arrangement, as well as the legal nature of the countertrade commitment, strongly influence the countertrade agreement's legal nature. The economic reality of a group of contracts joined by the common goal of the transaction (consideration and the countertrade commitment has to be followed by the legal reality which will recognize the legal interdependence of the obligation deriving from the legally independent countertrade arrangement.

  14. EDGE EFFECT MODELING AND STUDY FOR THREE-CHIP RGB LIGHT-EMITTING DIODES

    Directory of Open Access Journals (Sweden)

    A. I. Podosinnikov

    2015-03-01

    Full Text Available Subject of study. The paper deals with light quality improvement of multi–chip RGB light-emitting diodes (LEDs and luminaries on their basis. In particular, we have studied the issues of the edge effect reducing, which is non–uniformity of color when observing the source of light under different angles as well as non-uniformity of color distribution on the illuminated surface. Methods. Experimental study of the edge effect has been performed, namely, the analysis of the halo at the periphery of the illuminated area and the non–uniformity of area at the surface of the screen illuminated with RGB LEDs with and without light concentrators. Modeling of illumination distribution at various distances from the source for the system containing four RGB LEDs with reflectors by ZEMAX software has been carried out. Assessment of the uniformity for light distribution via calculating the chromaticity coordinates has been performed. Main results. The possibility of modeling application at the stage of a luminary design is shown on the example of RGB LEDs for assessing the efficiency of light flux usage and colorimetric parameters. Suggested method simplifies significantly the design of luminaries and reduces associated costs. Practical relevance. The findings can be used in the design of luminaries based on RGB LEDs, including the ones with secondary optics elements.

  15. Ag K- and L3-edge XAFS study on Ag species in Ag/Ga2O3 photocatalysts

    International Nuclear Information System (INIS)

    Yamamoto, M; Yamamoto, N; Yoshida, T; Nomoto, T; Yamamoto, A; Yoshida, H; Yagi, S

    2016-01-01

    Ag loaded Ga 2 O 3 (Ag/Ga 2 O 3 ) shows photocatalytic activity for reduction of CO 2 with water. Ag L 3 -edge XANES and K-edge EXAFS spectra were measured for various Ag/Ga 2 O 3 samples, which suggested that structural and chemical states of Ag species varied with the loading amount of Ag and the preparation method. The Ag species were metallic Ag particles with an AgGaO 2 -like interface structure in the sample with high loading amount of Ag while predominantly Ag metal clusters in the sample with low loading amount of Ag. The XANES feature just above the edge represented the interaction between the Ag species and the Ga 2 O 3 surface, showing that the Ag metal clusters had more electrons in the d -orbitals by interacting with the Ga 2 O 3 surface, which would contribute the high photocatalytic activity. (paper)

  16. Experimental Study of Wake / Flap Interaction Noise and the Reduction of Flap Side Edge Noise

    Science.gov (United States)

    Hutcheson, Florence V.; Stead, Daniel J.; Plassman, Gerald E.

    2016-01-01

    The effects of the interaction of a wake with a half-span flap on radiated noise are examined. The incident wake is generated by bars of various widths and lengths or by a simplified landing gear model. Single microphone and phased array measurements are used to isolate the effects of the wake interaction on the noise radiating from the flap side edge and flap cove regions. The effects on noise of the wake generator's geometry and relative placement with respect to the flap are assessed. Placement of the wake generators upstream of the flap side edge is shown to lead to the reduction of flap side edge noise by introducing a velocity deficit and likely altering the instabilities in the flap side edge vortex system. Significant reduction in flap side edge noise is achieved with a bar positioned directly upstream of the flap side edge. The noise reduction benefit is seen to improve with increased bar width, length and proximity to the flap edge. Positioning of the landing gear model upstream of the flap side edge also leads to decreased flap side edge noise. In addition, flap cove noise levels are significantly lower than when the landing gear is positioned upstream of the flap mid-span. The impact of the local flow velocity on the noise radiating directly from the landing gear is discussed. The effects of the landing gear side-braces on flap side edge, flap cove and landing gear noise are shown.

  17. Identification of isomers in the gas phase and as adsorbates by near-edge X-ray absorption fine structure spectroscopy: Cis- and trans-stilbene

    International Nuclear Information System (INIS)

    Püttner, Ralph; Schmidt-Weber, Philipp; Kampen, Thorsten; Kolczewski, Christine; Hermann, Klaus; Horn, Karsten

    2017-01-01

    Highlights: • NEXAFS spectra of the cis- and trans-isomer of stilbene reveal distinct differences by which the isomers can be distinguished. • DFT calculations using the transition potential approach assign specific transitions that are different in the two isomers. • On Si(100), these differences in NEXAFS are also observed, suggesting that their conformations survive in the bonding situation. • NEXAFS is thus shown to be a sensitive tool to distinguish isomers in adsorbed species. - Abstract: Near-edge x-ray absorption fine structure spectra of the cis- and trans-isomers of stilbene in the gas phase reveal clear differences, which are analyzed by results from density-functional theory calculations using the transition potential approach. The differences between the two species also occur in stilbene adsorbed on Si(100), opening the way towards studying structural changes in molecules in different surface environments, and configurational switching in organic molecules on surfaces in particular.

  18. Identification of isomers in the gas phase and as adsorbates by near-edge X-ray absorption fine structure spectroscopy: Cis- and trans-stilbene

    Energy Technology Data Exchange (ETDEWEB)

    Püttner, Ralph [Department of Physics, Freie Universität Berlin, 14195 Berlin (Germany); Schmidt-Weber, Philipp [Fritz Haber Institute of the Max Planck Society, 14195 Berlin (Germany); Kampen, Thorsten [SPECS Surface Nano Analysis GmbH, 13355 Berlin (Germany); Kolczewski, Christine [Deutsches Museum München, 80538 Munich (Germany); Hermann, Klaus [Fritz Haber Institute of the Max Planck Society, 14195 Berlin (Germany); Horn, Karsten, E-mail: horn@fhi-berlin.mpg.de [Fritz Haber Institute of the Max Planck Society, 14195 Berlin (Germany)

    2017-02-15

    Highlights: • NEXAFS spectra of the cis- and trans-isomer of stilbene reveal distinct differences by which the isomers can be distinguished. • DFT calculations using the transition potential approach assign specific transitions that are different in the two isomers. • On Si(100), these differences in NEXAFS are also observed, suggesting that their conformations survive in the bonding situation. • NEXAFS is thus shown to be a sensitive tool to distinguish isomers in adsorbed species. - Abstract: Near-edge x-ray absorption fine structure spectra of the cis- and trans-isomers of stilbene in the gas phase reveal clear differences, which are analyzed by results from density-functional theory calculations using the transition potential approach. The differences between the two species also occur in stilbene adsorbed on Si(100), opening the way towards studying structural changes in molecules in different surface environments, and configurational switching in organic molecules on surfaces in particular.

  19. A population on the edge: genetic diversity and population structure of the world's northernmost harbour seals (Phoca vitulina)

    DEFF Research Database (Denmark)

    Andersen, Liselotte Wesley; Lydersen, Christian; Frie, Anne Kirstine

    2011-01-01

    insight into consequences of population declines in a broader conservation context. The harbour seal population at Svalbard is the world's northernmost harbour seal population. Nothing is known about the genetic diversity, distinctiveness or origin of this small, marginalized mammalian population. Thus......  It is crucial to examine the genetic diversity and structure of small, isolated populations, especially those at the edge of their distribution range, because they are vulnerable to stochastic processes if genetic diversity is low and isolation level high, and because such populations provide...... microsatellites and variation in the D-loop. Each of the four locations was a genetically distinct population. The Svalbard population was highly genetically distinct, had reduced genetic diversity, received limited gene flow, had a rather low effective population size and showed an indication of having...

  20. Structure and motion of edge turbulence in the National Spherical Torus Experiment and Alcator C-Moda)

    Science.gov (United States)

    Zweben, S. J.; Maqueda, R. J.; Terry, J. L.; Munsat, T.; Myra, J. R.; D'Ippolito, D.; Russell, D. A.; Krommes, J. A.; LeBlanc, B.; Stoltzfus-Dueck, T.; Stotler, D. P.; Williams, K. M.; Bush, C. E.; Maingi, R.; Grulke, O.; Sabbagh, S. A.; White, A. E.

    2006-05-01

    In this paper we compare the structure and motion of edge turbulence observed in L-mode vs. H-mode plasmas in the National Spherical Torus Experiment (NSTX) [M. Ono, M. G. Bell, R. E. Bell et al., Plasma Phys. Controlled Fusion 45, A335 (2003)]. The radial and poloidal correlation lengths are not significantly different between the L-mode and the H-mode in the cases examined. The poloidal velocity fluctuations are lower and the radial profiles of the poloidal turbulence velocity are somewhat flatter in the H-mode compared with the L-mode plasmas. These results are compared with similar measurements Alcator C-Mod [E. Marmar, B. Bai, R. L. Boivin et al., Nucl. Fusion 43, 1610 (2003)], and with theoretical models.

  1. Experimental Investigations on Leading-Edge Vortex Structures for Flow over Non-Slender Delta Wings

    International Nuclear Information System (INIS)

    Jin-Jun, Wang; Wang, Zhang

    2008-01-01

    The dye injection and hydrogen bubble visualization techniques are used to investigate the dual-vortex structure including its development, breakdown and the spatial location of vortex core over nonslender delta wings. It is concluded that the dual-vortex structure can be affected significantly by sweep angle and Reynolds number, and generated only at small angle of attack. The angle between the projection of outer vortex core on delta wing surface and the root chord line has nothing to do with the Reynolds Number and angle of attack, but has simple linear relation with the sweep angle of the model tested. (fundamental areas of phenomenology (including applications))

  2. Electronic structure effects on B K-edge XANES of minerals

    Czech Academy of Sciences Publication Activity Database

    Šipr, Ondřej; Rocca, F.

    2010-01-01

    Roč. 17, č. 3 (2010), s. 367-373 ISSN 0909-0495 R&D Projects: GA ČR GA202/08/0106 Institutional research plan: CEZ:AV0Z10100521 Keywords : structure * potentials * boron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.335, year: 2010

  3. Emergent properties of patch shapes affect edge permeability to animals.

    Directory of Open Access Journals (Sweden)

    Vilis O Nams

    Full Text Available Animal travel between habitat patches affects populations, communities and ecosystems. There are three levels of organization of edge properties, and each of these can affect animals. At the lowest level are the different habitats on each side of an edge, then there is the edge itself, and finally, at the highest level of organization, is the geometry or structure of the edge. This study used computer simulations to (1 find out whether effects of edge shapes on animal behavior can arise as emergent properties solely due to reactions to edges in general, without the animals reacting to the shapes of the edges, and to (2 generate predictions to allow field and experimental studies to test mechanisms of edge shape response. Individual animals were modeled traveling inside a habitat patch that had different kinds of edge shapes (convex, concave and straight. When animals responded edges of patches, this created an emergent property of responding to the shape of the edge. The response was mostly to absolute width of the shapes, and not the narrowness of them. When animals were attracted to edges, then they tended to collect in convexities and disperse from concavities, and the opposite happened when animals avoided edges. Most of the responses occurred within a distance of 40% of the perceptual range from the tip of the shapes. Predictions were produced for directionality at various locations and combinations of treatments, to be used for testing edge behavior mechanisms. These results suggest that edge shapes tend to either concentrate or disperse animals, simply because the animals are either attracted to or avoid edges, with an effect as great as 3 times the normal density. Thus edge shape could affect processes like pollination, seed predation and dispersal and predator abundance.

  4. Space Shuttle Orbiter - Leading edge structural design/analysis and material allowables

    Science.gov (United States)

    Johnson, D. W.; Curry, D. M.; Kelly, R. E.

    1986-01-01

    Reinforced Carbon-Carbon (RCC), a structural composite whose development was targeted for the high temperature reentry environments of reusable space vehicles, has successfully demonstrated that capability on the Space Shuttle Orbiter. Unique mechanical properties, particularly at elevated temperatures up to 3000 F, make this material ideally suited for the 'hot' regions of multimission space vehicles. Design allowable characterization testing, full-scale development and qualification testing, and structural analysis techniques will be presented herein that briefly chart the history of the RCC material from infancy to eventual multimission certification for the Orbiter. Included are discussions pertaining to the development of the design allowable data base, manipulation of the test data into usable forms, and the analytical verification process.

  5. Local Thermometry of Neutral Modes on the Quantum Hall Edge

    Science.gov (United States)

    Hart, Sean; Venkatachalam, Vivek; Pfeiffer, Loren; West, Ken; Yacoby, Amir

    2012-02-01

    A system of electrons in two dimensions and strong magnetic fields can be tuned to create a gapped 2D system with one dimensional channels along the edge. Interactions among these edge modes can lead to independent transport of charge and heat, even in opposite directions. Measuring the chirality and transport properties of these charge and heat modes can reveal otherwise hidden structure in the edge. Here, we heat the outer edge of such a quantum Hall system using a quantum point contact. By placing quantum dots upstream and downstream along the edge of the heater, we can measure both the chemical potential and temperature of that edge to study charge and heat transport, respectively. We find that charge is transported exclusively downstream, but heat can be transported upstream when the edge has additional structure related to fractional quantum Hall physics.

  6. [Edge effect of the plant community structure on land-bridge islands in the Thousand Island Lake].

    Science.gov (United States)

    Su, Xiao-Fei; Yuan, Jin-Feng; Hu, Guang; Xu, Gao-Fu; Yu, Ming-Jian

    2014-01-01

    The research was conducted on 29 land-bridge islands in the Thousand Island Lake (TIL), where long-term monitoring plots were set up during 2009-2010. The community attributes including species richness, Shannon index, plant mean height, plant mean diameter at breast height (DBH) and plant density along the edge-interior gradient from edge to interior forest were calculated to investigate the edge effect. The results showed that the species richness and Shannon index were affected through the whole gradient (larger than 50 m), while the range of edge effect was 20-30 m on mean plant height, and 10 m on plant density and mean DBH. Community attributes differed significantly among the edge gradients. The species richness and Shannon index peaked at the intermediate edge gradient. Plant density decreased and plant mean height increased along the edge to interior gradient. All five community attributes were significantly associated with the edge gradient, also different functional groups, evergreen or deciduous species, trees or shrubs, shade tolerant or shade intolerant species, were differentially influenced by the edge effect. It was demonstrated the influence of edge effect on the fragmented forest community varied with community attributes and functional groups.

  7. Adsorption behavior of sulfur-containing amino acid molecule on transition metal surface studied by S K-edge NEXAFS

    International Nuclear Information System (INIS)

    Yagi, S.; Matsumura, K.; Nakano, Y.; Ikenaga, E.; Sardar, S.A.; Syed, J.A.; Soda, K.; Hashimoto, E.; Tanaka, K.; Taniguchi, M.

    2003-01-01

    Adsorption behavior of a sulfur-containing amino acid L-cysteine molecule on transition metal surface have been investigated by S K-edge near-edge X-ray absorption fine structure. The L-cysteine molecule for first adsorption layer was found to dissociate on polycrystalline nickel surface, whereas molecularly adsorbed on copper surface at room temperature. Most of the L-cysteine molecules have been dissociated on nickel surface in annealing condition up to 353 K. On the other hand, the L-cysteine molecule did not dissociate on copper surface and the elongation of the S-C bonding occurred at 353 K

  8. Recent experimental studies of edge and internal transport barriers in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Gohil, P; Baylor, L R; Burrell, K H; Casper, T A; Doyle, E J; Greenfield, C M; Jernigan, T C; Kinsey, J E; Lasnier, C J; Moyer, R A; Murakami, M; Rhodes, T L; Rudakov, D L; Staebler, G M; Wang, G; Watkins, J G; West, W P; Zeng, L

    2003-01-01

    Results from recent experiments on the DIII-D tokamak have revealed many important details on transport barriers at the plasma edge and in the plasma core. These experiments include: (a) the formation of the H-mode edge barrier directly by pellet injection; (b) the formation of a quiescent H-mode edge barrier (QH-mode) which is free from edge localized modes, but which still exhibits good density and radiative power control; (c) the formation of multiple transport barriers, such as the quiescent double barrier (QDB) which combines an internal transport barrier with the quiescent H-mode edge barrier. Results from the pellet-induced H-mode experiments indicate that: (a) the edge temperature (electron or ion) does not need to attain a critical value for the formation of the H-mode barrier, (b) pellet injection leads to an increased gradient in the radial electric field, E r , at the plasma edge; (c) the experimentally determined edge parameters at barrier transition are well below the predictions of several theories on the formation of the H-mode barrier, (d) pellet injection can lower the threshold power required to form the H-mode barrier. The quiescent H-mode barrier exhibits good density control as the result of continuous magnetohydrodynamic activity at the plasma edge called the edge harmonic oscillation (EHO). The EHO enhances the edge particle transport whilst maintaining a good energy transport barrier. The ability to produce multiple barriers in the QDB regime has led to long duration, high-performance plasmas with β N H 89 values of 7 for up to 10 times the confinement time. Density profile control in the plasma core of QDB plasmas has been demonstrated using on-axis electron cyclotron heating

  9. Nuclear fuel rod grid spring and dimple structures having chamfered edges for reduced pressure drop

    International Nuclear Information System (INIS)

    De Mario, E.E.

    1990-01-01

    This patent describes a nuclear fuel rod grid including inner and outer straps being interleaved with one another to form a matrix of hollow cells, each cell for receiving one fuel rod and being defined by pairs of opposing wall sections of the straps which wall sections are shared with adjacent cells, each cell having a central longitudinal axis defining a coolant flow direction through the cell, at least fuel rod engaging dimple structure of resiliently yieldable material being integrally formed on each wall section of the inner straps

  10. Finite-size effects on electronic structure and local properties in passivated AA -stacked bilayer armchair-edge graphene nanoribbons

    International Nuclear Information System (INIS)

    Chen, Xiongwen; Shi, Zhengang; Xiang, Shaohua; Song, Kehui; Zhou, Guanghui

    2017-01-01

    Based on the tight-binding model and dual-probe scanning tunneling microscopy technology, we theoretically investigate the electronic structure and local property in the passivated AA -stacked bilayer armchair-edge graphene nanoribbons (AABLAGNRs). We show that they are highly sensitive to the size of the ribbons, which is evidently different from the single-layer armchair-edge graphene nanoribbons. The ‘3 p ’ rule only applies to the narrow AABLGNRs. Namely, in the passivated 3 p - and (3 p   +  1)-AABLGNRs, the narrow ribbons are semiconducting while the medium and wide ribbons are metallic. Although the passivated (3 p   +  2)-AABLGNRs are metallic, the ‘3 j ’ rule only applies to the narrow and medium ribbons. Namely, electrons are in the semiconducting states at sites of line 3 j while they are in the metallic states at other sites. This induces a series of parallel and discrete metallic channels, consisting of lines 3 j   −  1 and 3 j   −  2, for the low-energy electronic transports. In the passivated wide (3 p   +  2)-AABLGNRs, all electrons are in the metallic states. Additionally, the ‘3 p ’ and ‘3 j ’ rules are controllable to disappear and reappear by applying an external perpendicular electric field. Resultantly, an electric filed-driven current switch can be realized in the passivated narrow and medium (3 p   +  2)-AABLGNRs. (paper)

  11. Study on measurement of leading and trailing edges of blades based on optical scanning system

    Science.gov (United States)

    Chao, Bi; Liu, Hongguang; Bao, Longxiang; Li, Di

    2017-10-01

    In the field of aeronautics, the geometry and dimensional accuracy of the blade edges has a large influence on the aerodynamic performance of aero engine. Therefore, a non-contact optical scanning system is established to realize the measurement of leading and trailing edges of blades in a rapid, precise and efficient manner in the paper. Based on the mechanical framework of a traditional CMM, the system is equipped with a specified sensing device as the scanning probe, which is made up by two new-style laser scanning sensors installed at a certain angle to each other by a holder. In the measuring procedure, the geometric dimensions of the measured blade edges on every contour plane are determined by the contour information on five transversals at the leading or trailing edges, which can be used to determine the machining allowance of the blades. In order to verify the effectiveness and practicality of the system set up, a precision forging blade after grinded is adopted as the measured object and its leading and trailing edges are measured by the system respectively. In the experiment, the thickness of blade edges on three contour planes is measured by the optical scanning system several times. As the experiment results show, the repeatability accuracy of the system can meet its design requirements and the inspecting demands of the blade edges. As a result, the optical scanning system could serve as a component of the intelligent manufacturing system of blades to improve the machining quality of the blade edges.

  12. Experimental study on highly collisional edge plasmas in W7-AS island divertor configurations

    International Nuclear Information System (INIS)

    Grigull, P.; Hildebrandt, D.; Sardei, F.; Feng, Y.; Herre, G.; Herrmann, A.; Hofmann, J.V.; Kisslinger, J.; Kuehner, G.; Niedermeyer, H.; Schneider, R.; Verbeek, H.; Wagner, F.; Wolf, R.; Zhang, X.D.

    1997-01-01

    Edge plasma scenarios in island divertor configurations ('natural' magnetic islands intersected by targets) are studied by comparing data from moderate to high density NBI discharges with 3D code (EMC3/EIRENE) results. The data strongly indicate that high recycling with significant particle flux enhancement was achieved in this geometry. But, plasma pressure losses towards the targets are relatively strong, and high recycling sets in only at n e >10 20 m -3 . The respective density enhancement in front of the targets is moderate (up to a factor of about three relative to the upstream density). These scenarios are also in basic agreement with B2/EIRENE code predictions. At n e >1.5 x 10 20 m -3 detachment seems to develop. Improvements are expected from additional coils controlling the field line pitch inside the islands, and from optimized targets which will better focus recycling neutrals into the islands. Both are in preparation. (orig.)

  13. A study on the mechanical behavior of soils during flat edge cutting

    International Nuclear Information System (INIS)

    Ichiba, Satoru; Hyodo, Kazuya; Ooishi, Yoshihiro

    1986-01-01

    For the development of efficient earthmoving machinery, it is necessary to clarify the soil cutting mechanism, but there is no usual analytical or experimental technique for large deformation problems like soil cutting. Therefore, we have tried to apply the X-ray radiography method, which is a soil experiment method for the visualization and the quantative analysis of soil deformation, to the flat edge cutting problem. Firstly we have confirmed that the X-ray radiography method is applicable to large deformations, and have examined by this method the cutting mechanism of soils under various cutting conditions. As a result, the behavior of shear failure lines, which have not been studied in detail before, are clarified, and the differences in the cutting mechanism with the cutting angle and the nature of soils are discussed through the quantative estimation of the strain distribution. (author)

  14. Vacancy formation energy near an edge dislocation: A hybrid quantum-classical study

    International Nuclear Information System (INIS)

    Tavazza, F.; Wagner, R.; Chaka, A.M.; Levine, L.E.

    2005-01-01

    In this work, the formation energy of a single vacancy in aluminum at different distances from an edge dislocation core is studied using a new, hybrid ab initio-classical potential methodology. Such an approach allows us to conduct large-scale atomistic simulations with a simple classical potential (embedded atom method (EAM), for instance) while simultaneously using the more accurate ab initio approach (first principles quantum mechanics) for critical embedded regions. The coupling is made through shared shells of atoms where the two atomistic modeling approaches are relaxed in an iterative, self-consistent manner. The small, critical region is relaxed using all electron density functional theory (DFT) and the much larger cell in which this is embedded is relaxed using a minimization algorithm with EAM potentials

  15. Particle simulation of pedestal buildup and study of pedestal scaling law in a quiescent plasma edge

    International Nuclear Information System (INIS)

    Chang, C.S.; Ku, S.; Weitzner, H.; Groebner, R.; Osborne, T.

    2005-01-01

    A discrete guiding-center particle code XGC (X-point included Guiding Center code) is used to study pedestal buildup and sheared E r formation in a quiescent plasma edge of a diverted tokamak. A neoclassical pedestal scaling law has been deduced, which shows that the density pedestal width is proportional to T i 1/2 M 1/2 /B t where T i is the ion temperature, M is ion mass and B t is the toroidal magnetic field. Dependence on the pedestal density or the poloidal magnetic field is found to be much weaker. Ion temperature pedestal is not as well defined as the density pedestal. Neoclassical electron transport rate, including the collisional heat exchange rate with ions, is too slow to be considered in the time scale of simulation (∼ 10 ms). (author)

  16. A study on the mechanical behavior of soil during frat edge cutting

    International Nuclear Information System (INIS)

    Ichiba, Satoru; Hyodo, Kazuya; Ooishi, Yoshihiro.

    1987-02-01

    For the development of efficient earthmoving machinery, it is necessary to clarify the soil cutting mechanism, but there is no usual analytical or experimental technique for large deformation problems like soil cutting. Therefore, we have tried to apply the X-ray radiography method, which is a soil experiment method for the visualization and the quantitative analysis of soil deformation, to the flat edge cutting problem. Firstly we have confirmed that the X-ray radiography method is applicable to large deformations, and have examined by this method the cutting mechanism of soils under various cutting conditions. As a result, the behavior of shear failure lines, which have not been studied in detail before, are clarified, and the differences in the cutting mechanism with the cutting angle and the nature of soils are discussed through the quantitative estimation of the strain distribution. (author)

  17. X-ray absorption near-edge structure of GaN with high Mn concentration grown on SiC

    International Nuclear Information System (INIS)

    Sancho-Juan, O; Cantarero, A; Garro, N; Cros, A; Martinez-Criado, G; Salome, M; Susini, J; Olguin, D; Dhar, S

    2009-01-01

    By means of x-ray absorption near-edge structure (XANES) several Ga 1-x Mn x N (0.03 2 ↑ band localized in the gap region, and the corresponding anti-bonding state t 2 ↓, which seem to be responsible for the double structure which appears at the pre-edge absorption region. The shoulders and main absorption peak of the XANES spectra are attributed to transitions from the Mn(1s) band to the conduction bands, which are partially dipole allowed because of the Mn(4p) contribution to these bands.

  18. Structural Disorder in Colloidal InAs and CdSe Nanocrystals Observed by X-Ray Absorption Near-Edge Spectroscopy

    International Nuclear Information System (INIS)

    Hamad, K.S.; Hamad, K.S.; Roth, R.; Roth, R.; Rockenberger, J.; Rockenberger, J.; Alivisatos, A.P.; Alivisatos, A.P.; Buuren, T. van

    1999-01-01

    We report the observation of size dependent structural disorder by x-ray absorption near-edge spectroscopy (XANES) in InAs and CdSe nanocrystals 17 - 80 Angstrom in diameter. XANES of the In and Cd M 4,5 edges yields features that are sharp for the bulk solid but broaden considerably as the size of the particle decreases. FEFF7 multiple-scattering simulations reproduce the size dependent broadening of the spectra if a bulklike surface reconstruction of a spherical nanocrystal model is included. This illustrates that XANES is sensitive to the structure of the entire nanocrystal including the surface. copyright 1999 The American Physical Society

  19. Manoeuvring along the edge of breathlessness: an ethnographic case study of two nurses.

    Science.gov (United States)

    Jellington, Maria Omel; Overgaard, Dorthe; Sørensen, Erik Elgaard

    2016-01-01

    There appears to be divergence between nurses' and patients' perceptions of dyspnoea onset and on how help should be given. This may affect how nurses understand and assess their patients' anxiety and the severity of dyspnoea, potentially diminishing their chances of relieving patients' dyspnoea. The aim of this study was to explore nurse-patient interaction in situations where patients with chronic obstructive pulmonary disease are experiencing acute or worsened dyspnoea in a hospital setting. An ethnographic study using participant observation of two nurses' interactions with six patients, followed by qualitative in-depth interviews with the nurses. Data were analysed in three steps. First, they were coded for identification of preliminary themes. Second, data were regrouped into preliminary themes for focused analysis which led to formulation of themes and subthemes. Third, hermeneutical principles were used as all data were interpreted from the viewpoint of each theme. Three themes were identified: Manoeuvring along the edge; Dyspnoea within the pattern; and Dyspnoea outside the pattern. They were encompassed by the main finding: Manoeuvring along the edge of breathlessness. The nurses attempted to navigate between implicit and explicit care approaches and to create a sphere for relieving or avoiding further worsening of dyspnoea. Depending on the identified pattern for a particular dyspnoeic episode, nurses attributed different significance to the dyspnoea. Interacting in dyspnoeic situations places nurses in a dilemma: an implicit approach risk, deriving from exclusion of patients and performing hesitantly; or an explicit negotiation risk, where patients are exhausted and removed from focusing and breathing. The dilemma weakens nurses' opportunities to relieve or avoid a worsening of the dyspnoea. Likewise, the divergence between nurses' and patients' assessment of dyspnoea as within or outside the pattern appears to jeopardize the efficiency of care. Our

  20. Structural and spectroscopic characterisations of the surface oxide scales and inclusions present on edge-burst hot-rolled steel coils

    International Nuclear Information System (INIS)

    Chowdhury, Anirban; Iyyappan, Ramasamy; Majumdar, Dipanwita; Singha, Achintya

    2014-01-01

    Detailed structural and spectroscopic characterisations have been carried out on the inclusions and the surface oxides present on edge-burst hot-rolled steel coils. Surface scales were characterised through X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. Evidence of different types of regular and non-stoichiometric Fe-oxides was found on the cracked surface of the steel wire. Along with the surface scales inclusions with calcium aluminate and spinel was characterized using Raman spectroscopy. The usefulness of Raman spectroscopy has been explored in detail for the characterisation of these inclusions; especially when XRD information ceases to be a limiting tool. The samples collected from the clogged nozzle area were found to be of grossite (CaO·2Al 2 O 3 ) phase and this was also observed in the inclusions in the finished coils. It was found that this particular calcium aluminate phase has a detrimental effect on casting and final finished steel products. - Highlights: • First investigation and surface study report on edge-bursting issue of steel coils. • Detailed characterisations of the inclusions and surface oxide scales in steel. • Influence of a particular type of calcium aluminate phase on process chemistry

  1. Sandwich structure of plasma edge during transition to improved confinement regime in L-2M stellarator

    International Nuclear Information System (INIS)

    Shchepetov, S V; Kholnov, Yu V; Fedyanin, O I; Kuznetsov, A B; Vasilkov, D G; Akulina, D K; Batanov, G M; Gladkov, G A; Grebenshchikov, S E; Meshcheryakov, A I

    2008-01-01

    Transitions to the regime with better confinement in the L-2M stellarator are presented. Transitions are indicated only at sufficiently high plasma densities, and for a given value of average density they appear only at higher heating powers. Each transition is easily identified by a sudden fast ( e ). In the bulk of the plasma parameters evolve slowly. Drastic changes are observed in the region close to the plasma boundary where two moderate order rational magnetic surfaces are located with the rotational transform μ taking the values 2/3 and 3/4. Relative values of plasma parameters' fluctuations and their spectrum widths decrease significantly in this region. The region has a definite sandwich structure being subdivided by the above-named moderate order rational magnetic surfaces into three smaller zones with different plasma parameter dynamics. Transition is triggered by local disturbances of plasma parameters that are caused by instabilities in the vicinity of magnetic surfaces where μ is equal to 2/3 or 3/4. Different hypotheses on the nature of the phenomenon are discussed

  2. Study on structural integrity in box structures

    International Nuclear Information System (INIS)

    Asano, Masayuki; Ueta, Masahiro; Kanaoka, Tadashi; Ikeuchi, Toshiaki; Kodama, Tetsuhiro.

    1991-01-01

    This study was carried out to give an experimental foundation to the structural integrity of a box structure. Crack growth tests were performed on the reduced scale models, simulating typical portions of the box structure, in air at room temperature. The results show that the amount of crack growth is too small to injure the structural integrity of the models for the postulated loading cycle, and make clear the effective structure against crack growth. (author)

  3. Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges

    Science.gov (United States)

    Wu, Shuang; Liu, Bing; Shen, Cheng; Li, Si; Huang, Xiaochun; Lu, Xiaobo; Chen, Peng; Wang, Guole; Wang, Duoming; Liao, Mengzhou; Zhang, Jing; Zhang, Tingting; Wang, Shuopei; Yang, Wei; Yang, Rong; Shi, Dongxia; Watanabe, Kenji; Taniguchi, Takashi; Yao, Yugui; Wang, Weihua; Zhang, Guangyu

    2018-05-01

    The determination of the electronic structure by edge geometry is unique to graphene. In theory, an evanescent nonchiral edge state is predicted at the zigzag edges of graphene. Up to now, the approach used to study zigzag-edged graphene has mostly been limited to scanning tunneling microscopy. The transport properties have not been revealed. Recent advances in hydrogen plasma-assisted "top-down" fabrication of zigzag-edged graphene nanoribbons (Z-GNRs) have allowed us to investigate edge-related transport properties. In this Letter, we report the magnetotransport properties of Z-GNRs down to ˜70 nm wide on an h -BN substrate. In the quantum Hall effect regime, a prominent conductance peak is observed at Landau ν =0 , which is absent in GNRs with nonzigzag edges. The conductance peak persists under perpendicular magnetic fields and low temperatures. At a zero magnetic field, a nonlocal voltage signal, evidenced by edge conduction, is detected. These prominent transport features are closely related to the observable density of states at the hydrogen-etched zigzag edge of graphene probed by scanning tunneling spectroscopy, which qualitatively matches the theoretically predicted electronic structure for zigzag-edged graphene. Our study gives important insights for the design of new edge-related electronic devices.

  4. Edge modulation of electronics and transport properties of cliff-edge phosphorene nanoribbons

    Science.gov (United States)

    Guo, Caixia; Wang, Tianxing; Xia, Congxin; Liu, Yufang

    2017-12-01

    Based on the first-principles calculations, we study the electronic structures and transport properties of cliff-like edge phosphorene nanoribbons (CPNRs), considering different types of edge passivation. The band structures of bare CPNRs possess the metallic features; while hydrogen (H), fluorine (F), chlorine (Cl) and oxygen (O) atoms-passivated CPNRs are semiconductor materials, and the band gap values monotonically decrease when the ribbon width increases. Moreover, the H and F-passivated CPNRs exhibit the direct band gap characteristics, while the Cl and O-passivated cases show the features of indirect band gap. In addition, the edge passivated CPNRs are more energetically stable than bare edge case. Meanwhile, our results also show that the transport properties of the CPNRs can be obviously influenced by the different edge passivation.

  5. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    Science.gov (United States)

    Maneuski, D.; Bates, R.; Blue, A.; Buttar, C.; Doonan, K.; Eklund, L.; Gimenez, E. N.; Hynds, D.; Kachkanov, S.; Kalliopuska, J.; McMullen, T.; O'Shea, V.; Tartoni, N.; Plackett, R.; Vahanen, S.; Wraight, K.

    2015-03-01

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.

  6. Acoustic analog of monolayer graphene and edge states

    International Nuclear Information System (INIS)

    Zhong, Wei; Zhang, Xiangdong

    2011-01-01

    Acoustic analog of monolayer graphene has been designed by using silicone rubber spheres of honeycomb lattices embedded in water. The dispersion of the structure has been studied theoretically using the rigorous multiple-scattering method. The energy spectra with the Dirac point have been verified and zigzag edge states have been found in ribbons of the structure, which are analogous to the electronic ones in graphene nanoribbons. The guided modes along the zigzag edge excited by a point source have been numerically demonstrated. The open cavity and 'Z' type edge waveguide with 60 o corners have also been realized by using such edge states. -- Highlights: → Acoustic analog of monolayer graphene has been designed. → The energy spectra with the Dirac point have been verified. → The zigzag edge states have been found in ribbons of the structure. → The guided modes excited by a point source have been demonstrated. → The open cavity and 'Z' type edge waveguide have been realized.

  7. Atomistic study of drag, surface and inertial effects on edge dislocations in face-centered cubic metals

    International Nuclear Information System (INIS)

    Bitzek, Erik; Gumbsch, Peter

    2004-01-01

    Atomistic simulations of an accelerating edge dislocation were carried out to study the effects of drag and inertia. Using an embedded atom potential for nickel, the Peierls stress, the effective mass and the drag coefficient of an edge dislocation were determined for different temperatures and stresses in a simple slab geometry. The effect of {1 1 1} surfaces on an intersecting edge dislocation were studied by appropriately cutting the slab. A dislocation intersecting a surface step was used as a model system to demonstrate the importance of inertial effects for dynamically overcoming short range obstacles. Significant effects were found even at room temperature. A simple model based on the dislocation-obstacle interaction energies was used to describe the findings

  8. Experimental and Computational Studies on the Scattering of an Edge-Guided Wave by a Hidden Crack on a Racecourse Shaped Hole.

    Science.gov (United States)

    Vien, Benjamin Steven; Rose, Louis Raymond Francis; Chiu, Wing Kong

    2017-07-01

    Reliable and quantitative non-destructive evaluation for small fatigue cracks, in particular those in hard-to-inspect locations, is a challenging problem. Guided waves are advantageous for structural health monitoring due to their slow geometrical decay of amplitude with propagating distance, which is ideal for rapid wide-area inspection. This paper presents a 3D laser vibrometry experimental and finite element analysis of the interaction between an edge-guided wave and a small through-thickness hidden edge crack on a racecourse shaped hole that occurs, in practice, as a fuel vent hole. A piezoelectric transducer is bonded on the straight edge of the hole to generate the incident wave. The excitation signal consists of a 5.5 cycle Hann-windowed tone burst of centre frequency 220 kHz, which is below the cut-off frequency for the first order Lamb wave modes (SH1). Two-dimensional fast Fourier transformation (2D FFT) is applied to the incident and scattered wave field along radial lines emanating from the crack mouth, so as to identify the wave modes and determine their angular variation and amplitude. It is shown experimentally and computationally that mid-plane symmetric edge waves can travel around the hole's edge to detect a hidden crack. Furthermore, the scattered wave field due to a small crack length, a , (compared to the wavelength λ of the incident wave) is shown to be equivalent to a point source consisting of a particular combination of body-force doublets. It is found that the amplitude of the scattered field increases quadratically as a function of a/λ , whereas the scattered wave pattern is independent of crack length for small cracks a < λ . This study of the forward scattering problem from a known crack size provides a useful guide for the inverse problem of hidden crack detection and sizing.

  9. A radiographic study on the prevalence of knife-edge residual alveolar ridge at proposed dental implant sites

    International Nuclear Information System (INIS)

    AlFaleh, Wafaa

    2009-01-01

    Dental implants are widely used in restoration of completely or partially edentulous dental arches. Before placement of endosseous implants in the jaws, both the quantity and quality of the residual ridge must be assessed radiographically. Remodeling activity after tooth extraction is localized primarily at the crestal area of the residual ridges, resulting in reduction of the height of bone and creation of various three-dimensional shapes of the residual ridges. When bone resorption at the lingual and buccal aspects is greater than that at the crestal area, a knife-edge type of residual ridge develops. The aim of this study was to evaluate the prevalence of the knife-edge morphology of the residual alveolar bone at proposed implant sites in partially or completely edentulous patients. Computed tomography (CT) cross-sectional images of the upper and lower jaws were assessed at the proposed sites before implant placement. Images of 258 proposed implant sites belonging to 30 patients were assessed radiographically. In 120 proposed implant sites out of 258 (46.5%), the residual alveolar ridge had a knife-edge configuration, the majority belonging to completely edentulous patients who lost their teeth more than ten years previously. High prevalence of knife-edge ridge was found, therefore, replacement of missing teeth by immediate implant is recommended to prevent atrophy or knife-edge morphology of the residual ridge. (author)

  10. Calculation of near-edge x-ray-absorption fine structure at finite temperatures: Spectral signatures of hydrogen bond breaking in liquid water

    International Nuclear Information System (INIS)

    Hetenyi, Balazs; De Angelis, Filippo; Giannozzi, Paolo; Car, Roberto

    2004-01-01

    We calculate the near-edge x-ray-absorption fine structure of H 2 O in the gas, hexagonal ice, and liquid phases using heuristic density-functional based methods. We present a detailed comparison of our results with experiment. The differences between the ice and water spectra can be rationalized in terms of the breaking of hydrogen bonds around the absorbing molecule. In particular the increase in the pre-edge absorption feature from ice to water is shown to be due to the breaking of a donor hydrogen bond. We also find that in water approximately 19% of hydrogen bonds are broken

  11. Forests on the edge: Microenvironmental drivers of carbon cycle response to edge effects

    Science.gov (United States)

    Reinmann, A.; Hutyra, L.; Smith, I. A.; Thompson, J.

    2017-12-01

    Twenty percent of the world's forest is within 100 m of a forest edge, but much of our understanding of forest carbon (C) cycling comes from large, intact ecosystems, which creates an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest is the most heavily fragmented forest biome in the world and its growth and carbon storage responses to forest edge effects appear to be the opposite of those in the tropical and boreal regions. We used field measurements to quantify the drivers of temperate forest C cycling response to edge effects, characterizing vegetative growth, respiration, and forest structure. We find large gradients in air and soil temperature from the forest interior to edge (up to 4 and 10° C, respectively) and the magnitude of this gradient is inversely correlated to the size of the forest edge growth enhancement. Further, leaf area index increases with proximity to the forest edge. While we also find increases in soil respiration between the forest interior and edge, this flux is small relative to aboveground growth enhancement near the edge. These findings represent an important advancement in our understanding of forest C cycle response to edge effects and will greatly improve our capacity to constrain biogenic C fluxes in fragmented and heterogeneous landscapes.

  12. Fast visible imaging and study of edge turbulence in the Aditya tokamak

    International Nuclear Information System (INIS)

    Banerjee, Santanu; Manchanda, Ranjana; Chowdhuri, Malay Bikas; Ramaiya, Nilam; Parmar, Navin; Ghosh, Joydeep; Tanna, Rakesh L.; Shukla, Braj Kishore; Sharma, Pramod K.

    2015-01-01

    Fast visible imaging is used on toroidal magnetic confinement devices for a wide variety of purposes. This includes monitoring of the plasma evolution, transient effects in the plasma and the study of edge turbulence. Two fast visible imaging systems are installed on the Aditya tokamak. One of the system is for imaging the plasma evolution with a wide angle lens covering a major portion of the vacuum vessel. The imaging fiber bundle along with the objective lens is installed inside a radial re-entrant viewport, specially designed for the purpose. Another system is intended for tangential imaging of the plasma column. During the termination phase of Aditya plasma, large filaments are seen predominantly across all types of discharges. These filaments are apparent just after the strong interaction of the plasma column with the high field side limiter surface almost at the end of the discharge. Statistical features of these filaments and their role during the termination of plasma is studied. Further, there are many interesting visual impacts of either the experiments carried out or several inherent phenomena in Aditya like the ECRH and LHCD operations, dynamics of the runaway dominated discharges and plasma equilibrium at various discharge scenarios. Such observations and the gained physical insights will be reported. (author)

  13. Surface structure of alpha-Fe sub 2 O sub 3 nanocrystal observed by O K-edge X-ray absorption spectroscopy

    CERN Document Server

    Zhang, J; Ibrahim, K; Abbas, M I; Ju, X

    2003-01-01

    X-ray absorption near edge structure (XANES) spectra is used as a probe of surface structure of alpha-Fe sub 2 O sub 3 nanocrystal, prepared by sol-gel method. We present O K-edge XANES of alpha-Fe sub 2 O sub 3 in nanocrystal and bulk by total electron yield at the photoemission station of Beijing Synchrotron Radiation Facility. The spectrum of alpha-Fe sub 2 O sub 3 shows a splitting of the pre-edge structure, which is interpreted as two subsets of Fe 3d t sub 2 sub g and e sub g orbitals in oxygen octahedral (O sub h) crystal field, and is also sensitive to long-range order effects. However, no distinguishable splitting of the pre-edge peak of nanocrystal alpha-Fe sub 2 O sub 3 is observed. This suggests that there exists the distorted octahedral coordination around Fe sites and also the long-range disorder due to the surface as compared with bulk alpha-Fe sub 2 O sub 3.

  14. Heat Transfer and Friction Studies in a Tilted and Rib-Roughened Trailing-Edge Cooling Cavity with and without the Trailing-Edge Cooling Holes

    Directory of Open Access Journals (Sweden)

    M. E. Taslim

    2014-01-01

    Full Text Available Local and average heat transfer coefficients and friction factors were measured in a test section simulating the trailing-edge cooling cavity of a turbine airfoil. The test rig with a trapezoidal cross-sectional area was rib-roughened on two opposite sides of the trapezoid (airfoil pressure and suction sides with tapered ribs to conform to the cooling cavity shape and had a 22-degree tilt in the flow direction upstream of the ribs that affected the heat transfer coefficients on the two rib-roughened surfaces. The radial cooling flow traveled from the airfoil root to the tip while exiting through 22 cooling holes along the airfoil trailing-edge. Two rib geometries, with and without the presence of the trailing-edge cooling holes, were examined. The numerical model contained the entire trailing-edge channel, ribs, and trailing-edge cooling holes to simulate exactly the tested geometry. A pressure-correction based, multiblock, multigrid, unstructured/adaptive commercial software was used in this investigation. Realizable k-ε turbulence model in conjunction with enhanced wall treatment approach for the near wall regions was used for turbulence closure. The applied thermal boundary conditions to the CFD models matched the test boundary conditions. Comparisons are made between the experimental and numerical results.

  15. Numerical study of laminar nonpremixed methane flames in coflow jets: Autoignited lifted flames with tribrachial edges and MILD combustion at elevated temperatures

    KAUST Repository

    M. Al-Noman, Saeed

    2016-07-07

    Autoignition characteristics of laminar nonpremixed methane jet flames in high-temperature coflow air are studied numerically. Several flame configurations are investigated by varying the initial temperature and fuel mole fraction. At a relatively low initial temperature, a non-autoignited nozzle-attached flame is simulated at relatively low jet velocity. When the initial temperature is higher than that required for autoignition, two regimes are investigated: an autoignited lifted flame with tribrachial edge structure and an autoignited lifted flame with Mild combustion. The autoignited lifted flame with tribrachial edge exhibited three branches: lean and rich premixed flame wings and a trailing diffusion flame. Characteristics of kinetic structure for autoignited lifted flames are discussed based on the kinetic structures of homogeneous autoignition and flame propagation of stoichiometric mixture. Results showed that a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. The autoignited lifted flame with Mild combustion occurs when methane fuel is highly diluted with nitrogen. The kinetic structure analysis shows that the characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to nozzle-attached flame was investigated by increasing the fuel mole fraction. As the maximum flame temperature increases with decreasing liftoff height, the kinetic structure showed a transition behavior from autoignition to flame propagation of a lean premixed flame. © 2016 The Combustion Institute

  16. Threats to private forest lands in the U.S.A.: a forests on the edge study

    Science.gov (United States)

    Mark H. Hatfield; Ronald E. McRoberts; Dacia M. Meneguzzo; Sara. Comas

    2010-01-01

    The Forests on the Edge project, sponsored by the USDA Forest Service, uses geographic information systems to construct and analyze maps depicting threats to the contributions of America’s private forest lands. For this study, watersheds across the conterminous United States are evaluated with respect to the amount of their private forest land. Watersheds with at least...

  17. Structural health monitoring method for wind turbine trailing edge: Crack growth detection using Fibre Bragg Grating sensor embedded in composite materials

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    In this article a novel method to assess a crack growing/damage event in composite material using Fibre Bragg Grating (FBG) sensors embedded in a host material and its application into a composite material structure, Wind Turbine Trailing Edge, is presented. A Structure-Material-FBG model......, such as compression fields ahead the crack or non-uniform strain fields, and then identify the presence of such damage in the structure. Experimental tests were conducted to fully characterize this concept and support the model. Double Cantilever Beams (DCB), made with two glass fibre beams glued with structural...

  18. Unexpected covalency from actinide 5f orbital interactions (An = Th, U, Np, Pu) determined from chlorine K-edge X-ray absorption spectroscopy and electronic structure theory

    International Nuclear Information System (INIS)

    Clark, D.L.; Batista, E.R.; Boland, K.S.

    2010-01-01

    We have employed Cl K-edge XAS and multiple levels of sophisticated electronic structure calculations on a series of simple octahedral light actinide (Th, U, Np, Pu) chloride salts, AnCl 6 n- in order to assess the relative roles of the valence 5f and 6d orbitals in chemical bonding. Chlorine K-edge X-ray absorption spectroscopy on AnCl 6 n- (An = Th, U, Np, Pu) systems indicates the presence of covalent interactions between both Cl 3p and An 5f and 6d orbitals, with the relative contributions changing across the series. Electronic structure calculations indicate the predominant covalent interactions are expected to occur through An-Cl bonding via t 1u and t 2u interactions with the An 5f orbitals, and through t 2g and e g interactions with An 6d orbitals. For the Cl K-edge data therefore, we expect bound state transitions from Cl 1s → e g (σ), t 2g (π), and t 1u (σ + π) orbitals. Qualitatively, the Cl K-edge data fulfills these expectations

  19. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In2O3 nanowires

    Science.gov (United States)

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.; Schaller, Richard D.; Gosztola, David J.; Stroscio, Michael A.; Dutta, Mitra

    2018-04-01

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor-liquid-solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy ({V}{{O}}) defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of {V}{{O}} defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.

  20. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In 2 O 3 nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.; Schaller, Richard D.; Gosztola, David J.; Stroscio, Michael A.; Dutta, Mitra

    2018-03-01

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor–liquid–solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy (VO) defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of VO defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.

  1. A 3-D Computational Study of a Variable Camber Continuous Trailing Edge Flap (VCCTEF) Spanwise Segment

    Science.gov (United States)

    Kaul, Upender K.; Nguyen, Nhan T.

    2015-01-01

    Results of a computational study carried out to explore the effects of various elastomer configurations joining spanwise contiguous Variable Camber Continuous Trailing Edge Flap (VCCTEF) segments are reported here. This research is carried out as a proof-of-concept study that will seek to push the flight envelope in cruise with drag optimization as the objective. The cruise conditions can be well off design such as caused by environmental conditions, maneuvering, etc. To handle these off-design conditions, flap deflection is used so when the flap is deflected in a given direction, the aircraft angle of attack changes accordingly to maintain a given lift. The angle of attack is also a design parameter along with the flap deflection. In a previous 2D study,1 the effect of camber was investigated and the results revealed some insight into the relative merit of various camber settings of the VCCTEF. The present state of the art has not advanced sufficiently to do a full 3-D viscous analysis of the whole NASA Generic Transport Model (GTM) wing with VCCTEF deployed with elastomers. Therefore, this study seeks to explore the local effects of three contiguous flap segments on lift and drag of a model devised here to determine possible trades among various flap deflections to achieve desired lift and drag results. Although this approach is an approximation, it provides new insights into the "local" effects of the relative deflections of the contiguous spanwise flap systems and various elastomer segment configurations. The present study is a natural extension of the 2-D study to assess these local 3-D effects. Design cruise condition at 36,000 feet at free stream Mach number of 0.797 and a mean aerodynamic chord (MAC) based Reynolds number of 30.734x10(exp 6) is simulated for an angle of attack (AoA) range of 0 to 6 deg. In the previous 2-D study, the calculations revealed that the parabolic arc camber (1x2x3) and circular arc camber (VCCTEF222) offered the best L

  2. Edge termination of MoS2 and CoMoS catalyst particles

    DEFF Research Database (Denmark)

    Byskov, Line Sjolte; Nørskov, Jens Kehlet; Clausen, B. S.

    2000-01-01

    The edge termination of MoS2 and CoMoS catalyst particles is studied by density functional calculations. We show that for structures without vacancies Mo-terminated edges have the lowest edge energies. Creation of vacancies, which are believed to be active sites in these catalyst systems, leads...

  3. Experimental study of the interaction between RF antennas and the edge plasma of a tokamak

    International Nuclear Information System (INIS)

    Kubic, Martin

    2013-01-01

    Antennas operating in the ion cyclotron range of frequency (ICRF) provide a useful tool for plasma heating in many tokamaks and are foreseen to play an important role in ITER. However, in addition to the desired heating in the core plasma, spurious interactions with the plasma edge and material boundary are known to occur. Many of these deleterious effects are caused by the formation of radio-frequency (RF) sheaths. The aim of this thesis is to study, mainly experimentally, scrape-off layer (SOL) modifications caused by RF sheaths effects by means of Langmuir probes that are magnetically connected to a powered ICRH antenna. Effects of the two types of Faraday screens' operation on RF-induced SOL modifications are studied for different plasma and antenna configurations - scans of strap power ratio imbalance, injected power and SOL density. In addition to experimental work, the influence of RF sheaths on retarding field analyzer (RFA) measurements of sheath potential is investigated with one-dimensional particle-in-cell code. One-dimensional particle-in-cell simulations show that the RFA is able to measure reliably the sheath potential only for ion plasma frequencies ω π similar to RF cyclotron frequency ω rf , while for the real SOL conditions (ω π ≥ ω rf ), when the RFA is magnetically connected to RF region, it is strongly underestimated. An alternative method to investigate RF sheaths effects is proposed by using broadening of the ion distribution function as an evidence of the RF electric fields in the sheath. RFA measurements in Tore Supra indicate that RF potentials do indeed propagate from the antenna 12 m along magnetic field lines. (author) [fr

  4. Smoothness in Binomial Edge Ideals

    Directory of Open Access Journals (Sweden)

    Hamid Damadi

    2016-06-01

    Full Text Available In this paper we study some geometric properties of the algebraic set associated to the binomial edge ideal of a graph. We study the singularity and smoothness of the algebraic set associated to the binomial edge ideal of a graph. Some of these algebraic sets are irreducible and some of them are reducible. If every irreducible component of the algebraic set is smooth we call the graph an edge smooth graph, otherwise it is called an edge singular graph. We show that complete graphs are edge smooth and introduce two conditions such that the graph G is edge singular if and only if it satisfies these conditions. Then, it is shown that cycles and most of trees are edge singular. In addition, it is proved that complete bipartite graphs are edge smooth.

  5. Edge radial electric field structure in quiescent H-mode plasmas in the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); West, W P [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Doyle, E J [University of California, Los Angeles, CA 90095-1597 (United States); Austin, M E [University of Texas at Austin, Austin, TX 78712 (United States); DeGrassie, J S [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Gohil, P [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Greenfield, C M [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Jayakumar, R [Lawrence Livermore National Laboratory, Livermore, CA 94551-9900 (United States); Kaplan, D H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Lao, L L [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Leonard, A W [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M A [Lawrence Livermore National Laboratory, Livermore, CA 94551-9900 (United States); McKee, G R [University of Wisconsin, Madison, WI 53706-1687 (United States); Solomon, W M [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Thomas, D M [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Rhodes, T L [University of California, Los Angeles, CA 90095-1597 (United States); Wade, M R [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wang, G [University of California, Los Angeles, CA 90095-1597 (United States); Watkins, J G [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Zeng, L [University of California, Los Angeles, CA 90095-1597 (United States)

    2004-05-01

    H-mode operation is the choice for next step tokamak devices based on either conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the {beta} limit and reduced core transport regions needed for advanced tokamak operation. Experimental results from DIII-D over the past four years have demonstrated a new operating regime, the quiescent H-mode (QH-mode) regime, that solves these problems. QH-mode plasmas have now been run for over 4 s (>30 energy confinement times). Utilizing the steady-state nature of the QH-mode edge allows us to obtain unprecedented spatial resolution of the edge ion profiles and the edge radial electric field, E{sub r}, by sweeping the edge plasma slowly past the view points of the charge exchange spectroscopy system. We have investigated the effects of direct edge ion orbit loss on the creation and sustainment of the QH-mode. Direct loss of ions injected into the velocity-space loss cone at the plasma edge is not necessary for creation or sustainment of the QH-mode. The direct ion orbit loss has little effect on the edge E{sub r} well. The E{sub r} at the bottom of the well in these cases is about -100 kV m{sup -1} compared with -20 to -30 kV m{sup -1} in the standard H-mode. The well is about 1 cm wide, which is close to the diameter of the deuteron gyro-orbit. We also have investigated the effect of changing edge triangularity by changing the plasma shape from upwardly biased single null to magnetically balanced double null. We have now achieved the QH-mode in these double-null plasmas. The increased triangularity allows us to increase pedestal density in QH-mode plasmas by a factor of about 2.5 and overall pedestal pressure by a factor of 2. Pedestal {beta} and {nu}{sup *} values matching the values desired for ITER have been achieved. In

  6. Electron transport in edge-disordered graphene nanoribbons

    DEFF Research Database (Denmark)

    Saloriutta, Karri; Hancock, Y.; Karkkainen, Asta

    2011-01-01

    Ab initio methods are used to study the spin-resolved transport properties of graphene nanoribbons (GNRs) that have both chemical and structural edge disorder. Oxygen edge adsorbates on ideal and protruded ribbons are chosen as representative examples, with the protrusions forming the smallest...

  7. Linear and nonlinear studies of resistive-ballooning modes in a tokamak edge plasma with scrape-off layer

    International Nuclear Information System (INIS)

    Lau, Y.T.; Novakovskii, S.V.; Drake, J.F.

    1996-01-01

    We will present 2D linear and 3D nonlinear studies of resistive-ballooning modes in tokamak edge plasmas which include a closed flux region, as well as a limiter scrape-off layer (SOL) region. These studies therefore go beyond most earlier work, where the stability of the edge in the closed flux region and in the SOL have been considered separately. A 2D linear code, 2D-BALLOON, examines the stability of these curvature driven modes and provides the complete 2D eigenfunction spanning the closed flux surface region as well the open field line region. The sheath boundary condition in the SOL introduces an important new parameter λ = (m e /m i ) 1/2 v ei qR/v Te . This parameter plays a significant role in determining the stability of these modes in both the closed flux and SOL regions because of the radial coupling across the last closed flux surface (LCFS). For small λ the spectrum of unstable modes is broad and extends into the low toroidal mode number exclamation point regime where the spatial structure is flute-like. The amplitude for these modes is larger in the SOL compared to the closed flux region. However when A is increased, the low mode numbers are strongly stabilized and the high mode numbers which are strongly ballooning are the dominant modes. In this regime the radial modes straddle the LCFS. In both these cases, the variation in the plasma density is necessary for the radial localization. In the three-dimensional nonlinear simulations, we have solved a set of fluid equations in a toroidal geometry with both the closed flux region and the SOL. The introduction of the SOL to the twisted tube for the closed flux region, has been a major addition to our 3D code. We find that the turbulent transport in the SOL drops significantly as A is increased, which is consistent with our expectations from the 2D linear code results

  8. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study.

    Science.gov (United States)

    Mancosu, Pietro; Fogliata, Antonella; Stravato, Antonella; Tomatis, Stefano; Cozzi, Luca; Scorsetti, Marta

    2016-01-01

    Frameless stereotactic radiosurgery (SRS) requires dedicated systems to monitor the patient position during the treatment to avoid target underdosage due to involuntary shift. The optical surface monitoring system (OSMS) is here evaluated in a phantom-based study. The new EDGE linear accelerator from Varian (Varian, Palo Alto, CA) integrates, for cranial lesions, the common cone beam computed tomography (CBCT) and kV-MV portal images to the optical surface monitoring system (OSMS), a device able to detect real-time patient׳s face movements in all 6 couch axes (vertical, longitudinal, lateral, rotation along the vertical axis, pitch, and roll). We have evaluated the OSMS imaging capability in checking the phantoms׳ position and monitoring its motion. With this aim, a home-made cranial phantom was developed to evaluate the OSMS accuracy in 4 different experiments: (1) comparison with CBCT in isocenter location, (2) capability to recognize predefined shifts up to 2° or 3cm, (3) evaluation at different couch angles, (4) ability to properly reconstruct the surface when the linac gantry visually block one of the cameras. The OSMS system showed, with a phantom, to be accurate for positioning in respect to the CBCT imaging system with differences of 0.6 ± 0.3mm for linear vector displacement, with a maximum rotational inaccuracy of 0.3°. OSMS presented an accuracy of 0.3mm for displacement up to 1cm and 1°, and 0.5mm for larger displacements. Different couch angles (45° and 90°) induced a mean vector uncertainty < 0.4mm. Coverage of 1 camera produced an uncertainty < 0.5mm. Translations and rotations of a phantom can be accurately detect with the optical surface detector system. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  9. Book review: Twenty-Five Years on the Cutting Edge of Obsidian Studies: Selected Readings from the IAOS Bulletin

    Directory of Open Access Journals (Sweden)

    Sean Dolan

    2017-03-01

    Full Text Available Edited by Carolyn D. Dillian (Coastal Carolina University, Twenty-Five Years on the Cutting Edge of Obsidian Studies: Selected Readings from the IAOS Bulletin consists of 19 previously published articles from the International Association for Obsidian Studies (IAOS Bulletin. Dillian selected these articles because they provide a range of methodological and theoretical approaches concerning archaeological obsidian studies from around the world like Eretria, California, and the Near East, for example.

  10. Modification of the magnetic field structure in the vicinity of the x-points by the strong mirror field for a field-reversed configuration (FRC) with the Thick Edge-Layer plasma

    International Nuclear Information System (INIS)

    Suzuki, Yukihisa; Okada, Shigefumi; Goto, Seiichi

    2003-01-01

    Modification of the magnetic field structure in the vicinity of the x-points and changes of the separatrix shape are investigated under the pressure effects due to an edge-layer plasma together with a mirror field by the two-dimensional (2-D) MHD equilibrium solutions of field-reversed configuration (FRC) obtained from the Grad-Shafranov equation. To explore the coupling pressure effects caused by edge-layer plasma and mirror field, the equilibrium calculations are performed by the combinations of several values of mirror ratio (R m ) and of edge-layer width (δ), respectively. A summary of results for present study is as follows. In the condition of weak mirror field (1.0 m m > 1.6, ψ=0 surface never opens up for any δ. These original results make it clear that large magnetic curvature produced by the strong mirror field enhances the magnetic stress around the x-point, so that the ends of FRC are effectively sustained by this enhanced magnetic stress, which counteracts the edge-layer plasma pressure effect. (author)

  11. Tangential 2-D Edge Imaging for GPI and Edge/Impurity Modeling

    International Nuclear Information System (INIS)

    Maqueda, Ricardo; Levinton, Fred M.

    2011-01-01

    Nova Photonics, Inc. has a collaborative effort at the National Spherical Torus Experiment (NSTX). This collaboration, based on fast imaging of visible phenomena, has provided key insights on edge turbulence, intermittency, and edge phenomena such as edge localized modes (ELMs) and multi-faceted axisymmetric radiation from the edge (MARFE). Studies have been performed in all these areas. The edge turbulence/intermittency studies make use of the Gas Puff Imaging diagnostic developed by the Principal Investigator (Ricardo Maqueda) together with colleagues from PPPL. This effort is part of the International Tokamak Physics Activity (ITPA) edge, scrape-off layer and divertor group joint activity (DSOL-15: Inter-machine comparison of blob characteristics). The edge turbulence/blob study has been extended from the current location near the midplane of the device to the lower divertor region of NSTX. The goal of this effort was to study turbulence born blobs in the vicinity of the X-point region and their circuit closure on divertor sheaths or high density regions in the divertor. In the area of ELMs and MARFEs we have studied and characterized the mode structure and evolution of the ELM types observed in NSTX, as well as the study of the observed interaction between MARFEs and ELMs. This interaction could have substantial implications for future devices where radiative divertor regions are required to maintain detachment from the divertor plasma facing components.

  12. Effect of atomic vibrations in XANES: polarization-dependent damping of the fine structure at the Cu K-edge of (creat)2CuCl4.

    Science.gov (United States)

    Šipr, Ondřej; Vackář, Jiří; Kuzmin, Alexei

    2016-11-01

    Polarization-dependent damping of the fine structure in the Cu K-edge spectrum of creatinium tetrachlorocuprate [(creat) 2 CuCl 4 ] in the X-ray absorption near-edge structure (XANES) region is shown to be due to atomic vibrations. These vibrations can be separated into two groups, depending on whether the respective atoms belong to the same molecular block; individual molecular blocks can be treated as semi-rigid entities while the mutual positions of these blocks are subject to large mean relative displacements. The effect of vibrations can be efficiently included in XANES calculations by using the same formula as for static systems but with a modified free-electron propagator which accounts for fluctuations in interatomic distances.

  13. Comparison and fit of the two and six band k.p models for the band edge structure of Pbsub(1-x)Snsub(x)Te

    International Nuclear Information System (INIS)

    Weissman, Y.

    1975-10-01

    The band edge structure of Pbsub(1-x)Snsub(x)Te is derived in detail using a two band ellipsoidal model and compared with a more rigorous calculation based on six bands. A quantitative comparison is made for two values of the energy gap, corresponding to the cases where x=0 and x=0.17. It was found that, for the occupied states in nondegenerate materials, both models are practically equivalent. Discrepancies may occur only in high degeneracies or deep inversion layers. The agreement between both models was significantly improved by introducing an effective energy gap in the two band model. It is suggested that the use of the effective energy gap may improve the agreement between the two band model and experiment whenever the details of the band edge structure enter the interpretation of the experimental results. (author)

  14. X-ray absorption fine structure (XAFS) spectroscopy: a tool for structural studies in material sciences (abstract)

    International Nuclear Information System (INIS)

    Akhtar, M.J.

    2011-01-01

    XAFS spectroscopy has revealed itself as a powerful technique for structural characterization of the local atomic environment of individual atomic species, including bond distances, coordination numbers and type of nearest neighbors surrounding the central atom. This technique is particularly useful for materials that show considerable structural and chemical disorder. XAFS spectroscopy has found extensive applications in determining the local atomic and electronic structure of the absorbing centers (atoms) in the materials science, physics, chemistry, biology and geophysics. X-ray absorption edges contain a variety of information on the chemical state and the local structure of the absorbing atom. On the higher energy side of an absorption edge fine structure is observed due to backscattering of the emitted photoelectron. The post-edge region can be divided into two parts. The X-ray Absorption Near Edge Structure (XANES) which extends up to 50 eV of an absorption edge, the spectrum is interpreted in terms of the appropriate components of the local density of states, which would be expected to be sensitive to the valence state of the atom. The intensity, shape and location of the absorption edge features provide information on the valence state, electronic structure and coordination geometry of the absorbing atom.The Extended X-ray Absorption Fine Structure (EXAFS) region is dominated by the single scattering processes and extends up to 1000 eV above the edge and provides information on the radial distribution (coordination number, radial distance and type of neighboring atoms) around the central atom. The results on perovskite based and spinel ferrites systems will be presented, where valence state and cation distributions are determined; the present study will show focus on SrFeO/sub 3/, MnFe/sub 2/O/sub 4/ and Zn/sub 1-x/Ni/sub x/Fe/sub 2/O/sub 4/ materials. (author)

  15. The theoretical investigations of the core structure and the Peierls stress of the 1/2{1 1 0} edge dislocation in Mo

    International Nuclear Information System (INIS)

    Liu Ruiping; Wang Shaofeng; Wang Rui; Jiao Jian

    2010-01-01

    By using the modified Peierls-Nabarro (P-N) model in which the lattice discrete effect is taken into account, the core structure and the Peierls stress of the 1/2 {1 1 0} edge dislocation in molybdenum (Mo) have been investigated in the anisotropic elasticity approximation. The coefficient of the lattice discrete correction and the energy coefficient are all calculated in the anisotropic elasticity approximation. By considering the lattice discrete effect, the core width obtained from the modified P-N model is much wider than the results obtained from the P-N model. Because the Peierls stress of the 1/2 {1 1 0} edge dislocation in Mo moving with the rigid mechanism is smaller than that with the kink mechanism, therefore, through investigating the Peierls stress of the edge dislocation we obtained with the atomistic simulations, it can be indicated that when the external stress is loaded on the 1/2 {1 1 0} edge dislocation in Mo, the dislocation may move with the rigid mechanism rather than the kink mechanism or other mechanisms.

  16. Edge effects on the electronic properties of phosphorene nanoribbons

    International Nuclear Information System (INIS)

    Peng, Xihong; Copple, Andrew; Wei, Qun

    2014-01-01

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs) show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p z orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.

  17. Edge effects on the electronic properties of phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xihong, E-mail: xihong.peng@asu.edu [School of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States); Copple, Andrew [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Wei, Qun [School of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States); School of Physics and Optoelectronic Engineering, Xidian University, Xi' an 710071 (China)

    2014-10-14

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs) show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p{sub z} orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.

  18. Edge Simulation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, Sergei I. [Univ. of California, San Diego, CA (United States); Angus, Justin [Univ. of California, San Diego, CA (United States); Lee, Wonjae [Univ. of California, San Diego, CA (United States)

    2018-01-05

    The goal of the Edge Simulation Laboratory (ESL) multi-institutional project is to advance scientific understanding of the edge plasma region of magnetic fusion devices via a coordinated effort utilizing modern computing resources, advanced algorithms, and ongoing theoretical development. The UCSD team was involved in the development of the COGENT code for kinetic studies across a magnetic separatrix. This work included a kinetic treatment of electrons and multiple ion species (impurities) and accurate collision operators.

  19. Exploratory study of the effects of wing-leading-edge modifications on the stall/spin behavior of a light general aviation airplane

    Science.gov (United States)

    1979-01-01

    Configurations with full-span and segmented leading-edge flaps and full-span and segmented leading-edge droop were tested. Studies were conducted with wind-tunnel models, with an outdoor radio-controlled model, and with a full-scale airplane. Results show that wing-leading-edge modifications can produce large effects on stall/spin characteristics, particularly on spin resistance. One outboard wing-leading-edge modification tested significantly improved lateral stability at stall, spin resistance, and developed spin characteristics.

  20. Electron-beam induced amorphization of stishovite: Silicon-coordination change observed using Si K-edge extended electron energy-loss fine structure

    Science.gov (United States)

    van Aken, P. A.; Sharp, T. G.; Seifert, F.

    The analysis of the extended energy-loss fine structure (EXELFS) of the Si K-edge for sixfold-coordinated Si in synthetic stishovite and fourfold-coordinated Si in natural α-quartz is reported by using electron energy-loss spectroscopy (EELS) in combination with transmission electron microscopy (TEM). The stishovite Si K-edge EXELFS spectra were measured as a time-dependent series to document irradiation-induced amorphization. The amorphization was also investigated through the change in Si K- and O K-edge energy-loss near edge structure (ELNES). For α-quartz, in contrast to stishovite, electron irradiation-induced vitrification, verified by selected area electron diffraction (SAED), produced no detectable changes of the EXELFS. The Si K-edge EXELFS were analysed with the classical extended X-ray absorption fine structure (EXAFS) treatment and compared to ab initio curve-waved multiple-scattering (MS) calculations of EXAFS spectra for stishovite and α-quartz. Highly accurate information on the local atomic environment of the silicon atoms during the irradiation-induced amorphization of stishovite is obtained from the EXELFS structure parameters (Si-O bond distances, coordination numbers and Debye-Waller factors). The mean Si-O bond distance R and mean Si coordination number N changes from R=0.1775 nm and N=6 for stishovite through a disordered intermediate state (R 0.172 nm and N 5) to R 0.167 nm and N 4.5 for a nearly amorphous state similar to α-quartz (R=0.1609 nm and N=4). During the amorphization process, the Debye-Waller factor (DWF) passes through a maximum value of as it changes from for sixfold to for fourfold coordination of Si. This increase in Debye-Waller factor indicates an increase in mean-square relative displacement (MSRD) between the central silicon atom and its oxygen neighbours that is consistent with the presence of an intermediate structural state with fivefold coordination of Si. The distribution of coordination states can be estimated by

  1. Active probing of plasma edge turbulence and feedback studies on the Texas Experimental Tokamak (TEXT)

    International Nuclear Information System (INIS)

    Uckan, T.; Richards, B.; Bengtson, R.D.

    1993-08-01

    A novel experiment is under way on the Texas Experimental Tokamak (TEXT) to actively modify the turbulence at the plasma edge by launching waves using electrostatic probes in the shadow of the limiter. The experiments are carried out with a wave launching system consisting of two Langmuir probes, which are about 1.8 cm apart in the poloidal direction, with respect to the magnetic field. These probes are operated in the electron side of the (I,V) characteristic. The probe tips are fed separately by independent ac power supplies. Measurements indicate that the wave, launched with a typical frequency image of 15--50 kHz from the edge of the machine top, is received by sensing probes located halfway around the torus. The detected signal strength depends on the frequency of the wave, the plasma current, and the phasing of the applied ac signal between the launching probes. Modifications to the spectra of the density and potential fluctuations are observed. These experiments have been extended to control of the edge plasma fluctuation level using feedback to explore its effects on confinement. When the launcher is driven by the floating potential of the fluctuating plasma at the location of the launching probes, then the fluctuations are suppressed or excited, depending on the phasing between the probe tips, both locally and at the downstream sensing probes. The fluctuation-induced particle flux also varies with the feedback phasing

  2. PIV study of flow around unsteady airfoil with dynamic trailing-edge flap deflection

    Energy Technology Data Exchange (ETDEWEB)

    Gerontakos, P.; Lee, T. [McGill University, Department of Mechanical Engineering, Montreal, Quebec (Canada)

    2008-12-15

    The flow around an oscillating NACA 0015 airfoil with prescheduled trailing-edge flap motion control was investigated by using particle image velocimetry (PIV). Aerodynamic load coefficients, obtained via surface pressure measurements, were also acquired to supplement the PIV results. The results demonstrate that upward flap deflections led to an improved negative peak pitching moment coefficient C{sub m,peak}, mainly as a consequence of the increased suction pressure on the lower surface of the flap. The behavior of the leading-edge vortex (LEV) was largely unaffected. Its strength was, however, reduced slightly compared to that of the uncontrolled airfoil. No trailing-edge vortex was observed. For downward flap deflection, the strength of the LEV was found to be slightly increased. A favorable increase in C{sub l,max}, as a consequence of downward flap-induced positive camber effects, accompanied by a detrimental increase in the nose-down C{sub m,peak}, due to the large pressure increase on the lower surface of the flap, was also observed. (orig.)

  3. Impurity Control Test Facility (ICTF) for the study of fusion reactor plasma/edge materials interactions

    International Nuclear Information System (INIS)

    Brooks, J.N.; Mattas, R.F.; Ehst, D.A.; Boley, C.D.; Hershkowitz, N.

    1984-05-01

    A test facility for investigating many of the impurity control issues associated with the interactions of materials with the plasma edge is outlined. Analysis indicates that the plasma edge conditions expected in TFCX, INTOR, etc. can be readily produced at the end cells of an rf stabilized mirror, similar in some respects to the Phaedrus device at the University of Wisconsin. A steady-state, Impurity Control Test Facility (ICTF) based on such a mirror device is expected to produce a plasma with typical parameters of n/sub e/ approx. 3 x 10 18 m -3 , T/sub e/ = 50 eV, and T/sub i/ = 100 eV at each end cell. A heat load of approx. 2 MW/m 2 over areas of approx. 1600 cm 2 could be produced at each end with 800 kW of ICRH power. These conditions would provide a unique capability for examining issues such as erosion/redeposition behavior, properties of redeposited materials, high recycling regimes, plasma edge operating limits for high-Z materials, and particle pumping efficiencies for limiter and divertor designs

  4. Charge-transfer and Mott-Hubbard Excitations in FeBo3: Fe K-edge resonant Inelastic x-ray scattering study

    International Nuclear Information System (INIS)

    Kim, J.; Shvydko, Y.

    2011-01-01

    Momentum-resolved resonant inelastic x-ray scattering (RIXS) spectroscopy has been carried out successfully at the Fe K-edge for the first time. The RIXS spectra of a FeBO 3 single crystal reveal a wealth of information on ∼ 1-10 eV electronic excitations. The IXS signal resonates when the incident photon energy approaches the pre-edge (1s - -3d) and the main-edge (1s - -4p) of the Fe K-edge absorption spectrum. The RIXS spectra measured at the pre-edge and the main-edge show quantitatively different dependences on the incident photon energy, momentum transfer, photon polarization, and temperature. We present a multielectron analysis of the Mott-Hubbard (MH) and charge transfer (CT) excitations, and calculate their energies. Electronic excitations observed in the pre-edge and main-edge RIXS spectra are interpreted as MH and CT excitations, respectively. We propose the electronic structure around the chemical potential in FeBO 3 based on the experimental data.

  5. Solar Coronal Structure Study

    Science.gov (United States)

    Nitta, Nariaki; Bruner, Marilyn E.; Saba, Julia; Strong, Keith; Harvey, Karen

    2000-01-01

    The subject of this investigation is to study the physics of the solar corona through the analysis of the EUV and UV data produced by two flights (12 May 1992 and 25 April 1994) of the Lockheed Solar Plasma Diagnostics Experiment (SPDE) sounding rocket payload, in combination with Yohkoh and ground-based data. Each rocket flight produced both spectral and imaging data. These joint datasets are useful for understanding the physical state of various features in the solar atmosphere at different heights ranging from the photosphere to the corona at the time of the, rocket flights, which took place during the declining phase of a solar cycle, 2-4 years before the minimum. The investigation is narrowly focused on comparing the physics of small- and medium-scale strong-field structures with that of large-scale, weak fields. As we close th is investigation, we have to recall that our present position in the understanding of basic solar physics problems (such as coronal heating) is much different from that in 1995 (when we proposed this investigation), due largely to the great success of SOHO and TRACE. In other words, several topics and techniques we proposed can now be better realized with data from these missions. For this reason, at some point of our work, we started concentrating on the 1992 data, which are more unique and have more supporting data. As a result, we discontinued the investigation on small-scale structures, i.e., bright points, since high-resolution TRACE images have addressed more important physics than SPDE EUV images could do. In the final year, we still spent long time calibrating the 1992 data. The work was complicated because of the old-fashioned film, which had problems not encountered with more modern CCD detectors. After our considerable effort on calibration, we were able to focus on several scientific topics, relying heavily on the SPDE UV images. They include the relation between filaments and filament channels, the identification of hot

  6. Study of non-validity of mixture rule near K-absorption edges by X-ray spectrometric technique

    International Nuclear Information System (INIS)

    Sharanabasappa; Chitralekha, A.; Kerur, B.R.; Anilkumar, S.

    2012-01-01

    X-ray spectrometric technique has been described to determine the X-ray mass attenuation coefficient, μ/ρ, of X-rays employing HPGe X-ray detector and radioactive sources. The photon intensity is measured by gating the channel of the spectrometer at FWHM/photo peak. Using the technique the 'best value' values of μ/ρ were obtained for those thicknesses which lie in the transmission (T) range 0.5 ≥ T ≥ 0.02. Total attenuation cross sections for other elements and lead compounds were measured at photon energies from 17 to 88 keV to study the Bragg's additivity law near the absorption edge of the lead. The measured values of mass attenuation coefficient values are compared with theoretical values obtained using Winxcom (programme). This study suggests that measured mass attenuation coefficient values at and near absorption edges differ from the theoretical value by about 17-23%. (author)

  7. Investigation of the electronic structure of high-temperature superconductors and related transition metal oxides with near-edge x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Gerhold, S.

    2001-01-01

    The unoccupied electronic structure and its orbital character has been studied with polarization-dependent near-edge x-ray absorption spectroscopy (NEXAFS) for selected high-temperature superconductors (HTSC) and related transition metal oxides. Although YBa 2 Cu 3 O 7-δ (Y-123) is arguably the best-investigated HTSC a conclusive NEXAFS study on how partial substitution of Cu by other transition metals affects the electronic structure has sorely been missing. The study presented here on a series of well characterized YBa 2 Cu 3-x Fe x O y single crystals shows that the cause for T c suppression is not at all magnetic pair breaking but charge carrier depletion, primarily in the chains; effects from disorder cannot be excluded. Annealing at high oxygen pressure increases along with oxygen content both the hole concentration and T c . Fe 3d-O 2p-derived states contribute prominently to the spectra for all polarizations a few eV above E F . Iron prefers a trivalent state in Y-123; upon reduction a spin transition can be observed. As YBa 2 Cu 3-x Fe x O y single crystals cannot be detwinned it is very difficult to distinguish between contributions from planes and chains to the spectra. In this situation thin films grown with a reduced degree of twinning ('twin-poor') allow more detailed investigations. An extended self-absorption correction was developed for fluorescence yield NEXAFS on epitactical HTSC thin films. Its application to twin-poor Y-123 thin films demonstrates that (apart from the effect of residual twins) the spectral information is equivalent to that of detwinned single crystals for a range of optimum film thicknesses, and this in turn allows to augment the NEXAFS study of YBa 2 Cu 3-x Fe x O y with spectra for corresponding twin-poor thin films. The system Ca 2-x (Sr,La) x RuO 4 is structurally related to the HTSCs; the development of its unoccupied electronic structure with x was investigated in this work, with emphasis on the metal

  8. Electron-beam induced amorphization of stishovite: Silicon-coordination change observed using Si K-edge extended electron energy-loss fine structure

    International Nuclear Information System (INIS)

    Aken, P.A. van; Sharp, T.G.; Seifert, F.

    1998-01-01

    The analysis of the extended energy-loss fine structure (EXELFS) of the Si K-edge for sixfold-coordinated Si in synthetic stishovite and fourfold-coordinated Si in natural α-quartz is reported by using electron energy-loss spectroscopy (EELS) in combination with transmission electron microscopy (TEM). The stishovite Si K-edge EXELFS spectra were measured as a time-dependent series to document irradiation-induced amorphization. The amorphization was also investigated through the change in Si K- and O K-edge energy-loss near edge structure (ELNES). For α-quartz, in contrast to stishovite, electron irradiation-induced vitrification, produced no detectable changes of the EXELFS. The Si K-edge EXELFS were analysed with the classical extended X-ray absorption fine structure (EXAFS) treatment and compared to ab initio curve-waved multiple-scattering (MS) calculations of EXAFS spectra for stishovite and α-quartz. Highly accurate information on the local atomic environment of the silicon atoms during the irradiation-induced amorphization of stishovite is obtained from the EXELFS structure parameters The mean Si-O bond distance R and mean Si coordination number N changes from R=0.1775 nm and N=6 for stishovite through a disordered intermediate state (R∼0.172 nm and N∼5) to R∼0.167 nm and N∼4.5 for a nearly amorphous state similar to α-quartz (R=0.1609 nm and N=4). During the amorphization process, the Debye-Waller factor (DWF) passes through a maximum value of σ N 2 ∼83.8pm 2 as it changes from σ st 2 =51.8pm 2 for sixfold to σ qu 2 =18.4pm 2 for fourfold coordination of Si. This increase in Debye-Waller factor indicates an increase in mean-square relative displacement (MSRD) between the central silicon atom and its oxygen neighbours. Using the EXELFS data for amorphization, a new method is developed to derive the relative amounts of Si coordinations in high-pressure minerals with mixed coordination. For the radiation-induced amorphization process of

  9. Feasibility study of X-ray K-edge analysis of RCRA heavy metal contamination of sludge packaged in drums

    International Nuclear Information System (INIS)

    Jensen, T.

    1999-01-01

    A study has been completed to assess the capabilities of X-ray K-edge analysis in the measurement of RCRA metal contamination of sludge packaged in drums. Results were obtained for mercury and lead contamination. It was not possible to measure cadmium contamination using this technique. No false positive signals were observed. In cases where uniformity of the sludge can be assumed, this analysis can provide a quick, accurate measurement of heavy-metal contamination

  10. Studies on metal-dielectric plasmonic structures.

    Energy Technology Data Exchange (ETDEWEB)

    Chettiar, Uday K. (Purdue University, West Lafayette, IN); Liu, Zhengtong (Purdue University, West Lafayette, IN); Thoreson, Mark D. (Purdue University, West Lafayette, IN); Shalaev, Vladimir M. (Purdue University, West Lafayette, IN); Drachev, Vladimir P. (Purdue University, West Lafayette, IN); Pack, Michael Vern; Kildishev, Alexander V. (Purdue University, West Lafayette, IN); Nyga, Piotr (Purdue University, West Lafayette, IN)

    2010-01-01

    The interaction of light with nanostructured metal leads to a number of fascinating phenomena, including plasmon oscillations that can be harnessed for a variety of cutting-edge applications. Plasmon oscillation modes are the collective oscillation of free electrons in metals under incident light. Previously, surface plasmon modes have been used for communication, sensing, nonlinear optics and novel physics studies. In this report, we describe the scientific research completed on metal-dielectric plasmonic films accomplished during a multi-year Purdue Excellence in Science and Engineering Graduate Fellowship sponsored by Sandia National Laboratories. A variety of plasmonic structures, from random 2D metal-dielectric films to 3D composite metal-dielectric films, have been studied in this research for applications such as surface-enhanced Raman sensing, tunable superlenses with resolutions beyond the diffraction limit, enhanced molecular absorption, infrared obscurants, and other real-world applications.

  11. Measurement of X-ray mass attenuation coefficient of nickel around the K-edge using synchrotron radiation based X-ray absorption study

    International Nuclear Information System (INIS)

    Roy, Bunty Rani; Rajput, Parasmani; Jha, S.N.; Nageswara Rao, A.S.

    2015-01-01

    The work presents the X-ray absorption fine structure (XAFS) technique for measuring the X-ray mass attenuation coefficient of nickel metal foil in the X-ray energy range of 8271.2–8849.4 eV using scanning XAFS beam line (BL-09) at Indus-2 synchrotron radiation source facility, Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore, India. The result represents the X-ray mass attenuation coefficient data for 0.02 mm thick Ni metal foil in the XAFS region of Ni K-edge. However, the results are compared to theoretical values using X-COM. There is a maximum deviation which is found exactly near the K-edge jump and decreases as we move away from the absorption edge. Oscillatory structure appears just above the observed absorption edge i.e., 8348.7 eV and is confined to around 250 eV above the edge. - Highlights: • Mass attenuation coefficient measurements of nickel using synchrotron radiation. • The measurements were taken exactly near the Ni K-edge at an energy step of 1 eV. • A maximum deviation is found near the K-edge

  12. Nuclear structure studies

    International Nuclear Information System (INIS)

    Walters, W.B.

    1992-01-01

    New results are reported for the decay and nuclear orientation of 114,116 I and 114 Sb as well as data for the structure of daughter nuclides 114,116 Te. New results for IBM-2 calculations for the structure of 126 Xe are also reported. A new approach to the problem of the underproduction of A = 120 nuclides in the astrophysical r-process is reported

  13. Sn-L3 EDGE and Fe K edge XANES spectra of the surface layer of ancient Chinese black mirror Heiqigu

    International Nuclear Information System (INIS)

    Gaowei Mengjia; Liu Yuzhen; Chu Wangsheng; Wu Ziyu; Wang Changsui

    2009-01-01

    The Chinese ancient black mirror known as Heiqigu was studied by x-ray-absorption near-edge structure spectroscopy and results were reported. The Sn-L 3 edge and Fe K edge spectra further confirmed the Schottky-type defect model in the Heiqigu surface system. And it was suggested that the surface layer of the mirror was a combined structure of oxidation of Sn(IV) and Sn(II). (authors)

  14. Edge Detection,

    Science.gov (United States)

    1985-09-01

    PROJECT. T ASK0 Artificial Inteligence Laboratory AREA It WORK UNIT NUMBERS V 545 Technology Square ( Cambridge, HA 02139 I I* CONTOOL1LIN@4OFFICE NAME...ARD-A1t62 62 EDGE DETECTION(U) NASSACNUSETTS INST OF TECH CAMBRIDGE 1/1 ARTIFICIAL INTELLIGENCE LAB E C HILDRETH SEP 85 AI-M-8 N99SI4-8S-C-6595...used to carry out this analysis. cce~iO a N) ’.~" D LI’BL. P p ------------ Sj. t i MASSACHUSETTS INSTITUTE OF TECHNOLOGY i ARTIFICIAL INTELLIGENCE

  15. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  16. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hager, Robert, E-mail: rhager@pppl.gov; Chang, C. S., E-mail: cschang@pppl.gov [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)

    2016-04-15

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steep edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. A new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.

  17. Characterization of local chemistry and disorder in synthetic and natural α-Al2O3 materials by X-ray absorption near edge structure spectroscopy

    International Nuclear Information System (INIS)

    Mottana, A.; Murata, T.

    1997-11-01

    X-ray absorption fine spectra at the Al K-edge were measured experimentally on and calculated theoretically via the multiple-scattering formalism for a chemically pure and physically perfect synthetic α-Al 2 O 3 (α-alumina), a natural 'ruby/sapphire' (corundum) and a series of artificial 'corundum' produced for technical purposes and used as geochemical standards. The Al K-edge spectra differ despite of the identical coordination (short-range arrangement) assumed by O around Al, and vary slightly in relation to the slightly different chemistries of the materials (substitutional defects) as well as on account of the location taken by foreign atoms in the structural lattices (positional defects). A quantitative treatment of the observed changes is made in terms of short-range modification of the coordination polyhedron and of medium- to long-range modifications in the overall structure; both of them induced by substitutions. In some technical 'corundums', the impurities of admixed 'β-alumina', where Al is both in four- and six-fold coordination, produce another small but detectable effect on Al K-edges. Therefore, XAFS spectroscopy proves its potentials for both measuring a light element such as Al, and detecting minor coordination changes and substitutions (ca. 1∼3 wt.% as oxide) of the absorber by dilute other atoms, at least under favorable conditions as those occurring in this system are

  18. Effect of ion orbit loss on the structure in the H-mode tokamak edge pedestal profiles of rotation velocity, radial electric field, density, and temperature

    International Nuclear Information System (INIS)

    Stacey, Weston M.

    2013-01-01

    An investigation of the effect of ion orbit loss of thermal ions and the compensating return ion current directly on the radial ion flux flowing in the plasma, and thereby indirectly on the toroidal and poloidal rotation velocity profiles, the radial electric field, density, and temperature profiles, and the interpretation of diffusive and non-diffusive transport coefficients in the plasma edge, is described. Illustrative calculations for a high-confinement H-mode DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] plasma are presented and compared with experimental results. Taking into account, ion orbit loss of thermal ions and the compensating return ion current is found to have a significant effect on the structure of the radial profiles of these quantities in the edge plasma, indicating the necessity of taking ion orbit loss effects into account in interpreting or predicting these quantities

  19. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Seidler, G. T., E-mail: seidler@uw.edu; Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R. [Physics Department, University of Washington, Seattle, Washington 98195-1560 (United States)

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  20. Assignment of near-edge x-ray absorption fine structure spectra of metalloporphyrins by means of time-dependent density-functional calculations

    International Nuclear Information System (INIS)

    Schmidt, Norman; Fink, Rainer; Hieringer, Wolfgang

    2010-01-01

    The C 1s and N 1s near-edge x-ray absorption fine structure (NEXAFS) spectra of three prototype tetraphenyl porphyrin (TPP) molecules are discussed in the framework of a combined experimental and theoretical study. We employ time-dependent density-functional theory (TDDFT) to compute the NEXAFS spectra of the open- and closed-shell metalloporphyrins CoTPP and ZnTPP as well as the free-base 2HTPP in realistic nonplanar conformations. Using Becke's well-known half-and-half hybrid functional, the computed core excitation spectra are mostly in good agreement with the experimental data in the low-energy region below the appropriate ionization threshold. To make these calculations feasible, we apply a new, simple scheme based on TDDFT using a modified single-particle input spectrum. This scheme is very easy to implement in standard codes and allows one to compute core excitation spectra at a similar cost as ordinary UV/vis spectra even for larger molecules. We employ these calculations for a detailed assignment of the NEXAFS spectra including subtle shifts in certain peaks of the N 1s spectra, which depend on the central coordination of the TPP ligand. We furthermore assign the observed NEXAFS resonances to the individual molecular subunits of the investigated TPP molecules.

  1. Radial electric field studies in the plasma edge of ASDEX upgrade

    International Nuclear Information System (INIS)

    Viezzer, Eleonora

    2012-01-01

    In magnetically confined fusion plasmas, edge transport barriers (ETBs) are formed during the transition from a highly turbulent state (low confinement regime, L-mode) to a high energy confinement regime (H-mode) with reduced turbulence and transport. The performance of an H-mode fusion plasma is highly dependent on the strength of the ETB which extends typically over the outermost 5% of the confined plasma. The formation of the ETB is strongly connected to the existence of a sheared plasma flow perpendicular to the magnetic field caused by a local radial electric field E r . The gradients in E r and the accompanying E x B velocity shear play a fundamental role in edge turbulence suppression, transport barrier formation and the transition to H-mode. Thus, the interplay between macroscopic flows and transport at the plasma edge is of crucial importance to understanding plasma confinement and stability. The work presented in this thesis is based on charge exchange recombination spectroscopy (CXRS) measurements performed at the plasma edge of the ASDEX Upgrade (AUG) tokamak. During this thesis new high-resolution CXRS diagnostics were installed at the outboard and inboard miplane of AUG, which provide measurements of the temperature, density and flows of the observed species. From these measurements the radial electric field can be directly determined via the radial force balance equation. The new CXRS measurements, combined with the other edge diagnostics available at AUG, allow for an unprecedented, high-accuracy localization (2-3 mm) of the E r profile. The radial electric field has been derived from charge exchange spectra measured on different impurity species including He 2+ , B 5+ , C 6+ and Ne 10+ . The resulting E r profiles are found to be identical within the uncertainties regardless of the impurity species used, thus demonstrating the validity of the diagnostic technique. Inside the ETB the E r profile forms a deep, negative (i.e. directed towards the

  2. The fusion code XGC: Enabling kinetic study of multi-scale edge turbulent transport in ITER

    Energy Technology Data Exchange (ETDEWEB)

    D' Azevedo, Eduardo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abbott, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koskela, Tuomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Worley, Patrick [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ku, Seung-Hoe [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ethier, Stephane [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Yoon, Eisung [Rensselaer Polytechnic Inst., Troy, NY (United States); Shephard, Mark [Rensselaer Polytechnic Inst., Troy, NY (United States); Hager, Robert [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lang, Jianying [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Intel Corporation, Santa Clara, CA (United States); Choi, Jong [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Podhorszki, Norbert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Klasky, Scott [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Parashar, Manish [Rutgers Univ., Piscataway, NJ (United States); Chang, Choong-Seock [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2017-01-01

    The XGC fusion gyrokinetic code combines state-of-the-art, portable computational and algorithmic technologies to enable complicated multiscale simulations of turbulence and transport dynamics in ITER edge plasma on the largest US open-science computer, the CRAY XK7 Titan, at its maximal heterogeneous capability, which have not been possible before due to a factor of over 10 shortage in the time-to-solution for less than 5 days of wall-clock time for one physics case. Frontier techniques such as nested OpenMP parallelism, adaptive parallel I/O, staging I/O and data reduction using dynamic and asynchronous applications interactions, dynamic repartitioning.

  3. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    International Nuclear Information System (INIS)

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-01-01

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs

  4. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M. W. [DESY (Deutsches Elektronen-Synchrotron), FS-PEX, Notkestrasse 85, 22607 Hamburg (Germany); Yiu, Y. M., E-mail: yyiu@uwo.ca; Sham, T. K. [Department of Chemistry, University of Western Ontario, London, ON N6A5B7 (Canada); Ward, M. J. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Liu, L. [Institute of Functional Nano and Soft Materials (FUNSOM) and Soochow University-Western University Center for Synchrotron Radiation Research, Soochow University, Suzhou, Jiangsu, 215123 (China); Hu, Y. [Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N2V3 (Canada); Zapien, J. A. [Center Of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Liu, Yingkai [Institute of Physics and Electronic Information, Yunnan Normal University, Kunming, Yunnan, 650500 (China)

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  5. Cell Structure Study.

    Science.gov (United States)

    Ekstrom, James V.

    2000-01-01

    Presents an activity in which students use microscopes and digital images to examine Elodea, a fresh water plant, before and after the process of plasmolysis, identify plant cellular structures before and after plasmolysis, and calculate the size of the plant's vacuole. (ASK)

  6. Control of the magnetic topology and plasma exhaust in the edge region of Wendelstein 7-X. A numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Hoelbe, Hauke

    2016-02-15

    detail. In this thesis, state-of-the-art codes are used to analyze this previously proposed mitigation strategy; they are also used to develop several alternative mitigation schemes, which may in the end be advantageous. The work performed here shows not only that it is conceivable to solve this already identified problem in new and arguably better ways but also that the W7-X coil set has enough degrees of freedom that many important long-pulse plasma e.ects can be e.ectively mimicked in short-pulse operation. This opens up a rich research program in the early phases of operation and may therefore lead to a significant acceleration of the scientific program to control and optimize the divertor operation in W7-X. The main scientific challenge for the island divertor operation in W7-X is that, since the divertor geometry is now fixed, the magnetic field structure must be adjusted to the divertor geometry, or additional plasma-facing components must be manufactured and installed. Well before this thesis work was done, such additional plasma-facing components were proposed. These are called scraper elements (SEs). As a part of this work, computer simulations were performed in order to obtain a better knowledge base regarding the SEs. To analyze the e.ect of the SE, edge plasma physics simulation code EMC3-Eirene, was used, in combination with state-of-the-art magneto hydrodynamic (MHD) equilibrium codes. This combination was computationally non-trivial and new, and it has led to important insights. One main result of this study is that the SEs significantly reduce the particle exhaust capabilities in steady state operation; this is a concern for W7-X. To test and further quantify this deleterious effect, physics experiments with a prototype SE should be performed as soon as possible, ideally in the first operation campaigns before the approximately two-year break needed to complete W7-X for steady-state operation. In this first operation phase, however, the necessary

  7. Control of the magnetic topology and plasma exhaust in the edge region of Wendelstein 7-X. A numerical study

    International Nuclear Information System (INIS)

    Hoelbe, Hauke

    2016-01-01

    detail. In this thesis, state-of-the-art codes are used to analyze this previously proposed mitigation strategy; they are also used to develop several alternative mitigation schemes, which may in the end be advantageous. The work performed here shows not only that it is conceivable to solve this already identified problem in new and arguably better ways but also that the W7-X coil set has enough degrees of freedom that many important long-pulse plasma e.ects can be e.ectively mimicked in short-pulse operation. This opens up a rich research program in the early phases of operation and may therefore lead to a significant acceleration of the scientific program to control and optimize the divertor operation in W7-X. The main scientific challenge for the island divertor operation in W7-X is that, since the divertor geometry is now fixed, the magnetic field structure must be adjusted to the divertor geometry, or additional plasma-facing components must be manufactured and installed. Well before this thesis work was done, such additional plasma-facing components were proposed. These are called scraper elements (SEs). As a part of this work, computer simulations were performed in order to obtain a better knowledge base regarding the SEs. To analyze the e.ect of the SE, edge plasma physics simulation code EMC3-Eirene, was used, in combination with state-of-the-art magneto hydrodynamic (MHD) equilibrium codes. This combination was computationally non-trivial and new, and it has led to important insights. One main result of this study is that the SEs significantly reduce the particle exhaust capabilities in steady state operation; this is a concern for W7-X. To test and further quantify this deleterious effect, physics experiments with a prototype SE should be performed as soon as possible, ideally in the first operation campaigns before the approximately two-year break needed to complete W7-X for steady-state operation. In this first operation phase, however, the necessary

  8. PIV Study on Flow around Leading-Edge Slat of 30P30N Airfoil

    Science.gov (United States)

    Ando, Ryosuke; Onishi, Yusaku; Sakakibara, Jun

    2017-11-01

    We measured flow velocity distribution around leading-edge slat using PIV. Simultaneously, noise measurement using microphone was also performed. A leading-edge slat and main wing model having a chord length of 160 mm was placed in the tunnel with free stream velocity of about 26m/s and chord Reynolds number of 2.8 x 105. Angle of attack was changed from 4 degrees to 10 degrees at two degree intervals. In this experiment, we investigated the relationship between the unsteady flow condition and the noise. At 4 degrees in the angle of attack, vortices shedding from the slat cusp were moved to the downstream. At 6 degrees or more, flow velocity distributions show that vortices were reattached on the slat lower surface and the flow in the slat cove recirculated. In FFT analysis of noise measurement, at 6 degrees in the angle of attack, there were some peaks on low frequency area and dominant peak on high frequency area was found. At 8 degrees or more, there were also some peaks on low frequency area. But dominant peak on high frequency area disappeared.

  9. Band-Edge Exciton Fine Structure and Recombination Dynamics in InP/ZnS Colloidal Nanocrystals.

    Science.gov (United States)

    Biadala, Louis; Siebers, Benjamin; Beyazit, Yasin; Tessier, Mickaël D; Dupont, Dorian; Hens, Zeger; Yakovlev, Dmitri R; Bayer, Manfred

    2016-03-22

    We report on a temperature-, time-, and spectrally resolved study of the photoluminescence of type-I InP/ZnS colloidal nanocrystals with varying core size. By studying the exciton recombination dynamics we assess the exciton fine structure in these systems. In addition to the typical bright-dark doublet, the photoluminescence stems from an upper bright state in spite of its large energy splitting (∼100 meV). This striking observation results from dramatically lengthened thermalization processes among the fine structure levels and points to optical-phonon bottleneck effects in InP/ZnS nanocrystals. Furthermore, our data show that the radiative recombination of the dark exciton scales linearly with the bright-dark energy splitting for CdSe and InP nanocrystals. This finding strongly suggests a universal dangling bonds-assisted recombination of the dark exciton in colloidal nanostructures.

  10. Mn L2,3-edge X-ray absorption spectroscopic studies on charge-discharge mechanism of Li2MnO3

    International Nuclear Information System (INIS)

    Kubobuchi, Kei; Mogi, Masato; Imai, Hideto; Ikeno, Hidekazu; Tanaka, Isao; Mizoguchi, Teruyasu

    2014-01-01

    The redox reaction of Mn in Li 2 MnO 3 was studied by X-ray absorption spectroscopy and ab initio multiplet calculation. Associated with the de-intercalation of Li-ion, small but clear spectral changes were observed in Mn-L 2,3 X-ray absorption near edge structure (XANES). The systematic ab initio multiplet calculations of Mn-L 2,3 XANES revealed that the spectral changes in the experiment could not simply be ascribed to the change of the valency from Mn 4+ to Mn 5+ but can be explained well by the changes of local atomic structures around Mn 4+ due to the Li de-intercalation. Our results suggest that the electronic state of oxygen should change during charging in Li 2 MnO 3

  11. Living edge

    DEFF Research Database (Denmark)

    Earon, Ofri

    2014-01-01

    was originally introduced to enhance indoor qualities including light and view. Throughout the paper, it is argued that these ecological motives have grown to architectural and urban dimensions. The paper analyzes the characteristics and potentials of these dimensions and their interconnections. The paper...... on the ground level, but there is a lack of recognition in the significance of communicative characters as well at the higher part of the edge. The city’s planning approach is “Consider urban life before urban space. Consider urban space before buildings” This urban strategy neglects the possible architectural...... contribution to the street atmosphere and its effect on urban life. Bay balcony has been a common architectural element in Copenhagen’s residential buildings, since the end of the twenties. It is a domestic border with an architectural thickness combining window, door, windowsill and balcony. The bay balcony...

  12. Structural studies on lipoprotein lipase

    International Nuclear Information System (INIS)

    Socorro, L.

    1985-01-01

    The structure of lipoprotein lipase is not known. The lack of information on its primary sequence has been due to the inability of preparing it in homogeneous and stable form. This research has focused on the structural characterization of lipoprotein lipase. The first approach taken was to develop a purification method using bovine milk and affinity chromatography on heparin-Sepharose. The protein obtained was a heterogeneous peak with the activity shifted towards the trailing edge fractions. These fractions only presented a 55 Kdalton band on polyacrylamide gel electrophoresis. Monoclonal antibodies against this band detected an endogenous, phenyl methane sulfonyl fluoride-sensitive protease responsible for the presence of lower molecular weight fragments. The second approach was to label the lipoprotein lipase with a radioactive, active site, directed probe. After incubation and affinity chromatography a complex [ 3 H]inhibitor enzyme was isolated with a stoichiometry of 1.00 +/- 0.2. The complex was digested with CNBr and the insoluble peptides at low ionic strength (>90% [ 3 H]dpm) were used for further purification. Differential extraction of the [ 3 H]-peptide, digestion with S. aureus V8 protease, and high performance liquid chromatography yielded a hexapeptide with a composition consistent with the consensus sequence of the active site peptides of many serine-esterase. This and the kinetic data imply this being the mechanism of action for lipoprotein lipase

  13. CO2 fluxes near a forest edge

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Leclerc, Monique Y.; Zhang, Gensheng

    2008-01-01

    In contrast with recent advances on the dynamics of the flow at a forest edge, few studies have considered its role on scalar transport and, in particular, on CO2 transfer. The present study addresses the influence of the abrupt roughness change on forest atmosphere CO2 exchange and contrasts...... as a function of both sources/sinks distribution and the vertical structure of the canopy. Results suggest that the ground source plays a major role in the formation of wave-like vertical CO2 flux behavior downwind of a forest edge, despite the fact that the contribution of foliage sources/sinks changes...

  14. Resistance probe for energetic particle dosimetry with applications for plasma edge studies

    International Nuclear Information System (INIS)

    Wampler, W.R.

    1982-01-01

    Changes in the electrical resistance of thin carbon films caused by implantation with hydrogen, deuterium, and carbon ions were measured for various incident energies and for particle fluences in the range from 10 12 to 10 17 at./cm 2 . At low fluences the resistivity change is found to be proportional to the displacement damage caused by the incident particles. A model is presented which can be used to calculate the resistance change which is in good agreement with the measurements. It is proposed that by measuring the resistance change for carbon films exposed to the edge of magnetically confined plasmas the energy and the flux of incident ions and neutral atoms may be determined

  15. Study of an edge transport barrier by Langmuir probes in the compact helical system

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, M [Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8603 (Japan); Toi, K [National Institute of Fusion Science, Toki 509-5292 (Japan); Nagaoka, K [National Institute of Fusion Science, Toki 509-5292 (Japan); Suzuki, C [National Institute of Fusion Science, Toki 509-5292 (Japan); Minami, T [National Institute of Fusion Science, Toki 509-5292 (Japan); Akiyama, T [National Institute of Fusion Science, Toki 509-5292 (Japan); Isobe, M [National Institute of Fusion Science, Toki 509-5292 (Japan); Yoshimura, Y [National Institute of Fusion Science, Toki 509-5292 (Japan); Nishimura, S [National Institute of Fusion Science, Toki 509-5292 (Japan); Shimizu, A [National Institute of Fusion Science, Toki 509-5292 (Japan); Takahashi, C [National Institute of Fusion Science, Toki 509-5292 (Japan); Matsuoka, K [National Institute of Fusion Science, Toki 509-5292 (Japan); Okamura, S [National Institute of Fusion Science, Toki 509-5292 (Japan)

    2006-05-15

    The edge transport barrier (ETB) produced by the L-H transition was measured by a triple Langmuir probe (LP) at two toroidal sections of the compact helical system (CHS), of which diagnostic method has good time and spatial resolutions. The radial profiles of electron density (n{sub e}), electron temperature (T{sub e}) and space potential (V{sub s}) in the ETB region have different shapes at two different toroidal sections. These profiles are deformed inside the ETB region at one location and are formed with rather smooth variations at the other. These deformations gradually disappear in the deep H-phase (after {approx}15 ms from the transition) and the profiles inside the ETB become similar at both sections. The deformation seems linked to the presence of a non-rotating magnetic island at the rational surface of the rotational transform {iota}/2{pi} = 1.

  16. Attenuation studies near K-absorption edges using Compton scattered 241Am gamma rays

    International Nuclear Information System (INIS)

    Abdullah, K.K.; Ramachandran, N.; Karunakaran Nair, K.; Babu, B.R.S.; Joseph, Antony; Thomas, Rajive; Varier, K.M.

    2008-01-01

    We have carried out photon attenuation measurements at several energies in the range from 49.38 keV to 57.96 keV around the K-absorption edges of the rare earth elements Sm, Eu, Gd, Tb, Dy and Er using 59.54 keV gamma rays from 241 Am source after Compton scattering from an aluminium target. Pellets of oxides of the rare earth elements were chosen as mixture absorbers in these investigations. A narrow beam good geometry set-up was used for the attenuation measurements. The scattered gamma rays were detected by an HPGe detector. The results are consistent with theoretical values derived from the XCOM package. (author)

  17. Topographic and spectroscopic characterization of electronic edge states in CVD grown graphene nanoribbons.

    Science.gov (United States)

    Pan, Minghu; Girão, E Costa; Jia, Xiaoting; Bhaviripudi, Sreekar; Li, Qing; Kong, Jing; Meunier, V; Dresselhaus, Mildred S

    2012-04-11

    We used scanning tunneling microscopy and spectroscopy (STM/S) techniques to analyze the relationships between the edge shapes and the electronic structures in as-grown chemical vapor deposition (CVD) graphene nanoribbons (GNRs). A rich variety of single-layered graphene nanoribbons exhibiting a width of several to 100 nm and up to 1 μm long were studied. High-resolution STM images highlight highly crystalline nanoribbon structures with well-defined and clean edges. Theoretical calculations indicate clear spin-split edge states induced by electron-electron Coulomb repulsion. The edge defects can significantly modify these edge states, and different edge structures for both sides of a single ribbon produce asymmetric electronic edge states, which reflect the more realistic features of CVD grown GNRs. Three structural models are proposed and analyzed to explain the observations. By comparing the models with an atomic resolution image at the edge, a pristine (2,1) structure was ruled out in favor of a reconstructed edge structure composed of 5-7 member rings, showing a better match with experimental results, and thereby suggesting the possibility of a defective morphology at the edge of CVD grown nanoribbons. © 2012 American Chemical Society

  18. Edge localized linear ideal magnetohydrodynamic instability studies in an extended-magnetohydrodynamic code

    International Nuclear Information System (INIS)

    Burke, B. J.; Kruger, S. E.; Hegna, C. C.; Zhu, P.; Snyder, P. B.; Sovinec, C. R.; Howell, E. C.

    2010-01-01

    A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)], GATO [L. Bernard et al., Comput. Phys. Commun. 24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al.., J. Comput. Phys. 195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition to instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n=1-20). The results use the compressible MHD model and depend on a precise representation of 'ideal-like' and 'vacuumlike' or 'halo' regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 10 8 and 10 3 for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 10 5 , which is much larger than experimentally measured values using T e values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.

  19. Slim edge studies, design and quality control of planar ATLAS IBL pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Tobias

    2013-05-08

    One of the four large experiments at the LHC at CERN is the ATLAS detector, a multi purpose detector. Its pixel detector, composed of three layers, is the innermost part of the tracker. As it is closest to the interaction point, it represents a basic part of the track reconstruction. Besides the requested high resolution one main requirement is the radiation hardness. In the coming years the radiation damage will cause deteriorations of the detector performance. With the planned increase of the luminosity, especially after the upgrade to the High Luminosity LHC, this radiation damage will be even intensified. This circumstance necessitates a new pixel detector featuring improved radiation hard sensors and read-out chips. The present shutdown of the LHC is already utilized to insert an additional b-layer (IBL) into the existing ATLAS pixel detector. The current n-in-n pixel sensor design had to be adapted to the new read-out chip and the module specifications. The new stave geometry requests a reduction of the inactive sensor edge. In a prototype wafer production all modifications have been implemented. The sensor quality control was supervised which led to the decision of the final sensor thickness. In order to evaluate the performance of the sensor chip assemblies with an innovative slim edge design, they have been operated in test beam setups before and after irradiation. Furthermore, the quality control of the planar IBL sensor wafer production was supervised from the stage of wafer delivery to that before the flip chip process to ensure a sufficient amount of functional sensors for the module production.

  20. Study of effect of chromium on titanium dioxide phase transformation ...

    Indian Academy of Sciences (India)

    Administrator

    Study of effect of chromium on titanium dioxide phase transformation by A Bellifa (pp 669–677). Figure S1. Structural ... 4 × 1⋅9486; 2 × 1⋅9799. Octahedral packing. 2 × 2 shared edges. 8 free edges. 3 shared edges. 4 corners. 5 free edges. 2 parallel shared edges. 2 corners. 10 free edges. O. O. Coordination scheme.

  1. Radial electric field studies in the plasma edge of ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Viezzer, Eleonora

    2012-12-18

    In magnetically confined fusion plasmas, edge transport barriers (ETBs) are formed during the transition from a highly turbulent state (low confinement regime, L-mode) to a high energy confinement regime (H-mode) with reduced turbulence and transport. The performance of an H-mode fusion plasma is highly dependent on the strength of the ETB which extends typically over the outermost 5% of the confined plasma. The formation of the ETB is strongly connected to the existence of a sheared plasma flow perpendicular to the magnetic field caused by a local radial electric field E{sub r}. The gradients in E{sub r} and the accompanying E x B velocity shear play a fundamental role in edge turbulence suppression, transport barrier formation and the transition to H-mode. Thus, the interplay between macroscopic flows and transport at the plasma edge is of crucial importance to understanding plasma confinement and stability. The work presented in this thesis is based on charge exchange recombination spectroscopy (CXRS) measurements performed at the plasma edge of the ASDEX Upgrade (AUG) tokamak. During this thesis new high-resolution CXRS diagnostics were installed at the outboard and inboard miplane of AUG, which provide measurements of the temperature, density and flows of the observed species. From these measurements the radial electric field can be directly determined via the radial force balance equation. The new CXRS measurements, combined with the other edge diagnostics available at AUG, allow for an unprecedented, high-accuracy localization (2-3 mm) of the E{sub r} profile. The radial electric field has been derived from charge exchange spectra measured on different impurity species including He{sup 2+}, B{sup 5+}, C{sup 6+} and Ne{sup 10+}. The resulting E{sub r} profiles are found to be identical within the uncertainties regardless of the impurity species used, thus demonstrating the validity of the diagnostic technique. Inside the ETB the E{sub r} profile forms a deep

  2. X-ray absorption fine structure (XAFS) studies of cobalt silicide thin films

    International Nuclear Information System (INIS)

    Naftel, S.J.; Coulthard, I.; Hu, Y.; Sham, T.K.; Zinke-Allmang, M.

    1998-01-01

    Cobalt silicide thin films, prepared on Si(100) wafers, have been studied by X-ray absorption near edge structures (XANES) at the Si K-, L 2,3 - and Co K-edges utilizing both total electron (TEY) and fluorescence yield (FLY) detection as well as extended X-ray absorption fine structure (EXAFS) at the Co K-edge. Samples made using DC sputter deposition on clean Si surfaces and MBE were studied along with a bulk CoSi 2 sample. XANES and EXAFS provide information about the electronic structure and morphology of the films. It was found that the films studied have essentially the same structure as bulk CoSi 2 . Both the spectroscopy and materials characterization aspects of XAFS (X-ray absorption fine structures) are discussed

  3. Effect of magnetic boundary on edge plasma profiles studied using probe measurements in EXTRAP T2R

    OpenAIRE

    Moustaphawi, Hawra

    2012-01-01

    In this Master’s thesis project, several experiments are conducted under three different conditions in order to study their effect on the edge plasma profiles. In the first case, the standard case, there is no external interference and the plasma is studied under normal lab environments. In the second case, the plasma position inside the EXTRAP T2R device is changed by a few millimeters and in the third case a magnetic boundary is inserted into the experiment. For each set of the experiment, ...

  4. Theory of edge radiation

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Kocharyan, V.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2008-08-15

    We formulate a complete theory of Edge Radiation based on a novel method relying on Fourier Optics techniques. Similar types of radiation like Transition UndulatorRadiation are addressed in the framework of the same formalism. Special attention is payed in discussing the validity of approximations upon which the theory is built. Our study makes consistent use of both similarity techniques and comparisons with numerical results from simulation. We discuss both near and far zone. Physical understanding of many asymptotes is discussed. Based on the solution of the field equation with a tensor Green's function technique, we also discuss an analytical model to describe the presence of a vacuum chamber. In particular, explicit calculations for a circular vacuum chamber are reported. Finally, we consider the use of Edge Radiation as a tool for electron beam diagnostics. We discuss Coherent Edge Radiation, Extraction of Edge Radiation by a mirror, and other issues becoming important at high electron energy and long radiation wavelength. Based on this work we also study the impact of Edge Radiation on XFEL setups and we discuss recent results. (orig.)

  5. SEARCHING FOR URBAN PATTERNS; AN ASSESSMENT OF HISTORIC EDGES AND ITS SURROUNDING CONTEXT: HISTORIC CAIRO AS A CASE STUDY

    OpenAIRE

    Nabil Mohareb

    2016-01-01

    This paper analyzes the urban edges of historic cities. Managing these edges would enhance the success of any intervention projects inside the historic fabric. The paper develops and tests a method of analytical assessment framework that is applicable for quantitative analysis within an urban edge. It is capable of measuring micro and macro levels of analysis of historic urban edges with reference to their spatial configuration. In addition, the paper searches for repetitive spatial configura...

  6. Understanding the edge effect in wetting: a thermodynamic approach.

    Science.gov (United States)

    Fang, Guoping; Amirfazli, A

    2012-06-26

    Edge effect is known to hinder spreading of a sessile drop. However, the underlying thermodynamic mechanisms responsible for the edge effect still is not well-understood. In this study, a free energy model has been developed to investigate the energetic state of drops on a single pillar (from upright frustum to inverted frustum geometries). An analysis of drop free energy levels before and after crossing the edge allows us to understand the thermodynamic origin of the edge effect. In particular, four wetting cases for a drop on a single pillar with different edge angles have been determined by understanding the characteristics of FE plots. A wetting map describing the four wetting cases is given in terms of edge angle and intrinsic contact angle. The results show that the free energy barrier observed near the edge plays an important role in determining the drop states, i.e., (1) stable or metastable drop states at the pillar's edge, and (2) drop collapse by liquid spilling over the edge completely or staying at an intermediate sidewall position of the pillar. This thermodynamic model presents an energetic framework to describe the functioning of the so-called "re-entrant" structures. Results show good consistency with the literature and expand the current understanding of Gibbs' inequality condition.

  7. Bimagnon studies in cuprates with resonant inelastic x-ray scattering at the O K edge. I. Assessment on La2CuO4 and comparison with the excitation at Cu L3 and Cu K edges

    Science.gov (United States)

    Bisogni, V.; Simonelli, L.; Ament, L. J. P.; Forte, F.; Moretti Sala, M.; Minola, M.; Huotari, S.; van den Brink, J.; Ghiringhelli, G.; Brookes, N. B.; Braicovich, L.

    2012-06-01

    We assess the capabilities of magnetic resonant inelastic x-ray scattering (RIXS) at the O K edge in undoped cuprates by taking La2CuO4 as a benchmark case, based on a series of RIXS measurements that we present here. By combining the experimental results with basic theory we point out the fingerprints of bimagnon excitation in the O K edge RIXS spectra. These are a dominant peak around 450 meV, the almost complete absence of dispersion both with π and σ polarization, and the almost constant intensity vs the transferred momentum with σ polarization. This behavior is quite different from Cu L3 edge RIXS giving a strongly dispersing bimagnon tending to zero at the center of the Brillouin zone. This is clearly shown by RIXS measurements at the Cu L3 edge that we present. The Cu L3 bimagnon spectra and those at the Cu K edge—both from the literature and from our data—however, have the same shape. These similarities and differences are understood in terms of different sampling of the bimagnon continuum. This panorama points out the unique possibilities offered by O K RIXS in the study of magnetic excitations in cuprates near the center of the BZ.

  8. Electrosynthesis of ZnO nanorods and nanotowers: Morphology and X-ray Absorption Near Edge Spectroscopy studies

    Science.gov (United States)

    Sigircik, Gokmen; Erken, Ozge; Tuken, Tunc; Gumus, Cebrail; Ozkendir, Osman M.; Ufuktepe, Yuksel

    2015-06-01

    Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. The resulting opto-electronic properties were interpreted extensively, using X-ray diffraction (XRD), X-ray Absorption Near Edge Spectroscopy (XANES), field emission scanning electron microscopy (FE-SEM), UV-Visible spectroscopy and four probe techniques. The ZnO deposition is mass transport controlled process and the interaction of chloride ions with the surface has great influence on diffusion kinetics, considering the substantial species (Zn2+ and OH-) involved in the construction of ZnO film. This effect does not change major lattice parameters, as shown with detailed analysis of XRD data. However, the texture coefficient (Tc) (0 0 2) value is higher in presence of chloride ions containing synthesis solution which gave vertically aligned, well defined and uniformly dispersed nanorods structure. The calculated Eg values are in the range 3.28-3.41 eV and 3.22-3.31 eV for ZnO nanorods and nanotowers synthesized at different deposition periods, respectively. Furthermore, the charge mobility values regarding the deposition periods were measured to be in the ranges from 130.4 to 449.2 cm2 V-1 s-1 and 126.2 to 204.7 cm2 V-1 s-1 for nanorods and nanotowers, respectively. From XANES results, it was shown that the Zn K-edge spectrum is dominated by the transition of Zn 1s core electrons into the unoccupied Zn 4p states of the conduction band. Comparing the rod and tower nano-structured ZnO thin films, the excitation behavior of valence band electrons is different. Moreover, the density states of Zn 4p are higher for ZnO nanorods.

  9. Impact of screw and edge dislocations on the thermal conductivity of individual nanowires and bulk GaN: a molecular dynamics study.

    Science.gov (United States)

    Termentzidis, Konstantinos; Isaiev, Mykola; Salnikova, Anastasiia; Belabbas, Imad; Lacroix, David; Kioseoglou, Joseph

    2018-02-14

    We report the thermal transport properties of wurtzite GaN in the presence of dislocations using molecular dynamics simulations. A variety of isolated dislocations in a nanowire configuration are analyzed and found to considerably reduce the thermal conductivity while impacting its temperature dependence in a different manner. Isolated screw dislocations reduce the thermal conductivity by a factor of two, while the influence of edge dislocations is less pronounced. The relative reduction of thermal conductivity is correlated with the strain energy of each of the five studied types of dislocations and the nature of the bonds around the dislocation core. The temperature dependence of the thermal conductivity follows a physical law described by a T -1 variation in combination with an exponent factor that depends on the material's nature, type and the structural characteristics of the dislocation core. Furthermore, the impact of the dislocation density on the thermal conductivity of bulk GaN is examined. The variation and absolute values of the total thermal conductivity as a function of the dislocation density are similar for defected systems with both screw and edge dislocations. Nevertheless, we reveal that the thermal conductivity tensors along the parallel and perpendicular directions to the dislocation lines are different. The discrepancy of the anisotropy of the thermal conductivity grows with increasing density of dislocations and it is more pronounced for the systems with edge dislocations. Besides the fundamental insights of the presented results, these could also be used for the identification of the type of dislocations when one experimentally obtains the evolution of thermal conductivity with temperature since each type of dislocation has a different signature, or one could extract the density of dislocations with a simple measurement of thermal anisotropy.

  10. Resonant inelastic x-ray scattering on iso-C{sub 2}H{sub 2}Cl{sub 2} around the chlorine K-edge: Structural and dynamical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Kawerk, Elie, E-mail: eliekawerk@hotmail.com, E-mail: ekawerk@units.it [CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris (France); Sorbonne Universités, UPMC Université Paris 06, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris (France); Laboratoire de Physique Appliquée, Faculté des Sciences II, Université Libanaise, 90656 Jdeidet el Metn, Liban (Libya); Dipartimento di Scienze Chimiche, Università di Trieste, Via L. Giorgieri 1, I-34127 Trieste (Italy); Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Simon, Marc [CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris (France); Sorbonne Universités, UPMC Université Paris 06, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris (France); Piancastelli, Maria Novella [CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris (France); Sorbonne Universités, UPMC Université Paris 06, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris (France); Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); and others

    2014-10-14

    We report a theoretical and experimental study of the high resolution resonant K{sub α} X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K{sub α} emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.

  11. Wing Leading Edge Concepts for Noise Reduction

    Science.gov (United States)

    Shmilovich, Arvin; Yadlin, Yoram; Pitera, David M.

    2010-01-01

    This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.

  12. Tool life of the edges coated with the c-BN+h-BN coatings with different structures during hard machinable steel machining

    Directory of Open Access Journals (Sweden)

    Kupczyk, M.

    2005-12-01

    Full Text Available In the presented paper the experimental results concerning the functional quality (durability during steel machining of thin, superhard coatings produced on the cutting edges are described. Differences among mentioned properties of coatings mainly result from a coating structure. But the structure of coatings results from deposition parameters Superhard boron nitride coatings were deposited on insert cutting edges made of cemented carbides by the pulse-plasma method applying different values of the discharge voltage. The comparative investigations of mentioned coatings have been concerned of tool life of edges during hard machinable material machining (nitriding steel hardened in oil. In these investigations for the purpose of additional increase of coatings adhesion to substrates an interfacial layers were applied.

    En este trabajo se describen los resultados experimentales referentes a la calidad funcional (durabilidad durante el mecanizado del acero de recubrimientos delgados, de elevada dureza del filo de corte. Las diferencias en las propiedades de los recubrimientos se deben, principalmente, a la estructura del recubrimiento. No obstante, la estructura del recubrimiento está relacionada con los parámetros de la deposición. Recubrimientos de nitruro de boro de elevada dureza se depositaron sobre filos de corte insertados, fabricados con carburos cementados mediante el método de pulsos de plasma aplicando diferentes valores de voltaje de descarga. Las investigaciones comparativas de los mencionados recubrimientos han relacionado la vida del filo de la herramienta durante el mecanizado del material (acero nitrurado endurecido en aceite. En estas investigaciones se aplicaron capas interfaciales para aumentar la adherencia del recubrimiento.

  13. L-mode radiative plasma edge studies for model validation in ASDEX Upgrade and JET

    Energy Technology Data Exchange (ETDEWEB)

    Aho-Mantila, L., E-mail: leena.aho-mantila@vtt.fi [VTT Technical Research Centre of Finland, FI-02044 VTT (Finland); Bernert, M. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Coenen, J.W. [Energie- und Klimaforschung IEK-4, FZJ, EURATOM Association, TEC, 52425 Jülich (Germany); Fischer, R. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Lehnen, M. [Energie- und Klimaforschung IEK-4, FZJ, EURATOM Association, TEC, 52425 Jülich (Germany); Lowry, C. [EFDA JET CSU, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Marsen, S. [Max-Planck-Institut für Plasmaphysik, Teilinsitut Greifswald, D-17491 Greifswald (Germany); McCormick, K.; Müller, H.W.; Sieglin, B. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Stamp, M.F. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Wischmeier, M. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Bonnin, X. [LSPM, CNRS, Université Paris 13, F-93430 Villetaneuse (France); Coster, D.P. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Reiter, D.; Brezinsek, S. [Energie- und Klimaforschung IEK-4, FZJ, EURATOM Association, TEC, 52425 Jülich (Germany)

    2013-07-15

    The presently favoured option for reactor power handling combines metallic plasma-facing components and impurity seeding to achieve highly radiative scrape-off layer and divertor plasmas. It is uncertain whether tolerable divertor power loads will be obtained in this scenario, necessitating the development of predictive modelling tools. L-mode experiments with N{sub 2} seeding have been conducted at both ASDEX Upgrade and JET for benchmarking the critically important impurity radiation models in edge fluid codes. In both machines, particle and power loads are observed to first reduce at the inner target, and only then at the outer target. The outer divertor cools down with increasing N seeding rate, evolving from low-recycling conditions to a regime with peak temperature of 8–10 eV in both devices. First SOLPS5.0 simulations of N{sub 2} seeding in ASDEX Upgrade geometry show a similar in–out asymmetry in the effect of impurity radiation when drifts are activated in the simulations.

  14. Study of Cutting Edge Temperature and Cutting Force of End Mill Tool in High Speed Machining

    Directory of Open Access Journals (Sweden)

    Kiprawi Mohammad Ashaari

    2017-01-01

    Full Text Available A wear of cutting tools during machining process is unavoidable due to the presence of frictional forces during removing process of unwanted material of workpiece. It is unavoidable but can be controlled at slower rate if the cutting speed is fixed at certain point in order to achieve optimum cutting conditions. The wear of cutting tools is closely related with the thermal deformations that occurred between the frictional contact point of cutting edge of cutting tool and workpiece. This research paper is focused on determinations of relationship among cutting temperature, cutting speed, cutting forces and radial depth of cutting parameters. The cutting temperature is determined by using the Indium Arsenide (InAs and Indium Antimonide (InSb photocells to measure infrared radiation that are emitted from cutting tools and cutting forces is determined by using dynamometer. The high speed machining process is done by end milling the outer surface of carbon steel. The signal from the photocell is digitally visualized in the digital oscilloscope. Based on the results, the cutting temperature increased as the radial depth and cutting speed increased. The cutting forces increased when radial depth increased but decreased when cutting speed is increased. The setup for calibration and discussion of the experiment will be explained in this paper.

  15. ATF [Advanced Toroidal Facility] edge plasma turbulence studies using a fast reciprocating Langmuir probe

    International Nuclear Information System (INIS)

    Uckan, T.; Hidalgo, C.; Bell, J.D.; Harris, J.H.; Dunlap, J.L.; Dyer, G.R.; Mioduszewski, P.K.; Wilgen, J.B.; Ritz, C.P.; Wootton, A.J.; Rhodes, T.L.; Carter, K.

    1990-01-01

    Electrostatic turbulence on the edge of the Advanced Torodial Facility (ATF) torsatron is investigated experimentally with a fast reciprocating Langmuir probe (FRLP) array. Initial measurements of plasma electron density n e and temperature T e and fluctuations in density (n e ) and plasma floating potential (φ f ) are made in ECH plasmas at 1 T. At the last closed flux surface (LCFS, r/bar a ∼1), T e ∼ 20--40 eV and n e ∼ 10 12 cm -3 for a line-averaged electron density bar n e = (3--6) x 10 12 cm -3 . Relative fluctuation levels, as the FRLP is moved into core plasma where T e > 20 eV, are n e /n e ∼ 5%, and e φ f /T e ∼ 2n e /n e about 2 cm inside the LCFS. The observed fluctuation spectra are broadband (40--300 kHz) with bar kρ s ≤ 0.1, where bar k is the wavenumber of the fluctuations and ρ s is the ion Larmor radius at the sound speed. The propagation direction of the fluctuations reverses to the electron diamagnetic direction around r/bar a ph ∼ v de ). The fluctuation-induced particle flux is comparable to fluxes estimated from the particle balance using the H α spectroscopic measurements. Many of the features seen in these experiments resemble the features of ohmically heated plasmas in the Texas Experimental Tokamak (TEXT). 17 refs., 10 figs

  16. Speciation of copper and zinc in size-fractionated atmospheric particulate matter using total reflection mode X-ray absorption near-edge structure spectrometry

    International Nuclear Information System (INIS)

    Osan, Janos; Meirer, Florian; Groma, Veronika; Toeroek, Szabina; Ingerle, Dieter; Streli, Christina; Pepponi, Giancarlo

    2010-01-01

    The health effects of aerosol depend on the size distribution and the chemical composition of the particles. Heavy metals of anthropogenic origin are bound to the fine aerosol fraction (PM 2.5 ). The composition and speciation of aerosol particles can be variable in time, due to the time-dependence of anthropogenic sources as well as meteorological conditions. Synchrotron-radiation total reflection X-ray fluorescence (SR-TXRF) provides very high sensitivity for characterization of atmospheric particulate matter. X-ray absorption near-edge structure (XANES) spectrometry in conjunction with TXRF detection can deliver speciation information on heavy metals in aerosol particles collected directly on the reflector surface. The suitability of TXRF-XANES for copper and zinc speciation in size-fractionated atmospheric particulate matter from a short sampling period is presented. For high size resolution analysis, atmospheric aerosol particles were collected at different urban and rural locations using a 7-stage May cascade impactor having adapted for sampling on Si wafers. The thin stripe geometry formed by the particulate matter deposited on the May-impactor plates is ideally suited to SR-TXRF. Capabilities of the combination of the May-impactor sampling and TXRF-XANES measurements at HASYLAB Beamline L to Cu and Zn speciation in size-fractionated atmospheric particulate matter are demonstrated. Information on Cu and Zn speciation could be performed for elemental concentrations as low as 140 pg/m 3 . The Cu and Zn speciation in the different size fraction was found to be very distinctive for samples of different origin. Zn and Cu chemical state typical for soils was detected only in the largest particles studied (2-4 μm fraction). The fine particles, however, contained the metals of interest in the sulfate and nitrate forms.

  17. Simulation study of CD variation caused by field edge effects and out-of-band radiation in EUVL

    Science.gov (United States)

    Gao, Weimin; Niroomand, Ardavan; Lorusso, Gian F.; Boone, Robert; Lucas, Kevin; Demmerle, Wolfgang

    2013-09-01

    Although extreme ultraviolet lithography (EUVL) remains a promising candidate for semiconductor device manufacturing of the 1x nm half pitch node and beyond, many technological burdens have to be overcome. The "field edge effect" in EUVL is one of them. The image border region of an EUV mask,also known as the "black border" (BB), reflects a few percent of the incident EUV light, resulting in a leakage of light into neighboring exposure fields, especially at the corner of the field where three adjacent exposures take place. This effect significantly impacts on CD uniformity (CDU) across the exposure field. To avoid this phenomenon, a light-shielding border is introduced by etching away the entire absorber and multi-layer (ML)at the image border region of the EUV mask. In this paper, we present a method of modeling the field edge effect (also called the BB effect) by using rigorous lithography simulation with a calibrated resist model. An additional "flare level" at the field edge is introduced on top of the exposure tool flare map to account for the BB effect. The parameters in this model include the reflectivity and the width of the BB, which are mainly determining the leakage of EUV light and its influence range, respectively. Another parameter is the transition width which represents the half shadow effect of the reticle masking blades. By setting the corresponding parameters, the simulation results match well the experimental results obtained at the imec's NXE:3100 EUV exposure tool. Moreover, these results indicate that the out-of-band (OoB) radiation also contributes to the CDU. Using simulation we can also determine the OoB effect rigorouslyusing the methodology of an "effective mask blank". The study in this paper demonstrates that the impact of BB and OoB effects on CDU can be well predicted by simulations.

  18. Boundaries in ground beetle (Coleoptera: Carabidae) and environmental variables at the edges of forest patches with residential developments

    OpenAIRE

    Davis, Doreen E.; Gagné, Sara A.

    2018-01-01

    Background Few studies of edge effects on wildlife objectively identify habitat edges or explore non-linear responses. In this paper, we build on ground beetle (Coleoptera: Carabidae) research that has begun to address these domains by using triangulation wombling to identify boundaries in beetle community structure and composition at the edges of forest patches with residential developments. We hypothesized that edges are characterized by boundaries in environmental variables that correspond...

  19. Electrosynthesis of ZnO nanorods and nanotowers: Morphology and X-ray Absorption Near Edge Spectroscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Sigircik, Gokmen, E-mail: gsigircik@cu.edu.tr [Chemistry Department, University of Cukurova, 01330 Adana (Turkey); Erken, Ozge [Department of Physics, Faculty Science and Letters, Adiyaman University, 02040 Adiyaman (Turkey); Tuken, Tunc [Chemistry Department, University of Cukurova, 01330 Adana (Turkey); Gumus, Cebrail [Physics Department, University of Cukurova, 01330 Adana (Turkey); Ozkendir, Osman M. [Department of Energy Systems Engineering Tarsus Technology Faculty, Mersin University, 33400 Tarsus (Turkey); Ufuktepe, Yuksel [Physics Department, University of Cukurova, 01330 Adana (Turkey)

    2015-06-15

    Highlights: • Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. • Uniform and well-defined ZnO nano-towers and rods have been obtained via electrochemical deposition. • The presence of chloride ions altered the nucleation rate of ZnO particles on ITO substrates and resulting crystallographic properties. • Comparing the rod and tower nano-structured ZnO thin films, the excitation behavior of valance band electrons is different. - Abstract: Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. The resulting opto-electronic properties were interpreted extensively, using X-ray diffraction (XRD), X-ray Absorption Near Edge Spectroscopy (XANES), field emission scanning electron microscopy (FE-SEM), UV-Visible spectroscopy and four probe techniques. The ZnO deposition is mass transport controlled process and the interaction of chloride ions with the surface has great influence on diffusion kinetics, considering the substantial species (Zn{sup 2+} and OH{sup −}) involved in the construction of ZnO film. This effect does not change major lattice parameters, as shown with detailed analysis of XRD data. However, the texture coefficient (T{sub c}) (0 0 2) value is higher in presence of chloride ions containing synthesis solution which gave vertically aligned, well defined and uniformly dispersed nanorods structure. The calculated E{sub g} values are in the range 3.28–3.41 eV and 3.22–3.31 eV for ZnO nanorods and nanotowers synthesized at different deposition periods, respectively. Furthermore, the charge mobility values regarding the deposition periods were measured to be in the ranges from 130.4 to 449.2 cm{sup 2} V{sup −1} s{sup −1} and 126.2 to 204.7 cm{sup 2} V{sup −1} s{sup −1} for nanorods and nanotowers, respectively. From XANES results, it was shown that the Zn K-edge

  20. Electrosynthesis of ZnO nanorods and nanotowers: Morphology and X-ray Absorption Near Edge Spectroscopy studies

    International Nuclear Information System (INIS)

    Sigircik, Gokmen; Erken, Ozge; Tuken, Tunc; Gumus, Cebrail; Ozkendir, Osman M.; Ufuktepe, Yuksel

    2015-01-01

    Highlights: • Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. • Uniform and well-defined ZnO nano-towers and rods have been obtained via electrochemical deposition. • The presence of chloride ions altered the nucleation rate of ZnO particles on ITO substrates and resulting crystallographic properties. • Comparing the rod and tower nano-structured ZnO thin films, the excitation behavior of valance band electrons is different. - Abstract: Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. The resulting opto-electronic properties were interpreted extensively, using X-ray diffraction (XRD), X-ray Absorption Near Edge Spectroscopy (XANES), field emission scanning electron microscopy (FE-SEM), UV-Visible spectroscopy and four probe techniques. The ZnO deposition is mass transport controlled process and the interaction of chloride ions with the surface has great influence on diffusion kinetics, considering the substantial species (Zn 2+ and OH − ) involved in the construction of ZnO film. This effect does not change major lattice parameters, as shown with detailed analysis of XRD data. However, the texture coefficient (T c ) (0 0 2) value is higher in presence of chloride ions containing synthesis solution which gave vertically aligned, well defined and uniformly dispersed nanorods structure. The calculated E g values are in the range 3.28–3.41 eV and 3.22–3.31 eV for ZnO nanorods and nanotowers synthesized at different deposition periods, respectively. Furthermore, the charge mobility values regarding the deposition periods were measured to be in the ranges from 130.4 to 449.2 cm 2 V −1 s −1 and 126.2 to 204.7 cm 2 V −1 s −1 for nanorods and nanotowers, respectively. From XANES results, it was shown that the Zn K-edge spectrum is dominated by the transition of Zn 1s core

  1. ATF edge plasma turbulence studies using a fast reciprocating Langmuir probe

    International Nuclear Information System (INIS)

    Uckan, T.; Hidalgo, C.; Bell, J.D.; Harris, J.H.; Dunlap, J.L.; Dyer, G.R.; Mioduszewski, P.K.; Wilgen, J.B.; Ritz, C.P.; Wootton, A.J.; Rhodes, T.L.; Carter, K.

    1991-01-01

    Electrostatic turbulence on the edge of the Advanced Toroidal Facility (ATF) torsatron is investigated experimentally with a fast reciprocating Langmuir probe (FRLP) array. Initial measurements of plasma electron density n e and temperature T e and fluctuations in density (n e ) and plasma floating potential (φ f ) are made in electron cyclotron heated plasmas at 1 T. At the last closed flux surface (LCFS, r√a ∼ 1), T e ∼ 20--40 eV and n e ∼ 10 12 cm -3 for a line-averaged electron density bar n e = (3--6) x 10 12 cm -3 . Relative fluctuation levels, as the FRLP is moved into core plasma where T e > 20 eV, are n e /n e ∼ 5% and eφ f /T e ∼ 2n e /n e about 2 cm inside the LCFS. The observed fluctuation spectra are broadband (40--300 kHz) with bar kρ s ≤ 0.1, where bar k is the wavenumber of the fluctuations and ρ s is the ion Larmor radius at the sound speed. The propagation direction of the fluctuations reverses to the electron diamagnetic direction around r√a ph ∼ v de ). The fluctuation-induced particle flux is comparable to fluxes estimated from the particle balance using the H α spectroscopic measurements. Many of the features seen in these experiments resemble the features of ohmically heated plasmas in the Texas Experimental Tokamak (TEXT). 18 refs., 10 figs

  2. X-ray absorption near-edge structure of hexagonal ternary phases in sputter-deposited TiAlN films

    Energy Technology Data Exchange (ETDEWEB)

    Gago, R., E-mail: rgago@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Soldera, F. [Department of Materials Science and Engineering, Saarland University, D-66123 Saarbruecken (Germany); Hübner, R.; Lehmann, J.; Munnik, F. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Vázquez, L. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Redondo-Cubero, A. [Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 2686-953 Sacavém (Portugal); Endrino, J.L. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Abengoa Research S.L., c/Energía Solar 1, Palmas Altas, E-41014 Seville (Spain)

    2013-06-05

    Highlights: ► Growth of ternary TiAlN films with nearly single-phase wurzite structure. ► Soft X-rays XANES measurements of ternary TiAlN films with wurzite structure. ► Identification of ternary TiAlN hexagonal phases by XANES. ► Correlation of XANES measurements with reported theoretical calculations. -- Abstract: Titanium aluminium nitride (TiAlN) coatings have been grown by reactive (Ar/N{sub 2}) direct-current magnetron sputtering from a Ti{sub 50}Al{sub 50} compound target. The film composition has been quantified by ion beam analysis showing the formation of Al-rich nitrides (Ti/Al ∼ 0.3), with stoichiometric films for N{sub 2} contents in the gas mixture equal or above ∼25%. The surface morphology of the films has been imaged by atomic force microscopy, showing very smooth surfaces with roughness values below 2 nm. X-ray and electron diffraction patterns reveal that the films are nanocrystalline with a wurzite (w) structure of lattice parameters larger (∼2.5%) than those for w-AlN. The lattice expansion correlates with the Ti/Al ratio in stoichiometric films, which suggests the incorporation of Ti into w-AlN. The atomic environments around Ti, Al and N sites have been extracted from the X-ray absorption near-edge structure (XANES) by recording the Ti2p, Al1s and N1s edges, respectively. The analysis of the XANES spectral lineshape and comparison with reported theoretical calculations confirm the formation of a ternary hexagonal phase.

  3. Ca and S K-edge XANES studies of calcite-acid mine water interactions

    International Nuclear Information System (INIS)

    Myneni, S.C.B.; Perera, R.C.C.

    1997-01-01

    Heavy metal-rich acidic waters (SO 4 2- , AsO 4 3- , SeO 4 2- , Fe 2+ , Fe 3+ , Al 3+ , Cu 2+ , Zn 2+ , Cd 2+ ) and related ochreous coatings are common around abandoned sulfide and coal mine sites. This is mainly caused by the natural weathering of pyrite (FeS 2 ), arsenopyrite (FeAsS), and other metal sulfide containing shales. Acid generation in the case of pyrite can be explained by a general reaction: FeS 2 + 3.5 O 2 + H 2 O ↔ Fe 2+ + SO 4 2- + 2H + . Also, these low pH waters interact with the soils, and mobilize their soluble elements. One of the common remediation strategies is to allow these acid waters to react with limestone (CaCO 3 -rich rock) and neutralize the pH and precipitate out soluble metals. Yet, the associated problem is the precipitation of Fe and Al oxides and hydroxy sulfate coatings on limestone surfaces, which block calcite reactive sites, and make them ineffective a few hours after initiation of treatment. The main objectives of this research are to examine: (1) the chemistry of limestone surface coatings, and (2) their toxic metal uptake and the conditions that inhibit their formation. Previous molecular studies using X-ray diffraction, and vibrational spectroscopy on limestone surface coatings (sampled from Athens, OH) indicate that the surface-most layer (the layer in contact with water) is composed of schwertmannite (Fe(III)-hydroxy sulfate) like phases. However, white, X-ray amorphous; Al-, sulfate- and carbonate-rich; and Ca-poor phases appeared at the interface between the limestone and the iron oxide coatings. The structure, morphology, and coordination chemistry of component major and trace elements of these white precipitate phases have not previously been examined

  4. Balancing the edge effects budget: bay scallop settlement and loss along a seagrass edge.

    Science.gov (United States)

    Carroll, John M; Furman, Bradley T; Tettelbach, Stephen T; Peterson, Bradley J

    2012-07-01

    Edge effects are a dominant subject in landscape ecology literature, yet they are highly variable and poorly understood. Often, the literature suggests simple models for edge effects-positive (enhancement at the edge), negative (enhancement at the interior), or no effect (neutral)--on a variety of metrics, including abundance, diversity, and mortality. In the marine realm, much of this work has focused on fragmented seagrass habitats due to their importance for a variety of commercially important species. In this study, the settlement, recruitment, and survival of bay scallops was investigated across a variety of seagrass patch treatments. By simultaneously collecting settlers (those viable larvae available to settle and metamorphose) and recruits (those settlers that survive some period of time, in this case, 6 weeks) on the same collectors, we were able to demonstrate a "balance" between positive and negative edge effects, resulting in a net neutral effect. Scallop settlement was significantly enhanced along seagrass edges, regardless of patch type while survival was elevated within patch interiors. However, recruitment (the net result of settlement and post-settlement loss) did not vary significantly from edge to center, representing a neutral effect. Further, results suggest that post-settlement loss, most likely due to predation, appears to be the dominant mechanism structuring scallop abundance, not patterns in settlement. These data illustrate the complexity of edge effects, and suggest that the metric used to investigate the effect (be it abundance, survival, or other metrics) can often influence the magnitude and direction of the perceived effect. Traditionally, high predation along a habitat edge would have indicated an "ecological trap" for the species in question; however, this study demonstrates that, at the population level, an ecological trap may not exist.

  5. Mapping Vesta Mid-Latitude Quadrangle V-12EW: Mapping the Edge of the South Polar Structure

    Science.gov (United States)

    Hoogenboom, T.; Schenk, P.; Williams, D. A.; Hiesinger, H.; Garry, W. B.; Yingst, R.; Buczkowski, D.; McCord, T. B.; Jaumann, R.; Pieters, C. M.; Gaskell, R. W.; Neukum, G.; Schmedemann, N.; Marchi, S.; Nathues, A.; Le Corre, L.; Roatsch, T.; Preusker, F.; White, O. L.; DeSanctis, C.; Filacchione, G.; Raymond, C. A.; Russell, C. T.

    2011-12-01

    NASA's Dawn spacecraft arrived at the asteroid 4Vesta on July 15, 2011, and is now collecting imaging, spectroscopic, and elemental abundance data during its one-year orbital mission. As part of the geological analysis of the surface, a series of 15 quadrangle maps are being produced based on Framing Camera images (FC: spatial resolution: ~65 m/pixel) along with Visible & Infrared Spectrometer data (VIR: spatial resolution: ~180 m/pixel) obtained during the High-Altitude Mapping Orbit (HAMO). This poster presentation concentrates on our geologic analysis and mapping of quadrangle V-12EW. This quadrangle is dominated by the arcuate edge of the large 460+ km diameter south polar topographic feature first observed by HST (Thomas et al., 1997). Sparsely cratered, the portion of this feature covered in V-12EW is characterized by arcuate ridges and troughs forming a generalized arcuate pattern. Mapping of this terrain and the transition to areas to the north will be used to test whether this feature has an impact or other (e.g., internal) origin. We are also using FC stereo and VIR images to assess whether their are any compositional differences between this terrain and areas further to the north, and image data to evaluate the distribution and age of young impact craters within the map area. The authors acknowledge the support of the Dawn Science, Instrument and Operations Teams.

  6. Determination of the separation between the soft X-ray K-emission and K-absorption edges in beryllium metal from self-absorption studies

    International Nuclear Information System (INIS)

    Crisp, R.S.

    1979-01-01

    Recent theoretical studies have aroused interest in the phonon broadening of the soft X-ray emission and absorption edges and the shift between them. Using a self-absorption technique a separation of about 0.2 eV is shown to exist between the edges in Be metal. This shift explains the very small self-absorption effects previously observed in Be by Crisp (1977). (Auth.)

  7. Determination of the separation between the soft X-ray K-emission and K-absorption edges in beryllium metal from self-absorption studies

    International Nuclear Information System (INIS)

    Crisp, R.S.

    1979-01-01

    Recent theoretical studies have aroused interest in the phonon broadening of the soft X-ray emission and absorption edges and the shift between them. Using a self-absorption technique a separation of about 0.2 eV is shown to exist between the edges in Be metal. This shift explains the very small self-absorption effects previously observed in Be. (Auth.)

  8. Feasibility of photon-counting K-edge imaging in X-ray and computed tomographic systems: Monte Carlo simulation studies

    International Nuclear Information System (INIS)

    Lee, Seung-Wan; Choi, Yu-Na; Cho, Hyo-Min; Lee, Young-Jin; Ryu, Hyun-Ju; Kim, Hee-Joung

    2011-01-01

    Conventional X-ray systems and X-ray computed tomography (CT) systems, which use detectors operated in the integrating mode, are not able to reflect spectral information because the detector output is proportional to the energy fluence integrated over the whole spectrum. Photon-counting detectors have been considered as alternative devices. These detectors can measure the photon energy deposited by each event and improve the image quality. In this study, we investigated the feasibility of K-edge imaging using a photon-counting detector and evaluated the capability of material decomposition in X-ray images. The geometries of X-ray imaging systems equipped with cadmium telluride (CdTe) detectors and phantoms consisting of different materials were designed using Geant4 Application for Tomographic Emission (GATE) version 6.0. To observe the effect of a discontinuity in the attenuation due to the K-edge of a high atomic number material, we chose the energy windows to be one below and one above the K-edge absorption energy of the target material. The contrast-to-noise ratios (CNRs) of the target materials were increased at selective energy levels above the K-edge absorption energy because the attenuation is more dramatically increased at energies above the K-edge absorption energy of the material than at energies below that. The CNRs for the target materials in the K-edge image were proportional to the material concentration. The results of this study show that K-edge imaging can be carried out in conventional X-ray systems and X-ray CT systems using CdTe photon-counting detectors and that the target materials can be separated from background materials by using K-edge imaging. The photon-counting detector has potential to provide improved image quality, and this study will be used as a basis for future studies on photon-counting X-ray imaging.

  9. Study of araldite in edge protection of n-type and p-type surface barrier detectors

    International Nuclear Information System (INIS)

    Alencar, M.A.V.; Jesus, E.F.O.; Lopes, R.T.

    1995-01-01

    The aim of this work is the realization of a comparative study between the surface barrier detectors performance n and type using the epoxy resin Araldite as edge protection material with the purpose of determining which type of detector (n or p) the use of Araldite is more indicated. The surface barrier detectors were constructed using n and p type silicon wafer with resistivity of 3350Ω.cm and 5850 Ω.cm respectively. In the n type detectors, the metals used as ohmic and rectifier contacts were the Al and Au respectively, while in the p type detectors, the ohmic and rectifier contacts were Au and Al. All metallic contacts were done by evaporation in high vacuum (∼10 -4 Torr) and with deposit of 40 μm/cm 2 . The obtained results for the detectors (reverse current of -350nA and resolution from 21 to 26 keV for p type detectors and reserve current of 1μA and resolution from 44 to 49 keV for n type detectors) tend to demonstrate that use of epoxy resin Araldite in the edge protection is more indicated to p type surface barrier detectors. (author). 3 refs., 4 figs., 1 tab

  10. Study on the performance improvement of the high temperature superconducting coil with several separated coils at the edges

    International Nuclear Information System (INIS)

    Ishiguri, S.; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.

    2008-01-01

    In designing high temperature superconducting (HTS) coils, it is important to secure large magnetic fields and stored energy using shorter tape length. Thus, it is necessary to improve the transport current performance of the coils. The critical current and n-value of an HTS tape depend on magnetic fields and flux angles under constant temperature. Considering these dependencies, we established a model to analyze coil critical current. This model clarifies that relatively large electric fields are generated at the coil edges. This adversely affects the transport current performance. In this study, the coil edge is separated into several coils, keeping the total tape length constant. This increases the coil critical current, stored energy, central magnetic field, and also the coil volume, which contains vacancies created by the separation. To estimate coil performance, we calculated the stored energy density, whose denominator is the increased coil volume. This stored energy density reaches its maximum value when the number of the separated coils is eight. At this optimum separation, the central magnetic field increases by 13%, and the stored energy improves by 43%, compared to a rectangular coil wound with the same tape length

  11. Experimental and theoretical study of X-ray absorption around the chlorine L edge in vinyl chloride

    International Nuclear Information System (INIS)

    Kawerk, Elie; Carniato, Stéphane; Iwayama, Hiroshi; Shigemasa, Eiji; Piancastelli, Maria Novella; Wassaf, Joseph; Khoury, Antonio; Simon, Marc

    2013-01-01

    Highlights: ► We measured the X-ray absorption spectrum of C 2 H 3 Cl around the chlorine L edge. ► Ab-initio calculations of the spectrum shed light on eventual electronic resonances. ► Vibrational substructures for particular core excited states are considered. ► The potential energy surfaces of the core excited electronic states are evaluated. ► Sharp or narrow spectral bands are associated to bound or dissociative surfaces. -- Abstract: We present a combined experimental and theoretical study of the high-resolution chlorine L edge X-ray absorption spectrum in gas-phase vinyl chloride (C 2 H 3 Cl). With the help of ab-initio calculations, we interpret the experimental spectrum and attribute each band to its corresponding electronic transitions terminating at states characterized by an either binding or dissociative potential energy surface (PES). Vibrational substructures in some specific core-excited electronic states are taken into account

  12. Experimental and theoretical study of X-ray absorption around the chlorine L edge in vinyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Kawerk, Elie, E-mail: elie.kawerk@etu.upmc.fr [Université Pierre et Marie Curie, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Université Libanaise, Faculté des Sciences II Fanar, Laboratoire de Physique Appliquée, 90656 Jdeidet el Metn (Lebanon); Carniato, Stéphane [Université Pierre et Marie Curie, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Iwayama, Hiroshi; Shigemasa, Eiji [Ultraviolet Synchrotron Orbital Radiation Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Piancastelli, Maria Novella [Université Pierre et Marie Curie, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Wassaf, Joseph; Khoury, Antonio [Université Libanaise, Faculté des Sciences II Fanar, Laboratoire de Physique Appliquée, 90656 Jdeidet el Metn (Lebanon); Simon, Marc [Université Pierre et Marie Curie, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France)

    2013-02-15

    Highlights: ► We measured the X-ray absorption spectrum of C{sub 2}H{sub 3}Cl around the chlorine L edge. ► Ab-initio calculations of the spectrum shed light on eventual electronic resonances. ► Vibrational substructures for particular core excited states are considered. ► The potential energy surfaces of the core excited electronic states are evaluated. ► Sharp or narrow spectral bands are associated to bound or dissociative surfaces. -- Abstract: We present a combined experimental and theoretical study of the high-resolution chlorine L edge X-ray absorption spectrum in gas-phase vinyl chloride (C{sub 2}H{sub 3}Cl). With the help of ab-initio calculations, we interpret the experimental spectrum and attribute each band to its corresponding electronic transitions terminating at states characterized by an either binding or dissociative potential energy surface (PES). Vibrational substructures in some specific core-excited electronic states are taken into account.

  13. Edge Plasma Physics Issues for the Fusion Advanced Studies Torus (FAST) in Reactor Relevant Conditions

    International Nuclear Information System (INIS)

    Maddaluno, G.; Pericoli Ridolfini, V.; Apicella, M.L.; Calabro, G.; Crisanti, F.; Cucchiaro, A.; Ramogida, G.; Zagorski, R.

    2008-01-01

    The issue of First wall materials and compatibility with ITER /DEMO relevant plasmas is among the RD missions for possible new European plasma fusion devices that the FAST project will address. FAST can operate with ITER relevant values of P/R (up to 22 MW/m, against the ITER 24 MW/m, inclusive of the α particles power), thanks to its compactness; thus it can investigate the physics of large heat loads on divertor plates. The FAST divertor will be made of bulk W tiles, for basic operations, but also fully toroidal divertor targets made of liquid lithium (L-Li) are foreseen. To have reliable predictions of the thermal loads on the divertor plates and of the core plasma purity a number of numerical self-consistent simulations have been made for the H-mode and steady-state scenario by using the code COREDIV. This code, already validated in the past on experimental data (namely JET, FTU, Textor), is able to describe self-consistently the core and edge plasma in a tokamak device by imposing the continuity of energy and particle fluxes and of particle densities and temperatures at the separatrix. In the present work the results of such calculations will be illustrated, including heat loads on the divertor. The overall picture shows that, marginally in the intermediate and, necessarily in the high density H-mode scenarios ( e >=2 and 5·10 20 m -3 respectively), impurity seeding should be foreseen with W as target material: however, only a small amount of Ar (0.03% atomic concentration), not affecting the core purity, is sufficient to maintain the divertor peak loads below 18 MW/m 2 , that represents the safety limit for the W mono block technology, presently accepted for the ITER divertor tiles. Li always needs additional impurities for decreasing divertor heat loads, the Z eff value being ≤ than 1.8. At low plasma densities (but ≥ 1.3·10 20 m -3 ), typical of steady state regimes, W by alone is effective in dissipating the input power by radiative losses, without

  14. Edge of polar cap patches

    Science.gov (United States)

    Hosokawa, K.; Taguchi, S.; Ogawa, Y.

    2016-04-01

    On the night of 4 December 2013, a sequence of polar cap patches was captured by an all-sky airglow imager (ASI) in Longyearbyen, Norway (78.1°N, 15.5°E). The 630.0 nm airglow images from the ASI of 4 second exposure time, oversampled the emission of natural lifetime (with quenching) of at least ˜30 sec, introduce no observational blurring effects. By using such high-quality ASI images, we succeeded in visualizing an asymmetry in the gradients between the leading/trailing edges of the patches in a 2-D fashion. The gradient in the leading edge was found to be 2-3 times steeper than that in the trailing edge. We also identified fingerlike structures, appearing only along the trailing edge of the patches, whose horizontal scale size ranged from 55 to 210 km. These fingers are considered to be manifestations of plasma structuring through the gradient-drift instability (GDI), which is known to occur only along the trailing edge of patches. That is, the current 2-D observations visualized, for the first time, how GDI stirs the patch plasma and such a mixing process makes the trailing edge more gradual. This result strongly implies a close connection between the GDI-driven plasma stirring and the asymmetry in the large-scale shape of patches and then suggests that the fingerlike structures can be used as markers to estimate the fine-scale structure in the plasma flow within patches.

  15. Study of a viscoplastic structure

    International Nuclear Information System (INIS)

    Bahbouhi, A.F.; Cousin, M.; Jullien, J.F.

    1987-01-01

    This study concerns the thermoplastic behavior of metallic structures under cyclic thermal loading. This work aims to bring about a contribution to the experimental plan as well as to the numerical modelisation aspect of the viscoplastic behavior of the structures. This experimental device allows the variation of the thermal loading story especially the duration of the cycle and the fixed temperature time. The numerical analysis of the viscoplastic behavior of the structures was carried out by treating the plastic strains independently of the creep strains. The comparison of the experimental and numerical results brings about important elements concerning the numerical analysis of the viscoplastic behavior of such structures. (orig.)

  16. Influence of the dislocation core on the glide of the 1/2 < 111 >{110} edge dislocation in bcc-iron: An embedded atom method study

    Czech Academy of Sciences Publication Activity Database

    Haghighat, S.M.H.; von Pezold, J.; Race, C. P.; Kormann, F.; Friák, Martin; Neugebauer, J.; Raabe, D.

    2014-01-01

    Roč. 87, MAY (2014), s. 274-282 ISSN 0927-0256 Institutional support: RVO:68081723 Keywords : Molecular dynamics * Edge dislocation * Core structure * Dislocation glide * Iron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.131, year: 2014

  17. Electronic structure of copper phthalocyanine : An experimental and theoretical study of occupied and unoccupied levels

    NARCIS (Netherlands)

    Evangelista, Fabrizio; Carravetta, Vincenzo; Stefani, Giovanni; Jansik, Branislav; Alagia, Michele; Stranges, Stefano; Ruocco, Alessandro

    2007-01-01

    An experimental and theoretical study of the electronic structure of copper phthalocyanine (CuPc) molecule is presented. We performed x-ray photoemission spectroscopy (XPS) and photoabsorption [x-ray absorption near-edge structure (XANES)] gas phase experiments and we compared the results with

  18. A study of the effect of the position of an edge filter within a ratiometric wavelength measurement system

    International Nuclear Information System (INIS)

    Wu, Qiang; Wang, Pengfei; Semenova, Yuliya; Farrell, Gerald

    2010-01-01

    The effect of the position of an edge filter within a ratiometric wavelength measurement system was investigated based on three cases: (1) the reflected fibre Bragg grating (FBG) signal passes through both the reference arm and the edge filter arm, (2) the reflected FBG signal is connected directly to the edge filter arm and does not pass through the reference arm, (3) the edge filter sits in line with the FBG and thus the source power is filtered prior to reaching the FBG. Both numerical simulations and experimental results show that cases 1 and 2 have similar system performance whilst case 3 is the best arrangement which offers the highest wavelength resolution

  19. Ca and S K-edge XANES studies of calcite-acid mine water interactions

    Energy Technology Data Exchange (ETDEWEB)

    Myneni, S.C.B.; Perera, R.C.C. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Heavy metal-rich acidic waters (SO{sub 4}{sup 2{minus}}, AsO{sub 4}{sup 3{minus}}, SeO{sub 4}{sup 2{minus}}, Fe{sup 2+}, Fe{sup 3+}, Al{sup 3+}, Cu{sup 2+}, Zn{sup 2+}, Cd{sup 2+}) and related ochreous coatings are common around abandoned sulfide and coal mine sites. This is mainly caused by the natural weathering of pyrite (FeS{sub 2}), arsenopyrite (FeAsS), and other metal sulfide containing shales. Acid generation in the case of pyrite can be explained by a general reaction: FeS{sub 2} + 3.5 O{sub 2} + H{sub 2}O {leftrightarrow} Fe{sup 2+} + SO{sub 4}{sup 2{minus}} + 2H{sup +}. Also, these low pH waters interact with the soils, and mobilize their soluble elements. One of the common remediation strategies is to allow these acid waters to react with limestone (CaCO{sub 3}-rich rock) and neutralize the pH and precipitate out soluble metals. Yet, the associated problem is the precipitation of Fe and Al oxides and hydroxy sulfate coatings on limestone surfaces, which block calcite reactive sites, and make them ineffective a few hours after initiation of treatment. The main objectives of this research are to examine: (1) the chemistry of limestone surface coatings, and (2) their toxic metal uptake and the conditions that inhibit their formation. Previous molecular studies using X-ray diffraction, and vibrational spectroscopy on limestone surface coatings (sampled from Athens, OH) indicate that the surface-most layer (the layer in contact with water) is composed of schwertmannite (Fe(III)-hydroxy sulfate) like phases. However, white, X-ray amorphous; Al-, sulfate- and carbonate-rich; and Ca-poor phases appeared at the interface between the limestone and the iron oxide coatings. The structure, morphology, and coordination chemistry of component major and trace elements of these white precipitate phases have not previously been examined.

  20. Simulation of Near-Edge X-ray Absorption Fine Structure with Time-Dependent Equation-of-Motion Coupled-Cluster Theory.

    Science.gov (United States)

    Nascimento, Daniel R; DePrince, A Eugene

    2017-07-06

    An explicitly time-dependent (TD) approach to equation-of-motion (EOM) coupled-cluster theory with single and double excitations (CCSD) is implemented for simulating near-edge X-ray absorption fine structure in molecular systems. The TD-EOM-CCSD absorption line shape function is given by the Fourier transform of the CCSD dipole autocorrelation function. We represent this transform by its Padé approximant, which provides converged spectra in much shorter simulation times than are required by the Fourier form. The result is a powerful framework for the blackbox simulation of broadband absorption spectra. K-edge X-ray absorption spectra for carbon, nitrogen, and oxygen in several small molecules are obtained from the real part of the absorption line shape function and are compared with experiment. The computed and experimentally obtained spectra are in good agreement; the mean unsigned error in the predicted peak positions is only 1.2 eV. We also explore the spectral signatures of protonation in these molecules.

  1. Study of edge turbulence in tokamak plasmas; Etude de la turbulence de bord dans les plasmas de tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sarazin, Y

    1997-11-21

    The aim of this work is to propose a new frame to study turbulent transport in plasmas. In order to avoid the restraint of scale separability the forcing by flux is used. A critical one-dimension self-organized cellular model is developed. In keeping with experience the average transport can be described by means of diffusion and convection terms whereas the local transport could not. The instability due to interchanging process is thoroughly studied and some simplified equations are derived. The proposed model agrees with the following experimental results: the relative fluctuations of density are maximized on the edge, the profile shows an exponential behaviour and the amplitude of density fluctuations depends on ionization source strongly. (A.C.) 103 refs.

  2. Edge Sheared Flows and Blob Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Myra, J.; D' Ippolito, D.; Russell, D., E-mail: jrmyra@lodestar.com [Lodestar Research Corporation, Boulder (United States); Davis, W. M.; Zweben, S. [Princeton Plasma Physics Laboratory, Princeton (United States); Terry, J.; LaBombard, B. [Massachusetts Institute of Technology, Cambridge (United States)

    2012-09-15

    Full text: A study of sheared flows in the edge and scrape-off layer (SOL) and their interaction with blob-filaments is presented. Edge sheared flows are believed to be important for the L-H, and H-L transitions. Blob generation and dynamics impacts both the (near-separatrix) scrape-off-layer (SOL) width critical for power handling in the divertor, and the interaction of plasma in the far SOL with plasma-facing components. These topics are critical for ITER and future devices. A fluid-based 2D curvature-interchange model embedded in the SOLT code is employed to study these issues. Sheared binormal flows both regulate the power flux crossing the separatrix and control the character of emitted turbulence structures such as blob-filaments. At a critical power level (depending on parameters) the laminar flows containing intermittent, but bound, structures give way to full-blown blob emissions signifying a transition from quasi-diffusive to convective transport. In order to diagnose sheared flows in experiments and assess their interaction with blobs, a blob-tracking algorithm has been developed and applied to both NSTX and Alcator C-Mod data. Blob motion and ellipticity can be affected by sheared flows, and are diagnosed and compared with seeded blob simulations. A picture of the interaction of blobs and sheared flows is emerging from advances in the theory and simulation of edge turbulence, combined with ever-improving capabilities for edge diagnostics and their analysis. (author)

  3. [Effect of Long-Term Fertilization on Organic Nitrogen Functional Groups in Black Soil as Revealed by Synchrotron-Based X-Ray Absorption Near-Edge Structure Spectroscopy].

    Science.gov (United States)

    Li, Hui; Gao, Qiang; Wang, Shuai; Zhu, Ping; Zhang, Jin-jing; Zhao, Yi-dong

    2015-07-01

    Nitrogen (N) is a common limiting nutrient in crop production. The N content of soil has been used as an important soil fertility index. Organic N is the major form of N in soil. In most agricultural surface soils, more than 90% of total N occurs in organic forms. Therefore, understanding the compositional characteristics of soil organic N functional groups can provide the scientific basis for formulating the reasonable farmland management strategies. Synchrotron radiation soft X-ray absorption near-edge structure (N K-edge XANES) spectroscopy is the most powerful tool to characterize in situ organic N functional groups compositions in soil. However, to our most knowledge, no studies have been conducted to examine the organic N functional groups compositions of soil using N K-edge XANES spectroscopy under long-term fertilization practices. Based on a long-term field experiment (started in 1990) in a black soil (Gongzhuling, Northeast China), we investigated the differences in organic N functional groups compositions in bulk soil and clay-size soil fraction among fertilization patterns using synchrotron-based N K- edge XANES spectroscopy. Composite soil samples (0-20 cm) were collected in 2008. The present study included six treatments: farmland fallow (FALL), no-fertilization control (CK), chemical nitrogen, phosphorus, and potassium fertilization (NPK), NPK in combination with organic manure (NPKM), 1.5 times of NPKM (1.5 NPKM), and NPK in combination with maize straw (NPKS). The results showed that N K-edge XANES spectra of all the treatments under study exhibited characteristic absorption peaks in the ranges of 401.2-401.6 and 402.7-403.1 eV, which were assigned as amides/amine-N and pyrrole-N, respectively. These characteristic absorption peaks were more obvious in clay-size soil fraction than in bulk soil. The results obtained from the semi-quantitative analysis of N K-edge XANES spectra indicated that the relative proportion of amides/amine-N was the highest

  4. Nonreference Medical Image Edge Map Measure

    Directory of Open Access Journals (Sweden)

    Karen Panetta

    2014-01-01

    Full Text Available Edge detection is a key step in medical image processing. It is widely used to extract features, perform segmentation, and further assist in diagnosis. A poor quality edge map can result in false alarms and misses in cancer detection algorithms. Therefore, it is necessary to have a reliable edge measure to assist in selecting the optimal edge map. Existing reference based edge measures require a ground truth edge map to evaluate the similarity between the generated edge map and the ground truth. However, the ground truth images are not available for medical images. Therefore, a nonreference edge measure is ideal for medical image processing applications. In this paper, a nonreference reconstruction based edge map evaluation (NREM is proposed. The theoretical basis is that a good edge map keeps the structure and details of the original image thus would yield a good reconstructed image. The NREM is based on comparing the similarity between the reconstructed image with the original image using this concept. The edge measure is used for selecting the optimal edge detection algorithm and optimal parameters for the algorithm. Experimental results show that the quantitative evaluations given by the edge measure have good correlations with human visual analysis.

  5. A Study of the interaction of radiation and semiconductor lasers: an analysis of transient and permanent effects induced on edge emitting and vertical cavity surface emitting laser diodes

    International Nuclear Information System (INIS)

    Pailharey, Eric

    2000-01-01

    The behavior of laser diodes under transient environment is presented in this work. The first section describes the basic phenomena of radiation interaction with matter. The radiative environments, the main characteristics of laser diodes and the research undertaken on the subject are presented and discussed. The tests on 1300 nm edge emitting laser diode are presented in the second section. The response to a transient ionizing excitation is explored using a 532 nm laser beam. The time of return to steady state after the perturbation is decomposed into several steps: decrease of the optical power during excitation, turn-on delay, relaxation oscillations and optical power offset. Their origins are analyzed using the device structure. To include all the phenomena in a numerical simulation of the device, an individual study of low conductivity materials used for the lateral confinement of the current density is undertaken. The effects of a single particle traversing the optical cavity and an analysis of permanent damages induced by neutrons are also determined. In the last section, 850 nm vertical cavity surface emitting laser diodes (VCSEL) are studied. The behavior of these devices which performances are in constant evolution, is investigated as a function of both temperature and polarization. Then VCSEL are submitted to transient ionizing irradiation and their responses are compared to those of edge emitting diodes. When proton implantation is used in the process, we observe the same behavior for both technologies. VCSEL were submitted to neutron fluence and we have studied the influence of the damages on threshold current, emission patterns and maximum of optical power. (author) [fr

  6. A comparative study on the reliability of co-authorship networks with emphases on edges and nodes

    Directory of Open Access Journals (Sweden)

    Sandra Cristina de Oliveira

    2016-06-01

    Full Text Available A scientific co-authorship network may be modeled by a graph G composed of k nodes and m edges. Researchers that make up this network may be interpreted as its nodes and the link between these agents (co-authored papers as its edges. Current work evaluated and compared the reliability measure of networks with two emphases: 1 On nodes (perfectly reliable edges and 2 On edges (perfectly reliable nodes. Specifically, the reliability of a fictitious co-authorship network at a given time t was analyzed taking into account, first, the reliability of nodes (researchers equal and different, and, second, the reliability of edges (co-authorship relations, equal and different. Additionally, centrality measures of nodes were obtained to identify situations where the insertion of an edge significantly increased the reliability of the network. Results showed that the reliability of the co-authorship network focusing on edges is more sensitive to changes in individual reliabilities than the reliability of the network focusing on nodes. Additionally, the use of centrality measures was viable to identify possible insertions of edges or co-authorship relations to increase the reliability of the network in the two approaches.

  7. Changes in habitat use at rainforest edges through succession: A case study of understory birds in the Brazilian Amazon

    Science.gov (United States)

    Luke L. Powell; Gustavo Zurita; Jared D.  Wolfe; Erik I.  Johnson; Philip C  Stouffer

    2015-01-01

    Primary tropical rain forests are being rapidly perforated with new edges via roads, logging, and pastures, and vast areas of secondary forest accumulate following abandonment of agricultural lands. To determine how insectivorous Amazonian understory birds respond to edges between primary rain forest and three age classes of secondary forest, we radio-tracked two...

  8. Near edge x-ray spectroscopy theory

    International Nuclear Information System (INIS)

    1994-01-01

    We propose to develop a quantitative theory of x-ray spectroscopies in the near edge region, within about 100 eV of threshold. These spectroscopies include XAFS (X-ray absorption fine structure), photoelectron diffraction (PD), and diffraction anomalous fine structure (DAFS), all of which are important tools for structural studies using synchrotron radiation x-ray sources. Of primary importance in these studies are many-body effects, such as the photoelectron self-energy, and inelastic losses. A better understanding of these quantities is needed to obtain theories without adjustable parameters. We propose both analytical and numerical calculations, the latter based on our x-ray spectroscopy codes FEFF

  9. X-ray diffraction and X-ray K absorption near edge studies of copper (II) complexes with amino acids

    Science.gov (United States)

    Sharma, P. K.; Mishra, Ashutosh; Malviya, Varsha; Kame, Rashmi; Malviya, P. K.

    2017-05-01

    Synthesis of copper (II) complexes [CuL1L2X].nH2O, where n=1, 2,3 (X=Cl,Br,NO3) (L1is 2,2’-bipyridine and L2 is L-tyrosine) by the chemical root method. The XRD data for the samples have been recorded. EXAFS spectra have also been recorded at the K-edge of Cu using the dispersive beam line BL-8 at 2.5 Gev Indus-2 Synchrotron radiation source at RRCAT, Indore, India. XRD and EXAFS data have been analysed using the computer software. X-ray diffraction studies of all complexes indicate their crystalline nature. Lattice parameter, bond length, particle size have been determined from XRD data.

  10. Investigation of Pb species in soils, celery and duckweed by synchrotron radiation X-ray absorption near-edge structure spectrometry

    Science.gov (United States)

    Luo, Liqiang; Shen, Yating; Liu, Jian; Zeng, Yuan

    2016-08-01

    The Pb species play a key role in its translocation in biogeochemical cycles. Soils, sediments and plants were collected from farmlands around Pb mines, and the Pb species in them was identified by X-ray absorption near-edge structure spectrometry. In soils, Pb5(PO4)3Cl and Pb3(PO4)2 were detected, and in sediments, Pb-fulvic acids (FAs) complex was identified. A Pb complex with FA fragments was also detected in celery samples. We found that (1) different Pb species were present in soils and sediments; (2) the Pb species in celery, which was grown in sediments, was different from the species present in duckweed, which grew in water; and (3) a Pb-FA-like compound was present in celery roots. The newly identified Pb species, the Pb-FA-like compound, may play a key role in Pb tolerance and translocation within plants.

  11. Applications of Doppler-free saturation spectroscopy for edge physics studies (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, E. H., E-mail: martineh@ornl.gov; Caughman, J. B. O.; Isler, R. C.; Bell, G. L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Zafar, A. [Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-11-15

    Doppler-free saturation spectroscopy provides a very powerful method to obtain detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of H{sub δ} spectra are presented to illustrate the increased sensitivity to both electric field and electron density measurements.

  12. Photonic band edge assisted spontaneous emission enhancement from all Er3+ 1-D photonic band gap structure

    Science.gov (United States)

    Chiasera, A.; Meroni, C.; Varas, S.; Valligatla, S.; Scotognella, F.; Boucher, Y. G.; Lukowiak, A.; Zur, L.; Righini, G. C.; Ferrari, M.

    2018-06-01

    All Er3+ doped dielectric 1-D Photonic Band Gap Structure was fabricated by rf-sputtering technique. The structure was constituted by of twenty pairs of SiO2/TiO2 alternated layers doped with Er3+ ions. The scanning electron microscopy was used to check the morphology of the structure. Transmission measurements put in evidence the stop band in the range 1500 nm-1950 nm. The photoluminescence measurements were obtained by optically exciting the sample and detecting the emitted light in the 1.5 μm region at different detection angles. Luminescence spectra and luminescence decay curves put in evidence that the presence of the stop band modify the emission features of the Er3+ ions.

  13. Subsurface structure of the eastern edge of the Zagros basin as inferred from gravity and satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Bushara, M.N. [ARCO Alaska, Inc., Anchorage, AK (United States)

    1995-09-01

    A data set of 10,505 points of land gravity measurements from southeast Iran obtained from the Bureau Gravimetrique International, combined with Landsat imagery, was used to investigate crustal and Cenozoic lithospheric structure. Interpretation of the Bouguer anomalies reveals three primary structural features. The Zagros Mountain belt is characterized by a progressive decrease in gravity values from -70 mGal near the Persian Gulf to -160 mGal over the structure zone between the Arabian margin and central Iran crustal blocks. The second feature is marked by a backward-L-shaped pair of anomalies that extends from the eastern peripheries of the Zagros basin and wraps around southern Iranian shores. These 15- to 20-km-deep source anomalies, with amplitudes of as much as 10 mGal, are interpreted as intrabasement intrusions demarcating an ancient rift axis. The shallow (6-8)km east-west-trending anomalies are perhaps interbasement uplifts bordered by reverse faults. The third structure, observed on both gravity and Landsat displays, a north-striking eastward-facing topographic escarpment, has a gravity gradient of 0.85 mGal/km, and is right laterally offset approximately 100 km, and is right laterally offset approximately 100 km by the Zagros main recent fault. A comparison of gravity features with surface structures on Thematic Mapper and Landsat Multi-spectral Scanner imagery indicates that a northeast-trending fault system is the result of post-Miocene pervasive transpressive stress coupled with clockwise rotation of underlying basement blocks following the collision of Arabia and Iran. Accommodation structures such as forced folds and {open_quotes}rabbit-ear{close_quotes} anticlines may develop over and on the flanks of the basement blocks, providing remigration and trapping mechanisms for new oil and gas plays.

  14. [Characterization of High Andean forest edges and implications for their ecological restoration (Colombia)].

    Science.gov (United States)

    Montenegro, Alba Lucía; Vargas Ríos, Orlando

    2008-09-01

    The growth of a forest patch through colonization of the adjacent matrix is mostly determined by the particular characteristics of the edge zone. Knowing how these characteristics are related to a specific edge type and how they influence the regeneration process, is important for High Andean forest edges restoration. This study aimed to characterize three types of High Andean forest edge in Cogua Forest Reserve (Colombia): 1) edge of Chusquea scandens, 2) "paramizado", and 3) old edge, characterized for being in a later successional state. Two forest patches were chosen for each edge type and 13 criteria were analyzed; these were of topographic order, micro-environmental order, vegetation structure and species composition. In each patch the vegetation was evaluated by means of two 60 m transects perpendicular to the edge and along the matrix-edge-interior of the forest gradient. All woody plant species were identified and counted to determine their abundance. Environmental variables (air temperature, relative humidity, wind speed, and light radiation) were measured in one of the transects. Three of the 13 criteria were of little importance in shaping the type of edge habitat (slope, patch shape and area). The others were closely related with the micro-environmental conditions and in turn with the vegetation structure and composition; this relationship confers particular characteristics to each edge type. The microclimate and floristic edge limits coincided; edges extend between 10 and 20 m into the forest depending on the edge type. The paramizado edge has the smallest environmental self-regulation capacity and is more exposed to fluctuations of the studied variables, because of its greatest exposition to the wind action and loss of the tallest trees (between 10 and 15 m) which regulate the understorey microclimate. This low environmental buffer capacity prevents the establishing of mature forest species (for example, Schefflera sp. and Oreopanax bogotensis

  15. Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction

    Science.gov (United States)

    Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); Moore, James B. (Inventor); Su, Ji (Inventor); Turner, Travis L. (Inventor); Lin, John C. (Inventor); Taminger, Karen M. (Inventor); Kahng, Seun K. (Inventor); Verden, Scott A. (Inventor)

    2014-01-01

    A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings.

  16. Surface and in-depth characterization of lithium-ion battery cathodes at different cycle states using confocal micro-X-ray fluorescence-X-ray absorption near edge structure analysis

    International Nuclear Information System (INIS)

    Menzel, Magnus; Schlifke, Annalena; Falk, Mareike; Janek, Jürgen; Fröba, Michael; Fittschen, Ursula Elisabeth Adriane

    2013-01-01

    The cathode material LiNi 0.5 Mn 1.5 O 4 for lithium-ion batteries has been studied with confocal micro-X-ray fluorescence (CMXRF) combined with X-ray absorption near edge structure (XANES) at the Mn-K edge and the Ni-K edge. This technique allows for a non-destructive, spatially resolved (x, y and z) investigation of the oxidation states of surface areas and to some extent of deeper layers of the electrode. Until now CMXRF-XANES has been applied to a limited number of applications, mainly geo-science. Here, we introduce this technique to material science applications and show its performance to study a part of a working system. A novel mesoporous LiNi 0.5 Mn 1.5 O 4 material was cycled (charged and discharged) to investigate the effects on the oxidation states at the cathode/electrolyte interface. With this approach the degradation of Mn 3+ to Mn 4+ only observable at the surface of the electrode could be directly shown. The spatially resolved non-destructive analysis provides knowledge helpful for further understanding of deterioration and the development of high voltage battery materials, because of its nondestructive nature it will be also suitable to monitor processes during battery cycling. - Highlights: • The potential of confocal micro-XRF-XANES for spatial resolved species analysis in a part of a working system is shown. • The spatial resolution enables differentiation of the oxidized interface from deeper layers. • With the analytical technique confocal micro-XRF-XANES 3D in-situ analyses of working systems are feasible. • The multidimensional and nondestructive analysis of Li-ion battery cathodes is shown. • The analysis will allow for a deeper understanding of processes at interfaces in battery science and others

  17. Surface and in-depth characterization of lithium-ion battery cathodes at different cycle states using confocal micro-X-ray fluorescence-X-ray absorption near edge structure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Magnus; Schlifke, Annalena [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Falk, Mareike; Janek, Jürgen [Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 58, 35392 Gießen (Germany); Fröba, Michael, E-mail: froeba@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Fittschen, Ursula Elisabeth Adriane, E-mail: ursula.fittschen@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)

    2013-07-01

    The cathode material LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} for lithium-ion batteries has been studied with confocal micro-X-ray fluorescence (CMXRF) combined with X-ray absorption near edge structure (XANES) at the Mn-K edge and the Ni-K edge. This technique allows for a non-destructive, spatially resolved (x, y and z) investigation of the oxidation states of surface areas and to some extent of deeper layers of the electrode. Until now CMXRF-XANES has been applied to a limited number of applications, mainly geo-science. Here, we introduce this technique to material science applications and show its performance to study a part of a working system. A novel mesoporous LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} material was cycled (charged and discharged) to investigate the effects on the oxidation states at the cathode/electrolyte interface. With this approach the degradation of Mn{sup 3+} to Mn{sup 4+} only observable at the surface of the electrode could be directly shown. The spatially resolved non-destructive analysis provides knowledge helpful for further understanding of deterioration and the development of high voltage battery materials, because of its nondestructive nature it will be also suitable to monitor processes during battery cycling. - Highlights: • The potential of confocal micro-XRF-XANES for spatial resolved species analysis in a part of a working system is shown. • The spatial resolution enables differentiation of the oxidized interface from deeper layers. • With the analytical technique confocal micro-XRF-XANES 3D in-situ analyses of working systems are feasible. • The multidimensional and nondestructive analysis of Li-ion battery cathodes is shown. • The analysis will allow for a deeper understanding of processes at interfaces in battery science and others.

  18. Insectivorous Birds and Environmental Factors Across an Edge-Interior Gradient in Tropical Rainforest of Malaysia

    OpenAIRE

    Abdullah B. Mohd; Mohamed Zakaria; Hossein Varasteh Moradi; Ebil Yusof

    2009-01-01

    The study objectives were to test: (1) the effects of the edge-interior gradient on understorey insectivorous bird abundance, density and diversity; (2) effects of environmental variables along an edge-interior gradient at population level (i.e., on each sub-guilds and species abundance); (3) possible effects of environmental structure along an edge-interior gradient at community level (i.e., species richness, diversity and total abundance). Fifteen hundred and four birds belonging to ...

  19. Organizing on the Edge: Appreciation and Critique

    National Research Council Canada - National Science Library

    Scott, W. R

    2006-01-01

    .... Hayes, "Power to the Edge: Command, Control in the Information Age" (2003). The author places the "edge" perspective in the broader context of organizational studies, noting both its strengths and limitations...

  20. Confinement and edge studies towards low ρ* and ν* at JET

    NARCIS (Netherlands)

    Nunes, I.M.; Lomas, P.J.; McDonald, D.C.; Saibene, G.; Sartori, R.; Voitsekhovitch, I.; Beurskens, M.N.A.; Arnoux, G.; Boboc, A.; Eich, T.; Giroud, C.; Heureux, S.; Luna, de la E.; Maddison, G.; Sips, A.C.C.; Thomsen, H.; Versloot, T.W.

    2013-01-01

    The size and capability of JET to reach high plasma current and field enables a study of the plasma behaviour at ion Larmor radius and collisionality values approaching those of ITER. In this paper such study is presented. The achievement of stationary type I ELMy H-modes at high current proved to

  1. Study of the L2,3 edges of 3d transition metals by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Akguel, G.; Aksoy, F.; Bozduman, A.; Ozkendir, O.M.; Ufuktepe, Y.; Luening, J.

    2008-01-01

    In the soft X-rays energy region, near edge X-ray absorption fine structure (NEXAFS) spectra are generally recorded by monitoring yield signals of secondary particles. These secondary particles, electrons or fluorescence photons, follow from the decay of the core hole excited in the primary absorption process. In general the yield signals are, to a good approximation, proportional to the absorption coefficient. However, in several applications it would be desirable to measure the absorption coefficient quantitatively. To derive the absorption coefficient quantitatively from a yield spectrum, one needs to know the escape depth of the emitted electrons (λ e ) of the applied yield technique in the material of interest. Since this quantity is difficult to calculate, it is unknown for most materials. In this paper we present the first results of our systematic investigation of the total electron-yield (TEY) escape depth of the 3d transition metals (Fe, Co and Cu). In addition our results gave important information on the variation of the TEY escape depth with the filling of the 3d band

  2. Study of the L2,3 Edges of 3d Transition Metals By X-Ray Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Akgul, G.; Aksoy, F.; Bozduman, A.; Ozkendir, O.M.; Ufuktepe, Y.; Luning, J.

    2008-01-01

    In the soft X-rays energy region, near edge X-ray absorption fine structure (NEXAFS) spectra are generally recorded by monitoring yield signals of secondary particles. These secondary particles, electrons or fluorescence photons, follow from the decay of the core hole excited in the primary absorption process. In general the yield signals are, to a good approximation, proportional to the absorption coefficient. However, in several applications it would be desirable to measure the absorption coefficient quantitatively. To derive the absorption coefficient quantitatively from a yield spectrum, one needs to know the escape depth of the emitted electrons (λ e ) of the applied yield technique in the material of interest. Since this quantity is difficult to calculate, it is unknown for most materials. In this paper we present the first results of our systematic investigation of the total electron-yield (TEY) escape depth of the 3d transition metals (Fe, Co and Cu). In addition our results gave important information on the variation of the TEY escape depth with the filling of the 3d band.

  3. In situ, Cr K-edge XAS study on the Phillips catalyst : activation and ethylene polymerization

    NARCIS (Netherlands)

    Groppo, E.; Prestipino, C.; Cesano, F.; Bonino, F.; Bordiga, S.; Lamberti, C.; Thuene, P.C.; Niemantsverdriet, J.W.; Zecchina, A.

    2005-01-01

    In this in situ EXAFS and XANES study on the Phillips ethylene-polymerization Cr/SiO2 catalyst, two polymerization routes are investigated and compared. The first mimics that adopted in industrial plants, where ethylene is dosed directly on the oxidized catalyst, while in the second the oxidized

  4. On the Edge: A Case Study and Resources for Mathematics Teachers

    Science.gov (United States)

    Meel, David E.

    2011-01-01

    A single case study approach was used to provide an in-depth examination of the special events that take place in the experiences of a graduate mathematics teaching assistant (MTA) during adaptation to a variety of physical, emotional, and psychological issues. Through intervention by a faculty member, professional counselor, and medical doctor,…

  5. Living on the edge : STM studies of the creation, diffusion and annihilation of surface vacancies

    NARCIS (Netherlands)

    Schoots, Koen

    2007-01-01

    This thesis describes an STM study of the creation, diffusion and annihilation of missing atoms, so-called surface vacancies, in the Cu(100) surface. Because of the extremely high mobility of surface vacancies in combination with their extremely low density, we have been forced to use tracer

  6. Theory of Magnetic Edge States in Chiral Graphene Nanoribbons

    Science.gov (United States)

    Capaz, Rodrigo; Yazyev, Oleg; Louie, Steven

    2011-03-01

    Using a model Hamiltonian approach including electron Coulomb interactions, we systematically investigate the electronic structure and magnetic properties of chiral graphene nanoribbons. We show that the presence of magnetic edge states is an intrinsic feature of any smooth graphene nanoribbons with chiral edges, and discover a number of structure-property relations. Specifically, we describe how the edge-state energy gap, zone-boundary edge-state energy splitting, and magnetic moment per edge length depend on the nanoribbon width and chiral angle. The role of environmental screening effects is also studied. Our results address a recent experimental observation of signatures of magnetic ordering at smooth edges of chiral graphene nanoribbons and provide an avenue towards tuning their properties via the structural and environmental degrees of freedom. This work was supported by National Science Foundation Grant No. DMR10-1006184, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the ONR MURI program. RBC acknowledges financial support from Brazilian agencies CNPq, FAPERJ and INCT-Nanomateriais de Carbono.

  7. Effects of sulphur pollution on forest floor invertebrates (community structure, structural heterogeneity, edge effects, decomposition, Callioplus euoplus, Pterostichus adstrictus, Scaphinotus marginatus)

    International Nuclear Information System (INIS)

    Carcamo, H. A.

    1997-01-01

    The distribution of insects and other invertebrates was studied in forests under varying regimes of exposure to sulfur compounds in the vicinity of two sour gas plants and at sharp acidification gradients in pine and aspen forests located near a sulfur block. Results showed no effect on most invertebrates at moderate levels of sulfur deposition. At this level, structural heterogeneity of the forest floor was more influential than sulfur levels in determining the macroarthropoid community structure. By contrast, high sulphur contamination and subsequent acidification had a clear negative effect on earthworms, and various species of spiders. Ground beetles and certain epigeic spiders along the sharp acidification gradient at the pine forest were considered vulnerable but resistant and favoured. These results suggested that ecological specialists were most vulnerable to acidification effects, while ecological generalists have been more successful in resisting the effects of acidification. It was also shown that indirect effects at the landscape, habitat or forest type, and microhabitat level, were more important in the case of most of the arthropods than the direct effects. Only earthworms, snails and some Collembola were negatively affected through direct acidity effects

  8. Effects of sulphur pollution on forest floor invertebrates (community structure, structural heterogeneity, edge effects, decomposition, Callioplus euoplus, Pterostichus adstrictus, Scaphinotus marginatus)

    Energy Technology Data Exchange (ETDEWEB)

    Carcamo, H. A.

    1997-12-31

    The distribution of insects and other invertebrates was studied in forests under varying regimes of exposure to sulfur compounds in the vicinity of two sour gas plants and at sharp acidification gradients in pine and aspen forests located near a sulfur block. Results showed no effect on most invertebrates at moderate levels of sulfur deposition. At this level, structural heterogeneity of the forest floor was more influential than sulfur levels in determining the macroarthropoid community structure. By contrast, high sulphur contamination and subsequent acidification had a clear negative effect on earthworms, and various species of spiders. Ground beetles and certain epigeic spiders along the sharp acidification gradient at the pine forest were considered vulnerable but resistant and favoured. These results suggested that ecological specialists were most vulnerable to acidification effects, while ecological generalists have been more successful in resisting the effects of acidification. It was also shown that indirect effects at the landscape, habitat or forest type, and microhabitat level, were more important in the case of most of the arthropods than the direct effects. Only earthworms, snails and some Collembola were negatively affected through direct acidity effects.

  9. Detecting Interplanetary Dust Particles with Radars to Study the Dynamics at the Edge of the Space

    Science.gov (United States)

    Janches, Diego

    2015-01-01

    The Earth's mesosphere is the region of the atmosphere between approximately 60-120 km altitude, where the transition from hydrodynamic flow to molecular diffusion occurs. It is highly dynamic region where turbulence by wave braking is produced and energy is deposited from sources from both, below and above this altitude range. Because aircraft and nearly all balloons reach altitudes below approximately 50 km and orbital spacecrafts are well above approximately 400 km, the mesosphere has only been accessed through the use of sounding rockets or remote sensing techniques, and as a result, it is the most poorly understood part of the atmosphere. In addition, millions of Interplanetary Dust Particles (IDPs) enter the atmosphere. Within the mesosphere most of these IDPs melt or vaporize as a result of collisions with the air particles producing meteors that can be detected with radars. This provides a mean to study the dynamics of this region. In this lecture the basic principles of the utilization of meteor radars to study the dynamics of the mesosphere will be presented. A system overview of these systems will be provided as well as discuss the advantages/disadvantages of these systems, provide details of the data processing methodology and give a brief overview of the current status of the field as well as the vision for the next decade.

  10. Magnetic excitations of layered cuprates studied by RIXS at Cu L{sub 3} edge

    Energy Technology Data Exchange (ETDEWEB)

    Ghiringhelli, G., E-mail: giacomo.ghiringhelli@fisi.polimi.it [CNR/SPIN, CNISM and Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano (Italy); Braicovich, L. [CNR/SPIN, CNISM and Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-06-15

    Highlights: ► We have developed very high resolution RIXS instrumentation. ► Cu L{sub 3} RIXS is ideal for studying magnetic excitations in layered cuprates. ► RIXS has been used to map magnon and paramagnon dispersion in HTcS. ► We have developed the first partial polarization analyzer for RIXS in the soft X-rays. -- Abstract: The inelastic scattering of X-rays is becoming a powerful alternative to better established techniques, based on neutrons or low energy photons, for the study of low- and medium-energy excitations in solids. When performed in the soft range the resonant inelastic X-ray scattering (RIXS) is ideal for strongly correlated electron systems based on 3d transition metals. The remarkable evolution of Cu L{sub 3} RIXS has been boosted by the steady improvement of experimental energy resolution, and by the fortunate fact that cuprates give intense and richly featured spectra. Over the last 8 years several key results were obtained using the AXES (ESRF) and the SAXES (SLS) spectrometers. This initial success is now supporting several new projects for soft X-ray RIXS worldwide. We briefly present here the case of spin excitation dispersion in insulating and superconducting cuprates and the first RIXS spectra with partial polarization analysis of the scattered photons.

  11. A new linear plasma device for various edge plasma studies at SWIP

    Science.gov (United States)

    Xu, Min; Zheng, Pengfei; Tynan, George; Che, Tong; Wang, Zhanhui; Guo, Dong; Wei, Ran

    2017-10-01

    To facilitate the plasma-material interactions (PMI) studies, Southwestern Institute of Physics (SWIP) has constructed a linear plasma device. It is comprised of a source chamber (Φ 0.4 m), a target chamber (Φ 0.9 m), 15 magnets with different sizes, and power supplies with the total power of a few hundred kilowatts, etc. A maximum magnetic field of 0.3 Tesla along the axial direction can be produced. The current of each of the 15 magnets can be independently controlled. More than 60 ports are available for diagnostics, with the sizes vary from Φ 50 mm to Φ 150 mm. Rectangular ports of 190 mm × 270 mm are also available. 12 ports looking at the sample holder are specially designed for ion beam injection, of which the axes are 25 to the chamber axis. The device is equipped with a LaB6 hot cathode plasma source, which is able to generate steady-state H/D/He plasmas with a diameter of Φ 100 mm, density of 1x1019 /m3 , and a particle flux of 1022 1023 n/m2 .s. The electron temperature is usually a few eV. Further, a Helicon RF plasma source is also planned for plasma transport studies. Int'l Sci & Tech Cooperation Program of China (No. 2015DFA61760).

  12. Synthesis and structural studies of copper sulfide nanocrystals

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    Full Text Available We report the synthesis and structural studies of copper sulfide nanocrystals from copper(II dithiocarbamate single molecule precursors. The optical studies of the as-prepared copper sulfide nanoparticles were carried out using UV–Visible and photoluminescence spectroscopy. The absorption spectra show absorption band edges at 287 nm and exhibit considerable blue shift that could be ascribed to the quantum confinement effects as a result of the small crystallite sizes of the nanoparticles and the photoluminescence spectra show emission curves that are red shifted with respect to the absorption band edges. The structural studies were carried out using powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The XRD patterns revealed the formation of hexagonal structure of covellite CuS with estimated crystallite sizes of 17.3–18.6 nm. The TEM images showed particles with almost spherical or rod shapes with average crystallite sizes of 3–9.8 nm. SEM images showed morphology with ball-like microsphere on the surfaces and EDS spectra confirmed the presence of CuS nanoparticles. Keywords: CuS, Dithiocarbamate, Nanoparticles, Electron microscopy, AFM

  13. Spatially resolved sulfur K-edge XANES spectroscopy of wheat leaves infected by Puccinia triticina

    International Nuclear Information System (INIS)

    Lichtenberg, H; Prange, A; Hormes, J; Steiner, U; Oerke, E-C

    2009-01-01

    In this study, wheat leaves infected with brown rust, a plant disease of serious economic concern caused by the fungus Puccinia triticina, were investigated using spatially resolved XANES (X-ray Absorption Near Edge Structure) spectroscopy at the sulfur K-absorption edge.

  14. Spatially resolved sulfur K-edge XANES spectroscopy of wheat leaves infected by Puccinia triticina

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberg, H; Prange, A; Hormes, J [CAMD, Louisiana State University, 6980 Jefferson Hwy, Baton Rouge, LA 70806 (United States); Steiner, U; Oerke, E-C, E-mail: lichtenberg@lsu.ed [INRES-Phytomedicine, University of Bonn, Nussallee 9, 53115 Bonn (Germany)

    2009-11-15

    In this study, wheat leaves infected with brown rust, a plant disease of serious economic concern caused by the fungus Puccinia triticina, were investigated using spatially resolved XANES (X-ray Absorption Near Edge Structure) spectroscopy at the sulfur K-absorption edge.

  15. Chemical functionalization and edge doping of zigzag graphene nanoribbon with L-(+)-leucine and group IB elements-A DFT study

    Science.gov (United States)

    Janani, K.; John Thiruvadigal, D.

    2017-10-01

    First-principles based density functional theory (DFT) calculations have been carried out on the chemically functionalized pure and Cu, Ag and Au doped zigzag graphene nanoribbon (ZGNR(6,0)) with the use of the branched chain amino acid L-(+)-Leucine named as LLZGNR(6,0), LLCuZGNR(6,0), LLAgZGNR(6,0) and LLAuZGNR(6,0) respectively. The structural stability for minimum total energy was confirmed by perturbating the geometry of the relaxed structures. The physical and chemical properties, such as band gap, chemical potential, transmission spectrum, charge transfer, bonding character and Gibb's free energy of solvation were analysed for all the four systems. It has been observed that the edge doping assisted functionalized systems (LLCuZGNR(6,0), LLAgZGNR(6,0) and LLAuZGNR(6,0)) without the inclusion of spin polarisation are semiconducting in nature. Whereas, barely functionalized system is found to be semi-metallic. An effective space charge polarisation in functionalized graphene nanoribbon has been revealed through charge transfer studies. Hence, it signifies the effective solubility of the nanoribbon in aqueous media. The results indicate the possibility of using such system as nanocarriers in targeted drug delivery applications.

  16. Alignment of the dye's molecular levels with the TiO2 band edges in dye-sensitized solar cells: a DFT-TDDFT study

    International Nuclear Information System (INIS)

    De Angelis, Filippo; Fantacci, Simona; Selloni, Annabella

    2008-01-01

    We present a theoretical study of the lineup of the LUMO of Ru(II)-polypyridyl (N3 and N719) molecular dyes with the conduction band edge of a TiO 2 anatase nanoparticle. We use density functional theory (DFT) and the Car-Parrinello scheme for efficient optimization of the dye-nanoparticle systems, followed by hybrid B3LYP functional calculations of the electronic structure and time-dependent DFT (TDDFT) determination of the lowest vertical excitation energies. The electronic structure and TDDFT calculations are performed in water solution, using a continuum model. Various approximate procedures to compute the excited state oxidation potential of dye sensitizers are discussed. Our calculations show that the level alignment for the interacting nanoparticle-sensitizer system is very similar, within about 0.1 eV, to that for the separated TiO 2 and dye. The excellent agreement of our results with available experimental data indicates that the approach of this work could be used as an efficient predictive tool to help the optimization of dye-sensitized solar cells.

  17. Study of apical oxygen atoms in a spin-ladder cuprate compound by X-ray absorption spectroscopy near the Cu K edge

    Energy Technology Data Exchange (ETDEWEB)

    Hatterer, C.J.; Eustache, B.; Collin, L.; Beuran, C.F.; Partiot, C.; Germain, P.; Xu, X.Z.; Lagues, M. [CNRS, Paris (France). Surfaces et Supraconducteurs; Michalowicz, A. [Laboratoire de Physique des Milieux Desordonnes, Universite Paris XII Val-de-Marne, 61 avenue du general de Gaulle, 94010, Creteil Cedex (France)]|[LURE, Universite Paris Sud, 91405, Orsay Cedex (France); Moscovici, J. [Laboratoire de Physique des Milieux Desordonnes, Universite Paris XII Val-de-Marne, 61 avenue du general de Gaulle, 94010, Creteil Cedex (France); Deville Cavellin, C. [CNRS, Paris (France). Surfaces et Supraconducteurs]|[Laboratoire d`Electronique, Universite Paris XII Val-de-Marne, 61 av. du general de Gaulle, 94010, Creteil Cedex (France); Traverse, A. [LURE, Universite Paris Sud, 91405, Orsay Cedex (France)

    1997-04-01

    The structure of high-T{sub c} superconducting cuprate compounds is based on CuO{sub 2} planes alternating with blocks that behave as charge reservoirs. The apical oxygen atoms which belong to these reservoirs are suspected to play a role in the mechanism of superconductivity. It thus seems necessary to measure the amount of apical oxygen atoms in various compounds, as a function of the superconducting properties. Polarisation dependent X-ray absorption spectroscopy (XAS) measurements were performed near the Cu K-edge on three types of phases. We collected information about the neighbourhood of the copper atom in the cuprate planes and in the direction perpendicular to these planes. Two of these phases have well known structures: Bi2212 in which copper atoms are on a pyramidal site and infinite layer phase, a square planar cuprate without apical oxygen. We used the obtained results as reference data to study a new copper-rich phase related to the spin-ladder series. (orig.)

  18. Window Spacers and Edge Seals in Insulating Glass Units: A State-of-the-Art Review and Future Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    SINTEF Building and Infrastructure; Norwegian University of Science and Technology (NTNU); Bergh, Sofie Van Den; Hart, Robert; Jelle, Bjrn Petter; Gustavsen, Arild

    2013-01-31

    Insulating glass (IG) units typically consist of multiple glass panes that are sealed and held together structurally along their perimeters. This report describes a study of edge seals in IG units. First, we summarize the components, requirements, and desired properties of edge construction in IG units, based on a survey of the available literature. Second, we review commercially available window edge seals and describe their properties, to provide an easily accessible reference for research and commercial purposes. Finally, based on the literature survey and review of current commercial edge seal systems, we identify research opportunities for future edge seal improvements and solutions.

  19. Degenerate band edge laser

    Science.gov (United States)

    Veysi, Mehdi; Othman, Mohamed A. K.; Figotin, Alexander; Capolino, Filippo

    2018-05-01

    We propose a class of lasers based on a fourth-order exceptional point of degeneracy (EPD) referred to as the degenerate band edge (DBE). EPDs have been found in parity-time-symmetric photonic structures that require loss and/or gain; here we show that the DBE is a different kind of EPD since it occurs in periodic structures that are lossless and gainless. Because of this property, a small level of gain is sufficient to induce single-frequency lasing based on a synchronous operation of four degenerate Floquet-Bloch eigenwaves. This lasing scheme constitutes a light-matter interaction mechanism that leads also to a unique scaling law of the laser threshold with the inverse of the fifth power of the laser-cavity length. The DBE laser has the lowest lasing threshold in comparison to a regular band edge laser and to a conventional laser in cavities with the same loaded quality (Q ) factor and length. In particular, even without mirror reflectors the DBE laser exhibits a lasing threshold which is an order of magnitude lower than that of a uniform cavity laser of the same length and with very high mirror reflectivity. Importantly, this novel DBE lasing regime enforces mode selectivity and coherent single-frequency operation even for pumping rates well beyond the lasing threshold, in contrast to the multifrequency nature of conventional uniform cavity lasers.

  20. Structural Narratology and Interdisciplinary Studies

    Directory of Open Access Journals (Sweden)

    A. Mohammadi Kalesar

    2016-02-01

    Full Text Available The aim of this paper is to investigate the relationship between structural narratology and interdisciplinary studies. We will try to answer two main questions: What factors have been effective in narratology’s orientation toward interdisciplinary studies? Is this tendency the result of a possibility in narration or a methodological necessity? The movement of narratology to interdisciplinary is observable not only in new narratological tendencies but also in changes in structural theories. Therefore, this article will trace the roots of this tendency in the revises and critiques of these theories until 1970s. By tracing these changes it can be realized that the theories of structural narrotology have broken with idea of independence and self-sufficiency of literature and embraced other disciplines. The main factors in these changes are: attention to cultural elements and reading process in the perception of narrative structure. These considerations have been accompanied by some results; first, the main targets of narratology changed from investigating textual properties to reading and understanding the narration process; second, some disciplines and fields related to culture and mind studies found their way into narratology.

  1. A study on soil structure

    NARCIS (Netherlands)

    Schuylenborgh, van J.

    1947-01-01

    As soils differ in capacity to form a structure, it is necessary to distinguish between intrinsic structure and actual structure. Intrinsic structure is the capacity of a soil to form a certain structure. Actual structure is the structure of the soil at a certain moment.

    Using experiments and

  2. First principle study of structural, electronic and magnetic properties of zigzag boron nitride nanoribbon: Role of vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arun [Department of Physics, Govt. College Banjar, Kullu, Himanchal Pradesh, 175123 India (India); Bahadur, Amar, E-mail: abr.phys@gmail.com [Department of Physics, Kamla Nehru Institute of Physical and Social Sciences, Sultanpur, Uttar Pradesh, 228118 India (India); Mishra, Madhukar [Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031 India (India); Vasudeva, Neena [Department of Physics, S. V. G. College, Ghumarwin, Bilaspur, Himanchal Pradesh, 1714021 India (India)

    2015-05-15

    We study the effect of vacancies on the structural, electronic and magnetic properties of zigzag boron nitride nanoribbon (ZBNNR) by using first principle calculations. We find that the shift of the vacancies with respect to the ribbon edges causes change in the structural geometry, electronic structure and magnetization of ZBNNR. These vacancies also produce band gap modulation and consequently results the magnetization of ZBNNR.

  3. How Forest Inhomogeneities Affect the Edge Flow

    DEFF Research Database (Denmark)

    Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas

    2016-01-01

    Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities (>1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark...... is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between...... the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge...

  4. Remote Sensing Forage Quality for Browsing Herbivores: A Case Study of Cutting Edge Koala Conservation

    Science.gov (United States)

    Youngentob, K. N.; Au, J.; Held, A. A.; Foley, W. J.; Possingham, H. P.

    2014-12-01

    Managing landscapes for conservation requires a capacity to measure habitat quality. Although multiple factors are often responsible for the distribution and abundance of herbivores, spatial variations in the quality and quantity of plant forage are known to be important for many species. While we cannot see the chemical complexity of landscapes with our naked-eye, advances in imaging spectroscopy are making it possible to assess the quality of forage on a landscape-scale. Much research in this area has focused on the ability to estimate foliar nitrogen (N), because N is believed to be a limiting nutrient for many leaf eating animals. However, the total quantity of foliar N does not necessarily reflect the amount of N that can be utilized by herbivores. Available nitrogen (AvailN) is an invitro measure of forage quality that integrates the influence of tannins and fibre on the amount of foliar N that is available for digestion by herbivores. This may be a more meaningful measure of forage quality than total N for the many herbivorous species that are sensitive to the effects of tannins. Our previous research has demonstrated that it is possible to estimate this integrated measure of foliar nutritional quality at an individual tree crown level across multiple tree species using imaging spectroscopy (HyMap). Here we present a case study of how this remote sensing data is being used to help inform landscape management and conservation decisions for an iconic Australian species, the koala (Phascolarctos cinereus). We review the methods involved in developing maps of integrated measures of foliar nutritional quality for browsing herbivores with airborne imaging spectroscopy data and discuss their applications for wildlife management.

  5. Structural characterization of epitaxial YBa2Cu3O7 thin films on step-edge substrates by means of high-resolution electron microscopy

    International Nuclear Information System (INIS)

    Jia, C.L.; Kabius, B.; Urban, K.

    1993-01-01

    The microstructure of YBa 2 Cu 3 O 7 films epitaxially grown on step-edge (0 0 1) SrTiO 3 and LaAlO 3 substrates has been characterized by means of high-resolution electron microscopy. The results indicate a relationship between the microstructure of the film across a step and the angle the step makes with the substrate plane. On a steep, high-angle step, the film grows with its c-axis perpendicular to that of the film on substrate surface so that two grain boundaries are formed. In the upper grain boundary, on the average, a (0 1 3) habit plane alternates with a (1 0 3) habit plane. This alternating structure is caused by twinning in the orthorhombic structure. The lower boundaries consist of a chain of (0 1 3)(0 1 3) and (0 1 0)(0 0 1) type segments exhibiting a tendency to tilt the whole habit plane toward the a-b plane of the flank film. Dislocations, stacking faults and misfit strains were also observed in or close to the boundaries. (orig.)

  6. Acyclicity in edge-colored graphs

    DEFF Research Database (Denmark)

    Gutin, Gregory; Jones, Mark; Sheng, Bin

    2017-01-01

    A walk W in edge-colored graphs is called properly colored (PC) if every pair of consecutive edges in W is of different color. We introduce and study five types of PC acyclicity in edge-colored graphs such that graphs of PC acyclicity of type i is a proper superset of graphs of acyclicity of type...

  7. Use of X-ray absorption near edge structure (XANES) to identify physisorption and chemisorption of phosphate onto ferrihydrite-modified diatomite.

    Science.gov (United States)

    Xiong, Wenhui; Peng, Jian; Hu, Yongfeng

    2012-02-15

    This paper presents a novel technique integrating bulk-sensitive and surface-sensitive XANES methods to distinguish between physisorption and chemisorption for phosphate adsorption onto ferrihydrite-modified diatomite (FHMD). XANES P K-edge, L-edge, and Fe M-edge spectra were obtained for reference samples (K(2)HPO(4) and FePO(4)·2H(2)O) and test samples (phosphate adsorbed onto FHMD (FHMD-Ps) and Si-containing ferrihydrite (FHYD-Ps)). A resolvable pre-edge peak in the P K-edge spectra of FHMD-Ps and FHYD-Ps provided direct evidence for the formation of P-O-Fe(III) coordination and the occurrence of chemisorption. The resemblance between the P L-edge spectra of K(2)HPO(4) and FHMD-Ps and the marked difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O indicated the intact existence of the adsorbate and the adsorbent. The similarity between Fe M-edge spectra of FHMD and FHMD-Ps and the difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O confirmed the findings from P L-edge analyses. Therefore, chemisorption and physisorption coexisted during phosphate adsorption onto FHMD. Phosphate chemisorption occurred in the deeper zone of FHMD (from 50 nm to 5 μm); whereas physisorption occurred in the zone of FHMD shallower than 50 nm since the probing depth of XANES P K-edge method is 5 μm and that of P L-edge and Fe M-edge methods is 50 nm. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Visible imaging of edge turbulence in NSTX

    International Nuclear Information System (INIS)

    Zweben, S.; Maqueda, R.; Hill, K.; Johnson, D.

    2000-01-01

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radical heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of gas puff imaging to locally illuminate the edge density turbulence

  9. Visible imaging of edge turbulence in NSTX

    International Nuclear Information System (INIS)

    S. Zweben; R. Maqueda; K. Hill; D. Johnson; S. Kaye; H. Kugel; F. Levinton; R. Maingi; L. Roquemore; S. Sabbagh; G. Wurden

    2000-01-01

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radial heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of ''gas puff imaging'' to locally illuminate the edge density turbulence

  10. Edge effect on weevils and spiders

    Directory of Open Access Journals (Sweden)

    R. Horváth

    2002-05-01

    Full Text Available The edge effect on weevils and spiders was tested along oak forest – meadow transects using sweep-net samples at the Síkfökút Project in Hungary. For spiders the species richness was significantly higher in the forest edge than either in the meadow or the forest interior. For weevils the species richness of the forest edge was higher than that of the meadow, but the difference was not statistically significant whereas the species richness of the forest interior was significantly lower than that of the forest edge and the meadow. The composition of the spider assemblage of the edge was more similar to the forest, while the composition of weevils in the edge was more similar to the meadow. Our results based on two invertebrate groups operating on different trophic levels suggest that there is a significant edge effect for the studied taxa resulting in higher species richness in the edge.

  11. Synchrotron-based intra-venous K-edge digital subtraction angiography in a pig model: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Schueltke, Elisabeth [Departments of Surgery, University of Saskatchewan, Saskatoon, SK (Canada); Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK (Canada); Department of Neurological Sciences, Walton Medical Centre, University of Liverpool, Liverpool L97 LJ (United Kingdom)], E-mail: e.schultke@usask.ca; Fiedler, Stefan [European Molecular Biology Laboratory (EMBL), Nottkestrasse 85, 22603 Hamburg (Germany); Nemoz, Christian [European Synchrotron Radiation Facility (ESRF), 6 rue Horowitz, 38043 Grenoble (France); Ogieglo, Lissa [Departments of Surgery, University of Saskatchewan, Saskatoon, SK (Canada); Kelly, Michael E. [Departments of Surgery, University of Saskatchewan, Saskatoon, SK (Canada); Department of Neurosurgery, Section of Cerebrovascular and Endovascular Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH (United States); Crawford, Paul [Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herfordshire AL9 7TA (United Kingdom); Esteve, Francois [INSERM U836-ESRF, 6 rue Horowitz, 38043 Grenoble (France); Brochard, Thierry; Renier, Michel; Requardt, Herwig; Le Duc, Geraldine [European Synchrotron Radiation Facility (ESRF), 6 rue Horowitz, 38043 Grenoble (France); Juurlink, Bernhard [Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK (Canada); Meguro, Kotoo [Departments of Surgery, University of Saskatchewan, Saskatoon, SK (Canada)

    2010-03-15

    Background: K-edge digital subtraction angiography (KEDSA) combined with the tunability of synchrotron beam yields an imaging technique that is highly sensitive to low concentrations of contrast agents. Thus, contrast agent can be administered intravenously, obviating the need for insertion of a guided catheter to deliver a bolus of contrast agent close to the target tissue. With the high-resolution detectors used at synchrotron facilities, images can be acquired at high spatial resolution. Thus, the KEDSA appears particularly suited for studies of neurovascular pathology in animal models, where the vascular diameters are significantly smaller than in human patients. Materials and methods: This feasibility study was designed to test the suitability of KEDSA after intravenous injection of iodine-based contrast agent for use in a pig model. Four adult male pigs were used for our experiments. Neurovascular angiographic images were acquired using KEDSA with a solid state Germanium (Ge) detector at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Results: After intravenous injection of 0.9 ml/kg iodinated contrast agent (Xenetix), the peak iodine concentrations in the internal carotid and middle cerebral arteries reached 35 mg/ml. KEDSA images in radiography mode allowed the visualization of intracranial arteries of less than 1.5 mm diameter.

  12. Synchrotron-based intra-venous K-edge digital subtraction angiography in a pig model: A feasibility study

    International Nuclear Information System (INIS)

    Schueltke, Elisabeth; Fiedler, Stefan; Nemoz, Christian; Ogieglo, Lissa; Kelly, Michael E.; Crawford, Paul; Esteve, Francois; Brochard, Thierry; Renier, Michel; Requardt, Herwig; Le Duc, Geraldine; Juurlink, Bernhard; Meguro, Kotoo

    2010-01-01

    Background: K-edge digital subtraction angiography (KEDSA) combined with the tunability of synchrotron beam yields an imaging technique that is highly sensitive to low concentrations of contrast agents. Thus, contrast agent can be administered intravenously, obviating the need for insertion of a guided catheter to deliver a bolus of contrast agent close to the target tissue. With the high-resolution detectors used at synchrotron facilities, images can be acquired at high spatial resolution. Thus, the KEDSA appears particularly suited for studies of neurovascular pathology in animal models, where the vascular diameters are significantly smaller than in human patients. Materials and methods: This feasibility study was designed to test the suitability of KEDSA after intravenous injection of iodine-based contrast agent for use in a pig model. Four adult male pigs were used for our experiments. Neurovascular angiographic images were acquired using KEDSA with a solid state Germanium (Ge) detector at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Results: After intravenous injection of 0.9 ml/kg iodinated contrast agent (Xenetix), the peak iodine concentrations in the internal carotid and middle cerebral arteries reached 35 mg/ml. KEDSA images in radiography mode allowed the visualization of intracranial arteries of less than 1.5 mm diameter.

  13. Synchrotron-based intra-venous K-edge digital subtraction angiography in a pig model: a feasibility study.

    Science.gov (United States)

    Schültke, Elisabeth; Fiedler, Stefan; Nemoz, Christian; Ogieglo, Lissa; Kelly, Michael E; Crawford, Paul; Esteve, Francois; Brochard, Thierry; Renier, Michel; Requardt, Herwig; Le Duc, Geraldine; Juurlink, Bernhard; Meguro, Kotoo

    2010-03-01

    K-edge digital subtraction angiography (KEDSA) combined with the tunability of synchrotron beam yields an imaging technique that is highly sensitive to low concentrations of contrast agents. Thus, contrast agent can be administered intravenously, obviating the need for insertion of a guided catheter to deliver a bolus of contrast agent close to the target tissue. With the high-resolution detectors used at synchrotron facilities, images can be acquired at high spatial resolution. Thus, the KEDSA appears particularly suited for studies of neurovascular pathology in animal models, where the vascular diameters are significantly smaller than in human patients. This feasibility study was designed to test the suitability of KEDSA after intravenous injection of iodine-based contrast agent for use in a pig model. Four adult male pigs were used for our experiments. Neurovascular angiographic images were acquired using KEDSA with a solid state Germanium (Ge) detector at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. After intravenous injection of 0.9 ml/kg iodinated contrast agent (Xenetix), the peak iodine concentrations in the internal carotid and middle cerebral arteries reached 35 mg/ml. KEDSA images in radiography mode allowed the visualization of intracranial arteries of less than 1.5mm diameter. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  14. All-graphene edge contacts

    DEFF Research Database (Denmark)

    Jacobsen, Kåre Wedel; Falkenberg, Jesper Toft; Papior, Nick Rübner

    2016-01-01

    Using ab-initio methods we investigate the possibility of three-terminalgraphene "T-junction" devices and show that these all-graphene edge contactsare energetically feasible when the 1D interface itself is free from foreignatoms. We examine the energetics of various junction structures as a func......Using ab-initio methods we investigate the possibility of three-terminalgraphene "T-junction" devices and show that these all-graphene edge contactsare energetically feasible when the 1D interface itself is free from foreignatoms. We examine the energetics of various junction structures...... to be in therange of 1-10 kΩμm which is comparable to the best contact resistance reportedfor edge-contacted graphene-metal contacts. We conclude that conductingall-carbon T-junctions should be feasible....

  15. Electronic Structure from Iron L-edge Spectroscopy : An Example of Spin Transition Evidenced by Soft X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Cartier dit Moulin, Ch.; Flank, A.M.; Rudolf, P.; Chen, C.T.

    1993-01-01

    Soft X-ray Absorption Spectroscopy at the transition metal L2,3 edges provides information about the 3d unoccupied states by dipole allowed transitions. We have recorded iron L2,3 edges in order to follow the reversible thermal spin interconversion (S=2 S=0) of the Fe(II)(o-phenantroline)2(NCS)2.

  16. Computational study of the Risoe-B1-18 airfoil with a hinged flap providing variable trailing edge geometry

    Energy Technology Data Exchange (ETDEWEB)

    Troldborg, N.

    2005-03-01

    A comprehensive computational study, in both steady and unsteady flow conditions, has been carried out to investigate the aerodynamic characteristics of the Risoe-B1-18 airfoil equipped with variable trailing edge geometry as produced by a hinged flap. The function of such flaps should be to decrease fatigue-inducing oscillations on the blades. The computations were conducted using a 2D incompressible RANS solver with a k-w turbulence model under the assumption of a fully developed turbulent flow. The investigations were conducted at a Reynolds number of Re = 1.6 - 10{sup 6}. Calculations conducted on the baseline airfoil showed excellent agreement with measurements on the same airfoil with the same specified conditions. Furthermore, a more widespread comparison with an advanced potential theory code is presented. The influence of various key parameters, such as flap shape, flap size and oscillating frequencies, was investigated so that an optimum design can be suggested for application with wind turbine blades. It is concluded that a moderately curved flap with flap chord to airfoil curve ratio between 0.05 and 0.10 would be an optimum choice. (author)

  17. Stability of edge states and edge magnetism in graphene nanoribbons

    OpenAIRE

    Kunstmann, Jens; Özdoğan, Cem; Quandt, Alexander; Fehske, Holger

    2010-01-01

    We critically discuss the stability of edge states and edge magnetism in zigzag edge graphene nanoribbons (ZGNRs). We point out that magnetic edge states might not exist in real systems, and show that there are at least three very natural mechanisms - edge reconstruction, edge passivation, and edge closure - which dramatically reduce the effect of edge states in ZGNRs or even totally eliminate them. Even if systems with magnetic edge states could be made, the intrinsic magnetism would not be ...

  18. X-ray absorption near edge spectroscopy at the Mn K-edge in highly homogeneous GaMnN diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sancho-Juan, O.; Cantarero, A.; Garro, N.; Cros, A. [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Martinez-Criado, G.; Salome, M.; Susini, J. [ESRF, Polygone Scientifique Louis Neel, 6 rue Jules Horowitz, 38000 Grenoble (France); Olguin, D. [Dept. de Fisica, CINVESTAV-IPN, 07300 Mexico D.F. (Mexico); Dhar, S.; Ploog, K. [Paul Drude Institute, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2006-06-15

    We have studied by X-ray absorption spectroscopy the local environment of Mn in highly homogeneous Ga{sub 1-x}Mn{sub x}N (0.06edges. In this report, we focus our attention to the X-ray absorption near edge spectroscopy (XANES) results. The comparison of the XANES spectra corresponding to the Ga and Mn edges indicates that Mn is substitutional to Ga in all samples studied. The XANES spectra measured at the Mn absorption edge shows in the near-edge region a double peak and a shoulder below the absorption edge and the main absorption peak after the edge, separated around 15 eV above the pre-edge structure. We have compared the position of the edge with that of MnO (Mn{sup 2+}) and Mn{sub 2}O{sub 3} (Mn{sup 3+}). All samples studied present the same Mn oxidation state, 2{sup +}. In order to interprete the near-edge structure, we have performed ab initio calculations with a 2 x 2 x 1supercell ({proportional_to}6% Mn) using the full potential linear augmented plane wave method as implemented in the Wien2k code. The calculations show the appearance of Mn anti-bonding t{sub 2g} bands, which are responsible for the pre-edge absorption. The shoulder and main absorption peaks are due to transitions from the valence band 1s-states of Mn to the p-contributions of the conduction bands. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. A High Position Resolution X-ray Detector: an Edge on Illuminated Capillary Plate Combined with a Gas Amplification Structure

    CERN Document Server

    Iacobaeus, C.; Lund-Jensen, B.; Ostling, J.; Pavlopoulos, P.; Peskov, V.; Tokanai, F.

    2006-01-01

    We have developed and successfully tested a prototype of a new type of high position resolution hybrid X-ray detector. It contains a thin wall lead glass capillary plate converter of X-rays combined with a microgap parallel-plate avalanche chamber filled with gas at 1 atm. The operation of these converters was studied in a wide range of X-ray energies (from 6 to 60 keV) at incident angles varying from 0-90 degree. The detection efficiency, depending on the geometry, photon energy, incident angle and the mode of operation, was between 5-30 percent in a single step mode and up to 50 percent in a multi-layered combination. Depending on the capillary geometry, the position resolution achieved was between 0.050-0.250 mm in digital form and was practically independent of the photon energy or gas mixture. The usual lead glass capillary plates operated without noticeable charging up effects at counting rates of 50 Hz/mm2, and hydrogen treated capillaries up to 10E5 Hz/mm2. The developed detector may open new possibil...

  20. The Lived Experiences of Leading Edge Certified Elementary School Teachers Who Use Instructional Technology to Foster Critical Thinking, Collaboration, Creativity, and Communication in Their Classrooms: A Phenomenological Study

    Science.gov (United States)

    Ruddell, Natalie

    2017-01-01

    Purpose: The purpose of this phenomenological study was to describe the perceptions of current and former Leading Edge Certified (LEC) elementary school teachers regarding instructional technology practices that facilitate students' development of critical thinking, collaboration, communication, and creativity (4Cs) in one-to-one computer…

  1. Ballistic studies on layered structures

    International Nuclear Information System (INIS)

    Jena, P.K.; Ramanjeneyulu, K.; Siva Kumar, K.; Balakrishna Bhat, T.

    2009-01-01

    This paper presents the ballistic behavior and penetration mechanism of metal-metal and metal-fabric layered structures against 7.62 armour piercing projectiles at a velocity of 840 ± 15 m/s at 30 o angle of impact and compares the ballistic results with that of homogeneous metallic steel armour. This study also describes the effect of keeping a gap between the target layers. Experimental results showed that among the investigated materials, the best ballistic performance was attained with metal-fabric layered structures. The improvements in ballistic performance were analyzed in terms of mode of failure and fracture mechanisms of the samples by using optical and electron microscope, X-ray radiography and hardness measurement equipments.

  2. Nanoindentation near the edge

    Science.gov (United States)

    J.E. Jakes; C.R. Frihart; J.F. Beecher; R.J. Moon; P.J. Resto; Z.H. Melgarejo; O.M. Saurez; H. Baumgart; A.A. Elmustafa; D.S. Stone

    2009-01-01

    Whenever a nanoindent is placed near an edge, such as the free edge of the specimen or heterophase interface intersecting the surface, the elastic discontinuity associated with the edge produces artifacts in the load-depth data. Unless properly handled in the data analysis, the artifacts can produce spurious results that obscure any real trends in properties as...

  3. Edge Fracture in Complex Fluids.

    Science.gov (United States)

    Hemingway, Ewan J; Kusumaatmaja, Halim; Fielding, Suzanne M

    2017-07-14

    We study theoretically the edge fracture instability in sheared complex fluids, by means of linear stability analysis and direct nonlinear simulations. We derive an exact analytical expression for the onset of edge fracture in terms of the shear-rate derivative of the fluid's second normal stress difference, the shear-rate derivative of the shear stress, the jump in shear stress across the interface between the fluid and the outside medium (usually air), the surface tension of that interface, and the rheometer gap size. We provide a full mechanistic understanding of the edge fracture instability, carefully validated against our simulations. These findings, which are robust with respect to choice of rheological constitutive model, also suggest a possible route to mitigating edge fracture, potentially allowing experimentalists to achieve and accurately measure flows stronger than hitherto possible.

  4. Chlorine levels and species in fine and size resolved atmospheric particles by X-ray absorption near-edge structure spectroscopy analysis in Beijing, China.

    Science.gov (United States)

    Ouyang, Jie; Yang, Guo-Sheng; Ma, Ling-Ling; Luo, Min; Zheng, Lei; Huo, Qing; Zhao, Yi-Dong; Hu, Tian-Dou; Cai, Zhen-Feng; Xu, Dian-Dou

    2018-04-01

    An understanding of the species of chlorine is crucial in the metropolis-Beijing, which is suffering serious haze pollution with high frequency. Particulate Matters (PMs) with five different sizes were collected in Beijing from July 2009 to March 2016, and characterized non-destructively by X-ray absorption near edge structure spectroscopy. PM 2.5 contributed for the major PMs mass in spring and summer, PM 0.5-1.0 and PM 1.0-2.5 contributed for the major PMs mass in autumn and winter. The concentrations of the three chlorine species were in the order of inorganic chlorine (Cl inorg ) > aliphatic chlorine (Cl ali ) > aromatic chlorine (Cl aro ), indicating that Cl inorg constituted the primary chlorine fraction and less toxic Cl ali constituted the primary total organic chlorine (Cl ali  + Cl aro , abbreviated as Cl org ) in the PMs in Beijing. In addition, these three chlorine species exhibited identical seasonal variation in PM 2.5 : winter > autumn > spring > summer. Wet precipitation is an important factor to result in the lower mass concentrations of these three chlorine species in summer. The temporal variations of both size resolved PM mass concentrations and chlorine species concentrations suggested that the air pollution prevention and control in Beijing has just won initial success. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Interaction between single gold atom and the graphene edge: A study via aberration-corrected transmission electron microscopy

    KAUST Repository

    Wang, Hongtao

    2012-01-01

    Interaction between single noble metal atoms and graphene edges has been investigated via aberration-corrected and monochromated transmission electron microscopy. A collective motion of the Au atom and the nearby carbon atoms is observed in transition between energy-favorable configurations. Most trapping and detrapping processes are assisted by the dangling carbon atoms, which are more susceptible to knock-on displacements by electron irradiation. Thermal energy is lower than the activation barriers in transition among different energy-favorable configurations, which suggests electron-beam irradiation can be an efficient way of engineering the graphene edge with metal atoms. © 2012 The Royal Society of Chemistry.

  6. Formation of Si clusters in AlGaN: A study of local structure

    International Nuclear Information System (INIS)

    Somogyi, A.; Martinez-Criado, G.; Homs, A.; Hernandez-Fenollosa, M. A.; Vantelon, D.; Ambacher, O.

    2007-01-01

    In this study, the authors report on the application of synchrotron radiation x-ray microprobe to the study of Si impurities in plasma-induced molecular beam epitaxy grown Al 0.32 Ga 0.68 N. Elemental maps obtained by μ-x-ray fluorescence spectrometry show inhomogeneous distributions of Si, Al, and Ga on the micron scale. X-ray absorption near-edge structure spectra taken at the Si and Al K edges provided information about their local chemical environment and revealed the change of the spectral features as depending on the position compared to the sample surface and on the concentration of Si

  7. Jackson Bar Training Structure Study

    Science.gov (United States)

    2015-05-01

    comparison of the one-dimensional bridge hydraulic routines from: HEC - RAS , HEC -2, and WSPRO. Davis, CA: U.S. Army Corps of Engineers, Hydrologic Engineering...ER D C/ CH L TR -1 5- 4 Jackson Bar Training Structure Study Co as ta l a nd H yd ra ul ic s La bo ra to ry Jeremy A. Sharp and...Leroy Gage), a previously constructed HEC -2 model, and a previously constructed WES physical model from 1987. Three alternatives were modeled in an

  8. Structural studies of bee melittin

    Energy Technology Data Exchange (ETDEWEB)

    Eisenberg, D.; Terwilliger, T.C.; Tsui, F.

    1980-10-01

    The question of how proteins refold in passing from an aqueous phase to an amphipathic environment such as a membrane is beig addressed by a structural study of bee melittin. Melittin is the toxic, main protein of bee venom, and has been shown by others to integrate into natural and synthetic membranes and to lyse a variety of cells. This function is presumably related to its unusual sequence. Except for charges at the N-terminus and at lysine 7, the first 20 residues are largely apolar. In contrast, the last six residues contain four charges and two polar residues.

  9. Significance of out-of-plane electronic contributions in Bi-cuprates studied by resonant photoelectron spectroscopy at the Cu2p edge

    Science.gov (United States)

    Janowitz, Christoph; Schmeißer, Dieter

    2018-04-01

    In high-temperature superconductors with a layered crystal structure, the copper-oxygen planes are commonly considered to dominate the electronic properties around the Fermi energy. As a consequence, out-of-plane contributions are often neglected in the description of these materials. Here we report on a resonant photoemission study of Pb0,4Bi1,6Sr2,0CaCu2O8 ((Pb, Bi)-2212) and Pb0,6Bi1,4Sr1.5La0.5CuO6 ((Pb, Bi)-2201)) single crystals to unravel the resonant decay mechanisms at the Cu2p absorption edge. We find evidence for a pronounced polarization dependence caused by two different Auger processes for in-plane and out-of-plane orientations. We deduce that the lowest energy valence state—which is involved in the two Auger processes—consists of three-dimensional contributions by admixed out-of-plane Sr, Bi, and O2p states. It also suggests that the doping-induced charge density is dynamic, fluctuating within the Cu-O plane, and spills out perpendicular to it. This suggests that out-of-plane electronic degrees of freedom should be included in future consistent theoretical models of these materials.

  10. Ordered and disordered models of local structure around Ag cations in silver borate glasses based on x-ray absorptio n near-edge structure spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Šipr, Ondřej; Dalba, G.; Rocca, F.

    2004-01-01

    Roč. 69, - (2004), 134201/1-134201/16 ISSN 0163-1829 R&D Projects: GA ČR GA202/02/0841 Institutional research plan: CEZ:AV0Z1010914 Keywords : disordered systems * structural analysis * XANES * silver * borate glass es Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.075, year: 2004

  11. Genesis of Co/SiO2 catalysts : XAS study at the cobalt L-III,L- II absorption edges

    NARCIS (Netherlands)

    Bazin, D.; Kovacs, I.; Guczi, L.; Parent, P.; Laffon, C.; De Groot, F.; Ducreux, O.; Lynch, J.

    2000-01-01

    Silica-supported cobalt catalysts have been investigated by soft X-ray absorption techniques. Soft X-ray absorption spectra were collected at the Co LII,III edge during in situ reduction of calcined samples in a stream of hydrogen in the temperature range between 300 and 650°C. Using reference

  12. Edge field emission of large-area single layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kleshch, Victor I., E-mail: klesch@polly.phys.msu.ru [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Bandurin, Denis A. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Orekhov, Anton S. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); A.V. Shubnikov Institute of Crystallography, RAS, Moscow 119333 (Russian Federation); Purcell, Stephen T. [ILM, Université Claude Bernard Lyon 1 et CNRS, UMR 5586, 69622 Villeurbanne (France); Obraztsov, Alexander N. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Department of Physics and Mathematics, University of Eastern Finland, Joensuu 80101 (Finland)

    2015-12-01

    Graphical abstract: - Highlights: • Stable field emission was observed from the edge of large-area graphene on quartz. • A strong hysteresis in current–voltage characteristics was observed. • The hysteresis was explained by mechanical peeling of graphene edge from substrate. • Reversible peeling of graphene edge may be used in microelectromechanical systems. - Abstract: Field electron emission from the edges of large-area (∼1 cm × 1 cm) graphene films deposited onto quartz wafers was studied. The graphene was previously grown by chemical vapour deposition on copper. An extreme enhancement of electrostatic field at the edge of the films with macroscopically large lateral dimensions and with single atom thickness was achieved. This resulted in the creation of a blade type electron emitter, providing stable field emission at low-voltage with linear current density up to 0.5 mA/cm. A strong hysteresis in current–voltage characteristics and a step-like increase of the emission current during voltage ramp up were observed. These effects were explained by the local mechanical peeling of the graphene edge from the quartz substrate by the ponderomotive force during the field emission process. Specific field emission phenomena exhibited in the experimental study are explained by a unique combination of structural, electronic and mechanical properties of graphene. Various potential applications ranging from linear electron beam sources to microelectromechanical systems are discussed.

  13. Ab Initio Metadynamics Study of the VO2+/VO2+ Redox Reaction Mechanism at the Graphite Edge/Water Interface.

    Science.gov (United States)

    Jiang, Zhen; Klyukin, Konstantin; Alexandrov, Vitaly

    2018-06-08

    Redox flow batteries (RFBs) are promising electrochemical energy storage systems, for which development is impeded by a poor understanding of redox reactions occurring at electrode/electrolyte interfaces. Even for the conventional all-vanadium RFB chemistry employing V 2+ /V 3+ and VO 2 + /VO 2+ couples, there is still no consensus about the reaction mechanism, electrode active sites, and rate-determining step. Herein, we perform Car-Parrinello molecular dynamics-based metadynamics simulations to unravel the mechanism of the VO 2 + /VO 2+ redox reaction in water at the oxygen-functionalized graphite (112̅0) edge surface serving as a representative carbon-based electrode. Our results suggest that during the battery discharge aqueous VO 2 + /VO 2+ species adsorb at the surface C-O groups as inner-sphere complexes, exhibiting faster adsorption/desorption kinetics than V 2+ /V 3+ , at least at low vanadium concentrations considered in our study. We find that this is because (i) VO 2 + /VO 2+ conversion does not involve the slow transfer of an oxygen atom, (ii) protonation of VO 2 + is spontaneous and coupled to interfacial electron transfer in acidic conditions to enable VO 2+ formation, and (iii) V 3+ found to be strongly bound to oxygen groups of the graphite surface features unfavorable desorption kinetics. In contrast, the reverse process taking place upon charging is expected to be more sluggish for the VO 2 + /VO 2+ redox couple because of both unfavorable deprotonation of the VO 2+ water ligands and adsorption/desorption kinetics.

  14. Characterization of Functionalized Self-Assembled Monolayers and Surface-Attached Interlocking Molecules Using Near-Edge X-ray Absorption Fine Structure Spectroscopy

    International Nuclear Information System (INIS)

    Willey, T; Willey, T

    2004-01-01

    Quantitative knowledge of the fundamental structure and substrate binding, as well as the direct measurement of conformational changes, are essential to the development of self-assembled monolayers (SAMs) and surface-attached interlocking molecules, catenanes and rotaxanes. These monolayers are vital to development of nano-mechanical, molecular electronic, and biological/chemical sensor applications. This dissertation investigates properties of functionalized SAMs in sulfur-gold based adsorbed molecular monolayers using quantitative spectroscopic techniques including near-edge x-ray absorption fine structure spectroscopy (NEXAFS) and x-ray photoelectron spectroscopy (XPS). The stability of the gold-thiolate interface is addressed. A simple model SAM consisting of dodecanethiol adsorbed on Au(111) degrades significantly in less than 24 hours under ambient laboratory air. S 2p and O 1s XPS show the gold-bound thiolates oxidize to sulfinates and sulfonates. A reduction of organic material on the surface and a decrease in order are observed as the layer degrades. The effect of the carboxyl vs. carboxylate functionalization on SAM structure is investigated. Carboxyl-terminated layers consisting of long alkyl-chain thiols vs. thioctic acid with short, sterically separated, alkyl groups are compared and contrasted. NEXAFS shows a conformational change, or chemical switchability, with carboxyl groups tilted over and carboxylate endgroups more upright. Surface-attached loops and simple surface-attached rotaxanes are quantitatively characterized, and preparation conditions that lead to desired films are outlined. A dithiol is often insufficient to form a molecular species bound at each end to the substrate, while a structurally related disulfide-containing polymer yields surface-attached loops. Similarly, spectroscopic techniques show the successful production of a simple, surface-attached rotaxane that requires a ''molecular riveting'' step to hold the mechanically attached

  15. Large scale nuclear structure studies

    International Nuclear Information System (INIS)

    Faessler, A.

    1985-01-01

    Results of large scale nuclear structure studies are reported. The starting point is the Hartree-Fock-Bogoliubov solution with angular momentum and proton and neutron number projection after variation. This model for number and spin projected two-quasiparticle excitations with realistic forces yields in sd-shell nuclei similar good results as the 'exact' shell-model calculations. Here the authors present results for a pf-shell nucleus 46 Ti and results for the A=130 mass region where they studied 58 different nuclei with the same single-particle energies and the same effective force derived from a meson exchange potential. They carried out a Hartree-Fock-Bogoliubov variation after mean field projection in realistic model spaces. In this way, they determine for each yrast state the optimal mean Hartree-Fock-Bogoliubov field. They apply this method to 130 Ce and 128 Ba using the same effective nucleon-nucleon interaction. (Auth.)

  16. Semiempirical studies of atomic structure

    International Nuclear Information System (INIS)

    Curtis, L.J.

    1992-01-01

    The energy level structure, transition probabilities, and general spectroscopic properties of highly ionized many-electron systems are studied through the combined use of sensitive semiempirical data systematizations, selected precision experimental measurements, and specialized theoretical computations. Measurements are made primarily through the use of fast ion beam excitation methods, which are combined with available data from laser-and tokamak-produced plasmas, astrophysical sources, and conventional light sources. The experimental studies are strengthened through large-scale ab initio calculations. Typical examples are the following: lifetime measurements in the neon isoelectronic sequence; multiplexed decay curve measurements of Li-like Si XII; and isoelectronic specification of intershell resonance and intercombination decay rates using measured transition probabilities and spectroscopically determined singlet-mixing amplitudes

  17. Development of planar detectors with active edge

    International Nuclear Information System (INIS)

    Povoli, M.; Bagolini, A.; Boscardin, M.; Dalla Betta, G.-F.; Giacomini, G.; Vianello, E.; Zorzi, N.

    2011-01-01

    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  18. Development of planar detectors with active edge

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: povoli@disi.unitn.it [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Giacomini, G.; Vianello, E.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy)

    2011-12-01

    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  19. Quantitative investigation of the edge enhancement in in-line phase contrast projections and tomosynthesis provided by distributing microbubbles on the interface between two tissues: a phantom study

    Science.gov (United States)

    Wu, Di; Donovan Wong, Molly; Li, Yuhua; Fajardo, Laurie; Zheng, Bin; Wu, Xizeng; Liu, Hong

    2017-12-01

    The objective of this study was to quantitatively investigate the ability to distribute microbubbles along the interface between two tissues, in an effort to improve the edge and/or boundary features in phase contrast imaging. The experiments were conducted by employing a custom designed tissue simulating phantom, which also simulated a clinical condition where the ligand-targeted microbubbles are self-aggregated on the endothelium of blood vessels surrounding malignant cells. Four different concentrations of microbubble suspensions were injected into the phantom: 0%, 0.1%, 0.2%, and 0.4%. A time delay of 5 min was implemented before image acquisition to allow the microbubbles to become distributed at the interface between the acrylic and the cavity simulating a blood vessel segment. For comparison purposes, images were acquired using three system configurations for both projection and tomosynthesis imaging with a fixed radiation dose delivery: conventional low-energy contact mode, low-energy in-line phase contrast and high-energy in-line phase contrast. The resultant images illustrate the edge feature enhancements in the in-line phase contrast imaging mode when the microbubble concentration is extremely low. The quantitative edge-enhancement-to-noise ratio calculations not only agree with the direct image observations, but also indicate that the edge feature enhancement can be improved by increasing the microbubble concentration. In addition, high-energy in-line phase contrast imaging provided better performance in detecting low-concentration microbubble distributions.

  20. Image-Based Edge Bundles : Simplified Visualization of Large Graphs

    NARCIS (Netherlands)

    Telea, A.; Ersoy, O.

    2010-01-01

    We present a new approach aimed at understanding the structure of connections in edge-bundling layouts. We combine the advantages of edge bundles with a bundle-centric simplified visual representation of a graph's structure. For this, we first compute a hierarchical edge clustering of a given graph

  1. Structural studies of cyanobacterial PSII

    International Nuclear Information System (INIS)

    Da Fonseca, Paula Cristina Alves

    2001-01-01

    Photosystem II (PSII) is the photosynthetic transmembrane protein-pigment complex which utilises light energy to drive the splitting of water and release of oxygen, a unique reaction in biological systems. The determination of the structure of PSII at high resolution is required in order to understand its mechanisms of reaction. For this reason, methods have been developed to purify highly active PSII complexes from the thermophilic cyanobacterium Synechococcus elongate These complexes have been studied by high resolution electron microscopy, using both single particle analysis and electron crystallography. A 30A three-dimensional map of the cyanobacterial PSII complex was obtained by single particle analysis. The comparison of this map with structural data from the spinach PSII core dimer revealed that both complexes share similar overall size and shape. These data also allowed a discussion on the organisation and positioning of the extrinsic lumenal proteins within the cyanobacterial PSII complex. A Synechococcus elongatus PSII projection map, at a resolution of 20A, was determined by image processing of two-dimensional crystals formed by the in vitro reconstitution method. This was the first projection map obtained by electron crystallography of a cyanobacterial highly active PSII complex, with all the extrinsic subunits retained. The analysis of this map and its comparison with a 10A three-dimensional map recently obtained from the spinach PSII core dimer revealed a similar organisation of the main transmembrane subunits. Moreover, at the level of resolution of the present data it is possible to identify differences which can be related to the content and organisation of the small subunits forming the PSII complex from both organisms. Cytochrome b559, an important but incompletely understood PSII subunit, was purified and subjected to crystallisation trials in order to aid the interpretation of intermediate resolution PSII structural data. Small crystals were

  2. Method of Preparation AZP4330 PR Pattern with Edge Slope 40°

    Science.gov (United States)

    Wu, Jie; Zhao, Hongyuan; Yu, Yuanwei; Zhu, Jian

    2018-03-01

    When the edge which is under the multi-film is more steep or angular, the stress in the multilayer film near the edge is concentrated, this situation will greatly reduce the reliability of electronic components. And sometimes, we need some special structure such as a slope with a specific angle in the MEMS, so that the metal line can take the signal to the output pad through the slope instead of deep step. To cover these problems, the lithography method of preparing the structure with edge slope is studied. In this paper, based on the Kirchhoff scalar diffraction theory we try to change the contact exposure gap and the post-baking time at the specific temperature to find out the effect about the edge angle of the photoresist. After test by SEM, the results were presented by using AZP4330 photoresist, we can get the PR Pattern with edge slope 40° of the process and the specific process parameters.

  3. Strength on cut edge and ground edge glass beams with the failure analysis method

    Directory of Open Access Journals (Sweden)

    Stefano Agnetti

    2013-10-01

    Full Text Available The aim of this work is the study of the effect of the finishing of the edge of glass when it has a structural function. Experimental investigations carried out for glass specimens are presented. Various series of annealed glass beam were tested, with cut edge and with ground edge. The glass specimens are tested in four-point bending performing flaw detection on the tested specimens after failure, in order to determine glass strength. As a result, bending strength values are obtained for each specimen. Determining some physical parameter as the depth of the flaw and the mirror radius of the fracture, after the failure of a glass element, it could be possible to calculate the failure strength of that.The experimental results were analyzed with the LEFM theory and the glass strength was analyzed with a statistical study using two-parameter Weibull distribution fitting quite well the failure stress data. The results obtained constitute a validation of the theoretical models and show the influence of the edge processing on the failure strength of the glass. Furthermore, series with different sizes were tested in order to evaluate the size effect.

  4. An edge pedestal model

    International Nuclear Information System (INIS)

    Stacev, W.M.

    2001-01-01

    A new model for calculation of the gradient scale lengths in the edge pedestal region and of the edge transport barrier width in H-mode tokamak plasmas will be described. Model problem calculations which demonstrate the promise of this model for predicting experimental pedestal properties will be discussed. The density and Prague gradient scale lengths (L) in the edge are calculated from the particle and ion and electron energy radial transport equations, making use of (presumed) known particle and energy fluxes flowing across the edge transport barrier from the core into the SOL and of edge transport coefficients. The average values of the particle and heat fluxes in the edge transport barrier are calculated in terms of the fluxes crossing into the SOL and the atomic physics reaction rates (ionisation, charge-exchange, elastic scattering, impurity radiation) in the edge by integrating the respective transport equations from the pedestal to the separatrix. An important implication of this model is that the pedestal gradient scale lengths depend not just on local pedestal platers properties but also on particle and energy fluxes from the core plasma and on recycling neutral fluxes that penetrate into the plasma edge, both of which in turn depend on the pedestal properties. The MHD edge pressure gradient constraint α≤ α C is used to determine the pressure width of the edge transport barrier, Δ TB = Δ TB (α c ). Three different models for the MHD edge pressure gradient constraint have been investigated: (1) nominal ideal ballooning mode theory, (2) ballooning mode theory taking into account the edge geometry and shear to access He second stability region; and pedestal β-limit theory when the ballooning modes are stabilised by diamagnetic effects. A series of calculations have been made for a DIII-D model problem. The calculated gradient scale lengths and edge transport barrier widths are of the magnitude of values observed experimentally, and certain trends

  5. Comparison of morphological and conventional edge detectors in medical imaging applications

    Science.gov (United States)

    Kaabi, Lotfi; Loloyan, Mansur; Huang, H. K.

    1991-06-01

    Recently, mathematical morphology has been used to develop efficient image analysis tools. This paper compares the performance of morphological and conventional edge detectors applied to radiological images. Two morphological edge detectors including the dilation residue found by subtracting the original signal from its dilation by a small structuring element, and the blur-minimization edge detector which is defined as the minimum of erosion and dilation residues of the blurred image version, are compared with the linear Laplacian and Sobel and the non-linear Robert edge detectors. Various structuring elements were used in this study: regular 2-dimensional, and 3-dimensional. We utilized two criterions for edge detector's performance classification: edge point connectivity and the sensitivity to the noise. CT/MR and chest radiograph images have been used as test data. Comparison results show that the blur-minimization edge detector, with a rolling ball-like structuring element outperforms other standard linear and nonlinear edge detectors. It is less noise sensitive, and performs the most closed contours.

  6. Edge compression techniques for visualization of dense directed graphs.

    Science.gov (United States)

    Dwyer, Tim; Henry Riche, Nathalie; Marriott, Kim; Mears, Christopher

    2013-12-01

    We explore the effectiveness of visualizing dense directed graphs by replacing individual edges with edges connected to 'modules'-or groups of nodes-such that the new edges imply aggregate connectivity. We only consider techniques that offer a lossless compression: that is, where the entire graph can still be read from the compressed version. The techniques considered are: a simple grouping of nodes with identical neighbor sets; Modular Decomposition which permits internal structure in modules and allows them to be nested; and Power Graph Analysis which further allows edges to cross module boundaries. These techniques all have the same goal--to compress the set of edges that need to be rendered to fully convey connectivity--but each successive relaxation of the module definition permits fewer edges to be drawn in the rendered graph. Each successive technique also, we hypothesize, requires a higher degree of mental effort to interpret. We test this hypothetical trade-off with two studies involving human participants. For Power Graph Analysis we propose a novel optimal technique based on constraint programming. This enables us to explore the parameter space for the technique more precisely than could be achieved with a heuristic. Although applicable to many domains, we are motivated by--and discuss in particular--the application to software dependency analysis.

  7. Network evolution by nonlinear preferential rewiring of edges

    Science.gov (United States)

    Xu, Xin-Jian; Hu, Xiao-Ming; Zhang, Li-Jie

    2011-06-01

    The mathematical framework for small-world networks proposed in a seminal paper by Watts and Strogatz sparked a widespread interest in modeling complex networks in the past decade. However, most of research contributing to static models is in contrast to real-world dynamic networks, such as social and biological networks, which are characterized by rearrangements of connections among agents. In this paper, we study dynamic networks evolved by nonlinear preferential rewiring of edges. The total numbers of vertices and edges of the network are conserved, but edges are continuously rewired according to the nonlinear preference. Assuming power-law kernels with exponents α and β, the network structures in stationary states display a distinct behavior, depending only on β. For β>1, the network is highly heterogeneous with the emergence of starlike structures. For β<1, the network is widely homogeneous with a typical connectivity. At β=1, the network is scale free with an exponential cutoff.

  8. On the enzymatic activity of catalase : an iron L-edge X-ray absorption study of the active centre

    NARCIS (Netherlands)

    Bergmann, Nora; Bonhommeau, Sebastien; Lange, Kathrin M.; Greil, Stefanie M.; Eisebitt, Stefan; de Groot, Frank; Chergui, Majed; Aziz, Emad F.

    2010-01-01

    Catalase and methaemoglobin have very similar haem groups, which are both ferric, yet catalase decomposes hydrogen peroxide to water and oxygen very efficiently, while methaemoglobin does not. Structural studies have attributed this behaviour to their different distal environments. Here we present

  9. Phase transition in LiVO2 studied by near-edge x-ray-absorption spectroscopy

    NARCIS (Netherlands)

    Pen, HF; Tjeng, LH; Pellegrin, E; deGroot, FMF; Sawatzky, GA; vanVeenendaal, MA; Chen, CT

    1997-01-01

    We present temperature-dependent V-2p and O-1s x-ray-absorption spectra of LiVO2. The aim of this study is to monitor changes in electronic structure on going through the phase transition. The spectral changes turn out to be very small: the V-3d-O-2p hybridization does not change considerably, and

  10. Thin Film Structure of Tetraceno(2,3-B)thiophene Characterized By Grazing Incidence X-Ray Scattering And Near-Edge X-Ray Absorption Fine Structure Analysis

    International Nuclear Information System (INIS)

    Yuan, Q.; Mannsfeld, S.C.B.; Tang, M.L.; Toney, M.F.; Luening, J.; Bao, Z.A.

    2008-01-01

    Understanding the structure-property relationship for organic semiconductors is crucial in rational molecular design and organic thin film process control. Charge carrier transport in organic field-effect transistors predominantly occurs in a few semiconductor layers close to the interface in contact with the dielectric layer, and the transport properties depend sensitively on the precise molecular packing. Therefore, a better understanding of the impact of molecular packing and thin film morphology in the first few monolayers above the dielectric layer on charge transport is needed to improve the transistor performance. In this Article, we show that the detailed molecular packing in thin organic semiconductor films can be solved through a combination of grazing incidence X-ray diffraction (GIXD), near-edge X-ray absorption spectra fine structure (NEXAFS) spectroscopy, energy minimization packing calculations, and structure refinement of the diffraction data. We solve the thin film structure for 2 and 20 nm thick films of tetraceno(2,3-b)thiophene and detect only a single phase for these thicknesses. The GIXD yields accurate unit cell dimensions, while the precise molecular arrangement in the unit cell was found from the energy minimization and structure refinement; the NEXAFS yields a consistent molecular tilt. For the 20 nm film, the unit cell is triclinic with a = 5.96 A, b = 7.71 A, c = 15.16 A, alpha = 97.30 degrees, beta = 95.63 degrees, gamma = 90 degrees; there are two molecules per unit cell with herringbone packing (49-59 degree angle) and tilted about 7 degrees from the substrate normal. The thin film structure is significantly different from the bulk single-crystal structure, indicating the importance of characterizing thin film to correlate with thin film device performance. The results are compared to the corresponding data for the chemically similar and widely used pentacene. Possible effects of the observed thin film structure and morphology on

  11. Estrutura de espécies arbóreas sob efeito de borda em um fragmento de floresta estacional semidecidual em Pernambuco Edge effect on the structure of tree species in a seasonal forest fragment in Pernambuco

    Directory of Open Access Journals (Sweden)

    Alan Caue de Holanda

    2010-02-01

    Full Text Available Os fragmentos florestais são considerados os únicos redutos detentores de biodiversidade do planeta. Conhecer os processos que decorrem após a fragmentação, a exemplo da estrutura arbórea ocorrente na borda, é de fundamental importância para se proporem medidas conservacionistas. Os objetivos deste trabalho, desenvolvido em uma área de 83,8 ha, localizada no Município de Nazaré da Mata, PE, foram efetuar o levantamento fitossociológico de espécies arbóreas adultas sob efeito de borda e verificar a similaridade florística entre as parcelas. A área amostral foi de 10.000 m², equivalentes à implantação de 10 transectos de 10 x 100 m perpendiculares à borda, distribuídos de forma sistemática. Foram amostrados, etiquetados e identificados todos os indivíduos arbóreos com CAP e" 15 cm. Posteriormente, realizaram-se os cálculos dos parâmetros fitossociológicos e da similaridade florística. Neste estudo, amostraram-se 1.238 indivíduos, pertencentes a 72 táxons, distribuídos em 26 famílias botânicas. As espécies Campomanesia xanthocarpa, Zanthoxylum rhoifolium e Anadenanthera colubrina apresentaram o maior valor de importância, pois, teoricamente, conseguiram explorar melhor o recurso proporcionado pelo hábitat.Forest fragments are considered the last refuges for biodiversity in the planet. Knowing the processes that occur after fragmentation, such as the tree structure that occurs in the edge, is fundamental to propose conservationist measures. The objective of this work was to carry out a phytosociological survey of adult tree species under edge effect and verify the floristic similarity among the plots. The work was developed in an area of 83,8 ha located in the municipality of Nazaré da Mata - PE. The sample area comprised 10.000 m², equivalent to the implantation of 10 contiguous transects of 10 x 100 m perpendicular to the edge. All tree individuals with CAP e" 15 cm were sampled, labeled and identified

  12. ICRF/edge physics research on TEXTOR

    International Nuclear Information System (INIS)

    Oost, G. van; Nieuwenhove, R. van; Koch, R.; Messiaen, A.M.; Vandenplas, P.E.; Weynants, R.R.; Dippel, K.H.; Finken, K.H.; Lie, Y.T.; Pospieszczyk, A.; Samm, U.; Schweer, B.; Conn, R.W.; Corbett, W.J.; Goebel, D.M.; Moyer, R.A.; California Univ., Los Angeles

    1990-01-01

    Extensive investigations of ICRF-induced effects on the edge plasma and on plasma-wall interaction were conducted on TEXTOR under different wall- and limiter as well as plasma- and heating conditions. Several strong effects of ICRF on the edge parameters were observed on TEXTOR, such as density rise, instantaneous electron heating, modification of SOL profiles, influx of ligth and/or heavy impurities, increased heat flux to the limiters, and production of energetic ions in the SOL. The fast response time of some of the changes and the observation of a maximum in the SOL profile of electron temperature, heat flux and metal sputtering clearly demonstrated that RF power is directly absorbed in the SOL. Estimates of this power amount to several percent of the total RF power launched into the plasma. Plasma-wall interaction during ICRF was substantially reduced by an appropriate choice of the wall conditioning procedures (wall carbonization with liner at 400degC or, above all, boronization). As a result record low values of the radiated power fraction were achieved during ICRF and long pulse, high power, low impurity operation was possible. Further improvement was obtained by ICRF antenna phasing. When ICRF power is coupled to the plasma, several effects on the core and edge plasma influence the operation of the toroidal pump limiter ALT-II. Experimental and theoretical studies were performed to elucidate the mechanisms responsible for the ICRF-induced effects, including the propagation of plasma waves in the edge plasma and nonlinear phenomena such as parametric decay, important changes in the DC current between the antenna structure and the liner due to the sheath effect at the antennas, and the generation of waves at harmonics of the RF generator frequency. Radial profiles of the DC radial and poloidal electric fields as well as a localized RF electric field structure were measured in the SOL using a fast scanning probe. (orig.)

  13. Free edge effects study in laminated composites using Digital Image Correlation: effect of material and geometrical singularities

    Directory of Open Access Journals (Sweden)

    Brieu M.

    2010-06-01

    Full Text Available Composite materials are today used for various industrial applications. However, delamination on free edges, where stress gradients are strong, still remain a problem. In the aim of a better understanding of such phenomenons, Digital Image Correlation (DIC measurements have been carried out on [(15n/-15n2]s laminates under uniaxial tensile strain. Three different composites with different mechanical properties and microstructure have been tested as well as two samples geometries: flat and with ply drop. Experimental results show high shear strain concentrations near 15°/-15° interlaminar interfaces on free edges which depend on material mechanical properties and microstructure and incre