WorldWideScience

Sample records for edge structure analysis

  1. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  2. Structure analysis of edge-on spiral galaxies

    NARCIS (Netherlands)

    deGrijs, R; vanderKruit, PC

    The stellar distribution of a small sample of edge-on spiral galaxies is examined in B, V, R, and I by fitting model distributions to the light profiles, both perpendicular to the galaxy planes and along the major axes. We have developed a method to compare the fits for the models obtained for

  3. Solid energy calibration standards for P K-edge XANES: electronic structure analysis of PPh4Br.

    Science.gov (United States)

    Blake, Anastasia V; Wei, Haochuan; Donahue, Courtney M; Lee, Kyounghoon; Keith, Jason M; Daly, Scott R

    2018-03-01

    P K-edge X-ray absorption near-edge structure (XANES) spectroscopy is a powerful method for analyzing the electronic structure of organic and inorganic phosphorus compounds. Like all XANES experiments, P K-edge XANES requires well defined and readily accessible calibration standards for energy referencing so that spectra collected at different beamlines or under different conditions can be compared. This is especially true for ligand K-edge X-ray absorption spectroscopy, which has well established energy calibration standards for Cl (Cs 2 CuCl 4 ) and S (Na 2 S 2 O 3 ·5H 2 O), but not neighboring P. This paper presents a review of common P K-edge XANES energy calibration standards and analysis of PPh 4 Br as a potential alternative. The P K-edge XANES region of commercially available PPh 4 Br revealed a single, highly resolved pre-edge feature with a maximum at 2146.96 eV. PPh 4 Br also showed no evidence of photodecomposition when repeatedly scanned over the course of several days. In contrast, we found that PPh 3 rapidly decomposes under identical conditions. Density functional theory calculations performed on PPh 3 and PPh 4 + revealed large differences in the molecular orbital energies that were ascribed to differences in the phosphorus oxidation state (III versus V) and molecular charge (neutral versus +1). Time-dependent density functional theory calculations corroborated the experimental data and allowed the spectral features to be assigned. The first pre-edge feature in the P K-edge XANES spectrum of PPh 4 Br was assigned to P 1s → P-C π* transitions, whereas those at higher energy were P 1s → P-C σ*. Overall, the analysis suggests that PPh 4 Br is an excellent alternative to other solid energy calibration standards commonly used in P K-edge XANES experiments.

  4. Space Shuttle Orbiter - Leading edge structural design/analysis and material allowables

    Science.gov (United States)

    Johnson, D. W.; Curry, D. M.; Kelly, R. E.

    1986-01-01

    Reinforced Carbon-Carbon (RCC), a structural composite whose development was targeted for the high temperature reentry environments of reusable space vehicles, has successfully demonstrated that capability on the Space Shuttle Orbiter. Unique mechanical properties, particularly at elevated temperatures up to 3000 F, make this material ideally suited for the 'hot' regions of multimission space vehicles. Design allowable characterization testing, full-scale development and qualification testing, and structural analysis techniques will be presented herein that briefly chart the history of the RCC material from infancy to eventual multimission certification for the Orbiter. Included are discussions pertaining to the development of the design allowable data base, manipulation of the test data into usable forms, and the analytical verification process.

  5. Progressive buckling analysis for a cylindrical shell structure with the free edge subjected to moving thermal cycles

    International Nuclear Information System (INIS)

    Koo, Gyeong-Hoi; Lee, Jae-Han

    2004-01-01

    In the KALIMER (Korea Advanced Liquid Metal Reactor) design, the reactor baffle structure is adopted to prevent the hot pool sodium from directly contacting the reactor vessel and to guide the hot sodium overflow in severe transient operating conditions. The parts in the vicinity of the hot pool free surface region could be repeatedly subjected to a moving axial temperature gradient and this might result in thermal ratcheting deformation. In this paper, the progressive thermal buckling behaviour following thermal ratcheting due to the moving axial temperature gradients in a cylindrical shell structure with an open free edge is investigated using numerical inelastic analysis with Chaboche's model. To do this, the analyses of the moving temperature distribution are carried out with a simple model and the severe moving axial temperature gradients are assumed to be sufficient for the evolution of thermal ratcheting

  6. Lattice positions of Sn in Cu2ZnSnS4 nanoparticles and thin films studied by synchrotron X-ray absorption near edge structure analysis

    Science.gov (United States)

    Zillner, E.; Paul, A.; Jutimoosik, J.; Chandarak, S.; Monnor, T.; Rujirawat, S.; Yimnirun, R.; Lin, X. Z.; Ennaoui, A.; Dittrich, Th.; Lux-Steiner, M.

    2013-06-01

    Lattice positions of Sn in kesterite Cu2ZnSnS4 and Cu2SnS3 nanoparticles and thin films were investigated by XANES (x-ray absorption near edge structure) analysis at the S K-edge. XANES spectra were analyzed by comparison with simulations taking into account anti-site defects and vacancies. Annealing of Cu2ZnSnS4 nanoparticle thin films led to a decrease of Sn at its native and defect sites. The results show that XANES analysis at the S K-edge is a sensitive tool for the investigation of defect sites, being critical in kesterite thin film solar cells.

  7. Grazing exit versus grazing incidence geometry for x-ray absorption near edge structure analysis of arsenic traces

    International Nuclear Information System (INIS)

    Meirer, F.; Streli, C.; Wobrauschek, P.; Zoeger, N.; Pepponi, G.

    2009-01-01

    In the presented study the grazing exit x-ray fluorescence was tested for its applicability to x-ray absorption near edge structure analysis of arsenic in droplet samples. The experimental results have been compared to the findings of former analyses of the same samples using a grazing incidence (GI) setup to compare the performance of both geometries. Furthermore, the investigations were accomplished to gain a better understanding of the so called self-absorption effect, which was observed and investigated in previous studies using a GI geometry. It was suggested that a normal incidence-grazing-exit geometry would not suffer from self-absorption effects in x-ray absorption fine structure (XAFS) analysis due to the minimized path length of the incident beam through the sample. The results proved this assumption and in turn confirmed the occurrence of the self-absorption effect for GI geometry. Due to its lower sensitivity it is difficult to apply the GE geometry to XAFS analysis of trace amounts (few nanograms) of samples but the technique is well suited for the analysis of small amounts of concentrated samples

  8. Edge separation using diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Ravel, B.; Bouldin, C.E.; Renevier, H.; Hodeau, J.L.; Berar, J.F.

    1999-01-01

    We exploit the crystallographic sensitivity of the Diffraction Anomalous Fine-Structure (DAFS) measurement to separate the fine structure contributions of different atomic species with closely spaced resonant energies. In BaTiO 3 the Ti K edge and Ba Lm edges are separated by 281 eV, or about 8.2 Angstrom -1 ), thus severely limiting the information content of the Ti K edge signal. Using the site selectivity of DAFS we can separate the two fine structure spectra using an iterative Kramers-Kronig method, thus extending the range of the Ti K edge spectrum. This technique has application to many rare earth/transition metal compounds, including many magnetic materials of technological significance for which K and L edges overlap in energy. (au)

  9. Analysis of sulfidic linkages formed in natural rubber latex medical gloves by using X-ray absorption near edge structure

    Science.gov (United States)

    Chankrachang, M.; Limphirat, W.; Yongyingsakthavorn, P.; Nontakaew, U.; Tohsan, A.

    2017-09-01

    A study of sulfidic linkages formed in natural rubber (NR) latex medical gloves by using X-ray Absorption Near Edge Structure (XANES) is presented in this paper. The NR latex compound was prepared by using prevulcanization method, that is, it was prevulcanized at room temperature for 24 hrs before utilization. After the 24 hrs of prevulcanization, the latex film samples were obtained by dipping process. The dipped films were subjected to vulcanize at 110°C for 5 to 25 min. It was observed that after the compound was prevulcanized for 24 hrs, polysulfidic linkages were mainly formed in the sample. It was however found that after curing at 110°C for 5-25 min, the polysulfidic linkages are tended to change into disulfide linkages. Especially, in the case of 25 minutes cured sample, disulfide linkages are found to be the main linkages. In term of tensile strength, it was observed that when cure time increased from 5 - 10 min, tensile strengths were also increased. But when the cure time of the film is 25 minutes, tensile strength was slightly dropped. The dropped of tensile strength when cure time is longer than 10 minutes can be ascribed to a degradation of polysulfidic and disulfidic linkages during curing. Therefore, by using XANES analysis, it was found to be very useful to understand the cure characteristic, thus it can be very helpful to optimize cure time and tensile properties of the product.

  10. Detailed Analysis of Amplitude and Slope Diffraction Coefficients for knife-edge structure in S-UTD-CH Model

    Directory of Open Access Journals (Sweden)

    Eray Arik

    2017-03-01

    Full Text Available In urban, rural and indoor applications, diffraction mechanism is very important to predict the field strength and calculate the coverage accurately. The diffraction mechanism takes place on NLOS (non-line-of-sight cases like rooftop, vertex, corner, edge and sharp surfaces. S-UTD-CH model computes three type of electromagnetic wave incidence such as direct, reflected and diffracted waves, respectively. As obstacles in diffraction geometry are in the same or closer height, contribution of the diffraction mechanism is dominant. To predict the diffracted fields accurately, amplitude and slope diffraction coefficients and the derivative of these coefficients have to be taken correctly. In this paper, all the derivations about diffraction coefficients are made for knife edge type structures and extensive simulations are performed in order to analyze the amplitude and diffraction coefficients. In plane angle diffraction, contributions of amplitude and slope diffraction coefficient are maxima.

  11. Mass and performance optimization of an airplane wing leading edge structure against bird strike using Taguchi-based grey relational analysis

    Directory of Open Access Journals (Sweden)

    Hassan Pahange

    2016-08-01

    Full Text Available Collisions between birds and aircraft are one of the most dangerous threats to flight safety. In this study, smoothed particles hydrodynamics (SPH method is used for simulating the bird strike to an airplane wing leading edge structure. In order to verify the model, first, experiment of bird strike to a flat aluminum plate is simulated, and then bird impact on an airplane wing leading edge structure is investigated. After that, considering dimensions of wing internal structural components like ribs, skin and spar as design variables, we try to minimize structural mass and wing skin deformation simultaneously. To do this, bird strike simulations to 18 different wing structures are made based on Taguchi’s L18 factorial design of experiment. Then grey relational analysis is used to minimize structural mass and wing skin deformation due to the bird strike. The analysis of variance (ANOVA is also applied and it is concluded that the most significant parameter for the performance of wing structure against impact is the skin thickness. Finally, a validation simulation is conducted under the optimal condition to show the improvement of performance of the wing structure.

  12. Generalized Multi-Edge Analysis for K-Edge Densitometry

    International Nuclear Information System (INIS)

    Collins, M.

    1998-01-01

    In K-edge densitometry (KED), a continuous-energy x-ray beam is transmitted through a liquid sample. The actinide content of the sample can be measured through analysis of the transmitted portion of the x-ray beam. Traditional methods for KED analysis allow the simultaneous calculation of, at most, two actinide concentrations. A generalized multi-edge KED analytical method is presented, allowing up to six actinide concentrations to be calculated simultaneously. Applications of this method for hybrid KED/x-ray fluorescence (HKED) systems are discussed. Current HKED systems require the operator to know the approximate actinide content of each sample, and manually select the proper analysis mode. The new multi-edge KED technique allows rapid identification of the major actinide components in a sample, independent of actinide content. The proper HKED analysis mode can be selected automatically, without requiring sample content information from the user. Automatic HKED analysis would be especially useful in an analytical laboratory setting, where samples with truly unknown characteristics are encountered. Because this technique requires no hardware modifications, several facilities that use HKED may eventually benefit from this approach

  13. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.

    Science.gov (United States)

    Ryou, Junga; Park, Jinwoo; Kim, Gunn; Hong, Suklyun

    2017-06-21

    Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the Γ point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs.

  14. Wrinkling reduction of membrane structure by trimming edges

    Directory of Open Access Journals (Sweden)

    Mingjun Liu

    2017-05-01

    Full Text Available Thin membranes have negligible bending stiffness, compressive stresses inevitably lead to wrinkling. Therefore, it is important to keep the surface of membrane structures flat in order to guarantee high precision. Edge-trimming is an effective method to passively diminish wrinkles, however a key difficulty in this process is the determination of the optimal trimming level. In this paper, regular polygonal membrane structures subjected to equal radial forces were analyzed, and a new stress field distribution model for arc-edge square membrane structure was proposed to predict the optimal trimming level. This model is simple and applicable to any polygonal membrane structures. Comparison among the results of the finite element analysis, and the experimental and analytical results showed that the proposed model accurately described the stress field distribution and guaranteed that there are no wrinkles appear inside the effective inscribed circle region for the optimal trimming level.

  15. Edge responses are different in edges under natural versus anthropogenic influence: a meta-analysis using ground beetles.

    Science.gov (United States)

    Magura, Tibor; Lövei, Gábor L; Tóthmérész, Béla

    2017-02-01

    Most edges are anthropogenic in origin, but are distinguishable by their maintaining processes (natural vs. continued anthropogenic interventions: forestry, agriculture, urbanization). We hypothesized that the dissimilar edge histories will be reflected in the diversity and assemblage composition of inhabitants. Testing this "history-based edge effect" hypothesis, we evaluated published information on a common insect group, ground beetles (Coleoptera: Carabidae) in forest edges. A meta-analysis showed that the diversity-enhancing properties of edges significantly differed according to their history. Forest edges maintained by natural processes had significantly higher species richness than their interiors, while edges with continued anthropogenic influence did not. The filter function of edges was also essentially different depending on their history. For forest specialist species, edges maintained by natural processes were penetrable, allowing these species to move right through the edges, while edges still under anthropogenic interventions were impenetrable, preventing the dispersal of forest specialists out of the forest. For species inhabiting the surrounding matrix (open-habitat and generalist species), edges created by forestry activities were penetrable, and such species also invaded the forest interior. However, natural forest edges constituted a barrier and prevented the invasion of matrix species into the forest interior. Preserving and protecting all edges maintained by natural processes, and preventing anthropogenic changes to their structure, composition, and characteristics are key factors to sustain biodiversity in forests. Moreover, the increasing presence of anthropogenic edges in a landscape is to be avoided, as they contribute to the loss of biodiversity. Simultaneously, edges under continued anthropogenic disturbance should be restored by increasing habitat heterogeneity.

  16. Parameter study of self-absorption effects in Total Reflection X-ray Fluorescence-X-ray Absorption Near Edge Structure analysis of arsenic

    International Nuclear Information System (INIS)

    Meirer, F.; Pepponi, G.; Streli, C.; Wobrauschek, P.; Kregsamer, P.; Zoeger, N.; Falkenberg, G.

    2008-01-01

    Total reflection X-ray Fluorescence (TXRF) analysis in combination with X-ray Absorption Near Edge Structure (XANES) analysis is a powerful method to perform chemical speciation studies at trace element levels. However, when measuring samples with higher concentrations and in particular standards, damping of the oscillations is observed. In this study the influence of self-absorption effects on TXRF-XANES measurements was investigated by comparing measurements with theoretical calculations. As(V) standard solutions were prepared at various concentrations and dried on flat substrates. The measurements showed a correlation between the damping of the oscillations and the As mass deposited. A Monte-Carlo simulation was developed using data of the samples shapes obtained from confocal white light microscopy. The results showed good agreement with the measurements; they confirmed that the key parameters are the density of the investigated atom in the dried residues and the shape of the residue, parameters that combined define the total mass crossed by a certain portion of the incident beam. The study presents a simple approach for an a priori evaluation of the self-absorption in TXRF X-ray absorption studies. The consequences for Extended X-ray Absorption Fine Structure (EXAFS) and XANES measurements under grazing incidence conditions are discussed, leading to the conclusion that the damping of the oscillations seems to make EXAFS of concentrated samples non feasible. For XANES 'fingerprint' analysis samples should be prepared with a deposited mass and sample shape leading to an acceptable absorption for the actual investigation

  17. FREQUENCY ANALYSIS OF VIBRATIONS OF THE ROUND PARACHUTE EDGE

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The article is addressed to the analysis of the videos obtained during flight experiment at the launch of meteo-rocket MMP-06 in order to determine main characteristics of the oscillatory process the edges of the canopy at subsonic speeds at altitudes from 42,2 km to 34.2 km. Data analysis demonstrated that the oscillations of the edge of the canopy has a random character. The structure frequency of 2.4 Hz was identified from the analysis to be determined by the nylon sling stiffness.

  18. Edge database analysis for extrapolation to ITER

    International Nuclear Information System (INIS)

    Shimada, M.; Janeschitz, G.; Stambaugh, R.D.

    1999-01-01

    An edge database has been archived to facilitate cross-machine comparisons of SOL and edge pedestal characteristics, and to enable comparison with theoretical models with an aim to extrapolate to ITER. The SOL decay lengths of power, density and temperature become broader for increasing density and q 95 . The power decay length is predicted to be 1.4-3.5 cm (L-mode) and 1.4-2.7 cm (H-mode) at the midplane in ITER. Analysis of Type I ELMs suggests that each giant ELM on ITER would exceed the ablation threshold of the divertor plates. Theoretical models are proposed for the H-mode transition, for Type I and Type III ELMs and are compared with the edge pedestal database. (author)

  19. Edge detection based on computational ghost imaging with structured illuminations

    Science.gov (United States)

    Yuan, Sheng; Xiang, Dong; Liu, Xuemei; Zhou, Xin; Bing, Pibin

    2018-03-01

    Edge detection is one of the most important tools to recognize the features of an object. In this paper, we propose an optical edge detection method based on computational ghost imaging (CGI) with structured illuminations which are generated by an interference system. The structured intensity patterns are designed to make the edge of an object be directly imaged from detected data in CGI. This edge detection method can extract the boundaries for both binary and grayscale objects in any direction at one time. We also numerically test the influence of distance deviations in the interference system on edge extraction, i.e., the tolerance of the optical edge detection system to distance deviation. Hopefully, it may provide a guideline for scholars to build an experimental system.

  20. Strain-Dependent Edge Structures in MoS2 Layers.

    Science.gov (United States)

    Tinoco, Miguel; Maduro, Luigi; Masaki, Mukai; Okunishi, Eiji; Conesa-Boj, Sonia

    2017-11-08

    Edge structures are low-dimensional defects unavoidable in layered materials of the transition metal dichalcogenides (TMD) family. Among the various types of such structures, the armchair (AC) and zigzag (ZZ) edge types are the most common. It has been predicted that the presence of intrinsic strain localized along these edges structures can have direct implications for the customization of their electronic properties. However, pinning down the relation between local structure and electronic properties at these edges is challenging. Here, we quantify the local strain field that arises at the edges of MoS 2 flakes by combining aberration-corrected transmission electron microscopy (TEM) with the geometrical-phase analysis (GPA) method. We also provide further insight on the possible effects of such edge strain on the resulting electronic behavior by means of electron energy loss spectroscopy (EELS) measurements. Our results reveal that the two-dominant edge structures, ZZ and AC, induce the formation of different amounts of localized strain fields. We also show that by varying the free edge curvature from concave to convex, compressive strain turns into tensile strain. These results pave the way toward the customization of edge structures in MoS 2 , which can be used to engineer the properties of layered materials and thus contribute to the optimization of the next generation of atomic-scale electronic devices built upon them.

  1. Tuning the band structure of graphene nanoribbons through defect-interaction-driven edge patterning

    Science.gov (United States)

    Du, Lin; Nguyen, Tam N.; Gilman, Ari; Muniz, André R.; Maroudas, Dimitrios

    2017-12-01

    We report a systematic analysis of pore-edge interactions in graphene nanoribbons (GNRs) and their outcomes based on first-principles calculations and classical molecular-dynamics simulations. We find a strong attractive interaction between nanopores and GNR edges that drives the pores to migrate toward and coalesce with the GNR edges, which can be exploited to form GNR edge patterns that impact the GNR electronic band structure and tune the GNR band gap. Our analysis introduces a viable physical processing strategy for modifying GNR properties by combining defect engineering and thermal annealing.

  2. Optically Unraveling the Edge Chirality-Dependent Band Structure and Plasmon Damping in Graphene Edges.

    Science.gov (United States)

    Duan, Jiahua; Chen, Runkun; Cheng, Yuan; Yang, Tianzhong; Zhai, Feng; Dai, Qing; Chen, Jianing

    2018-05-01

    The nontrivial topological origin and pseudospinorial character of electron wavefunctions make edge states possess unusual electronic properties. Twenty years ago, the tight-binding model calculation predicted that zigzag termination of 2D sheets of carbon atoms have peculiar edge states, which show potential application in spintronics and modern information technologies. Although scanning probe microscopy is employed to capture this phenomenon, the experimental demonstration of its optical response remains challenging. Here, the propagating graphene plasmon provides an edge-selective polaritonic probe to directly detect and control the electronic edge state at ambient condition. Compared with armchair, the edge-band structure in the bandgap gives rise to additional optical absorption and strongly absorbed rim at zigzag edge. Furthermore, the optical conductivity is reconstructed and the anisotropic plasmon damping in graphene systems is revealed. The reported approach paves the way for detecting edge-specific phenomena in other van der Waals materials and topological insulators. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Edge dislocations in dicalcium silicates: Experimental observations and atomistic analysis

    International Nuclear Information System (INIS)

    Shahsavari, Rouzbeh; Chen, Lu; Tao, Lei

    2016-01-01

    Understanding defects and influence of dislocations on dicalcium silicates (Ca 2 SiO 4 ) is a challenge in cement science. We report a high-resolution transmission electron microscopy image of edge dislocations in Ca 2 SiO 4 , followed by developing a deep atomic understanding of the edge dislocation-mediated properties of five Ca 2 SiO 4 polymorphs. By decoding the interplay between core dislocation energies, core structures, and nucleation rate of reactivity, we find that γ-C2S and α-C2S polymorphs are the most favorable polymorphs for dislocations in Ca 2 SiO 4 , mainly due to their large pore channels which take away majority of the distortions imposed by edge dislocations. Furthermore, in the context of edge dislocation, while α-C2S represents the most active polymorph for reactivity and crystal growth, β-C2S represents the most brittle polymorph suitable for grinding. This work is the first report on the atomistic-scale analysis of edge dislocation-mediated properties of Ca 2 SiO 4 and may open up new opportunities for tuning fracture and reactivity processes of Ca 2 SiO 4 and other cement components.

  4. IMAGE ANALYSIS BASED ON EDGE DETECTION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K-means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model,gray level l, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.

  5. Structural, electronic and magnetic properties of transition-metal embedded zigzag-edged graphene nanoribbons

    International Nuclear Information System (INIS)

    Yu Guodong; Lü Xiaoling; Jiang Liwei; Gao Wenzhu; Zheng Yisong

    2013-01-01

    By means of ab initio calculations within density-functional theory, the structural, electronic and magnetic properties of a zigzag-edged graphene nanoribbon (ZGNR) with 3d transition-metal atoms (TMAs) (Sc–Zn) embedded in the periodically distributed single vacancies are systematically studied. Different from the pristine ZGNR, all of these composite structures show the subband structures with nontrivial spin polarizations, regardless of the type and the embedding position of the TMA. Embedding one kind of these atoms (V, Cr, Ni, Cu or Zn) near one ribbon edge can cause a notable edge distortion. Except for the cases of Sc, Fe and Co doping, other kinds of TMAs embedded near an edge of the ribbon can suppress the inherent magnetism of the zigzag edge. By further analysis, we find that two effects are responsible for the suppression of edge magnetism. One is the variation of the occupied spin-polarized subbands due to the hybridization of the edge state of the ZGNR and 3d atomic states of the dopant. The other is the delocalization of the edge state caused by the exotic TMA. The unilateral magnetism of these TMA-embedded ZGNRs can be utilized to realize the spin-polarized electronic transport, which is the key electronic property in the context of spintronics applications of carbon-based materials. (paper)

  6. Power spectrum weighted edge analysis for straight edge detection in images

    Science.gov (United States)

    Karvir, Hrishikesh V.; Skipper, Julie A.

    2007-04-01

    Most man-made objects provide characteristic straight line edges and, therefore, edge extraction is a commonly used target detection tool. However, noisy images often yield broken edges that lead to missed detections, and extraneous edges that may contribute to false target detections. We present a sliding-block approach for target detection using weighted power spectral analysis. In general, straight line edges appearing at a given frequency are represented as a peak in the Fourier domain at a radius corresponding to that frequency, and a direction corresponding to the orientation of the edges in the spatial domain. Knowing the edge width and spacing between the edges, a band-pass filter is designed to extract the Fourier peaks corresponding to the target edges and suppress image noise. These peaks are then detected by amplitude thresholding. The frequency band width and the subsequent spatial filter mask size are variable parameters to facilitate detection of target objects of different sizes under known imaging geometries. Many military objects, such as trucks, tanks and missile launchers, produce definite signatures with parallel lines and the algorithm proves to be ideal for detecting such objects. Moreover, shadow-casting objects generally provide sharp edges and are readily detected. The block operation procedure offers advantages of significant reduction in noise influence, improved edge detection, faster processing speed and versatility to detect diverse objects of different sizes in the image. With Scud missile launcher replicas as target objects, the method has been successfully tested on terrain board test images under different backgrounds, illumination and imaging geometries with cameras of differing spatial resolution and bit-depth.

  7. Chlorine levels and species in fine and size resolved atmospheric particles by X-ray absorption near-edge structure spectroscopy analysis in Beijing, China.

    Science.gov (United States)

    Ouyang, Jie; Yang, Guo-Sheng; Ma, Ling-Ling; Luo, Min; Zheng, Lei; Huo, Qing; Zhao, Yi-Dong; Hu, Tian-Dou; Cai, Zhen-Feng; Xu, Dian-Dou

    2018-04-01

    An understanding of the species of chlorine is crucial in the metropolis-Beijing, which is suffering serious haze pollution with high frequency. Particulate Matters (PMs) with five different sizes were collected in Beijing from July 2009 to March 2016, and characterized non-destructively by X-ray absorption near edge structure spectroscopy. PM 2.5 contributed for the major PMs mass in spring and summer, PM 0.5-1.0 and PM 1.0-2.5 contributed for the major PMs mass in autumn and winter. The concentrations of the three chlorine species were in the order of inorganic chlorine (Cl inorg ) > aliphatic chlorine (Cl ali ) > aromatic chlorine (Cl aro ), indicating that Cl inorg constituted the primary chlorine fraction and less toxic Cl ali constituted the primary total organic chlorine (Cl ali  + Cl aro , abbreviated as Cl org ) in the PMs in Beijing. In addition, these three chlorine species exhibited identical seasonal variation in PM 2.5 : winter > autumn > spring > summer. Wet precipitation is an important factor to result in the lower mass concentrations of these three chlorine species in summer. The temporal variations of both size resolved PM mass concentrations and chlorine species concentrations suggested that the air pollution prevention and control in Beijing has just won initial success. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.

    2011-01-01

    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  9. Methods in carbon K-edge NEXAFS: Experiment and analysis

    International Nuclear Information System (INIS)

    Watts, B.; Thomsen, L.; Dastoor, P.C.

    2006-01-01

    Near-edge X-ray absorption spectroscopy (NEXAFS) is widely used to probe the chemistry and structure of surface layers. Moreover, using ultra-high brilliance polarised synchrotron light sources, it is possible to determine the molecular alignment of ultra-thin surface films. However, the quantitative analysis of NEXAFS data is complicated by many experimental factors and, historically, the essential methods of calibration, normalisation and artefact removal are presented in the literature in a somewhat fragmented manner, thus hindering their integrated implementation as well as their further development. This paper outlines a unified, systematic approach to the collection and quantitative analysis of NEXAFS data with a particular focus upon carbon K-edge spectra. As a consequence, we show that current methods neglect several important aspects of the data analysis process, which we address with a combination of novel and adapted techniques. We discuss multiple approaches in solving the issues commonly encountered in the analysis of NEXAFS data, revealing the inherent assumptions of each approach and providing guidelines for assessing their appropriateness in a broad range of experimental situations

  10. Soft edges--organizational structure in dental education.

    Science.gov (United States)

    Chambers, D W

    1995-03-01

    There is no one best organizational structure for dental schools or for their major subunits. The classical alternatives of functional and divisional organization are discussed in light of the rule that follows function, and the advantages and disadvantages of each are presented. Newer models--decentralization, matrix, and heterarchy--show how features of functional and divisional structure can be blended. Virtual organizations, systems theory, and networks are also considered as new expressions of classical structures. The principle of suboptimization (soft edges) is presented.

  11. Structure of density fluctuations in the edge plasma of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Rudyj, A; Carlson, A; Endler, M; Giannone, L.; Niedermeyer, H; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1990-01-01

    It is now generally believed that the anomalous particle and energy transport in tokamaks is caused by turbulent fluctuations. The physical nature of these fluctuations (mode type, the driving mechanism) have still to be identified experimentally before a self consistent transport theory can be developed. In contrast to the confinement region the plasma edge can be well diagnosed. H{sub {alpha}}-light, which is emitted at the edge, reacts to density and to some extend to temperature fluctuations. It delivers information about radially integrated spectra and correlations. Langmuir probes measure density and potential fluctuations with good spatial resolution. The edge transport governs the physics in the scrape-off layer and in the divertor which is extremely important for a reactor and therefore deserves a major experimental effort. In this paper we report on an attempt to gain detailed information about the spatial and temporal structure of the edge turbulence hoping to reduce the degrees of freedom for theoretical models to a manageable number. (author) 3 refs., 3 figs.

  12. Structure of density fluctuations in the edge plasma of ASDEX

    International Nuclear Information System (INIS)

    Rudyj, A.; Carlson, A.; Endler, M.; Giannone, L.; Niedermeyer, H.; Theimer, G.

    1990-01-01

    It is now generally believed that the anomalous particle and energy transport in tokamaks is caused by turbulent fluctuations. The physical nature of these fluctuations (mode type, the driving mechanism) have still to be identified experimentally before a self consistent transport theory can be developed. In contrast to the confinement region the plasma edge can be well diagnosed. H α -light, which is emitted at the edge, reacts to density and to some extend to temperature fluctuations. It delivers information about radially integrated spectra and correlations. Langmuir probes measure density and potential fluctuations with good spatial resolution. The edge transport governs the physics in the scrape-off layer and in the divertor which is extremely important for a reactor and therefore deserves a major experimental effort. In this paper we report on an attempt to gain detailed information about the spatial and temporal structure of the edge turbulence hoping to reduce the degrees of freedom for theoretical models to a manageable number. (author) 3 refs., 3 figs

  13. Edge-Strengthening of Structural Glass with Protective Coatings

    OpenAIRE

    Lindqvist Maria; Louter Christian; Lebet Jean-Paul

    2012-01-01

    In modern buildings, glass is increasingly used as a load-carrying material in structural components, such as glass beams. For glass beams especially the edge strength of glass is important. However, the strength of glass is not a material constant but depends on various parameters, which makes glass, amongst other things, a challenging building material. One of the parameters influencing glass strength is the combination of humidity and stress, which may cause stress corrosion. The aim of th...

  14. Edge Effects on Community and Social Structure of Northern Temperate Deciduous Forest Ants

    Directory of Open Access Journals (Sweden)

    Valerie S. Banschbach

    2012-01-01

    Full Text Available Determining how ant communities are impacted by challenges from habitat fragmentation, such as edge effects, will help us understand how ants may be used as a bioindicator taxon. To assess the impacts of edge effects upon the ant community in a northern temperate deciduous forest, we studied edge and interior sites in Jericho, VT, USA. The edges we focused upon were created by recreational trails. We censused the ants at these sites for two consecutive growing seasons using pitfall traps and litter plot excavations. We also collected nests of the most common ant species at our study sites, Aphaenogaster rudis, for study of colony demography. Significantly greater total numbers of ants and ant nests were found in the edge sites compared to the interior sites but rarefaction analysis showed no significant difference in species richness. Aphaenogaster rudis was the numerically dominant ant in the habitats sampled but had a greater relative abundance in the interior sites than in the edge sites both in pitfall and litter plot data. Queen number of A. rudis significantly differed between the nests collected in the edge versus the interior sites. Habitat-dependent changes in social structure of ants represent another possible indicator of ecosystem health.

  15. Information theoretic analysis of canny edge detection in visual communication

    Science.gov (United States)

    Jiang, Bo; Rahman, Zia-ur

    2011-06-01

    In general edge detection evaluation, the edge detectors are examined, analyzed, and compared either visually or with a metric for specific an application. This analysis is usually independent of the characteristics of the image-gathering, transmission and display processes that do impact the quality of the acquired image and thus, the resulting edge image. We propose a new information theoretic analysis of edge detection that unites the different components of the visual communication channel and assesses edge detection algorithms in an integrated manner based on Shannon's information theory. The edge detection algorithm here is considered to achieve high performance only if the information rate from the scene to the edge approaches the maximum possible. Thus, by setting initial conditions of the visual communication system as constant, different edge detection algorithms could be evaluated. This analysis is normally limited to linear shift-invariant filters so in order to examine the Canny edge operator in our proposed system, we need to estimate its "power spectral density" (PSD). Since the Canny operator is non-linear and shift variant, we perform the estimation for a set of different system environment conditions using simulations. In our paper we will first introduce the PSD of the Canny operator for a range of system parameters. Then, using the estimated PSD, we will assess the Canny operator using information theoretic analysis. The information-theoretic metric is also used to compare the performance of the Canny operator with other edge-detection operators. This also provides a simple tool for selecting appropriate edgedetection algorithms based on system parameters, and for adjusting their parameters to maximize information throughput.

  16. Surface and in-depth characterization of lithium-ion battery cathodes at different cycle states using confocal micro-X-ray fluorescence-X-ray absorption near edge structure analysis

    International Nuclear Information System (INIS)

    Menzel, Magnus; Schlifke, Annalena; Falk, Mareike; Janek, Jürgen; Fröba, Michael; Fittschen, Ursula Elisabeth Adriane

    2013-01-01

    The cathode material LiNi 0.5 Mn 1.5 O 4 for lithium-ion batteries has been studied with confocal micro-X-ray fluorescence (CMXRF) combined with X-ray absorption near edge structure (XANES) at the Mn-K edge and the Ni-K edge. This technique allows for a non-destructive, spatially resolved (x, y and z) investigation of the oxidation states of surface areas and to some extent of deeper layers of the electrode. Until now CMXRF-XANES has been applied to a limited number of applications, mainly geo-science. Here, we introduce this technique to material science applications and show its performance to study a part of a working system. A novel mesoporous LiNi 0.5 Mn 1.5 O 4 material was cycled (charged and discharged) to investigate the effects on the oxidation states at the cathode/electrolyte interface. With this approach the degradation of Mn 3+ to Mn 4+ only observable at the surface of the electrode could be directly shown. The spatially resolved non-destructive analysis provides knowledge helpful for further understanding of deterioration and the development of high voltage battery materials, because of its nondestructive nature it will be also suitable to monitor processes during battery cycling. - Highlights: • The potential of confocal micro-XRF-XANES for spatial resolved species analysis in a part of a working system is shown. • The spatial resolution enables differentiation of the oxidized interface from deeper layers. • With the analytical technique confocal micro-XRF-XANES 3D in-situ analyses of working systems are feasible. • The multidimensional and nondestructive analysis of Li-ion battery cathodes is shown. • The analysis will allow for a deeper understanding of processes at interfaces in battery science and others

  17. Surface and in-depth characterization of lithium-ion battery cathodes at different cycle states using confocal micro-X-ray fluorescence-X-ray absorption near edge structure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Magnus; Schlifke, Annalena [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Falk, Mareike; Janek, Jürgen [Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 58, 35392 Gießen (Germany); Fröba, Michael, E-mail: froeba@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Fittschen, Ursula Elisabeth Adriane, E-mail: ursula.fittschen@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)

    2013-07-01

    The cathode material LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} for lithium-ion batteries has been studied with confocal micro-X-ray fluorescence (CMXRF) combined with X-ray absorption near edge structure (XANES) at the Mn-K edge and the Ni-K edge. This technique allows for a non-destructive, spatially resolved (x, y and z) investigation of the oxidation states of surface areas and to some extent of deeper layers of the electrode. Until now CMXRF-XANES has been applied to a limited number of applications, mainly geo-science. Here, we introduce this technique to material science applications and show its performance to study a part of a working system. A novel mesoporous LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} material was cycled (charged and discharged) to investigate the effects on the oxidation states at the cathode/electrolyte interface. With this approach the degradation of Mn{sup 3+} to Mn{sup 4+} only observable at the surface of the electrode could be directly shown. The spatially resolved non-destructive analysis provides knowledge helpful for further understanding of deterioration and the development of high voltage battery materials, because of its nondestructive nature it will be also suitable to monitor processes during battery cycling. - Highlights: • The potential of confocal micro-XRF-XANES for spatial resolved species analysis in a part of a working system is shown. • The spatial resolution enables differentiation of the oxidized interface from deeper layers. • With the analytical technique confocal micro-XRF-XANES 3D in-situ analyses of working systems are feasible. • The multidimensional and nondestructive analysis of Li-ion battery cathodes is shown. • The analysis will allow for a deeper understanding of processes at interfaces in battery science and others.

  18. Characterization of Crystallographic Structures Using Bragg-Edge Neutron Imaging at the Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    Gian Song

    2017-12-01

    Full Text Available Over the past decade, wavelength-dependent neutron radiography, also known as Bragg-edge imaging, has been employed as a non-destructive bulk characterization method due to its sensitivity to coherent elastic neutron scattering that is associated with crystalline structures. Several analysis approaches have been developed to quantitatively determine crystalline orientation, lattice strain, and phase distribution. In this study, we report a systematic investigation of the crystal structures of metallic materials (such as selected textureless powder samples and additively manufactured (AM Inconel 718 samples, using Bragg-edge imaging at the Oak Ridge National Laboratory (ORNL Spallation Neutron Source (SNS. Firstly, we have implemented a phenomenological Gaussian-based fitting in a Python-based computer called iBeatles. Secondly, we have developed a model-based approach to analyze Bragg-edge transmission spectra, which allows quantitative determination of the crystallographic attributes. Moreover, neutron diffraction measurements were carried out to validate the Bragg-edge analytical methods. These results demonstrate that the microstructural complexity (in this case, texture plays a key role in determining the crystallographic parameters (lattice constant or interplanar spacing, which implies that the Bragg-edge image analysis methods must be carefully selected based on the material structures.

  19. Edge-closed laminated structures for thin-film heads

    Science.gov (United States)

    Herman, D. A.; Argyle, B. E.; Lee, H.-P.; Trouilloud, P. O.; Petek, B.

    1991-04-01

    Magnetic film laminations containing nonmagnetic spacers have been explored with the hope of eliminating domain walls to diminish Barkhausen instabilities. Such laminates have limitations however, which originate in their ``edge-curling walls'' (ECWs).1 We have developed a new structure, free of ECWs, in which flux closure at opposing edges occurs via edge-shorting material added to circulate the easy-axis flux of the flat layers. We show experimentally with Kerr-effect imaging that (1) this edge-closed laminated (ECL) structure can support an (ECW-free) ``easy-axis'' (EA) magnetic state under conditions as modeled recently by Slonczewski,2 and (2) that this EA state is quite robust in the face of imperfect structure fabrication. This is, if the imperfections are not too severe, the resultant states depart minimally from the pure EA state and conduct hard-axis-driven flux nearly as well. Flat-film ECL elements in diamond, stripe, and recording-head-yoke shapes, plus experimental heads with ECL top yokes, were fabricated. Our domain images verify some key predictions from Slonczewski's static equilibrium modeling; additional results taken in applied magnetic fields extend the micromagnetic understanding. The sketch shows a typical domain pattem for a yoke-shaped element. The most stable state in the open portion of the yoke is the single domain shown. This remanent pattern was stable in the face of (slowly varying) external fields up to the 150 Oe that could be applied. The pole tip region contained a few 180° walls as indicated. On close inspection, these walls were seen to end in vestigial, nontouching, closure domains as predicted by the model when only partial flux closure occurs via the edge shorting material. The wall spacing in the tip varied somewhat following saturation-demagnetization cycles. The dynamic stability of this EA state was investigated in the experimental heads having ECL top yokes. The pseudodynamic LAMOM technique3 was applied using ``write

  20. Role of edges in the electronic and magnetic structures of nanographene

    International Nuclear Information System (INIS)

    Enoki, Toshiaki

    2012-01-01

    In graphene edges or nanographene, the presence of edges strongly affects the electronic structure depending on their edge shape (zigzag and armchair edges) as observed with the electron wave interference and the creation of non-bonding π-electron state (edge state). We investigate the edge-inherent electronic features and the magnetic properties of edge-sate spins in nanographene/graphene edges. Graphene nanostructures are fabricated by heat-induced conversion/fabrication of nanodiamond particles/graphite step edges; single-layer nanographene islands (mean size 10 nm) and armchair-edged nanographene ribbons (width 8 nm). Scanning tunneling microscopy (STM)/scanning tunneling spectroscopy observations demonstrate that edge states are created in zigzag edges in spite of the absence of such states in armchair edges. In addition, zigzag edges tend to be short and defective, whereas armchair edges are long and continuous in general. These findings suggest that a zigzag edge has lower aromatic stability than an armchair edge, consistent with Clar's aromatic sextet rule. The manner in which electron wave scattering takes place is different between zigzag and armchair edges. In the vicinity of an armchair edge, a honeycomb superlattice is observed in STM images together with a fine structure of threefold symmetry, in spite of the (√3×√3 )R30 o superlattice at a zigzag edge. The honeycomb lattice is a consequence of the intervalley K-K' transition that accompanies the electron wave interference taking place at the armchair edge. The Raman G-band is also affected by the interference, showing polarization angle dependence specifically at armchair edges. The magnetism of a three-dimensional disordered network of nanographene sheets is understood on the basis of the ferrimagnetic structure of the edge-state spins in individual constituent nanographene sheets. The strengthening of the inter-nanographene-sheet magnetic interaction brings about a spin glass state.

  1. Strength on cut edge and ground edge glass beams with the failure analysis method

    Directory of Open Access Journals (Sweden)

    Stefano Agnetti

    2013-10-01

    Full Text Available The aim of this work is the study of the effect of the finishing of the edge of glass when it has a structural function. Experimental investigations carried out for glass specimens are presented. Various series of annealed glass beam were tested, with cut edge and with ground edge. The glass specimens are tested in four-point bending performing flaw detection on the tested specimens after failure, in order to determine glass strength. As a result, bending strength values are obtained for each specimen. Determining some physical parameter as the depth of the flaw and the mirror radius of the fracture, after the failure of a glass element, it could be possible to calculate the failure strength of that.The experimental results were analyzed with the LEFM theory and the glass strength was analyzed with a statistical study using two-parameter Weibull distribution fitting quite well the failure stress data. The results obtained constitute a validation of the theoretical models and show the influence of the edge processing on the failure strength of the glass. Furthermore, series with different sizes were tested in order to evaluate the size effect.

  2. Microanalysis of iron oxidation state in iron oxides using X Ray Absorption Near Edge Structure (XANES)

    Science.gov (United States)

    Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.

    1993-01-01

    An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.

  3. Parameters Influencing Sulfur Speciation in Environmental Samples Using Sulfur K-Edge X-Ray Absorption Near-Edge Structure

    Directory of Open Access Journals (Sweden)

    Siwatt Pongpiachan

    2012-01-01

    Full Text Available This paper aims to enhance the credibility of applying the sulfur K-edge XANES spectroscopy as an innovative “fingerprint” for characterizing environmental samples. The sensitivities of sulfur K-edge XANES spectra of ten sulfur compound standards detected by two different detectors, namely, Lytle detector (LyD and Germanium detector (GeD, were studied and compared. Further investigation on “self-absorption” effect revealed that the maximum sensitivities of sulfur K-edge XANES spectra were achieved when diluting sulfur compound standards with boron nitride (BN at the mixing ratio of 0.1%. The “particle-size” effect on sulfur K-edge XANES spectrum sensitivities was examined by comparing signal-to-noise ratios of total suspended particles (TSP and particulate matter of less than 10 millionths of a meter (PM10 collected at three major cities of Thailand. The analytical results have demonstrated that the signal-to-noise ratios of sulfur K-edge XANES spectra were positively correlated with sulfate content in aerosols and negatively connected with particle sizes. The combination of hierarchical cluster analysis (HCA and principal component analysis (PCA has proved that sulfur K-edge XANES spectrum can be used to characterize German terrestrial soils and Andaman coastal sediments. In addition, this study highlighted the capability of sulfur K-edge XANES spectra as an innovative “fingerprint” to distinguish tsunami backwash deposits (TBD from typical marine sediments (TMS.

  4. Thin Film Structure of Tetraceno(2,3-B)thiophene Characterized By Grazing Incidence X-Ray Scattering And Near-Edge X-Ray Absorption Fine Structure Analysis

    International Nuclear Information System (INIS)

    Yuan, Q.; Mannsfeld, S.C.B.; Tang, M.L.; Toney, M.F.; Luening, J.; Bao, Z.A.

    2008-01-01

    Understanding the structure-property relationship for organic semiconductors is crucial in rational molecular design and organic thin film process control. Charge carrier transport in organic field-effect transistors predominantly occurs in a few semiconductor layers close to the interface in contact with the dielectric layer, and the transport properties depend sensitively on the precise molecular packing. Therefore, a better understanding of the impact of molecular packing and thin film morphology in the first few monolayers above the dielectric layer on charge transport is needed to improve the transistor performance. In this Article, we show that the detailed molecular packing in thin organic semiconductor films can be solved through a combination of grazing incidence X-ray diffraction (GIXD), near-edge X-ray absorption spectra fine structure (NEXAFS) spectroscopy, energy minimization packing calculations, and structure refinement of the diffraction data. We solve the thin film structure for 2 and 20 nm thick films of tetraceno(2,3-b)thiophene and detect only a single phase for these thicknesses. The GIXD yields accurate unit cell dimensions, while the precise molecular arrangement in the unit cell was found from the energy minimization and structure refinement; the NEXAFS yields a consistent molecular tilt. For the 20 nm film, the unit cell is triclinic with a = 5.96 A, b = 7.71 A, c = 15.16 A, alpha = 97.30 degrees, beta = 95.63 degrees, gamma = 90 degrees; there are two molecules per unit cell with herringbone packing (49-59 degree angle) and tilted about 7 degrees from the substrate normal. The thin film structure is significantly different from the bulk single-crystal structure, indicating the importance of characterizing thin film to correlate with thin film device performance. The results are compared to the corresponding data for the chemically similar and widely used pentacene. Possible effects of the observed thin film structure and morphology on

  5. Edge enhancement and noise suppression for infrared image based on feature analysis

    Science.gov (United States)

    Jiang, Meng

    2018-06-01

    Infrared images are often suffering from background noise, blurred edges, few details and low signal-to-noise ratios. To improve infrared image quality, it is essential to suppress noise and enhance edges simultaneously. To realize it in this paper, we propose a novel algorithm based on feature analysis in shearlet domain. Firstly, as one of multi-scale geometric analysis (MGA), we introduce the theory and superiority of shearlet transform. Secondly, after analyzing the defects of traditional thresholding technique to suppress noise, we propose a novel feature extraction distinguishing image structures from noise well and use it to improve the traditional thresholding technique. Thirdly, with computing the correlations between neighboring shearlet coefficients, the feature attribute maps identifying the weak detail and strong edges are completed to improve the generalized unsharped masking (GUM). At last, experiment results with infrared images captured in different scenes demonstrate that the proposed algorithm suppresses noise efficiently and enhances image edges adaptively.

  6. Filament structures at the plasma edge on MAST

    International Nuclear Information System (INIS)

    Kirk, A; Ayed, N Ben; Counsell, G; Dudson, B; Eich, T; Herrmann, A; Koch, B; Martin, R; Meakins, A; Saarelma, S; Scannell, R; Tallents, S; Walsh, M; Wilson, H R

    2006-01-01

    The boundary of the tokamak core plasma, or scrape-off layer, is normally characterized in terms of average parameters such as density, temperature and e-folding lengths suggesting diffusive losses. However, as is shown in this paper, localized filamentary structures play an important role in determining the radial efflux in both L mode and during edge localized modes (ELMs) on MAST. Understanding the size, poloidal and toroidal localization and the outward radial extent of these filaments is crucial in order to calculate their effect on power loading both on the first wall and the divertor target plates in future devices. The spatial and temporal evolution of filaments observed on MAST in L-mode and ELMs have been compared and contrasted in order to confront the predictions of various models that have been proposed to predict filament propagation and in particular ELM energy losses

  7. Exposure of tungsten nano-structure to TEXTOR edge plasma

    International Nuclear Information System (INIS)

    Ueda, Y.; Miyata, K.; Ohtsuka, Y.; Lee, H.T.; Fukumoto, M.; Brezinsek, S.; Coenen, J.W.; Kreter, A.; Litnovsky, A.; Philipps, V.; Schweer, B.; Sergienko, G.; Hirai, T.; Taguchi, A.; Torikai, Y.; Sugiyama, K.; Tanabe, T.; Kajita, S.; Ohno, N.

    2011-01-01

    W nano-structures (fuzz), produced in the linear high plasma device, NAGDIS, were exposed to TEXTOR edge plasmas (ohmic He/D mixed plasma and pure D plasma) to study formation, erosion and C deposition on W fuzz in tokamak plasmas for the first time. Fuzz layers were either completely eroded or covered by C deposit. There was no clear indication of W fuzz growth under the present conditions. There was no significant difference of C deposition between 'thick' fuzz (500-600 nm in thickness) and 'thin' fuzz (300-400 nm) in the He/D plasma. On the W fuzz surface, C deposition was enhanced probably due to reduction of effective sputtering yield and effective reflection coefficient of carbon ions, similar to roughness effects. Formation and erosion of W fuzz in tokamak devices and role of impurities are discussed.

  8. Information theoretic analysis of edge detection in visual communication

    Science.gov (United States)

    Jiang, Bo; Rahman, Zia-ur

    2010-08-01

    Generally, the designs of digital image processing algorithms and image gathering devices remain separate. Consequently, the performance of digital image processing algorithms is evaluated without taking into account the artifacts introduced into the process by the image gathering process. However, experiments show that the image gathering process profoundly impacts the performance of digital image processing and the quality of the resulting images. Huck et al. proposed one definitive theoretic analysis of visual communication channels, where the different parts, such as image gathering, processing, and display, are assessed in an integrated manner using Shannon's information theory. In this paper, we perform an end-to-end information theory based system analysis to assess edge detection methods. We evaluate the performance of the different algorithms as a function of the characteristics of the scene, and the parameters, such as sampling, additive noise etc., that define the image gathering system. The edge detection algorithm is regarded to have high performance only if the information rate from the scene to the edge approaches the maximum possible. This goal can be achieved only by jointly optimizing all processes. People generally use subjective judgment to compare different edge detection methods. There is not a common tool that can be used to evaluate the performance of the different algorithms, and to give people a guide for selecting the best algorithm for a given system or scene. Our information-theoretic assessment becomes this new tool to which allows us to compare the different edge detection operators in a common environment.

  9. Automatic comic page image understanding based on edge segment analysis

    Science.gov (United States)

    Liu, Dong; Wang, Yongtao; Tang, Zhi; Li, Luyuan; Gao, Liangcai

    2013-12-01

    Comic page image understanding aims to analyse the layout of the comic page images by detecting the storyboards and identifying the reading order automatically. It is the key technique to produce the digital comic documents suitable for reading on mobile devices. In this paper, we propose a novel comic page image understanding method based on edge segment analysis. First, we propose an efficient edge point chaining method to extract Canny edge segments (i.e., contiguous chains of Canny edge points) from the input comic page image; second, we propose a top-down scheme to detect line segments within each obtained edge segment; third, we develop a novel method to detect the storyboards by selecting the border lines and further identify the reading order of these storyboards. The proposed method is performed on a data set consisting of 2000 comic page images from ten printed comic series. The experimental results demonstrate that the proposed method achieves satisfactory results on different comics and outperforms the existing methods.

  10. Chemical kinetics of Cs species in an alkali-activated municipal solid waste incineration fly ash and pyrophyllite-based system using Cs K-edge in situ X-ray absorption fine structure analysis

    Science.gov (United States)

    Shiota, Kenji; Nakamura, Takafumi; Takaoka, Masaki; Nitta, Kiyofumi; Oshita, Kazuyuki; Fujimori, Takashi; Ina, Toshiaki

    2017-05-01

    We conducted in situ X-ray absorption fine structure (in situ XAFS) analysis at the Cs K-edge to investigate the chemical kinetics of Cs species during reaction in an alkali-activated municipal solid waste incineration fly ash (MSWIFA) and pyrophyllite-based system. Understanding the kinetics of Cs is essential to the design of appropriate conditions for Cs stabilization. In situ XAFS analysis of four pastes, prepared from NaOHaq, sodium silicate solution, pyrophyllite, and MSWIFA with the addition of CsCl, was conducted in custom-built reaction cells at four curing temperatures (room temperature, 60 °C, 80 °C, 105 °C) for approximately 34 h. The results indicated that the change in Cs species during reaction at room temperature was small, while changes at higher temperatures were faster and more extreme, with the fastest conversion to pollucite occurring at 105 °C. Further analysis using a leaching test and a simple reaction model for Cs species during reaction showed that the pollucite formation rate was dependent on the curing temperature and had a significant negative correlation with Cs leaching. The activation energy of pollucite formation was estimated to be 31.5 kJ/mol. These results revealed that an important change in the chemical state of Cs occurs during reaction in the system.

  11. Analytical model and stability analysis of the leading edge spar of a passively morphing ornithopter wing.

    Science.gov (United States)

    Wissa, Aimy; Calogero, Joseph; Wereley, Norman; Hubbard, James E; Frecker, Mary

    2015-10-26

    This paper presents the stability analysis of the leading edge spar of a flapping wing unmanned air vehicle with a compliant spine inserted in it. The compliant spine is a mechanism that was designed to be flexible during the upstroke and stiff during the downstroke. Inserting a variable stiffness mechanism into the leading edge spar affects its structural stability. The model for the spar-spine system was formulated in terms of the well-known Mathieu's equation, in which the compliant spine was modeled as a torsional spring with a sinusoidal stiffness function. Experimental data was used to validate the model and results show agreement within 11%. The structural stability of the leading edge spar-spine system was determined analytically and graphically using a phase plane plot and Strutt diagrams. Lastly, a torsional viscous damper was added to the leading edge spar-spine model to investigate the effect of damping on stability. Results show that for the un-damped case, the leading edge spar-spine response was stable and bounded; however, there were areas of instability that appear for a range of spine upstroke and downstroke stiffnesses. Results also show that there exist a damping ratio between 0.2 and 0.5, for which the leading edge spar-spine system was stable for all values of spine upstroke and downstroke stiffnesses.

  12. Edge Detection from RGB-D Image Based on Structured Forests

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2016-01-01

    Full Text Available This paper looks into the fundamental problem in computer vision: edge detection. We propose a new edge detector using structured random forests as the classifier, which can make full use of RGB-D image information from Kinect. Before classification, the adaptive bilateral filter is used for the denoising processing of the depth image. As data sources, information of 13 channels from RGB-D image is computed. In order to train the random forest classifier, the approximation measurement of the information gain is used. All the structured labels at a given node are mapped to a discrete set of labels using the Principal Component Analysis (PCA method. NYUD2 dataset is used to train our structured random forests. The random forest algorithm is used to classify the RGB-D image information for extracting the edge of the image. In addition to the proposed methodology, the quantitative comparisons of different algorithms are presented. The results of the experiments demonstrate the significant improvements of our algorithm over the state of the art.

  13. Structural and Dynamical Properties of 2:1 Phyllosilicates Edges and Nanoparticles

    Science.gov (United States)

    Newton, A. G.; Sposito, G.

    2012-12-01

    Classical mechanics simulations of bulk 2:1 phyllosilicate minerals provide atomic scale perspectives of the macroscopic sorption and diffusion phenomena in interlayer nanopores. An equivalent perspective of these interfacial phenomena in macropores bounded by the edges of stacked phyllosilicate particles is not possible due to the absence of a forcefield for the edges of phyllosilicate minerals. A valid forcefield to describe the phyllosilicate edge is essential to link the quantum and continuum mechanical models. The inherently disordered edge of 2:1 phyllosilicate minerals and rarity of well-crystallized samples further complicates the task of validating a forcefield for the phyllosilicate edge. Periodic bond chain theory identifies three tetrahedral-octahedral-tetrahedral (TOT) structures that parallel the edge faces of pseudohexagonal phyllosilicate particles. These TOT structures are the basis of atomistic models of the dominant edge interface and nanoparticles. The CLAYFF forcefield describes all pairwise atomic interactions with only minimal partial charge adjustments to maintain model neutrality, where necessary. Atomistic simulations in the isobaric-isothermal ensemble at nanosecond timescales predict equilibrium edge structures and dynamical properties of the aqueous interface. The CLAYFF forcefield and the limited adjustments to parameters predict edge and particle structures that are consistent with the results of ab initio MD simulations, support macroscopic observations of phyllosilicate reactivity, and provide legitimacy for disordered models of 2:1 phyllosilicates. The heterogeneous edge structures can be explained by the chemistry of the octahedral cation and surface charge anisotropy. In the plane of the octahedral sheet, the cations of the octahedral layer can assume four-, five-, and six-coordinate polyhedral geometries at the edge interface. These disordered edge structures create alternate alignments in the tetrahedral sheet. The structural

  14. A new functional and structural generation of JK edge-triggered flip-flops

    International Nuclear Information System (INIS)

    Stefanescu, I.

    1977-01-01

    A new type of logical structure for a JK edge-triggered flip-flop is proposed by the author. The structure facilitates flip-flop realizations, named ''jk-JK edge-triggered flip-flops'', satisfying more functional requirements, and offering an increased flexibility in logical design, with respect to the conventional JK edge-triggered flip-flops. The function of new flip-flops covers the function of JK edge-triggered flip-flops, known as integrated circuits. (author)

  15. Effect of the edge type and strain on the structural, electronic and magnetic properties of the BNRs.

    Science.gov (United States)

    Bhattacharyya, Swastibrata; Kawazoe, Yoshiyuki; Singhl, Abhishek K

    2012-03-01

    We present the effect of edge structures on the edge energy and stress of BN nanoribbons. Ab initio density functional calculations show that the armchair edge is lower in energy than the zigzag edge by 0.43 eV/angstrom. Both types of the edges are under the compressive stress. The zigzag edges are mechanically more stable than the armchair edges. Based on the calculated edge energies, the equilibrium shape of the BN flakes are found to be regular hexagonal, and dominated by the armchair edges. The zigzag ribbons are found to be half-metallic, whereas the armchair ribbons are semiconducting.

  16. X-ray absorption near edge structure (XANES) study of some hydroxamic mixed ligand copper complexes

    International Nuclear Information System (INIS)

    Mishra, A; Parsai, N; Shrivastava, B D; Soni, N

    2012-01-01

    With the advent of modern bright synchrotron radiation sources, X-ray absorption spectra has emerged as a powerful technique for local structure determination, which can be applied to any type of material. The X-ray absorption measurements of four hydroxamic mixed ligand copper complexes have been performed at the recently developed BL-8 Dispersive EXAFS beamline at 2.5 GeV Indus-2 synchrotron at RRCAT, Indore, India. The X-ray absorption near edge structure (XANES) data obtained has been processed using data analysis program Athena. The energies of the K absorption edge, chemical shifts, edge-widths, shifts of the principal absorption maximum in the complexes have been determined. The values of the chemical shift suggest that copper is in oxidation state +2 in all of the complexes. The chemical shift data has been utilized to estimate effective nuclear charge on copper atom. The order of the chemical shifts has been correlated to the relative ionic character of the bonding in these complexes.

  17. Structural and mechanism design of an active trailing-edge flap blade

    DEFF Research Database (Denmark)

    Lee, Jae Hwan; Natarajan, Balakumaran; Eun, Won Jong

    2013-01-01

    , as the blade is able to withstand increased centrifugal force. The cross-section of the active blade is designed first. A stress/strain recovery analysis is then conducted to verify its structural integrity. A one-dimensional beam analysis is also carried out to assist with the construction of the fan diagram...... of the rotor through modification of unsteady aerodynamic loads. Piezoelectric actuators installed inside the blade manipulate the motion of the trailing edge flap. The proposed blade rotates at higher speed and additional structures are included to support the actuators and the flap. This improves the design....... To select the actuator and design the flap actuation region, the flap hinge moment is estimated via a CFD analysis. To obtain the desired flap deflection of ±4°, three actuators are required. The design of the flap actuation region is validated using a test bed with a skin hinge. However, because the skin...

  18. The catalog of edge-on disk galaxies from SDSS. I. The catalog and the structural parameters of stellar disks

    Energy Technology Data Exchange (ETDEWEB)

    Bizyaev, D. V. [Apache Point Observatory and New Mexico State University, Sunspot, NM, 88349 (United States); Kautsch, S. J. [Nova Southeastern University, Fort Lauderdale, FL 33314 (United States); Mosenkov, A. V. [Central Astronomical Observatory of RAS (Russian Federation); Reshetnikov, V. P.; Sotnikova, N. Ya.; Yablokova, N. V. [St. Petersburg State University (Russian Federation); Hillyer, R. W. [Christopher Newport University, Newport News, VA 23606 (United States)

    2014-05-20

    We present a catalog of true edge-on disk galaxies automatically selected from the Seventh Data Release of the Sloan Digital Sky Survey (SDSS). A visual inspection of the g, r, and i images of about 15,000 galaxies allowed us to split the initial sample of edge-on galaxy candidates into 4768 (31.8% of the initial sample) genuine edge-on galaxies, 8350 (55.7%) non-edge-on galaxies, and 1865 (12.5%) edge-on galaxies not suitable for simple automatic analysis because these objects either show signs of interaction and warps, or nearby bright stars project on it. We added more candidate galaxies from RFGC, EFIGI, RC3, and Galaxy Zoo catalogs found in the SDSS footprints. Our final sample consists of 5747 genuine edge-on galaxies. We estimate the structural parameters of the stellar disks (the stellar disk thickness, radial scale length, and central surface brightness) in the galaxies by analyzing photometric profiles in each of the g, r, and i images. We also perform simplified three-dimensional modeling of the light distribution in the stellar disks of edge-on galaxies from our sample. Our large sample is intended to be used for studying scaling relations in the stellar disks and bulges and for estimating parameters of the thick disks in different types of galaxies via the image stacking. In this paper, we present the sample selection procedure and general description of the sample.

  19. Effects of interface edge configuration on residual stress in the bonded structures for a divertor application

    International Nuclear Information System (INIS)

    Kitamura, K.; Nagata, K.; Shibui, M.; Tachikawa, N.; Araki, M.

    1998-01-01

    Residual stresses in the interface region, that developed at the cool down during the brazing, were evaluated for several bonded structures to assess the mechanical strength of the bonded interface, using thermoelasto-plastic stress analysis. Normal stress components of the residual stresses around the interface edge of graphite-copper (C-Cu) bonded structures were compared for three types of bonded features such as flat-type, monoblock-type and saddle-type. The saddle-type structure was found to be favorable for its relatively low residual stress, easy fabrication accuracy on bonded interface and armor replacement. Residual stresses around the interface edge in three armor materials/copper bonded structures for a divertor plate were also examined for the C-Cu, tungsten-copper (W-Cu) and molybdenum alloy-copper (TZM-Cu), varying the interface wedge angle from 45 to 135 . An optimal bonded configuration for the least value of residual stress was found to have a wedge angle of 45 for the C-Cu, and 135 for both the W-Cu and TZM-Cu bonded ones. (orig.)

  20. Leading edge analysis of transcriptomic changes during pseudorabies virus infection

    Directory of Open Access Journals (Sweden)

    Damarius S. Fleming

    2016-12-01

    Full Text Available Eight RNA samples taken from the tracheobronchial lymph nodes (TBLN of pigs that were either infected or non-infected with a feral isolate of porcine pseudorabies virus (PRV were used to investigate changes in gene expression related to the pathogen. The RNA was processed into fastq files for each library prior to being analyzed using Illumina Digital Gene Expression Tag Profiling sequences (DGETP which were used as the downstream measure of differential expression. Analyzed tags consisted of 21 base pair sequences taken from time points 1, 3, 6, and 14 days' post infection (dpi that generated 1,927,547 unique tag sequences. Tag sequences were analyzed for differential transcript expression and gene set enrichment analysis (GSEA to uncover transcriptomic changes related to PRV pathology progression. In conjunction with the DGETP and GSEA, the study also incorporated use of leading edge analysis to help link the TBLN transcriptome data to clinical progression of PRV at each of the sampled time points. The purpose of this manuscript is to provide useful background on applying the leading edge analysis to GSEA and expression data to help identify genes considered to be of high biological interest. The data in the form of fastq files has been uploaded to the NCBI Gene Expression Omnibus (GEO (GSE74473 database.

  1. Leading edge analysis of transcriptomic changes during pseudorabies virus infection.

    Science.gov (United States)

    Fleming, Damarius S; Miller, Laura C

    2016-12-01

    Eight RNA samples taken from the tracheobronchial lymph nodes (TBLN) of pigs that were either infected or non-infected with a feral isolate of porcine pseudorabies virus (PRV) were used to investigate changes in gene expression related to the pathogen. The RNA was processed into fastq files for each library prior to being analyzed using Illumina Digital Gene Expression Tag Profiling sequences (DGETP) which were used as the downstream measure of differential expression. Analyzed tags consisted of 21 base pair sequences taken from time points 1, 3, 6, and 14 days' post infection (dpi) that generated 1,927,547 unique tag sequences. Tag sequences were analyzed for differential transcript expression and gene set enrichment analysis (GSEA) to uncover transcriptomic changes related to PRV pathology progression. In conjunction with the DGETP and GSEA, the study also incorporated use of leading edge analysis to help link the TBLN transcriptome data to clinical progression of PRV at each of the sampled time points. The purpose of this manuscript is to provide useful background on applying the leading edge analysis to GSEA and expression data to help identify genes considered to be of high biological interest. The data in the form of fastq files has been uploaded to the NCBI Gene Expression Omnibus (GEO) (GSE74473) database.

  2. The 1s x-ray absorption pre-edge structures in transition metal oxides

    NARCIS (Netherlands)

    de Groot, Frank|info:eu-repo/dai/nl/08747610X; Vanko, Gyoergy; Glatzel, Pieter

    2009-01-01

    We develop a general procedure to analyse the pre-edges in 1s x-ray absorption near edge structure (XANES) of transition metal oxides and coordination complexes. Transition metal coordination complexes can be described from a local model with one metal ion. The 1s 3d quadrupole transitions are

  3. Probing the Structure of Our Solar System's Edge

    Science.gov (United States)

    Hensley, Kerry

    2018-02-01

    The boundary between the solar wind and the interstellar medium (ISM) at the distant edge of our solar system has been probed remotely and directly by spacecraft, but questions about its properties persist. What can models tell us about the structure of this region?The Heliopause: A Dynamic BoundarySchematic illustrating different boundaries of our solar system and the locations of the Voyager spacecraft. [Walt Feimer/NASA GSFCs Conceptual Image Lab]As our solar system travels through interstellar space, the magnetized solar wind flows outward and pushes back on the oncoming ISM, forming a bubble called the heliosphere. The clash of plasmas generates a boundary region called the heliopause, the shape of which depends strongly on the properties of the solar wind and the local ISM.Much of our understanding of the outer heliosphere and the local ISM comes from observations made by the International Boundary Explorer (IBEX) and the Voyager 1 and Voyager 2 spacecraft. IBEX makes global maps of the flux of neutral atoms, while Voyagers 1 and 2 record the plasma density and magnetic field parameters along their trajectories as they exit the solar system. In order to interpret the IBEX and Voyager observations, astronomers rely on complex models that must capture both global and local effects.Simulations of the plasma density in the meridional plane of the heliosphere due to the interaction of the solar wind with the ISM for the case of a relatively dense ISM with a weak magnetic field. [Adapted from Pogorelov et al. 2017]Modeling the Edge of the Solar SystemIn this study, Nikolai Pogorelov (University of Alabama in Huntsville) and collaborators use a hybrid magneto-hydrodynamical (MHD) and kinetic simulation to capture fully the physical processes happening in the outer heliosphere.MHD models have been used to understand many aspects of plasma flow in the heliosphere. However, they struggle to capture processes that are better described kinetically, like charge exchange

  4. Study of the round edge disk hole's effects on the frequency and wakefield in disc structure

    International Nuclear Information System (INIS)

    Wang Lanfa; Hou Mi; Zhang Chuang

    2001-01-01

    The effects of the round edge beam hole on the frequency and wake field are studied using variational method, which allows for rounded iris disk hole without any approximation in shape treatment. The frequencies and wake fields of accelerating mode and dipole mode are studied for different edge radius cases, including the flat edge shape that is often used to approximately represent the actual structure geometry. The edge hole shape has weak effect on the frequency, but strong effect on the wakefield. The study shows that the amounts of wake fields are not precise enough with the assumption of the flat edge beam hole as of round edge. The shape assumption brings loss factor 15% err for the most dangerous EH 16 mode

  5. Independent component analysis of edge information for face recognition

    CERN Document Server

    Karande, Kailash Jagannath

    2013-01-01

    The book presents research work on face recognition using edge information as features for face recognition with ICA algorithms. The independent components are extracted from edge information. These independent components are used with classifiers to match the facial images for recognition purpose. In their study, authors have explored Canny and LOG edge detectors as standard edge detection methods. Oriented Laplacian of Gaussian (OLOG) method is explored to extract the edge information with different orientations of Laplacian pyramid. Multiscale wavelet model for edge detection is also propos

  6. Edge-plasma analysis for liquid-wall MFE concepts

    International Nuclear Information System (INIS)

    Moir, R.W.; Rensink, M.E.; Rognlien, T.D.

    2001-01-01

    A thick flowing layer of liquid (e.g., flibe - a molten salt, or Sn 80 Li 20 - a liquid metal) protects the structural walls of the magnetic fusion configuration so that they can last the life of the plant even with intense 14 MeV neutron bombardment from the D-T fusion reaction. The surface temperature of the liquid rises as it passes from the inlet nozzles to the exit nozzles due to absorption of line and bremsstrahlung radiation, and neutrons. The surface temperature can be reduced by enhanced turbulent convection of hot surface liquid into the cooler interior. This surface temperature is affected by the temperature of liquid from a heat transport and energy recovery system. The evaporative flux from the wall driven by the surface temperature must also result in an acceptable impurity level in the core plasma. The shielding of the core by the edge plasma is modeled with a 2D-transport code for the DT and impurity ions; these impurity ions are either swept out to the divertor, or diffuse to the hot plasma core. An auxiliary plasma between the edge plasma and the liquid wall may further attenuate evaporating flux of atoms and molecules by ionization near the wall. (author)

  7. Aerodynamic Analysis of Trailing Edge Enlarged Wind Turbine Airfoils

    DEFF Research Database (Denmark)

    Xu, Haoran; Shen, Wen Zhong; Zhu, Wei Jun

    2014-01-01

    characteristics of blunt trailing edge airfoils are caused by blunt body vortices at low angles of attack, and by the combined effect of separation and blunt body vortices at large angles of attack. With the increase of thickness of blunt trailing edge, the vibration amplitudes of lift and drag curves increase......The aerodynamic performance of blunt trailing edge airfoils generated from the DU- 91-W2-250, DU-97-W-300 and DU-96-W-350 airfoils by enlarging the thickness of trailing edge symmetrically from the location of maximum thickness to chord to the trailing edge were analyzed by using CFD and RFOIL...... methods at a chord Reynolds number of 3 × 106. The goal of this study is to analyze the aerodynamic performance of blunt trailing edge airfoils with different thicknesses of trailing edge and maximum thicknesses to chord. The steady results calculated by the fully turbulent k-ω SST, transitional k-ω SST...

  8. Improving the opto-microwave performance of SiGe/Si phototransistor through edge-illuminated structure

    Science.gov (United States)

    Tegegne, Z. G.; Viana, C.; Polleux, J. L.; Grzeskowiak, M.; Richalot, E.

    2016-03-01

    This paper demonstrates the experimental study of edge and top illuminated SiGe phototransistors (HPT) implemented using the existing industrial SiGe2RF Telefunken GmbH BiCMOS technology for opto-microwave (OM) applications using 850nm Multi-Mode Fibers (MMF). Its technology and structure are described. Two different optical window size HPTs with top illumination (5x5μm2, 10x10μm2) and an edge illuminated HPTs having 5μm x5μm size are presented and compared. A two-step post fabrication process was used to create an optical access on the edge of the HPT for lateral illumination with a lensed MMF through simple polishing and dicing techniques. We perform Opto-microwave Scanning Near-field Optical Microscopy (OM-SNOM) analysis on edge and top illuminated HPTs in order to observe the fastest and the highest sensitive regions of the HPTs. This analysis also allows understanding the parasitic effect from the substrate, and thus draws a conclusion on the design aspect of SiGe/Si HPT. A low frequency OM responsivity of 0.45A/W and a cutoff frequency, f-3dB, of 890MHz were measured for edge illuminated HPT. Compared to the top illuminated HPT of the same size, the edge illuminated HPT improves the f-3dB by a factor of more than two and also improves the low frequency responsivity by a factor of more than four. These results demonstrate that a simple etched HPT is still enough to achieve performance improvements compared to the top illuminated HPT without requiring a complex coupling structure. Indeed, it also proves the potential of edge coupled SiGe HPT in the ultra-low-cost silicon based optoelectronics circuits with a new approach of the optical packaging and system integration to 850nm MMF.

  9. Analysis of X-ray adsorption edges: L2,3 edge of FeCl4-

    Energy Technology Data Exchange (ETDEWEB)

    Bagus, Paul S. [Department of Chemistry, University of North Texas, Denton, Texas 76203-5017, USA; Nelin, Connie J. [Consultant, Austin, Texas 78730, USA; Ilton, Eugene S. [Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Sassi, Michel J. [Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Rosso, Kevin M. [Pacific Northwest National Laboratory, Richland, Washington 99352, USA

    2017-12-14

    We describe a detailed analysis of the features of the X-ray adsorption spectra at the Fe L2,3 edge of FeCl4. The objective of this analysis is to explain the origin of the complex features in relation to properties of the wavefunctions, especially for the excited states. These properties include spin-orbit and ligand field splittings where a novel aspect of the dipole selection rules is applied to understand the influence of these splittings on the spectra. We also explicitly take account of the intermediate coupling of the open core and valence shell electrons. Our analysis also includes comparison of theory and experiment for the Fe L2,3 edge and comparison of theoretical predictions for the Fe3+ cation and FeCl4-. The electronic structure is obtained from theoretical wavefunctions for the ground and excited states.

  10. Study on Coloration Mechanism of Chinese Ancient Ceramics by X-ray Absorption Near-edge Structure

    Science.gov (United States)

    Peng, Y. H.; Xie, Z.; He, J. F.; Liu, Q. H.; Pan, Z. Y.; Cheng, W. R.; Wei, S. Q.

    2013-04-01

    The Fe K-edge X-ray absorption near-edge structure (XANES) spectra of a series of ceramic shards were measured by fluorescence mode to reveal the color-generating techniques of Chinese porcelain. The analysis disclosed relationships among the chemical form of the iron, the firing conditions and the colors of the ceramics. The results indicate that the coloration for different ceramics depend on the valence states of iron as the main color element in glaze and the proportion of Fe2+ and Fe3+ was attributed to the baking technology. The findings provide important information for archaeologist on the coloration researches.

  11. EXAFS and XANES analysis of plutonium and cerium edges from titanate ceramics for fissile materials disposal

    International Nuclear Information System (INIS)

    Fortner, J. A.; Kropf, A. J.; Bakel, A. J.; Hash, M. C.; Aase, S. B.; Buck, E. C.; Chamerlain, D. B.

    1999-01-01

    We report x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) spectra from the plutonium L III edge and XANES from the cerium L II edge in prototype titanate ceramic hosts. The titanate ceramics studied are based upon the hafnium-pyrochlore and zirconolite mineral structures and will serve as an immobilization host for surplus fissile materials, containing as much as 10 weight % fissile plutonium and 20 weight % (natural or depleted) uranium. Three ceramic formulations were studied: one employed cerium as a ''surrogate'' element, replacing both plutonium and uranium in the ceramic matrix, another formulation contained plutonium in a ''baseline'' ceramic formulation, and a third contained plutonium in a formulation representing a high-impurity plutonium stream. The cerium XANES from the surrogate ceramic clearly indicates a mixed III-IV oxidation state for the cerium. In contrast, XANES analysis of the two plutonium-bearing ceramics shows that the plutonium is present almost entirely as Pu(IV) and occupies the calcium site in the zirconolite and pyrochlore phases. The plutonium EXAFS real-space structure shows a strong second-shell peak, clearly distinct from that of PuO 2 , with remarkably little difference in the plutonium crystal chemistry indicated between the baseline and high-impurity formulations

  12. Effects of the edge shape and the width on the structural and electronic properties of silicene nanoribbons

    International Nuclear Information System (INIS)

    Song Yuling; Zhang Yan; Zhang Jianmin; Lu Daobang

    2010-01-01

    Under the generalized gradient approximation (GGA), the structural and electronic properties are studied for H-terminated silicene nanoribbons (SiNRs) with either zigzag edge (ZSiNRs) or armchair edge (ASiNRs) by using the first-principles projector-augmented wave potential within the density function theory (DFT) framework. The results show that the length of the Si-H bond is always 1.50 A, but the edge Si-Si bonds are shorter than the inner ones with identical orientation, implying a contraction relaxation of edge Si atoms. An edge state appears at the Fermi level E F in broader ZSiNRs, but does not appear in all ASiNRs due to their dimer Si-Si bond at edge. With increasing width of ASiNRs, the direct band gaps exhibit not only an oscillation behavior, but also a periodic feature of Δ 3n > Δ 3n+1 > Δ 3n+2 for a certain integer n. The charge density contours analysis shows that the Si-H bond is an ionic bond due to a relative larger electronegativity of H atom. However, all kinds of the Si-Si bonds display a typical covalent bonding feature, although their strength depends on not only the bond orientation but also the bond position. That is, the larger deviation of the Si-Si bond orientation from the nanoribbon axis as well as the closer of the Si-Si bond to the nanoribbon edge, the stronger strength of the Si-Si bond. Besides the contraction of the nanoribbon is mainly in its width direction especially near edge, the addition contribution from the terminated H atoms may be the other reason.

  13. Si K EDGE STRUCTURE AND VARIABILITY IN GALACTIC X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Norbert S.; Corrales, Lia; Canizares, Claude R. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2016-08-10

    We survey the Si K edge structure in various absorbed Galactic low-mass X-ray binaries (LMXBs) to study states of silicon in the inter- and circum-stellar medium. The bulk of these LMXBs lie toward the Galactic bulge region and all have column densities above 10{sup 22} cm{sup −2}. The observations were performed using the Chandra High Energy Transmission Grating Spectrometer. The Si K edge in all sources appears at an energy value of 1844 ± 0.001 eV. The edge exhibits significant substructure that can be described by a near edge absorption feature at 1849 ± 0.002 eV and a far edge absorption feature at 1865 ± 0.002 eV. Both of these absorption features appear variable with equivalent widths up to several mÅ. We can describe the edge structure using several components: multiple edge functions, near edge absorption excesses from silicates in dust form, signatures from X-ray scattering optical depths, and a variable warm absorber from ionized atomic silicon. The measured optical depths of the edges indicate much higher values than expected from atomic silicon cross sections and interstellar medium abundances, and they appear consistent with predictions from silicate X-ray absorption and scattering. A comparison with models also indicates a preference for larger dust grain sizes. In many cases, we identify Si xiii resonance absorption and determine ionization parameters between log ξ = 1.8 and 2.8 and turbulent velocities between 300 and 1000 km s{sup −1}. This places the warm absorber in close vicinity of the X-ray binaries. In some data, we observe a weak edge at 1.840 keV, potentially from a lesser contribution of neutral atomic silicon.

  14. Application and Analysis of Wavelet Transform in Image Edge Detection

    Institute of Scientific and Technical Information of China (English)

    Jianfang gao[1

    2016-01-01

    For the image processing technology, technicians have been looking for a convenient and simple detection method for a long time, especially for the innovation research on image edge detection technology. Because there are a lot of original information at the edge during image processing, thus, we can get the real image data in terms of the data acquisition. The usage of edge is often in the case of some irregular geometric objects, and we determine the contour of the image by combining with signal transmitted data. At the present stage, there are different algorithms in image edge detection, however, different types of algorithms have divergent disadvantages so It is diffi cult to detect the image changes in a reasonable range. We try to use wavelet transformation in image edge detection, making full use of the wave with the high resolution characteristics, and combining multiple images, in order to improve the accuracy of image edge detection.

  15. Self-similar spectral structures and edge-locking hierarchy in open-boundary spin chains

    International Nuclear Information System (INIS)

    Haque, Masudul

    2010-01-01

    For an anisotropic Heisenberg (XXZ) spin chain, we show that an open boundary induces a series of approximately self-similar features at different energy scales, high up in the eigenvalue spectrum. We present a nonequilibrium phenomenon related to this fractal structure, involving states in which a connected block near the edge is polarized oppositely to the rest of the chain. We show that such oppositely polarized blocks can be 'locked' to the edge of the spin chain and that there is a hierarchy of edge-locking effects at various orders of the anisotropy. The phenomenon enables dramatic control of quantum-state transmission and magnetization control.

  16. Local structure in LaMnO3 and CaMnO3 perovskites: A quantitative structural refinement of Mn K-edge XANES data

    International Nuclear Information System (INIS)

    Monesi, C.; Meneghini, C.; Bardelli, F.; Benfatto, M.; Mobilio, S.; Manju, U.; Sarma, D.D.

    2005-01-01

    Hole-doped perovskites such as La 1-x Ca x MnO 3 present special magnetic and magnetotransport properties, and it is commonly accepted that the local atomic structure around Mn ions plays a crucial role in determining these peculiar features. Therefore experimental techniques directly probing the local atomic structure, like x-ray absorption spectroscopy (XAS), have been widely exploited to deeply understand the physics of these compounds. Quantitative XAS analysis usually concerns the extended region [extended x-ray absorption fine structure (EXAFS)] of the absorption spectra. The near-edge region [x-ray absorption near-edge spectroscopy (XANES)] of XAS spectra can provide detailed complementary information on the electronic structure and local atomic topology around the absorber. However, the complexity of the XANES analysis usually prevents a quantitative understanding of the data. This work exploits the recently developed MXAN code to achieve a quantitative structural refinement of the Mn K-edge XANES of LaMnO 3 and CaMnO 3 compounds; they are the end compounds of the doped manganite series La x Ca 1-x MnO 3 . The results derived from the EXAFS and XANES analyses are in good agreement, demonstrating that a quantitative picture of the local structure can be obtained from XANES in these crystalline compounds. Moreover, the quantitative XANES analysis provides topological information not directly achievable from EXAFS data analysis. This work demonstrates that combining the analysis of extended and near-edge regions of Mn K-edge XAS spectra could provide a complete and accurate description of Mn local atomic environment in these compounds

  17. Structural breakdown of specialized plant-herbivore interaction networks in tropical forest edges

    Directory of Open Access Journals (Sweden)

    Bruno Ximenes Pinho

    2017-10-01

    Full Text Available Plant-herbivore relationships are essential for ecosystem functioning, typically forming an ecological network with a compartmentalized (i.e. modular structure characterized by highly specialized interactions. Human disturbances can favor habitat generalist species and thus cause the collapse of this modular structure, but its effects are rarely assessed using a network-based approach. We investigate how edge proximity alters plant-insect herbivore networks by comparing forest edge and interior in a large remnant (3.500 ha of the Brazilian Atlantic forest. Given the typical dominance of pioneer plants and generalist herbivores in edge-affected habitats, we test the hypothesis that the specialized structure of plant-herbivore networks collapse in forest edges, resulting in lower modularity and herbivore specialization. Despite no differences in the number of species and interactions, the network structure presented marked differences between forest edges and interior. Herbivore specialization, modularity and number of modules were significantly higher in forest interior than edge-affected habitats. When compared to a random null model, two (22.2% and eight (88.8% networks were significantly modular in forest edge and interior, respectively. The loss of specificity and modularity in plant-herbivore networks in forest edges may be related to the loss of important functions, such as density-dependent control of superior plant competitors, which is ultimately responsible for the maintenance of biodiversity and ecosystem functions. Our results support previous warnings that focusing on traditional community measures only (e.g. species diversity may overlook important modifications in species interactions and ecosystem functioning.

  18. Structural and mechanism design of an active trailing-edge flap blade

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hwan [Samsung Techwin R and D Center, Seongnam (Korea, Republic of); Natarajan, Balakumaran; Eun, Won Jong; Shin, Sang Joon [Seoul National University, Seoul (Korea, Republic of); R, Viswamurthy S. [National Aerospace Laboratories, Bangalore (India); Park, Jae Sang [Agency for Defense Development, Daejeon (Korea, Republic of); Kim, Tae Song [Technical University of Denmark, Risoe Campus, Roskilde (Denmark)

    2013-09-15

    A conventional rotor control system restricted at 1/rev frequency component is unable to vary the hub vibratory loads and the aero acoustic noise, which exist in high frequency components. Various active rotor control methodologies have been examined in the literature to alleviate the problem of excessive hub vibratory loads and noise. The active control device manipulates the blade pitch angle with arbitrary higher harmonic frequencies individually. In this paper, an active trailing-edge flap blade, which is one of the active control methods, is developed to reduce vibratory loads and noise of the rotor through modification of unsteady aerodynamic loads. Piezoelectric actuators installed inside the blade manipulate the motion of the trailing edge flap. The proposed blade rotates at higher speed and additional structures are included to support the actuators and the flap. This improves the design, as the blade is able to withstand increased centrifugal force. The cross-section of the active blade is designed first. A stress/strain recovery analysis is then conducted to verify its structural integrity. A one-dimensional beam analysis is also carried out to assist with the construction of the fan diagram. To select the actuator and design the flap actuation region, the flap hinge moment is estimated via a CFD analysis. To obtain the desired flap deflection of ±4 .deg. , three actuators are required. The design of the flap actuation region is validated using a test bed with a skin hinge. However, because the skin hinge induces additional flap hinge moment, it does not provide sufficient deflection angle. Therefore, the flap hinge is replaced by a pin-type hinge, and the results are evaluated.

  19. Failure analysis of edge discoloration of galvanized fuel tank

    Directory of Open Access Journals (Sweden)

    Jitendra Mathur

    2015-10-01

    Full Text Available A peculiar type of edge discoloration defect on the surface of some galvanized fuel tank was observed, causing significant appearance problems. In the present study, the surface defect was characterized by visual inspection, optical microscopy, scanning electron microscopy and energy dispersive spectroscopic analysis to understand the source and mechanism of the defect. In the visual inspection, these peculiar surface appearances were observed in fuel tank at three distinct locations. The SEM examination exhibited two distinct regions on the surface apart from the normal galvanized surface: (1 galvannealed, (2 mixture of galvanized and galvannealed texture. The energy dispersive spectroscopic analysis of galvannealed region indicated enrichment of Zn and Al whereas in the region of galvanized majorly Zn was observed. Surface texture of galvannealed region showed majorly zeta crystals along with skin pass marks; whereas no such zeta crystals were observed in case of galvanized regions. Based on the preliminary results, the following hypothesis was made: Coil processed during galvanizing to galvannealing transition. Thickness and width changed to wider and thicker section, which resulted into lower line speed. Due to the lower Al content, lower speed and thicker section combination resulted in formation of partial GA in the coil owing to the internal heat content of the coil. This paper presents the results of the investigation.

  20. A study of the Nb3Ge system by Ge K-edge extended x-ray absorption fine structure and x-ray absorption near-edge structure spectroscopy

    International Nuclear Information System (INIS)

    Saini, N L; Filippi, M; Wu Ziyu; Oyanagi, H; Ihara, H; Iyo, A; Agrestini, S; Bianconi, A

    2002-01-01

    The local structure of Nb 3 Ge intermetallic superconductor has been studied by Ge K-edge absorption spectroscopy. Extended x-ray absorption fine structure (EXAFS) experiments show two Ge-Nb distances. In addition to the crystallographic distance of ∼2.87 A, there exists a second Ge-Nb distance, shorter than the first by ∼0.2 A, assigned to a phase with short-range symmetry related to local displacements in the Nb-Nb chains. The x-ray absorption near-edge structure (XANES) spectrum has been simulated by full multiple-scattering calculations considering the local displacements determined by the EXAFS analysis. The XANES spectrum has been well reproduced by considering a cluster of 99 atoms within a radius of about 7 A from the central Ge atom and introducing determined local displacements

  1. Bifurcations of edge states—topologically protected and non-protected—in continuous 2D honeycomb structures

    International Nuclear Information System (INIS)

    Fefferman, C L; Lee-Thorp, J P; Weinstein, M I

    2016-01-01

    Edge states are time-harmonic solutions to energy-conserving wave equations, which are propagating parallel to a line-defect or ‘edge’ and are localized transverse to it. This paper summarizes and extends the authors’ work on the bifurcation of topologically protected edge states in continuous two-dimensional (2D) honeycomb structures. We consider a family of Schrödinger Hamiltonians consisting of a bulk honeycomb potential and a perturbing edge potential. The edge potential interpolates between two different periodic structures via a domain wall. We begin by reviewing our recent bifurcation theory of edge states for continuous 2D honeycomb structures (http://arxiv.org/abs/1506.06111). The topologically protected edge state bifurcation is seeded by the zero-energy eigenstate of a one-dimensional Dirac operator. We contrast these protected bifurcations with (more common) non-protected bifurcations from spectral band edges, which are induced by bound states of an effective Schrödinger operator. Numerical simulations for honeycomb structures of varying contrasts and ‘rational edges’ (zigzag, armchair and others), support the following scenario: (a) for low contrast, under a sign condition on a distinguished Fourier coefficient of the bulk honeycomb potential, there exist topologically protected edge states localized transverse to zigzag edges. Otherwise, and for general edges, we expect long lived edge quasi-modes which slowly leak energy into the bulk. (b) For an arbitrary rational edge, there is a threshold in the medium-contrast (depending on the choice of edge) above which there exist topologically protected edge states. In the special case of the armchair edge, there are two families of protected edge states; for each parallel quasimomentum (the quantum number associated with translation invariance) there are edge states which propagate in opposite directions along the armchair edge. (paper)

  2. Bifurcations of edge states—topologically protected and non-protected—in continuous 2D honeycomb structures

    Science.gov (United States)

    Fefferman, C. L.; Lee-Thorp, J. P.; Weinstein, M. I.

    2016-03-01

    Edge states are time-harmonic solutions to energy-conserving wave equations, which are propagating parallel to a line-defect or ‘edge’ and are localized transverse to it. This paper summarizes and extends the authors’ work on the bifurcation of topologically protected edge states in continuous two-dimensional (2D) honeycomb structures. We consider a family of Schrödinger Hamiltonians consisting of a bulk honeycomb potential and a perturbing edge potential. The edge potential interpolates between two different periodic structures via a domain wall. We begin by reviewing our recent bifurcation theory of edge states for continuous 2D honeycomb structures (http://arxiv.org/abs/1506.06111). The topologically protected edge state bifurcation is seeded by the zero-energy eigenstate of a one-dimensional Dirac operator. We contrast these protected bifurcations with (more common) non-protected bifurcations from spectral band edges, which are induced by bound states of an effective Schrödinger operator. Numerical simulations for honeycomb structures of varying contrasts and ‘rational edges’ (zigzag, armchair and others), support the following scenario: (a) for low contrast, under a sign condition on a distinguished Fourier coefficient of the bulk honeycomb potential, there exist topologically protected edge states localized transverse to zigzag edges. Otherwise, and for general edges, we expect long lived edge quasi-modes which slowly leak energy into the bulk. (b) For an arbitrary rational edge, there is a threshold in the medium-contrast (depending on the choice of edge) above which there exist topologically protected edge states. In the special case of the armchair edge, there are two families of protected edge states; for each parallel quasimomentum (the quantum number associated with translation invariance) there are edge states which propagate in opposite directions along the armchair edge.

  3. Iodine K-edge EXAFS analysis of iodide ion-cyclodextrin inclusion complexes in aqueous solution

    International Nuclear Information System (INIS)

    Kaneko, T; Ueda, M; Nagamatsu, S; Konishi, T; Fujikawa, T; Mizumaki, M

    2009-01-01

    We study the structure of inclusion complexes of α-, β-, γ-cyclodextrin with mono-iodide ion in aqueous solution by means of iodine K-edge EXAFS spectroscopy. The analysis is based on the assumption that two kinds of iodide ions exist in KI-cyclodextrin aqueous solution i.e. hydrated mono-iodide ions and one-one mono-iodide-cyclodextrin inclusion complexes. In KI-α-cyclodextrin system, iodine K-edge EXAFS analyse show that the average coordination number of the oxygen atoms in water molecules in the first hydration shell decreases as the fraction of included ions increases. This result suggests that dehydration process accompanies the formation of the inclusion complex. This is not found in the case of β-cyclodextrin, indicating that in this case the iodide ions are included together with the whole first hydration shell.

  4. Aerodynamic Analysis of Trailing Edge Enlarged Wind Turbine Airfoils

    International Nuclear Information System (INIS)

    Xu, Haoran; Yang, Hua; Liu, Chao; Shen, Wenzhong; Zhu, Weijun

    2014-01-01

    The aerodynamic performance of blunt trailing edge airfoils generated from the DU- 91-W2-250, DU-97-W-300 and DU-96-W-350 airfoils by enlarging the thickness of trailing edge symmetrically from the location of maximum thickness to chord to the trailing edge were analyzed by using CFD and RFOIL methods at a chord Reynolds number of 3 × 10 6 . The goal of this study is to analyze the aerodynamic performance of blunt trailing edge airfoils with different thicknesses of trailing edge and maximum thicknesses to chord. The steady results calculated by the fully turbulent k-ω SST, transitional k-ω SST model and RFOIL all show that with the increase of thickness of trailing edge, the linear region of lift is extended and the maximum lift also increases, the increase rate and amount of lift become limited gradually at low angles of attack, while the drag increases dramatically. For thicker airfoils with larger maximum thickness to chord length, the increment of lift is larger than that of relatively thinner airfoils when the thickness of blunt trailing edge is increased from 5% to 10% chord length. But too large lift can cause abrupt stall which is profitless for power output. The transient characteristics of blunt trailing edge airfoils are caused by blunt body vortices at low angles of attack, and by the combined effect of separation and blunt body vortices at large angles of attack. With the increase of thickness of blunt trailing edge, the vibration amplitudes of lift and drag curves increase. The transient calculations over-predict the lift at large angles of attack and drag at all angles of attack than the steady calculations which is likely to be caused by the artificial restriction of the flow in two dimensions

  5. Numerical analysis of edge effects in side illuminated strip detectors for digital radiology

    CERN Document Server

    Krizaj, D

    2000-01-01

    The influence of edge defects on side illuminated X-ray strip detectors for digital radiology is investigated by numerical device modeling. By assuming positive fixed oxide charges on side and top surfaces simulations have shown strong curvature of the equipotential lines in the edge region. A fraction of the edge generated current surpasses the edge guard-ring junction and is collected by the readout strips. As a consequence, strips cannot be placed close to the edge of the structure and collection efficiency is reduced. An n-on-n instead of a p-on-n strip detector is proposed enabling collection of edge generated carriers by a very narrow guard-ring junction and placement of the readout strip close to the edge without increase of the strip leakage current.

  6. Does the edge effect influence plant community structure in a tropical dry forest?

    Directory of Open Access Journals (Sweden)

    Diogo Gallo Oliveira

    2013-04-01

    Full Text Available Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges.

  7. Aeroelastic analysis of an adaptive trailing edge with a smart elastic skin

    Science.gov (United States)

    Arena, Maurizio; Pecora, Rosario; Amoroso, Francesco; Noviello, Maria Chiara; Rea, Francesco; Concilio, Antonio

    2017-09-01

    Nowadays, the design choices of the new generation aircraft are moving towards the research and development of innovative technologies, aimed at improving performance as well as to minimize the environmental impact. In the current "greening" context, the morphing structures represent a very attractive answer to such requirements: both aerodynamic and structural advantages are ensured in several flight conditions, safeguarding the fuel consumption at the same time. An aeronautical intelligent system is therefore the outcome of combining complex smart materials and structures, assuring the best functionality level in the flight envelope. The Adaptive Trailing Edge Device (ATED) is a sub-project inside SARISTU (Smart Intelligent Aircraft Structures), an L2 level project of the 7th EU Framework programme coordinated by Airbus, aimed at developing technologies for realizing a morphing wing extremity addressed to improve the general aircraft performance and to reduce the fuel burning up to 5%. This specific study, divided into design, manufacturing and testing phases, involved universities, research centers and leading industries of the European consortium. The paper deals with the aeroelastic impact assessment of a full-scale morphing wing trailing edge on a Large Aeroplanes category aircraft. The FE (Finite Element) model of the technology demonstrator, located in the aileron region and manufactured within the project, was referenced to for the extrapolation of the structural properties of the whole adaptive trailing edge device placed in its actual location in the outer wing. The input FE models were processed within MSC-Nastran® environment to estimate stiffness and inertial distributions suitable to construct the aeroelastic stick-beam mock-up of the reference structure. Afterwards, a flutter analysis in simulated operative condition, have been carried out by means of Sandy®, an in-house code, according to meet the safety requirements imposed by the applicable

  8. Comparative Analysis of Red-Edge Hyperspectral Indices

    Science.gov (United States)

    Gupta, R.; Vijayan, D.; Prasad, T.

    The spectrally continuous observations of 3 nm bandwidth in 680 to 800 nm range over the growth cycle of wheat were subjected to first order differentiation to identify the point of inflection in red to near-IR transition zone. During 40 to 84 days after sowing (DAS), the point of inflection was observed in 723 to 735 nm region with peak response at 729 nm for 64 DAS . For differentiated curve pertaining to 25 DAS (initial vegetative) and 90 DAS (initial senescence) phenological stages, the point of inflection was in 690-693 and 744-747 nm spectral region, respectively. The ratios corresponding to 1dB (RI1dB = R 735 /R720), 2dB (RI 2dB = R738/R 720), 3dB (RI3dB = R741 /R 717) down signal levels and half signal level (RIhalf = R747/R 708 ) were computed. For nomenclature point of view, R41 refers to reflectance for 3 nm7 bandwidth centered at 741 nm. Correlations for these developed RIs were studied with reference to indices given by Vogelmann i.e., VOG a = R 740 /R720 , VOG b = [(R 734-R747)/(R715+R720)] and red edge spectral parameter (RESP) = R750 /R 710. VOG a and RESP conceptually resemble with developed RI 2dB and RIhalf , respectively. All RIs were found correlated with VOGa , VOG b and RESP with r2 in the range of 0.96 to 0.99; r2 was 0.998 for RI2dB and VOG a pair and 0.996 for RI half and RESP pair; the slope factor of regression relationship improved by about 50% from RI dB to2 RI3dB and by about 125% from RI3dB to RIhalf with r2 in 0.97-0.99 range. Thus, theoretical basis for VOG a and RESP in terms of dB based indices has been provided. The wavelengths used in VOGb are noticed in dB based indices ; to provide stability to small magnitude R720, the sum of R720 and R715 has been used in VOGb. Based on regression analysis of these indices with LAI in its growth and decline phases separately, the slope value for VOG b, RI 2dB, VOG a, RIhalf, RESP and area under 680 to 760 nm for first order derivative curve (area) were in 0.08-0.11, 0.24 - 0.34, 0

  9. Ground state analysis of magnetic nanographene molecules with modified edge

    International Nuclear Information System (INIS)

    Gorjizadeh, Narjes; Ota, Norio; Kawazoe, Yoshiyuki

    2013-01-01

    Highlights: ► Graphene molecules can become ferromagnetic by edge modifications. ► Dihydrogenation of one zigzag edge of rectangular flakes make them ferromagnetic. ► Triangular flakes become high-spin state by dehydrogenization of one zigzag edge. - Abstract: We study spin states of edge modified nanographene molecules with rectangular and triangular shapes by first principle calculations using density functional theory (DFT) and Hartree–Fock (HF) methods with Møller–Plesset (MP) correlation energy correction at different levels. Anthracene (C 14 H 10 ) and phenalenyl (C 13 H 9 ), which contain three benzene rings combined in two different ways, can be considered as fragments of a graphene sheet. Carbon-based ferromagnetic materials are of great interest both in fundamental science and technological potential in organic spintronics devices. We show that non-magnetic rectangular molecules such as C 14 H 10 can become ferromagnetic with high-spin state as the ground state by dihydrogenization of one of the zigzag edges, while triangular molecules such as C 13 H 9 become ferromagnetic with high-spin state by dehydrogenization of one of the zigzag edges

  10. Image edge detection based tool condition monitoring with morphological component analysis.

    Science.gov (United States)

    Yu, Xiaolong; Lin, Xin; Dai, Yiquan; Zhu, Kunpeng

    2017-07-01

    The measurement and monitoring of tool condition are keys to the product precision in the automated manufacturing. To meet the need, this study proposes a novel tool wear monitoring approach based on the monitored image edge detection. Image edge detection has been a fundamental tool to obtain features of images. This approach extracts the tool edge with morphological component analysis. Through the decomposition of original tool wear image, the approach reduces the influence of texture and noise for edge measurement. Based on the target image sparse representation and edge detection, the approach could accurately extract the tool wear edge with continuous and complete contour, and is convenient in charactering tool conditions. Compared to the celebrated algorithms developed in the literature, this approach improves the integrity and connectivity of edges, and the results have shown that it achieves better geometry accuracy and lower error rate in the estimation of tool conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Investigation of turbulent structures in the edge of magnetized plasmas

    International Nuclear Information System (INIS)

    Nold, Bernhard

    2012-01-01

    Rising energy cost and progressing climate change will exacerbate existing and give birth to new conflicts. Energy savings and the development of new technologies can counteract the reasons for these conflicts. Beside renewable energy sources, nuclear fusion can help to meet this challenge. To build future fusion power plants smaller and more efficient, the magnetic confinement must be improved and the load on plasma facing components reduced. To this end, better understanding is required of turbulent transport processes in magnetized plasmas. Within the frame of the present work, the properties and dynamics of turbulent density structures (''blobs'') have been investigated, as well as their interaction with shear flows. Langmuir-probe measurements have been conducted in the tokamak ASDEX Upgrade and in the stellarator TJ-K, and compared with GEMR plasma turbulence simulations. It has been shown, that blobs are generated at the last closed flux surface (LCFS) of ASDEX Upgrade. They propagate perpendicular to the magnetic field lines in the radial and poloidal directions. The poloidal E x B-drift depends on the radial variation of the plasma potential. The latter is given by the electron temperature profile in front of the electrically conducting wall. Experimental results show, that this can lead to a shear layer inside the scrape-off layer (SOL) of a divertor tokamak due to inhomogeneous connection lengths to the wall. Blobs can hardly cross such a shear layer unchanged. This investigation shows how blobs can exchange particles and energy across a shear layer without changing their shapes and velocities substantially. However, the dynamics of the structures are different between both sides of the shear layer. Parallel drift-wave dynamics are dominant on the plasma core side, i.e. density and potential of the blobs are in phase. Outside of the shear layer, the interchange mechanism dominates due to shorter parallel connection lengths to the wall. The poloidal

  12. Edge Principal Components and Squash Clustering: Using the Special Structure of Phylogenetic Placement Data for Sample Comparison

    Science.gov (United States)

    Matsen IV, Frederick A.; Evans, Steven N.

    2013-01-01

    Principal components analysis (PCA) and hierarchical clustering are two of the most heavily used techniques for analyzing the differences between nucleic acid sequence samples taken from a given environment. They have led to many insights regarding the structure of microbial communities. We have developed two new complementary methods that leverage how this microbial community data sits on a phylogenetic tree. Edge principal components analysis enables the detection of important differences between samples that contain closely related taxa. Each principal component axis is a collection of signed weights on the edges of the phylogenetic tree, and these weights are easily visualized by a suitable thickening and coloring of the edges. Squash clustering outputs a (rooted) clustering tree in which each internal node corresponds to an appropriate “average” of the original samples at the leaves below the node. Moreover, the length of an edge is a suitably defined distance between the averaged samples associated with the two incident nodes, rather than the less interpretable average of distances produced by UPGMA, the most widely used hierarchical clustering method in this context. We present these methods and illustrate their use with data from the human microbiome. PMID:23505415

  13. Contrast in edge vegetation structure modifies the predation risk of natural ground nests in an agricultural landscape.

    Directory of Open Access Journals (Sweden)

    Nicole A Schneider

    Full Text Available Nest predation risk generally increases nearer forest-field edges in agricultural landscapes. However, few studies test whether differences in edge contrast (i.e. hard versus soft edges based on vegetation structure and height affect edge-related predation patterns and if such patterns are related to changes in nest conspicuousness between incubation and nestling feeding. Using data on 923 nesting attempts we analyse factors influencing nest predation risk at different edge types in an agricultural landscape of a ground-cavity breeding bird species, the Northern Wheatear (Oenanthe oenanthe. As for many other bird species, nest predation is a major determinant of reproductive success in this migratory passerine. Nest predation risk was higher closer to woodland and crop field edges, but only when these were hard edges in terms of ground vegetation structure (clear contrast between tall vs short ground vegetation. No such edge effect was observed at soft edges where adjacent habitats had tall ground vegetation (crop, ungrazed grassland. This edge effect on nest predation risk was evident during the incubation stage but not the nestling feeding stage. Since wheatear nests are depredated by ground-living animals our results demonstrate: (i that edge effects depend on edge contrast, (ii that edge-related nest predation patterns vary across the breeding period probably resulting from changes in parental activity at the nest between the incubation and nestling feeding stage. Edge effects should be put in the context of the nest predator community as illustrated by the elevated nest predation risk at hard but not soft habitat edges when an edge is defined in terms of ground vegetation. These results thus can potentially explain previously observed variations in edge-related nest predation risk.

  14. Atomic-scale structures of interfaces between phyllosilicate edges and water

    NARCIS (Netherlands)

    Liu, X.; Lu, X.; Meijer, E.J.; Wang, R.; Zhou, H.

    2012-01-01

    We report first-principles molecular dynamics (FPMD) studies on the structures of interfaces between phyllosilicate edges and water. Using FPMD, the substrates and solvents are simulated at the same first-principles level, and the thermal motions are sampled via molecular dynamics. Both the neutral

  15. Analysis of buried interfaces in multilayer mirrors using grazing incidence extreme ultraviolet reflectometry near resonance edges.

    Science.gov (United States)

    Sertsu, M G; Nardello, M; Giglia, A; Corso, A J; Maurizio, C; Juschkin, L; Nicolosi, P

    2015-12-10

    Accurate measurements of optical properties of multilayer (ML) mirrors and chemical compositions of interdiffusion layers are particularly challenging to date. In this work, an innovative and nondestructive experimental characterization method for multilayers is discussed. The method is based on extreme ultraviolet (EUV) reflectivity measurements performed on a wide grazing incidence angular range at an energy near the absorption resonance edge of low-Z elements in the ML components. This experimental method combined with the underlying physical phenomenon of abrupt changes of optical constants near EUV resonance edges enables us to characterize optical and structural properties of multilayers with high sensitivity. A major advantage of the method is to perform detailed quantitative analysis of buried interfaces of multilayer structures in a nondestructive and nonimaging setup. Coatings of Si/Mo multilayers on a Si substrate with period d=16.4  nm, number of bilayers N=25, and different capping structures are investigated. Stoichiometric compositions of Si-on-Mo and Mo-on-Si interface diffusion layers are derived. Effects of surface oxidation reactions and carbon contaminations on the optical constants of capping layers and the impact of neighboring atoms' interactions on optical responses of Si and Mo layers are discussed.

  16. Edge structures and properties of triangular antidots in single-layer MoS2

    KAUST Repository

    Gan, Li Yong; Cheng, Yingchun; Schwingenschlö gl, Udo; Yao, Yingbang; Zhao, Yong; Zhang, Xixiang; Huang, Wei

    2016-01-01

    Density functional theory and experiments are employed to shed light on the edge structures of antidots in O etched single-layer MoS2. The equilibrium morphology is found to be the zigzag Mo edge with each Mo atom bonded to two O atoms, in a wide range of O chemical potentials. Scanning electron microscopy shows that the orientation of the created triangular antidots is opposite to the triangular shape of the single-layer MoS2 samples, in agreement with the theoretical predictions. Furthermore, edges induced by O etching turn out to be p-doped, suggesting an effective strategy to realize p-type MoS2 devices. Published by AIP Publishing.

  17. Edge structures and properties of triangular antidots in single-layer MoS2

    KAUST Repository

    Gan, Li Yong

    2016-08-30

    Density functional theory and experiments are employed to shed light on the edge structures of antidots in O etched single-layer MoS2. The equilibrium morphology is found to be the zigzag Mo edge with each Mo atom bonded to two O atoms, in a wide range of O chemical potentials. Scanning electron microscopy shows that the orientation of the created triangular antidots is opposite to the triangular shape of the single-layer MoS2 samples, in agreement with the theoretical predictions. Furthermore, edges induced by O etching turn out to be p-doped, suggesting an effective strategy to realize p-type MoS2 devices. Published by AIP Publishing.

  18. Lamb-Wave-Based Tomographic Imaging Techniques for Hole-Edge Corrosion Monitoring in Plate Structures

    Directory of Open Access Journals (Sweden)

    Dengjiang Wang

    2016-11-01

    Full Text Available This study presents a novel monitoring method for hole-edge corrosion damage in plate structures based on Lamb wave tomographic imaging techniques. An experimental procedure with a cross-hole layout using 16 piezoelectric transducers (PZTs was designed. The A0 mode of the Lamb wave was selected, which is sensitive to thickness-loss damage. The iterative algebraic reconstruction technique (ART method was used to locate and quantify the corrosion damage at the edge of the hole. Hydrofluoric acid with a concentration of 20% was used to corrode the specimen artificially. To estimate the effectiveness of the proposed method, the real corrosion damage was compared with the predicted corrosion damage based on the tomographic method. The results show that the Lamb-wave-based tomographic method can be used to monitor the hole-edge corrosion damage accurately.

  19. The effect of spin-orbit coupling in band structure and edge states of bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sahdan, Muhammad Fauzi; Darma, Yudi, E-mail: yudi@fi.itb.ac.id [Department of Physics, InstitutTeknologi Bandung, Jalan Ganesa 10, Bandung 40132 (Indonesia)

    2015-04-16

    Topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of bilayer grapheme and also its edge states by using this model with analytical approach. The results of our calculation show that the gap opening occurs at K and K’ point in bilayer graphene.In addition, a pair of gapless edge modes occurs both in the zigzag and arm-chair configurations are no longer exist. There are gap created at the edge even though thery are very small.

  20. Edge structures and properties of triangular antidots in single-layer MoS2

    International Nuclear Information System (INIS)

    Gan, Li-Yong; Cheng, Yingchun; Huang, Wei; Schwingenschlögl, Udo; Yao, Yingbang; Zhao, Yong; Zhang, Xi-xiang

    2016-01-01

    Density functional theory and experiments are employed to shed light on the edge structures of antidots in O etched single-layer MoS 2 . The equilibrium morphology is found to be the zigzag Mo edge with each Mo atom bonded to two O atoms, in a wide range of O chemical potentials. Scanning electron microscopy shows that the orientation of the created triangular antidots is opposite to the triangular shape of the single-layer MoS 2 samples, in agreement with the theoretical predictions. Furthermore, edges induced by O etching turn out to be p-doped, suggesting an effective strategy to realize p-type MoS 2 devices.

  1. Finite element method calculations of GMI in thin films and sandwiched structures: Size and edge effects

    International Nuclear Information System (INIS)

    Garcia-Arribas, A.; Barandiaran, J.M.; Cos, D. de

    2008-01-01

    The impedance values of magnetic thin films and magnetic/conductor/magnetic sandwiched structures with different widths are computed using the finite element method (FEM). The giant magneto-impedance (GMI) is calculated from the difference of the impedance values obtained with high and low permeability of the magnetic material. The results depend considerably on the width of the sample, demonstrating that edge effects are decisive for the GMI performance. It is shown that, besides the usual skin effect that is responsible for GMI, an 'unexpected' increase of the current density takes place at the lateral edge of the sample. In magnetic thin films this effect is dominant when the permeability is low. In the trilayers, it is combined with the lack of shielding of the central conductor at the edge. The resulting effects on GMI are shown to be large for both kinds of samples. The conclusions of this study are of great importance for the successful design of miniaturized GMI devices

  2. Edge structures and properties of triangular antidots in single-layer MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Li-Yong, E-mail: ganly@swjtu.edu.cn, E-mail: iamyccheng@njtech.edu.cn, E-mail: udo.schwingenschlogl@kaust.edu.sa [Key Laboratory of Advanced Technology of Materials (Ministry of Education), Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, Yingchun, E-mail: ganly@swjtu.edu.cn, E-mail: iamyccheng@njtech.edu.cn, E-mail: udo.schwingenschlogl@kaust.edu.sa; Huang, Wei [Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials - SICAM, Nanjing Tech University - NanjingTech, 30 South Puzhu Road, Nanjing 211816 (China); Schwingenschlögl, Udo, E-mail: ganly@swjtu.edu.cn, E-mail: iamyccheng@njtech.edu.cn, E-mail: udo.schwingenschlogl@kaust.edu.sa [Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Yao, Yingbang [Advanced Nanofabrication and Imaging Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); School of Materials and Energy, Guangdong University of Technology, Guangdong 510006 (China); Zhao, Yong [Key Laboratory of Advanced Technology of Materials (Ministry of Education), Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031 Sichuan (China); Zhang, Xi-xiang [Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Advanced Nanofabrication and Imaging Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia)

    2016-08-29

    Density functional theory and experiments are employed to shed light on the edge structures of antidots in O etched single-layer MoS{sub 2}. The equilibrium morphology is found to be the zigzag Mo edge with each Mo atom bonded to two O atoms, in a wide range of O chemical potentials. Scanning electron microscopy shows that the orientation of the created triangular antidots is opposite to the triangular shape of the single-layer MoS{sub 2} samples, in agreement with the theoretical predictions. Furthermore, edges induced by O etching turn out to be p-doped, suggesting an effective strategy to realize p-type MoS{sub 2} devices.

  3. Validation of Temperature Histories for Structural Steel Welds Using Estimated Heat-Affected-Zone Edges

    Science.gov (United States)

    2016-10-12

    Metallurgy , 2nd Ed., John Wiley & Sons, Inc., 2003. DOI: 10.1002/0471434027. 2. O. Grong, Metallurgical Modelling of Welding , 2ed., Materials Modelling...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6394--16-9690 Validation of Temperature Histories for Structural Steel Welds Using...PAGES 17. LIMITATION OF ABSTRACT Validation of Temperature Histories for Structural Steel Welds Using Estimated Heat-Affected-Zone Edges S.G. Lambrakos

  4. White line structure in the x-ray Lsub(III) absorption edge of holmium

    International Nuclear Information System (INIS)

    Agarwal, B.K.; Agarwal, B.R.K.

    1978-01-01

    The white line at the Ho Lsub(III) absorption edge has been recorded in Ho metal, Ho 2 O 3 and HoCl 3 . The white line structure in Ho 2 O 3 has been analysed by regarding it as due to the transition into bound states of the Lsub(III) excited ion. The extended fine structure has been used to obtain information on the bond lengths in the compounds. (author)

  5. Edge-localized mode avoidance and pedestal structure in I-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Walk, J. R., E-mail: jrwalk@psfc.mit.edu; Hughes, J. W.; Hubbard, A. E.; Terry, J. L.; Whyte, D. G.; White, A. E.; Baek, S. G.; Reinke, M. L.; Theiler, C.; Churchill, R. M.; Rice, J. E. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139-4307 (United States); Snyder, P. B.; Osborne, T. [General Atomics, San Diego, CA 92186-5608 (United States); Dominguez, A [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Cziegler, I. [UCSD Center for Momentum Transport and Flow Organization, La Jolla, CA 92093-0417 (United States)

    2014-05-15

    I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle P{sub net}/n{sup ¯}{sub e}, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of P{sub net}/n{sup ¯}{sub e}. This is consistent with targets for increased performance in I-mode, elevating pedestal β{sub p} and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs

  6. Heavy Neutral Beam Probe for Edge Plasma Analysis in Tokamaks

    International Nuclear Information System (INIS)

    Castracane, J.

    2001-01-01

    The Heavy Neutral Beam Probe (HNBP) developed initially with DOE funding under the Small Business Innovation Research (SBIR) program was installed on the Tokamak de Varennes (TdeV) at the CCFM. This diagnostic was designed to perform fundamental measurements of edge plasma properties. The hardware was capable of measuring electron density and potential profiles with high spatial and temporal resolution. Fluctuation spectra for these parameters were obtained with HNBP for transport studies

  7. Heavy Neutral Beam Probe for Edge Plasma Analysis in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Castracane, J.

    2001-01-04

    The Heavy Neutral Beam Probe (HNBP) developed initially with DOE funding under the Small Business Innovation Research (SBIR) program was installed on the Tokamak de Varennes (TdeV) at the CCFM. This diagnostic was designed to perform fundamental measurements of edge plasma properties. The hardware was capable of measuring electron density and potential profiles with high spatial and temporal resolution. Fluctuation spectra for these parameters were obtained with HNBP for transport studies.

  8. Analysis of neoclassical edge plasma transport with gyroviscosity and inertia

    International Nuclear Information System (INIS)

    Rogister, A.; Antonov, N.

    1996-01-01

    It is shown that the ambipolarity constraint which results from neoclassical transport theory with gyroviscosity and inertia sets lower limits on the edge density and/or temperature and/or Z eff gradients. Toroidal momentum co, respectively counter, -injection reduces, respectively increases these lower bounds. Generally speaking, co, respectively counter, -injection increases, respectively reduces, the rotation velocities. The theory has so far been developed for the high collisionality regime only. (orig.)

  9. Influence of point defects on the near edge structure of hexagonal boron nitride

    Science.gov (United States)

    McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.

    2017-10-01

    Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.

  10. Characterization of Unsteady Flow Structures Near Leading-Edge Slat. Part 1; PIV Measurements

    Science.gov (United States)

    Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan

    2004-01-01

    A comprehensive computational and experimental study has been performed at the NASA Langley Research Center as part of the Quiet Aircraft Technology (QAT) Program to investigate the unsteady flow near a leading-edge slat of a two-dimensional, high-lift system. This paper focuses on the experimental effort conducted in the NASA Langley Basic Aerodynamics Research Tunnel (BART) where Particle Image Velocimetry (PIV) data was acquired in the slat cove and at the slat trailing edge of a three-element, high-lift model at 4, 6, and 8 degrees angle of attack and a freestream Mach Number of 0.17. Instantaneous velocities obtained from PIV images are used to obtain mean and fluctuating components of velocity and vorticity. The data show the recirculation in the cove, reattachment of the shear layer on the slat lower surface, and discrete vortical structures within the shear layer emanating from the slat cusp and slat trailing edge. Detailed measurements are used to examine the shear layer formation at the slat cusp, vortex shedding at the slat trailing edge, and convection of vortical structures through the slat gap. Selected results are discussed and compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, and Jenkins (2004). The experimental dataset provides essential flow-field information for the validation of near-field inputs to noise prediction tools.

  11. High-resolution Al L2,3-edge x-ray absorption near edge structure spectra of Al-containing crystals and glasses: coordination number and bonding information from edge components

    International Nuclear Information System (INIS)

    Weigel, C; Calas, G; Cormier, L; Galoisy, L; Henderson, G S

    2008-01-01

    High-resolution Al L 2,3 -edge x-ray absorption near edge structure (XANES) spectra have been measured in selected materials containing aluminium in 4-, 5- and 6-coordination. A shift of 1.5 eV is observed between the onset of [4] Al and [6] Al L 2,3 -edge XANES, in agreement with the magnitude of the shift observed at the Al K-edge. The differences in the position and shape of low-energy components of Al L 2,3 -edge XANES spectra provide a unique fingerprint of the geometry of the Al site and of the nature of Al-O chemical bond. The high resolution allows the calculation of electronic parameters such as the spin-orbit coupling and exchange energy using intermediate coupling theory. The electron-hole exchange energy decreases in tetrahedral as compared to octahedral symmetry, in relation with the increased screening of the core hole in the former. Al L 2,3 -edge XANES spectra confirm a major structural difference between glassy and crystalline NaAlSi 2 O 6 , with Al in 4- and 6-coordination, respectively, Al coordination remaining unchanged in NaAl 1-x Fe x Si 2 O 6 glasses, as Fe is substituted for Al

  12. Structural characteristics of the shock-induced boundary layer separation extended to the leading edge

    Science.gov (United States)

    Tao, Y.; Liu, W. D.; Fan, X. Q.; Zhao, Y. L.

    2017-07-01

    For a better understanding of the local unstart of supersonic/hypersonic inlet, a series of experiments has been conducted to investigate the shock-induced boundary layer separation extended to the leading edge. Using the nanoparticle-based planar laser scattering, we recorded the fine structures of these interactions under different conditions and paid more attention to their structural characteristics. According to their features, these interactions could be divided into four types. Specifically, Type A wave pattern is similar to the classic shock wave/turbulent boundary layer interaction, and Type B wave configuration consists of an overall Mach reflection above the large scale separation bubble. Due to the gradual decrease in the size of the separation bubble, the separation bubble was replaced by several vortices (Type C wave pattern). Besides, for Type D wave configuration which exists in the local unstart inlet, there appears to be some flow spillage around the leading edge.

  13. Local structural disorder in REFeAsO oxypnictides by RE L3 edge XANES

    International Nuclear Information System (INIS)

    Xu, W; Chu, W S; Wu, Z Y; Marcelli, A; Di Gioacchino, D; Joseph, B; Iadecola, A; Bianconi, A; Saini, N L

    2010-01-01

    The REFeAsO (RE = La, Pr, Nd and Sm) system has been studied by RE L 3 x-ray absorption near edge structure (XANES) spectroscopy to explore the contribution of the REO spacers between the electronically active FeAs slabs in these materials. The XANES spectra have been simulated by full multiple scattering calculations to describe the different experimental features and their evolution with the RE size. The near edge feature just above the L 3 white line is found to be sensitive to the ordering/disordering of oxygen atoms in the REO layers. In addition, shape resonance peaks due to As and O scattering change systematically, indicating local structural changes in the FeAs slabs and the REO spacers due to RE size. The results suggest that interlayer coupling and oxygen order/disorder in the REO spacers may have an important role in the superconductivity and itinerant magnetism of the oxypnictides.

  14. Novel design and sensitivity analysis of displacement measurement system utilizing knife edge diffraction for nanopositioning stages.

    Science.gov (United States)

    Lee, ChaBum; Lee, Sun-Kyu; Tarbutton, Joshua A

    2014-09-01

    This paper presents a novel design and sensitivity analysis of a knife edge-based optical displacement sensor that can be embedded with nanopositioning stages. The measurement system consists of a laser, two knife edge locations, two photodetectors, and axillary optics components in a simple configuration. The knife edge is installed on the stage parallel to its moving direction and two separated laser beams are incident on knife edges. While the stage is in motion, the direct transverse and diffracted light at each knife edge is superposed producing interference at the detector. The interference is measured with two photodetectors in a differential amplification configuration. The performance of the proposed sensor was mathematically modeled, and the effect of the optical and mechanical parameters, wavelength, beam diameter, distances from laser to knife edge to photodetector, and knife edge topography, on sensor outputs was investigated to obtain a novel analytical method to predict linearity and sensitivity. From the model, all parameters except for the beam diameter have a significant influence on measurement range and sensitivity of the proposed sensing system. To validate the model, two types of knife edges with different edge topography were used for the experiment. By utilizing a shorter wavelength, smaller sensor distance and higher edge quality increased measurement sensitivity can be obtained. The model was experimentally validated and the results showed a good agreement with the theoretically estimated results. This sensor is expected to be easily implemented into nanopositioning stage applications at a low cost and mathematical model introduced here can be used for design and performance estimation of the knife edge-based sensor as a tool.

  15. Approach for Structurally Clearing an Adaptive Compliant Trailing Edge Flap for Flight

    Science.gov (United States)

    Miller, Eric J.; Lokos, William A.; Cruz, Josue; Crampton, Glen; Stephens, Craig A.; Kota, Sridhar; Ervin, Gregory; Flick, Pete

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) flap was flown on the National Aeronautics and Space Administration (NASA) Gulfstream GIII testbed at the NASA Armstrong Flight Research Center. This smoothly curving flap replaced the existing Fowler flaps creating a seamless control surface. This compliant structure, developed by FlexSys Inc. in partnership with the Air Force Research Laboratory, supported NASA objectives for airframe structural noise reduction, aerodynamic efficiency, and wing weight reduction through gust load alleviation. A thorough structures airworthiness approach was developed to move this project safely to flight. A combination of industry and NASA standard practice require various structural analyses, ground testing, and health monitoring techniques for showing an airworthy structure. This paper provides an overview of compliant structures design, the structural ground testing leading up to flight, and the flight envelope expansion and monitoring strategy. Flight data will be presented, and lessons learned along the way will be highlighted.

  16. Where the woodland ends: How edges affect landscape structure and physiological responses of Quercus agrifolia

    Science.gov (United States)

    de Chant, Timothy Paul

    Forests and woodlands are integral parts of ecosystems across the globe, but they are threatened by a variety of factors, including urbanization and introduced forest pathogens. These two forces are fundamentally altering ecosystems, both by removing forest cover and reshaping landscapes. Comprehending how these two processes have changed forest ecosystems is an important step toward understanding how the affected systems will function in the future. I investigated the range of edge effects that result from disturbance brought about by forest pathogens and urbanization in two coastal oak woodlands in Marin County, California. Oak woodlands are a dynamic part of California's landscape, reacting to changes in their biotic and abiotic environments across a range of spatial and temporal scales. Sudden Oak Death, caused by the introduced forest pathogen Phytophthora ramorum, has led to widespread mortality of many tree species in California's oak woodlands. I investigated how the remaining trees respond to such rapid changes in canopy structure (Chapter 2), and my results revealed a forest canopy quick to respond to the new openings. Urbanization, another disturbance regime, operates on a longer time scale. Immediately following urban development, forest edges are strikingly linear, but both forest processes and homeowner actions likely work in concert to disrupt the straight edge (Chapter 3). Forest edges grew more sinuous within 14 years of the initial disturbance, and continued to do so for the remainder of the study, another 21 years. Individual Quercus agrifolia trees also respond to urban edges decades after disturbance (Chapter 4), and their reaction is reflected in declining stable carbon isotope values (delta13C). This change suggests trees may have increased their stomatal conductance in response to greater water availability, reduced their photosynthetic rate as a result of stress, or some combination of both. Edges have far reaching and long lasting effects

  17. KRISTINA: Kinematic rib-based structural system for innovative adaptive trailing edge

    Science.gov (United States)

    Pecora, R.; Amoroso, F.; Magnifico, M.; Dimino, I.; Concilio, A.

    2016-04-01

    Nature teaches that the flight of the birds succeeds perfectly since they are able to change the shape of their wings in a continuous manner. The careful observation of this phenomenon has re-introduced in the recent research topics the study of "metamorphic" wing structures; these innovative architectures allow for the controlled wing shape adaptation to different flight conditions with the ultimate goal of getting desirable improvements such as the increase of aerodynamic efficiency or load control effectiveness. In this framework, the European research project SARISTU aimed at combining morphing and smart ideas to the leading edge, the trailing edge and the winglet of a large commercial airplane (EASA CS25 category) while assessing integrated technologies validation through high-speed wind tunnel test on a true scale outer wing segment. The design process of the adaptive trailing edge (ATED) addressed by SARISTU is here outlined, from the conceptual definition of the camber-morphing architecture up to the assessment of the device executive layout. Rational design criteria were implemented in order to preliminarily define ATED structural layout and the general configuration of the embedded mechanisms enabling morphing under the action of aerodynamic loads. Advanced FE analyses were then carried out and the robustness of adopted structural arrangements was proven in compliance with applicable airworthiness requirements.

  18. Characterization of Boroaluminosilicate Glass Surface Structures by B k-edge NEXAFS

    Energy Technology Data Exchange (ETDEWEB)

    R Schaut; R Lobello; K Mueller; C Pantano

    2011-12-31

    Techniques traditionally used to characterize bulk glass structure (NMR, IR, etc.) have improved significantly, but none provide direct measurement of local atomic coordination of glass surface species. Here, we used Near-Edge X-ray Absorption Fine Structure (NEXAFS) as a direct measure of atomic structure at multicomponent glass surfaces. Focusing on the local chemical structure of boron, we address technique-related issues of calibration, quantification, and interactions of the beam with the material. We demonstrate that beam-induced adsorption and structural damage can occur within the timeframe of typical measurements. The technique is then applied to the study of various fracture surfaces where it is shown that adsorption and reaction of water with boroaluminosilicate glass surfaces induces structural changes in the local coordination of boron, favoring B{sup IV} species after reaction.

  19. Near-edge X-ray absorption fine structure studies of Cr{sub 1−x}M{sub x}N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mahbubur Rahman, M. [School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150 (Australia); Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh); Duan, Alex [School of Chemistry, The University of Melbourne, Parkville, VIC 3010 (Australia); Jiang, Zhong-Tao, E-mail: Z.Jiang@murdoch.edu.au [School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150 (Australia); Xie, Zonghan [School of Mechanical Engineering, University of Adelaide, SA 5005 (Australia); School of Engineering, Edith Cowan University, WA 6027 (Australia); Wu, Alex [School of Chemistry, The University of Melbourne, Parkville, VIC 3010 (Australia); Amri, Amun [Department of Chemical Engineering, Riau University, Pekanbaru (Indonesia); Cowie, Bruce [Australian Synchrotron, 800 Blackburn Rd., Clayton, VIC 3168 (Australia); Yin, Chun-Yang [Chemical and Analytical Sciences, Murdoch University, Murdoch, WA 6150 (Australia)

    2013-11-25

    Highlights: •Al or Si is doped on CrN and AlN coatings using magnetron sputtering system. •NEXAFS analysis is conducted to measure the Al and Si K-edges, and chromium L-edge. •Structural evolution of CrN matrix with addition of Al or Si element is investigated. -- Abstract: Cr{sub 1−x}M{sub x}N coatings, with doping concentrations (Si or Al) varying from 14.3 to 28.5 at.%, were prepared on AISI M2 tool steel substrates using a TEER UDP 650/4 closed field unbalanced magnetron sputtering system. Near-edge X-ray absorption fine structure (NEXAFS) characterization was carried out to measure the aluminum and silicon K-edges, as well as chromium L-edge, in the coatings. Two soft X-ray techniques, Auger electron yield (AEY) and total fluorescence yield (TFY), were employed to investigate the surface and inner structural properties of the materials in order to understand the structural evolution of CrN matrix with addition of Al (or Si) elements. Investigations on the local bonding states and grain boundaries of the coatings, using NEXAFS technique, provide significant information which facilitates understanding of the local electronic structure of the atoms and shed light on the origins of the high mechanical strength and oxidation resistance of these technologically important coatings.

  20. Tools for spectral data analysis of arbitrary emitters in edge plasma

    International Nuclear Information System (INIS)

    Marandet, Y.; Genesio, P.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R.; Felts, B.; Capes, H.; Guirlet, R.; Lotte, P.; Lowry, C.

    2003-01-01

    A line shape code including Stark, Zeeman and Doppler effects has been upgraded to include atomic fine structure effects and the motional Stark effect (MST). Genetic algorithms provide an efficient and robust tool for automated analysis of edge plasma line shapes. Such an algorithm has been used to fit Doppler-broadened Zeeman D α /H α spectra observed in Tore-Supra. Spectra were analyzed from 2 different machine configurations, corresponding to: 1) recycling from the ergodic divertor (ED), with lines of sight tangential to the magnetic field; 2) recycling at the toroidal pump limiter (TPL) with vertical lines of sight perpendicular to the magnetic field. Preliminary results indicate that the plasma above the TPL contains a larger fraction of warm particles than the ED plasma. (A.C.)

  1. Microstructure Analysis of Bismuth Absorbers for Transition-Edge Sensor X-ray Microcalorimeters

    Science.gov (United States)

    Yan, Daikang; Divan, Ralu; Gades, Lisa M.; Kenesei, Peter; Madden, Timothy J.; Miceli, Antonino; Park, Jun-Sang; Patel, Umeshkumar M.; Quaranta, Orlando; Sharma, Hemant; Bennett, Douglas A.; Doriese, William B.; Fowler, Joseph W.; Gard, Johnathon D.; Hays-Wehle, James P.; Morgan, Kelsey M.; Schmidt, Daniel R.; Swetz, Daniel S.; Ullom, Joel N.

    2018-03-01

    Given its large X-ray stopping power and low specific heat capacity, bismuth (Bi) is a promising absorber material for X-ray microcalorimeters and has been used with transition-edge sensors (TESs) in the past. However, distinct X-ray spectral features have been observed in TESs with Bi absorbers deposited with different techniques. Evaporated Bi absorbers are widely reported to have non-Gaussian low-energy tails, while electroplated ones do not show this feature. In this study, we fabricated Bi absorbers with these two methods and performed microstructure analysis using scanning electron microscopy and X-ray diffraction microscopy. The two types of material showed the same crystallographic structure, but the grain size of the electroplated Bi was about 40 times larger than that of the evaporated Bi. This distinction in grain size is likely to be the cause of their different spectral responses.

  2. Temperature and emission-line structure at the edges of H II regions

    International Nuclear Information System (INIS)

    Mallik, D.C.V.

    1975-01-01

    Models of ionization fronts located at the edges of expanding H ii regions are presented. These fronts are of the weak D-type and are preceded by shocks in the H i clouds. Since the energy input time is smaller than the cooling time, the gas is found to heat up to a high temperature immediately following ionization. At the trailing edge of the front, the temperature decreases and the ionized gas merges with the main bulk of the nebula where the physical processes are in equilibrium. The emission in O ii and N ii lines is greatly enhanced because of the high temperature at the front. The emission in these and other important lines is calculated and compared with Hβ. Effects of different velocities of flow, of different exciting stars, and of different gas densities on the structure of the fronts are also investigated

  3. Resistive foil edge grading for accelerator and other high voltage structures

    Science.gov (United States)

    Caporaso, George J.; Sampayan, Stephen F.; Sanders, David M.

    2014-06-10

    In a structure or device having a pair of electrical conductors separated by an insulator across which a voltage is placed, resistive layers are formed around the conductors to force the electric potential within the insulator to distribute more uniformly so as to decrease or eliminate electric field enhancement at the conductor edges. This is done by utilizing the properties of resistive layers to allow the voltage on the electrode to diffuse outwards, reducing the field stress at the conductor edge. Preferably, the resistive layer has a tapered resistivity, with a lower resistivity adjacent to the conductor and a higher resistivity away from the conductor. Generally, a resistive path across the insulator is provided, preferably by providing a resistive region in the bulk of the insulator, with the resistive layer extending over the resistive region.

  4. Simulated Nano scale Peeling Process of Monolayer Graphene Sheet: Effect of Edge Structure and Lifting Position

    International Nuclear Information System (INIS)

    Sasaki, N.; Okamoto, H.; Masuda, S.; Itamura, N.; Miura, K.

    2010-01-01

    The nanoscale peeling of the graphene sheet on the graphite surface is numerically studied by molecular mechanics simulation. For center-lifting case, the successive partial peelings of the graphene around the lifting center appear as discrete jumps in the force curve, which induce the arched deformation of the graphene sheet. For edge-lifting case, marked atomic-scale friction of the graphene sheet during the nanoscale peeling process is found. During the surface contact, the graphene sheet takes the atomic-scale sliding motion. The period of the peeling force curve during the surface contact decreases to the lattice period of the graphite. During the line contact, the graphene sheet also takes the stick-slip sliding motion. These findings indicate the possibility of not only the direct observation of the atomic-scale friction of the graphene sheet at the tip/surface interface but also the identification of the lattice orientation and the edge structure of the graphene sheet.

  5. Spatial and Temporal Extent of Ion Spectral Structures at the Inner Edge of the Plasma Sheet

    Science.gov (United States)

    Ferradas, C.; Reeves, G. D.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Skoug, R. M.; Funsten, H. O.

    2017-12-01

    Several ion spectral structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift and loss in the highly dynamic environment of the inner magnetosphere. Their study helps us understand ion access and losses in this region. Several studies have found that these structures vary with geomagnetic activity, local time, and ion species, but their spatial and temporal extent remain undetermined. We use data from the Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometers onboard the Van Allen Probes to analyze the spectral structures in the energy range of 1- 50 keV. HOPE measurements on both Van Allen Probes spacecraft enable us to resolve the extent of these ion structures in space and time. As the structures respond to changes in the convection electric field on a variety of time scales, the lapping of the two spacecraft on time scales of minutes to hours helps determine their spatial and temporal evolution.

  6. Heavy Neutral Beam Probe for edge plasma analysis in Tokamaks

    International Nuclear Information System (INIS)

    Castracane, J.; Saravia, E.; Beckstead, J.; Aceto, S.

    1993-01-01

    The contents of this report present the progress achieved to date on the Heavy Neutral Beam Probe project. This effort is an international collaboration in magnetic confinement fusion energy research sponsored by the US Department of Energy, Office of Energy Research (Confinement Systems Division) and the Centre Canadien de Fusion Magnetique (CCFM). The overall objective of the effort is to develop and apply a neutral particle beam to the study of edge plasma dynamics in discharges on the Tokamak de Varennes (TdeV) facility in Montreal, Canada. To achieve this goal, a research and development project was established to produce the necessary hardware to make such measurements and meet the scheduling requirements of the program. At present the project is in the middle of its second budget period with the instrumentation on-site at TdeV. The first half of this budget period was used to complete total system tests at InterScience, Inc., dismantle and ship the hardware to TdeV, re-assemble and install the HNBP on the tokamak. Integration of the diagnostic into the TdeV facility has progressed to the point of first beam production and measurement on the plasma. At this time, the HNBP system is undergoing final de-bugging prior to re-start of machine operation in early Fall of this year

  7. Heavy Neutral Beam Probe for edge plasma analysis in tokamaks

    International Nuclear Information System (INIS)

    1991-01-01

    The Heavy Neutral Beam Probe project presented in this document is part of an international collaboration in magnetic confinement fusion energy research sponsored by the US Department of Energy, Office of Energy Research (Confinement Systems Division) and the Centre Canadian de Fusion Magnetique. The overall objective of the effort is to apply a neutral particle beam to the study of edge plasma dynamics in discharges on the Tokamak de Varennes facility in Montreal, Canada. To achieve this goal, a research and development project was started in December, 1990 to produce the necessary hardware to make such measurements and meet the scheduling requirements of the program. At present, satisfactory progress has been achieved. The ion gun is fully operational with the neutralizer in the final assembly stage in preparation for testing. The beam diagnostics have been completed and mounted in the computer automated test stand. The analyzer design and detailed trajectory calculations are nearing completion to allow for the vacuum interface construction. The CAMAC based data acquisition system hardware was integrated into the test stand. Part of this hardware is a component of the Tokamak de Varennes' contribution to the collaboration. Next steps on the critical path include the beginning of the neutralization tests and the start of the analyzer construction. Anticipated installation of the diagnostic on the tokamak is Spring 1992

  8. Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Mohamed A. K.; Veysi, Mehdi; Capolino, Filippo [Department of Electrical Engineering and Computer Science, University of California, Irvine, California 92697 (United States); Figotin, Alexander [Department of Mathematics, University of California, Irvine, California 92697 (United States)

    2016-03-15

    We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventional Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.

  9. Pyrimidine and halogenated pyrimidines near edge x-ray absorption fine structure spectra at C and N K-edges: experiment and theory

    International Nuclear Information System (INIS)

    Bolognesi, P.; O'Keeffe, P.; Ovcharenko, Y.; Coreno, M.; Avaldi, L.; Feyer, V.; Plekan, O.; Prince, K. C.; Zhang, W.; Carravetta, V.

    2010-01-01

    The inner shell excitation of pyrimidine and some halogenated pyrimidines near the C and N K-edges has been investigated experimentally by near edge x-ray absorption fine structure spectroscopy and theoretically by density functional theory calculations. The selected targets, 5-Br-pyrimidine, 2-Br-pyrimidine, 2-Cl-pyrimidine, and 5-Br-2-Cl-pyrimidine, allow the effects of the functionalization of the pyrimidine ring to be studied either as a function of different halogen atoms bound to the same molecular site or as a function of the same halogen atom bound to different molecular sites. The results show that the individual characteristics of the different spectra of the substituted pyrimidines can be rationalized in terms of variations in electronic and geometrical structures of the molecule depending on the localization and the electronegativity of the substituent.

  10. Assessing Anthropogenic Influence and Edge Effect Influence on Forested Riparian Buffer Spatial Configuration and Structure: An Example Using Lidar Remote Sensing Methods

    Science.gov (United States)

    Wasser, L. A.; Chasmer, L. E.

    2012-12-01

    types. Results suggest that 1) the spatial configuration of riparian forests has a strong influence on forest structure compared to a weaker association with adjacent landuse type 2) developed landuse types are often associated with increased understory vegetation density 3) that riparian vegetation canopy cover is dense regardless of corridor width or adjacent landuse type and 4) the degree to which edge effects propagate into the buffer corridor is most influenced by corridor width. The study further demonstrates the utility of automated algorithms that sample lidar data in watershed-wide ecological analysis. Results suggest that landuse regulations should encourage wider buffers which will in turn support a greater range of ecosystem services including improved wildlife habitat, stream shading and detrital inputs.

  11. Effect of trailing edge ramp on cavity flow structures and pressure drag

    International Nuclear Information System (INIS)

    Pey, Yin Yin; Chua, Leok Poh; Siauw, Wei Long

    2014-01-01

    Highlights: • Trailing edge ramps were used to reduce unsteadiness and pressure drag of a cavity. • Proper Orthogonal Decomposition was used to educe the coherent structures. • The 30° ramp was successful in redistributing the energy content within the cavity. • The 30° ramp guides the flow smoothly out of the cavity, reducing flow impingement. • A substantial reduction of pressure drag was achieved by the 30° ramp. -- Abstract: The effects of trailing edge ramp modifications on time-averaged velocity and pressure distributions within a cavity with a length to depth ratio of 2, at a speed of 15 m/s were investigated. The ramp angles were varied at 30°, 45° and 60° and ramp heights were varied at 0.25 times and 0.5 times of cavity depth. The mean flow within the cavity differed significantly from the baseline case when ramp angle was 30° and 45° with ramp height 0.5 times of cavity depth. At these 2 configurations, moment about the center of the cavity floor was reduced significantly. These could be attributed to the more steady flow within the cavity as compared to the baseline case. Spatial correlation of velocity in the cavity of ramp angle 30° showed that internal cavity flow was less sensitive to flow changes in the shear layer as compared to the baseline case. In the same cavity, snapshot Proper Orthogonal Decomposition revealed a redistribution of energy content where energetic structures exist only in the shear layer as opposed to energetic structures in both the shear layer and internal cavity for the baseline case. A reduction of pressure drag was also observed as the gentle ramp angle of 30° guides the flow smoothly out of the cavity and reduces trailing edge impingement

  12. Analysis of femtosecond laser assisted capsulotomy cutting edges and manual capsulorhexis using environmental scanning electron microscopy.

    Science.gov (United States)

    Serrao, Sebastiano; Lombardo, Giuseppe; Desiderio, Giovanni; Buratto, Lucio; Schiano-Lomoriello, Domenico; Pileri, Marco; Lombardo, Marco

    2014-01-01

    Purpose. To investigate the structure and irregularity of the capsulotomy cutting edges created by two femtosecond (FS) laser platforms in comparison with manual continuous circular capsulorhexis (CCC) using environmental scanning electron microscopy (eSEM). Methods. Ten anterior capsulotomies were obtained using two different FS laser cataract platforms (LenSx, n = 5, and Victus, n = 5). In addition, five manual CCC (n = 5) were obtained using a rhexis forceps. The specimens were imaged by eSEM (FEI Quanta 400, OR, USA). Objective metrics, which included the arithmetic mean deviation of the surface (Sa) and the root-mean-square deviation of the surface (Sq), were used to evaluate the irregularity of both the FS laser capsulotomies and the manual CCC cutting edges. Results. Several microirregularities were shown across the FS laser capsulotomy cutting edges. The edges of manually torn capsules were shown, by comparison of Sa and Sq values, to be smoother (P < 0.05) than the FS laser capsulotomy edges. Conclusions. Work is needed to understand whether the FS laser capsulotomy edge microirregularities, not seen in manual CCC, may act as focal points for the concentration of stress that would increase the risk of capsular tear during phacoemulsification as recently reported in the literature.

  13. Analysis of Femtosecond Laser Assisted Capsulotomy Cutting Edges and Manual Capsulorhexis Using Environmental Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Sebastiano Serrao

    2014-01-01

    Full Text Available Purpose. To investigate the structure and irregularity of the capsulotomy cutting edges created by two femtosecond (FS laser platforms in comparison with manual continuous circular capsulorhexis (CCC using environmental scanning electron microscopy (eSEM. Methods. Ten anterior capsulotomies were obtained using two different FS laser cataract platforms (LenSx, n=5, and Victus, n=5. In addition, five manual CCC (n=5 were obtained using a rhexis forceps. The specimens were imaged by eSEM (FEI Quanta 400, OR, USA. Objective metrics, which included the arithmetic mean deviation of the surface (Sa and the root-mean-square deviation of the surface (Sq, were used to evaluate the irregularity of both the FS laser capsulotomies and the manual CCC cutting edges. Results. Several microirregularities were shown across the FS laser capsulotomy cutting edges. The edges of manually torn capsules were shown, by comparison of Sa and Sq values, to be smoother (P<0.05 than the FS laser capsulotomy edges. Conclusions. Work is needed to understand whether the FS laser capsulotomy edge microirregularities, not seen in manual CCC, may act as focal points for the concentration of stress that would increase the risk of capsular tear during phacoemulsification as recently reported in the literature.

  14. Measuring the X-shaped structures in edge-on galaxies

    Science.gov (United States)

    Savchenko, S. S.; Sotnikova, N. Ya.; Mosenkov, A. V.; Reshetnikov, V. P.; Bizyaev, D. V.

    2017-11-01

    We present a detailed photometric study of a sample of 22 edge-on galaxies with clearly visible X-shaped structures. We propose a novel method to derive geometrical parameters of these features, along with the parameters of their host galaxies based on the multi-component photometric decomposition of galactic images. To include the X-shaped structure into our photometric model, we use the imfit package, in which we implement a new component describing the X-shaped structure. This method is applied for a sample of galaxies with available Sloan Digital Sky Survey and Spitzer IRAC 3.6 μm observations. In order to explain our results, we perform realistic N-body simulations of a Milky Way-type galaxy and compare the observed and the model X-shaped structures. Our main conclusions are as follows: (1) galaxies with strong X-shaped structures reside in approximately the same local environments as field galaxies; (2) the characteristic size of the X-shaped structures is about 2/3 of the bar size; (3) there is a correlation between the X-shaped structure size and its observed flatness: the larger structures are more flattened; (4) our N-body simulations qualitatively confirm the observational results and support the bar-driven scenario for the X-shaped structure formation.

  15. Structural design optimization of a morphing trailing edge flap for wind turbine blades

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Lin, Yu-Huan; Aagaard Madsen, Helge

    A flap actuation system, the Controllable Rubber Trailing Edge Flap (CRTEF), for distributed load control on a wind turbine blade had been developed in the period from 2006 to 2013 at DTU (http://www.induflap.dk/). The purpose of the presented work is to optimize the structural design of the flex......A flap actuation system, the Controllable Rubber Trailing Edge Flap (CRTEF), for distributed load control on a wind turbine blade had been developed in the period from 2006 to 2013 at DTU (http://www.induflap.dk/). The purpose of the presented work is to optimize the structural design...... of the flexible part of the CRTEF based on a realistic blade section geometry in order to meet the required objectives and constraints. The objectives include the deflection requirements and the energy efficiency, while the constraints include the bending stiffness of the structure, the local shape deformations......, critical material strength, and manufacturing limitations. A model with arches forming concave on the flap surface and enclosing the voids to be pressurized results in the bending movement of the flap when pressure is applied on the voids to straighten the arches. The model is designed using SolidWorks...

  16. Evaluation of Load Analysis Methods for NASAs GIII Adaptive Compliant Trailing Edge Project

    Science.gov (United States)

    Cruz, Josue; Miller, Eric J.

    2016-01-01

    The Air Force Research Laboratory (AFRL), NASA Armstrong Flight Research Center (AFRC), and FlexSys Inc. (Ann Arbor, Michigan) have collaborated to flight test the Adaptive Compliant Trailing Edge (ACTE) flaps. These flaps were installed on a Gulfstream Aerospace Corporation (GAC) GIII aircraft and tested at AFRC at various deflection angles over a range of flight conditions. External aerodynamic and inertial load analyses were conducted with the intention to ensure that the change in wing loads due to the deployed ACTE flap did not overload the existing baseline GIII wing box structure. The objective of this paper was to substantiate the analysis tools used for predicting wing loads at AFRC. Computational fluid dynamics (CFD) models and distributed mass inertial models were developed for predicting the loads on the wing. The analysis tools included TRANAIR (full potential) and CMARC (panel) models. Aerodynamic pressure data from the analysis codes were validated against static pressure port data collected in-flight. Combined results from the CFD predictions and the inertial load analysis were used to predict the normal force, bending moment, and torque loads on the wing. Wing loads obtained from calibrated strain gages installed on the wing were used for substantiation of the load prediction tools. The load predictions exhibited good agreement compared to the flight load results obtained from calibrated strain gage measurements.

  17. Salient issues of edge physics pertaining to loss of confinement: A resistive MHD analysis

    International Nuclear Information System (INIS)

    Thayer, D.R.

    1991-01-01

    The progress that has been made during this fiscal year is significant in the area of tokamak edge plasma transport. The drift-rippling mode model of edge turbulent transport was extended. In particular, the research areas on which were concentrated include the following topics: (1) The theoretical investigation of the radiatively enhanced transport due to the effects of impurity driven radiation instabilities has been expanded to include a situation with multiple impurities (such as carbon, C 4+ , and oxygen, O 6+ ); (2) In order to validate the use of the impurity radiation input from the tokamak bolometer experiments in the theoretical edge turbulent transport calculations, the analysis that is utilized to transform impurity brightness data to radiated power profiles has been checked for state population and Abel inversion correctness; (3) The drift-rippling model of edge turbulent transport has been extended to include ionization particle sources in addition to the impurity driven thermal instability drive; and (4) The detailed limiter and realistic edge geometric effects on the edge turbulent transport has been included in the drift-rippling model

  18. 3D Measurement Technology by Structured Light Using Stripe-Edge-Based Gray Code

    International Nuclear Information System (INIS)

    Wu, H B; Chen, Y; Wu, M Y; Guan, C R; Yu, X Y

    2006-01-01

    The key problem of 3D vision measurement using triangle method based on structured light is to acquiring projecting angle of projecting light accurately. In order to acquire projecting angle thereby determine the corresponding relationship between sampling point and image point, method for encoding and decoding structured light based on stripe edge of Gray code is presented. The method encoded with Gray code stripe and decoded with stripe edge acquired by sub-pixel technology instead of pixel centre, so latter one-bit decoding error was removed. Accuracy of image sampling point location and correspondence between image sampling point and object sampling point achieved sub-pixel degree. In addition, measurement error caused by dividing projecting angle irregularly by even-width encoding stripe was analysed and corrected. Encoding and decoding principle and decoding equations were described. Finally, 3dsmax and Matlab software were used to simulate measurement system and reconstruct measured surface. Indicated by experimental results, measurement error is about 0.05%

  19. Filamentary Alfvénic structures excited at the edges of equatorial plasma bubbles

    Directory of Open Access Journals (Sweden)

    R. Pottelette

    2007-11-01

    Full Text Available Recent observations performed by the French DEMETER satellite at altitudes of about 710 km suggest that the generation of equatorial plasma bubbles correlates with the presence of filamentary structures of field aligned currents carried by Alfvén waves. These localized structures are located at the bubble edges. We study the dynamics of the equatorial plasma bubbles, taking into account that their motion is dictated by gravity driven and displacement currents. Ion-polarization currents appear to be crucial for the accurate description of the evolution of plasma bubbles in the high altitude ionosphere. During their eastward/westward motion the bubbles intersect gravity driven currents flowing transversely with respect to the background magnetic field. The circulation of these currents is prohibited by large density depressions located at the bubble edges acting as perfect insulators. As a result, in these localized regions the transverse currents have to be locally closed by field aligned currents. Such a physical process generates kinetic Alfvén waves which appear to be stationary in the plasma bubble reference frame. Using a two-dimensional model and "in situ" wave measurements on board the DEMETER spacecraft, we give estimates for the magnitude of the field aligned currents and the associated Alfvén fields.

  20. Influence of near-edge processes in the elemental analysis using X

    Indian Academy of Sciences (India)

    The near-edge processes, such as X-ray absorption fine structure (XAFS) andresonant ... away from the shell/subshell ionization thresholds of the attenuator element. ... The influence of XAFS to the attenuation coefficient depends upon the ...

  1. Computational Analysis of a Wells Turbine with Flexible Trailing Edges

    Science.gov (United States)

    Kincaid, Kellis; Macphee, David

    2017-11-01

    The Wells turbine is often used to produce a net positive power from an oscillating air column excited by ocean waves. It has been parametrically studied quite thoroughly in the past, both experimentally and numerically. The effects of various characteristics such as blade count and profile, solidity, and tip gap are well known. Several three-dimensional computational studies have been carried out using commercial code to investigate many phenomena detected in experiments: hysteresis, tip-gap drag, and post-stall behavior for example. In this work, the open-source code Foam-Extend is used to examine the effect of flexible blades on the performance of the Wells turbine. A new solver is created to integrate fluid-structure interaction into the code, allowing an accurate solution for both the solid and fluid domains. Reynolds-averaged governing equations are employed in a fully transient solution model. The elastic modulus of the flexible portion of the blade and the tip-gap width are varied, and the resulting flow fields are investigated to determine the cause of any performance differences. NSF Grant EEC 1659710.

  2. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588 (Japan); Fujii, Kentaro; Yokoya, Akinari [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Fukuda, Yoshihiro; Saitoh, Yuji [Synchrotron Radiation Research Center, Japan Atomic Energy Agency, Sayo-gun, Hyougo 679-5148 (Japan)

    2014-08-07

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5{sup ′}-monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5{sup ′}-monophosphate, and adenosine 5{sup ′}-triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety.

  3. Finite Element Analysis of the Effect on Edge Distance of the Tensile Bearing Capacity of Embedded Hanging Parts

    Directory of Open Access Journals (Sweden)

    Meng Xian Hong

    2016-01-01

    Full Text Available In order to explore the trend of tensile bearing capacity of embedded hanging parts when change the edge distance. Based on the finite element analysis software ABAQUS, the four simulation model was established. The buried depth and strength of concrete remain unchanged, but the edge distance was gradient change. By the load - displacement curve of every model known, the greater the edge distance, the greater the bearing capacity. When the edge distance reaches 1.5 times buried depth, the effect of increasing edge distance for improving the bearing capacity will be impaired.

  4. Salient issues of edge physics pertaining to loss of confinement: A resistive MHD analysis

    International Nuclear Information System (INIS)

    Thayer, D.R.

    1990-01-01

    In general we have made significant contributions towards the ultimate goal of creating a complete theory of edge turbulence and transport in magnetic fusion devices. Our main focus has been to utilize a resistive MHD model. This analysis includes: (1) ''rippling'' type models in which the current fluctuations are decoupled and the resistivity fluctuations are fundamental, and (2) ''drift'' type models in which the ambient current can be small (no resistivity fluctuations needed) and the current fluctuations are fundamental. In these turbulence frameworks, the important atomic physics based edge sources have been included (impurity radiation, ionization, and charge exchange effects)

  5. Structural evidence for the sorption of Ni(II) atoms on the edges of montmorillonite clay minerals: a polarized X-ray absorption fine structure study

    Science.gov (United States)

    Dähn, Rainer; Scheidegger, André M.; Manceau, Alain; Schlegel, Michel L.; Baeyens, Bart; Bradbury, Michael H.; Chateigner, Daniel

    The nature of surface complexes formed on Ni uptake onto montmorillonite (a dioctahedral smectite) has been investigated over an extended time period by polarized extended X-ray absorption fine structure (P-EXAFS) spectroscopy. Self-supporting films of Ni-sorbed montmorillonite were prepared by contacting Ni and montmorillonite at pH 7.2, high ionic strength (0.3 M NaClO 4), and low Ni concentration ([Ni] initial = 19.9 μM) for 14- and 360-d reaction time. The resulting Ni concentration on the clay varied from 4 to 7 μmol/g. Quantitative texture analysis indicates that the montmorillonite particles were well orientated with respect to the plane of the film. The full width at half maximum of the orientation distribution of the c* axes of individual clay platelets about the normal to the film plane was 44.3° (14-d reaction time) and 47.1° (360-d reaction time). These values were used to correct the coordination numbers determined by P-EXAFS for texture effects. Ni K-edge P-EXAFS spectra were recorded at angles between the incident beam and the film normal equal to 10, 35, 55, and 80°. Spectral analysis led to the identification of three nearest cationic subshells containing 2.0 ± 0.5 Al at 3.0 Å and 2.0 ± 0.5 Si at 3.12 Å and 4.0 ± 0.5 Si at 3.26 Å. These distances are characteristic of edge-sharing linkages between Al and Ni octahedra and of corner-sharing linkages between Ni octahedra and Si tetrahedra, as in clay structures. The angular dependence of the Ni-Al and Ni-Si contributions indicates that Ni-Al pairs are oriented parallel to the film plane, whereas Ni-Si pairs are not. The study reveals the formation of Ni inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and thus that heavy metals binding to edge sites is a possible sorption mechanism for dioctahedral smectites. Data analysis further suggests that either the number of neighboring Al atoms slightly increases from 1.6 to 2 or that the structural order

  6. Test and Analysis Correlation of Form Impact onto Space Shuttle Wing Leading Edge RCC Panel 8

    Science.gov (United States)

    Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan; Melis, Matthew; Carney, Kelly

    2004-01-01

    Soon after the Columbia Accident Investigation Board (CAIB) began their study of the space shuttle Columbia accident, "physics-based" analyses using LS-DYNA were applied to characterize the expected damage to the Reinforced Carbon-Carbon (RCC) leading edge from high-speed foam impacts. Forensic evidence quickly led CAIB investigators to concentrate on the left wing leading edge RCC panels. This paper will concentrate on the test of the left-wing RCC panel 8 conducted at Southwest Research Institute (SwRI) and the correlation with an LS-DYNA analysis. The successful correlation of the LS-DYNA model has resulted in the use of LS-DYNA as a predictive tool for characterizing the threshold of damage for impacts of various debris such as foam, ice, and ablators onto the RCC leading edge for shuttle return-to-flight.

  7. Numerical analysis of the impact of permeability on trailing-edge noise

    Science.gov (United States)

    Koh, Seong Ryong; Meinke, Matthias; Schröder, Wolfgang

    2018-05-01

    The impact of porous surfaces on the near-wall turbulent structures and the generated trailing-edge noise is analyzed for several trailing-edge shapes of finite thickness using a high resolution large-eddy simulation (LES)/computational aeroacoustics (CAA) method. The porous surface of the trailing edge is defined by the porosity and the viscous permeability determined by the solution of a turbulent flat plate boundary layer at a Reynolds number 1280 based on the displacement thickness in the inflow cross section. The volume-averaged approach for the homogeneous porous medium shows that the porous impedance scales linearly with the porosity and exponentially with the mean structure size of a porous medium. The drag induced by the porous surface changes the friction velocity and the permeability Reynolds number ReK which determines the porous impedance Rs scaled by ReK-2/3. The trailing-edge noise is analyzed for three solid and three porous trailing edges. The effect of a finite span is investigated by the spanwise correlation model based on the measured coherence distribution. The acoustic prediction shows a good agreement with measurements of the broadband spectrum and the strong tone generated by a finite trailing-edge thickness. The pressure gradient inside the porous media is redistributed by the Darcy drag defined by the viscous permeability and the porosity. The mean pressure increases in the upstream direction inside the porous medium such that the flow acceleration involved in the acoustic generation is reduced inside the porous medium. The noise reduction by a porous medium reaches 11 dB for the trailing-edge shape which possesses a sharp corner for the solid surface. The porous surface applied to a semi-circular trailing edge achieves a 4 dB noise reduction. The directivity pattern for individual components of the acoustic spectrum shows that the massive noise reduction is determined at the tone. Enhanced wave diffraction by the thick flat plate changes

  8. EXAFS analysis of the L3 edge of Ce in CeO2: effects of multielectron excitations and final-state mixed valence

    International Nuclear Information System (INIS)

    Fonda, E.; Andreatta, D.; Colavita, P.E.; Vlaic, G.

    1999-01-01

    Cerium oxide (IV) (CeO 2 ) is extensively employed in heterogeneous catalysis, particularly as a promoter of noble metal action in three-way catalysts. For this reason there is a great scientific and economical interest in the development of any possible chemical or structural analysis technique that could provide information on these systems. EXAFS spectroscopy has revealed itself as a powerful technique for structural characterization of such catalysts. Unfortunately, good quality K-edge spectra of cerium are not yet easily obtainable because of the high photon energy required (>40 keV). On the other hand, at lower energies it is easy to collect very good spectra of the L 3 edge (5.5 keV), but L 3 -edge spectra of cerium (IV) are characterized by the presence of two undesired additional phenomena that interfere with EXAFS analysis: final-state mixed-valence behaviour and intense multi-electron excitations. Here, a comparative analysis of the K, L 3 , L 2 and L 1 edges of Ce in CeO 2 has been made and a procedure for obtaining structural parameters from L 3 -edge EXAFS, even in the presence of these features, has been developed. This procedure could allow further studies of catalytic compounds containing tetravalent cerium surrounded by oxygen ligands. (au)

  9. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  10. Conditional analysis of floating potential fluctuations at the edge of the Texas Experimental Tokamak Upgrade (TEXT-U)

    International Nuclear Information System (INIS)

    Filippas, A.V.; Bengston, R.D.; Li, G.; Meier, M.; Ritz, C.P.; Powers, E.J.

    1995-01-01

    Fluctuations in floating potential in the scrape-off layer and plasma edge were analyzed using a conditional statistical analysis technique. The floating potential fluctuations had a nearly Gaussian probability density function with the largest deviation from a Gaussian at the shear layer. The conditional averaging technique followed the statistical evolution of selected conditions in the floating potential signal. The decay rate of a conditional feature in time or space showed a small systematic variation with the amplitude of condition chosen. Either long-lived coherent structures are not present in statistically significant numbers, or the fluctuations are dominated by a large number of coherent structures with a nearly Gaussian distribution of fluctuation amplitudes, or conditional analysis using the amplitude of the floating potential as a condition is not a sensitive technique for identifying coherent structures

  11. Temperature dependent evolution of the local electronic structure of atmospheric plasma treated carbon nanotubes: Near edge x-ray absorption fine structure study

    International Nuclear Information System (INIS)

    Roy, S. S.; Papakonstantinou, P.; Okpalugo, T. I. T.; Murphy, H.

    2006-01-01

    Near edge x-ray absorption fine structure (NEXAFS) spectroscopy has been employed to obtain the temperature dependent evolution of the electronic structure of acid treated carbon nanotubes, which were further modified by dielectric barrier discharge plasma processing in an ammonia atmosphere. The NEXAFS studies were performed from room temperature up to 900 deg. C. The presence of oxygen and nitrogen containing functional groups was observed in C K edge, N K edge, and O K edge NEXAFS spectra of the multiwalled carbon nanotubes. The N K edge spectra revealed three types of π* features, the source of which was decisively identified by their temperature dependent evolution. It was established that these features are attributed to pyridinelike, NO, and graphitelike structures, respectively. The O K edge indicated that both carbonyl (C=O), π*(CO), and ether C-O-C, σ*(CO), functionalities were present. Upon heating in a vacuum to 900 deg. C the π*(CO) resonances disappeared while the σ*(CO) resonances were still present confirming their higher thermal stability. Heating did not produce a significant change in the π* feature of the C K edge spectrum indicating that the tabular structure of the nanotubes is essentially preserved following the thermal decomposition of the functional groups on the nanotube surface

  12. Preliminary results of structural profiling of the Kras edge and Istria (Kozina – Srmin Motorway, Sečovlje

    Directory of Open Access Journals (Sweden)

    2002-06-01

    Full Text Available On the section Kozina-Srmin the new motorway Ljubljana-Koper is crossing the Kras edge, which in geologic terminology is refered to as the Kras thrust edge. In the widest sense it comprises the area between the edge of the Trieste-Komen plateau and the Savudrija ridge, creating the boundary between the Adriatic foreland and the External Dinarides. Detailed geologic mapping of the motorway section Kozina-Srmin slowed that the Kras thrust edge is not a monophase tectonic structure, but has been formed through several different deformation phases from the Eocene until today. Besides smaller onesthese phases include responses of three significant events; the Dinaric nappe thrusting, displacements along the strice-slipe faults with NW-SE trending and underthrusting of the Istria toward the NE. The latter event destroyed the primary of the SW boundary ofthe External Dinarides between Southern Alps and the Velebit arc.

  13. Crystallographic Analysis of a Japanese Sword by using Bragg Edge Transmission Spectroscopy

    Science.gov (United States)

    Shiota, Yoshinori; Hasemi, Hiroyuki; Kiyanagi, Yoshiaki

    Neutron imaging using a pulsed neutron source can give crystallographic information over wide area of a sample by analysing position dependent transmission spectra. With the use of a Bragg edge imaging method we non-destructively obtained crystallographic information of a Japanese sword, signed by Bishu Osafune Norimitsu, in order to know position dependent crystallographic characteristics and to check usefulness of the method for the Japanese sword investigation. Strong texture appeared on the back side. On the other hand in the middle area almost isotropic feature appeared and edge side showed feature between them. Rather isotropic area in the centre area gradually reduced from the grip side to the tip side. The crystallite size was smaller near the edge and became larger towards the back side. The smaller crystallite size will be due to quenching around the edge and this trend disappeared in the grip (nakago) area. The larger crystallite size will be due to strong hammering. Coarse grains were also observed directly as transmission images with the use of a high spatial resolution detector. The spatial distribution of the grains was not uniform but the reason have not been understood. Furthermore, a white area around a tip area was proved to be a void by looking at the Brag edge transmission spectra. This void may be formed during forging process of two kinds of steel. It is suggested that consideration on differences in the texture and the crystallite size depending on position will give information to clarify the manufacturing process, and Bragg edge analysis will be a profitable tool for research of Japanese sword.

  14. The role of the intense vorticity structures in the turbulent structure of the jet edge

    Science.gov (United States)

    Reis, Ricardo J. N.; da Silva, Carlos B.; Pereira, José C. F.

    In free shear flows (jets, mixing layers and wakes) there is an highly contorted interface dividing the turbulent from the non-turbulent flow: the turbulent/non-turbulent (T/NT) interface. Across this interface important exchanges of mass, momentum and heat take place, in a process known as turbulent entrainment. Recently, the classical idea of the turbulent entrainment caused by engulfing [1] have been questioned, and it has been shown that the entrainment is mainly caused by small scale eddy motions (nibbling) [2, 3]). However, it is still argued that the entrainment rate is still largely governed by the large scale motions induced by the intense vorticity structures (IVS). The goal of the present work is to assess characterize the geometry and analyze the influence of these large scales structures in shaping the turbulent/nonturbulent interface.

  15. Automated kidney morphology measurements from ultrasound images using texture and edge analysis

    Science.gov (United States)

    Ravishankar, Hariharan; Annangi, Pavan; Washburn, Michael; Lanning, Justin

    2016-04-01

    In a typical ultrasound scan, a sonographer measures Kidney morphology to assess renal abnormalities. Kidney morphology can also help to discriminate between chronic and acute kidney failure. The caliper placements and volume measurements are often time consuming and an automated solution will help to improve accuracy, repeatability and throughput. In this work, we developed an automated Kidney morphology measurement solution from long axis Ultrasound scans. Automated kidney segmentation is challenging due to wide variability in kidney shape, size, weak contrast of the kidney boundaries and presence of strong edges like diaphragm, fat layers. To address the challenges and be able to accurately localize and detect kidney regions, we present a two-step algorithm that makes use of edge and texture information in combination with anatomical cues. First, we use an edge analysis technique to localize kidney region by matching the edge map with predefined templates. To accurately estimate the kidney morphology, we use textural information in a machine learning algorithm framework using Haar features and Gradient boosting classifier. We have tested the algorithm on 45 unseen cases and the performance against ground truth is measured by computing Dice overlap, % error in major and minor axis of kidney. The algorithm shows successful performance on 80% cases.

  16. Choosing a heuristic and root node for edge ordering in BDD-based network reliability analysis

    International Nuclear Information System (INIS)

    Mo, Yuchang; Xing, Liudong; Zhong, Farong; Pan, Zhusheng; Chen, Zhongyu

    2014-01-01

    In the Binary Decision Diagram (BDD)-based network reliability analysis, heuristics have been widely used to obtain a reasonably good ordering of edge variables. Orderings generated using different heuristics can lead to dramatically different sizes of BDDs, and thus dramatically different running times and memory usages for the analysis of the same network. Unfortunately, due to the nature of the ordering problem (i.e., being an NP-complete problem) no formal guidelines or rules are available for choosing a good heuristic or for choosing a high-performance root node to perform edge searching using a particular heuristic. In this work, we make novel contributions by proposing heuristic and root node selection methods based on the concept of boundary sets for the BDD-based network reliability analysis. Empirical studies show that the proposed selection methods can help to generate high-performance edge ordering for most of studied cases, enabling the efficient BDD-based reliability analysis of large-scale networks. The proposed methods are demonstrated on different types of networks, including square lattice networks, torus lattice networks and de Bruijn networks

  17. Flow field analysis inside a gas turbine trailing edge cooling channel under static and rotating conditions

    International Nuclear Information System (INIS)

    Armellini, A.; Casarsa, L.; Mucignat, C.

    2011-01-01

    The flow field inside a modern internal cooling channel specifically designed for the trailing edge of gas turbine blades has been experimentally investigated under static and rotating conditions. The passage is characterized by a trapezoidal cross-section of high aspect-ratio and coolant discharge at the blade tip and along the wedge-shaped trailing edge, where seven elongated pedestals are also installed. The tests were performed under engine similar conditions with respect to both Reynolds (Re = 20,000) and Rotation (Ro = 0, 0.23) numbers, while particular care was put in the implementation of proper pressure conditions at the channel exits to allow the comparison between data under static and rotating conditions. The flow velocity was measured by means of 2D and Stereo-PIV techniques applied in the absolute frame of reference. The relative velocity fields were obtained through a pre-processing procedure of the PIV images developed on purpose. Time averaged flow fields inside the stationary and rotating channels are analyzed and compared. A substantial modification of the whole flow behavior due to rotational effects is commented, nevertheless no trace of rotation induced secondary Coriolis vortices has been found because of the progressive flow discharge along the trailing edge. For Ro = 0.23, at the channel inlet the high aspect-ratio of the cross section enhances inviscid flow effects which determine a mass flow redistribution towards the leading edge side. At the trailing edge exits, the distortion of the flow path observed in the channel central portion causes a strong reduction in the dimensions of the 3D separation structures that surround the pedestals.

  18. Mechanical properties and electronic structure of edge-doped graphene nanoribbons with F, O, and Cl atoms.

    Science.gov (United States)

    Piriz, Sebastián; Fernández-Werner, Luciana; Pardo, Helena; Jasen, Paula; Faccio, Ricardo; Mombrú, Álvaro W

    2017-08-16

    In this study, we present the structural, electronic, and mechanical properties of edge-doped zigzag graphene nanoribbons (ZGNRs) doped with fluorine, oxygen, and chlorine atoms. To the best of our knowledge, to date, no experimental results concerning the mechanical properties of graphene-derived nanoribbons have been reported in the literature. Simulations indicate that Cl- and F-doped ZGNRs present an equivalent 2-dimensional Young's modulus E 2D , which seems to be higher than those of graphene and H-doped ZGNRs. This is a consequence of the electronic structure of the system, particularly originating from strong interactions between the dopant atoms localized at the edges. The interaction between dopant atoms located at the edges is higher for Cl and lower for F and O atoms. This is the origin of the observed trend, in which E > E > E for all the analyzed ZGNRs.

  19. Arthropods on plants in a fragmented Neotropical dry forest: a functional analysis of area loss and edge effects.

    Science.gov (United States)

    González, Ezequiel; Salvo, Adriana; Valladares, Graciela

    2015-02-01

    Loss and fragmentation of natural ecosystems are widely recognized as the most important threats to biodiversity conservation, with Neotropical dry forests among the most endangered ecosystems. Area and edge effects are major factors in fragmented landscapes. Here, we examine area and edge effects and their interaction, on ensembles of arthropods associated to native vegetation in a fragmented Chaco Serrano forest. We analyzed family richness and community composition of herbivores, predators, and parasitoids on three native plant species in 12 fragments of varying size and at edge/interior positions. We also looked for indicator families by using Indicator Species Analysis. Loss of family richness with the reduction of forest fragment area was observed for the three functional groups, with similar magnitude. Herbivores were richer at the edges without interaction between edge and area effects, whereas predators were not affected by edge/interior position and parasitoid richness showed an interaction between area and position, with a steeper area slope at the edges. Family composition of herbivore, predator, and parasitoid assemblages was also affected by forest area and/or edge/interior situation. We found three indicator families for large remnants and five for edges. Our results support the key role of forest area for conservation of arthropods taxonomic and functional diversity in a highly threatened region, and emphasize the need to understand the interactions between area and edge effects on such diversity. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  20. Nonreference Medical Image Edge Map Measure

    Directory of Open Access Journals (Sweden)

    Karen Panetta

    2014-01-01

    Full Text Available Edge detection is a key step in medical image processing. It is widely used to extract features, perform segmentation, and further assist in diagnosis. A poor quality edge map can result in false alarms and misses in cancer detection algorithms. Therefore, it is necessary to have a reliable edge measure to assist in selecting the optimal edge map. Existing reference based edge measures require a ground truth edge map to evaluate the similarity between the generated edge map and the ground truth. However, the ground truth images are not available for medical images. Therefore, a nonreference edge measure is ideal for medical image processing applications. In this paper, a nonreference reconstruction based edge map evaluation (NREM is proposed. The theoretical basis is that a good edge map keeps the structure and details of the original image thus would yield a good reconstructed image. The NREM is based on comparing the similarity between the reconstructed image with the original image using this concept. The edge measure is used for selecting the optimal edge detection algorithm and optimal parameters for the algorithm. Experimental results show that the quantitative evaluations given by the edge measure have good correlations with human visual analysis.

  1. Outcome after percutaneous edge-to-edge mitral repair for functional and degenerative mitral regurgitation: a systematic review and meta-analysis.

    Science.gov (United States)

    Chiarito, Mauro; Pagnesi, Matteo; Martino, Enrico Antonio; Pighi, Michele; Scotti, Andrea; Biondi-Zoccai, Giuseppe; Latib, Azeem; Landoni, Giovanni; Mario, Carlo Di; Margonato, Alberto; Maisano, Francesco; Feldman, Ted; Alfieri, Ottavio; Colombo, Antonio; Godino, Cosmo

    2018-02-01

    Differences in terms of safety and efficacy of percutaneous edge-to-edge mitral repair between patients with functional and degenerative mitral regurgitation (MR) are not well established. We performed a systematic review and meta-analysis to clarify these differences. PubMed, EMBASE, Google scholar database and international meeting abstracts were searched for all studies about MitraClip. Studies with edge-to-edge repair in patients with functional versus degenerative MR were included in the meta-analysis (n=2615). At 1 year, there were not significant differences among groups in terms of patients with MR grade≤2 (719/1304 vs 295/504; 58% vs 54%; risk ratio (RR) 1.12; 95% CI: 0.86 to 1.47; p=0.40), while there was a significantly lower rate of mitral valve re-intervention in patients with functional MR compared with those with degenerative MR (77/1770 vs 80/818; 4% vs 10%; RR 0.60; 95% CI: 0.38 to 0.97; p=0.04). One-year mortality rate was 16% (408/2498) and similar among groups (RR 1.26; 95% CI: 0.90 to 1.77; p=0.18). Functional MR group showed significantly higher percentage of patients in New York Heart Association class III/IV (234/1480 vs 49/583; 16% vs 8%; pedge-to-edge repair is likely to be an efficacious and safe option in patients with both functional and degenerative MR. Large, randomised studies are ongoing and awaited to fully assess the clinical impact of the procedure in these two different MR aetiologies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Order-disorder in olivine minerals by synchrotron X-ray absorption near-edge structure (Xane) spectroscopy at the Mg, Fe and Ca K edges

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Marcelli, A.; Cibin, G. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Mottana, A. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Rome Univ. Roma Tre, Rome (Italy). Dipt. di Scienze Geologiche; Paris, E.; Giuli, G [INFM, Camerino Univ., Camerino, MC (Italy). Dipt. di Scienze della Terra

    1999-07-01

    In this paper, are presented new, high-resolution experimental spectra at the Mg and Fe K edges for the two Fe-Mg end members F o and F a, and for three other olivines. Two are the Ca end members of the family, namely monticellite (Mtc: CaMgSiO4) and kirschsteinite (Krs: CaFeSiO4). The main purpose of this work is to investigate the effects of Mg, Fe, and Ca partition in the Pbnm (or {alpha}) olivine structure on the electronic properties, as well as the relationships that exist between chemical substitutions and features occurring in Xanes spectra. One wants to explore the relationships that intervene between LRO, as determined by XRD, and SRO, as determined by Xanes, on the endmembers and on a well-known intermediate member as well, and deduce from it a model for the behavior of the entire olivine solid-solution system.

  3. Order-disorder in olivine minerals by synchrotron X-ray absorption near-edge structure (Xane) spectroscopy at the Mg, Fe and Ca K edges

    International Nuclear Information System (INIS)

    Wu, Z.; Marcelli, A.; Cibin, G.; Mottana, A.; Rome Univ. Roma Tre, Rome; Paris, E.; Giuli, G.

    1999-01-01

    In this paper, are presented new, high-resolution experimental spectra at the Mg and Fe K edges for the two Fe-Mg endmembers F o and F a, and for three other olivines. Two are the Ca endmembers of the family, namely monticellite (Mtc: CaMgSiO4) and kirschsteinite (Krs: CaFeSiO4). The main purpose of this work is to investigate the effects of Mg, Fe, and Ca partition in the Pbnm (or α) olivine structure on the electronic properties, as well as the relationships that exist between chemical substitutions and features occurring in Xanes spectra. One wants to explore the relationships that intervene between LRO, as determined by XRD, and SRO, as determined by Xanes, on the endmembers and on a well-known intermediate member as well, and deduce from it a model for the behavior of the entire olivine solid-solution system

  4. Microscopic bosonization of band structures: x-ray processes beyond the Fermi edge

    Science.gov (United States)

    Snyman, Izak; Florens, Serge

    2017-11-01

    Bosonization provides a powerful analytical framework to deal with one-dimensional strongly interacting fermion systems, which makes it a cornerstone in quantum many-body theory. However, this success comes at the expense of using effective infrared parameters, and restricting the description to low energy states near the Fermi level. We propose a radical extension of the bosonization technique that overcomes both limitations, allowing computations with microscopic lattice Hamiltonians, from the Fermi level down to the bottom of the band. The formalism rests on the simple idea of representating the fermion kinetic term in the energy domain, after which it can be expressed in terms of free bosonic degrees of freedom. As a result, one- and two-body fermionic scattering processes generate anharmonic boson-boson interactions, even in the forward channel. We show that up to moderate interaction strengths, these non-linearities can be treated analytically at all energy scales, using the x-ray emission problem as a showcase. In the strong interaction regime, we employ a systematic variational solution of the bosonic theory, and obtain results that agree quantitatively with an exact diagonalization of the original one-particle fermionic model. This provides a proof of the fully microscopic character of bosonization, on all energy scales, for an arbitrary band structure. Besides recovering the known x-ray edge singularity at the emission threshold, we find strong signatures of correlations even at emission frequencies beyond the band bottom.

  5. Characterizing edge and stacking structures of exfoliated graphene by photoelectron diffraction

    International Nuclear Information System (INIS)

    Matsui, Fumihiko; Ishii, Ryo; Matsuda, Hiroyuki; Morita, Makoto; Kitagawa, Satoshi; Koh, Shinji; Daimon, Hiroshi; Matsushita, Tomohiro

    2013-01-01

    The two-dimensional C 1s photoelectron intensity angular distributions (PIADs) and spectra of exfoliated graphene flakes and crystalline graphite were measured using a focused soft X-ray beam. Suitable graphene samples were selected by thickness characterization using Raman spectromicroscopy after transferring mechanically exfoliated graphene flakes onto a 90-nm-thick SiO 2 film. In every PIAD, a Kagomé interference pattern was observed, particularly clearly in the monolayer graphene PIAD. Its origin is the overlap of the diffraction rings formed by an in-plane C-C bond honeycomb lattice. Thus, the crystal orientation of each sample can be determined. In the case of bilayer graphene, PIAD was threefold-symmetric, while those of monolayer graphene and crystalline graphite were sixfold-symmetric. This is due to the stacking structure of bilayer graphene. From comparisons with the multiple scattering PIAD simulation results, the way of layer stacking as well as the termination types in the edge regions of bilayer graphene flakes were determined. Furthermore, two different C 1s core levels corresponding to the top and bottom layers of bilayer graphene were identified. A chemical shift to a higher binding energy by 0.25 eV for the bottom layer was attributed to interfacial interactions. (author)

  6. Fast Edge Detection and Segmentation of Terrestrial Laser Scans Through Normal Variation Analysis

    Science.gov (United States)

    Che, E.; Olsen, M. J.

    2017-09-01

    Terrestrial Laser Scanning (TLS) utilizes light detection and ranging (lidar) to effectively and efficiently acquire point cloud data for a wide variety of applications. Segmentation is a common procedure of post-processing to group the point cloud into a number of clusters to simplify the data for the sequential modelling and analysis needed for most applications. This paper presents a novel method to rapidly segment TLS data based on edge detection and region growing. First, by computing the projected incidence angles and performing the normal variation analysis, the silhouette edges and intersection edges are separated from the smooth surfaces. Then a modified region growing algorithm groups the points lying on the same smooth surface. The proposed method efficiently exploits the gridded scan pattern utilized during acquisition of TLS data from most sensors and takes advantage of parallel programming to process approximately 1 million points per second. Moreover, the proposed segmentation does not require estimation of the normal at each point, which limits the errors in normal estimation propagating to segmentation. Both an indoor and outdoor scene are used for an experiment to demonstrate and discuss the effectiveness and robustness of the proposed segmentation method.

  7. Structure of spinel at high temperature using in-situ XANES study at the Al and Mg K-edge

    Energy Technology Data Exchange (ETDEWEB)

    Ligny, D de [Universite Claude Bernard Lyon 1, LPCML, 69622 Villeurbanne (France); Neuville, D R [Physique des Mineraux et Magmas, Geochimie-Cosmochimie, CNRS-IPGP, 4 place Jussieu, 75005 Paris (France); Flank, A-M; Lagarde, P, E-mail: deligny@pcml.univ-lyon1.f [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 France (France)

    2009-11-15

    We present structural information obtained on spinel at high temperature (298-2400 K) using in situ XANES at the Mg and Al K-edge. Spinel, {sup [4]}(Al{sub x},Mg{sub 1-x}){sup [6]}(Al{sub 2-x},Mg{sub x})O{sub 4}, with increasing temperature, show a substitution of Mg by Al and Al by Mg in their respective sites. This substitution corresponds to an inversion of the Mg and Al sites. Furthermore, both experiments at the Al and Mg K-edges are in good agreement with XANES calculation made using FDMNES code.

  8. Determination of interstitial oxygen atom position in U2N3+xOy by near edge structure study

    Science.gov (United States)

    Jiang, A. K.; Zhao, Y. W.; Long, Z.; Hu, Y.; Wang, X. F.; Yang, R. L.; Bao, H. L.; Zeng, R. G.; Liu, K. Z.

    2018-06-01

    The determination of interstitial oxygen atom site in U2N3+xOy film could facilitate the understanding of the oxidation mechanism of α-U2N3 and the effect of U2N3+xOy on anti-oxidation. By comparing the similarities and variances between N K edge and O K edge electron energy loss spectra (EELS) for oxidized α-U2N3 and UO2, the present work looks at the local structure of nitrogen and oxygen atoms in U2N3+xOy film, identifying the most possible position of interstitial O atom.

  9. Probabilistic Structural Analysis Program

    Science.gov (United States)

    Pai, Shantaram S.; Chamis, Christos C.; Murthy, Pappu L. N.; Stefko, George L.; Riha, David S.; Thacker, Ben H.; Nagpal, Vinod K.; Mital, Subodh K.

    2010-01-01

    NASA/NESSUS 6.2c is a general-purpose, probabilistic analysis program that computes probability of failure and probabilistic sensitivity measures of engineered systems. Because NASA/NESSUS uses highly computationally efficient and accurate analysis techniques, probabilistic solutions can be obtained even for extremely large and complex models. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety-critical and one-of-a-kind systems, as well as for maintaining a level of quality while reducing manufacturing costs for larger-quantity products. NASA/NESSUS has been successfully applied to a diverse range of problems in aerospace, gas turbine engines, biomechanics, pipelines, defense, weaponry, and infrastructure. This program combines state-of-the-art probabilistic algorithms with general-purpose structural analysis and lifting methods to compute the probabilistic response and reliability of engineered structures. Uncertainties in load, material properties, geometry, boundary conditions, and initial conditions can be simulated. The structural analysis methods include non-linear finite-element methods, heat-transfer analysis, polymer/ceramic matrix composite analysis, monolithic (conventional metallic) materials life-prediction methodologies, boundary element methods, and user-written subroutines. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. NASA/NESSUS 6.2c is structured in a modular format with 15 elements.

  10. First- and Second-Order Full-Differential in Edge Analysis of Images

    Directory of Open Access Journals (Sweden)

    Dong-Mei Pu

    2014-01-01

    mathematics. We propose and reformulate them with a uniform definition framework. Based on our observation and analysis with the difference, we propose an algorithm to detect the edge from image. Experiments on Corel5K and PASCAL VOC 2007 are done to show the difference between the first order and the second order. After comparison with Canny operator and the proposed first-order differential, the main result is that the second-order differential has the better performance in analysis of changes of the context of images with good selection of control parameter.

  11. Dynamics of the pedestal structure in the edge transport barrier in CHS

    International Nuclear Information System (INIS)

    Kado, S.; Oishi, T.; Tanaka, S.

    2006-10-01

    The dynamic behavior of the edge pedestal in the edge transport barrier (ETB) formation discharge (H-mode) in the compact helical system (CHS) is investigated. Edge Harmonic Oscillations (EHOs) having a fundamental frequency of 2-4.5 kHz, depending on the magnetic configuration, and their second harmonic are observed when the density gradient of the pedestal reaches a certain threshold. There are two groups of so-called EHOs in the CHS. One is located in the edge region where the ι=1 surface exists, and the other is in the core region (although we also call it EHO in this paper) around the half radius where the ι=0.5 surface exists. The magnetic probe signal is revealed to reflect the latter mode, showing the poloidal mode number of 2, while that for the edge BES channel is 1. The density build-up saturates simultaneously with the increase of EHOs in the edge BES channel, which suggests that to a considerable extend the mode increases the particle transport. (author)

  12. Analysis of crack opening stresses for center- and edge-crack tension specimens

    Directory of Open Access Journals (Sweden)

    Tong Di-Hua

    2014-04-01

    Full Text Available Accurate determination of crack opening stress is of central importance to fatigue crack growth analysis and life prediction based on the crack-closure model. This paper studies the crack opening behavior for center- and edge-crack tension specimens. It is found that the crack opening stress is affected by the crack tip element. By taking the crack tip element into account, a modified crack opening stress equation is given for the center-crack tension specimen. Crack surface displacement equations for an edge crack in a semi-infinite plate under remote uniform tension and partially distributed pressure are derived by using the weight function method. Based on these displacements, a crack opening stress equation for an edge crack in a semi-infinite plate under uniform tension has been developed. The study shows that the crack opening stress is geometry-dependent, and the weight function method provides an effective and reliable tool to deal with such geometry dependence.

  13. Structural and aerodynamic considerations of an active piezoelectric trailing-edge tab on a helicopter rotor

    Science.gov (United States)

    Murray, Gabriel Jon

    This dissertation is concerned with an active tab for use on a rotorcraft for noise and vibration reduction. The tab is located at the trailing edge of the airfoil. The tab consists of a shim sandwiched by layers of the piezoelectric actuators, macro fiber composites, of varying length. This configuration is similar to a bimorph. The modus operandi is similar to that of a trailing edge flap. The actuators deform the tab, bending it to achieve a tip displacement. This provides a change in the lift, moment, and drag coefficients of the airfoil. By actuating the system at 3/rev to 5/rev, reductions in noise and vibration can be realized. The system was examined and designed around using the UH-60 Blackhawk as the model rotorcraft. The tab is envisioned to operate between 65% to 85% of the main rotor span. The tab's chordwise dimensions considered were 20% and 15% of the blade chord. In order to assess the potential of the tab to change the lift and moment coefficients of the airfoil-tab system, a steady computational fluid dynamics study was conducted. The results were generated via the University of Maryland's Transonic Unsteady Navier-Stokes code. Various tab deflection angles, Mach numbers, and angle-of-attack values were computed. These results were compared to a trailing edge flap of similar size. The comparison shows that the tab produces lift and moment increments similar to that of the trailing edge flap. The design of the tab---composed of both active piezoelectric actuators and passive materials---was conducted using finite element analysis. The objectives were to maximize the tip deflection due to the actuators, while minimizing the deformation due to inertial and aerodynamic forces and loads. The inertial loads (acceleration terms) come from both blade motion, such as flapping and pitch, as well as the rotation of the rotor (centrifugal force). All of these previously mentioned terms cause the tab to undergo undesirable deflections. The original concept

  14. Creep analysis and torsional vibration analysis of cable-stayed bridges with two edge composite girders; Nishuketa gosei kozo shachokyo no creep kaiseki to nejiri shindo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, M. [Nihon University, Tokyo (Japan). College of Science and Technology

    1996-07-21

    This paper describes the creep analysis and torsional vibration analysis of cable-stayed bridges with two edge composite girders. The girder is composed of the concrete slab and the steel girder. I-girders are placed at both edges of the profile. Such a type of bridge was investigated. As the stress migrates by the creep of concrete slab, it is necessary to evaluate the influence of this creep precisely in designing. In the analysis, the composite girder was expressed not by the single member, but by the binary member consisting of concrete member and steel member. Two methods were employed, i.e., method A in which both members are connected by the rigid body beam and method B in which the profile of concrete is converted into the profile of steel. The method A provided better accuracy, but the method B was often sufficient. Torsional rigidity of the open profile structure was much smaller than that of the box profile. As the torsional natural frequency was low, proper torsional vibration analysis was indispensable especially from the viewpoint of wind resistance. Two methods were employed, which utilize the vibration analysis method for general space frame structures. Results of both methods were agreed mutually, but the second method provided better calculation efficiency. 10 refs., 9 figs., 6 tabs.

  15. Evaluation of slim-edge, multi-guard, and punch-through-protection structures before and after proton irradiation

    Science.gov (United States)

    Mitsui, S.; Unno, Y.; Ikegami, Y.; Takubo, Y.; Terada, S.; Hara, K.; Takahashi, Y.; Jinnouchi, O.; Nagai, R.; Kishida, T.; Yorita, K.; Hanagaki, K.; Takashima, R.; Kamada, S.; Yamamura, K.

    2013-01-01

    Planar geometry silicon pixel and strip sensors for the high luminosity upgrade of the LHC (HL-LHC) require a high bias voltage of 1000 V in order to withstand a radiation damage caused by particle fluences of 1×1016 1 MeV neq/cm2 and 1×1015 1 MeV neq/cm2 for pixel and strip detectors, respectively. In order to minimize the inactive edge space that can withstand a bias voltage of 1000 V, edge regions susceptible to microdischarge (MD) should be carefully optimized. We fabricated diodes with various edge distances (slim-edge diodes) and with 1-3 multiple guard rings (multi-guard diodes). AC coupling insulators of strip sensors are vulnerable to sudden heavy charge deposition, such as an accidental beam splash, which may destroy the readout AC capacitors. Thus various types of punch-through-protection (PTP) structures were implemented in order to find the most effective structure to protect against heavy charge deposition. These samples were irradiated with 70 MeV protons at fluences of 5×1012 1 MeV neq/cm2-1×1016 1 MeV neq/cm2. Their performances were evaluated before and after irradiation in terms of an onset voltage of the MD, a turn-on voltage of the PTP, and PTP saturation resistance.

  16. The structure of the solution obtained with Reynolds-stress-transport models at the free-stream edges of turbulent flows

    Science.gov (United States)

    Cazalbou, J.-B.; Chassaing, P.

    2002-02-01

    The behavior of Reynolds-stress-transport models at the free-stream edges of turbulent flows is investigated. Current turbulent-diffusion models are found to produce propagative (possibly weak) solutions of the same type as those reported earlier by Cazalbou, Spalart, and Bradshaw [Phys. Fluids 6, 1797 (1994)] for two-equation models. As in the latter study, an analysis is presented that provides qualitative information on the flow structure predicted near the edge if a condition on the values of the diffusion constants is satisfied. In this case, the solution appears to be fairly insensitive to the residual free-stream turbulence levels needed with conventional numerical methods. The main specific result is that, depending on the diffusion model, the propagative solution can force turbulence toward definite and rather extreme anisotropy states at the edge (one- or two-component limit). This is not the case with the model of Daly and Harlow [Phys. Fluids 13, 2634 (1970)]; it may be one of the reasons why this "old" scheme is still the most widely used, even in recent Reynolds-stress-transport models. In addition, the analysis helps us to interpret some difficulties encountered in computing even very simple flows with Lumley's pressure-diffusion model [Adv. Appl. Mech. 18, 123 (1978)]. A new realizability condition, according to which the diffusion model should not globally become "anti-diffusive," is introduced, and a recalibration of Lumley's model satisfying this condition is performed using information drawn from the analysis.

  17. Power Load Event Detection and Classification Based on Edge Symbol Analysis and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2012-01-01

    Full Text Available Energy signature analysis of power appliance is the core of nonintrusive load monitoring (NILM where the detailed data of the appliances used in houses are obtained by analyzing changes in the voltage and current. This paper focuses on developing an automatic power load event detection and appliance classification based on machine learning. In power load event detection, the paper presents a new transient detection algorithm. By turn-on and turn-off transient waveforms analysis, it can accurately detect the edge point when a device is switched on or switched off. The proposed load classification technique can identify different power appliances with improved recognition accuracy and computational speed. The load classification method is composed of two processes including frequency feature analysis and support vector machine. The experimental results indicated that the incorporation of the new edge detection and turn-on and turn-off transient signature analysis into NILM revealed more information than traditional NILM methods. The load classification method has achieved more than ninety percent recognition rate.

  18. Innovative analysis of HS 6-5-2 drills edges quality

    Directory of Open Access Journals (Sweden)

    Daicu Raluca

    2017-01-01

    Full Text Available The paper is analyzing the quality of Ø8 drills edges from HS 6-5-2 steel, using an innovative technique, the measurement of electrical current at cutting. The method is useful to take the right decision about drills acquisition from different suppliers based on the quality/price ratio. Also, it can be made a fast quality comparison of drills that leads to a selection of the acquisition places. The analysis of a drill batch is done using the microscope and the measurement of the electrical current at cutting, showing the better accuracy of the last method.

  19. Electron-beam induced amorphization of stishovite: Silicon-coordination change observed using Si K-edge extended electron energy-loss fine structure

    Science.gov (United States)

    van Aken, P. A.; Sharp, T. G.; Seifert, F.

    The analysis of the extended energy-loss fine structure (EXELFS) of the Si K-edge for sixfold-coordinated Si in synthetic stishovite and fourfold-coordinated Si in natural α-quartz is reported by using electron energy-loss spectroscopy (EELS) in combination with transmission electron microscopy (TEM). The stishovite Si K-edge EXELFS spectra were measured as a time-dependent series to document irradiation-induced amorphization. The amorphization was also investigated through the change in Si K- and O K-edge energy-loss near edge structure (ELNES). For α-quartz, in contrast to stishovite, electron irradiation-induced vitrification, verified by selected area electron diffraction (SAED), produced no detectable changes of the EXELFS. The Si K-edge EXELFS were analysed with the classical extended X-ray absorption fine structure (EXAFS) treatment and compared to ab initio curve-waved multiple-scattering (MS) calculations of EXAFS spectra for stishovite and α-quartz. Highly accurate information on the local atomic environment of the silicon atoms during the irradiation-induced amorphization of stishovite is obtained from the EXELFS structure parameters (Si-O bond distances, coordination numbers and Debye-Waller factors). The mean Si-O bond distance R and mean Si coordination number N changes from R=0.1775 nm and N=6 for stishovite through a disordered intermediate state (R 0.172 nm and N 5) to R 0.167 nm and N 4.5 for a nearly amorphous state similar to α-quartz (R=0.1609 nm and N=4). During the amorphization process, the Debye-Waller factor (DWF) passes through a maximum value of as it changes from for sixfold to for fourfold coordination of Si. This increase in Debye-Waller factor indicates an increase in mean-square relative displacement (MSRD) between the central silicon atom and its oxygen neighbours that is consistent with the presence of an intermediate structural state with fivefold coordination of Si. The distribution of coordination states can be estimated by

  20. Electronic structure of Cr doped Fe3O4 thin films by X-ray absorption near-edge structure spectroscopy

    Science.gov (United States)

    Chen, Chi-Liang; Dong, Chung-Li; Asokan, Kandasami; Chern, G.; Chang, C. L.

    2018-04-01

    Present study reports the electronic structures of Cr doped Fe3O4 (Fe3-xCrxO4 (0 ≤ x ≤ 3) grown on MgO (100) substrates in the form of thin films fabricated by a plasma-oxygen assisted Molecular Beam Epitaxy (MBE). X-ray absorption near-edge structure (XANES) spectra at Cr & Fe L-, and O K-edges were used to understand the electronic structure: changes in the bonding nature, valence states, and site occupancies. Cr doping in Fe3O4 results in the change of charge transfer, crystal structure, and selective occupation of ions in octahedral and tetrahedral sites. Such change modifies the electrical and magnetic properties due to the covalency of Cr ions. The physical and chemical properties of ferrites are strongly dependent on the lattice site, ion size of dopant, and magnetic nature present at different structural symmetry of the spinel structure.

  1. [Chlorine speciation and concentration in cultivated soil in the northeastern China studied by X-ray absorption near edge structure].

    Science.gov (United States)

    Li, Jing; Lang, Chun-Yan; Ma, Ling-Ling; Xu, Dian-Dou; Zheng, Lei; Lu, Yu-Nanz; Cui Li-Rui; Zhang, Xiao-Meng

    2014-10-01

    A procedure has been proposed to determine chlorine speciation and concentration in soil with X-ray absorption near edge structure (XANES), and this method was applied to study the cultivated soil (bog, dark brown and black cultivated soil) in the Northeastern China. Qualitative analysis was carried out by least-squares fitting of sample spectra with standard spectra of three model compounds (NaCl, 3-chloropropionic acid, chlorophenol red). Linear correlation between the absolute fluorescence intensity of a series of NaCl standards and the Cl concentration was used as quantification standard for measuring the total Cl concentration in samples. The detection limits,relative standard deviation (RSD), recoveries were 2 mg · kg(-1), 0%-5% and 77%-133%, respectively. The average concentration of total Cl was 19 mg · kg(-1). The average relative content was as high as 61% of organochlorine with the concentration of 1-2 times as high as the concentration of inorganic chloride. The distribution trend of the total Cl, inorganic chloride and organic chlorine in different types of soil was: bog arable soil > dark brown soil > black soil. In conclusion, XANES is a reliable method to nondestructively characterize the speciation and concentration of chlorine in soil, which would provide some basic data for the future study of the chlorine's biogeochemical transformations.

  2. Structural analysis for Diagnosis

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Blanke, M.

    2001-01-01

    Aiming at design of algorithms for fault diagnosis, structural analysis of systems offers concise yet easy overall analysis. Graph-based matching, which is the essential technique to obtain redundant information for diagnosis, is re-considered in this paper. Matching is re-formulated as a problem...... of relating faults to known parameters and measurements of a system. Using explicit fault modelling, minimal over-determined subsystems are shown to provide necessary redundancy relations from the matching. Details of the method are presented and a realistic example used to clearly describe individual steps...

  3. Structural analysis for diagnosis

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Blanke, M.

    2002-01-01

    Aiming at design of algorithms for fault diagnosis, structural analysis of systems offers concise yet easy overall analysis. Graph-based matching, which is the essential tech-nique to obtain redundant information for diagnosis, is reconsidered in this paper. Matching is reformulated as a problem...... of relating faults to known parameters and measurements of a system. Using explicit fault modelling, minimal overdetermined subsystems are shown to provide necessary redundancy relations from the matching. Details of the method are presented and a realistic example used to clearly describe individual steps....

  4. Structural analysis of DAEs

    DEFF Research Database (Denmark)

    Poulsen, Mikael Zebbelin

    2002-01-01

    , by the implementation of the Simpy tool box. This is an object oriented system implemented in the Python language. It can be used for analysis of DAEs, ODEs and non-linear equation and uses e.g. symbolic representations of expressions and equations. The presentations of theory and algorithms for structural index......Differential algebraic equations (DAEs) constitute a fundamental model class for many modelling purposes in engineering and other sciences, especially for dynamical simulation of component based systems. This thesis describes a practical methodology and approach for analysing general DAE...... analysis of DAE is original in the sense that it is based on a new matrix representation of the structural information of a general DAE system instead of a graph oriented representation. Also the presentation of the theory is found to be more complete compared to other presentations, since it e.g. proves...

  5. Electronic and magnetic properties of MoSe2 armchair nanoribbons controlled by the different edge structures

    Science.gov (United States)

    Zhang, Hui; Zhao, Xu; Gao, Yonghui; Wang, Haiyang; Wang, Tianxing; Wei, Shuyi

    2018-03-01

    Tow-dimensional materials obviously have potential applications in next-generation nanodevices because of their extraordinary physical and chemical properties and the demands of the market. Using first-principle calculation based on density functional theory, we explore electronic and magnetic properties of the different nanoribbons with various edge structures, namely, with hydrogenation or not. In addition, we also calculate the binding energy to analyze the stability of the nanoribbon. Our calculations tell us that the passivated nanoribbons have the positive binding energies, which indicates the passivated nanoribbons are relative stable and hydrogenation can improve the stability of the bare nanoribbons due to the reduction of the dangling bonds. Among of them, full hydrogenation has the highest stability. We find all the nanoribbons with full and without hydrogenation are nonmagnetic semiconductors. It is worth mentioning that hydrogenation can induce the bare nanoribbons to transform gradually from indirect band gap semiconductor to direct band gap semiconductor, even to half-metal. In addition, the magnetic moment of the bare nanoribbon change bit by bit as the rate of hydrogenation increases. When the edge atoms are fully hydrogenated, the magnetic moment return to zero. What's more, our research results still confirm that electronic and magnetic properties of the nanorribons without and with different edge passivation are mainly contributed by the atoms at the edges. These studies about MoSe2 nanoribbons will shed light on the further development of the relevant nanodevices in versatile applications, such as spintronics and energy harvesting.

  6. Control of Flow Structure on Non-Slender Delta Wing: Bio-inspired Edge Modifications, Passive Bleeding, and Pulsed Blowing

    Science.gov (United States)

    Yavuz, Mehmet Metin; Celik, Alper; Cetin, Cenk

    2016-11-01

    In the present study, different flow control approaches including bio-inspired edge modifications, passive bleeding, and pulsed blowing are introduced and applied for the flow over non-slender delta wing. Experiments are conducted in a low speed wind tunnel for a 45 degree swept delta wing using qualitative and quantitative measurement techniques including laser illuminated smoke visualization, particle image velocimety (PIV), and surface pressure measurements. For the bio-inspired edge modifications, the edges of the wing are modified to dolphin fluke geometry. In addition, the concept of flexion ratio, a ratio depending on the flexible length of animal propulsors such as wings, is introduced. For passive bleeding, directing the free stream air from the pressure side of the planform to the suction side of the wing is applied. For pulsed blowing, periodic air injection through the leading edge of the wing is performed in a square waveform with 25% duty cycle at different excitation frequencies and compared with the steady and no blowing cases. The results indicate that each control approach is quite effective in terms of altering the overall flow structure on the planform. However, the success level, considering the elimination of stall or delaying the vortex breakdown, depends on the parameters in each method.

  7. Electron-beam induced amorphization of stishovite: Silicon-coordination change observed using Si K-edge extended electron energy-loss fine structure

    International Nuclear Information System (INIS)

    Aken, P.A. van; Sharp, T.G.; Seifert, F.

    1998-01-01

    The analysis of the extended energy-loss fine structure (EXELFS) of the Si K-edge for sixfold-coordinated Si in synthetic stishovite and fourfold-coordinated Si in natural α-quartz is reported by using electron energy-loss spectroscopy (EELS) in combination with transmission electron microscopy (TEM). The stishovite Si K-edge EXELFS spectra were measured as a time-dependent series to document irradiation-induced amorphization. The amorphization was also investigated through the change in Si K- and O K-edge energy-loss near edge structure (ELNES). For α-quartz, in contrast to stishovite, electron irradiation-induced vitrification, produced no detectable changes of the EXELFS. The Si K-edge EXELFS were analysed with the classical extended X-ray absorption fine structure (EXAFS) treatment and compared to ab initio curve-waved multiple-scattering (MS) calculations of EXAFS spectra for stishovite and α-quartz. Highly accurate information on the local atomic environment of the silicon atoms during the irradiation-induced amorphization of stishovite is obtained from the EXELFS structure parameters The mean Si-O bond distance R and mean Si coordination number N changes from R=0.1775 nm and N=6 for stishovite through a disordered intermediate state (R∼0.172 nm and N∼5) to R∼0.167 nm and N∼4.5 for a nearly amorphous state similar to α-quartz (R=0.1609 nm and N=4). During the amorphization process, the Debye-Waller factor (DWF) passes through a maximum value of σ N 2 ∼83.8pm 2 as it changes from σ st 2 =51.8pm 2 for sixfold to σ qu 2 =18.4pm 2 for fourfold coordination of Si. This increase in Debye-Waller factor indicates an increase in mean-square relative displacement (MSRD) between the central silicon atom and its oxygen neighbours. Using the EXELFS data for amorphization, a new method is developed to derive the relative amounts of Si coordinations in high-pressure minerals with mixed coordination. For the radiation-induced amorphization process of

  8. Wind Tunnel and Numerical Analysis of Thick Blunt Trailing Edge Airfoils

    Science.gov (United States)

    McLennan, Anthony William

    Two-dimensional aerodynamic characteristics of several thick blunt trailing edge airfoils are presented. These airfoils are not only directly applicable to the root section of wind turbine blades, where they provide the required structural strength at a fraction of the material and weight of an equivalent sharp trailing edge airfoil, but are also applicable to the root sections of UAVs having high aspect ratios, that also encounter heavy root bending forces. The Reynolds averaged Navier-Stokes code, ARC2D, was the primary numerical tool used to analyze each airfoil. The UCD-38-095, referred to as the Pareto B airfoil in this thesis, was also tested in the University of California, Davis Aeronautical Wind Tunnel. The Pareto B has an experimentally determined maximum lift coefficient of 1.64 at 14 degrees incidence, minimum drag coefficient of 0.0385, and maximum lift over drag ratio of 35.9 at a lift coefficient of 1.38, 10 degrees incidence at a Reynolds number of 666,000. Zig-zag tape at 2% and 5% of the chord was placed on the leading edge pressure and suction side of the Pareto B model in order to determine the aerodynamic performance characteristics at turbulent flow conditions. Experimental Pareto B wind tunnel data and previous FB-3500-0875 data is also presented and used to validate the ARC2D results obtained in this study. Additionally MBFLO, a detached eddy simulation Navier-Stokes code, was used to analyze the Pareto B airfoil for comparison and validation purposes.

  9. LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS.

    Science.gov (United States)

    Almquist, Zack W; Butts, Carter T

    2014-08-01

    Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach.

  10. Geometrically Nonlinear Static Analysis of Edge Cracked Timoshenko Beams Composed of Functionally Graded Material

    Directory of Open Access Journals (Sweden)

    Şeref Doğuşcan Akbaş

    2013-01-01

    Full Text Available Geometrically nonlinear static analysis of edge cracked cantilever Timoshenko beams composed of functionally graded material (FGM subjected to a nonfollower transversal point load at the free end of the beam is studied with large displacements and large rotations. Material properties of the beam change in the height direction according to exponential distributions. The cracked beam is modeled as an assembly of two subbeams connected through a massless elastic rotational spring. In the study, the finite element of the beam is constructed by using the total Lagrangian Timoshenko beam element approximation. The nonlinear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The convergence study is performed for various numbers of finite elements. In the study, the effects of the location of crack, the depth of the crack, and various material distributions on the nonlinear static response of the FGM beam are investigated in detail. Also, the difference between the geometrically linear and nonlinear analysis of edge cracked FGM beam is investigated in detail.

  11. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, U.E.A. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: ursula.fittschen@chemie.uni-hamburg.de; Meirer, F. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: fmeirer@ati.ac.at; Streli, C. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: streli@ati.ac.at; Wobrauschek, P. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: wobi@ati.ac.at; Thiele, J. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: Julian.Thiele@gmx.de; Falkenberg, G. [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany)], E-mail: falkenbe@mail.desy.de; Pepponi, G. [ITC-irst, Via Sommarive 18, 38050 Povo (Trento) (Italy)], E-mail: pepponi@itc.it

    2008-12-15

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 {mu}m, 8.0-2.0 {mu}m, 2.0-0.13 {mu}m 0.13-0.015 {mu}m (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 {mu}m, 1-2 {mu}m, 2-4 {mu}m, 4-8 {mu}m, 8-16 {mu}m. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in

  12. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    International Nuclear Information System (INIS)

    Fittschen, U.E.A.; Meirer, F.; Streli, C.; Wobrauschek, P.; Thiele, J.; Falkenberg, G.; Pepponi, G.

    2008-01-01

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 μm, 8.0-2.0 μm, 2.0-0.13 μm 0.13-0.015 μm (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 μm, 1-2 μm, 2-4 μm, 4-8 μm, 8-16 μm. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in all particle size fractions

  13. Nanoindentation near the edge

    Science.gov (United States)

    J.E. Jakes; C.R. Frihart; J.F. Beecher; R.J. Moon; P.J. Resto; Z.H. Melgarejo; O.M. Saurez; H. Baumgart; A.A. Elmustafa; D.S. Stone

    2009-01-01

    Whenever a nanoindent is placed near an edge, such as the free edge of the specimen or heterophase interface intersecting the surface, the elastic discontinuity associated with the edge produces artifacts in the load-depth data. Unless properly handled in the data analysis, the artifacts can produce spurious results that obscure any real trends in properties as...

  14. Identification of the iron oxidation state and coordination geometry in iron oxide- and zeolite-based catalysts using pre-edge XAS analysis.

    Science.gov (United States)

    Boubnov, Alexey; Lichtenberg, Henning; Mangold, Stefan; Grunwaldt, Jan Dierk

    2015-03-01

    Analysis of the oxidation state and coordination geometry using pre-edge analysis is attractive for heterogeneous catalysis and materials science, especially for in situ and time-resolved studies or highly diluted systems. In the present study, focus is laid on iron-based catalysts. First a systematic investigation of the pre-edge region of the Fe K-edge using staurolite, FePO4, FeO and α-Fe2O3 as reference compounds for tetrahedral Fe(2+), tetrahedral Fe(3+), octahedral Fe(2+) and octahedral Fe(3+), respectively, is reported. In particular, high-resolution and conventional X-ray absorption spectra are compared, considering that in heterogeneous catalysis and material science a compromise between high-quality spectroscopic data acquisition and simultaneous analysis of functional properties is required. Results, which were obtained from reference spectra acquired with different resolution and quality, demonstrate that this analysis is also applicable to conventionally recorded pre-edge data. For this purpose, subtraction of the edge onset is preferentially carried out using an arctangent and a first-degree polynomial, independent of the resolution and quality of the data. For both standard and high-resolution data, multiplet analysis of pre-edge features has limitations due to weak transitions that cannot be identified. On the other hand, an arbitrary empirical peak fitting assists the analysis in that non-local transitions can be isolated. The analysis of the oxidation state and coordination geometry of the Fe sites using a variogram-based method is shown to be effective for standard-resolution data and leads to the same results as for high-resolution spectra. This method, validated by analysing spectra of reference compounds and their well defined mixtures, is finally applied to track structural changes in a 1% Fe/Al2O3 and a 0.5% Fe/BEA zeolite catalyst during reduction in 5% H2/He. The results, hardly accessible by other techniques, show that Fe(3+) is

  15. Analysis of Leading Edge and Trailing Edge Cover Glass Samples Before and After Treatment with Advanced Satellite Contamination Removal Techniques

    Science.gov (United States)

    1993-04-01

    surface analysis, 40 contamination control, ANCC ( Aerogel Mesh Contamination Collector) iPRICECODE 17. SECURITY CLASSIFICATION 1 & SECURITY CLASSIFICATION...operational parameter space (temperature, vibration, radiation, vacuum and micrometorite environments). One embodiment of this device, the Aerogel Mesh...Lippey and Dan Demeo of Hughes Aircraft Corporation for their kind hospitality and research collaboration on the contamination removal phase of this work

  16. The Fine Transverse Structure of a Vortex Flow Beyond the Edge of a Disc Rotating in a Stratified Fluid

    Science.gov (United States)

    Chashechkin, Yu. D.; Bardakov, R. N.

    2018-02-01

    By the methods of schlieren visualization, the evolution of elements of the fine structure of transverse vortex loops formed in the circular vortex behind the edge of a disk rotating in a continuously stratified fluid is traced for the first time. An inhomogeneous distribution of the density of a table-salt solution in a basin was formed by the continuous-squeezing method. The development of periodic perturbations at the outer boundary of the circular vortex and their transformation at the vortex-loop vertex are traced. A slow change in the angular size of the structural elements in the supercritical-flow mode is noted.

  17. Structured Analysis - IDEF0

    DEFF Research Database (Denmark)

    Larsen, Michael Holm

    1999-01-01

    This note introduces the IDEF0 modelling language (semantics and syntax), and associated rules and techniques, for developing structured graphical representations of a system or enterprise. Use of this standard for IDEF0 permits the construction of models comprising system functions (activities...... that require a modelling technique for the analysis, development, re-engineering, integration, or acquisition of information systems; and incorporate a systems or enterprise modelling technique into a business process analysis or software engineering methodology.This note is a summary of the Standard...... for Integration Definition for Function Modelling (IDEF0). I.e. the Draft Federal Information Processing Standards Publication 183, 1993, December 21, Announcing the Standard for Integration Definition for Function Modelling (IDEF0)....

  18. Asymptotic analysis of a pile-up of regular edge dislocation walls

    KAUST Repository

    Hall, Cameron L.

    2011-12-01

    The idealised problem of a pile-up of regular dislocation walls (that is, of planes each containing an infinite number of parallel, identical and equally spaced dislocations) was presented by Roy et al. [A. Roy, R.H.J. Peerlings, M.G.D. Geers, Y. Kasyanyuk, Materials Science and Engineering A 486 (2008) 653-661] as a prototype for understanding the importance of discrete dislocation interactions in dislocation-based plasticity models. They noted that analytic solutions for the dislocation wall density are available for a pile-up of regular screw dislocation walls, but that numerical methods seem to be necessary for investigating regular edge dislocation walls. In this paper, we use the techniques of discrete-to-continuum asymptotic analysis to obtain a detailed description of a pile-up of regular edge dislocation walls. To leading order, we find that the dislocation wall density is governed by a simple differential equation and that boundary layers are present at both ends of the pile-up. © 2011 Elsevier B.V.

  19. Asymptotic analysis of a pile-up of regular edge dislocation walls

    KAUST Repository

    Hall, Cameron L.

    2011-01-01

    The idealised problem of a pile-up of regular dislocation walls (that is, of planes each containing an infinite number of parallel, identical and equally spaced dislocations) was presented by Roy et al. [A. Roy, R.H.J. Peerlings, M.G.D. Geers, Y. Kasyanyuk, Materials Science and Engineering A 486 (2008) 653-661] as a prototype for understanding the importance of discrete dislocation interactions in dislocation-based plasticity models. They noted that analytic solutions for the dislocation wall density are available for a pile-up of regular screw dislocation walls, but that numerical methods seem to be necessary for investigating regular edge dislocation walls. In this paper, we use the techniques of discrete-to-continuum asymptotic analysis to obtain a detailed description of a pile-up of regular edge dislocation walls. To leading order, we find that the dislocation wall density is governed by a simple differential equation and that boundary layers are present at both ends of the pile-up. © 2011 Elsevier B.V.

  20. Structure and stability of threading edge and screw dislocations in bulk GaN

    Czech Academy of Sciences Publication Activity Database

    Gröger, Roman; Leconte, L.; Ostapovets, Andriy

    2015-01-01

    Roč. 99, MAR (2015), s. 195-202 ISSN 0927-0256 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA MŠk(CZ) EE2.3.30.0063 Institutional support: RVO:68081723 Keywords : Threading dislocation * Edge * Screw * GaN Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.086, year: 2015

  1. Edge transport and mode structure of a QCM-like fluctuation driven by the Shoelace antenna

    Science.gov (United States)

    Golfinopoulos, T.; LaBombard, B.; Brunner, D.; Terry, J. L.; Baek, S. G.; Ennever, P.; Edlund, E.; Han, W.; Burke, W. M.; Wolfe, S. M.; Irby, J. H.; Hughes, J. W.; Fitzgerald, E. W.; Granetz, R. S.; Greenwald, M. J.; Leccacorvi, R.; Marmar, E. S.; Pierson, S. Z.; Porkolab, M.; Vieira, R. F.; Wukitch, S. J.; The Alcator C-Mod Team

    2018-05-01

    The Shoelace antenna was built to drive edge fluctuations in the Alcator C-Mod tokamak, matching the wavenumber (k\\perp≈1.5 cm‑1) and frequency (30≲ f ≲ 200 kHz) of the quasi-coherent mode (QCM), which is responsible for regulating transport across the plasma boundary in the steady-state, ELM-free Enhanced D α (EDA) H-mode. Initial experiments in 2012 demonstrated that the antenna drove a resonant response in the edge plasma in steady-state EDA and transient, non-ELMy H-modes, but transport measurements were unavailable. In 2016, the Shoelace antenna was relocated to enable direct measurements of driven transport by a reciprocating Mirror Langmuir Probe, while also making available gas puff imaging and reflectometer data to provide additional radial localization of the driven fluctuation. This new data suggests a  ∼4 mm-wide mode layer centered on or just outside the separatrix. Fluctuations coherent with the antenna produced a radial electron flux with {Γ_e}/{n_e}∼4 m s‑1 in EDA H-mode, smaller than but comparable to the QCM level. But in transient ELM-free H-mode, {Γ_e}/{n_e} was an order of magnitude smaller, and driven fluctuations reduced by a factor of ≳ 3. The driven mode is quantitatively similar to the intrinsic QCM across measured spectral quantities, except that it is more coherent and weaker. This work informs the prospect of achieving control of edge transport by direct coupling to edge modes, as well as the use of such active coupling for diagnostic purposes.

  2. [Road Extraction in Remote Sensing Images Based on Spectral and Edge Analysis].

    Science.gov (United States)

    Zhao, Wen-zhi; Luo, Li-qun; Guo, Zhou; Yue, Jun; Yu, Xue-ying; Liu, Hui; Wei, Jing

    2015-10-01

    Roads are typically man-made objects in urban areas. Road extraction from high-resolution images has important applications for urban planning and transportation development. However, due to the confusion of spectral characteristic, it is difficult to distinguish roads from other objects by merely using traditional classification methods that mainly depend on spectral information. Edge is an important feature for the identification of linear objects (e. g. , roads). The distribution patterns of edges vary greatly among different objects. It is crucial to merge edge statistical information into spectral ones. In this study, a new method that combines spectral information and edge statistical features has been proposed. First, edge detection is conducted by using self-adaptive mean-shift algorithm on the panchromatic band, which can greatly reduce pseudo-edges and noise effects. Then, edge statistical features are obtained from the edge statistical model, which measures the length and angle distribution of edges. Finally, by integrating the spectral and edge statistical features, SVM algorithm is used to classify the image and roads are ultimately extracted. A series of experiments are conducted and the results show that the overall accuracy of proposed method is 93% comparing with only 78% overall accuracy of the traditional. The results demonstrate that the proposed method is efficient and valuable for road extraction, especially on high-resolution images.

  3. Hyper thin 3D edge measurement of honeycomb core structures based on the triangular camera-projector layout & phase-based stereo matching.

    Science.gov (United States)

    Jiang, Hongzhi; Zhao, Huijie; Li, Xudong; Quan, Chenggen

    2016-03-07

    We propose a novel hyper thin 3D edge measurement technique to measure the profile of 3D outer envelope of honeycomb core structures. The width of the edges of the honeycomb core is less than 0.1 mm. We introduce a triangular layout design consisting of two cameras and one projector to measure hyper thin 3D edges and eliminate data interference from the walls. A phase-shifting algorithm and the multi-frequency heterodyne phase-unwrapping principle are applied for phase retrievals on edges. A new stereo matching method based on phase mapping and epipolar constraint is presented to solve correspondence searching on the edges and remove false matches resulting in 3D outliers. Experimental results demonstrate the effectiveness of the proposed method for measuring the 3D profile of honeycomb core structures.

  4. Photoionization of the Fe lons: Structure of the K-Edge

    Science.gov (United States)

    Palmeri, P.; Mendoza, C.; Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    X-ray absorption and emission features arising from the inner-shell transitions in iron are of practical importance in astrophysics due to the Fe cosmic abundance and to the absence of traits from other elements in the nearby spectrum. As a result, the strengths and energies of such features can constrain the ionization stage, elemental abundance, and column density of the gas in the vicinity of the exotic cosmic objects, e.g. active galactic nuclei (AGN) and galactic black hole candidates. Although the observational technology in X-ray astronomy is still evolving and currently lacks high spectroscopic resolution, the astrophysical models have been based on atomic calculations that predict a sudden and high step-like increase of the cross section at the K-shell threshold (see for instance. New Breit-Pauli R-matrix calculations of the photoionization cross section of the ground states of Fe XVII in the region near the K threshold are presented. They strongly support the view that the previously assumed sharp edge behaviour is not correct. The latter has been caused by the neglect of spectator Auger channels in the decay of the resonances converging to the K threshold. These decay channels include the dominant KLL channels and give rise to constant widths (independent of n). As a consequence, these series display damped Lorentzian components that rapidly blend to impose continuity at threshold, thus reformatting the previously held picture of the edge. Apparent broadened iron edges detected in the spectra of AGN and galactic black hole candidates seem to indicate that these quantum effects may be at least partially responsible for the observed broadening.

  5. Ge L{sub 3}-edge x-ray absorption near-edge structure study of structural changes accompanying conductivity drift in the amorphous phase of Ge{sub 2}Sb{sub 2}Te{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Mitrofanov, K. V. [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562 (Japan); Kolobov, A. V., E-mail: a.kolobov@aist.go.jp; Fons, P. [Nanoelectronics Research Institute and Green Nanoelectronics Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562, Japan and Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1, Kouto, Sayo, Hyogo 679-5198 (Japan); Wang, X.; Tominaga, J. [Nanoelectronics Research Institute and Green Nanoelectronics Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562 (Japan); Tamenori, Y.; Uruga, T. [Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1, Kouto, Sayo, Hyogo 679-5198 (Japan); Ciocchini, N.; Ielmini, D. [DEIB - Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy)

    2014-05-07

    A gradual uncontrollable increase in the resistivity of the amorphous phase of phase-change alloys, such as Ge{sub 2}Sb{sub 2}Te{sub 5}, known as drift, is a serious technological issue for application of phase-change memory. While it has been proposed that drift is related to structural relaxation, no direct structural results have been reported so far. Here, we report the results of Ge L{sub 3}-edge x-ray absorption measurements that suggest that the drift in electrical conductivity is associated with the gradual conversion of tetrahedrally coordinated Ge sites into pyramidal sites, while the system still remains in the amorphous phase. Based on electronic configuration arguments, we propose that during this process, which is governed by the existence of lone-pair electrons, the concentration of free carriers in the system decreases resulting in an increase in resistance despite the structural relaxation towards the crystalline phase.

  6. Edge Detection,

    Science.gov (United States)

    1985-09-01

    PROJECT. T ASK0 Artificial Inteligence Laboratory AREA It WORK UNIT NUMBERS V 545 Technology Square ( Cambridge, HA 02139 I I* CONTOOL1LIN@4OFFICE NAME...ARD-A1t62 62 EDGE DETECTION(U) NASSACNUSETTS INST OF TECH CAMBRIDGE 1/1 ARTIFICIAL INTELLIGENCE LAB E C HILDRETH SEP 85 AI-M-8 N99SI4-8S-C-6595...used to carry out this analysis. cce~iO a N) ’.~" D LI’BL. P p ------------ Sj. t i MASSACHUSETTS INSTITUTE OF TECHNOLOGY i ARTIFICIAL INTELLIGENCE

  7. Edge preserving smoothing and segmentation of 4-D images via transversely isotropic scale-space processing and fingerprint analysis

    International Nuclear Information System (INIS)

    Reutter, Bryan W.; Algazi, V. Ralph; Gullberg, Grant T; Huesman, Ronald H.

    2004-01-01

    Enhancements are described for an approach that unifies edge preserving smoothing with segmentation of time sequences of volumetric images, based on differential edge detection at multiple spatial and temporal scales. Potential applications of these 4-D methods include segmentation of respiratory gated positron emission tomography (PET) transmission images to improve accuracy of attenuation correction for imaging heart and lung lesions, and segmentation of dynamic cardiac single photon emission computed tomography (SPECT) images to facilitate unbiased estimation of time-activity curves and kinetic parameters for left ventricular volumes of interest. Improved segmentation of lung surfaces in simulated respiratory gated cardiac PET transmission images is achieved with a 4-D edge detection operator composed of edge preserving 1-D operators applied in various spatial and temporal directions. Smoothing along the axis of a 1-D operator is driven by structure separation seen in the scale-space fingerprint, rather than by image contrast. Spurious noise structures are reduced with use of small-scale isotropic smoothing in directions transverse to the 1-D operator axis. Analytic expressions are obtained for directional derivatives of the smoothed, edge preserved image, and the expressions are used to compose a 4-D operator that detects edges as zero-crossings in the second derivative in the direction of the image intensity gradient. Additional improvement in segmentation is anticipated with use of multiscale transversely isotropic smoothing and a novel interpolation method that improves the behavior of the directional derivatives. The interpolation method is demonstrated on a simulated 1-D edge and incorporation of the method into the 4-D algorithm is described

  8. An Edge-Sensing Predictor in Wavelet Lifting Structures for Lossless Image Coding

    Directory of Open Access Journals (Sweden)

    Ömer N. Gerek

    2007-02-01

    Full Text Available The introduction of lifting implementations for image wavelet decomposition generated possibilities of several applications and several adaptive decomposition variations. The prediction step of a lifting stage constitutes the interesting part of the decomposition since it aims to reduce the energy of one of the decomposition bands by making predictions using the other decomposition band. In that aspect, more successful predictions yield better efficiency in terms of reduced energy in the lower band. In this work, we present a prediction filter whose prediction domain pixels are selected adaptively according to the local edge characteristics of the image. By judicuously selecting the prediction domain from pixels that are expected to have closer relation to the estimated pixel, the prediction error signal energy is reduced. In order to keep the adaptation rule symmetric for the encoder and the decoder sides, lossless compression applications are examined. Experimental results show that the proposed algorithm provides good compression results. Furthermore, the edge calculation is computationally inexpensive and comparable to the famous Daubechies 5/3 lifting implementation.

  9. Comparative analysis of nodal and edge finite element method for numerical analysis of 3-D magnetostatic systems

    International Nuclear Information System (INIS)

    Mintchev, Pavel; Dimitrov, Marin; Balinov, Stoimen

    2002-01-01

    The possibilities for applying the Finite Element Method (FEM) with gauged magnetic vector potential and the Edge Element Method (EEM) for three-dimensional numerical analysis of magnetostatic systems are analyzed. It is established that the EEM ensures sufficient accuracy for engineering calculations but in some cases its use results in bad convergence. The use of the FEM with gauged magnetic vector potential instead of the EEM is recommended for preliminary calculations of devices with complex geometry and large air gaps between the ferromagnetic parts. (Author)

  10. Coupled-cluster response theory for near-edge x-ray-absorption fine structure of atoms and molecules

    DEFF Research Database (Denmark)

    Coriani, Sonia; Christiansen, Ove; Fransson, Thomas

    2012-01-01

    triple corrected excitation energies CCSDR(3). This work is a first step toward the extension of these theoretical electronic structure methods of well-established high accuracy in UV-vis absorption spectroscopies to applications concerned with x-ray radiation. From the imaginary part of the linear...... response function, the near K-edge x-ray absorption spectra of neon, water, and carbon monoxide are determined and compared with experiment. Results at the CCSD level show relative peak intensities in good agreement with experiment with discrepancies in transition energies due to incomplete treatment...

  11. Edge profile analysis of Joint European Torus (JET) Thomson scattering data: Quantifying the systematic error due to edge localised mode synchronisation.

    Science.gov (United States)

    Leyland, M J; Beurskens, M N A; Flanagan, J C; Frassinetti, L; Gibson, K J; Kempenaars, M; Maslov, M; Scannell, R

    2016-01-01

    The Joint European Torus (JET) high resolution Thomson scattering (HRTS) system measures radial electron temperature and density profiles. One of the key capabilities of this diagnostic is measuring the steep pressure gradient, termed the pedestal, at the edge of JET plasmas. The pedestal is susceptible to limiting instabilities, such as Edge Localised Modes (ELMs), characterised by a periodic collapse of the steep gradient region. A common method to extract the pedestal width, gradient, and height, used on numerous machines, is by performing a modified hyperbolic tangent (mtanh) fit to overlaid profiles selected from the same region of the ELM cycle. This process of overlaying profiles, termed ELM synchronisation, maximises the number of data points defining the pedestal region for a given phase of the ELM cycle. When fitting to HRTS profiles, it is necessary to incorporate the diagnostic radial instrument function, particularly important when considering the pedestal width. A deconvolved fit is determined by a forward convolution method requiring knowledge of only the instrument function and profiles. The systematic error due to the deconvolution technique incorporated into the JET pedestal fitting tool has been documented by Frassinetti et al. [Rev. Sci. Instrum. 83, 013506 (2012)]. This paper seeks to understand and quantify the systematic error introduced to the pedestal width due to ELM synchronisation. Synthetic profiles, generated with error bars and point-to-point variation characteristic of real HRTS profiles, are used to evaluate the deviation from the underlying pedestal width. We find on JET that the ELM synchronisation systematic error is negligible in comparison to the statistical error when assuming ten overlaid profiles (typical for a pre-ELM fit to HRTS profiles). This confirms that fitting a mtanh to ELM synchronised profiles is a robust and practical technique for extracting the pedestal structure.

  12. The shape of dark matter haloes - V. Analysis of observations of edge-on galaxies

    NARCIS (Netherlands)

    Peters, S. P. C.; van der Kruit, P. C.; Allen, R. J.; Freeman, K. C.

    In previous papers in this series, we measured the stellar and H I content in a sample of edge-on galaxies. In the present paper, we perform a simultaneous rotation curve and vertical force field gradient decomposition for five of these edge-on galaxies. The rotation curve decomposition provides a

  13. Structure of edge-state inner products in the fractional quantum Hall effect

    Science.gov (United States)

    Fern, R.; Bondesan, R.; Simon, S. H.

    2018-04-01

    We analyze the inner products of edge state wave functions in the fractional quantum Hall effect, specifically for the Laughlin and Moore-Read states. We use an effective description for these inner products given by a large-N expansion ansatz proposed in a recent work by J. Dubail, N. Read, and E. Rezayi [Phys. Rev. B 86, 245310 (2012), 10.1103/PhysRevB.86.245310]. As noted by these authors, the terms in this ansatz can be constrained using symmetry, a procedure we perform to high orders. We then check this conjecture by calculating the overlaps exactly for small system sizes and compare the numerics with our high-order expansion. We find the effective description to be very accurate.

  14. Nonlinear Structural Analysis

    Indian Academy of Sciences (India)

    The Structures Panel of the Aeronautics Research and Development Board of India ... A great variety of topics was covered, including themes such as nonlinear finite ... or shell structures, and three are on the composite form of construction, ...

  15. Adaptive multiresolution Hermite-Binomial filters for image edge and texture analysis

    NARCIS (Netherlands)

    Gu, Y.H.; Katsaggelos, A.K.

    1994-01-01

    A new multiresolution image analysis approach using adaptive Hermite-Binomial filters is presented in this paper. According to the local image structural and textural properties, the analysis filter kernels are made adaptive both in their scales and orders. Applications of such an adaptive filtering

  16. Near-Edge X-ray Absorption Fine Structure Studies of Electrospun Poly(dimethylsiloxane)/Poly (methyl methacrylate)/Multiwall Carbon Nanotube Composites

    Science.gov (United States)

    Winter, A. Douglas; Larios, Eduardo; Alamgir, Faisal M.; Jaye, Cherno; Fischer, Daniel; Campo, Eva M.

    2014-01-01

    This work describes the near conduction band edge structure of electrospun mats of MWCNT-PDMS-PMMA by near edge X-Ray absorption fine structure (NEXAFS) spectroscopy. Effects of adding nanofillers of different sizes were addressed. Despite observed morphological variations and inhomogeneous carbon nanotube distribution, spun mats appeared homogeneous under NEXAFS analysis. Spectra revealed differences in emissions from glancing and normal spectra; which may evidence phase separation within the bulk of the micron-size fibers. Further, dichroic ratios show polymer chains did not align, even in the presence of nanofillers. Addition of nanofillers affected emissions in the C-H, C=O and C-C regimes, suggesting their involvement in interfacial matrix-carbon nanotube bonding. Spectral differences at glancing angles between pristine and composite mats suggest that geometric conformational configurations are taking place between polymeric chains and carbon nanotubes. These differences appear to be carbon nanotube-dimension dependent, and are promoted upon room temperature mixing and shear flow during electrospinning. CH-π bonding between polymer chains and graphitic walls, as well as H-bonds between impurities in the as-grown CNTs and polymer pendant groups are proposed bonding mechanisms promoting matrix conformation. PMID:24308286

  17. X-ray absorption near-edge structure of hexagonal ternary phases in sputter-deposited TiAlN films

    Energy Technology Data Exchange (ETDEWEB)

    Gago, R., E-mail: rgago@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Soldera, F. [Department of Materials Science and Engineering, Saarland University, D-66123 Saarbruecken (Germany); Hübner, R.; Lehmann, J.; Munnik, F. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Vázquez, L. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Redondo-Cubero, A. [Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 2686-953 Sacavém (Portugal); Endrino, J.L. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Abengoa Research S.L., c/Energía Solar 1, Palmas Altas, E-41014 Seville (Spain)

    2013-06-05

    Highlights: ► Growth of ternary TiAlN films with nearly single-phase wurzite structure. ► Soft X-rays XANES measurements of ternary TiAlN films with wurzite structure. ► Identification of ternary TiAlN hexagonal phases by XANES. ► Correlation of XANES measurements with reported theoretical calculations. -- Abstract: Titanium aluminium nitride (TiAlN) coatings have been grown by reactive (Ar/N{sub 2}) direct-current magnetron sputtering from a Ti{sub 50}Al{sub 50} compound target. The film composition has been quantified by ion beam analysis showing the formation of Al-rich nitrides (Ti/Al ∼ 0.3), with stoichiometric films for N{sub 2} contents in the gas mixture equal or above ∼25%. The surface morphology of the films has been imaged by atomic force microscopy, showing very smooth surfaces with roughness values below 2 nm. X-ray and electron diffraction patterns reveal that the films are nanocrystalline with a wurzite (w) structure of lattice parameters larger (∼2.5%) than those for w-AlN. The lattice expansion correlates with the Ti/Al ratio in stoichiometric films, which suggests the incorporation of Ti into w-AlN. The atomic environments around Ti, Al and N sites have been extracted from the X-ray absorption near-edge structure (XANES) by recording the Ti2p, Al1s and N1s edges, respectively. The analysis of the XANES spectral lineshape and comparison with reported theoretical calculations confirm the formation of a ternary hexagonal phase.

  18. Specimen preparation, imaging, and analysis protocols for knife-edge scanning microscopy.

    Science.gov (United States)

    Choe, Yoonsuck; Mayerich, David; Kwon, Jaerock; Miller, Daniel E; Sung, Chul; Chung, Ji Ryang; Huffman, Todd; Keyser, John; Abbott, Louise C

    2011-12-09

    Major advances in high-throughput, high-resolution, 3D microscopy techniques have enabled the acquisition of large volumes of neuroanatomical data at submicrometer resolution. One of the first such instruments producing whole-brain-scale data is the Knife-Edge Scanning Microscope (KESM), developed and hosted in the authors' lab. KESM has been used to section and image whole mouse brains at submicrometer resolution, revealing the intricate details of the neuronal networks (Golgi), vascular networks (India ink), and cell body distribution (Nissl). The use of KESM is not restricted to the mouse nor the brain. We have successfully imaged the octopus brain, mouse lung, and rat brain. We are currently working on whole zebra fish embryos. Data like these can greatly contribute to connectomics research; to microcirculation and hemodynamic research; and to stereology research by providing an exact ground-truth. In this article, we will describe the pipeline, including specimen preparation (fixing, staining, and embedding), KESM configuration and setup, sectioning and imaging with the KESM, image processing, data preparation, and data visualization and analysis. The emphasis will be on specimen preparation and visualization/analysis of obtained KESM data. We expect the detailed protocol presented in this article to help broaden the access to KESM and increase its utilization.

  19. Iridium Coating Deposited by Double Glow Plasma Technique — Effect of Glow Plasma on Structure of Coating at Single Substrate Edge

    International Nuclear Information System (INIS)

    Wu Wangping; Chen Zhaofeng; Liu Yong

    2012-01-01

    Double glow plasma technique has a high deposition rate for preparing iridium coating. However, the glow plasma can influence the structure of the coating at the single substrate edge. In this study, the iridium coating was prepared by double glow plasma on the surface of single niobium substrate. The microstructure of iridium coating at the substrate edge was observed by scanning electron microscopy. The composition of the coating was confirmed by energy dispersive spectroscopy and X-ray diffraction. There was a boundary between the coating and the substrate edge. The covered area for the iridium coating at the substrate edge became fewer and fewer from the inner area to the outer flange-area. The bamboo sprout-like particles on the surface of the substrate edge were composed of elemental niobium. The substrate edge was composed of the Nb coating and there was a transition zone between the Ir coating and the Nb coating. The interesting phenomenon of the substrate edge could be attributed to the effects of the bias voltages and the plasma cloud in the deposition chamber. The substrate edge effect could be mitigated or eliminated by adding lots of small niobium plates around the substrate in a deposition process. (plasma technology)

  20. On the Relation between Edge and Vertex Modelling in Shape Analysis

    DEFF Research Database (Denmark)

    Hobolth, Asger; Kent, John Thomas; Dryden, Ian L.

    2002-01-01

    Objects in the plane with no obvious landmarks can be described by either vertex transformation vectors or edge transformation vectors. In this paper we provide the relation between the two transformation vectors. Grenander & Miller (1994) use a multivariate normal distribution with a block...... circulant covariance matrix to model the edge transformation vector. This type of model is also feasible for the vertex transformation vector and in certain cases the free parameters of the two models match up in a simple way. A vertex model and an edge model are applied to a data set of sand particles...

  1. Aeroelastic Analysis of a Flexible Wing Wind Tunnel Model with Variable Camber Continuous Trailing Edge Flap Design

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    This paper presents data analysis of a flexible wing wind tunnel model with a variable camber continuous trailing edge flap (VCCTEF) design for drag minimization tested at the University of Washington Aeronautical Laboratory (UWAL). The wind tunnel test was designed to explore the relative merit of the VCCTEF concept for improved cruise efficiency through the use of low-cost aeroelastic model test techniques. The flexible wing model is a 10%-scale model of a typical transport wing and is constructed of woven fabric composites and foam core. The wing structural stiffness in bending is tailored to be half of the stiffness of a Boeing 757-era transport wing while the torsional stiffness is about the same. This stiffness reduction results in a wing tip deflection of about 10% of the wing semi-span. The VCCTEF is a multi-segment flap design having three chordwise camber segments and five spanwise flap sections for a total of 15 individual flap elements. The three chordwise camber segments can be positioned appropriately to create a desired trailing edge camber. Elastomeric material is used to cover the gaps in between the spanwise flap sections, thereby creating a continuous trailing edge. Wind tunnel data analysis conducted previously shows that the VCCTEF can achieve a drag reduction of up to 6.31% and an improvement in the lift-to-drag ratio (L=D) of up to 4.85%. A method for estimating the bending and torsional stiffnesses of the flexible wingUWAL wind tunnel model from static load test data is presented. The resulting estimation indicates that the stiffness of the flexible wing is significantly stiffer in torsion than in bending by as much as 9 to 1. The lift prediction for the flexible wing is computed by a coupled aerodynamic-structural model. The coupled model is developed by coupling a conceptual aerodynamic tool Vorlax with a finite-element model of the flexible wing via an automated geometry deformation tool. Based on the comparison of the lift curve slope

  2. Vibration Analysis of Rectangular Plates with One or More Guided Edges via Bicubic B-Spline Method

    Directory of Open Access Journals (Sweden)

    W.J. Si

    2005-01-01

    Full Text Available A simple and accurate method is proposed for the vibration analysis of rectangular plates with one or more guided edges, in which bicubic B-spline interpolation in combination with a new type of basis cubic B-spline functions is used to approximate the plate deflection. This type of basis cubic B-spline functions can satisfy simply supported, clamped, free, and guided edge conditions with easy numerical manipulation. The frequency characteristic equation is formulated based on classical thin plate theory by performing Hamilton's principle. The present solutions are verified with the analytical ones. Fast convergence, high accuracy and computational efficiency have been demonstrated from the comparisons. Frequency parameters for 13 cases of rectangular plates with at least one guided edge, which are possible by approximate or numerical methods only, are presented. These results are new in literature.

  3. The local structure of Ca-Na pyroxenes. 2-Xanes studies at the Mg and A1 K edges

    International Nuclear Information System (INIS)

    Mottana, A.; Cibin, G.; Paris, E.; Giuli, G.; Florence Univ., Florence

    1999-01-01

    X-ray absorption spectra at the Mg and A1 K edges have been recorded on synthetic endmember diopside (Di) and jadeite (Jd) and on a series of natural Fe-poor Ca-Na clinopyroxenes compositionally straddling the Jd-Di join. The spectra of C2/c members of the series (C-omphacites) are different from having P2/n symmetry (P-omphacites). Differences can be explained by theoretical spectra calculated via the multiple-scattering formalism on atomic clusters with at least 89 atoms, extending to a. 0.62 nm away from the Mg viz. A1 absorber: Xanes detects in these systems medium- rather than short-range order-disorder relationships. Near-edge features of C-omphacites reflect the single-type of octahedral arrangement of the back scattering nearest-neighbours (six O atoms) around the absorber (Mg resp. A1) at the centre of the cluster (site M1). Others arise again from medium-range order. P-omphacites show more complicated spectra than C-omphacites. Their additional features reflect the increased local disorder around the probed atom (Mg resp. A1) induced by the two alternative M1, M11 configurations of the six O atoms forming the first co-ordination spheres. Mg and A1 are confirmed to be preferentially partitioned in the M1 resp. M11 site of the P-omphacite crystal structure, however never exclusively, but in a ratio close to 85:15 (plus or minus 10%) that implies a certain degree of local disorder. Changes in the relative heights of some prominent features are more evident in the A1 than in the Mg K-edge spectra. They are diagnostic to qualitatively distinguish C-from P-omphacites

  4. The local structure of Ca-Na pyroxenes. 2-Xanes studies at the Mg and A1 K edges

    Energy Technology Data Exchange (ETDEWEB)

    Mottana, A. [Rome Univ. Roma Tre, Rome (Italy). Dipt. di Scienze Geologiche; Murata, T. [Kyoto University of Education, Kyoto (Japan). Dept. of Physics; Marcelli, A. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Wu, Z.Y. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati]|[Laboratoire Piere Suee, Gif-sur Yvette Cedex, (France); Cibin, G. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Paris, E. [Camerino Univ., Camerino, MC (Italy). Dipt. di Scienze della Terra; Giuli, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Scienze della Terra]|[Florence Univ., Florence (Italy). Dipt. di Scienze della Terra

    1999-07-01

    X-ray absorption spectra at the Mg and A1 K edges have been recorded on synthetic end member diopside (Di) and jadeite (Jd) and on a series of natural Fe-poor Ca-Na clinopyroxenes compositionally straddling the Jd-Di join. The spectra of C2/c members of the series (C-omphacites) are different from having P2/n symmetry (P-omphacites). Differences can be explained by theoretical spectra calculated via the multiple-scattering formalism on atomic clusters with at least 89 atoms, extending to a. 0.62 nm away from the Mg viz. A1 absorber: Xanes detects in these systems medium- rather than short-range order-disorder relationships. Near-edge features of C-omphacites reflect the single-type of octahedral arrangement of the back scattering nearest-neighbours (six O atoms) around the absorber (Mg resp. A1) at the centre of the cluster (site M1). Others arise again from medium-range order. P-omphacites show more complicated spectra than C-omphacites. Their additional features reflect the increased local disorder around the probed atom (Mg resp. A1) induced by the two alternative M1, M11 configurations of the six O atoms forming the first co-ordination spheres. Mg and A1 are confirmed to be preferentially partitioned in the M1 resp. M11 site of the P-omphacite crystal structure, however never exclusively, but in a ratio close to 85:15 (plus or minus 10%) that implies a certain degree of local disorder. Changes in the relative heights of some prominent features are more evident in the A1 than in the Mg K-edge spectra. They are diagnostic to qualitatively distinguish C-from P-omphacites.

  5. Role of step edges on the structure formation of α-6T on Ag(441)

    Science.gov (United States)

    Wagner, Thorsten; Fritz, Daniel Roman; Rudolfová, Zdena; Zeppenfeld, Peter

    2018-01-01

    Controlling the orientation of organic molecules on surfaces is important in order to tune the physical properties of the organic thin films and, thereby, increase the performance of organic thin film devices. Here, we present a scanning tunneling microscopy (STM) and photoelectron emission microscopy (PEEM) study of the deposition of the organic dye pigment α-sexithiophene (α-6T) on the vicinal Ag(441) surface. In the presence of the steps on the Ag(441) surface, the α-6T molecules exclusively align parallel to the step edges oriented along the [1 1 bar0]-direction of the substrate. The STM results further reveal that the adsorption of the α-6T molecules is accompanied by various restructuring of the substrate surface: Initially, the molecules prefer the Ag(551) building blocks of the Ag(441) surface. The Ag(551) termination of the terraces is then changed to a predominately Ag(331) one upon completion of the first α-6T monolayer. When closing the two layer thick wetting layer, the original ratio of Ag(331) and Ag(551) building blocks ( ≈ 1:1) is recovered, but a phase separation into microfacets, which are composed either of Ag(331) or of Ag(551) building blocks, is found.

  6. A short course on topological insulators band structure and edge states in one and two dimensions

    CERN Document Server

    Asbóth, János K; Pályi, András

    2016-01-01

    This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological insulators. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. The present approach uses noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the discussion of simple toy models is followed by the formulation of the general arguments regarding topological insulators. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.

  7. Facile and tunable synthesis of hierarchical mesoporous silica materials ranging from flower structure with wrinkled edges to hollow structure with coarse surface

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Nanjing, E-mail: nanjing.hao@dartmouth.edu [Dartmouth College, Thayer School of Engineering (United States); Li, Laifeng; Tang, Fangqiong, E-mail: tangfq@mail.ipc.ac.cn [Chinese Academy of Sciences, Technical Institute of Physics and Chemistry (China)

    2016-11-15

    Mesoporous silica materials have attracted great attention in many fields. However, facile and tunable synthesis of hierarchical mesoporous silica structures is still a big challenge, and thus the development of them still lags behind. Herein, well-defined mesoporous silica flower structure with wrinkled edges and mesoporous silica hollow structure with coarse surface were synthesized simply by using poly(vinylpyrrolidone) and hexadecylamine as cotemplates in different water/ethanol solvent systems. The shape evolution from flower to hollow can be easily realized by tuning the volume ratio of water to ethanol, and the yields of both materials can reach gram scale. The formation mechanisms of mesoporous silica flower and hollow structures were also experimentally investigated and discussed. These novel hierarchical structures having unique physicochemical properties may bring many interesting insights into scientific research and technological application.

  8. Stress Analysis of an Edge-Cracked Plate by using Photoelastic Fringe Phase Shifting Method

    International Nuclear Information System (INIS)

    Baek, Tae Hyun; Kim, Myung Soo; Cho, Sung Ho

    2000-01-01

    The method of photoelasticity allows one to obtain principal stress differences and principal stress directions in a photoelastic model. In the classical approach, the photoelastic parameters are measured manually point by point. The previous methods require much time and skill in the identification and measurement of photoelastic data. Fringe phase shifting method has been recently developed and widely used to measure and analyze fringe data in photo-mechanics. This paper presents the test results of photoelastic fringe phase shifting technique for the stress analysis of a circular disk under compression and an edge-cracked plate subjected to tensile load. The technique used here requires four phase stepped photoelastic images obtained from a circular polariscope by rotating the analyzer at 0 .deg. ,45 .deg. ,90 .deg. ,and 135 .deg. . Experimental results are compared with those or FEM. Good agreement between the results can be observed. However, some error may be included if the technique is used to general direction which is not parallel to isoclinic fringe

  9. Failure analysis of edge flat-slab column connections with shear reinforcement

    OpenAIRE

    Bompa, Dan V.; Muttoni, Aurelio

    2013-01-01

    Flat-slab column connections are susceptible to brittle failure, which lead to the necessity of improving ductility and ultimate strength. In case of edge connections, the behaviour at ultimate state is highly influenced by nonsymmetrical distribution of stresses originated by a moment transfer between the slab and the column. The paper presents the test results of three full-scale reinforced concrete flat-slab edge connections with stud-rail shear reinforcement subjected to concentrated load...

  10. Structures and their analysis

    CERN Document Server

    Fuchs, Maurice Bernard

    2016-01-01

    Addressing structures, this book presents a classic discipline in a modern setting by combining illustrated examples with insights into the solutions. It is the fruit of the author’s many years of teaching the subject and of just as many years of research into the design of optimal structures. Although intended for an advanced level of instruction it has an undergraduate course at its core. Further, the book was written with the advantage of having massive computer power in the background, an aspect which changes the entire approach to many engineering disciplines and in particular to structures. This paradigm shift has dislodged the force (flexibility) method from its former prominence and paved the way for the displacement (stiffness) method, despite the multitude of linear equations it spawns. In this book, however, both methods are taught: the force method offers a perfect vehicle for understanding structural behavior, bearing in mind that it is the displacement method which does the heavy number crunch...

  11. Schottky barrier and band edge engineering via the interfacial structure and strain for the Pt/TiO2 heterostructure.

    Science.gov (United States)

    Ma, Xiangchao; Wu, Xin; Wang, Yucheng; Dai, Ying

    2017-07-19

    Charge transfer across the Pt/TiO 2 interface, which is mainly determined by the interface Schottky barrier height (SBH), is an important process in the (photo)catalytic and electronic applications of the Pt/TiO 2 composite. Therefore, systematic investigation of the factors that affect the interface SBH is indispensable for understanding and optimizing its performance. In this work, a systematic study of the effects of the interfacial structure and strain on the SBH of the Pt/TiO 2 (001) interface has been carried out based on the first-principles calculations. The results of interface adhesion energy show that two different interfacial structures for the Pt/TiO 2 (001) heterointerface may exist experimentally, namely, O-Pt bonding and Ti-Pt bonding. Moreover, the interfacial structures result in not only different values for the SBH, but also different dependences of the SBH on strain. Detailed investigations show that these versatile modulations of the SBH with the structure and strain are mainly attributed to the strong dependence of the band edges of TiO 2 and the interfacial potential alignments on the strain and structure, suggesting that these results are general and may be applicable to other metal/TiO 2 heterostructures.

  12. Feasibility study of X-ray K-edge analysis of RCRA heavy metal contamination of sludge packaged in drums

    International Nuclear Information System (INIS)

    Jensen, T.

    1999-01-01

    A study has been completed to assess the capabilities of X-ray K-edge analysis in the measurement of RCRA metal contamination of sludge packaged in drums. Results were obtained for mercury and lead contamination. It was not possible to measure cadmium contamination using this technique. No false positive signals were observed. In cases where uniformity of the sludge can be assumed, this analysis can provide a quick, accurate measurement of heavy-metal contamination

  13. Nonlinear finite element analysis of reinforced and prestressed concrete shells with edge beams

    International Nuclear Information System (INIS)

    Srinivasa Rao, P.; Duraiswamy, S.

    1994-01-01

    The structural design of reinforced and prestressed concrete shells demands the application of nonlinear finite element analysis (NFEM) procedures to ensure safety and serviceability. In this paper the details of a comprehensive NFEM program developed are presented. The application of the program is highlighted by solving two numerical problems and comparing the results with experimental results. (author). 20 refs., 15 figs

  14. X-Ray Absorption Near-Edge Structure (XANES) of Calcium L3,2 Edges of Various Calcium Compounds and X-Ray Excited Optical Luminescence (XEOL) Studies of Luminescent Calcium Compounds

    International Nuclear Information System (INIS)

    Ko, J. Y. Peter; Zhou Xingtai; Sham, T.-K.; Heigl, Franziskus; Regier, Tom; Blyth, Robert

    2007-01-01

    X-ray absorption at calcium L3,2 edges of various calcium compounds were measured using a high resolution Spherical Grating Monochromator (SGM) at the Canadian Light Source (CLS). We observe that each compound has its unique fine structure of L3,2 edges. This uniqueness is due to differences in local structure of compounds. We also performed (X-ray Excited Optical Luminescence) XEOL of selected luminescent calcium compounds to investigate their optical properties. XEOL is a photon-in-photon-out technique in which the optical luminescence that is excited by tunable x-rays from a synchrotron light source is monitored. Depending on excitation energy of the x-ray, relative intensities of luminescence peaks vary. Recent findings of the results will be presented here

  15. Collapse Analysis of Timber Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2008-01-01

    of Structures and a probabilistic modelling of the timber material proposed in the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS). Due to the framework in the Danish Code the timber structure has to be evaluated with respect to the following criteria where at least one shall...... to criteria a) and b) the timber frame structure has one column with a reliability index a bit lower than an assumed target level. By removal three columns one by one no significant extensive failure of the entire structure or significant parts of it are obtained. Therefore the structure can be considered......A probabilistic based collapse analysis has been performed for a glulam frame structure supporting the roof over the main court in a Norwegian sports centre. The robustness analysis is based on the framework for robustness analysis introduced in the Danish Code of Practice for the Safety...

  16. A population on the edge: genetic diversity and population structure of the world's northernmost harbour seals (Phoca vitulina)

    DEFF Research Database (Denmark)

    Andersen, Liselotte Wesley; Lydersen, Christian; Frie, Anne Kirstine

    2011-01-01

    insight into consequences of population declines in a broader conservation context. The harbour seal population at Svalbard is the world's northernmost harbour seal population. Nothing is known about the genetic diversity, distinctiveness or origin of this small, marginalized mammalian population. Thus......  It is crucial to examine the genetic diversity and structure of small, isolated populations, especially those at the edge of their distribution range, because they are vulnerable to stochastic processes if genetic diversity is low and isolation level high, and because such populations provide...... microsatellites and variation in the D-loop. Each of the four locations was a genetically distinct population. The Svalbard population was highly genetically distinct, had reduced genetic diversity, received limited gene flow, had a rather low effective population size and showed an indication of having...

  17. Structure and motion of edge turbulence in the National Spherical Torus Experiment and Alcator C-Moda)

    Science.gov (United States)

    Zweben, S. J.; Maqueda, R. J.; Terry, J. L.; Munsat, T.; Myra, J. R.; D'Ippolito, D.; Russell, D. A.; Krommes, J. A.; LeBlanc, B.; Stoltzfus-Dueck, T.; Stotler, D. P.; Williams, K. M.; Bush, C. E.; Maingi, R.; Grulke, O.; Sabbagh, S. A.; White, A. E.

    2006-05-01

    In this paper we compare the structure and motion of edge turbulence observed in L-mode vs. H-mode plasmas in the National Spherical Torus Experiment (NSTX) [M. Ono, M. G. Bell, R. E. Bell et al., Plasma Phys. Controlled Fusion 45, A335 (2003)]. The radial and poloidal correlation lengths are not significantly different between the L-mode and the H-mode in the cases examined. The poloidal velocity fluctuations are lower and the radial profiles of the poloidal turbulence velocity are somewhat flatter in the H-mode compared with the L-mode plasmas. These results are compared with similar measurements Alcator C-Mod [E. Marmar, B. Bai, R. L. Boivin et al., Nucl. Fusion 43, 1610 (2003)], and with theoretical models.

  18. The cutting edge - Micro-CT for quantitative toolmark analysis of sharp force trauma to bone.

    Science.gov (United States)

    Norman, D G; Watson, D G; Burnett, B; Fenne, P M; Williams, M A

    2018-02-01

    Toolmark analysis involves examining marks created on an object to identify the likely tool responsible for creating those marks (e.g., a knife). Although a potentially powerful forensic tool, knife mark analysis is still in its infancy and the validation of imaging techniques as well as quantitative approaches is ongoing. This study builds on previous work by simulating real-world stabbings experimentally and statistically exploring quantitative toolmark properties, such as cut mark angle captured by micro-CT imaging, to predict the knife responsible. In Experiment 1 a mechanical stab rig and two knives were used to create 14 knife cut marks on dry pig ribs. The toolmarks were laser and micro-CT scanned to allow for quantitative measurements of numerous toolmark properties. The findings from Experiment 1 demonstrated that both knives produced statistically different cut mark widths, wall angle and shapes. Experiment 2 examined knife marks created on fleshed pig torsos with conditions designed to better simulate real-world stabbings. Eight knives were used to generate 64 incision cut marks that were also micro-CT scanned. Statistical exploration of these cut marks suggested that knife type, serrated or plain, can be predicted from cut mark width and wall angle. Preliminary results suggest that knives type can be predicted from cut mark width, and that knife edge thickness correlates with cut mark width. An additional 16 cut marks walls were imaged for striation marks using scanning electron microscopy with results suggesting that this approach might not be useful for knife mark analysis. Results also indicated that observer judgements of cut mark shape were more consistent when rated from micro-CT images than light microscopy images. The potential to combine micro-CT data, medical grade CT data and photographs to develop highly realistic virtual models for visualisation and 3D printing is also demonstrated. This is the first study to statistically explore simulated

  19. Experimental Investigations on Leading-Edge Vortex Structures for Flow over Non-Slender Delta Wings

    International Nuclear Information System (INIS)

    Jin-Jun, Wang; Wang, Zhang

    2008-01-01

    The dye injection and hydrogen bubble visualization techniques are used to investigate the dual-vortex structure including its development, breakdown and the spatial location of vortex core over nonslender delta wings. It is concluded that the dual-vortex structure can be affected significantly by sweep angle and Reynolds number, and generated only at small angle of attack. The angle between the projection of outer vortex core on delta wing surface and the root chord line has nothing to do with the Reynolds Number and angle of attack, but has simple linear relation with the sweep angle of the model tested. (fundamental areas of phenomenology (including applications))

  20. Contrasting genetic structure of rear edge and continuous range populations of a parasitic butterfly infected by Wolbachia

    Directory of Open Access Journals (Sweden)

    Patricelli Dario

    2013-01-01

    Full Text Available Abstract Background Climatic oscillations are among the long-term factors shaping the molecular features of animals and plants and it is generally supposed that the rear edges (i.e., the low-latitude limits of distribution of any given specialised species situated closer to glacial refugia are vital long-term stores of genetic diversity. In the present study, we compared the genetic structure of several populations of an endangered and obligate myrmecophilous butterfly (Maculinea arion from two distinct and geographically distant parts of its European distribution (i.e., Italy and Poland, which fully represent the ecological and morphological variation occurring across the continent. Results We sequenced the COI mitochondrial DNA gene (the ‘barcoding gene’ and the EF-1α nuclear gene and found substantial genetic differentiation among M. arion Italian populations in both markers. Eleven mtDNA haplotypes were present in Italy. In contrast, almost no mtDNA polymorphisms was found in the Polish M. arion populations, where genetic differentiation at the nuclear gene was low to moderate. Interestingly, the within-population diversity levels in the EF-1α gene observed in Italy and in Poland were comparable. The genetic data did not support any subspecies divisions or any ecological specialisations. All of the populations studied were infected with a single strain of Wolbachia and our screening suggested 100% prevalence of the bacterium. Conclusions Differences in the genetic structure of M. arion observed in Italy and in Poland may be explained by the rear edge theory. Although we were not able to pinpoint any specific evolutionarily significant units, we suggest that the Italian peninsula should be considered as a region of special conservation concern and one that is important for maintaining the genetic diversity of M. arion in Europe. The observed pattern of mtDNA differentiation among the populations could not be explained by an

  1. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect

    International Nuclear Information System (INIS)

    Truong, Tien Van; Yoon, Kwang Joon; Byun, Doyoung; Kim, Min Jun; Park, Hoon Cheol

    2013-01-01

    The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff

  2. Numerical Analysis of Edge Over Coating and Baffle Effect on Hot-Dip Galvanizing

    Science.gov (United States)

    Bao, Chengren; Kang, Yonglin; Li, Yan

    2017-06-01

    In hot-dip galvanizing process, air jet wiping control is so crucial to determine the coating thickness and uniformity of the zinc layer on the steel strip. A numerical simulation of gas-jet wiping in hot-dip galvanizing was conducted to minimize the occurrence of edge over coating (EOC). The causes of EOC were identified by contrasting and analyzing the airflow fields on the strip edge with and without a baffle. The factors influencing the airflow field on the strip edge during the change in the gap between the baffle and the strip edge were also analyzed. The effect of the distance between the air knife and the strip was evaluated. Technological parameters with on-site guidance role were obtained by combining them with the actual production to elucidate the role of the baffle in restraining the occurrence of EOC. The uniform distribution of pressure and coating thickness on the strip is achieved when the distance of the baffle from the strip edge is about 0.3 times of the jetting distance.

  3. Electronic structure effects on B K-edge XANES of minerals

    Czech Academy of Sciences Publication Activity Database

    Šipr, Ondřej; Rocca, F.

    2010-01-01

    Roč. 17, č. 3 (2010), s. 367-373 ISSN 0909-0495 R&D Projects: GA ČR GA202/08/0106 Institutional research plan: CEZ:AV0Z10100521 Keywords : structure * potentials * boron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.335, year: 2010

  4. Structural systems reliability analysis

    International Nuclear Information System (INIS)

    Frangopol, D.

    1975-01-01

    For an exact evaluation of the reliability of a structure it appears necessary to determine the distribution densities of the loads and resistances and to calculate the correlation coefficients between loads and between resistances. These statistical characteristics can be obtained only on the basis of a long activity period. In case that such studies are missing the statistical properties formulated here give upper and lower bounds of the reliability. (orig./HP) [de

  5. X-ray K-edge analysis of drain lines in Wilhelm Hall, Ames Laboratory

    International Nuclear Information System (INIS)

    Jensen, T.; Whitmore, C.; Iowa State Univ., Ames, IA

    1999-01-01

    From August 12--27, 1998 X-ray K-edge measurements were made on drain lines in seven rooms in Wilhelm Hall, Ames Laboratory. The purpose of these measurements was to determine the extent of thorium (and other heavy metal) contamination inside these pipes. The K-edge method is a noninvasive inspection technique that can provide accurate quantification of heavy metal contamination interior to an object. Of the seven drain lines inspected, one was found to have no significant contamination, three showed significant thorium deposits, two showed mercury contamination, and one line was found to contain mercury, thorium and uranium. The K-edge measurements were found to be consistent with readings from hand-held survey meters, and provided much greater detail on the location and amount of heavy metal contamination

  6. [Edge effect of the plant community structure on land-bridge islands in the Thousand Island Lake].

    Science.gov (United States)

    Su, Xiao-Fei; Yuan, Jin-Feng; Hu, Guang; Xu, Gao-Fu; Yu, Ming-Jian

    2014-01-01

    The research was conducted on 29 land-bridge islands in the Thousand Island Lake (TIL), where long-term monitoring plots were set up during 2009-2010. The community attributes including species richness, Shannon index, plant mean height, plant mean diameter at breast height (DBH) and plant density along the edge-interior gradient from edge to interior forest were calculated to investigate the edge effect. The results showed that the species richness and Shannon index were affected through the whole gradient (larger than 50 m), while the range of edge effect was 20-30 m on mean plant height, and 10 m on plant density and mean DBH. Community attributes differed significantly among the edge gradients. The species richness and Shannon index peaked at the intermediate edge gradient. Plant density decreased and plant mean height increased along the edge to interior gradient. All five community attributes were significantly associated with the edge gradient, also different functional groups, evergreen or deciduous species, trees or shrubs, shade tolerant or shade intolerant species, were differentially influenced by the edge effect. It was demonstrated the influence of edge effect on the fragmented forest community varied with community attributes and functional groups.

  7. An enhanced matrix-free edge-based finite volume approach to model structures

    CSIR Research Space (South Africa)

    Suliman, Ridhwaan

    2010-01-01

    Full Text Available application to a number of test-cases. As will be demonstrated, the finite volume approach exhibits distinct advantages over the Q4 finite element formulation. This provides an alternative approach to the analysis of solid mechanics and allows...

  8. Nuclear fuel rod grid spring and dimple structures having chamfered edges for reduced pressure drop

    International Nuclear Information System (INIS)

    De Mario, E.E.

    1990-01-01

    This patent describes a nuclear fuel rod grid including inner and outer straps being interleaved with one another to form a matrix of hollow cells, each cell for receiving one fuel rod and being defined by pairs of opposing wall sections of the straps which wall sections are shared with adjacent cells, each cell having a central longitudinal axis defining a coolant flow direction through the cell, at least fuel rod engaging dimple structure of resiliently yieldable material being integrally formed on each wall section of the inner straps

  9. Finite-size effects on electronic structure and local properties in passivated AA -stacked bilayer armchair-edge graphene nanoribbons

    International Nuclear Information System (INIS)

    Chen, Xiongwen; Shi, Zhengang; Xiang, Shaohua; Song, Kehui; Zhou, Guanghui

    2017-01-01

    Based on the tight-binding model and dual-probe scanning tunneling microscopy technology, we theoretically investigate the electronic structure and local property in the passivated AA -stacked bilayer armchair-edge graphene nanoribbons (AABLAGNRs). We show that they are highly sensitive to the size of the ribbons, which is evidently different from the single-layer armchair-edge graphene nanoribbons. The ‘3 p ’ rule only applies to the narrow AABLGNRs. Namely, in the passivated 3 p - and (3 p   +  1)-AABLGNRs, the narrow ribbons are semiconducting while the medium and wide ribbons are metallic. Although the passivated (3 p   +  2)-AABLGNRs are metallic, the ‘3 j ’ rule only applies to the narrow and medium ribbons. Namely, electrons are in the semiconducting states at sites of line 3 j while they are in the metallic states at other sites. This induces a series of parallel and discrete metallic channels, consisting of lines 3 j   −  1 and 3 j   −  2, for the low-energy electronic transports. In the passivated wide (3 p   +  2)-AABLGNRs, all electrons are in the metallic states. Additionally, the ‘3 p ’ and ‘3 j ’ rules are controllable to disappear and reappear by applying an external perpendicular electric field. Resultantly, an electric filed-driven current switch can be realized in the passivated narrow and medium (3 p   +  2)-AABLGNRs. (paper)

  10. A sensitivity analysis of "Forests on the Edge: Housing Development on America's Private Forests."

    Science.gov (United States)

    Eric M. White; Ralph J. Alig; Lisa G. Mahal; David M. Theobald

    2009-01-01

    The original Forests on the Edge report (FOTE 1) indicated that 44.2 million acres of private forest land was projected to experience substantial increases in residential development in the coming decades. In this study, we examined the sensitivity of the FOTE 1 results to four factors: (1) use of updated private land and forest cover spatial data and a revised model...

  11. A practical approach to fracture analysis at the trailing edge of wind turbine rotor blades

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Bitsche, Robert; Nielsen, Magda

    2014-01-01

    Wind turbine rotor blades are commonly manufactured from composite materials by a moulding process. Typically, the wind turbine blade is produced in two halves, which are eventually adhesively joined along their edges. Investigations of operating wind turbine blades show that debonding...

  12. X-ray absorption near-edge structure of GaN with high Mn concentration grown on SiC

    International Nuclear Information System (INIS)

    Sancho-Juan, O; Cantarero, A; Garro, N; Cros, A; Martinez-Criado, G; Salome, M; Susini, J; Olguin, D; Dhar, S

    2009-01-01

    By means of x-ray absorption near-edge structure (XANES) several Ga 1-x Mn x N (0.03 2 ↑ band localized in the gap region, and the corresponding anti-bonding state t 2 ↓, which seem to be responsible for the double structure which appears at the pre-edge absorption region. The shoulders and main absorption peak of the XANES spectra are attributed to transitions from the Mn(1s) band to the conduction bands, which are partially dipole allowed because of the Mn(4p) contribution to these bands.

  13. Structural Disorder in Colloidal InAs and CdSe Nanocrystals Observed by X-Ray Absorption Near-Edge Spectroscopy

    International Nuclear Information System (INIS)

    Hamad, K.S.; Hamad, K.S.; Roth, R.; Roth, R.; Rockenberger, J.; Rockenberger, J.; Alivisatos, A.P.; Alivisatos, A.P.; Buuren, T. van

    1999-01-01

    We report the observation of size dependent structural disorder by x-ray absorption near-edge spectroscopy (XANES) in InAs and CdSe nanocrystals 17 - 80 Angstrom in diameter. XANES of the In and Cd M 4,5 edges yields features that are sharp for the bulk solid but broaden considerably as the size of the particle decreases. FEFF7 multiple-scattering simulations reproduce the size dependent broadening of the spectra if a bulklike surface reconstruction of a spherical nanocrystal model is included. This illustrates that XANES is sensitive to the structure of the entire nanocrystal including the surface. copyright 1999 The American Physical Society

  14. Sandwich structure of plasma edge during transition to improved confinement regime in L-2M stellarator

    International Nuclear Information System (INIS)

    Shchepetov, S V; Kholnov, Yu V; Fedyanin, O I; Kuznetsov, A B; Vasilkov, D G; Akulina, D K; Batanov, G M; Gladkov, G A; Grebenshchikov, S E; Meshcheryakov, A I

    2008-01-01

    Transitions to the regime with better confinement in the L-2M stellarator are presented. Transitions are indicated only at sufficiently high plasma densities, and for a given value of average density they appear only at higher heating powers. Each transition is easily identified by a sudden fast ( e ). In the bulk of the plasma parameters evolve slowly. Drastic changes are observed in the region close to the plasma boundary where two moderate order rational magnetic surfaces are located with the rotational transform μ taking the values 2/3 and 3/4. Relative values of plasma parameters' fluctuations and their spectrum widths decrease significantly in this region. The region has a definite sandwich structure being subdivided by the above-named moderate order rational magnetic surfaces into three smaller zones with different plasma parameter dynamics. Transition is triggered by local disturbances of plasma parameters that are caused by instabilities in the vicinity of magnetic surfaces where μ is equal to 2/3 or 3/4. Different hypotheses on the nature of the phenomenon are discussed

  15. Edge Stenosis After Covered Stenting for Long Superficial Femoral Artery Occlusive Disease: Risk Factor Analysis and Prevention With Drug-Coated Balloon Angioplasty.

    Science.gov (United States)

    Lin, Ting-Chao; Huang, Chun-Yang; Chen, Po-Lin; Lee, Chiu-Yang; Shih, Chun-Che; Chen, I-Ming

    2018-06-01

    To report a retrospective analysis of risk factors for edge restenosis after Viabahn stent-graft treatment of superficial femoral artery (SFA) occlusive disease and determine any protective effect of drug-coated balloons (DCBs) used at the time of stent-graft implantation. Between October 2011 and July 2016, 110 patients (mean age 73.3±7.6 years; 78 men) were treated with the Viabahn stent-graft for long SFA occlusions. Thirty-eight (34.5%) patients had DCB reinforcement at the distal edge of the stent-graft. For analysis, the population was divided into groups of no edge stenosis patients (n=88; mean lesion length 22.4±4.2 cm) and edge stenosis patients (n=22; mean lesion length 23.5±5.7 cm). The clinical outcomes, ankle-brachial indices, computed tomography angiography findings, and patency were compared at a minimum of 12 months. Logistic regression analysis was employed to determine risk factors for edge stenosis; the results are presented as the odds ratio (OR) and 95% confidence interval. No differences in clinical or procedural characteristics were identified except the higher incidence of diabetes (p=0.008) and greater need for retrograde access (p=0.033) in the edge stenosis group. DCB reinforcement reduced the incidence of edge stenosis (p=0.021) and target lesion revascularization (TLR; p=0.010) and resulted in a significantly higher 1-year primary patency rate (92.1% vs 76.4%, p=0.042). However, multivariate analysis revealed only poor distal runoff (OR 0.31, 95% CI 0.11 to 0.83, p=0.020) as a predictor of edge stenosis. The risk of edge stenosis after Viabahn implantation was higher in patients with poor distal runoff. DCB reinforcement over the distal edge reduced edge stenosis, decreased 1-year TLR, and improved 1-year primary patency.

  16. Effect of the van der Waals interaction on the electron energy-loss near edge structure theoretical calculation.

    Science.gov (United States)

    Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu

    2017-07-01

    The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The analysis of cracked structures

    International Nuclear Information System (INIS)

    Davidson, I.

    1974-01-01

    A brief review of the general problem of stable crack systems in many classes of structures, notably reinforced concrete structures, is made. Very simple methods of analysis are derived and some elaboration is described, as well as methods of optimising the calculations. Analytical methods are compared with experiments

  18. X-ray microanalysis with transition edge sensors. The future of material analysis with scanning electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Hollerith, C.

    2006-07-05

    In current experiments and technical applications the demand for new and advanced concepts for the detection of radiation and particle is increasing. Low temperature detectors such as Transition Edge Sensors (TES) have been developed as ultrahigh-resolution radiation and particle detectors offering advantages in manifold applications. They were designed primarily for astrophysical experiments such as the dark matter search. In material analysis they have been introduced to revolutionize mass spectroscopy of biological molecules and Energy Dispersive X-ray Spectroscopy (EDS). EDS is the determination of the elemental constitution of samples in scanning electron microscopes (SEMs) with characteristic X-ray radiation excited by the electron beam. The use of TES detectors improves the EDS analysis of small volumes such as particles or thin layers. This is especially important for the semiconductor industry because of the continual shrinking of device size. Current structure sizes of 65 nm are already demanding new approaches in analytic methodology. In this thesis the introduction and improvement of a fully automated TES detector system in the industrial environment of a semiconductor failure analysis lab is described. This system, marketed under the trade name of 'Polaris' by the manufacturer, is based on a mechanical pulse tube cooler in combination with an adiabatic demagnetization refrigerator (ADR) for cooling the TES detector to its operating temperature. Several large improvements had to be made to the system during the total system integration. The energy resolution could be improved significantly thus enabling a better peak separation and the measurement of chemical shifts. Due to the small area of TES detectors compared with conventional EDS detectors the efficiency of the system proved to be too low for everyday use. A polycapillary X-ray lens was added to the system in order to solve this problem. The application of the lens, however, brought its

  19. The local structure of CaNa pyroxenes. I. XANES study at the Na K-edge

    International Nuclear Information System (INIS)

    Mottana, Annibale; Murata, T.; Wu, Ziyu; Marcelli, Augusto; Paris, E.

    1996-07-01

    X-ray absorption Na K-edge spectra have been recorded on synthetic end member jadeite and on a series of natural Ca-Na pyroxenes compositionally straddling the Jd-Di. The disordered C2/c members of the series are systematically different from the ordered P2/n members. These differences can be interpreted and explained by comparing the experimental spectra with theoretical spectra. These have been calculated by the multiple-scattering formalism from the atomic positional parameters determined by single-crystal X-ray diffraction structure refinement on the same samples. In the full multiple scattering region of the spectrum (1075 to 1095 eV) C-pyroxenes exhibit three features which reflect the 6-2 configuration of the O back-scattering atoms around the Na absorber located at the center of the cluster (site M2 of the jadeite structure). P-pyroxenes show more complicated spectra in which at least four features can be recognized; they reflect the two types of the configuration (6-2 and 4-2-2) of the oxygens around Na in the two independent M2 and M21 eight-fold coordinated sites of the omphacite structure. A weak, sometimes poorly resolved peak at 1079 eV diagnostic and discriminates C- from P-pyroxenes. The Garnet Ridge C2/c impure jadeite exhibits a spectrum which is intermediate between those of jadeite and omphacite. The Hedin-Lundqist potential proves best for these insulating materials and allows multiple-scattering calculations agreeing well with experiments. The assessment of the local electronic properties of compositionally and structurally complex minerals such as clinopyroxenes is thus enhanced

  20. The local structure of Ca{sub N}a pyroxenes. I. XANES study at the Na K-edge

    Energy Technology Data Exchange (ETDEWEB)

    Mottana, Annibale [Rome, Univ. III (Italy). Dipt. di Scienze Geologiche; Murata, T. [Kyoto, Univ. of Education (Japan). Dept. of Physics; Wu, Ziyu; Marcelli, Augusto [INFN, Frascati (Italy). Laboratori Nazionali di Frascati; Paris, E. [Camerino, Univ. (Italy). Dipt. di Scienze della Terra

    1996-07-01

    X-ray absorption Na K-edge spectra have been recorded on synthetic end member jadeite and on a series of natural Ca-Na pyroxenes compositionally straddling the Jd-Di. The disordered C2/c members of the series are systematically different from the ordered P2/n members. These differences can be interpreted and explained by comparing the experimental spectra with theoretical spectra. These have been calculated by the multiple-scattering formalism from the atomic positional parameters determined by single-crystal X-ray diffraction structure refinement on the same samples. In the full multiple scattering region of the spectrum (1075 to 1095 eV) C-pyroxenes exhibit three features which reflect the 6-2 configuration of the O back-scattering atoms around the Na absorber located at the center of the cluster (site M2 of the jadeite structure). P-pyroxenes show more complicated spectra in which at least four features can be recognized; they reflect the two types of the configuration (6-2 and 4-2-2) of the oxygens around Na in the two independent M2 and M21 eight-fold coordinated sites of the omphacite structure. A weak, sometimes poorly resolved peak at 1079 eV diagnostic and discriminates C- from P-pyroxenes. The Garnet Ridge C2/c impure jadeite exhibits a spectrum which is intermediate between those of jadeite and omphacite. The Hedin-Lundqist potential proves best for these insulating materials and allows multiple-scattering calculations agreeing well with experiments. The assessment of the local electronic properties of compositionally and structurally complex minerals such as clinopyroxenes is thus enhanced.

  1. International countertrade arrangements and their legal structure: Double edge sword or future of the modern trade

    Directory of Open Access Journals (Sweden)

    Milenković-Kerković Tamara

    2011-01-01

    Full Text Available The experiences and the practice of many countries show that countertrade could be used as the significant method for incensement of the export as well as for the promotion of the foreign investments even in the period of deep financial crises. Contemporary governments' pro-active countertrade orientation in USA, Israel, Sweden, Norway, Japan and other developed countries highlights the inadequacy of the obsolete and stereotypical concept of the countertrade as the compensation transaction based on the 'trade without money' concept. Besides this, the practices proved that countertrade transactions are the consequence and the indicator of economic shocks. Therefore, the study of the special legal issues that may arise in countertrade transactions will be very important not only for the domestic legal doctrine but also for the commercial practice. As national laws do not contain provisions specific for countertrade, it is of particular importance to analyze legal question such as structuring and drafting of countertrade arrangements as well as to study the question of the legal nature of the contractual link between legal instruments which form multicontractual mechanism of countertrade transactions. The character of the legal connection among the legal instruments in countertrade arrangement, as well as the legal nature of the countertrade commitment, strongly influence the countertrade agreement's legal nature. The economic reality of a group of contracts joined by the common goal of the transaction (consideration and the countertrade commitment has to be followed by the legal reality which will recognize the legal interdependence of the obligation deriving from the legally independent countertrade arrangement.

  2. Structural evolution of fluorinated graphene upon molten-alkali treatment probed by X-ray absorption near-edge structure spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xianqing, E-mail: lxq@gxu.edu.cn [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Pan, Deyou; Lao, Ming; Liang, Shuiying [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Huang, Dan; Zhou, Wenzheng; Guo, Jin [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China)

    2017-05-15

    Highlights: • Structural evolution of FG during the molten-alkali treatment was studied. • XANES results reveal the transformation of surface functional groups of HFG. • The local and electronic structure of HFG can be tuned by varying the alkali-FG ratio. - Abstract: The structural evolution of fluorinated graphene (FG) nanosheets upon molten-alkali treatment has been systematically investigated utilizing X-ray absorption near-edge structure (XANES) spectroscopy. It is found that the hydroxyl groups can progressively displace fluorine atoms to form covalent bonds to the graphene sheets under designed molten-alkali condition. The XANES spectra also reveal the formation of epoxide groups through intramolecular dehydration of neighbouring hydroxyl groups after substitution reaction. At high alkali-FG weight ratio, the restoration of the π-conjugated structure in graphene sheets can be observed due to the gradual decomposition of epoxide groups. Our experimental results indicate that the surface chemistry and electronic structure of hydroxyl-functionalized FG (HFG) can be readily tuned by varying the ratio of reactants.

  3. Structural analysis of NPP components and structures

    International Nuclear Information System (INIS)

    Saarenheimo, A.; Keinaenen, H.; Talja, H.

    1998-01-01

    Capabilities for effective structural integrity assessment have been created and extended in several important cases. In the paper presented applications deal with pressurised thermal shock loading, PTS, and severe dynamic loading cases of containment, reinforced concrete structures and piping components. Hydrogen combustion within the containment is considered in some severe accident scenarios. Can a steel containment withstand the postulated hydrogen detonation loads and still maintain its integrity? This is the topic of Chapter 2. The following Chapter 3 deals with a reinforced concrete floor subjected to jet impingement caused by a postulated rupture of a near-by high-energy pipe and Chapter 4 deals with dynamic loading resistance of the pipe lines under postulated pressure transients due to water hammer. The reliability of the structural integrity analysing methods and capabilities which have been developed for application in NPP component assessment, shall be evaluated and verified. The resources available within the RATU2 programme alone cannot allow performing of the large scale experiments needed for that purpose. Thus, the verification of the PTS analysis capabilities has been conducted by participation in international co-operative programmes. Participation to the European Network for Evaluating Steel Components (NESC) is the topic of a parallel paper in this symposium. The results obtained in two other international programmes are summarised in Chapters 5 and 6 of this paper, where PTS tests with a model vessel and benchmark assessment of a RPV nozzle integrity are described. (author)

  4. How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review.

    Science.gov (United States)

    Arduini, Fabiana; Cinti, Stefano; Scognamiglio, Viviana; Moscone, Danila; Palleschi, Giuseppe

    2017-03-22

    Through the years, scientists have developed cutting-edge technologies to make (bio)sensors more convenient for environmental analytical purposes. Technological advancements in the fields of material science, rational design, microfluidics, and sensor printing, have radically shaped biosensor technology, which is even more evident in the continuous development of sensing systems for the monitoring of hazardous chemicals. These efforts will be crucial in solving some of the problems constraining biosensors to reach real environmental applications, such as continuous analyses in field by means of multi-analyte portable devices. This review (with 203 refs.) covers the progress between 2010 and 2015 in the field of technologies enabling biosensor applications in environmental analysis, including i) printing technology, ii) nanomaterial technology, iii) nanomotors, iv) biomimetic design, and (v) microfluidics. Next section describes futuristic cutting-edge technologies that are gaining momentum in recent years, which furnish highly innovative aspects to biosensing devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Edge Matters

    DEFF Research Database (Denmark)

    Earon, Ofri

    2013-01-01

    of this container is to separate inside from outside and to protect and provide privacy, psychological as well as physical (Venturi, 1966). But, if dwelling phenomenon takes place both inside and outside the private house – why is the urban house an enclosed box? What is the differentiation between inside...... and outside the contemporary urban house? And what is the interplay between them? The research argues for re-thinking the edge zone between inside and outside the urban house. Therefore, although, residential buildings in the city are the objects of study, the focal point here is the edge zone along...... the building. The research explores and develops the architectural characteristics of correlations between the resident, the singular unit, the building and the given location at the edge zone. It approaches the edge zone of the urban house as a platform for dynamic interactions between these behaviours...

  6. Descriptive business intelligence analysis: utting edge strategic asset for SMEs, is it really worth it?

    OpenAIRE

    Sivave Mashingaidze

    2014-01-01

    The purpose of this article is to provide a framework for understanding and adoption of Business Intelligence by (SMEs) within the Zimbabwean economy. The article explores every facet of Business Intelligence, including internal and external BI as cutting edge strategic asset. A descriptive research methodology has been adopted. The article revealed some BI critical success factors for better BI implementation. Findings revealed that organizations which have the greatest success with BI trave...

  7. High Resolution Topography Analysis on Threading Edge Dislocations in 4H-SiC Epilayers

    International Nuclear Information System (INIS)

    Kamata, I.; Nagano, M.; Tsuchida, H.; Chen, Y.; Dudley, M.

    2009-01-01

    Threading edge dislocations (TEDs) in a 4H-SiC epitaxial layer are investigated using high-resolution synchrotron topography. Six types of TED image are confirmed to correspond to the Burgers vector directions by a comparison of computer simulated images and observed topography images in crystal boundaries. Using a mapping method, a wide spatial distribution of the six types of TED is examined in a quarter section of a 2-inch wafer.

  8. Nonlinear dynamic analysis of D α signals for type I edge localized modes characterization on JET with a carbon wall

    Science.gov (United States)

    Cannas, Barbara; Fanni, Alessandra; Murari, Andrea; Pisano, Fabio; Contributors, JET

    2018-02-01

    In this paper, the dynamic characteristics of type-I ELM time-series from the JET tokamak, the world’s largest magnetic confinement plasma physics experiment, have been investigated. The dynamic analysis has been focused on the detection of nonlinear structure in D α radiation time series. Firstly, the method of surrogate data has been applied to evaluate the statistical significance of the null hypothesis of static nonlinear distortion of an underlying Gaussian linear process. Several nonlinear statistics have been evaluated, such us the time delayed mutual information, the correlation dimension and the maximal Lyapunov exponent. The obtained results allow us to reject the null hypothesis, giving evidence of underlying nonlinear dynamics. Moreover, no evidence of low-dimensional chaos has been found; indeed, the analysed time series are better characterized by the power law sensitivity to initial conditions which can suggest a motion at the ‘edge of chaos’, at the border between chaotic and regular non-chaotic dynamics. This uncertainty makes it necessary to further investigate about the nature of the nonlinear dynamics. For this purpose, a second surrogate test to distinguish chaotic orbits from pseudo-periodic orbits has been applied. In this case, we cannot reject the null hypothesis which means that the ELM time series is possibly pseudo-periodic. In order to reproduce pseudo-periodic dynamical properties, a periodic state-of-the-art model, proposed to reproduce the ELM cycle, has been corrupted by a dynamical noise, obtaining time series qualitatively in agreement with experimental time series.

  9. Probabilistic Structural Analysis Theory Development

    Science.gov (United States)

    Burnside, O. H.

    1985-01-01

    The objective of the Probabilistic Structural Analysis Methods (PSAM) project is to develop analysis techniques and computer programs for predicting the probabilistic response of critical structural components for current and future space propulsion systems. This technology will play a central role in establishing system performance and durability. The first year's technical activity is concentrating on probabilistic finite element formulation strategy and code development. Work is also in progress to survey critical materials and space shuttle mian engine components. The probabilistic finite element computer program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) is being developed. The final probabilistic code will have, in the general case, the capability of performing nonlinear dynamic of stochastic structures. It is the goal of the approximate methods effort to increase problem solving efficiency relative to finite element methods by using energy methods to generate trial solutions which satisfy the structural boundary conditions. These approximate methods will be less computer intensive relative to the finite element approach.

  10. Novel analysis technique for measuring edge density fluctuation profiles with reflectometry in the Large Helical Device

    Science.gov (United States)

    Creely, A. J.; Ida, K.; Yoshinuma, M.; Tokuzawa, T.; Tsujimura, T.; Akiyama, T.; Sakamoto, R.; Emoto, M.; Tanaka, K.; Michael, C. A.

    2017-07-01

    A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.

  11. Analysis of elastic-plastic problems using edge-based smoothed finite element method

    International Nuclear Information System (INIS)

    Cui, X.Y.; Liu, G.R.; Li, G.Y.; Zhang, G.Y.; Sun, G.Y.

    2009-01-01

    In this paper, an edge-based smoothed finite element method (ES-FEM) is formulated for stress field determination of elastic-plastic problems using triangular meshes, in which smoothing domains associated with the edges of the triangles are used for smoothing operations to improve the accuracy and the convergence rate of the method. The smoothed Galerkin weak form is adopted to obtain the discretized system equations, and the numerical integration becomes a simple summation over the edge-based smoothing domains. The pseudo-elastic method is employed for the determination of stress field and Hencky's total deformation theory is used to define effective elastic material parameters, which are treated as field variables and considered as functions of the final state of stress fields. The effective elastic material parameters are then obtained in an iterative manner based on the strain controlled projection method from the uniaxial material curve. Some numerical examples are investigated and excellent results have been obtained demonstrating the effectivity of the present method.

  12. Spectral and energy efficiency analysis of uplink heterogeneous networks with small-cells on edge

    KAUST Repository

    Shakir, Muhammad Zeeshan

    2014-12-01

    This paper presents a tractable mathematical framework to analyze the spectral and energy efficiency of an operator initiated deployment of the small-cells (e.g., femtocells) where the small-cell base stations are deliberately positioned around the edge of the macrocell. The considered deployment facilitates the cell-edge mobile users in terms of their coverage, spectral, and energy efficiency and is referred to as cell-on-edge (COE) configuration. The reduction in energy consumption is achieved by considering fast power control where the mobile users transmit with adaptive power to compensate the path loss, shadowing and fading. In particular, we develop a moment generating function (MGF) based approach to derive analytical bounds on the area spectral efficiency and exact expressions for the energy efficiency of the mobile users in the considered COE configuration over generalized-K fading channels. Besides the COE configuration, the derived bounds are also shown to be useful in evaluating the performance of random small-cell deployments, e.g., uniformly distributed small-cells. Simulation results are presented to demonstrate the improvements in spectral and energy efficiency of the COE configuration with respect to macro-only networks and other unplanned deployment strategies. © 2014 Elsevier B.V. All rights reserved.

  13. Elastomeric Structural Attachment Concepts for Aircraft Flap Noise Reduction - Challenges and Approaches to Hyperelastic Structural Modeling and Analysis

    Science.gov (United States)

    Sreekantamurthy, Thammaiah; Turner, Travis L.; Moore, James B.; Su, Ji

    2014-01-01

    Airframe noise is a significant part of the overall noise of transport aircraft during the approach and landing phases of flight. Airframe noise reduction is currently emphasized under the Environmentally Responsible Aviation (ERA) and Fixed Wing (FW) Project goals of NASA. A promising concept for trailing-edge-flap noise reduction is a flexible structural element or link that connects the side edges of the deployable flap to the adjacent main-wing structure. The proposed solution is distinguished by minimization of the span-wise extent of the structural link, thereby minimizing the aerodynamic load on the link structure at the expense of increased deformation requirement. Development of such a flexible structural link necessitated application of hyperelastic materials, atypical structural configurations and novel interface hardware. The resulting highly-deformable structural concept was termed the FLEXible Side Edge Link (FLEXSEL) concept. Prediction of atypical elastomeric deformation responses from detailed structural analysis was essential for evaluating feasible concepts that met the design constraints. The focus of this paper is to describe the many challenges encountered with hyperelastic finite element modeling and the nonlinear structural analysis of evolving FLEXSEL concepts. Detailed herein is the nonlinear analysis of FLEXSEL concepts that emerged during the project which include solid-section, foamcore, hollow, extended-span and pre-stressed concepts. Coupon-level analysis performed on elastomeric interface joints, which form a part of the FLEXSEL topology development, are also presented.

  14. Failure Analysis of Composite Structure Materials.

    Science.gov (United States)

    1987-05-27

    cracking intersected the trailing edge of the skin at a radius for a runout of an overhanging tab. Extensive delamination was evident or each side of...structure with an abrasive cutoff wheel to minimize artifacts. Detailed crack mapping of the delamination surfaces was performed by optical microscopy

  15. Mapping Vesta Mid-Latitude Quadrangle V-12EW: Mapping the Edge of the South Polar Structure

    Science.gov (United States)

    Hoogenboom, T.; Schenk, P.; Williams, D. A.; Hiesinger, H.; Garry, W. B.; Yingst, R.; Buczkowski, D.; McCord, T. B.; Jaumann, R.; Pieters, C. M.; Gaskell, R. W.; Neukum, G.; Schmedemann, N.; Marchi, S.; Nathues, A.; Le Corre, L.; Roatsch, T.; Preusker, F.; White, O. L.; DeSanctis, C.; Filacchione, G.; Raymond, C. A.; Russell, C. T.

    2011-12-01

    NASA's Dawn spacecraft arrived at the asteroid 4Vesta on July 15, 2011, and is now collecting imaging, spectroscopic, and elemental abundance data during its one-year orbital mission. As part of the geological analysis of the surface, a series of 15 quadrangle maps are being produced based on Framing Camera images (FC: spatial resolution: ~65 m/pixel) along with Visible & Infrared Spectrometer data (VIR: spatial resolution: ~180 m/pixel) obtained during the High-Altitude Mapping Orbit (HAMO). This poster presentation concentrates on our geologic analysis and mapping of quadrangle V-12EW. This quadrangle is dominated by the arcuate edge of the large 460+ km diameter south polar topographic feature first observed by HST (Thomas et al., 1997). Sparsely cratered, the portion of this feature covered in V-12EW is characterized by arcuate ridges and troughs forming a generalized arcuate pattern. Mapping of this terrain and the transition to areas to the north will be used to test whether this feature has an impact or other (e.g., internal) origin. We are also using FC stereo and VIR images to assess whether their are any compositional differences between this terrain and areas further to the north, and image data to evaluate the distribution and age of young impact craters within the map area. The authors acknowledge the support of the Dawn Science, Instrument and Operations Teams.

  16. Integrated piping structural analysis system

    International Nuclear Information System (INIS)

    Motoi, Toshio; Yamadera, Masao; Horino, Satoshi; Idehata, Takamasa

    1979-01-01

    Structural analysis of the piping system for nuclear power plants has become larger in scale and in quantity. In addition, higher quality analysis is regarded as of major importance nowadays from the point of view of nuclear plant safety. In order to fulfill to the above requirements, an integrated piping structural analysis system (ISAP-II) has been developed. Basic philosophy of this system is as follows: 1. To apply the date base system. All information is concentrated. 2. To minimize the manual process in analysis, evaluation and documentation. Especially to apply the graphic system as much as possible. On the basis of the above philosophy four subsystems were made. 1. Data control subsystem. 2. Analysis subsystem. 3. Plotting subsystem. 4. Report subsystem. Function of the data control subsystem is to control all information of the data base. Piping structural analysis can be performed by using the analysis subsystem. Isometric piping drawing and mode shape, etc. can be plotted by using the plotting subsystem. Total analysis report can be made without the manual process through the reporting subsystem. (author)

  17. Calculation of near-edge x-ray-absorption fine structure at finite temperatures: Spectral signatures of hydrogen bond breaking in liquid water

    International Nuclear Information System (INIS)

    Hetenyi, Balazs; De Angelis, Filippo; Giannozzi, Paolo; Car, Roberto

    2004-01-01

    We calculate the near-edge x-ray-absorption fine structure of H 2 O in the gas, hexagonal ice, and liquid phases using heuristic density-functional based methods. We present a detailed comparison of our results with experiment. The differences between the ice and water spectra can be rationalized in terms of the breaking of hydrogen bonds around the absorbing molecule. In particular the increase in the pre-edge absorption feature from ice to water is shown to be due to the breaking of a donor hydrogen bond. We also find that in water approximately 19% of hydrogen bonds are broken

  18. ImaEdge - a platform for quantitative analysis of the spatiotemporal dynamics of cortical proteins during cell polarization.

    Science.gov (United States)

    Zhang, Zhen; Lim, Yen Wei; Zhao, Peng; Kanchanawong, Pakorn; Motegi, Fumio

    2017-12-15

    Cell polarity involves the compartmentalization of the cell cortex. The establishment of cortical compartments arises from the spatial bias in the activity and concentration of cortical proteins. The mechanistic dissection of cell polarity requires the accurate detection of dynamic changes in cortical proteins, but the fluctuations of cell shape and the inhomogeneous distributions of cortical proteins greatly complicate the quantitative extraction of their global and local changes during cell polarization. To address these problems, we introduce an open-source software package, ImaEdge, which automates the segmentation of the cortex from time-lapse movies, and enables quantitative extraction of cortical protein intensities. We demonstrate that ImaEdge enables efficient and rigorous analysis of the dynamic evolution of cortical PAR proteins during Caenorhabditis elegans embryogenesis. It is also capable of accurate tracking of varying levels of transgene expression and discontinuous signals of the actomyosin cytoskeleton during multiple rounds of cell division. ImaEdge provides a unique resource for quantitative studies of cortical polarization, with the potential for application to many types of polarized cells.This article has an associated First Person interview with the first authors of the paper. © 2017. Published by The Company of Biologists Ltd.

  19. Effect of the van der Waals interaction on the electron energy-loss near edge structure theoretical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp

    2017-07-15

    The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1 eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation. - Highlights: • Effect of van der Waals (vdW) interaction in ELNES calculation is investigated. • The vdW interaction influences more to the excited state owing to the presence of excited electron. • The vdW interaction makes spectral shift to lower energy side by 0.1–0.01 eV. • The vdW interaction is negligible in gaseous materials due to long intermolecular distance.

  20. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In2O3 nanowires

    Science.gov (United States)

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.; Schaller, Richard D.; Gosztola, David J.; Stroscio, Michael A.; Dutta, Mitra

    2018-04-01

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor-liquid-solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy ({V}{{O}}) defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of {V}{{O}} defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.

  1. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In 2 O 3 nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.; Schaller, Richard D.; Gosztola, David J.; Stroscio, Michael A.; Dutta, Mitra

    2018-03-01

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor–liquid–solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy (VO) defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of VO defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.

  2. Measurement of Gaussian laser beam radius using the knife-edge technique: improvement on data analysis

    International Nuclear Information System (INIS)

    Araujo, Marcos A. de; Silva, Rubens; Lima, Emerson de; Pereira, Daniel P.; Oliveira, Paulo C. de

    2009-01-01

    We revisited the well known Khosrofian and Garetz inversion algorithm [Appl. Opt.22, 3406-3410 (1983)APOPAI0003-6935] that was developed to analyze data obtained by the application of the traveling knife-edge technique. We have analyzed the approximated fitting function that was used for adjusting their experimental data and have found that it is not optimized to work with a full range of the experimentally-measured data. We have numerically calculated a new set of coefficients, which makes the approximated function suitable for a full experimental range, considerably improving the accuracy of the measurement of a radius of a focused Gaussian laser beam

  3. CFD analysis of cascade effects in marine propellers with trailing edge modification

    DEFF Research Database (Denmark)

    Shin, Keun Woo; Andersen, Poul

    2015-01-01

    investigated intensively by viscous flow solvers, although RANS CFD is prevalent in marine industry nowadays. In the current work, the cascade effect of a marine propeller is analyzed by CFD simulations on a threedimensional propeller model with varying the number of blades. The influence of trailing......-edge configurations on the cascade effect is also investigated by simulating CFD with varying trailingedge thickness and slope. The reason why the trailingedge is handled rather than other parts of bladegeometry is that it can be modified without altering overall blade thrust significantly, because the loading...

  4. X-ray absorption near-edge structure of GaN with high Mn concentration grown on SiC

    Science.gov (United States)

    Sancho-Juan, O.; Cantarero, A.; Garro, N.; Cros, A.; Martínez-Criado, G.; Salomé, M.; Susini, J.; Olguín, D.; Dhar, S.

    2009-07-01

    By means of x-ray absorption near-edge structure (XANES) several Ga1-xMnxN (0.03edges. All samples studied present a similar Mn ionization state, very close to 2+, and tetrahedral coordination. In order to interpret the near-edge structure, we have performed ab initio calculations using the full potential linear augmented plane wave method as implemented in the Wien2k code. The calculations show the appearance of a Mn bonding \\mathrm {t_{2}}\\uparrow band localized in the gap region, and the corresponding anti-bonding state \\mathrm {t_{2}}\\downarrow , which seem to be responsible for the double structure which appears at the pre-edge absorption region. The shoulders and main absorption peak of the XANES spectra are attributed to transitions from the Mn(1s) band to the conduction bands, which are partially dipole allowed because of the Mn(4p) contribution to these bands.

  5. X-ray absorption near-edge structure of GaN with high Mn concentration grown on SiC

    Energy Technology Data Exchange (ETDEWEB)

    Sancho-Juan, O; Cantarero, A; Garro, N; Cros, A [Materials Science Institute, University of Valencia, PO Box 22085, E46071 Valencia (Spain); Martinez-Criado, G; Salome, M; Susini, J [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble (France); Olguin, D [Dept. de Fisica, CINVESTAV-IPN, 07300 Mexico D F (Mexico); Dhar, S [Experimentalphysik, Universitaet Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg (Germany)

    2009-07-22

    By means of x-ray absorption near-edge structure (XANES) several Ga{sub 1-x}Mn{sub x}N (0.03edges. All samples studied present a similar Mn ionization state, very close to 2+, and tetrahedral coordination. In order to interpret the near-edge structure, we have performed ab initio calculations using the full potential linear augmented plane wave method as implemented in the Wien2k code. The calculations show the appearance of a Mn bonding t{sub 2}arrow up band localized in the gap region, and the corresponding anti-bonding state t{sub 2}arrow down, which seem to be responsible for the double structure which appears at the pre-edge absorption region. The shoulders and main absorption peak of the XANES spectra are attributed to transitions from the Mn(1s) band to the conduction bands, which are partially dipole allowed because of the Mn(4p) contribution to these bands.

  6. Surface structure of alpha-Fe sub 2 O sub 3 nanocrystal observed by O K-edge X-ray absorption spectroscopy

    CERN Document Server

    Zhang, J; Ibrahim, K; Abbas, M I; Ju, X

    2003-01-01

    X-ray absorption near edge structure (XANES) spectra is used as a probe of surface structure of alpha-Fe sub 2 O sub 3 nanocrystal, prepared by sol-gel method. We present O K-edge XANES of alpha-Fe sub 2 O sub 3 in nanocrystal and bulk by total electron yield at the photoemission station of Beijing Synchrotron Radiation Facility. The spectrum of alpha-Fe sub 2 O sub 3 shows a splitting of the pre-edge structure, which is interpreted as two subsets of Fe 3d t sub 2 sub g and e sub g orbitals in oxygen octahedral (O sub h) crystal field, and is also sensitive to long-range order effects. However, no distinguishable splitting of the pre-edge peak of nanocrystal alpha-Fe sub 2 O sub 3 is observed. This suggests that there exists the distorted octahedral coordination around Fe sites and also the long-range disorder due to the surface as compared with bulk alpha-Fe sub 2 O sub 3.

  7. The origin of luminescence from di[4-(4-diphenylaminophenyl)phenyl]sulfone (DAPSF), a blue light emitter: an X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) study.

    Science.gov (United States)

    Zhang, Duo; Zhang, Hui; Zhang, Xiaohong; Sham, Tsun-Kong; Hu, Yongfeng; Sun, Xuhui

    2016-03-07

    The electronic structure and optical properties of di[4-(4-diphenylaminophenyl)phenyl]sulfone (denoted as DAPSF), a highly efficient fluorophor, have been investigated using X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) spectroscopy at excitation energies across the C, N, O K-edges and the sulfur K-edge. The results indicate that the blue luminescence is mainly related to the sulfur functional group.

  8. Determination of edge plasma parameters by a genetic algorithm analysis of spectral line shapes

    International Nuclear Information System (INIS)

    Marandet, Y.; Genesio, P.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R.; Capes, H.; Guirlet, R.

    2003-01-01

    Comparing an experimental and a theoretical line shape can be achieved by a genetic algorithm (GA) based on an analogy to the mechanisms of natural selection. Such an algorithm is able to deal with complex non-linear models, and can avoid local minima. We have used this optimization tool in the context of edge plasma spectroscopy, for a determination of the temperatures and fractions of the various populations of neutral deuterium emitting the D α line in 2 configurations of Tore-Supra: ergodic divertor and toroidal pumped limiter. Using the GA fit, the neutral emitters are separated into up to 4 populations which can be identified as resulting from molecular dissociation reactions, charge exchange, or reflection. In all the edge plasmas studied, a significant fraction of neutrals emit in the line wings, leading to neutrals with a temperature up to a few hundreds eV if a Gaussian line shape is assumed. This conclusion could be modified if the line wing exhibits a non Gaussian behavior

  9. Space Shuttle Orbiter Wing-Leading-Edge Panel Thermo-Mechanical Analysis for Entry Conditions

    Science.gov (United States)

    Knight, Norman F., Jr.; Song, Kyongchan; Raju, Ivatury S.

    2010-01-01

    Linear elastic, thermo-mechanical stress analyses of the Space Shuttle Orbiter wing-leading-edge panels is presented for entry heating conditions. The wing-leading-edge panels are made from reinforced carbon-carbon and serve as a part of the overall thermal protection system. Three-dimensional finite element models are described for three configurations: integrated configuration, an independent single-panel configuration, and a local lower-apex joggle segment. Entry temperature conditions are imposed and the through-the-thickness response is examined. From the integrated model, it was concluded that individual panels can be analyzed independently since minimal interaction between adjacent components occurred. From the independent single-panel model, it was concluded that increased through-the-thickness stress levels developed all along the chord of a panel s slip-side joggle region, and hence isolated local joggle sections will exhibit the same trend. From the local joggle models, it was concluded that two-dimensional plane-strain models can be used to study the influence of subsurface defects along the slip-side joggle region of these panels.

  10. Determination of edge plasma parameters by a genetic algorithm analysis of spectral line shapes

    Energy Technology Data Exchange (ETDEWEB)

    Marandet, Y.; Genesio, P.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R. [Universite de Provence (PIIM), Centre de Saint-Jerome, 13 - Marseille (France); Capes, H.; Guirlet, R. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2003-07-01

    Comparing an experimental and a theoretical line shape can be achieved by a genetic algorithm (GA) based on an analogy to the mechanisms of natural selection. Such an algorithm is able to deal with complex non-linear models, and can avoid local minima. We have used this optimization tool in the context of edge plasma spectroscopy, for a determination of the temperatures and fractions of the various populations of neutral deuterium emitting the D{sub {alpha}} line in 2 configurations of Tore-Supra: ergodic divertor and toroidal pumped limiter. Using the GA fit, the neutral emitters are separated into up to 4 populations which can be identified as resulting from molecular dissociation reactions, charge exchange, or reflection. In all the edge plasmas studied, a significant fraction of neutrals emit in the line wings, leading to neutrals with a temperature up to a few hundreds eV if a Gaussian line shape is assumed. This conclusion could be modified if the line wing exhibits a non Gaussian behavior.

  11. A new fabrication process for uniform SU-8 thick photoresist structures by simultaneously removing edge bead and air bubbles

    International Nuclear Information System (INIS)

    Lee, Hun; Lee, Kangsun; Ahn, Byungwook; Xu, Jing; Xu, Linfeng; Oh, Kwang W

    2011-01-01

    This paper proposes a new SU-8 fabrication process to simultaneously remove edge bead and tiny air bubbles by spraying out edge bead removal (EBR) fluid over the entire surface of photoresist. In particular, the edge bead and air bubbles can cause an air gap between a film mask and a photoresist surface during UV exposure. The diffraction effect of UV light by the air gap leads to inaccurate and non-uniform SU-8 patterns. In this study, we demonstrate a simple method using EBR treatment to simultaneously eliminate the edge bead at the edge of wafer and tiny air bubbles inside SU-8. The profiles of thickness variation of SU-8 films with/without the EBR treatment are measured. The results show that the proposed EBR treatment can successfully remove the edge bead and air bubbles over the entire SU-8 films. The average pattern uniformity of SU-8 is improved from 50.5% to 11.3% in the case of 200 µm thickness. This method is simple and inexpensive, compared to a standard EBR process, because it does not require specialized equipment and it can be applied regardless of substrate geometry (e.g. circular wafer and rectangular slide glass).

  12. Structural analysis for LMFBR applications

    International Nuclear Information System (INIS)

    1983-01-01

    Firstly, we discuss the use of elastic analysis for structural design of LMFBR components. The elastic analysis methods have been used for structural design of the Fast Breeder Test Reactor as well as the proposed prototype Test Breeder Reactor. The design of Fast Breeder Test Reactor which is nearing completion is the same as that of Rapsodie. Nevertheless, the design had to he checked against the latest design codes available, namely the ASME Code case 1592. This paper however, is confined to Structural analysis of PFBR components. The problems faced in the design of some of the components, in particular, the inner vessel (plenum separator) are discussed. As far as design codes are concerned, we make use of ASME Code Section III and the Code Case N-47, for high temperature design. The problem faced in the use of these rules are also described along with the description of analysis. Studies in the field of cyclic loading include extension of Bree's breakdown and plastic cycling criteria for ratchet free operation to biaxial stress fields. In other fields, namely, inelastic analysis, piping analysis in the creep regime etc. we are only at a start

  13. Edge effects in composites

    International Nuclear Information System (INIS)

    Guz, A.N.; Kokhanenko, Yu.V.

    1995-01-01

    In the present article we survey papers on edge effects investigated by the rigorous approach. We interpret edge effects as stressed states created in a composite as a result of zones in which the stresses exhibit a rapidly changing behavior in comparison with the slow variation of the stresses outside such zones. Here the range of the edge effect is defined as the distance from the point of its inception to the boundary of the edge zone in a given direction. The transition of the stresses to the slowly varying state is determined within prescribed error limits. The size and configuration of the edge zone depends on the tolerated error. Clearly, the main difficulty associated with the rigorous approach is finding solutions of the elasticity problems. The finite-difference approach is suggested for the approximate solution of these problems. In light of the comparative time consumption of the finite-difference approach, it is best directed at certain classes of problems rather than at particular individual problems. Not too many papers on the investigation of edge effects by the rigorous approach have been published to date. Below, following in their footsteps, we formulate edge effect problems in composites, determine classes of problems, and investigate edge effects in composite materials and structural elements using them in Cartesian (planar and three-dimensional problems) and cylindrical (axisymmetric problems) coordinate frames. We note that the division of approaches to the study of edge effects into qualitative (nonrigorous) and quantitative (rigorous) reflects the authors own point of view. Of course, other schemes of classification of the approaches to the investigation of the regions of rapidly varying states in composites are possible

  14. Constitutive model and electroplastic analysis of structures under cyclic loading

    International Nuclear Information System (INIS)

    Wang, X.; Lei, Y; Du, Q.

    1989-01-01

    Many engineering structures in nuclear reactors, thermal power stations, chemical plants and aerospace vehicles are subjected to cyclic mechanic-thermal loading, which is the main cause of structural fatigue failure. Over the past twenty years, designers and researchers have paid great attention to the research on life prediction and elastoplastic analysis of structures under cyclic loading. One of the key problems in elastoplastic analysis is to construct a reasonable constitutive model for cyclic plasticity. In the paper, the constitutive equations are briefly outlined. Then, the model is implemented in a finite element code to predict the response of cyclic loaded structural components such as a double-edge-notched plate, a grooved bar and a nozzle in spherical shell. Numerical results are compared with those from other theories and experiments

  15. L-edge sum rule analysis on 3d transition metal sites: from d10 to d0 and towards application to extremely dilute metallo-enzymes.

    Science.gov (United States)

    Wang, Hongxin; Friedrich, Stephan; Li, Lei; Mao, Ziliang; Ge, Pinghua; Balasubramanian, Mahalingam; Patil, Daulat S

    2018-03-28

    According to L-edge sum rules, the number of 3d vacancies at a transition metal site is directly proportional to the integrated intensity of the L-edge X-ray absorption spectrum (XAS) for the corresponding metal complex. In this study, the numbers of 3d holes are characterized quantitatively or semi-quantitatively for a series of manganese (Mn) and nickel (Ni) complexes, including the electron configurations 3d 10 → 3d 0 . In addition, extremely dilute (edge jump region; and (2) by adding an inert tracer to the sample that provides a prominent spectral feature to replace the weak edge jump for intensity normalization. In this publication, we present for the first time: (1) L-edge sum rule analysis for a series of Mn and Ni complexes that include electron configurations from an open shell 3d 0 to a closed shell 3d 10 ; (2) a systematic analysis on the uncertainties, especially on that from the edge jump, which was missing in all previous reports; (3) a clearly-resolved edge jump between pre-L 3 and post-L 2 regions from an extremely dilute sample; (4) an evaluation of an alternative normalization standard for L-edge sum rule analysis. XAS from two copper (Cu) proteins measured using a conventional semiconductor X-ray detector are also repeated as bridges between Ni complexes and dilute Ni enzymes. The differences between measuring 1% Cu enzymes and measuring edge sum rule analysis to virtually any 3d metal complex and any dilute biological samples that contain 3d metals.

  16. Wound edge protectors in open abdominal surgery to reduce surgical site infections: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    André L Mihaljevic

    Full Text Available Surgical site infections remain one of the most frequent complications following abdominal surgery and cause substantial costs, morbidity and mortality.To assess the effectiveness of wound edge protectors in open abdominal surgery in reducing surgical site infections.A systematic literature search was conducted according to a prespecified review protocol in a variety of data-bases combined with hand-searches for randomized controlled trials on wound edge protectors in patients undergoing laparotomy. A qualitative and quantitative analysis of included trials was conducted.We identified 16 randomized controlled trials including 3695 patients investigating wound edge protectors published between 1972 and 2014. Critical appraisal uncovered a number of methodological flaws, predominantly in the older trials. Wound edge protectors significantly reduced the rate of surgical site infections (risk ratio 0.65; 95%CI, 0.51-0.83; p = 0.0007; I2 = 52%. The results were robust in a number of sensitivity analyses. A similar effect size was found in the subgroup of patients undergoing colorectal surgery (risk ratio 0.65; 95%CI, 0.44-0.97; p = 0.04; I2 = 56%. Of the two common types of wound protectors double ring devices were found to exhibit a greater protective effect (risk ratio 0.29; 95%CI, 0.15-0.55 than single-ring devices (risk ratio 0.71; 95%CI, 0.54-0.92, but this might largely be due to the lower quality of available data for double-ring devices. Exploratory subgroup analyses for the degree of contamination showed a larger protective effect in contaminated cases (0.44; 95%CI, 0.28-0.67; p = 0.0002, I2 = 23% than in clean-contaminated surgeries (0.72, 95%CI, 0.57-0.91; p = 0.005; I2 = 46% and a strong effect on the reduction of superficial surgical site infections (risk ratio 0.45; 95%CI, 0.24-0.82; p = 0.001; I2 = 72%.Wound edge protectors significantly reduce the rate of surgical site infections in open abdominal surgery. Further trials are needed to

  17. Shakedown analysis of elastoplastic structures

    International Nuclear Information System (INIS)

    Koenig, J.A.

    1981-01-01

    Classical shakedown analysis rests on the assumptions of perfectly plastic, associative temperature-independent constitutive laws, negligible inertia and damping forces and negligible geometric effects. This paper provides a survey of the recent literature on the structural behaviour under variable repeated loads, with emphasis on the developments which relaxed some of the above assumptions, but preserved the character of generalization of limit analysis typical of the 'classical' shakedown theory and methods of analysis and design (in contrast to evolutive, step-by-step approaches of incremental plasticity). (orig.)

  18. Structural health monitoring method for wind turbine trailing edge: Crack growth detection using Fibre Bragg Grating sensor embedded in composite materials

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    In this article a novel method to assess a crack growing/damage event in composite material using Fibre Bragg Grating (FBG) sensors embedded in a host material and its application into a composite material structure, Wind Turbine Trailing Edge, is presented. A Structure-Material-FBG model......, such as compression fields ahead the crack or non-uniform strain fields, and then identify the presence of such damage in the structure. Experimental tests were conducted to fully characterize this concept and support the model. Double Cantilever Beams (DCB), made with two glass fibre beams glued with structural...

  19. Structural analysis of syndiotactic polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, Masahiro

    1988-09-01

    Since the stereostructure of a high-molecular compound includes three types of isotactic, atactic and sydiotactic structures, a high-molecular compound with excellent properties can be produced by controlling the stereogularity of the compound with the identical composition. The stereoregularity of a stereogular polystyrene, or syndiotactic polystyrene (SPS), which had been successfully synthesized recently was quantitatively determined and the open chain structure by polymerization was investigated by nuclear magnetic resonance spectroscopy. Two SPSs were synthesized from cis-beta-d/sub/1-styrene and trans-beta-d/sub/1-styrene with alpha, beta, beta-d/sub/3-styrene. The results of spectral analysis of these two SPSs indicate that the former is of trans-conformation and the latter is of gauche conformation and that accordingly the open chain structure by polymerization of SPS is of cis-open chain and SPS has a planar zigzag structure even in the solution. (5 figs, 9 refs)

  20. Unexpected covalency from actinide 5f orbital interactions (An = Th, U, Np, Pu) determined from chlorine K-edge X-ray absorption spectroscopy and electronic structure theory

    International Nuclear Information System (INIS)

    Clark, D.L.; Batista, E.R.; Boland, K.S.

    2010-01-01

    We have employed Cl K-edge XAS and multiple levels of sophisticated electronic structure calculations on a series of simple octahedral light actinide (Th, U, Np, Pu) chloride salts, AnCl 6 n- in order to assess the relative roles of the valence 5f and 6d orbitals in chemical bonding. Chlorine K-edge X-ray absorption spectroscopy on AnCl 6 n- (An = Th, U, Np, Pu) systems indicates the presence of covalent interactions between both Cl 3p and An 5f and 6d orbitals, with the relative contributions changing across the series. Electronic structure calculations indicate the predominant covalent interactions are expected to occur through An-Cl bonding via t 1u and t 2u interactions with the An 5f orbitals, and through t 2g and e g interactions with An 6d orbitals. For the Cl K-edge data therefore, we expect bound state transitions from Cl 1s → e g (σ), t 2g (π), and t 1u (σ + π) orbitals. Qualitatively, the Cl K-edge data fulfills these expectations

  1. Stress Analysis for the Critical Metal Structure of Bridge Crane

    Science.gov (United States)

    Ling, Zhangwei; Wang, Min; Xia, Junfang; Wang, Songhua; Guo, Xiaolian

    2018-01-01

    Based on the type of connection between the main girder and end beam of electrical single beam crane, the finite element analysis model of a full portal crane was established. The stress distribution of the critical structure under different loading conditions was analyzed. The results shown that the maximum Mises stress and deflection of the main girder were within the allowable range. And the connecting location between end beam web and main girder had higher stress than other region, especially at the lower edge and upper edge of the end beam web and the area near the bolt hole of upper wing panel. Therefore it is important to inspect the connection status, the stress condition and the crack situation nearing connection location during the regular inspection process to ensure the safety of the connection between the main girder and end beam.

  2. Descriptive business intelligence analysis: utting edge strategic asset for SMEs, is it really worth it?

    Directory of Open Access Journals (Sweden)

    Sivave Mashingaidze

    2014-10-01

    Full Text Available The purpose of this article is to provide a framework for understanding and adoption of Business Intelligence by (SMEs within the Zimbabwean economy. The article explores every facet of Business Intelligence, including internal and external BI as cutting edge strategic asset. A descriptive research methodology has been adopted. The article revealed some BI critical success factors for better BI implementation. Findings revealed that organizations which have the greatest success with BI travel an evolutionary path, starting with basic data and analytical tools and transitioning to increasingly more sophisticated capabilities until BI becomes an intrinsic part of their business culture and ROI is realized. Findings are useful for managers, policy makers, business analysts, and IT specialists in dealing with planning and implementation of BI systems in SMEs.

  3. Quantitative Analysis of L-Edge White Line Intensities: The Influence of Saturation and Transverse Coherence

    International Nuclear Information System (INIS)

    Hahlin, A.

    2001-01-01

    We have performed x-ray absorption spectroscopy at the Fe, Ni, and Co L2,3 edges of in situ grown thin magnetic films. We compare electron yield measurements performed at SSRL and BESSY-I. Differences in the L2,3 white line intensities are found for all three elements, comparing data from the two facilities. We propose a correlation between spectral intensities and the degree of spatial coherence of the exciting radiation. The electron yield saturation effects are stronger for light with a higher degree of spatial coherence. Therefore the observed, coherence related, intensity variations are due to an increase in the absorption coefficient, and not to secondary channel related effects

  4. Quantitative analysis of L-edge white line intensities: the influence of saturation and transverse coherence.

    Science.gov (United States)

    Hahlin, A; Karis, O; Brena, B; Dunn, J H; Arvantis, D

    2001-03-01

    We have performed x-ray absorption spectroscopy at the Fe, Ni, and Co L2,3 edges of in situ grown thin magnetic films. We compare electron yield measurements performed at SSRL and BESSY-I. Differences in the L2,3 white line intensities are found for all three elements, comparing data from the two facilities. We propose a correlation between spectral intensities and the degree of spatial coherence of the exciting radiation. The electron yield saturation effects are stronger for light with a higher degree of spatial coherence. Therefore the observed, coherence related, intensity variations are due to an increase in the absorption coefficient, and not to secondary channel related effects.

  5. Nondestructive analysis of lithographic patterns with natural line edge roughness from Mueller matrix ellipsometric data

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiuguo; Shi, Yating; Jiang, Hao [State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhang, Chuanwei [State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wuhan Eoptics Technology Co. Ltd., Wuhan, Hubei 430075 (China); Liu, Shiyuan, E-mail: shyliu@hust.edu.cn [State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wuhan Eoptics Technology Co. Ltd., Wuhan, Hubei 430075 (China)

    2016-12-01

    Highlights: • MME is applied to characterize lithographic patterns with natural LER. • A computationally efficient approach based on EMA is proposed to model LER. • Both theoretical and experimental results verify the effective modeling approach. • The comparison between MME and SEM results reveals the potential of this technique. - Abstract: Mueller matrix ellipsometry (MME) is applied to characterize lithographic patterns with natural line edge roughness (LER). A computationally efficient approach based on effective medium approximation is proposed to model the effects of LER in MME measurements. We present both the theoretical and experimental results on lithographic patterns with realistic LER which demonstrate that MME in combination with the proposed effective modeling method is capable of quantifying LER amplitudes. Quantitative comparisons between the MME and scanning electron microscopy measured results also reveal the strong potential of this technique for in-line nondestructive line roughness monitoring.

  6. Edge radial electric field structure in quiescent H-mode plasmas in the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); West, W P [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Doyle, E J [University of California, Los Angeles, CA 90095-1597 (United States); Austin, M E [University of Texas at Austin, Austin, TX 78712 (United States); DeGrassie, J S [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Gohil, P [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Greenfield, C M [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Jayakumar, R [Lawrence Livermore National Laboratory, Livermore, CA 94551-9900 (United States); Kaplan, D H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Lao, L L [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Leonard, A W [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M A [Lawrence Livermore National Laboratory, Livermore, CA 94551-9900 (United States); McKee, G R [University of Wisconsin, Madison, WI 53706-1687 (United States); Solomon, W M [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Thomas, D M [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Rhodes, T L [University of California, Los Angeles, CA 90095-1597 (United States); Wade, M R [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wang, G [University of California, Los Angeles, CA 90095-1597 (United States); Watkins, J G [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Zeng, L [University of California, Los Angeles, CA 90095-1597 (United States)

    2004-05-01

    H-mode operation is the choice for next step tokamak devices based on either conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the {beta} limit and reduced core transport regions needed for advanced tokamak operation. Experimental results from DIII-D over the past four years have demonstrated a new operating regime, the quiescent H-mode (QH-mode) regime, that solves these problems. QH-mode plasmas have now been run for over 4 s (>30 energy confinement times). Utilizing the steady-state nature of the QH-mode edge allows us to obtain unprecedented spatial resolution of the edge ion profiles and the edge radial electric field, E{sub r}, by sweeping the edge plasma slowly past the view points of the charge exchange spectroscopy system. We have investigated the effects of direct edge ion orbit loss on the creation and sustainment of the QH-mode. Direct loss of ions injected into the velocity-space loss cone at the plasma edge is not necessary for creation or sustainment of the QH-mode. The direct ion orbit loss has little effect on the edge E{sub r} well. The E{sub r} at the bottom of the well in these cases is about -100 kV m{sup -1} compared with -20 to -30 kV m{sup -1} in the standard H-mode. The well is about 1 cm wide, which is close to the diameter of the deuteron gyro-orbit. We also have investigated the effect of changing edge triangularity by changing the plasma shape from upwardly biased single null to magnetically balanced double null. We have now achieved the QH-mode in these double-null plasmas. The increased triangularity allows us to increase pedestal density in QH-mode plasmas by a factor of about 2.5 and overall pedestal pressure by a factor of 2. Pedestal {beta} and {nu}{sup *} values matching the values desired for ITER have been achieved. In

  7. An analytical method for free vibration analysis of functionally graded beams with edge cracks

    Science.gov (United States)

    Wei, Dong; Liu, Yinghua; Xiang, Zhihai

    2012-03-01

    In this paper, an analytical method is proposed for solving the free vibration of cracked functionally graded material (FGM) beams with axial loading, rotary inertia and shear deformation. The governing differential equations of motion for an FGM beam are established and the corresponding solutions are found first. The discontinuity of rotation caused by the cracks is simulated by means of the rotational spring model. Based on the transfer matrix method, then the recurrence formula is developed to get the eigenvalue equations of free vibration of FGM beams. The main advantage of the proposed method is that the eigenvalue equation for vibrating beams with an arbitrary number of cracks can be conveniently determined from a third-order determinant. Due to the decrease in the determinant order as compared with previous methods, the developed method is simpler and more convenient to analytically solve the free vibration problem of cracked FGM beams. Moreover, free vibration analyses of the Euler-Bernoulli and Timoshenko beams with any number of cracks can be conducted using the unified procedure based on the developed method. These advantages of the proposed procedure would be more remarkable as the increase of the number of cracks. A comprehensive analysis is conducted to investigate the influences of the location and total number of cracks, material properties, axial load, inertia and end supports on the natural frequencies and vibration mode shapes of FGM beams. The present work may be useful for the design and control of damaged structures.

  8. Structural analysis for LMFBR applications

    International Nuclear Information System (INIS)

    Vaze, M.K.K.

    1983-01-01

    The use of elastic analysis for structural design of LMFBR components is discussed. The elastic analysis methods have been used for structural design of the Fast Breeder Test Reactor as well as the proposed Prototype Fast Breeder Reactor. The design of Fast Breeder Test Reactor which is nearing completion is same as that of Rapsodie. Nevertheless, the design had to be checked against the latest design codes available, namely the ASME Code case 1592. This paper however, is confined to Structural analysis of PFBR components. The problems faced in the design of some of the components, in particular, the inner vessel (plenum separator) are discussed. As far as design codes are concerned, ASME Code Section III and the Code Case N-47 are used for high temperature design. The problems faced in the use of these rules are also described along with the description of analysis. Studies in the field of cyclic loading include extension of Bree's shakedown and plastic cycling criteria for ratchet free operation to biaxial stress fields

  9. Structural Analysis of Complex Networks

    CERN Document Server

    Dehmer, Matthias

    2011-01-01

    Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,

  10. Cluster analysis of track structure

    International Nuclear Information System (INIS)

    Michalik, V.

    1991-01-01

    One of the possibilities of classifying track structures is application of conventional partition techniques of analysis of multidimensional data to the track structure. Using these cluster algorithms this paper attempts to find characteristics of radiation reflecting the spatial distribution of ionizations in the primary particle track. An absolute frequency distribution of clusters of ionizations giving the mean number of clusters produced by radiation per unit of deposited energy can serve as this characteristic. General computation techniques used as well as methods of calculations of distributions of clusters for different radiations are discussed. 8 refs.; 5 figs

  11. Total Analysis System for Ship Structural Strength

    OpenAIRE

    Takuya, Yoneya; Hiroyuki, Kobayashi; Abdul M., Rahim; Yoshimichi, Sasaki; Masaki, Irisawa; Technical Investigation and Information Department, Research Center; Technical Investigation and Information Department, Research Center; Singapore Office; Technical Investigation and Information Department, Research Center; Technical Investigation and Information Department, Research Center

    2001-01-01

    This paper outlines a total analysis system for ship hull structures, which integrates a wide variety of analysis functions to realise practical applications of rational methods for assessing ship structural strength. It is based on direct calculation of wave-induced loads as well as three-dimensional structural analysis of an entire-ship or hold structure. Three major analysis functions of the total system are ship motion and wave load analysis, ship structural analysis and statistical analy...

  12. Stereological analysis of spatial structures

    DEFF Research Database (Denmark)

    Hansen, Linda Vadgård

    The thesis deals with stereological analysis of spatial structures. One area of focus has been to improve the precision of well-known stereological estimators by including information that is available via automatic image analysis. Furthermore, the thesis presents a stochastic model for star......-shaped three-dimensional objects using the radial function. It appears that the model is highly fleksiblel in the sense that it can be used to describe an object with arbitrary irregular surface. Results on the distribution of well-known local stereological volume estimators are provided....

  13. Structural disorder and electronic hybridization in NicMg1-cO solid solutions probed by XANES at the oxygen K edge

    International Nuclear Information System (INIS)

    Chen Dongliang; Zhong Jun; Chu Wangsheng; Wu Ziyu; Kuzmin, Alexei; Mironova-Ulmane, Nina; Marcelli, Augusto

    2007-01-01

    A series of Ni c Mg 1-c O solid solutions has been studied for the first time looking at the structural disorder by means of x-ray absorption near-edge-structure (XANES) spectroscopy at the oxygen K edge. The experimental XANES signals were analysed within the full multiple scattering formalism and were interpreted taking into account clusters of up to 15 coordination shells around an absorbing oxygen atom. The substitution of nickel atoms by magnesium atoms results in a dramatic decrease of the empty density of states in the conduction band close to the Fermi level due to an exchange of the 3d(Ni)-2p(O) interaction with 3p(Mg)-2p(O). Besides, a simultaneous small decrease of the 3d(Ni)-2p(O) hybridization is also induced by the lattice expansion, determined by the difference in ionic radii between nickel and magnesium ions

  14. Structural disorder and electronic hybridization in Ni{sub c}Mg{sub 1-c}O solid solutions probed by XANES at the oxygen K edge

    Energy Technology Data Exchange (ETDEWEB)

    Chen Dongliang [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhong Jun [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chu Wangsheng [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu Ziyu [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Kuzmin, Alexei [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Mironova-Ulmane, Nina [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Marcelli, Augusto [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, PO Box 13, 00044 Frascati (Italy)

    2007-09-05

    A series of Ni{sub c}Mg{sub 1-c}O solid solutions has been studied for the first time looking at the structural disorder by means of x-ray absorption near-edge-structure (XANES) spectroscopy at the oxygen K edge. The experimental XANES signals were analysed within the full multiple scattering formalism and were interpreted taking into account clusters of up to 15 coordination shells around an absorbing oxygen atom. The substitution of nickel atoms by magnesium atoms results in a dramatic decrease of the empty density of states in the conduction band close to the Fermi level due to an exchange of the 3d(Ni)-2p(O) interaction with 3p(Mg)-2p(O). Besides, a simultaneous small decrease of the 3d(Ni)-2p(O) hybridization is also induced by the lattice expansion, determined by the difference in ionic radii between nickel and magnesium ions.

  15. Effect of atomic vibrations in XANES: polarization-dependent damping of the fine structure at the Cu K-edge of (creat)2CuCl4.

    Science.gov (United States)

    Šipr, Ondřej; Vackář, Jiří; Kuzmin, Alexei

    2016-11-01

    Polarization-dependent damping of the fine structure in the Cu K-edge spectrum of creatinium tetrachlorocuprate [(creat) 2 CuCl 4 ] in the X-ray absorption near-edge structure (XANES) region is shown to be due to atomic vibrations. These vibrations can be separated into two groups, depending on whether the respective atoms belong to the same molecular block; individual molecular blocks can be treated as semi-rigid entities while the mutual positions of these blocks are subject to large mean relative displacements. The effect of vibrations can be efficiently included in XANES calculations by using the same formula as for static systems but with a modified free-electron propagator which accounts for fluctuations in interatomic distances.

  16. X-ray absorption near edge structure study on Acutolysin-C, a zinc-metalloproteinase from Agkistrodon acutus venom: Insight into the acid-inactive mechanism

    International Nuclear Information System (INIS)

    Zhao Wei; Chu Wangsheng; Li Shujun; Liu Yiwei; Gao Bin; Niu Liwen; Teng Maikun; Benfatto, Maurizio; Hu Tiandou; Wu Ziyu

    2007-01-01

    Acutolysin-C, a snake-venom zinc metalloproteinase, displays a distinct pH-dependent proteolytic activity, which has been tentatively assigned to a structural change of the zinc-containing catalytic center. In this work we compare X-ray absorption near-edge structure (XANES) experimental spectra at the Zn K-edge and theoretical calculations of solutions at different pH values. The experimental data show clear differences confirmed by a best fit using the MXAN procedure. The results show that, when pH decreases from pH 8.0 to pH 3.0, the zinc-coordinating catalytic water molecule moves far from the Glu143 residue that is considered to play an essential role in the proteolytic process. Data suggests that this is the possible mechanism that deactivates the metalloproteinase

  17. Comparison and fit of the two and six band k.p models for the band edge structure of Pbsub(1-x)Snsub(x)Te

    International Nuclear Information System (INIS)

    Weissman, Y.

    1975-10-01

    The band edge structure of Pbsub(1-x)Snsub(x)Te is derived in detail using a two band ellipsoidal model and compared with a more rigorous calculation based on six bands. A quantitative comparison is made for two values of the energy gap, corresponding to the cases where x=0 and x=0.17. It was found that, for the occupied states in nondegenerate materials, both models are practically equivalent. Discrepancies may occur only in high degeneracies or deep inversion layers. The agreement between both models was significantly improved by introducing an effective energy gap in the two band model. It is suggested that the use of the effective energy gap may improve the agreement between the two band model and experiment whenever the details of the band edge structure enter the interpretation of the experimental results. (author)

  18. The theoretical investigations of the core structure and the Peierls stress of the 1/2{1 1 0} edge dislocation in Mo

    International Nuclear Information System (INIS)

    Liu Ruiping; Wang Shaofeng; Wang Rui; Jiao Jian

    2010-01-01

    By using the modified Peierls-Nabarro (P-N) model in which the lattice discrete effect is taken into account, the core structure and the Peierls stress of the 1/2 {1 1 0} edge dislocation in molybdenum (Mo) have been investigated in the anisotropic elasticity approximation. The coefficient of the lattice discrete correction and the energy coefficient are all calculated in the anisotropic elasticity approximation. By considering the lattice discrete effect, the core width obtained from the modified P-N model is much wider than the results obtained from the P-N model. Because the Peierls stress of the 1/2 {1 1 0} edge dislocation in Mo moving with the rigid mechanism is smaller than that with the kink mechanism, therefore, through investigating the Peierls stress of the edge dislocation we obtained with the atomistic simulations, it can be indicated that when the external stress is loaded on the 1/2 {1 1 0} edge dislocation in Mo, the dislocation may move with the rigid mechanism rather than the kink mechanism or other mechanisms.

  19. Cleaning capacity of hybrid instrumentation technique using reamer with alternating cutting edges system files: Histological analysis

    Directory of Open Access Journals (Sweden)

    Emilio Carlos Sponchiado Junior

    2014-01-01

    Full Text Available Aim: The aim of the following study is to evaluate the cleaning capacity of a hybrid instrumentation technique using Reamer with Alternating Cutting Edges (RaCe system files in the apical third of mesial roots of mandibular molars. Materials and Methods: Twenty teeth were selected and separated into two groups (n = 20 according to instrumentation technique as follows: BioRaCe - chemomechanical preparation with K-type files #10 and #15; and files BioRaCe BR0, BR1, BR2, BR3, and BR4; HybTec - hybrid instrumentation technique with K-type files #10 and #15 in the working length, #20 at 2 mm, #25 at 3 mm, cervical preparation with Largo burs #1 and #2; apical preparation with K-type files #15, #20, and #25 and RaCe files #25.04 and #30.04. The root canals were irrigated with 1 ml of 2.5% sodium hypochlorite at each change of instrument. The specimens were histologically processed and photographed under light optical microscope. The images were inserted onto an integration grid to count the amount of debris present in the root canal. Results: BioRaCe presented the highest percentage of debris in the apical third, however, with no statistically significant difference for HybTec (P > 0.05. Conclusions: The hybrid technique presented similar cleaning capacity as the technique recommended by the manufacturer.

  20. Transport analysis of the edge zone of H-mode plasmas by computer simulation

    International Nuclear Information System (INIS)

    Becker, G.; Murmann, H.

    1988-01-01

    Local transport and ideal ballooning stability in the L-phase and ELM-free H-phase in ASDEX are analysed by computer modelling. It is found that the diffusivities χ e and D at the edge are reduced by a factor of six a few milliseconds after the H-transition. Local transport in the inner plasma improves at an early stage by a typical factor of two. A change in the collisionality regime of electrons and ions does not take place. During the L-phase and the quiescent H-phase ideal ballooning modes are found to be stable. Computer experiments further show that a significant reduction in the particle flux at the separatrix takes place which is closely connected with the H-transition process. This explains the observed buildup of a density shoulder on a millisecond time-scale and the drop of the particle flow into the divertor. A strong decrease of the electron heat conduction flux at the separatrix is, however, ruled out in ELM-free periods. On the assumption of electrostatic turbulence induced transport, these results are consistent with measured density fluctuation levels near the separatrix. (author). 20 refs, 9 figs

  1. Reliability analysis of magnetic logic interconnect wire subjected to magnet edge imperfections

    Science.gov (United States)

    Zhang, Bin; Yang, Xiaokuo; Liu, Jiahao; Li, Weiwei; Xu, Jie

    2018-02-01

    Nanomagnet logic (NML) devices have been proposed as one of the best candidates for the next generation of integrated circuits thanks to its substantial advantages of nonvolatility, radiation hardening and potentially low power. In this article, errors of nanomagnetic interconnect wire subjected to magnet edge imperfections have been evaluated for the purpose of reliable logic propagation. The missing corner defects of nanomagnet in the wire are modeled with a triangle, and the interconnect fabricated with various magnetic materials is thoroughly investigated by micromagnetic simulations under different corner defect amplitudes and device spacings. The results show that as the defect amplitude increases, the success rate of logic propagation in the interconnect decreases. More results show that from the interconnect wire fabricated with materials, iron demonstrates the best defect tolerance ability among three representative and frequently used NML materials, also logic transmission errors can be mitigated by adjusting spacing between nanomagnets. These findings can provide key technical guides for designing reliable interconnects. Project supported by the National Natural Science Foundation of China (No. 61302022) and the Scientific Research Foundation for Postdoctor of Air Force Engineering University (Nos. 2015BSKYQD03, 2016KYMZ06).

  2. Multi-agent fare optimization model of two modes problem and its analysis based on edge of chaos

    Science.gov (United States)

    Li, Xue-yan; Li, Xue-mei; Li, Xue-wei; Qiu, He-ting

    2017-03-01

    This paper proposes a new framework of fare optimization & game model for studying the competition between two travel modes (high speed railway and civil aviation) in which passengers' group behavior is taken into consideration. The small-world network is introduced to construct the multi-agent model of passengers' travel mode choice. The cumulative prospect theory is adopted to depict passengers' bounded rationality, the heterogeneity of passengers' reference point is depicted using the idea of group emotion computing. The conceptions of "Langton parameter" and "evolution entropy" in the theory of "edge of chaos" are introduced to create passengers' "decision coefficient" and "evolution entropy of travel mode choice" which are used to quantify passengers' group behavior. The numerical simulation and the analysis of passengers' behavior show that (1) the new model inherits the features of traditional model well and the idea of self-organizing traffic flow evolution fully embodies passengers' bounded rationality, (2) compared with the traditional model (logit model), when passengers are in the "edge of chaos" state, the total profit of the transportation system is higher.

  3. VALIDATION OF CRACK INTERACTION LIMIT MODEL FOR PARALLEL EDGE CRACKS USING TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS

    Directory of Open Access Journals (Sweden)

    R. Daud

    2013-06-01

    Full Text Available Shielding interaction effects of two parallel edge cracks in finite thickness plates subjected to remote tension load is analyzed using a developed finite element analysis program. In the present study, the crack interaction limit is evaluated based on the fitness of service (FFS code, and focus is given to the weak crack interaction region as the crack interval exceeds the length of cracks (b > a. Crack interaction factors are evaluated based on stress intensity factors (SIFs for Mode I SIFs using a displacement extrapolation technique. Parametric studies involved a wide range of crack-to-width (0.05 ≤ a/W ≤ 0.5 and crack interval ratios (b/a > 1. For validation, crack interaction factors are compared with single edge crack SIFs as a state of zero interaction. Within the considered range of parameters, the proposed numerical evaluation used to predict the crack interaction factor reduces the error of existing analytical solution from 1.92% to 0.97% at higher a/W. In reference to FFS codes, the small discrepancy in the prediction of the crack interaction factor validates the reliability of the numerical model to predict crack interaction limits under shielding interaction effects. In conclusion, the numerical model gave a successful prediction in estimating the crack interaction limit, which can be used as a reference for the shielding orientation of other cracks.

  4. Distribution of solute atoms in β- and spinel Si6-zAlzOzN8-z by Al K-edge x-ray absorption near-edge structure

    International Nuclear Information System (INIS)

    Tatsumi, Kazuyoshi; Mizoguchi, Teruyasu; Yoshioka, Satoru; Tanaka, Isao; Yamamoto, Tomoyuki; Suga, Takeo; Sekine, Toshimori

    2005-01-01

    Local environments of solutes in β- and spinel Si 6-z Al z O z N 8-z are investigated by means of Al K x-ray absorption near-edge structure. The experimental spectra are found to be the same throughout the wide solubility range. This suggests that the local environments of Al are independent of the solute concentration. First-principles band-structure calculations are systematically made to interpret the experimental spectra. Effect of a core hole was included into the calculation. Theoretical spectra were obtained using variety of different model structures constructed by a set of plane-wave pseudopotentials calculations in our previous study [K. Tatsumi, I. Tanaka, H. Adachi, and M. Yoshiya, Phys. Rev. B 66, 165210 (2002)]. The numbers of models were 51 and 45 for both β and spinel, respectively. They are classified and averaged according to the local atomic structure of Al solutes. The combination of experimental spectra and theoretical results can unambiguously lead to the conclusion that Al atoms are preferentially coordinated by O atoms in both β and spinel phases. This is consistent with the conclusion obtained by the first-principles total-energy calculations. In the spinel phase, Al atoms are found to be located preferentially at the octahedral cationic site. This agrees with the conclusion in a recent report on the nuclear magnetic resonance experiment

  5. Wing Leading Edge Concepts for Noise Reduction

    Science.gov (United States)

    Shmilovich, Arvin; Yadlin, Yoram; Pitera, David M.

    2010-01-01

    This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.

  6. Structural Analysis of Fungal Cerebrosides

    Directory of Open Access Journals (Sweden)

    Eliana eBarreto-Bergter

    2011-12-01

    Full Text Available Of the ceramide monohexosides (CMHs, gluco- and galactosylceramides are the main neutral glycosphingolipids expressed in fungal cells. Their structural determination is greatly dependent on the use of mass spectrometric techniques, including fast atom bombardment-mass spectrometry (FAB-MS, electrospray ionization (ESI-MS, and energy collision-induced dissociation mass spectrometry (ESI-MS/CID-MS. Nuclear magnetic resonance (NMR has also been used successfully. Such a combination of techniques, combined with classical analytical separation, such as HPTLC and column chromatography, has led to the structural elucidation of a great number of fungal CMHs. The structure of fungal CMH is conserved among fungal species and consists of a glucose or galactose residue attached to a ceramide moiety containing 9-methyl-4,8-sphingadienine with an amidic linkage to hydroxylated fatty acids, most commonly having 16 or 18 carbon atoms and unsaturation between C-3 and C-4. Along with their unique structural characteristics, fungal CMHs have a peculiar subcellular distribution and striking biological properties. Fungal cerebrosides were also characterized as antigenic molecules directly or indirectly involved in cell growth or differentiation in Schizophyllum commune, Cryptococcus neoformans, Pseudallescheria boydii, Candida albicans, Aspergillus nidulans, A.fumigatus and Colletotrichum gloeosporioides. Besides classical techniques for cerebroside (CMH analysis, we now describe new approaches, combining conventional TLC and mass spectrometry, as well as emerging technologies for subcellular localization and distribution of glycosphingolipids by SIMS and imaging MALDI TOF .

  7. Transient thermal stress analysis of a near-edge elliptical defect in a semi-infinite plate subjected to a moving heat source

    International Nuclear Information System (INIS)

    Mingjong Wang; Weichung Wang

    1994-01-01

    In this paper, the maximum transient thermal stresses on the boundary of a near-edge elliptical defect in a semi-infinite thin plate were determined by the digital photoelastic technique, when the plate edge experiences a moving heat source. The relationships between the maximum transient thermal stresses and the size and inclination of the elliptical defect, the minimum distance from the elliptical defect to the plate edge as well as the speed of the moving heat source were also studied. Finally, by using a statistical analysis package, the variations of the maximum transient thermal stresses were then correlated with the time, the minimum distance between the edge and the elliptical defect, temperature difference, and speed of the moving heat source. (author)

  8. Structural analysis of nuclear components

    International Nuclear Information System (INIS)

    Ikonen, K.; Hyppoenen, P.; Mikkola, T.; Noro, H.; Raiko, H.; Salminen, P.; Talja, H.

    1983-05-01

    THe report describes the activities accomplished in the project 'Structural Analysis Project of Nuclear Power Plant Components' during the years 1974-1982 in the Nuclear Engineering Laboratory at the Technical Research Centre of Finland. The objective of the project has been to develop Finnish expertise in structural mechanics related to nuclear engineering. The report describes the starting point of the research work, the organization of the project and the research activities on various subareas. Further the work done with computer codes is described and also the problems which the developed expertise has been applied to. Finally, the diploma works, publications and work reports, which are mainly in Finnish, are listed to give a view of the content of the project. (author)

  9. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  10. Understanding the edge effect in wetting: a thermodynamic approach.

    Science.gov (United States)

    Fang, Guoping; Amirfazli, A

    2012-06-26

    Edge effect is known to hinder spreading of a sessile drop. However, the underlying thermodynamic mechanisms responsible for the edge effect still is not well-understood. In this study, a free energy model has been developed to investigate the energetic state of drops on a single pillar (from upright frustum to inverted frustum geometries). An analysis of drop free energy levels before and after crossing the edge allows us to understand the thermodynamic origin of the edge effect. In particular, four wetting cases for a drop on a single pillar with different edge angles have been determined by understanding the characteristics of FE plots. A wetting map describing the four wetting cases is given in terms of edge angle and intrinsic contact angle. The results show that the free energy barrier observed near the edge plays an important role in determining the drop states, i.e., (1) stable or metastable drop states at the pillar's edge, and (2) drop collapse by liquid spilling over the edge completely or staying at an intermediate sidewall position of the pillar. This thermodynamic model presents an energetic framework to describe the functioning of the so-called "re-entrant" structures. Results show good consistency with the literature and expand the current understanding of Gibbs' inequality condition.

  11. Characterization of local chemistry and disorder in synthetic and natural α-Al2O3 materials by X-ray absorption near edge structure spectroscopy

    International Nuclear Information System (INIS)

    Mottana, A.; Murata, T.

    1997-11-01

    X-ray absorption fine spectra at the Al K-edge were measured experimentally on and calculated theoretically via the multiple-scattering formalism for a chemically pure and physically perfect synthetic α-Al 2 O 3 (α-alumina), a natural 'ruby/sapphire' (corundum) and a series of artificial 'corundum' produced for technical purposes and used as geochemical standards. The Al K-edge spectra differ despite of the identical coordination (short-range arrangement) assumed by O around Al, and vary slightly in relation to the slightly different chemistries of the materials (substitutional defects) as well as on account of the location taken by foreign atoms in the structural lattices (positional defects). A quantitative treatment of the observed changes is made in terms of short-range modification of the coordination polyhedron and of medium- to long-range modifications in the overall structure; both of them induced by substitutions. In some technical 'corundums', the impurities of admixed 'β-alumina', where Al is both in four- and six-fold coordination, produce another small but detectable effect on Al K-edges. Therefore, XAFS spectroscopy proves its potentials for both measuring a light element such as Al, and detecting minor coordination changes and substitutions (ca. 1∼3 wt.% as oxide) of the absorber by dilute other atoms, at least under favorable conditions as those occurring in this system are

  12. Bispectral analysis applied to coherent floating potential fluctuations obtained in the edge plasmas on JFT-2M

    International Nuclear Information System (INIS)

    Nagashima, Y; Itoh, K; Itoh, S-I; Fujisawa, A; Hoshino, K; Takase, Y; Yagi, M; Ejiri, A; Ida, K; Shinohara, K; Uehara, K; Kusama, Y

    2006-01-01

    This paper presents results of bispectral analysis applied to floating potential fluctuations in the edge region of ohmically heated plasmas in the JAERI Fusion Torus-2 Modified (JFT-2M) tokamak. Inside the outermost surface of plasmas, coherent mode fluctuations (CMs) in floating potential were observed around the frequency of the geodesic acoustic mode. The squared bicoherence shows significant nonlinear couplings between the CMs and background fluctuations. The biphase at the frequency of the CMs is localized around π, while that at frequencies of background fluctuations distributes in a wide range. The total bicoherence at the frequency of the CMs is proportional to the squared amplitude of the CMs. These observations are consistent with the theoretical prediction on the drift wave-zonal flow systems. Interpretation of the absolute value of the total bicoherence is also discussed

  13. Functional Generalized Structured Component Analysis.

    Science.gov (United States)

    Suk, Hye Won; Hwang, Heungsun

    2016-12-01

    An extension of Generalized Structured Component Analysis (GSCA), called Functional GSCA, is proposed to analyze functional data that are considered to arise from an underlying smooth curve varying over time or other continua. GSCA has been geared for the analysis of multivariate data. Accordingly, it cannot deal with functional data that often involve different measurement occasions across participants and a large number of measurement occasions that exceed the number of participants. Functional GSCA addresses these issues by integrating GSCA with spline basis function expansions that represent infinite-dimensional curves onto a finite-dimensional space. For parameter estimation, functional GSCA minimizes a penalized least squares criterion by using an alternating penalized least squares estimation algorithm. The usefulness of functional GSCA is illustrated with gait data.

  14. Does the edge effect influence plant community structure in a tropical dry forest? O efeito de borda influencia a estrutura da comunidade vegetal em uma floresta tropical seca?

    Directory of Open Access Journals (Sweden)

    Diogo Gallo Oliveira

    2013-04-01

    Full Text Available Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges.Efeitos de borda são considerados fator-chave na regulação da estrutura de comunidades vegetais em diferentes ecossistemas. Entretanto, apesar dos poucos estudos relacionados, o efeito de borda parece não ser determinante em regiões semiáridas, como a floresta tropical seca brasileira, conhecida como Caatinga. Este estudo testou a hipótese nula de que a comunidade vegetal arbustivo-arbórea não sofre alterações em sua estrutura, riqueza e composição devido ao efeito de borda. Foram instaladas 24 parcelas (20 x 20 m em um fragmento de Caatinga arbórea, sendo 12 parcelas na borda do fragmento e 12 parcelas no seu interior. A riqueza, abundância e composição das espécies não diferiram estatisticamente entre as parcelas de borda e interior. Os resultados deste estudo corroboram um possível padr

  15. Effect of ion orbit loss on the structure in the H-mode tokamak edge pedestal profiles of rotation velocity, radial electric field, density, and temperature

    International Nuclear Information System (INIS)

    Stacey, Weston M.

    2013-01-01

    An investigation of the effect of ion orbit loss of thermal ions and the compensating return ion current directly on the radial ion flux flowing in the plasma, and thereby indirectly on the toroidal and poloidal rotation velocity profiles, the radial electric field, density, and temperature profiles, and the interpretation of diffusive and non-diffusive transport coefficients in the plasma edge, is described. Illustrative calculations for a high-confinement H-mode DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] plasma are presented and compared with experimental results. Taking into account, ion orbit loss of thermal ions and the compensating return ion current is found to have a significant effect on the structure of the radial profiles of these quantities in the edge plasma, indicating the necessity of taking ion orbit loss effects into account in interpreting or predicting these quantities

  16. Infrared study of the absorption edge of β-InN films grown on GaN/MgO structures

    Science.gov (United States)

    Pérez-Caro, M.; Rodríguez, A. G.; Vidal, M. A.; Navarro-Contreras, H.

    2010-07-01

    Infrared optical studies were carried out in a group of cubic InN samples grown by gas source molecular beam epitaxy on MgO (001) substrates. Room temperature (RT) reflectance and low-temperature (LT) transmittance measurements were performed by using fast Fourier transform infrared spectrometry. Reflectance fittings allowed to establish that β-InN films have large free-carrier concentrations present (>1019 cm-3), a result that is corroborated by Hall effect measurements. Each sample explored exhibited a different optical absorption edge. The Varshni parameters that describe adequately the optical absorption edge responses with temperature are obtained for the set of samples studied. The observed temperatures changes, from LT to RT, are the lowest reported for III-V semiconductor binary compounds. The temperature coefficient of the conduction band depends on the strength of the electron-phonon interaction (e-ph-i), as well as on the thermal expansion. It has been predicted that cubic InN has one of the smallest e-ph-i of all III-V compounds, which is corroborated by these results. The variation in values of absorption edges is clearly consistent with the Burstein-Moss and band renormalization effects, produced by high free electron concentrations. It is shown that the conduction band in β-InN, analogous to wurtzite InN, follows a nonparabolic behavior.

  17. Infrared study of the absorption edge of β-InN films grown on GaN/MgO structures

    International Nuclear Information System (INIS)

    Perez-Caro, M.; Rodriguez, A. G.; Vidal, M. A.; Navarro-Contreras, H.

    2010-01-01

    Infrared optical studies were carried out in a group of cubic InN samples grown by gas source molecular beam epitaxy on MgO (001) substrates. Room temperature (RT) reflectance and low-temperature (LT) transmittance measurements were performed by using fast Fourier transform infrared spectrometry. Reflectance fittings allowed to establish that β-InN films have large free-carrier concentrations present (>10 19 cm -3 ), a result that is corroborated by Hall effect measurements. Each sample explored exhibited a different optical absorption edge. The Varshni parameters that describe adequately the optical absorption edge responses with temperature are obtained for the set of samples studied. The observed temperatures changes, from LT to RT, are the lowest reported for III-V semiconductor binary compounds. The temperature coefficient of the conduction band depends on the strength of the electron-phonon interaction (e-ph-i), as well as on the thermal expansion. It has been predicted that cubic InN has one of the smallest e-ph-i of all III-V compounds, which is corroborated by these results. The variation in values of absorption edges is clearly consistent with the Burstein-Moss and band renormalization effects, produced by high free electron concentrations. It is shown that the conduction band in β-InN, analogous to wurtzite InN, follows a nonparabolic behavior.

  18. Flow field analysis inside a gas turbine trailing edge cooling channel under static and rotating conditions: Effect of ribs

    International Nuclear Information System (INIS)

    Mucignat, C.; Armellini, A.; Casarsa, L.

    2013-01-01

    Highlights: • Detailed PIV and Stereo PIV investigation on a rotating test section. • Static channel: absence of guiding effect for inclined ribs. • Static channel: the ribs influence significantly the flow also at the trailing edge. • Rotating channel: opposite flow features with respect to the static case. • The analyzed flow features justify the previously observed thermal performances. -- Abstract: The present work is part of a wider research program which concerns the aero-thermal characterization of cooling channels for the trailing edge of gas turbine blades. The selected passage model is characterized by a trapezoidal cross-section of high aspect-ratio and coolant discharge at the blade tip and along the wedge-shaped trailing edge, where seven elongated pedestals are also installed. In this contribution, a new channel configuration provided with inclined ribs installed inside the radial development region is analyzed, extending the previous results and completing the already available data base, thus providing an overall review of the aero-thermal performance of the considered passage. The velocity field inside the channel was measured by means of 2D and Stereo-PIV techniques in multiple flow planes under static and rotating conditions. The tests were performed under engine similar conditions with respect to both Reynolds (Re = 20,000) and Rotation (Ro = 0, 0.23) numbers. Time averaged flow fields and velocity fluctuation data inside the stationary and rotating channels are analyzed and also critically compared with the data acquired without ribs. In this way the effects on the flow field induced by both rotation and ribs are clearly described. In particular, the ribs modify substantially both the flow field on the channel walls where they are installed and the 3D separation structures that surround the pedestals. If also rotation is taken into account, the relative flow field is characterized by a considerable guiding effect of the ribs coupled

  19. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M. W. [DESY (Deutsches Elektronen-Synchrotron), FS-PEX, Notkestrasse 85, 22607 Hamburg (Germany); Yiu, Y. M., E-mail: yyiu@uwo.ca; Sham, T. K. [Department of Chemistry, University of Western Ontario, London, ON N6A5B7 (Canada); Ward, M. J. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Liu, L. [Institute of Functional Nano and Soft Materials (FUNSOM) and Soochow University-Western University Center for Synchrotron Radiation Research, Soochow University, Suzhou, Jiangsu, 215123 (China); Hu, Y. [Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N2V3 (Canada); Zapien, J. A. [Center Of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Liu, Yingkai [Institute of Physics and Electronic Information, Yunnan Normal University, Kunming, Yunnan, 650500 (China)

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  20. Dynamic analysis of embedded structures

    International Nuclear Information System (INIS)

    Kausel, E.; Whitman, R.V.; Morray, J.P.

    1977-01-01

    The paper presents simplified rules to account for embeddment and soil layering in the soil-structure interaction problem, to be used in dynamic analysis. The relationship between the spring method, and a direct solution (in which both soil and structure are modeled with finite elements and linear members) is first presented. It is shown that for consistency of the results with the two solution methods the spring method should be performed in the following three steps: 1. Determination of the motion of the massless foundation (having the same shape as the actual one) when subjected to the same input motion as the direct solution. 2. Determination of the frequency dependent subgrade stiffness for the relevant degrees of freedom. 3. Computations of the response of the real structure supported on frequency dependent soil springs and subjected at the base of these springs to the motion computed in step 1. The first two steps require, in general, finite element methods, which would make the procedure not attractive. It is shown in the paper, however, that excellent approximations can be obtained, on the basis of 1-dimensional wave propagation theory for the solution of step 1, and correction factors modifying for embeddment the corresponding springs of a surface footing on a layered stratum, for the solution of step 2. (Auth.)

  1. Elastic buckling analysis for composite stiffened panels and other structures subjected to biaxial inplane loads

    Science.gov (United States)

    Viswanathan, A. V.; Tamekuni, M.

    1973-01-01

    An exact linear analysis method is presented for predicting buckling of structures with arbitrary uniform cross section. The structure is idealized as an assemblage of laminated plate-strip elements, curved and planar, and beam elements. Element edges normal to the longitudinal axes are assumed to be simply supported. Arbitrary boundary conditions may be specified on any external longitudinal edge of plate-strip elements. The structure or selected elements may be loaded in any desired combination of inplane transverse compression or tension side load and axial compression load. The analysis simultaneously considers all possible modes of instability and is applicable for the buckling of laminated composite structures. Numerical results correlate well with the results of previous analysis methods.

  2. Analysis of Pumphouse RCC Frame Structure for Soil Structure Interaction

    OpenAIRE

    Mr A.S. Thombare; Prof. V.P. Kumbhar; Prof. A.H. Kumbhar

    2016-01-01

    When structure is built on ground some elements of structure are direct contact with soil. When loads are applied on structure internal forces are developed in both the structure as well as in soil. It results in deformation of both the components which are independent to each other. This are called soil structure interaction. The analysis is done by using (Bentley STAAD.Pro V8i Version 2007) software. The analysis carried out been pump house structure R.C.C. frame structure find ...

  3. Effective Hamiltonian for protected edge states in graphene

    International Nuclear Information System (INIS)

    Winkler, R.; Deshpande, H.

    2017-01-01

    Edge states in topological insulators (TIs) disperse symmetrically about one of the time-reversal invariant momenta Λ in the Brillouin zone (BZ) with protected degeneracies at Λ. Commonly TIs are distinguished from trivial insulators by the values of one or multiple topological invariants that require an analysis of the bulk band structure across the BZ. We propose an effective two-band Hamiltonian for the electronic states in graphene based on a Taylor expansion of the tight-binding Hamiltonian about the time-reversal invariant M point at the edge of the BZ. This Hamiltonian provides a faithful description of the protected edge states for both zigzag and armchair ribbons, though the concept of a BZ is not part of such an effective model. In conclusion, we show that the edge states are determined by a band inversion in both reciprocal and real space, which allows one to select Λ for the edge states without affecting the bulk spectrum.

  4. SU-D-BRA-04: Fractal Dimension Analysis of Edge-Detected Rectal Cancer CTs for Outcome Prediction

    International Nuclear Information System (INIS)

    Zhong, H; Wang, J; Hu, W; Shen, L; Wan, J; Zhou, Z; Zhang, Z

    2015-01-01

    Purpose: To extract the fractal dimension features from edge-detected rectal cancer CTs, and to examine the predictability of fractal dimensions to outcomes of primary rectal cancer patients. Methods: Ninety-seven rectal cancer patients treated with neo-adjuvant chemoradiation were enrolled in this study. CT images were obtained before chemoradiotherapy. The primary lesions of the rectal cancer were delineated by experienced radiation oncologists. These images were extracted and filtered by six different Laplacian of Gaussian (LoG) filters with different filter values (0.5–3.0: from fine to coarse) to achieve primary lesions in different anatomical scales. Edges of the original images were found at zero-crossings of the filtered images. Three different fractal dimensions (box-counting dimension, Minkowski dimension, mass dimension) were calculated upon the image slice with the largest cross-section of the primary lesion. The significance of these fractal dimensions in survival, recurrence and metastasis were examined by Student’s t-test. Results: For a follow-up time of two years, 18 of 97 patients had experienced recurrence, 24 had metastasis, and 18 were dead. Minkowski dimensions under large filter values (2.0, 2.5, 3.0) were significantly larger (p=0.014, 0.006, 0.015) in patients with recurrence than those without. For metastasis, only box-counting dimensions under a single filter value (2.5) showed differences (p=0.016) between patients with and without. For overall survival, box-counting dimensions (filter values = 0.5, 1.0, 1.5), Minkowski dimensions (filter values = 0.5, 1.5, 2.0, 2,5) and mass dimensions (filter values = 1.5, 2.0) were all significant (p<0.05). Conclusion: It is feasible to extract shape information by edge detection and fractal dimensions analysis in neo-adjuvant rectal cancer patients. This information can be used to prognosis prediction

  5. Ordered and disordered models of local structure around Ag cations in silver borate glasses based on x-ray absorptio n near-edge structure spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Šipr, Ondřej; Dalba, G.; Rocca, F.

    2004-01-01

    Roč. 69, - (2004), 134201/1-134201/16 ISSN 0163-1829 R&D Projects: GA ČR GA202/02/0841 Institutional research plan: CEZ:AV0Z1010914 Keywords : disordered systems * structural analysis * XANES * silver * borate glass es Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.075, year: 2004

  6. Sensitivity Analysis of Viscoelastic Structures

    Directory of Open Access Journals (Sweden)

    A.M.G. de Lima

    2006-01-01

    Full Text Available In the context of control of sound and vibration of mechanical systems, the use of viscoelastic materials has been regarded as a convenient strategy in many types of industrial applications. Numerical models based on finite element discretization have been frequently used in the analysis and design of complex structural systems incorporating viscoelastic materials. Such models must account for the typical dependence of the viscoelastic characteristics on operational and environmental parameters, such as frequency and temperature. In many applications, including optimal design and model updating, sensitivity analysis based on numerical models is a very usefull tool. In this paper, the formulation of first-order sensitivity analysis of complex frequency response functions is developed for plates treated with passive constraining damping layers, considering geometrical characteristics, such as the thicknesses of the multi-layer components, as design variables. Also, the sensitivity of the frequency response functions with respect to temperature is introduced. As an example, response derivatives are calculated for a three-layer sandwich plate and the results obtained are compared with first-order finite-difference approximations.

  7. Soil Retaining Structures : Development of models for structural analysis

    NARCIS (Netherlands)

    Bakker, K.J.

    2000-01-01

    The topic of this thesis is the development of models for the structural analysis of soil retaining structures. The soil retaining structures being looked at are; block revetments, flexible retaining walls and bored tunnels in soft soil. Within this context typical structural behavior of these

  8. Living edge

    DEFF Research Database (Denmark)

    Earon, Ofri

    2014-01-01

    was originally introduced to enhance indoor qualities including light and view. Throughout the paper, it is argued that these ecological motives have grown to architectural and urban dimensions. The paper analyzes the characteristics and potentials of these dimensions and their interconnections. The paper...... on the ground level, but there is a lack of recognition in the significance of communicative characters as well at the higher part of the edge. The city’s planning approach is “Consider urban life before urban space. Consider urban space before buildings” This urban strategy neglects the possible architectural...... contribution to the street atmosphere and its effect on urban life. Bay balcony has been a common architectural element in Copenhagen’s residential buildings, since the end of the twenties. It is a domestic border with an architectural thickness combining window, door, windowsill and balcony. The bay balcony...

  9. Speciation of copper and zinc in size-fractionated atmospheric particulate matter using total reflection mode X-ray absorption near-edge structure spectrometry

    International Nuclear Information System (INIS)

    Osan, Janos; Meirer, Florian; Groma, Veronika; Toeroek, Szabina; Ingerle, Dieter; Streli, Christina; Pepponi, Giancarlo

    2010-01-01

    The health effects of aerosol depend on the size distribution and the chemical composition of the particles. Heavy metals of anthropogenic origin are bound to the fine aerosol fraction (PM 2.5 ). The composition and speciation of aerosol particles can be variable in time, due to the time-dependence of anthropogenic sources as well as meteorological conditions. Synchrotron-radiation total reflection X-ray fluorescence (SR-TXRF) provides very high sensitivity for characterization of atmospheric particulate matter. X-ray absorption near-edge structure (XANES) spectrometry in conjunction with TXRF detection can deliver speciation information on heavy metals in aerosol particles collected directly on the reflector surface. The suitability of TXRF-XANES for copper and zinc speciation in size-fractionated atmospheric particulate matter from a short sampling period is presented. For high size resolution analysis, atmospheric aerosol particles were collected at different urban and rural locations using a 7-stage May cascade impactor having adapted for sampling on Si wafers. The thin stripe geometry formed by the particulate matter deposited on the May-impactor plates is ideally suited to SR-TXRF. Capabilities of the combination of the May-impactor sampling and TXRF-XANES measurements at HASYLAB Beamline L to Cu and Zn speciation in size-fractionated atmospheric particulate matter are demonstrated. Information on Cu and Zn speciation could be performed for elemental concentrations as low as 140 pg/m 3 . The Cu and Zn speciation in the different size fraction was found to be very distinctive for samples of different origin. Zn and Cu chemical state typical for soils was detected only in the largest particles studied (2-4 μm fraction). The fine particles, however, contained the metals of interest in the sulfate and nitrate forms.

  10. A Study of the interaction of radiation and semiconductor lasers: an analysis of transient and permanent effects induced on edge emitting and vertical cavity surface emitting laser diodes

    International Nuclear Information System (INIS)

    Pailharey, Eric

    2000-01-01

    The behavior of laser diodes under transient environment is presented in this work. The first section describes the basic phenomena of radiation interaction with matter. The radiative environments, the main characteristics of laser diodes and the research undertaken on the subject are presented and discussed. The tests on 1300 nm edge emitting laser diode are presented in the second section. The response to a transient ionizing excitation is explored using a 532 nm laser beam. The time of return to steady state after the perturbation is decomposed into several steps: decrease of the optical power during excitation, turn-on delay, relaxation oscillations and optical power offset. Their origins are analyzed using the device structure. To include all the phenomena in a numerical simulation of the device, an individual study of low conductivity materials used for the lateral confinement of the current density is undertaken. The effects of a single particle traversing the optical cavity and an analysis of permanent damages induced by neutrons are also determined. In the last section, 850 nm vertical cavity surface emitting laser diodes (VCSEL) are studied. The behavior of these devices which performances are in constant evolution, is investigated as a function of both temperature and polarization. Then VCSEL are submitted to transient ionizing irradiation and their responses are compared to those of edge emitting diodes. When proton implantation is used in the process, we observe the same behavior for both technologies. VCSEL were submitted to neutron fluence and we have studied the influence of the damages on threshold current, emission patterns and maximum of optical power. (author) [fr

  11. The competitive growth of cubic domains in Ti(1-x)AlxN films studied by diffraction anomalous near-edge structure spectroscopy.

    Science.gov (United States)

    Pinot, Y; Tuilier, M-H; Pac, M-J; Rousselot, C; Thiaudière, D

    2015-11-01

    Titanium and aluminium nitride films deposited by magnetron sputtering generally grow as columnar domains made of oriented nanocrystallites with cubic or hexagonal symmetry depending on Al content, which are embedded in more disordered grain boundaries. The substitution of Al atoms for Ti in the cubic lattice of the films improves their resistance to wear and oxidation, allowing their use as protective coatings. Ti K-edge X-ray absorption spectroscopy, which probes both crystallized and more disordered grain boundaries, and X-ray diffraction anomalous fine structure, which is sensitive to short- and long-range order within a given crystallized domain, are carried out on a set of Ti(1-x)AlxN films deposited by magnetron sputtering on Si substrates. Attention is paid to the shape of the pre-edge region, which is sensitive to the symmetry of the site occupied by Ti atoms, either octahedral in face-centred-cubic Ti-rich (TiN, Ti0.54Al0.46N) samples or tetrahedral in hexagonal-close-packed Al-rich (Ti0.32Al0.68N) films. In order to obain information on the titanium environment in the well crystallized areas, subtraction of the smooth part of the energy-dependent structure factor for the Bragg reflections is applied to the pre-edge region of the diffraction anomalous data in order to restore their spectroscopic appearance. A flat pre-edge is related to the typical octahedral environment of Ti atoms for cubic reflections. The difference observed between pre-edge spectra associated with face-centred-cubic 200 and 111 Bragg reflections of Ti0.54Al0.46N is assigned to Ti enrichment of 111 large well ordered domains compared with the more disordered 200 ones. The sharp peak observed in the spectrum recorded from the hexagonal 002 peak of Ti0.32Al0.68N can be regarded as a standard for the pure tetrahedral Ti environment in hexagonal-close-packed nitride.

  12. Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry.

    Science.gov (United States)

    Headland, Sarah E; Jones, Hefin R; D'Sa, Adelina S V; Perretti, Mauro; Norling, Lucy V

    2014-06-10

    Interest in extracellular vesicle biology has exploded in the past decade, since these microstructures seem endowed with multiple roles, from blood coagulation to inter-cellular communication in pathophysiology. In order for microparticle research to evolve as a preclinical and clinical tool, accurate quantification of microparticle levels is a fundamental requirement, but their size and the complexity of sample fluids present major technical challenges. Flow cytometry is commonly used, but suffers from low sensitivity and accuracy. Use of Amnis ImageStream(X) Mk II imaging flow cytometer afforded accurate analysis of calibration beads ranging from 1 μm to 20 nm; and microparticles, which could be observed and quantified in whole blood, platelet-rich and platelet-free plasma and in leukocyte supernatants. Another advantage was the minimal sample preparation and volume required. Use of this high throughput analyzer allowed simultaneous phenotypic definition of the parent cells and offspring microparticles along with real time microparticle generation kinetics. With the current paucity of reliable techniques for the analysis of microparticles, we propose that the ImageStream(X) could be used effectively to advance this scientific field.

  13. Applying network analysis and Nebula (neighbor-edges based and unbiased leverage algorithm) to ToxCast data.

    Science.gov (United States)

    Ye, Hao; Luo, Heng; Ng, Hui Wen; Meehan, Joe; Ge, Weigong; Tong, Weida; Hong, Huixiao

    2016-01-01

    ToxCast data have been used to develop models for predicting in vivo toxicity. To predict the in vivo toxicity of a new chemical using a ToxCast data based model, its ToxCast bioactivity data are needed but not normally available. The capability of predicting ToxCast bioactivity data is necessary to fully utilize ToxCast data in the risk assessment of chemicals. We aimed to understand and elucidate the relationships between the chemicals and bioactivity data of the assays in ToxCast and to develop a network analysis based method for predicting ToxCast bioactivity data. We conducted modularity analysis on a quantitative network constructed from ToxCast data to explore the relationships between the assays and chemicals. We further developed Nebula (neighbor-edges based and unbiased leverage algorithm) for predicting ToxCast bioactivity data. Modularity analysis on the network constructed from ToxCast data yielded seven modules. Assays and chemicals in the seven modules were distinct. Leave-one-out cross-validation yielded a Q(2) of 0.5416, indicating ToxCast bioactivity data can be predicted by Nebula. Prediction domain analysis showed some types of ToxCast assay data could be more reliably predicted by Nebula than others. Network analysis is a promising approach to understand ToxCast data. Nebula is an effective algorithm for predicting ToxCast bioactivity data, helping fully utilize ToxCast data in the risk assessment of chemicals. Published by Elsevier Ltd.

  14. Resonant inelastic x-ray scattering on iso-C2H2Cl2 around the chlorine K-edge: Structural and dynamical aspects

    International Nuclear Information System (INIS)

    Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Simon, Marc; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok

    2014-01-01

    We report a theoretical and experimental study of the high resolution resonant K α X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K α emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state

  15. Resonant inelastic x-ray scattering on iso-C2H2Cl2 around the chlorine K-edge: Structural and dynamical aspects

    Science.gov (United States)

    Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; Kavčič, Matjaž; Céolin, Denis; Khoury, Antonio; Simon, Marc

    2014-10-01

    We report a theoretical and experimental study of the high resolution resonant Kα X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the Kα emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.

  16. Resonant inelastic x-ray scattering on iso-C₂H₂Cl₂ around the chlorine K-edge: structural and dynamical aspects.

    Science.gov (United States)

    Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; Kavčič, Matjaž; Céolin, Denis; Khoury, Antonio; Simon, Marc

    2014-10-14

    We report a theoretical and experimental study of the high resolution resonant K(α) X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K(α) emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.

  17. Boundary discontinuous Fourier analysis of thick beams with clamped and simply supported edges via CUF

    Directory of Open Access Journals (Sweden)

    F.G. CANALES

    2017-10-01

    Full Text Available This paper presents an analytical solution for static analysis of thick rectangular beams with different boundary conditions. Carrera’s Unified Formulation (CUF is used in order to consider shear deformation theories of arbitrary order. The novelty of the present work is that a boundary discontinuous Fourier approach is used to consider clamped boundary conditions in the analytical solution, unlike Navier-type solutions which are restricted to simply supported beams. Governing equations are obtained by employing the principle of virtual work. The numerical accuracy of results is ascertained by studying the convergence of the solution and comparing the results to those of a 3D finite element solution. Beams subjected to bending due to a uniform pressure load and subjected to torsion due to opposite linear forces are considered. Overall, accurate results close to those of 3D finite element solutions are obtained, which can be used to validate finite element results or other approximate methods.

  18. Statistical Analysis of SSMIS Sea Ice Concentration Threshold at the Arctic Sea Ice Edge during Summer Based on MODIS and Ship-Based Observational Data.

    Science.gov (United States)

    Ji, Qing; Li, Fei; Pang, Xiaoping; Luo, Cong

    2018-04-05

    The threshold of sea ice concentration (SIC) is the basis for accurately calculating sea ice extent based on passive microwave (PM) remote sensing data. However, the PM SIC threshold at the sea ice edge used in previous studies and released sea ice products has not always been consistent. To explore the representable value of the PM SIC threshold corresponding on average to the position of the Arctic sea ice edge during summer in recent years, we extracted sea ice edge boundaries from the Moderate-resolution Imaging Spectroradiometer (MODIS) sea ice product (MOD29 with a spatial resolution of 1 km), MODIS images (250 m), and sea ice ship-based observation points (1 km) during the fifth (CHINARE-2012) and sixth (CHINARE-2014) Chinese National Arctic Research Expeditions, and made an overlay and comparison analysis with PM SIC derived from Special Sensor Microwave Imager Sounder (SSMIS, with a spatial resolution of 25 km) in the summer of 2012 and 2014. Results showed that the average SSMIS SIC threshold at the Arctic sea ice edge based on ice-water boundary lines extracted from MOD29 was 33%, which was higher than that of the commonly used 15% discriminant threshold. The average SIC threshold at sea ice edge based on ice-water boundary lines extracted by visual interpretation from four scenes of the MODIS image was 35% when compared to the average value of 36% from the MOD29 extracted ice edge pixels for the same days. The average SIC of 31% at the sea ice edge points extracted from ship-based observations also confirmed that choosing around 30% as the SIC threshold during summer is recommended for sea ice extent calculations based on SSMIS PM data. These results can provide a reference for further studying the variation of sea ice under the rapidly changing Arctic.

  19. Study of oxidation states of the transition metals in a series of Prussian blue analogs using x-ray absorption near edge structure (XANES) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Adak, S. [Department of Physics, New Mexico State University, Las Cruces, NM, 88003 (United States); Hartl, M., E-mail: monika.hartl@esss.se [European Spallation Source ESS AB, 22100, Lund (Sweden); Manuel Lujan Jr. Neutron Scattering Center (LANSCE-LC), Los Alamos National Laboratory, Los Alamos, NM, 87545 (United States); Daemen, L. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN, 37830 (United States); Manuel Lujan Jr. Neutron Scattering Center (LANSCE-LC), Los Alamos National Laboratory, Los Alamos, NM, 87545 (United States); Fohtung, E.; Nakotte, H. [Department of Physics, New Mexico State University, Las Cruces, NM, 88003 (United States)

    2017-01-15

    Highlights: • Systematic XANES measurements on Prussian blue analogs shows oxidation state of transition metals. • Cobal-iron bimetallic hexacyanometallates show unexpected oxidation states. • Iron(II) ions in hexacyanometallates(III) show varying spin state depending on their bond to the “N” end or “C” end of the cyanide ligand. • Thermal expansion coefficients have been linked to the XANES results. - Abstract: There have been renewed interests in metal-organic framework classes of materials such as Prussian blue analogues (PBAs) due to their potential usage in energy storage applications. In particular, due to their high surface areas, controllable structures and excellent electrochemical properties, PBAs such as hexacyanometalates M{sup II}{sub 3}[A{sup III}(CN){sub 6}]{sub 2*}nH{sub 2}O (M = Mn, Fe, Co, Ni, Cu, Zn; A = Co, Fe, Cr; n = no. of water molecules present), M{sup II}{sub 2}[Fe{sup II}(CN){sub 6}]{sub 2*}nH{sub 2}O (M = Mn, Co, Ni, Cu, Zn) and mixed hexacyanometalates(III) (Fe{sub 1-x}Co{sub x}){sub 3}[B{sup III}(CN){sub 6}]{sub 2}·nH{sub 2}O (x = 0.25, 0.5, 0.75; B = Co, Fe) could have possible usage as a new class of cathode and even anode materials for rechargeable batteries. Detailed knowledge of the oxidation states of the transition metals in PBAs is required to improve efficiency and durability of such devices. Furthermore, a link between the thermal expansion observed in these materials and the oxidation state of the transition metal is of interest to synthesize materials with a desired thermal expansion behavior, Here we demonstrate the use of Synchrotron based X-ray absorption near-edge structure (XANES) spectra to identify transition metal oxidation states. Our analysis reveals the presence of divalent, trivalent and/or mixed valence transition metals in the materials as well as high-spin and low-spin complexes.

  20. Automated analysis and design of complex structures

    International Nuclear Information System (INIS)

    Wilson, E.L.

    1977-01-01

    This paper discusses the following: 1. The relationship of analysis to design. 2. New methods of analysis. 3. Improved finite elements. 4. Effect of minicomputer on structural analysis methods. 5. The use of system of microprocessors for nonlinear structural analysis. 6. The role of interacting graphics systems in future analysis and design. The discussion focusses on the impact of new inexpensive computer hardware on design and analysis methods. (Auth.)

  1. Tool life of the edges coated with the c-BN+h-BN coatings with different structures during hard machinable steel machining

    Directory of Open Access Journals (Sweden)

    Kupczyk, M.

    2005-12-01

    Full Text Available In the presented paper the experimental results concerning the functional quality (durability during steel machining of thin, superhard coatings produced on the cutting edges are described. Differences among mentioned properties of coatings mainly result from a coating structure. But the structure of coatings results from deposition parameters Superhard boron nitride coatings were deposited on insert cutting edges made of cemented carbides by the pulse-plasma method applying different values of the discharge voltage. The comparative investigations of mentioned coatings have been concerned of tool life of edges during hard machinable material machining (nitriding steel hardened in oil. In these investigations for the purpose of additional increase of coatings adhesion to substrates an interfacial layers were applied.

    En este trabajo se describen los resultados experimentales referentes a la calidad funcional (durabilidad durante el mecanizado del acero de recubrimientos delgados, de elevada dureza del filo de corte. Las diferencias en las propiedades de los recubrimientos se deben, principalmente, a la estructura del recubrimiento. No obstante, la estructura del recubrimiento está relacionada con los parámetros de la deposición. Recubrimientos de nitruro de boro de elevada dureza se depositaron sobre filos de corte insertados, fabricados con carburos cementados mediante el método de pulsos de plasma aplicando diferentes valores de voltaje de descarga. Las investigaciones comparativas de los mencionados recubrimientos han relacionado la vida del filo de la herramienta durante el mecanizado del material (acero nitrurado endurecido en aceite. En estas investigaciones se aplicaron capas interfaciales para aumentar la adherencia del recubrimiento.

  2. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline.

    Science.gov (United States)

    Chen, Yunshun; Lun, Aaron T L; Smyth, Gordon K

    2016-01-01

    In recent years, RNA sequencing (RNA-seq) has become a very widely used technology for profiling gene expression. One of the most common aims of RNA-seq profiling is to identify genes or molecular pathways that are differentially expressed (DE) between two or more biological conditions. This article demonstrates a computational workflow for the detection of DE genes and pathways from RNA-seq data by providing a complete analysis of an RNA-seq experiment profiling epithelial cell subsets in the mouse mammary gland. The workflow uses R software packages from the open-source Bioconductor project and covers all steps of the analysis pipeline, including alignment of read sequences, data exploration, differential expression analysis, visualization and pathway analysis. Read alignment and count quantification is conducted using the Rsubread package and the statistical analyses are performed using the edgeR package. The differential expression analysis uses the quasi-likelihood functionality of edgeR.

  3. Finding Sales Promotion and Making Decision for New Product Based on Group Analysis of Edge-Enhanced Product Networks

    Science.gov (United States)

    Huang, Yi; Tan, Jianbin; Wu, Bin

    A novel method is proposed in this paper to find the promotive relationship of products from a network point of view. Firstly, a product network is built based on the dataset of handsets’ sale information collected from all outlets of a telecom operator of one province of China, with a period from Jan. 2006 to Jul. 2008. Then the edge enhanced model is applied on product network to divide all the products into several groups, according to which each outlet is assigned to class A or class B for a certain handset. Class A is defined as the outlet which sell the certain handset and contains all of handsets of its group, while other situation for class B which sell the certain handset too. It’s shown from the result of analysis on these two kinds of outlets that many handsets are sold better in outlets of class A than that of class B, even though the sales revenue of all these outlets in the time period is close. That is to say the handsets within a group would promote the sale for each other. Furthermore, a method proposed in this paper gives a way to find out the important attributes of the handsets which lead them to br divided into the same group, and it also explains how to add a new handset to an existing group and where would the new handset be sold best.

  4. Transition edge sensor-energy-dispersive spectrometer (TES-EDS) using a cryogen-free dilution refrigerator for material analysis

    International Nuclear Information System (INIS)

    Tanaka, Keiichi; Odawara, Akikazu; Nagata, Atsushi; Ikeda, Masanori; Baba, Yukari; Nakayama, Satoshi; Chinone, Kazuo

    2006-01-01

    A cryogen-free energy-dispersive spectrometer (EDS) using a transition edge sensor (TES) was developed for material analysis. This system can maintain a temperature at 130 mK within 30 μK, and has good energy resolution (19 eV for Mn-Kα) for long-time measurement with a drift in the DC level of less than 0.02 eV/min. This system utilizes a dilution refrigerator (φ 272 mmxheight 572 mm) and has a snout (370 mm long and φ25 mm) similar to that in a conventional EDS system. The dilution refrigerator is pre-cooled by a GM refrigerator. A flexible tube between the dilution refrigerator and GM refrigerator damps the mechanical vibration of the GM refrigerator. Two shields (4 and 80 K) thermally protect the Cu rod (φ8 mm) cooled to be 100 mK. Windows composed of polyimide+Al film allow X-ray detection above the C-Kα line. A TES (6 mmx6 mm) and array SQUID amplifier (1.5 mmx3 mm) are mounted on top of the Cu rod. For Mn-Kα, the pulse height is 5.5 μA and decay time (τ eff ) is 90 μs. The maximum count rate (1/20 τ eff ) is estimated at about 500 cps

  5. Erosion/redeposition analysis : status of modeling and code validation for semi-detached tokamak edge plasmas

    International Nuclear Information System (INIS)

    Brooks, J. N.

    1999-01-01

    We are analyzing erosion and tritium codeposition for ITER, DIII-D, and other devices with a focus on carbon divertor and metallic wall sputtering, for detached and semi-detached edge plasmas. Carbon chemical-sputtering hydrocarbon-transport is computed in detail using upgraded models for sputtering yields, species, and atomic and molecular processes. For the DIII-D analysis this includes proton impact and dissociative recombination for the full methane and higher hydrocarbon chains. Several mixed material (Si-C doping and Be/C) effects on erosion are examined. A semi-detached reactor plasma regime yields peak net wall erosion rates of ∼1.0 (Be), ∼0.3 (Fe), and ∼0.01 (W) cm/burn-yr, and ∼50 cm/burn-yr for a carbon divertor. Net carbon erosion is dominated by chemical sputtering in the ∼1-3 eV detached plasma zone. Tritium codeposition in divertor-sputtered redeposited carbon is high (∼10-20 g-T/1000 s ). Silicon and beryllium mixing tends to reduce carbon erosion. Initial hydrocarbon transport calculations for the DIII-D DiMES-73 detached plasma experiment show a broad spectrum of redeposited molecules with ∼90% redeposition fraction

  6. Network structure detection and analysis of Shanghai stock market

    Directory of Open Access Journals (Sweden)

    Sen Wu

    2015-04-01

    Full Text Available Purpose: In order to investigate community structure of the component stocks of SSE (Shanghai Stock Exchange 180-index, a stock correlation network is built to find the intra-community and inter-community relationship. Design/methodology/approach: The stock correlation network is built taking the vertices as stocks and edges as correlation coefficients of logarithm returns of stock price. It is built as undirected weighted at first. GN algorithm is selected to detect community structure after transferring the network into un-weighted with different thresholds. Findings: The result of the network community structure analysis shows that the stock market has obvious industrial characteristics. Most of the stocks in the same industry or in the same supply chain are assigned to the same community. The correlation of the internal stock prices’ fluctuation is closer than in different communities. The result of community structure detection also reflects correlations among different industries. Originality/value: Based on the analysis of the community structure in Shanghai stock market, the result reflects some industrial characteristics, which has reference value to relationship among industries or sub-sectors of listed companies.

  7. Decision analysis for deteriorating structures

    International Nuclear Information System (INIS)

    Val, Dimitri V.; Stewart, Mark G.

    2005-01-01

    Measures that improve durability of a structure usually increase its initial cost. Thus, in order to make a decision about a cost-effective solution the life-cycle cost of a structure including cost of structural failure needs to be considered. Due to uncertainties associated with structural properties, loads and environmental conditions the cost of structural failure is a random variable. The paper derives probability distributions of the cost of failure of a single structure and a group of identical structures when single or multiple failures are possible during the service life of a structure. The probability distributions are based on cumulative probabilities of failure of a single structure over its service life. It is assumed that failures occur at discrete points in time, the cost of failure set at the time of decision making remains constant for a particular design solution and the discount rate is a deterministic parameter not changing with time. The probability distributions can be employed to evaluate the expected life-cycle cost or the expected utility, which is then used in decision making. An example, which considers the selection of durability specifications for a reinforced concrete structure built on the coast, illustrates the use of the derived probability distributions

  8. Identification of isomers in the gas phase and as adsorbates by near-edge X-ray absorption fine structure spectroscopy: Cis- and trans-stilbene

    International Nuclear Information System (INIS)

    Püttner, Ralph; Schmidt-Weber, Philipp; Kampen, Thorsten; Kolczewski, Christine; Hermann, Klaus; Horn, Karsten

    2017-01-01

    Highlights: • NEXAFS spectra of the cis- and trans-isomer of stilbene reveal distinct differences by which the isomers can be distinguished. • DFT calculations using the transition potential approach assign specific transitions that are different in the two isomers. • On Si(100), these differences in NEXAFS are also observed, suggesting that their conformations survive in the bonding situation. • NEXAFS is thus shown to be a sensitive tool to distinguish isomers in adsorbed species. - Abstract: Near-edge x-ray absorption fine structure spectra of the cis- and trans-isomers of stilbene in the gas phase reveal clear differences, which are analyzed by results from density-functional theory calculations using the transition potential approach. The differences between the two species also occur in stilbene adsorbed on Si(100), opening the way towards studying structural changes in molecules in different surface environments, and configurational switching in organic molecules on surfaces in particular.

  9. Identification of isomers in the gas phase and as adsorbates by near-edge X-ray absorption fine structure spectroscopy: Cis- and trans-stilbene

    Energy Technology Data Exchange (ETDEWEB)

    Püttner, Ralph [Department of Physics, Freie Universität Berlin, 14195 Berlin (Germany); Schmidt-Weber, Philipp [Fritz Haber Institute of the Max Planck Society, 14195 Berlin (Germany); Kampen, Thorsten [SPECS Surface Nano Analysis GmbH, 13355 Berlin (Germany); Kolczewski, Christine [Deutsches Museum München, 80538 Munich (Germany); Hermann, Klaus [Fritz Haber Institute of the Max Planck Society, 14195 Berlin (Germany); Horn, Karsten, E-mail: horn@fhi-berlin.mpg.de [Fritz Haber Institute of the Max Planck Society, 14195 Berlin (Germany)

    2017-02-15

    Highlights: • NEXAFS spectra of the cis- and trans-isomer of stilbene reveal distinct differences by which the isomers can be distinguished. • DFT calculations using the transition potential approach assign specific transitions that are different in the two isomers. • On Si(100), these differences in NEXAFS are also observed, suggesting that their conformations survive in the bonding situation. • NEXAFS is thus shown to be a sensitive tool to distinguish isomers in adsorbed species. - Abstract: Near-edge x-ray absorption fine structure spectra of the cis- and trans-isomers of stilbene in the gas phase reveal clear differences, which are analyzed by results from density-functional theory calculations using the transition potential approach. The differences between the two species also occur in stilbene adsorbed on Si(100), opening the way towards studying structural changes in molecules in different surface environments, and configurational switching in organic molecules on surfaces in particular.

  10. Edge Sheared Flows and Blob Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Myra, J.; D' Ippolito, D.; Russell, D., E-mail: jrmyra@lodestar.com [Lodestar Research Corporation, Boulder (United States); Davis, W. M.; Zweben, S. [Princeton Plasma Physics Laboratory, Princeton (United States); Terry, J.; LaBombard, B. [Massachusetts Institute of Technology, Cambridge (United States)

    2012-09-15

    Full text: A study of sheared flows in the edge and scrape-off layer (SOL) and their interaction with blob-filaments is presented. Edge sheared flows are believed to be important for the L-H, and H-L transitions. Blob generation and dynamics impacts both the (near-separatrix) scrape-off-layer (SOL) width critical for power handling in the divertor, and the interaction of plasma in the far SOL with plasma-facing components. These topics are critical for ITER and future devices. A fluid-based 2D curvature-interchange model embedded in the SOLT code is employed to study these issues. Sheared binormal flows both regulate the power flux crossing the separatrix and control the character of emitted turbulence structures such as blob-filaments. At a critical power level (depending on parameters) the laminar flows containing intermittent, but bound, structures give way to full-blown blob emissions signifying a transition from quasi-diffusive to convective transport. In order to diagnose sheared flows in experiments and assess their interaction with blobs, a blob-tracking algorithm has been developed and applied to both NSTX and Alcator C-Mod data. Blob motion and ellipticity can be affected by sheared flows, and are diagnosed and compared with seeded blob simulations. A picture of the interaction of blobs and sheared flows is emerging from advances in the theory and simulation of edge turbulence, combined with ever-improving capabilities for edge diagnostics and their analysis. (author)

  11. Substitution behavior of x(Na0.5K0.5)NbO3-(1 - x)BaTiO3 ceramics for multilayer ceramic capacitors by a near edge x-ray absorption fine structure analysis

    Science.gov (United States)

    Ha, Jooyeon; Ryu, Jiseung; Lee, Heesoo

    2014-06-01

    The doping effect of (Na0.5K0.5)NbO3 (NKN) as alternatives for rare-earth elements on the electrical properties of BaTiO3 has been investigated, in terms of their substitution behavior. The dielectric constant of a specimen with x = 0.05 was about 79% higher than that of pure BaTiO3, and the temperature coefficient of capacitance was satisfied by the X7R specification. The specimen with x = 0.05 showed the lowest tetragonality among the four compositions and had a fine grain size of x-ray absorption fine structure spectroscopy, the practical substitution behavior was defined by the change in Ti 3d orbital states. The energy separation of the Ti 3d orbitals was more apparent with the specimen of x = 0.05, which is related to the donor level from the donor substitution of Nb5+ ion for Ti-sites. Therefore, the simultaneous substitution of Na+/K+ and Nb5+ ions into BaTiO3 can improve dielectric properties, based on the charge-transfer process.

  12. Automated detection and measurement of isolated retinal arterioles by a combination of edge enhancement and cost analysis.

    Directory of Open Access Journals (Sweden)

    José A Fernández

    Full Text Available Pressure myography studies have played a crucial role in our understanding of vascular physiology and pathophysiology. Such studies depend upon the reliable measurement of changes in the diameter of isolated vessel segments over time. Although several software packages are available to carry out such measurements on small arteries and veins, no such software exists to study smaller vessels (<50 µm in diameter. We provide here a new, freely available open-source algorithm, MyoTracker, to measure and track changes in the diameter of small isolated retinal arterioles. The program has been developed as an ImageJ plug-in and uses a combination of cost analysis and edge enhancement to detect the vessel walls. In tests performed on a dataset of 102 images, automatic measurements were found to be comparable to those of manual ones. The program was also able to track both fast and slow constrictions and dilations during intraluminal pressure changes and following application of several drugs. Variability in automated measurements during analysis of videos and processing times were also investigated and are reported. MyoTracker is a new software to assist during pressure myography experiments on small isolated retinal arterioles. It provides fast and accurate measurements with low levels of noise and works with both individual images and videos. Although the program was developed to work with small arterioles, it is also capable of tracking the walls of other types of microvessels, including venules and capillaries. It also works well with larger arteries, and therefore may provide an alternative to other packages developed for larger vessels when its features are considered advantageous.

  13. PLASTIC ANALYSIS OF STEEL FRAME STRUCTURE

    Directory of Open Access Journals (Sweden)

    M. Rogac

    2013-05-01

    Full Text Available This paper presents the plastic analysis of steel frame structure loaded by gravity loads. By applying the cinematic theorem of ultimate analysis, the ultimate load for the case of elastic - ideally plastic material is calculated. The identical structure was treated in the computer program SAP2000 where the zone of material reinforcement in the plastic area was covered. Keywords: Steel frame structure, plastic analysis, ultimate gravity load, material reinforcement.

  14. Robustness Analysis of Kinetic Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2009-01-01

    Kinetic structures in architecture follows a new trend which is emerging in responsive architecture coined by Nicholas Negroponte when he proposed that architecture may benefit from the integration of computing power into built spaces and structures, and that better performing, more rational...

  15. Edge of polar cap patches

    Science.gov (United States)

    Hosokawa, K.; Taguchi, S.; Ogawa, Y.

    2016-04-01

    On the night of 4 December 2013, a sequence of polar cap patches was captured by an all-sky airglow imager (ASI) in Longyearbyen, Norway (78.1°N, 15.5°E). The 630.0 nm airglow images from the ASI of 4 second exposure time, oversampled the emission of natural lifetime (with quenching) of at least ˜30 sec, introduce no observational blurring effects. By using such high-quality ASI images, we succeeded in visualizing an asymmetry in the gradients between the leading/trailing edges of the patches in a 2-D fashion. The gradient in the leading edge was found to be 2-3 times steeper than that in the trailing edge. We also identified fingerlike structures, appearing only along the trailing edge of the patches, whose horizontal scale size ranged from 55 to 210 km. These fingers are considered to be manifestations of plasma structuring through the gradient-drift instability (GDI), which is known to occur only along the trailing edge of patches. That is, the current 2-D observations visualized, for the first time, how GDI stirs the patch plasma and such a mixing process makes the trailing edge more gradual. This result strongly implies a close connection between the GDI-driven plasma stirring and the asymmetry in the large-scale shape of patches and then suggests that the fingerlike structures can be used as markers to estimate the fine-scale structure in the plasma flow within patches.

  16. SIMS chemical analysis of extended impacts on the leading and trailing edges of LDEF experiment AO187-2

    Science.gov (United States)

    Amari, S.; Foote, J.; Swan, P.; Walker, R. M.; Zinner, E.; Lange, G.

    1993-01-01

    Numerous 'extended impacts' found in both leading and trailing edge capture cells were successfully analyzed for the chemical composition of projectile residues by secondary ion mass spectrometry (SIMS). Most data were obtained from the trailing edge cells where 45 of 58 impacts were classified as 'probably natural' and the remainder as 'possibly man-made debris.' This is in striking contrast to leading edge cells where 9 of 11 impacts so far measured are definitely classified as orbital debris. Although all the leading edge cells had lost their plastic entrance foils during flight, the rate of foil failure was similar to that of the trailing edge cells, 10 percent of which were recovered intact. Ultraviolet embrittlement is suspected as the major cause of failure on both leading and trailing edges. The major impediment to the accurate determination of projectile chemistry is the fractionation of volatile and refractory elements in the hypervelocity impact and redeposition processes. This effect had been noted in a simulation experiment but is more pronounced in the LDEF capture cells, probably due to the higher average velocities of the space impacts. Surface contamination of the pure Ge surfaces with a substance rich in Si, but also containing Mg and Al, provides an additional problem for the accurate determination of impactor chemistry. The effect is variable, being much larger on surfaces that were exposed to space than in those cells that remained intact. Future work will concentrate on the analyses of more leading edge impacts and the development of new SIMS techniques for the measurement of elemental abundances in extended impacts.

  17. Modeling, Analysis, and Optimization Issues for Large Space Structures

    Science.gov (United States)

    Pinson, L. D. (Compiler); Amos, A. K. (Compiler); Venkayya, V. B. (Compiler)

    1983-01-01

    Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design.

  18. Buckling analysis for structural sections and stiffened plates reinforced with laminated composites.

    Science.gov (United States)

    Viswanathan, A. V.; Soong, T.-C.; Miller, R. E., Jr.

    1972-01-01

    A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked flat plate and beam elements. Plates are idealized as multilayered orthotropic elements; structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections and stiffened plates is investigated. Buckling loads are found as the lowest of all possible general and local failure modes and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections and stiffened plates including boron-reinforced structures are discussed. In general, correlations are reasonably good.

  19. Buckling analysis for axially compressed flat plates, structural sections, and stiffened plates reinforced with laminated composites

    Science.gov (United States)

    Viswanathan, A. V.; Soong, T.; Miller, R. E., Jr.

    1971-01-01

    A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked plate and beam elements. Plates are idealized as multilayered orthotropic elements. Structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply-supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections, and stiffened plates is investigated. Buckling loads are the lowest of all possible general and local failure modes, and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections, and stiffened plates including boron-reinforced structures are discussed. In general correlations are reasonably good.

  20. Structural and spectroscopic characterisations of the surface oxide scales and inclusions present on edge-burst hot-rolled steel coils

    International Nuclear Information System (INIS)

    Chowdhury, Anirban; Iyyappan, Ramasamy; Majumdar, Dipanwita; Singha, Achintya

    2014-01-01

    Detailed structural and spectroscopic characterisations have been carried out on the inclusions and the surface oxides present on edge-burst hot-rolled steel coils. Surface scales were characterised through X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. Evidence of different types of regular and non-stoichiometric Fe-oxides was found on the cracked surface of the steel wire. Along with the surface scales inclusions with calcium aluminate and spinel was characterized using Raman spectroscopy. The usefulness of Raman spectroscopy has been explored in detail for the characterisation of these inclusions; especially when XRD information ceases to be a limiting tool. The samples collected from the clogged nozzle area were found to be of grossite (CaO·2Al 2 O 3 ) phase and this was also observed in the inclusions in the finished coils. It was found that this particular calcium aluminate phase has a detrimental effect on casting and final finished steel products. - Highlights: • First investigation and surface study report on edge-bursting issue of steel coils. • Detailed characterisations of the inclusions and surface oxide scales in steel. • Influence of a particular type of calcium aluminate phase on process chemistry

  1. The interaction of copper ions with Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli: an X-ray absorption near-edge structure (XANES) spectroscopy study.

    Science.gov (United States)

    Zanzen, Ulrike; Bovenkamp-Langlois, Lisa; Klysubun, Wantana; Hormes, Josef; Prange, Alexander

    2018-04-01

    The antimicrobial properties of copper ions have been known for a long time. However, the exact mechanism of action of the transition metal on microorganisms has long been unclear. X-ray absorption near-edge structure (XANES) spectroscopy at the Cu K edge allows the determination of copper speciation in Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa that have been treated with Cu(II) and Cu(I) solutions. The death/inactivation of the bacteria was observed using plate counting and light microscopy. The Cu K-XANES spectra of the two Gram-negative bacteria are different than those of the Gram-positive strain. The results clearly show that the Cu + -S bond contributes to the antibacterial activity of copper, as in the case of silver. The detailed evaluation of the differentiated absorption spectra shows that Cu + (not Cu 2+ ) is the dominant ion that binds to the bacteria. Because Cu + is not the most common copper ion, copper is not as effective an antibacterial agent as silver, whose common valency is actually + 1. Any reaction of copper with phosphorus from the bacteria can be excluded after the evaluation of the absorption spectra.

  2. Simulation of Near-Edge X-ray Absorption Fine Structure with Time-Dependent Equation-of-Motion Coupled-Cluster Theory.

    Science.gov (United States)

    Nascimento, Daniel R; DePrince, A Eugene

    2017-07-06

    An explicitly time-dependent (TD) approach to equation-of-motion (EOM) coupled-cluster theory with single and double excitations (CCSD) is implemented for simulating near-edge X-ray absorption fine structure in molecular systems. The TD-EOM-CCSD absorption line shape function is given by the Fourier transform of the CCSD dipole autocorrelation function. We represent this transform by its Padé approximant, which provides converged spectra in much shorter simulation times than are required by the Fourier form. The result is a powerful framework for the blackbox simulation of broadband absorption spectra. K-edge X-ray absorption spectra for carbon, nitrogen, and oxygen in several small molecules are obtained from the real part of the absorption line shape function and are compared with experiment. The computed and experimentally obtained spectra are in good agreement; the mean unsigned error in the predicted peak positions is only 1.2 eV. We also explore the spectral signatures of protonation in these molecules.

  3. CFAR Edge Detector for Polarimetric SAR Images

    DEFF Research Database (Denmark)

    Schou, Jesper; Skriver, Henning; Nielsen, Allan Aasbjerg

    2003-01-01

    Finding the edges between different regions in an image is one of the fundamental steps of image analysis, and several edge detectors suitable for the special statistics of synthetic aperture radar (SAR) intensity images have previously been developed. In this paper, a new edge detector for polar...

  4. [Effect of Long-Term Fertilization on Organic Nitrogen Functional Groups in Black Soil as Revealed by Synchrotron-Based X-Ray Absorption Near-Edge Structure Spectroscopy].

    Science.gov (United States)

    Li, Hui; Gao, Qiang; Wang, Shuai; Zhu, Ping; Zhang, Jin-jing; Zhao, Yi-dong

    2015-07-01

    Nitrogen (N) is a common limiting nutrient in crop production. The N content of soil has been used as an important soil fertility index. Organic N is the major form of N in soil. In most agricultural surface soils, more than 90% of total N occurs in organic forms. Therefore, understanding the compositional characteristics of soil organic N functional groups can provide the scientific basis for formulating the reasonable farmland management strategies. Synchrotron radiation soft X-ray absorption near-edge structure (N K-edge XANES) spectroscopy is the most powerful tool to characterize in situ organic N functional groups compositions in soil. However, to our most knowledge, no studies have been conducted to examine the organic N functional groups compositions of soil using N K-edge XANES spectroscopy under long-term fertilization practices. Based on a long-term field experiment (started in 1990) in a black soil (Gongzhuling, Northeast China), we investigated the differences in organic N functional groups compositions in bulk soil and clay-size soil fraction among fertilization patterns using synchrotron-based N K- edge XANES spectroscopy. Composite soil samples (0-20 cm) were collected in 2008. The present study included six treatments: farmland fallow (FALL), no-fertilization control (CK), chemical nitrogen, phosphorus, and potassium fertilization (NPK), NPK in combination with organic manure (NPKM), 1.5 times of NPKM (1.5 NPKM), and NPK in combination with maize straw (NPKS). The results showed that N K-edge XANES spectra of all the treatments under study exhibited characteristic absorption peaks in the ranges of 401.2-401.6 and 402.7-403.1 eV, which were assigned as amides/amine-N and pyrrole-N, respectively. These characteristic absorption peaks were more obvious in clay-size soil fraction than in bulk soil. The results obtained from the semi-quantitative analysis of N K-edge XANES spectra indicated that the relative proportion of amides/amine-N was the highest

  5. Autodesk Robot Structural Analysis Professional 2016 essentials

    CERN Document Server

    Marsh, Ken

    2016-01-01

    Autodesk Robot Structural Analysis Professional 2016 - Essentials is an excellent introduction to the essential features, functions, and workflows of Autodesk Robot Structural Analysis Professional. Master the tools you will need to make Robot work for you: Go from zero to proficiency with this thorough and detailed introduction to the essential concepts and workflows of Robot Structural Analysis Professional 2016. - Demystify the interface - Manipulate and manage Robot tables like a pro - Learn how to use Robot's modeling tools - Master loading techniques - Harness Robot automated load combinations - Decipher simplified seismic loading - Discover workflows for steel and concrete design - Gain insights to help troubleshoot issues Guided exercises are provided to help cement fundamental concepts in Robot Structural Analysis and drive home key functions. Get up to speed quickly with this essential text and add Robot Structural Analysis Professional 2016 to your analysis and design toolbox. New in 2016: AWC-NDS ...

  6. Automated analysis and design of complex structures

    International Nuclear Information System (INIS)

    Wilson, E.L.

    1977-01-01

    The present application of optimum design appears to be restricted to components of the structure rather than to the total structural system. Since design normally involved many analysis of the system any improvement in the efficiency of the basic methods of analysis will allow more complicated systems to be designed by optimum methods. The evaluation of the risk and reliability of a structural system can be extremely important. Reliability studies have been made of many non-structural systems for which the individual components have been extensively tested and the service environment is known. For such systems the reliability studies are valid. For most structural systems, however, the properties of the components can only be estimated and statistical data associated with the potential loads is often minimum. Also, a potentially critical loading condition may be completely neglected in the study. For these reasons and the previous problems associated with the reliability of both linear and nonlinear analysis computer programs it appears to be premature to place a significant value on such studies for complex structures. With these comments as background the purpose of this paper is to discuss the following: the relationship of analysis to design; new methods of analysis; new of improved finite elements; effect of minicomputer on structural analysis methods; the use of system of microprocessors for nonlinear structural analysis; the role of interacting graphics systems in future analysis and design. This discussion will focus on the impact of new, inexpensive computer hardware on design and analysis methods

  7. Structure of polysaccharide and structural analysis by x-ray

    International Nuclear Information System (INIS)

    Yuguchi, Yoshiaki

    2010-01-01

    Polysaccharides occur in plants and the living body in the solid, gel, or liquid. They have a highly structural diversity and possess the potential to be used for development of new materials and energy sources. So it is very important to understand their molecular structure under various conditions. This review introduces the structural characteristics of polysaccharides and the examples of their analysis by the X-ray scattering method. (author)

  8. Dynamic analysis program for frame structure

    International Nuclear Information System (INIS)

    Ando, Kozo; Chiba, Toshio

    1975-01-01

    A general purpose computer program named ISTRAN/FD (Isub(HI) STRucture ANalysis/Frame structure, Dynamic analysis) has been developed for dynamic analysis of three-dimensional frame structures. This program has functions of free vibration analysis, seismic response analysis, graphic display by plotter and CRT, etc. This paper introduces ISTRAN/FD; examples of its application are shown with various problems : idealization of the cantilever, dynamic analysis of the main tower of the suspension bridge, three-dimensional vibration in the plate girder bridge, seismic response in the boiler steel structure, and dynamic properties of the underground LNG tank. In this last example, solid elements, in addition to beam elements, are especially used for the analysis. (auth.)

  9. Structural shell analysis understanding and application

    CERN Document Server

    Blaauwendraad, Johan

    2014-01-01

    The mathematical description of the properties of a shell is much more elaborate than those of beam and plate structures. Therefore many engineers and architects are unacquainted with aspects of shell behaviour and design, and are not familiar with sufficiently reliable shell theories for the different shell types as derived in the middle of the 20th century. Rather than contributing to theory development, this university textbook focuses on architectural and civil engineering schools. Of course, practising professionals will profit from it as well. The book deals with thin elastic shells, in particular with cylindrical, conical and spherical types, and with elliptic and hyperbolic paraboloids. The focus is on roofs, chimneys, pressure vessels and storage tanks. Special attention is paid to edge bending disturbance zones, which is indispensable knowledge in FE meshing. A substantial part of the book results from research efforts in the mid 20th century at Delft University of Technology. As such, it is a valua...

  10. The use of the hybrid K-edge densitometer for routine analysis of safeguards verification samples of reprocessing input liquor

    International Nuclear Information System (INIS)

    Ottmar, H.; Eberle, H.

    1991-01-01

    Following successful tests of a hybrid K-edge instrument at TUI Karlsruhe and the routine use of a K-edge densitometer for safeguards verification at the same laboratory, the Euratom Safeguards Directorate of the Commission of the European Communities decided to install the first such instrument into a large industrial reprocessing plant for the routine verification of samples taken from the input accountancy tanks. This paper reports on the installation, calibration, sample handling procedure and the performance of this instrument after one year of routine operation

  11. FINITE ELEMENT ANALYSIS OF STRUCTURES

    Directory of Open Access Journals (Sweden)

    PECINGINA OLIMPIA-MIOARA

    2015-05-01

    Full Text Available The application of finite element method is analytical when solutions can not be applied for deeper study analyzes static, dynamic or other types of requirements in different points of the structures .In practice it is necessary to know the behavior of the structure or certain parts components of the machine under the influence of certain factors static and dynamic . The application of finite element in the optimization of components leads to economic growth , to increase reliability and durability organs studied, thus the machine itself.

  12. Analysis and design of SSC underground structures

    International Nuclear Information System (INIS)

    Clark, G.T.

    1993-01-01

    This paper describes the analysis and design of underground structures for the Superconducting Super Collider (SSC) Project. A brief overview of the SSC Project and the types of underground structures are presented. Engineering properties and non-linear behavior of the geologic materials are reviewed. The three-dimensional sequential finite element rock-structure interaction analysis techniques developed by the author are presented and discussed. Several examples of how the method works, specific advantages, and constraints are presented. Finally, the structural designs that resulted from the sequential interaction analysis are presented

  13. ICRF edge modeling studies

    Energy Technology Data Exchange (ETDEWEB)

    Lehrman, I.S. (Grumman Corp. Research Center, Princeton, NJ (USA)); Colestock, P.L. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1990-04-01

    Theoretical models have been developed, and are currently being refined, to explain the edge plasma-antenna interaction that occurs during ICRF heating. The periodic structure of a Faraday shielded antenna is found to result in strong ponderomotive force in the vicinity of the antenna. A fluid model, which incorporates the ponderomotive force, shows an increase in transport to the Faraday shield. A kinetic model shows that the strong antenna near fields act to increase the energy of deuterons which strike the shield, thereby increasing the sputtering of shield material. Estimates of edge impurity harmonic heating show no significant heating for either in or out-of-phase antenna operation. Additionally, a particle model for electrons near the shield shows that heating results from the parallel electric field associated with the fast wave. A quasilinear model for edge electron heating is presented and compared to the particle calculations. The models' predictions are shown to be consistent with measurements of enhanced transport. (orig.).

  14. Investigation of Pb species in soils, celery and duckweed by synchrotron radiation X-ray absorption near-edge structure spectrometry

    Science.gov (United States)

    Luo, Liqiang; Shen, Yating; Liu, Jian; Zeng, Yuan

    2016-08-01

    The Pb species play a key role in its translocation in biogeochemical cycles. Soils, sediments and plants were collected from farmlands around Pb mines, and the Pb species in them was identified by X-ray absorption near-edge structure spectrometry. In soils, Pb5(PO4)3Cl and Pb3(PO4)2 were detected, and in sediments, Pb-fulvic acids (FAs) complex was identified. A Pb complex with FA fragments was also detected in celery samples. We found that (1) different Pb species were present in soils and sediments; (2) the Pb species in celery, which was grown in sediments, was different from the species present in duckweed, which grew in water; and (3) a Pb-FA-like compound was present in celery roots. The newly identified Pb species, the Pb-FA-like compound, may play a key role in Pb tolerance and translocation within plants.

  15. Photonic band edge assisted spontaneous emission enhancement from all Er3+ 1-D photonic band gap structure

    Science.gov (United States)

    Chiasera, A.; Meroni, C.; Varas, S.; Valligatla, S.; Scotognella, F.; Boucher, Y. G.; Lukowiak, A.; Zur, L.; Righini, G. C.; Ferrari, M.

    2018-06-01

    All Er3+ doped dielectric 1-D Photonic Band Gap Structure was fabricated by rf-sputtering technique. The structure was constituted by of twenty pairs of SiO2/TiO2 alternated layers doped with Er3+ ions. The scanning electron microscopy was used to check the morphology of the structure. Transmission measurements put in evidence the stop band in the range 1500 nm-1950 nm. The photoluminescence measurements were obtained by optically exciting the sample and detecting the emitted light in the 1.5 μm region at different detection angles. Luminescence spectra and luminescence decay curves put in evidence that the presence of the stop band modify the emission features of the Er3+ ions.

  16. Edge compression techniques for visualization of dense directed graphs.

    Science.gov (United States)

    Dwyer, Tim; Henry Riche, Nathalie; Marriott, Kim; Mears, Christopher

    2013-12-01

    We explore the effectiveness of visualizing dense directed graphs by replacing individual edges with edges connected to 'modules'-or groups of nodes-such that the new edges imply aggregate connectivity. We only consider techniques that offer a lossless compression: that is, where the entire graph can still be read from the compressed version. The techniques considered are: a simple grouping of nodes with identical neighbor sets; Modular Decomposition which permits internal structure in modules and allows them to be nested; and Power Graph Analysis which further allows edges to cross module boundaries. These techniques all have the same goal--to compress the set of edges that need to be rendered to fully convey connectivity--but each successive relaxation of the module definition permits fewer edges to be drawn in the rendered graph. Each successive technique also, we hypothesize, requires a higher degree of mental effort to interpret. We test this hypothetical trade-off with two studies involving human participants. For Power Graph Analysis we propose a novel optimal technique based on constraint programming. This enables us to explore the parameter space for the technique more precisely than could be achieved with a heuristic. Although applicable to many domains, we are motivated by--and discuss in particular--the application to software dependency analysis.

  17. Analysis of Nonlinear Dynamic Structures

    African Journals Online (AJOL)

    Bheema

    work a two degrees of freedom nonlinear system with zero memory was ... FRF is the most widely used method in structural dynamics which gives information about the ..... 3.6, which is the waterfall diagram of the same response, as well.

  18. Subsurface structure of the eastern edge of the Zagros basin as inferred from gravity and satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Bushara, M.N. [ARCO Alaska, Inc., Anchorage, AK (United States)

    1995-09-01

    A data set of 10,505 points of land gravity measurements from southeast Iran obtained from the Bureau Gravimetrique International, combined with Landsat imagery, was used to investigate crustal and Cenozoic lithospheric structure. Interpretation of the Bouguer anomalies reveals three primary structural features. The Zagros Mountain belt is characterized by a progressive decrease in gravity values from -70 mGal near the Persian Gulf to -160 mGal over the structure zone between the Arabian margin and central Iran crustal blocks. The second feature is marked by a backward-L-shaped pair of anomalies that extends from the eastern peripheries of the Zagros basin and wraps around southern Iranian shores. These 15- to 20-km-deep source anomalies, with amplitudes of as much as 10 mGal, are interpreted as intrabasement intrusions demarcating an ancient rift axis. The shallow (6-8)km east-west-trending anomalies are perhaps interbasement uplifts bordered by reverse faults. The third structure, observed on both gravity and Landsat displays, a north-striking eastward-facing topographic escarpment, has a gravity gradient of 0.85 mGal/km, and is right laterally offset approximately 100 km, and is right laterally offset approximately 100 km by the Zagros main recent fault. A comparison of gravity features with surface structures on Thematic Mapper and Landsat Multi-spectral Scanner imagery indicates that a northeast-trending fault system is the result of post-Miocene pervasive transpressive stress coupled with clockwise rotation of underlying basement blocks following the collision of Arabia and Iran. Accommodation structures such as forced folds and {open_quotes}rabbit-ear{close_quotes} anticlines may develop over and on the flanks of the basement blocks, providing remigration and trapping mechanisms for new oil and gas plays.

  19. Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction

    Science.gov (United States)

    Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); Moore, James B. (Inventor); Su, Ji (Inventor); Turner, Travis L. (Inventor); Lin, John C. (Inventor); Taminger, Karen M. (Inventor); Kahng, Seun K. (Inventor); Verden, Scott A. (Inventor)

    2014-01-01

    A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings.

  20. Applicability of linearized-theory attached-flow methods to design and analysis of flap systems at low speeds for thin swept wings with sharp leading edges

    Science.gov (United States)

    Carlson, Harry W.; Darden, Christine M.

    1987-01-01

    Low-speed experimental force and data on a series of thin swept wings with sharp leading edges and leading and trailing-edge flaps are compared with predictions made using a linearized-theory method which includes estimates of vortex forces. These comparisons were made to assess the effectiveness of linearized-theory methods for use in the design and analysis of flap systems in subsonic flow. Results demonstrate that linearized-theory, attached-flow methods (with approximate representation of vortex forces) can form the basis of a rational system for flap design and analysis. Even attached-flow methods that do not take vortex forces into account can be used for the selection of optimized flap-system geometry, but design-point performance levels tend to be underestimated unless vortex forces are included. Illustrative examples of the use of these methods in the design of efficient low-speed flap systems are included.

  1. Structural analysis in medical imaging

    International Nuclear Information System (INIS)

    Dellepiane, S.; Serpico, S.B.; Venzano, L.; Vernazza, G.

    1987-01-01

    The conventional techniques in Pattern Recognition (PR) have been greatly improved by the introduction of Artificial Intelligence (AI) approaches, in particular for knowledge representation, inference mechanism and control structure. The purpose of this paper is to describe an image understanding system, based on the integrated approach (AI - PR), developed in the author's Department to interpret Nuclear Magnetic Resonance (NMR) images. The system is characterized by a heterarchical control structure and a blackboard model for the global data-base. The major aspects of the system are pointed out, with particular reference to segmentation, knowledge representation and error recovery (backtracking). The eye slices obtained in the case of two patients have been analyzed and the related results are discussed

  2. Eulerian fluid-structure analysis of BWR

    International Nuclear Information System (INIS)

    McMaster, W.H.

    1979-05-01

    A fluid-structure-interaction algorithm is developed for the analysis of the dynamic response of a BWR pressure-suppression pool and containment structure. The method is incorporated into a two-dimensional semi-implicit Eulerian hydrodynamics code, PELE-IC, for the solution of incompressible flow coupled to flexible structures. The fluid, structure, and coupling algorithms have been verified by calculation of solved problems from the literature and by comparison with air and steam blowdown experiments

  3. Structural Analysis of Natural Products

    Czech Academy of Sciences Publication Activity Database

    Přichystal, Jakub; Schug, K. A.; Lemr, Karel; Novák, Jiří; Havlíček, Vladimír

    2016-01-01

    Roč. 88, č. 21 (2016), s. 10338-10346 ISSN 0003-2700 R&D Projects: GA MŠk(CZ) LO1509; GA MŠk(CZ) LH14064; GA ČR(CZ) GA16-20229S Institutional support: RVO:61388971 Keywords : IONIZATION-MASS-SPECTROMETRY * BIOSYNTHETIC GENE CLUSTERS * STRUCTURE ELUCIDATION Subject RIV: EE - Microbiology, Virology Impact factor: 6.320, year: 2016

  4. Reliability analysis and assessment of structural systems

    International Nuclear Information System (INIS)

    Yao, J.T.P.; Anderson, C.A.

    1977-01-01

    The study of structural reliability deals with the probability of having satisfactory performance of the structure under consideration within any specific time period. To pursue this study, it is necessary to apply available knowledge and methodology in structural analysis (including dynamics) and design, behavior of materials and structures, experimental mechanics, and the theory of probability and statistics. In addition, various severe loading phenomena such as strong motion earthquakes and wind storms are important considerations. For three decades now, much work has been done on reliability analysis of structures, and during this past decade, certain so-called 'Level I' reliability-based design codes have been proposed and are in various stages of implementation. These contributions will be critically reviewed and summarized in this paper. Because of the undesirable consequences resulting from the failure of nuclear structures, it is important and desirable to consider the structural reliability in the analysis and design of these structures. Moreover, after these nuclear structures are constructed, it is desirable for engineers to be able to assess the structural reliability periodically as well as immediately following the occurrence of severe loading conditions such as a strong-motion earthquake. During this past decade, increasing use has been made of techniques of system identification in structural engineering. On the basis of non-destructive test results, various methods have been developed to obtain an adequate mathematical model (such as the equations of motion with more realistic parameters) to represent the structural system

  5. Band-Edge Exciton Fine Structure and Recombination Dynamics in InP/ZnS Colloidal Nanocrystals.

    Science.gov (United States)

    Biadala, Louis; Siebers, Benjamin; Beyazit, Yasin; Tessier, Mickaël D; Dupont, Dorian; Hens, Zeger; Yakovlev, Dmitri R; Bayer, Manfred

    2016-03-22

    We report on a temperature-, time-, and spectrally resolved study of the photoluminescence of type-I InP/ZnS colloidal nanocrystals with varying core size. By studying the exciton recombination dynamics we assess the exciton fine structure in these systems. In addition to the typical bright-dark doublet, the photoluminescence stems from an upper bright state in spite of its large energy splitting (∼100 meV). This striking observation results from dramatically lengthened thermalization processes among the fine structure levels and points to optical-phonon bottleneck effects in InP/ZnS nanocrystals. Furthermore, our data show that the radiative recombination of the dark exciton scales linearly with the bright-dark energy splitting for CdSe and InP nanocrystals. This finding strongly suggests a universal dangling bonds-assisted recombination of the dark exciton in colloidal nanostructures.

  6. shRNA-seq data analysis with edgeR [v1; ref status: indexed, http://f1000r.es/38s

    Directory of Open Access Journals (Sweden)

    Zhiyin Dai

    2014-04-01

    Full Text Available Pooled short hairpin RNA sequencing (shRNA-seq screens are becoming increasingly popular in functional genomics research, and there is a need to establish optimal analysis tools to handle such data. Our open-source shRNA processing pipeline in edgeR provides a complete analysis solution for shRNA-seq screen data, that begins with the raw sequence reads and ends with a ranked lists of candidate shRNAs for downstream biological validation. We first summarize the raw data contained in a fastq file into a matrix of counts (samples in the columns, hairpins in the rows with options for allowing mismatches and small shifts in hairpin position. Diagnostic plots, normalization and differential representation analysis can then be performed using established methods to prioritize results in a statistically rigorous way, with the choice of either the classic exact testing methodology or a generalized linear modelling that can handle complex experimental designs. A detailed users’ guide that demonstrates how to analyze screen data in edgeR along with a point-and-click implementation of this workflow in Galaxy are also provided. The edgeR package is freely available from http://www.bioconductor.org.

  7. Structure analysis - chiromancy of the rock

    International Nuclear Information System (INIS)

    Huber, A.; Huber, M.

    1989-01-01

    The reader may initially be surprised by a comparison between structure analysis and palmistry which is, in effect, a comparison between a scientific research method on the one hand and art which is equated with magical powers on the other. In the figurative sense, however, these two fields have some points in common which should help us to obtain a first impression of the nature of geological structure analysis. Chiromancy uses the lines and the form of the hand to predict the character and the future of the person in question. In the same way, geologists use rocks and rock forms to obtain information on structure and behaviour of different formations. Structure analysis is a specialised field of geological investigation in which traces of deformation are interpreted as expressions of rockforming forces. This article discusses how and why the character of a rock formation as well as its past, present and even future behaviour can be determined using structure analysis. (author) 11 figs

  8. Structural analysis consultation using artificial intelligence

    Science.gov (United States)

    Melosh, R. J.; Marcal, P. V.; Berke, L.

    1978-01-01

    The primary goal of consultation is definition of the best strategy to deal with a structural engineering analysis objective. The knowledge base to meet the need is designed to identify the type of numerical analysis, the needed modeling detail, and specific analysis data required. Decisions are constructed on the basis of the data in the knowledge base - material behavior, relations between geometry and structural behavior, measures of the importance of time and temperature changes - and user supplied specifics characteristics of the spectrum of analysis types, the relation between accuracy and model detail on the structure, its mechanical loadings, and its temperature states. Existing software demonstrated the feasibility of the approach, encompassing the 36 analysis classes spanning nonlinear, temperature affected, incremental analyses which track the behavior of structural systems.

  9. Robustness Analysis of Timber Truss Structure

    DEFF Research Database (Denmark)

    Rajčić, Vlatka; Čizmar, Dean; Kirkegaard, Poul Henning

    2010-01-01

    The present paper discusses robustness of structures in general and the robustness requirements given in the codes. Robustness of timber structures is also an issues as this is closely related to Working group 3 (Robustness of systems) of the COST E55 project. Finally, an example of a robustness...... evaluation of a widespan timber truss structure is presented. This structure was built few years ago near Zagreb and has a span of 45m. Reliability analysis of the main members and the system is conducted and based on this a robustness analysis is preformed....

  10. Structural Analysis Algorithms for Nanomaterials

    DEFF Research Database (Denmark)

    Larsen, Peter Mahler

    the existing factorial-time bound. This method is subsequently extended to two-dimensional monolayers. A method is presented for the identication of ordered crystalline phases in molecular dynamics simulations. A robust classication is obtained by the use of template matching, also formulated as a bipartite......-strain interfaces. The stable, low-energy interfaces which are found as a result are intended for use in the design and construction of topological superconductors, which have important applications in quantum computing. Cluster expansion models are used to nd ground-state structures in gold-silver nanoparticles......, which are used in a variety of catalysis processes. In addition to this concrete application, theoretical methods are developed for the optimal construction of cluster expansion models, the exact determination of ground states in a large model, and the exhaustive determination of all possible ground...

  11. Structural Dynamics and Data Analysis

    Science.gov (United States)

    Luthman, Briana L.

    2013-01-01

    This project consists of two parts, the first will be the post-flight analysis of data from a Delta IV launch vehicle, and the second will be a Finite Element Analysis of a CubeSat. Shock and vibration data was collected on WGS-5 (Wideband Global SATCOM- 5) which was launched on a Delta IV launch vehicle. Using CAM (CAlculation with Matrices) software, the data is to be plotted into Time History, Shock Response Spectrum, and SPL (Sound Pressure Level) curves. In this format the data is to be reviewed and compared to flight instrumentation data from previous flights of the same launch vehicle. This is done to ensure the current mission environments, such as shock, random vibration, and acoustics, are not out of family with existing flight experience. In family means the peaks on the SRS curve for WGS-5 are similar to the peaks from the previous flights and there are no major outliers. The curves from the data will then be compiled into a useful format so that is can be peer reviewed then presented before an engineering review board if required. Also, the reviewed data will be uploaded to the Engineering Review Board Information System (ERBIS) to archive. The second part of this project is conducting Finite Element Analysis of a CubeSat. In 2010, Merritt Island High School partnered with NASA to design, build and launch a CubeSat. The team is now called StangSat in honor of their mascot, the mustang. Over the past few years, the StangSat team has built a satellite and has now been manifested for flight on a SpaceX Falcon 9 launch in 2014. To prepare for the final launch, a test flight was conducted in Mojave, California. StangSat was launched on a Prospector 18D, a high altitude rocket made by Garvey Spacecraft Corporation, along with their sister satellite CP9 built by California Polytechnic University. However, StangSat was damaged during an off nominal landing and this project will give beneficial insights into what loads the CubeSat experienced during the crash

  12. Structural analysis of fuel handling systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, L S.S. [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1997-12-31

    The purpose of this paper has three aspects: (i) to review `why` and `what` types of structural analysis, testing and report are required for the fuel handling systems according to the codes, or needed for design of a product, (ii) to review the input requirements for analysis and the analysis procedures, and (iii) to improve the communication between the analysis and other elements of the product cycle. The required or needed types of analysis and report may be categorized into three major groups: (i) Certified Stress Reports for design by analysis, (ii) Design Reports not required for certification and registration, but are still required by codes, and (iii) Design Calculations required by codes or needed for design. Input requirements for structural analysis include: design, code classification, loadings, and jurisdictionary boundary. Examples of structural analysis for the fueling machine head and support structure are given. For improving communication between the structural analysis and the other elements of the product cycle, some areas in the specification of design requirements and load rating are discussed. (author). 6 refs., 1 tab., 4 figs.

  13. Structural analysis of fuel handling systems

    International Nuclear Information System (INIS)

    Lee, L.S.S.

    1996-01-01

    The purpose of this paper has three aspects: (i) to review 'why' and 'what' types of structural analysis, testing and report are required for the fuel handling systems according to the codes, or needed for design of a product, (ii) to review the input requirements for analysis and the analysis procedures, and (iii) to improve the communication between the analysis and other elements of the product cycle. The required or needed types of analysis and report may be categorized into three major groups: (i) Certified Stress Reports for design by analysis, (ii) Design Reports not required for certification and registration, but are still required by codes, and (iii) Design Calculations required by codes or needed for design. Input requirements for structural analysis include: design, code classification, loadings, and jurisdictionary boundary. Examples of structural analysis for the fueling machine head and support structure are given. For improving communication between the structural analysis and the other elements of the product cycle, some areas in the specification of design requirements and load rating are discussed. (author). 6 refs., 1 tab., 4 figs

  14. NAPS: Network Analysis of Protein Structures

    Science.gov (United States)

    Chakrabarty, Broto; Parekh, Nita

    2016-01-01

    Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue–residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein–protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201

  15. Edge passivation induced single-edge ferromagnetism of zigzag MoS_2 nanoribbons

    International Nuclear Information System (INIS)

    Wang, Rui; Sun, Hui; Ma, Ben; Hu, Jingguo; Pan, Jing

    2017-01-01

    We performed density functional theory study on electronic structure, magnetic properties and stability of zigzag MoS_2 nanoribbons (ZMoS_2NRs) with and without oxygen (O) passivation. The bare ZMoS_2NRs are magnetic metal with ferromagnetic edge states, edge passivation decreases their magnetism because of the decrease of edge unsaturated electrons. Obviously, the electronic structure and magnetic properties of ZMoS_2NRs greatly depend on edge states. When both edges are passivated by O atoms, ZMoS_2NRs are nonmagnetic metals. When either edge is passivated by O atoms, the systems exhibit single-edge ferromagnetism and magnetism concentrates on the non-passivated edge. Edge passivation can not only tune the magnetism of ZMoS_2NRs, but also enhance their stability by eliminating dangling bonds. These interesting findings on ZMoS_2NRs may open the possibility of their application in nanodevices and spintronics. - Highlights: • Edge passivation for tuning magnetism of zigzag MoS_2 nanoribbons (ZMoS_2NRs) is proposed. • Edge passivation can tune ZMoS_2NRs from nonmagnetic metal to ferromagnetic metal. • When either edge is passivated, the systems exhibit single-edge ferromagnetic states. • These findings may inspire great interest in the community of ZMoS_2NRs and motivate numerous experimental researches.

  16. Dynamic analysis and design of offshore structures

    CERN Document Server

    Chandrasekaran, Srinivasan

    2015-01-01

    This book  attempts to provide readers with an overall idea of various types of offshore platform geometries. It covers the various environmental loads encountered by these structures, a detailed description of the fundamentals of structural dynamics in a class-room style, estimate of damping in offshore structures and their applications in the preliminary analysis and design. Basic concepts of structural dynamics are emphasized through simple illustrative examples and exercises. Design methodologies and guidelines, which are FORM based concepts are explained through a few applied example structures. Each chapter also has tutorials and exercises for self-learning. A dedicated chapter on stochastic dynamics will help the students to extend the basic concepts of structural dynamics to this advanced domain of research. Hydrodynamic response of offshore structures with perforated members is one of the recent research applications, which is found to be one of the effective manner of retrofitting offshore structur...

  17. Edge Fracture in Complex Fluids.

    Science.gov (United States)

    Hemingway, Ewan J; Kusumaatmaja, Halim; Fielding, Suzanne M

    2017-07-14

    We study theoretically the edge fracture instability in sheared complex fluids, by means of linear stability analysis and direct nonlinear simulations. We derive an exact analytical expression for the onset of edge fracture in terms of the shear-rate derivative of the fluid's second normal stress difference, the shear-rate derivative of the shear stress, the jump in shear stress across the interface between the fluid and the outside medium (usually air), the surface tension of that interface, and the rheometer gap size. We provide a full mechanistic understanding of the edge fracture instability, carefully validated against our simulations. These findings, which are robust with respect to choice of rheological constitutive model, also suggest a possible route to mitigating edge fracture, potentially allowing experimentalists to achieve and accurately measure flows stronger than hitherto possible.

  18. Novel method for edge detection of retinal vessels based on the model of the retinal vascular network and mathematical morphology

    Science.gov (United States)

    Xu, Lei; Zheng, Xiaoxiang; Zhang, Hengyi; Yu, Yajun

    1998-09-01

    Accurate edge detection of retinal vessels is a prerequisite for quantitative analysis of subtle morphological changes of retinal vessels under different pathological conditions. A novel method for edge detection of retinal vessels is presented in this paper. Methods: (1) Wavelet-based image preprocessing. (2) The signed edge detection algorithm and mathematical morphological operation are applied to get the approximate regions that contain retinal vessels. (3) By convolving the preprocessed image with a LoG operator only on the detected approximate regions of retinal vessels, followed by edges refining, clear edge maps of the retinal vessels are fast obtained. Results: A detailed performance evaluation together with the existing techniques is given to demonstrate the strong features of our method. Conclusions: True edge locations of retinal vessels can be fast detected with continuous structures of retinal vessels, less non- vessel segments left and insensitivity to noise. The method is also suitable for other application fields such as road edge detection.

  19. Competing edge networks

    Science.gov (United States)

    Parsons, Mark; Grindrod, Peter

    2012-06-01

    We introduce a model for a pair of nonlinear evolving networks, defined over a common set of vertices, subject to edgewise competition. Each network may grow new edges spontaneously or through triad closure. Both networks inhibit the other's growth and encourage the other's demise. These nonlinear stochastic competition equations yield to a mean field analysis resulting in a nonlinear deterministic system. There may be multiple equilibria; and bifurcations of different types are shown to occur within a reduced parameter space. This situation models competitive communication networks such as BlackBerry Messenger displacing SMS; or instant messaging displacing emails.

  20. Degenerate band edge laser

    Science.gov (United States)

    Veysi, Mehdi; Othman, Mohamed A. K.; Figotin, Alexander; Capolino, Filippo

    2018-05-01

    We propose a class of lasers based on a fourth-order exceptional point of degeneracy (EPD) referred to as the degenerate band edge (DBE). EPDs have been found in parity-time-symmetric photonic structures that require loss and/or gain; here we show that the DBE is a different kind of EPD since it occurs in periodic structures that are lossless and gainless. Because of this property, a small level of gain is sufficient to induce single-frequency lasing based on a synchronous operation of four degenerate Floquet-Bloch eigenwaves. This lasing scheme constitutes a light-matter interaction mechanism that leads also to a unique scaling law of the laser threshold with the inverse of the fifth power of the laser-cavity length. The DBE laser has the lowest lasing threshold in comparison to a regular band edge laser and to a conventional laser in cavities with the same loaded quality (Q ) factor and length. In particular, even without mirror reflectors the DBE laser exhibits a lasing threshold which is an order of magnitude lower than that of a uniform cavity laser of the same length and with very high mirror reflectivity. Importantly, this novel DBE lasing regime enforces mode selectivity and coherent single-frequency operation even for pumping rates well beyond the lasing threshold, in contrast to the multifrequency nature of conventional uniform cavity lasers.

  1. How Forest Inhomogeneities Affect the Edge Flow

    DEFF Research Database (Denmark)

    Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas

    2016-01-01

    Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities (>1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark...... is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between...... the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge...

  2. Energetics of edge oxidization of graphene nanoribbons

    Science.gov (United States)

    Yasuma, Airi; Yamanaka, Ayaka; Okada, Susumu

    2018-06-01

    On the basis of the density functional theory, we studied the geometries and energetics of O atoms adsorbed on graphene edges for simulating the initial stage of the edge oxidization of graphene. Our calculations showed that oxygen atoms are preferentially adsorbed onto the graphene edges with the zigzag portion, resulting in a large adsorption energy of about 5 eV. On the other hand, the edges with armchair shape are rarely oxidized, or the oxidization causes substantial structural reconstructions, because of the stable covalent bond at the armchair edge with the triple bond nature. Furthermore, the energetics sensitively depends on the edge angles owing to the inhomogeneity of the charge density at the edge atomic sites.

  3. Clan structure analysis and rapidity gap probability

    International Nuclear Information System (INIS)

    Lupia, S.; Giovannini, A.; Ugoccioni, R.

    1995-01-01

    Clan structure analysis in rapidity intervals is generalized from negative binomial multiplicity distribution to the wide class of compound Poisson distributions. The link of generalized clan structure analysis with correlation functions is also established. These theoretical results are then applied to minimum bias events and evidentiate new interesting features, which can be inspiring and useful in order to discuss data on rapidity gap probability at TEVATRON and HERA. (orig.)

  4. Clan structure analysis and rapidity gap probability

    Energy Technology Data Exchange (ETDEWEB)

    Lupia, S. [Turin Univ. (Italy). Ist. di Fisica Teorica]|[Istituto Nazionale di Fisica Nucleare, Turin (Italy); Giovannini, A. [Turin Univ. (Italy). Ist. di Fisica Teorica]|[Istituto Nazionale di Fisica Nucleare, Turin (Italy); Ugoccioni, R. [Turin Univ. (Italy). Ist. di Fisica Teorica]|[Istituto Nazionale di Fisica Nucleare, Turin (Italy)

    1995-03-01

    Clan structure analysis in rapidity intervals is generalized from negative binomial multiplicity distribution to the wide class of compound Poisson distributions. The link of generalized clan structure analysis with correlation functions is also established. These theoretical results are then applied to minimum bias events and evidentiate new interesting features, which can be inspiring and useful in order to discuss data on rapidity gap probability at TEVATRON and HERA. (orig.)

  5. Structural characterization of epitaxial YBa2Cu3O7 thin films on step-edge substrates by means of high-resolution electron microscopy

    International Nuclear Information System (INIS)

    Jia, C.L.; Kabius, B.; Urban, K.

    1993-01-01

    The microstructure of YBa 2 Cu 3 O 7 films epitaxially grown on step-edge (0 0 1) SrTiO 3 and LaAlO 3 substrates has been characterized by means of high-resolution electron microscopy. The results indicate a relationship between the microstructure of the film across a step and the angle the step makes with the substrate plane. On a steep, high-angle step, the film grows with its c-axis perpendicular to that of the film on substrate surface so that two grain boundaries are formed. In the upper grain boundary, on the average, a (0 1 3) habit plane alternates with a (1 0 3) habit plane. This alternating structure is caused by twinning in the orthorhombic structure. The lower boundaries consist of a chain of (0 1 3)(0 1 3) and (0 1 0)(0 0 1) type segments exhibiting a tendency to tilt the whole habit plane toward the a-b plane of the flank film. Dislocations, stacking faults and misfit strains were also observed in or close to the boundaries. (orig.)

  6. Nonlinear structural analysis using integrated force method

    Indian Academy of Sciences (India)

    A new formulation termed the Integrated Force Method (IFM) was proposed by Patnaik ... nated ``Structure (nY m)'' where (nY m) are the force and displacement degrees of ..... Patnaik S N, Yadagiri S 1976 Frequency analysis of structures.

  7. Structural Analysis of Covariance and Correlation Matrices.

    Science.gov (United States)

    Joreskog, Karl G.

    1978-01-01

    A general approach to analysis of covariance structures is considered, in which the variances and covariances or correlations of the observed variables are directly expressed in terms of the parameters of interest. The statistical problems of identification, estimation and testing of such covariance or correlation structures are discussed.…

  8. Crystallographic Analysis and Structural Revision of a ...

    African Journals Online (AJOL)

    ABSTRACT. Single crystal X-ray analysis of a spiroterpenoid rearrangement product has revealed that its structure is, in fact, isomeric with the structure proposed previously – an observation that has significant mechanistic implications. KEYWORDS. Spiroterpenoid, rearrangement, X-ray crystallography, camphor derivative.

  9. Crystallographic Analysis and Structural Revision of a ...

    African Journals Online (AJOL)

    Single crystal X-ray analysis of a spiroterpenoid rearrangement product has revealed that its structure is, in fact, isomeric with the structure proposed previously – an observation that has significant mechanistic implications. Keywords: Spiroterpenoid, rearrangement, X-ray crystallography, camphor derivative.

  10. Entity Authentication:Analysis using Structured Intuition

    DEFF Research Database (Denmark)

    Ahmed, Naveed; Jensen, Christian D.

    2010-01-01

    In this paper, we propose a new method for the analysis that uses intuition of the analyst in a structured way. First we define entity authentication in terms of fine level authentication goals (FLAGs). Then we use some relevant structures in protocol narrations and use them to justify FLAGs...

  11. Automated analysis of Physarum network structure and dynamics

    Science.gov (United States)

    Fricker, Mark D.; Akita, Dai; Heaton, Luke LM; Jones, Nick; Obara, Boguslaw; Nakagaki, Toshiyuki

    2017-06-01

    We evaluate different ridge-enhancement and segmentation methods to automatically extract the network architecture from time-series of Physarum plasmodia withdrawing from an arena via a single exit. Whilst all methods gave reasonable results, judged by precision-recall analysis against a ground-truth skeleton, the mean phase angle (Feature Type) from intensity-independent, phase-congruency edge enhancement and watershed segmentation was the most robust to variation in threshold parameters. The resultant single pixel-wide segmented skeleton was converted to a graph representation as a set of weighted adjacency matrices containing the physical dimensions of each vein, and the inter-vein regions. We encapsulate the complete image processing and network analysis pipeline in a downloadable software package, and provide an extensive set of metrics that characterise the network structure, including hierarchical loop decomposition to analyse the nested structure of the developing network. In addition, the change in volume for each vein and intervening plasmodial sheet was used to predict the net flow across the network. The scaling relationships between predicted current, speed and shear force with vein radius were consistent with predictions from Murray’s law. This work was presented at PhysNet 2015.

  12. Automated analysis of Physarum network structure and dynamics

    International Nuclear Information System (INIS)

    Fricker, Mark D; Heaton, Luke LM; Akita, Dai; Jones, Nick; Obara, Boguslaw; Nakagaki, Toshiyuki

    2017-01-01

    We evaluate different ridge-enhancement and segmentation methods to automatically extract the network architecture from time-series of Physarum plasmodia withdrawing from an arena via a single exit. Whilst all methods gave reasonable results, judged by precision-recall analysis against a ground-truth skeleton, the mean phase angle (Feature Type) from intensity-independent, phase-congruency edge enhancement and watershed segmentation was the most robust to variation in threshold parameters. The resultant single pixel-wide segmented skeleton was converted to a graph representation as a set of weighted adjacency matrices containing the physical dimensions of each vein, and the inter-vein regions. We encapsulate the complete image processing and network analysis pipeline in a downloadable software package, and provide an extensive set of metrics that characterise the network structure, including hierarchical loop decomposition to analyse the nested structure of the developing network. In addition, the change in volume for each vein and intervening plasmodial sheet was used to predict the net flow across the network. The scaling relationships between predicted current, speed and shear force with vein radius were consistent with predictions from Murray’s law. This work was presented at PhysNet 2015. (paper)

  13. Use of X-ray absorption near edge structure (XANES) to identify physisorption and chemisorption of phosphate onto ferrihydrite-modified diatomite.

    Science.gov (United States)

    Xiong, Wenhui; Peng, Jian; Hu, Yongfeng

    2012-02-15

    This paper presents a novel technique integrating bulk-sensitive and surface-sensitive XANES methods to distinguish between physisorption and chemisorption for phosphate adsorption onto ferrihydrite-modified diatomite (FHMD). XANES P K-edge, L-edge, and Fe M-edge spectra were obtained for reference samples (K(2)HPO(4) and FePO(4)·2H(2)O) and test samples (phosphate adsorbed onto FHMD (FHMD-Ps) and Si-containing ferrihydrite (FHYD-Ps)). A resolvable pre-edge peak in the P K-edge spectra of FHMD-Ps and FHYD-Ps provided direct evidence for the formation of P-O-Fe(III) coordination and the occurrence of chemisorption. The resemblance between the P L-edge spectra of K(2)HPO(4) and FHMD-Ps and the marked difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O indicated the intact existence of the adsorbate and the adsorbent. The similarity between Fe M-edge spectra of FHMD and FHMD-Ps and the difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O confirmed the findings from P L-edge analyses. Therefore, chemisorption and physisorption coexisted during phosphate adsorption onto FHMD. Phosphate chemisorption occurred in the deeper zone of FHMD (from 50 nm to 5 μm); whereas physisorption occurred in the zone of FHMD shallower than 50 nm since the probing depth of XANES P K-edge method is 5 μm and that of P L-edge and Fe M-edge methods is 50 nm. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Visible imaging of edge turbulence in NSTX

    International Nuclear Information System (INIS)

    Zweben, S.; Maqueda, R.; Hill, K.; Johnson, D.

    2000-01-01

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radical heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of gas puff imaging to locally illuminate the edge density turbulence

  15. Visible imaging of edge turbulence in NSTX

    International Nuclear Information System (INIS)

    S. Zweben; R. Maqueda; K. Hill; D. Johnson; S. Kaye; H. Kugel; F. Levinton; R. Maingi; L. Roquemore; S. Sabbagh; G. Wurden

    2000-01-01

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radial heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of ''gas puff imaging'' to locally illuminate the edge density turbulence

  16. All-graphene edge contacts

    DEFF Research Database (Denmark)

    Jacobsen, Kåre Wedel; Falkenberg, Jesper Toft; Papior, Nick Rübner

    2016-01-01

    Using ab-initio methods we investigate the possibility of three-terminalgraphene "T-junction" devices and show that these all-graphene edge contactsare energetically feasible when the 1D interface itself is free from foreignatoms. We examine the energetics of various junction structures as a func......Using ab-initio methods we investigate the possibility of three-terminalgraphene "T-junction" devices and show that these all-graphene edge contactsare energetically feasible when the 1D interface itself is free from foreignatoms. We examine the energetics of various junction structures...... to be in therange of 1-10 kΩμm which is comparable to the best contact resistance reportedfor edge-contacted graphene-metal contacts. We conclude that conductingall-carbon T-junctions should be feasible....

  17. Structural Analysis in a Conceptual Design Framework

    Science.gov (United States)

    Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.

    2012-01-01

    Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.

  18. Electronic Structure from Iron L-edge Spectroscopy : An Example of Spin Transition Evidenced by Soft X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Cartier dit Moulin, Ch.; Flank, A.M.; Rudolf, P.; Chen, C.T.

    1993-01-01

    Soft X-ray Absorption Spectroscopy at the transition metal L2,3 edges provides information about the 3d unoccupied states by dipole allowed transitions. We have recorded iron L2,3 edges in order to follow the reversible thermal spin interconversion (S=2 S=0) of the Fe(II)(o-phenantroline)2(NCS)2.

  19. Pattern recognition in spaces of probability distributions for the analysis of edge-localized modes in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shabbir, Aqsa

    2016-07-07

    In this doctoral work, pattern recognition techniques are developed and applied to data from tokamak plasmas, in order to contribute to a systematic analysis of edge-localized modes (ELMs). We employ probabilistic models for a quantitative data description geared towards an enhanced systematization of ELM phenomenology. Hence, we start from the point of view that the fundamental object resulting from the observation of a system is a probability distribution, with every single measurement providing a sample from this distribution. In exploring the patterns emerging from the various ELM regimes and relations, we need methods that can handle the intrinsic probabilistic nature of the data. The original contributions of this work are twofold. First, several novel pattern recognition methods in non-Euclidean spaces of probability distribution functions (PDFs) are developed and validated. The second main contribution lies in the application of these and other techniques to a systematic analysis of ELMs in tokamak plasmas. In regard to the methodological aims of the work, we employ the framework of information geometry to develop pattern visualization and classification methods in spaces of probability distributions. In information geometry, a family of probability distributions is considered as a Riemannian manifold. Every point on the manifold represents a single PDF and the distribution parameters provide local coordinates on the manifold. The Fisher information plays the role of a Riemannian metric tensor, enabling calculation of geodesic curves on the surface. The length of such curves yields the geodesic distance (GD) on probabilistic manifolds, which is a natural similarity (distance) measure between PDFs. Equipped with a suitable distance measure, we extrapolate several distance-based pattern recognition methods to the manifold setting. This includes k-nearest neighbor (kNN) and conformal predictor (CP) methods for classification, as well as multidimensional

  20. Pattern recognition in spaces of probability distributions for the analysis of edge-localized modes in tokamak plasmas

    International Nuclear Information System (INIS)

    Shabbir, Aqsa

    2016-01-01

    In this doctoral work, pattern recognition techniques are developed and applied to data from tokamak plasmas, in order to contribute to a systematic analysis of edge-localized modes (ELMs). We employ probabilistic models for a quantitative data description geared towards an enhanced systematization of ELM phenomenology. Hence, we start from the point of view that the fundamental object resulting from the observation of a system is a probability distribution, with every single measurement providing a sample from this distribution. In exploring the patterns emerging from the various ELM regimes and relations, we need methods that can handle the intrinsic probabilistic nature of the data. The original contributions of this work are twofold. First, several novel pattern recognition methods in non-Euclidean spaces of probability distribution functions (PDFs) are developed and validated. The second main contribution lies in the application of these and other techniques to a systematic analysis of ELMs in tokamak plasmas. In regard to the methodological aims of the work, we employ the framework of information geometry to develop pattern visualization and classification methods in spaces of probability distributions. In information geometry, a family of probability distributions is considered as a Riemannian manifold. Every point on the manifold represents a single PDF and the distribution parameters provide local coordinates on the manifold. The Fisher information plays the role of a Riemannian metric tensor, enabling calculation of geodesic curves on the surface. The length of such curves yields the geodesic distance (GD) on probabilistic manifolds, which is a natural similarity (distance) measure between PDFs. Equipped with a suitable distance measure, we extrapolate several distance-based pattern recognition methods to the manifold setting. This includes k-nearest neighbor (kNN) and conformal predictor (CP) methods for classification, as well as multidimensional

  1. Impact analysis of composite aircraft structures

    Science.gov (United States)

    Pifko, Allan B.; Kushner, Alan S.

    1993-01-01

    The impact analysis of composite aircraft structures is discussed. Topics discussed include: background remarks on aircraft crashworthiness; comments on modeling strategies for crashworthiness simulation; initial study of simulation of progressive failure of an aircraft component constructed of composite material; and research direction in composite characterization for impact analysis.

  2. The atomic structure of Fe100-xCux nanoalloys: X-ray absorption analysis

    International Nuclear Information System (INIS)

    Kravtsova, A.N.; Yalovega, G.E.; Soldatov, A.V.; Yan, W.S.; Wei, S.Q.

    2009-01-01

    The local atomic structure of Fe 100-x Cu x nanoalloys (x = 0, 10, 20, 40, 60, 70, 80 and 100%) has been investigated by X-ray absorption near edge structure (XANES) analysis. Local environment around copper and iron atoms in Fe 100-x Cu x has been studied by comparing the experimental XANES with corresponding theoretical spectra calculated for several structural models. It has been established that the most probable structure of the Fe 100-x Cu x nanoalloys for a low concentration of copper (x = 10-20%) is a homogenous bcc structure, for a high copper concentration (x = 60-80%)-a homogenous fcc structure, while at an intermediate copper concentration (about 40%) the nanoalloys have an inhomogeneous structure consisting of clusters of fcc solid solution (90%) and of clusters of bcc solid solution (10%)

  3. Structural analysis of polycrystalline (graphitized) materials

    International Nuclear Information System (INIS)

    Efremenko, M.M.; Kravchik, A.E.; Osmakov, A.S.

    1993-01-01

    Specific features of the structure of polycrystal carbon materials (CM), characterized by high enough degree of structural perfection and different genesis are analyzed. From the viewpoint of fine and supercrystallite structure analysis of the most characteristic groups of graphitized CM: artificial graphites, and natural graphites, as well, has been carried out. It is ascertained that in paracrystal CM a monolayer of hexagonally-bound carbon atoms is the basic element of the structure, and in graphitized CM - a microlayer. The importance of the evaluation of the degree of three-dimensional ordering of the microlayer is shown

  4. Comparison of morphological and conventional edge detectors in medical imaging applications

    Science.gov (United States)

    Kaabi, Lotfi; Loloyan, Mansur; Huang, H. K.

    1991-06-01

    Recently, mathematical morphology has been used to develop efficient image analysis tools. This paper compares the performance of morphological and conventional edge detectors applied to radiological images. Two morphological edge detectors including the dilation residue found by subtracting the original signal from its dilation by a small structuring element, and the blur-minimization edge detector which is defined as the minimum of erosion and dilation residues of the blurred image version, are compared with the linear Laplacian and Sobel and the non-linear Robert edge detectors. Various structuring elements were used in this study: regular 2-dimensional, and 3-dimensional. We utilized two criterions for edge detector's performance classification: edge point connectivity and the sensitivity to the noise. CT/MR and chest radiograph images have been used as test data. Comparison results show that the blur-minimization edge detector, with a rolling ball-like structuring element outperforms other standard linear and nonlinear edge detectors. It is less noise sensitive, and performs the most closed contours.

  5. Structural Analysis of Kufasat Using Ansys Program

    Science.gov (United States)

    Al-Maliky, Firas T.; AlBermani, Mohamed J.

    2018-03-01

    The current work focuses on vibration and modal analysis of KufaSat structure using ANSYS 16 program. Three types of Aluminum alloys (5052-H32, 6061-T6 and 7075-T6) were selected for investigation of the structure under design loads. Finite element analysis (FEA) in design static load of 51 g was performed. The natural frequencies for five modes were estimated using modal analysis. In order to ensure that KufaSat could withstand with various conditions during launch, the Margin of safety was calculated. The results of deformation and Von Mises stress for linear buckling analysis were also performed. The comparison of data was done to select the optimum material for KufaSat structures.

  6. Numerical Limit Analysis of Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Larsen, Kasper Paaske

    For more than half a century, limit state analysis based on the extremum principles have been used to assess the load bearing capacity of reinforced concrete structures. Extensi- ve research within the field has lead to several techniques for performing such analysis manually. While these manual...... methods provide engineers with valuable tools for limit sta- te analysis, their application becomes difficult with increased structural complexity. The main challenge is to solve the optimization problem posed by the extremum principles. This thesis is a study of how numerical methods can be used to solve...... limit state analysis problems. The work focuses on determination of the load bearing capacity of reinforced concrete structures by employing the lower bound theorem and a finite element method using equilibrium elements is developed. The recent year’s development within the field of convex optimization...

  7. Seismic analysis and design of NPP structures

    International Nuclear Information System (INIS)

    de Carvalho Santos, S.H.; da Silva, R.E.

    1989-01-01

    Numerical methods for static and dynamic analysis of structures, as well as for the design of individual structural elements under the applied loads are under continuous development, being very sophisticated methods nowadays available for the engineering practice. Nevertheless, this sophistication will be useless if some important aspects necessary to assure full compatability between analysis and design are disregarded. Some of these aspects are discussed herein. This paper presents an integrated approach for the seismic analysis and design of NPP structures: the development of models for the seismic analysis, the distribution of the global seismic forces among the seismic-resistant elements and the criteria for the design of the individual elements for combined static and dynamic forces are the main topics to be discussed herein. The proposed methodology is illustrated. Some examples taken from the project practice are presented for illustration the exposed concepts

  8. Stability of edge states and edge magnetism in graphene nanoribbons

    OpenAIRE

    Kunstmann, Jens; Özdoğan, Cem; Quandt, Alexander; Fehske, Holger

    2010-01-01

    We critically discuss the stability of edge states and edge magnetism in zigzag edge graphene nanoribbons (ZGNRs). We point out that magnetic edge states might not exist in real systems, and show that there are at least three very natural mechanisms - edge reconstruction, edge passivation, and edge closure - which dramatically reduce the effect of edge states in ZGNRs or even totally eliminate them. Even if systems with magnetic edge states could be made, the intrinsic magnetism would not be ...

  9. Global plastic models for computerized structural analysis

    International Nuclear Information System (INIS)

    Roche, R.L.; Hoffmann, A.

    1977-01-01

    In many types of structures, it is possible to use generalized stresses (like membrane forces, bending moment, torsion moment...) to define a yield surface for a part of the structure. Analysis can be achieved by using the HILL's principle and a hardening rule. The whole formulation is said 'Global Plastic Model'. Two different global models are used in the CEASEMT system for structural analysis, one for shell analysis and the other for piping analysis (in plastic or creep field). In shell analysis the generalized stresses chosen are the membrane forces and bending (including torsion) moments. There is only one yield condition for a normal to the middle surface and no integration along the thickness is required. In piping analysis, the choice of generalized stresses is bending moments, torsional moment, hoop stress and tension stress. There is only a set of stresses for a cross section and no integration over the cross section area is needed. Connected strains are axis curvature, torsion, uniform strains. The definition of the yield surface is the most important item. A practical way is to use a diagonal quadratic function of the stress components. But the coefficients are depending of the shape of the pipe element, especially for curved segments. Indications will be given on the yield functions used. Some examples of applications in structural analysis are added to the text

  10. Difference analysis for fluid-structure interaction

    International Nuclear Information System (INIS)

    Giencke, E.; Forkel, M.

    1979-01-01

    For solving fluid structure interaction problems it is possible to organize the compter programs for the difference method in the same way as for the finite element method by establishing the difference equations with the principial of virtual work. In the finite element method the individual localized functions for the approximation of the potential function PHI will be chosen also as virtual functions delta PHI. Deriving difference equations the virtual states are simple as possible and the approximation of the potential function may be linear or parabolic. The equations become symmetric both for points in the interiour and the boundaries and for grids with rectangular and triangular elements. The boundary and edge-conditions shall established for elastic walls and for the free surface. For regular rectangular and triangular grids it is possible to derive on the same way multipoint difference equations, which for the same numbers of unknowns are two orders better in accuracy as the usual difference or the finite element equations. Some examples for the pressure distribution in a BWR-steel-containment due to steam bubble collaps at the condenser pipes will be shown. (orig.)

  11. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Seidler, G. T., E-mail: seidler@uw.edu; Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R. [Physics Department, University of Washington, Seattle, Washington 98195-1560 (United States)

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  12. The aquatic hyphomycete Heliscus lugdunensis protects its hyphae tip cells from cadmium: A micro X-ray fluorescence and X-ray absorption near edge structure spectroscopy study

    Science.gov (United States)

    Isaure, Marie-Pierre; Leyh, Benjamin; Salomé, Murielle; Krauss, Gerd-Joachim; Schaumlöffel, Dirk; Dobritzsch, Dirk

    2017-11-01

    Aquatic fungi can be used to evaluate the functioning of natural ecosystems. Heliscus lugdunensis is an early colonizer of allochthone leafs. Since this aquatic hyphomycete is able to develop in metal contaminated habitats and tolerates cadmium, it appears to be a good candidate to investigate adaptation to metal pollution. This study aimed at examining the sequestration of Cd in the hyphae of H. lugdunensis, and particularly the role of the tip cells. For that, H. lugdunensis growth was evaluated under various Cd concentrations, and a combination of synchrotron micro X-ray fluorescence and X-ray absorption near edge structure spectroscopy was carried out to determine the compartments of Cd accumulation and the Cd chemical species, respectively. Results showed that the hyphal tip cells were depleted in Cd, and that the metal was stored in older cells. Cd was mainly associated with sulfur ligands and to a lesser extent bound to phosphates and carboxyl/hydroxyl groups from cell wall and/or organic acids. Finally, the aquatic fungus was able to maintain the tip cell as a functional system, thus allowing the colonization of contaminated environments.

  13. Assignment of near-edge x-ray absorption fine structure spectra of metalloporphyrins by means of time-dependent density-functional calculations

    International Nuclear Information System (INIS)

    Schmidt, Norman; Fink, Rainer; Hieringer, Wolfgang

    2010-01-01

    The C 1s and N 1s near-edge x-ray absorption fine structure (NEXAFS) spectra of three prototype tetraphenyl porphyrin (TPP) molecules are discussed in the framework of a combined experimental and theoretical study. We employ time-dependent density-functional theory (TDDFT) to compute the NEXAFS spectra of the open- and closed-shell metalloporphyrins CoTPP and ZnTPP as well as the free-base 2HTPP in realistic nonplanar conformations. Using Becke's well-known half-and-half hybrid functional, the computed core excitation spectra are mostly in good agreement with the experimental data in the low-energy region below the appropriate ionization threshold. To make these calculations feasible, we apply a new, simple scheme based on TDDFT using a modified single-particle input spectrum. This scheme is very easy to implement in standard codes and allows one to compute core excitation spectra at a similar cost as ordinary UV/vis spectra even for larger molecules. We employ these calculations for a detailed assignment of the NEXAFS spectra including subtle shifts in certain peaks of the N 1s spectra, which depend on the central coordination of the TPP ligand. We furthermore assign the observed NEXAFS resonances to the individual molecular subunits of the investigated TPP molecules.

  14. Analysis of the influence of the cutting edge geometry on parameters of the perforation process for conveyor and transmission belts

    Directory of Open Access Journals (Sweden)

    Wojtkowiak Dominik

    2018-01-01

    Full Text Available Perforated belts, which are used in vacuum conveyor belts, can have significantly different mechanical properties like strength and elasticity due to a variety of used materials and can have different thickness from very thin (0,7 mm to thick belts (6 mm. In order to design a complex machine for mechanical perforation, which can perforate whole range of belts, it is necessary to research the influence of the cutting edge geometry on the parameters of the perforation process. Three most important parameters, which describe the perforation process are the cutting force, the velocity and the temperature of the piercing punch. The results presented in this paper consider two different types of punching (a piercing punch with the punching die or with the reducer plate and different cutting edge directions, angles, diameters and material properties. Test were made for different groups of composites belts – with polyurethane and polyester fabric, polyamide core or aramid-fibre reinforced polymers. The main goal of this research is to specify effective tools and parameters of the perforation process for each group of composites belts.

  15. Competing edge networks

    International Nuclear Information System (INIS)

    Parsons, Mark; Grindrod, Peter

    2012-01-01

    We introduce a model for a pair of nonlinear evolving networks, defined over a common set of vertices, subject to edgewise competition. Each network may grow new edges spontaneously or through triad closure. Both networks inhibit the other's growth and encourage the other's demise. These nonlinear stochastic competition equations yield to a mean field analysis resulting in a nonlinear deterministic system. There may be multiple equilibria; and bifurcations of different types are shown to occur within a reduced parameter space. This situation models competitive communication networks such as BlackBerry Messenger displacing SMS; or instant messaging displacing emails. -- Highlights: ► A model for edgewise-competing evolving network pairs is introduced. ► Defined competition equations yield to a mean field analysis. ► Multiple equilibrium states and different bifurcation types can occur. ► The system is sensitive to sparse initial conditions and near unstable equilibriums.

  16. Extended x-ray absorption fine structure spectroscopy and x-ray absorption near edge spectroscopy study of aliovalent doped ceria to correlate local structural changes with oxygen vacancies clustering

    Energy Technology Data Exchange (ETDEWEB)

    Shirbhate, S. C.; Acharya, S. A., E-mail: saha275@yahoo.com [Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033 (India); Yadav, A. K. [Atomic and molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-04-04

    This study provides atomic scale insight to understand the role of aliovalent dopants on oxygen vacancies clustering and dissociation mechanism in ceria system in order to enhance the performance of oxy-ion conductor. Dopants induced microscale changes in ceria are probed by extended X-ray absorption fine structure spectroscopy, X-ray absorption near edge spectra, and Raman spectroscopy. The results are explored to establish a correlation between atomic level structural changes (coordination number, interatomic spacing) → formation of dimer and trimer type cation-oxygen vacancies defect complex (intrinsic and extrinsic) → dissociation of oxygen vacancies from defect cluster → ionic conductivity temperature. It is a strategic approach to understand key physics of ionic conductivity mechanism in order to reduce operating temperature of electrolytes for intermediate temperature (300–450 °C) electrochemical devices for the first time.

  17. Investigation of the electronic structure of high-temperature superconductors and related transition metal oxides with near-edge x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Gerhold, S.

    2001-01-01

    The unoccupied electronic structure and its orbital character has been studied with polarization-dependent near-edge x-ray absorption spectroscopy (NEXAFS) for selected high-temperature superconductors (HTSC) and related transition metal oxides. Although YBa 2 Cu 3 O 7-δ (Y-123) is arguably the best-investigated HTSC a conclusive NEXAFS study on how partial substitution of Cu by other transition metals affects the electronic structure has sorely been missing. The study presented here on a series of well characterized YBa 2 Cu 3-x Fe x O y single crystals shows that the cause for T c suppression is not at all magnetic pair breaking but charge carrier depletion, primarily in the chains; effects from disorder cannot be excluded. Annealing at high oxygen pressure increases along with oxygen content both the hole concentration and T c . Fe 3d-O 2p-derived states contribute prominently to the spectra for all polarizations a few eV above E F . Iron prefers a trivalent state in Y-123; upon reduction a spin transition can be observed. As YBa 2 Cu 3-x Fe x O y single crystals cannot be detwinned it is very difficult to distinguish between contributions from planes and chains to the spectra. In this situation thin films grown with a reduced degree of twinning ('twin-poor') allow more detailed investigations. An extended self-absorption correction was developed for fluorescence yield NEXAFS on epitactical HTSC thin films. Its application to twin-poor Y-123 thin films demonstrates that (apart from the effect of residual twins) the spectral information is equivalent to that of detwinned single crystals for a range of optimum film thicknesses, and this in turn allows to augment the NEXAFS study of YBa 2 Cu 3-x Fe x O y with spectra for corresponding twin-poor thin films. The system Ca 2-x (Sr,La) x RuO 4 is structurally related to the HTSCs; the development of its unoccupied electronic structure with x was investigated in this work, with emphasis on the metal

  18. Linear analysis of an X-band backward wave oscillator with a circular-edge disk-loaded cylindrical waveguide driven by an annular electron beam

    Science.gov (United States)

    Hasan Sagor, Rakibul; Ruhul Amin, Md.

    2017-10-01

    An X-band backward wave oscillator (BWO) with a circular-edge disk-loaded periodic metallic slow wave structure (CDSWS) is proposed and studied numerically. The structure is the modified version of our previously modeled semi-circularly corrugated slow wave structure (SCCSWS). The CDSWS is energized by an intense relativistic electron beam (IREB) which is directed by a strong magnetic field. The electromagnetic (EM) wave of the slow wave structure (SWS) merges with the space charge wave of the beam under the guidance of the strong axial magnetic field. The inner wall contour of CDSWS is modeled by a finite Fourier series and the dispersion characteristics of different TM modes are solved by utilizing the linear Rayleigh-Fourier (R-F) technique, which is verified by a commercial EM solver. To study the temporal growth rate (TGR) for the fundamental TM01 mode, the dispersion equation is solved for the beam current of 0.1-1.0kA and the beam energy of 205-665kV. For the TM01 mode, the TGR that occurs at the unstable region, which provides a qualitative index of the strength of the microwave generation, is compared with those of the BWOs with sinusoidally corrugated SWS (SCSWS), disk-loaded SWS (DLSWS) and triangularly corrugated SWS (TrCSWS) for different beam parameters. The dimension of the CDSWS is determined by comparing the dispersion characteristics of fundamental TM01 mode with DLSWS and SCSWS. For the same set of beam parameters, an average of 3.5%, 7%, 1.5% and more than 50% higher TGR have been obtained with the proposed CDSWS than that of SCSWS, DLSWS, TrCSWS and SCCSWS respectively. Moreover, the presented structure also provides an advantage in the fabrication process and is less prone to RF breakdown since it has no sharp edges in the inner wall where the electric field intensity can be infinitely high.

  19. Analysis of flexible structures under lateral impact

    International Nuclear Information System (INIS)

    Ramirez, D. F.; Razavi, H.

    2012-01-01

    Three methods for analysis of flexible structures under lateral impact are presented. The first proposed method (Method A) consists of: (1) modifying an available deceleration on a rigid target with conservation principles to account for structural flexibility; and (2) transient nonlinear analysis of the structure with the corrected forcing function. The second proposed method (Method B) is similar to Method A in obtaining the forcing function but it solves the equations of motion of an idealized two-degree-of-freedom system instead of directly using conservation principles. The last method simply provides the maximum force in the structure using the conservation of energy and linear momentum. A coupled simulation is also performed in LS-DYNA and compared against the proposed methods. A case study is presented to illustrate the applicability of all three methods and the LS-DYNA simulation. (authors)

  20. Structural-Vibration-Response Data Analysis

    Science.gov (United States)

    Smith, W. R.; Hechenlaible, R. N.; Perez, R. C.

    1983-01-01

    Computer program developed as structural-vibration-response data analysis tool for use in dynamic testing of Space Shuttle. Program provides fast and efficient time-domain least-squares curve-fitting procedure for reducing transient response data to obtain structural model frequencies and dampings from free-decay records. Procedure simultaneously identifies frequencies, damping values, and participation factors for noisy multiple-response records.

  1. Data structures and algorithm analysis in C++

    CERN Document Server

    Shaffer, Clifford A

    2011-01-01

    With its focus on creating efficient data structures and algorithms, this comprehensive text helps readers understand how to select or design the tools that will best solve specific problems. It uses Microsoft C++ as the programming language and is suitable for second-year data structure courses and computer science courses in algorithm analysis.Techniques for representing data are presented within the context of assessing costs and benefits, promoting an understanding of the principles of algorithm analysis and the effects of a chosen physical medium. The text also explores tradeoff issues, f

  2. Data structures and algorithm analysis in Java

    CERN Document Server

    Shaffer, Clifford A

    2011-01-01

    With its focus on creating efficient data structures and algorithms, this comprehensive text helps readers understand how to select or design the tools that will best solve specific problems. It uses Java as the programming language and is suitable for second-year data structure courses and computer science courses in algorithm analysis. Techniques for representing data are presented within the context of assessing costs and benefits, promoting an understanding of the principles of algorithm analysis and the effects of a chosen physical medium. The text also explores tradeoff issues, familiari

  3. Geographical data structures supporting regional analysis

    International Nuclear Information System (INIS)

    Edwards, R.G.; Durfee, R.C.

    1978-01-01

    In recent years the computer has become a valuable aid in solving regional environmental problems. Over a hundred different geographic information systems have been developed to digitize, store, analyze, and display spatially distributed data. One important aspect of these systems is the data structure (e.g. grids, polygons, segments) used to model the environment being studied. This paper presents eight common geographic data structures and their use in studies of coal resources, power plant siting, population distributions, LANDSAT imagery analysis, and landuse analysis

  4. Electromagnetic and structural interaction analysis of curved shell structures

    International Nuclear Information System (INIS)

    Horie, T.; Niho, T.

    1993-01-01

    This paper describes a finite element formulation of the eddy current and structure coupled problem for curved shell structures. Coupling terms produced by curved geometry as well as flat plate geometry were obtained. Both matrix equations for eddy current and structure were solved simultaneously using coupling sub-matrices. TEAM Workshop bench mark problem 16 was solved to verify the formulation and the computer code. Agreement with experimental results was very good for such plate problem. A coupled problem for cylindrical shell structure was also analyzed. Influence of each coupling term was examined. The next topic is the eigenvalues of the coupled equations. Although the coupled matrix equations are not symmetric, symmetry was obtained by introducing a symmetrizing variable. The eigenvalues of the coupled matrix equations are different from those obtained from the uncoupled equations because of the influence of the coupling sub-matrix components. Some parameters obtained by the eigenvalue analysis have characteristics of parameters which indicate the intensity of electromagnetic structural coupling effect. (author)

  5. Reliability analysis of prestressed concrete containment structures

    International Nuclear Information System (INIS)

    Jiang, J.; Zhao, Y.; Sun, J.

    1993-01-01

    The reliability analysis of prestressed concrete containment structures subjected to combinations of static and dynamic loads with consideration of uncertainties of structural and load parameters is presented. Limit state probabilities for given parameters are calculated using the procedure developed at BNL, while that with consideration of parameter uncertainties are calculated by a fast integration for time variant structural reliability. The limit state surface of the prestressed concrete containment is constructed directly incorporating the prestress. The sensitivities of the Choleskey decomposition matrix and the natural vibration character are calculated by simplified procedures. (author)

  6. Object-Oriented Analysis, Structured Analysis, and Jackson System Development

    NARCIS (Netherlands)

    Van Assche, F.; Wieringa, Roelf J.; Moulin, B.; Rolland, C

    1991-01-01

    Conceptual modeling is the activity of producing a conceptual model of an actual or desired version of a universe of discourse (UoD). In this paper, two methods of conceptual modeling are compared, structured analysis (SA) and object-oriented analysis (OOA). This is done by transforming a model

  7. SIMS chemical analysis of extended impact features from the trailing edge portion of experiment AO187-2

    Science.gov (United States)

    Amari, Sachiko; Foote, John; Simon, Charles; Jessberger, Elmar K.; Lange, Gundolf; Stadermann, Frank; Swan, Pat; Walker, Robert M.; Zinner, Ernst

    1992-01-01

    One hundred capture cells from the trailing edge, which had lost their cover foils during flight, were optically scanned for extended impact features caused by high velocity projectiles impinging on the cells while the foils were still intact. Of the 53 candidates, 24 impacts were analyzed by secondary ion mass spectroscopy for the chemical composition of the deposits. Projectile material was found in all impacts, and at least 75 percent of them appear to be caused by interplanetary dust particles. Elemental ratios are fractionated, with refractory elements enriched in the impacts relative to interplanetary dust particles collected in the stratosphere. Although this could be due to systematic differences in the compositions, a more likely explanation is volatility fractionation during the impact process.

  8. Coupled thermal, structural and vibrational analysis of a hypersonic engine for flight test

    Energy Technology Data Exchange (ETDEWEB)

    Sook-Ying, Ho [Defence Science and Technology Organisation, SA (Australia); Paull, A. [Queensland Univ., Dept. of Mechanical Engineering (Australia)

    2006-07-15

    This paper describes a relatively simple and quick method for implementing aerodynamic heating models into a finite element code for non-linear transient thermal-structural and thermal-structural-vibrational analyses of a Mach 10 generic HyShot scram-jet engine. The thermal-structural-vibrational response of the engine was studied for the descent trajectory from 60 to 26 km. Aerodynamic heating fluxes, as a function of spatial position and time for varying trajectory points, were implemented in the transient heat analysis. Additionally, the combined effect of varying dynamic pressure and thermal loads with altitude was considered. This aero-thermal-structural analysis capability was used to assess the temperature distribution, engine geometry distortion and yielding of the structural material due to aerodynamic heating during the descent trajectory, and for optimising the wall thickness, nose radius of leading edge, etc. of the engine intake. A structural vibration analysis was also performed following the aero-thermal-structural analysis to determine the changes in natural frequencies of the structural vibration modes that occur at the various temperatures associated with the descent trajectory. This analysis provides a unique and relatively simple design strategy for predicting and mitigating the thermal-structural-vibrational response of hypersonic engines. (authors)

  9. Characterization of Functionalized Self-Assembled Monolayers and Surface-Attached Interlocking Molecules Using Near-Edge X-ray Absorption Fine Structure Spectroscopy

    International Nuclear Information System (INIS)

    Willey, T; Willey, T

    2004-01-01

    Quantitative knowledge of the fundamental structure and substrate binding, as well as the direct measurement of conformational changes, are essential to the development of self-assembled monolayers (SAMs) and surface-attached interlocking molecules, catenanes and rotaxanes. These monolayers are vital to development of nano-mechanical, molecular electronic, and biological/chemical sensor applications. This dissertation investigates properties of functionalized SAMs in sulfur-gold based adsorbed molecular monolayers using quantitative spectroscopic techniques including near-edge x-ray absorption fine structure spectroscopy (NEXAFS) and x-ray photoelectron spectroscopy (XPS). The stability of the gold-thiolate interface is addressed. A simple model SAM consisting of dodecanethiol adsorbed on Au(111) degrades significantly in less than 24 hours under ambient laboratory air. S 2p and O 1s XPS show the gold-bound thiolates oxidize to sulfinates and sulfonates. A reduction of organic material on the surface and a decrease in order are observed as the layer degrades. The effect of the carboxyl vs. carboxylate functionalization on SAM structure is investigated. Carboxyl-terminated layers consisting of long alkyl-chain thiols vs. thioctic acid with short, sterically separated, alkyl groups are compared and contrasted. NEXAFS shows a conformational change, or chemical switchability, with carboxyl groups tilted over and carboxylate endgroups more upright. Surface-attached loops and simple surface-attached rotaxanes are quantitatively characterized, and preparation conditions that lead to desired films are outlined. A dithiol is often insufficient to form a molecular species bound at each end to the substrate, while a structurally related disulfide-containing polymer yields surface-attached loops. Similarly, spectroscopic techniques show the successful production of a simple, surface-attached rotaxane that requires a ''molecular riveting'' step to hold the mechanically attached

  10. An experimental analysis of critical factors involved in the breakdown process of leading edge vortex flows. Ph.D. Thesis

    Science.gov (United States)

    Visser, Kenneth D.

    1991-01-01

    Experimental crosswire measurements of the flowfield above a 70 and 75 degree flat plate delta wing were performed at a Reynolds number of 250,000. Survey grids were taken normal to the platform at a series of chordwise locations for angles of attack of 20 and 30 degrees. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core as well as on chordwise location was examined. The effects of nondimensionalization in comparison with other experimental data was made. The circulation distribution scales with the local semispan and grows approximately linearly in the chordwise direction. For regions of the flow outside of the vortex subcore, the circulation at any chordwise station was observed to vary logarithmically with distance from the vortex axis. The circulation was also found to increase linearly with angle of incidence at a given chordwise station. A reduction in the local circulation about the vortex axis occurred at breakdown. The spanwise distribution of axial vorticity was severely altered through the breakdown region and the spanwise distribution of axial vorticity present appeared to reach a maximum immediately preceding breakdown. The local concentration of axial vorticity about the vortex axis was reduced while the magnitude of the azimuthal vorticity decreased throughout the breakdown zone. The axial vorticity components with a negative sense, found in the secondary vortex, remained unaffected by changes in wing sweep or angle of attack, in direct contrast to the positive components. The inclusion of the local wing geometry into a previously derived correlation parameter indicated that the circulation of growing leading edge vortex flows were similar at corresponding radii from the vortex axis. It was concluded that the flow over a delta wing, upstream of the breakdown regions and away from the apex and trailing edge regions, is conical. In addition, the dominating

  11. Development of planar detectors with active edge

    International Nuclear Information System (INIS)

    Povoli, M.; Bagolini, A.; Boscardin, M.; Dalla Betta, G.-F.; Giacomini, G.; Vianello, E.; Zorzi, N.

    2011-01-01

    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  12. Development of planar detectors with active edge

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: povoli@disi.unitn.it [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Giacomini, G.; Vianello, E.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy)

    2011-12-01

    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  13. Theoretical analysis of polarized structure functions

    International Nuclear Information System (INIS)

    Altarelli, G.; ); Ball, R.D.; Forte, S.; Ridolfi, G.

    1998-01-01

    We review the analysis of polarized structure function data using perturbative QCD and NLO We use the most recent experimental data to obtain updated results for polarized parton distributions, first moments and the strong coupling. We also discuss several theoretical issues involving in this analysis and in the interpretation of its results. Finally, we compare our results with other similar analyses in the recent literature. (author)

  14. Theoretical Analysis of Polarized Structure Functions

    CERN Document Server

    Altarelli, Guido; Forte, Stefano; Ridolfi, G

    1998-01-01

    We review the analysis of polarized structure function data using perturbative QCD at next-to-leading order. We use the most recent experimental data to obtain updated results for polarized parton distributions, first moments and the strong coupling. We also discuss several theoretical issues involved in this analysis and in the interpretation of its results. Finally, we compare our results with other similar analyses in the recent literature.

  15. Transient thermal analysis of Vega launcher structures

    Energy Technology Data Exchange (ETDEWEB)

    Gori, F. [University of Rome ' Tor Vergata' , Rome (Italy); De Stefanis, M. [Thales Alenia Space Italia, Rome (Italy); Worek, W.M. [University of Illinois at Chicago, Chicago (United States)], E-mail: wworek@uic.edu; Minkowycz, W.J. [University of Illinois at Chicago, Chicago (United States)

    2008-12-15

    A transient thermal analysis is carried out to verify the base cover thermal protection system of Vega 2nd stage Solid Rocket Motor (SRM) and the flange coupling of the inter-stage 2/3. The analysis is performed with a finite element code. The work has developed suitable numerical Fortran subroutines to assign radiation and convection boundary conditions. The thermal behaviour of the structures is presented.

  16. Structured Performance Analysis for Component Based Systems

    OpenAIRE

    Salmi , N.; Moreaux , Patrice; Ioualalen , M.

    2012-01-01

    International audience; The Component Based System (CBS) paradigm is now largely used to design software systems. In addition, performance and behavioural analysis remains a required step for the design and the construction of efficient systems. This is especially the case of CBS, which involve interconnected components running concurrent processes. % This paper proposes a compositional method for modeling and structured performance analysis of CBS. Modeling is based on Stochastic Well-formed...

  17. Stability analysis of zigzag boron nitride nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Hari Mohan, E-mail: rai.2208@gmail.com; Late, Ravikiran; Saxena, Shailendra K.; Kumar, Rajesh; Sagdeo, Pankaj R. [Indian Institute of Technology, Indore –452017 (India); Jaiswal, Neeraj K. [Discipline of Physics, PDPM- Indian Institute of Information Technology, Design and Manufacturing, Jabalpur – 482005 (India); Srivastava, Pankaj [Computational Nanoscience and Technology Lab. (CNTL), ABV- Indian Institute of Information Technology and Management, Gwalior – 474015 (India)

    2015-05-15

    We have explored the structural stability of bare and hydrogenated zigzag boron nitride nanoribbons (ZBNNRs). In order to investigate the structural stability, we calculate the cohesive energy for bare, one-edge and both edges H-terminated ZBNNRs with different widths. It is found that the ZBNNRs with width Nz=8 are energetically more favorable than the lower-width counterparts (Nz<8). Bare ZBNNRs have been found energetically most stable as compared to the edge terminated ribbons. Our analysis reveals that the structural stability is a function of ribbon-width and it is not affected significantly by the type of edge-passivation (one-edge or both-edges)

  18. Numerical Limit Analysis of Precast Concrete Structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen

    Precast concrete elements are widely used in the construction industry as they provide a number of advantages over the conventional in-situ cast concrete structures. Joints cast on the construction site are needed to connect the precast elements, which poses several challenges. Moreover, the curr...... problems are solved efficiently using state-of-the-art solvers. It is concluded that the framework and developed joint models have the potential to enable efficient design of precast concrete structures in the near future......., the current practice is to design the joints as the weakest part of the structure, which makes analysis of the ultimate limit state behaviour by general purpose software difficult and inaccurate. Manual methods of analysis based on limit analysis have been used for several decades. The methods provide...... of the ultimate limit state behaviour. This thesis introduces a framework based on finite element limit analysis, a numerical method based on the same extremum principles as the manual limit analysis. The framework allows for efficient analysis and design in a rigorous manner by use of mathematical optimisation...

  19. Image-Based Edge Bundles : Simplified Visualization of Large Graphs

    NARCIS (Netherlands)

    Telea, A.; Ersoy, O.

    2010-01-01

    We present a new approach aimed at understanding the structure of connections in edge-bundling layouts. We combine the advantages of edge bundles with a bundle-centric simplified visual representation of a graph's structure. For this, we first compute a hierarchical edge clustering of a given graph

  20. Term Structure Analysis with Big Data

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Christensen, Jens H.E.; Rudebusch, Glenn D.

    Analysis of the term structure of interest rates almost always takes a two-step approach. First, actual bond prices are summarized by interpolated synthetic zero-coupon yields, and second, a small set of these yields are used as the source data for further empirical examination. In contrast, we...

  1. Nonlinear finite element analysis of concrete structures

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1980-05-01

    This report deals with nonlinear finite element analysis of concrete structures loaded in the short-term up until failure. A profound discussion of constitutive modelling on concrete is performed; a model, applicable for general stress states, is described and its predictions are compared with experimental data. This model is implemented in the AXIPLANE-program applicable for axisymmetrick and plane structures. The theoretical basis for this program is given. Using the AXIPLANE-program various concrete structures are analysed up until failure and compared with experimental evidence. These analyses include panels pressure vessel, beams failing in shear and finally a specific pull-out test, the Lok-Test, is considered. In these analyses, the influence of different failure criteria, aggregate interlock, dowel action, secondary cracking, magnitude of compressive strenght, magnitude of tensile strenght and of different post-failure behaviours of the concrete are evaluated. Moreover, it is shown that a suitable analysis of the theoretical data results in a clear insight into the physical behaviour of the considered structures. Finally, it is demonstrated that the AXISPLANE-program for widely different structures exhibiting very delicate structural aspects gives predictions that are in close agreement with experimental evidence. (author)

  2. Structural reliability analysis and seismic risk assessment

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Shinozuka, M.

    1984-01-01

    This paper presents a reliability analysis method for safety evaluation of nuclear structures. By utilizing this method, it is possible to estimate the limit state probability in the lifetime of structures and to generate analytically the fragility curves for PRA studies. The earthquake ground acceleration, in this approach, is represented by a segment of stationary Gaussian process with a zero mean and a Kanai-Tajimi Spectrum. All possible seismic hazard at a site represented by a hazard curve is also taken into consideration. Furthermore, the limit state of a structure is analytically defined and the corresponding limit state surface is then established. Finally, the fragility curve is generated and the limit state probability is evaluated. In this paper, using a realistic reinforced concrete containment as an example, results of the reliability analysis of the containment subjected to dead load, live load and ground earthquake acceleration are presented and a fragility curve for PRA studies is also constructed

  3. Earthquake response analysis considering structure-soil-structure interaction

    International Nuclear Information System (INIS)

    Shiomi, T.; Takahashi, K.; Oguro, E.

    1981-01-01

    This paper proposes a numerical method of earthquake response analysis considering the structure-soil-structure interaction between two adjacent buildings. In this paper an analytical study is presented in order to show some typical features of coupling effects of two reactor buildings of the BWR-type nuclear power plant. The technical approach is a kind of substructure method, which at first evaluates the compliance properties with the foundation-soil-foundation interaction and then uses the compliance in determining seismic responses of two super-structures during earthquake motions. For this purpose, it is assumed that the soil medium is an elastic half space for modeling and that the rigidity of any type of structures such as piping facilities connecting the adjacent buildings is negligible. The technical approach is mainly based on the following procedures. Supersturcture stiffness is calculated by using the method which has been developed in our laboratory based on the Thin-Wall Beam Theory. Soil stiffness is expressed by a matrix with 12 x 12 elements as a function of frequency, which is calculated using the soil compliance functions proposed in Dr. Tajimi's Theory. These stiffness values may be expressed by complex numbers for modeling the damping mechanism of superstructures. We can solve eigenvalue problems with frequency dependent stiffness and the large-scale matrix using our method which is based on condensing the matrix to the suitable size by Rayleigh-Ritz method. Earthquake responses can be solved in the frequency domain by Fourier Transform. (orig./RW)

  4. An edge pedestal model

    International Nuclear Information System (INIS)

    Stacev, W.M.

    2001-01-01

    A new model for calculation of the gradient scale lengths in the edge pedestal region and of the edge transport barrier width in H-mode tokamak plasmas will be described. Model problem calculations which demonstrate the promise of this model for predicting experimental pedestal properties will be discussed. The density and Prague gradient scale lengths (L) in the edge are calculated from the particle and ion and electron energy radial transport equations, making use of (presumed) known particle and energy fluxes flowing across the edge transport barrier from the core into the SOL and of edge transport coefficients. The average values of the particle and heat fluxes in the edge transport barrier are calculated in terms of the fluxes crossing into the SOL and the atomic physics reaction rates (ionisation, charge-exchange, elastic scattering, impurity radiation) in the edge by integrating the respective transport equations from the pedestal to the separatrix. An important implication of this model is that the pedestal gradient scale lengths depend not just on local pedestal platers properties but also on particle and energy fluxes from the core plasma and on recycling neutral fluxes that penetrate into the plasma edge, both of which in turn depend on the pedestal properties. The MHD edge pressure gradient constraint α≤ α C is used to determine the pressure width of the edge transport barrier, Δ TB = Δ TB (α c ). Three different models for the MHD edge pressure gradient constraint have been investigated: (1) nominal ideal ballooning mode theory, (2) ballooning mode theory taking into account the edge geometry and shear to access He second stability region; and pedestal β-limit theory when the ballooning modes are stabilised by diamagnetic effects. A series of calculations have been made for a DIII-D model problem. The calculated gradient scale lengths and edge transport barrier widths are of the magnitude of values observed experimentally, and certain trends

  5. Protected Edge Modes without Symmetry

    Directory of Open Access Journals (Sweden)

    Michael Levin

    2013-05-01

    Full Text Available We discuss the question of when a gapped two-dimensional electron system without any symmetry has a protected gapless edge mode. While it is well known that systems with a nonzero thermal Hall conductance, K_{H}≠0, support such modes, here we show that robust modes can also occur when K_{H}=0—if the system has quasiparticles with fractional statistics. We show that some types of fractional statistics are compatible with a gapped edge, while others are fundamentally incompatible. More generally, we give a criterion for when an electron system with Abelian statistics and K_{H}=0 can support a gapped edge: We show that a gapped edge is possible if and only if there exists a subset of quasiparticle types M such that (1 all the quasiparticles in M have trivial mutual statistics, and (2 every quasiparticle that is not in M has nontrivial mutual statistics with at least one quasiparticle in M. We derive this criterion using three different approaches: a microscopic analysis of the edge, a general argument based on braiding statistics, and finally a conformal field theory approach that uses constraints from modular invariance. We also discuss the analogous result for two-dimensional boson systems.

  6. Predicted solar cell edge radiation effects

    International Nuclear Information System (INIS)

    Gates, M.T.

    1993-01-01

    The Advanced Solar Cell Orbital Test (ASCOT) will test six types of solar cells in a high energy proton environment. During the design of the experiment a question was raised about the effects of proton radiation incident on the edge of the solar cells and whether edge radiation shielding was required. Historical geosynchronous data indicated that edge radiation damage is not detectable over the normal end of life solar cell degradation; however because the ASCOT radiation environment has a much higher and more energetic fluence of protons, considerably more edge damage is expected. A computer analysis of the problem was made by modeling the expected radiation damage at the cell edge and using a network model of small interconnected solar cells to predict degradation in the cell's electrical output. The model indicated that the deepest penetration of edge radiation was at the top of the cell near the junction where the protons have access to the cell through the low density cell/cover adhesive layer. The network model indicated that the cells could tolerate high fluences at their edge as long as there was high electrical resistance between the edge radiated region and the contact system on top of the cell. The predicted edge radiation related loss was less than 2% of maximum power for GaAs/Ge solar cells. As a result, no edge radiation protection was used for ASCOT

  7. Effects of sulphur pollution on forest floor invertebrates (community structure, structural heterogeneity, edge effects, decomposition, Callioplus euoplus, Pterostichus adstrictus, Scaphinotus marginatus)

    International Nuclear Information System (INIS)

    Carcamo, H. A.

    1997-01-01

    The distribution of insects and other invertebrates was studied in forests under varying regimes of exposure to sulfur compounds in the vicinity of two sour gas plants and at sharp acidification gradients in pine and aspen forests located near a sulfur block. Results showed no effect on most invertebrates at moderate levels of sulfur deposition. At this level, structural heterogeneity of the forest floor was more influential than sulfur levels in determining the macroarthropoid community structure. By contrast, high sulphur contamination and subsequent acidification had a clear negative effect on earthworms, and various species of spiders. Ground beetles and certain epigeic spiders along the sharp acidification gradient at the pine forest were considered vulnerable but resistant and favoured. These results suggested that ecological specialists were most vulnerable to acidification effects, while ecological generalists have been more successful in resisting the effects of acidification. It was also shown that indirect effects at the landscape, habitat or forest type, and microhabitat level, were more important in the case of most of the arthropods than the direct effects. Only earthworms, snails and some Collembola were negatively affected through direct acidity effects

  8. Effects of sulphur pollution on forest floor invertebrates (community structure, structural heterogeneity, edge effects, decomposition, Callioplus euoplus, Pterostichus adstrictus, Scaphinotus marginatus)

    Energy Technology Data Exchange (ETDEWEB)

    Carcamo, H. A.

    1997-12-31

    The distribution of insects and other invertebrates was studied in forests under varying regimes of exposure to sulfur compounds in the vicinity of two sour gas plants and at sharp acidification gradients in pine and aspen forests located near a sulfur block. Results showed no effect on most invertebrates at moderate levels of sulfur deposition. At this level, structural heterogeneity of the forest floor was more influential than sulfur levels in determining the macroarthropoid community structure. By contrast, high sulphur contamination and subsequent acidification had a clear negative effect on earthworms, and various species of spiders. Ground beetles and certain epigeic spiders along the sharp acidification gradient at the pine forest were considered vulnerable but resistant and favoured. These results suggested that ecological specialists were most vulnerable to acidification effects, while ecological generalists have been more successful in resisting the effects of acidification. It was also shown that indirect effects at the landscape, habitat or forest type, and microhabitat level, were more important in the case of most of the arthropods than the direct effects. Only earthworms, snails and some Collembola were negatively affected through direct acidity effects.

  9. Seismic analysis of structures by simulation

    International Nuclear Information System (INIS)

    Sundararajan, C.; Gangadharan, A.C.

    1977-01-01

    The paper presents a state-of-the-art survey, and recommendations for future work in the area of stochastic seismic analysis by Monte Carlo simulation. First the Monte Carlo simulation procedure is described, with special emphasis on a 'unified approach' for the digital generation of artificial earthquake motions. Next, the advantages and disadvantages of the method over the power spectral method are discussed; and finally, an efficient 'Hybrid Monte Carlo-Power Spectral Method' is developed. The Monte Carlo simulation procedure consists of the following tasks: (1) Digital generation of artificial earthquake motions, (2) Response analysis of the structure to a number of sample motions, and (3) statistical analysis of the structural responses

  10. Structural Analysis of Extended Plasma Focus Chamber

    International Nuclear Information System (INIS)

    Mohd Azhar Ahmad; Abdul Halim Baijan; Siti Aiasah Hashim

    2016-01-01

    Accelerator Development Centre (ADC) of Nuclear Malaysia intends to upgrade the plasma focus device. It involves the extension part placed on top of the existing plasma focus vacuum chamber. This extended vacuum chamber purposely to give an extra space in conducting experiments on the existing plasma focus chamber. The aim of upgrading the plasma focus device is to solve the limitation in research and analysis of sample due to its done in an open system that cause analysis of samples is limited and less optimal. This extended chamber was design in considering the ease of fabrication as well as durability of its structural. Thus, this paper discusses the structural analysis in term of pressure loading effect in extended chamber. (author)

  11. Analysis of aircraft impact to concrete structures

    International Nuclear Information System (INIS)

    Arros, Jorma; Doumbalski, Nikolay

    2007-01-01

    Analysis of aircraft impact to nuclear power plant structures is discussed utilizing a simplified model of a 'fictitious nuclear building' to perform analyses using LS-DYNA software, representing the loading: (i) by the Riera force history method and (ii) by modeling the crash by impacting a model of a plane similar to Boeing 747-400 to the structure (i.e., 'missile-target interaction method'). Points discussed include: (1) comparison of shock loading within the building as obtained from the Riera force history analysis versus from the missile-target interaction analysis, (2) sensitivity of the results on the assumed Riera force loading area, (3) linear versus nonlinear modeling and (4) on failure criteria

  12. Seismic analysis of structures by simulation

    International Nuclear Information System (INIS)

    Sundararajan, C.; Gangadharan, A.C.

    1977-01-01

    The paper presents a state-of-the-art survey, and recommendations for future work in the area of stochastic seismic analysis by Monte Carlo simulation. First the Monte Carlo simulation procedure is described with special emphasis on a 'unified approach' for the digital generation of anificial earthquake motions. Next, the advantages and disadvantages of the method over the power spectral method are discussed; and finally, an efficient 'Hybrid Monte Carlo-Power Spectral Method' is developed. The Monte Carlo simulation procedure consists of the following tasks: (1) Digital generation of artificial earthquake motions, (2) Response analysis of the structure to a number of sample motions, and (3) Statistical analysis of the structural responses. (Auth.)

  13. Heat transfer and structure stress analysis of micro packaging component of high power light emitting diode

    Directory of Open Access Journals (Sweden)

    Hsu Chih-Neng

    2013-01-01

    Full Text Available This paper focuses on the heat transfer and structural stress analysis of the micro- scale packaging structure of a high-power light emitting diode. The thermal-effect and thermal-stress of light emitting diode are determined numerically. Light emitting diode is attached to the silicon substrate through the wire bonding process by using epoxy as die bond material. The silicon substrate is etched with holes at the bottom and filled with high conductivity copper material. The chip temperature and structure stress increase with input power consumption. The micro light emitting diode is mounted on the heat sink to increase the heat dissipation performance, to decrease chip temperature, to enhance the material structure reliability and safety, and to avoid structure failure as well. This paper has successfully used the finite element method to the micro-scale light emitting diode heat transfer and stress concentration at the edges through etched holes.

  14. J-integral analysis of heterogeneous mismatched girth welds in clamped single-edge notched tension specimens

    International Nuclear Information System (INIS)

    Hertelé, Stijn; De Waele, Wim; Verstraete, Matthias; Denys, Rudi; O'Dowd, Noel

    2014-01-01

    Flaw assessment procedures require a quantification of crack driving force, and such procedures are generally based on the assumption of weld homogeneity. However, welds generally have a heterogeneous microstructure, which will influence the crack driving force. This paper describes a stress-based methodology to assess complex heterogeneous welds using a J-based approach. Clamped single-edge notched tension specimens, representative of girth weld flaws, are analyzed and the influence of weld heterogeneity on crack driving force has been determined. The use of a modified limit load for heterogeneous welds is proposed, suitable for implementation in a ‘homogenized’ J-integral estimation scheme. It follows from an explicit modification of an existing solution for centre cracked tension specimens. The proposed solution provides a good estimate of crack driving force and any errors in the approximation may be accounted for by means of a small safety factor on load bearing capacity. - Highlights: • We present a crack driving force estimation procedure for heterogeneous welds. • The procedure is based on a ‘homogenized’ version of the EPRI equation. • Complex welds are translated into equivalent idealized mismatched welds. • The procedure is validated for clamped SE(T) specimens. • A mismatch limit load for clamped SE(T) specimens is developed

  15. Global plastic models for computerized structural analysis

    International Nuclear Information System (INIS)

    Roche, R.; Hoffmann, A.

    1977-01-01

    Two different global models are used in the CEASEMT system for structural analysis, one for the shells analysis and the other for piping analysis (in plastic or creep field). In shell analysis the generalized stresses choosed are the membrane forces Nsub(ij) and bending (including torsion) moments Msub(ij). There is only one yield condition for a normal (to the middle surface) and no integration along the thickness is required. In piping analysis, the choice of generalized stresses is: bending moments, torsional moments, Hoop stress and tension stress. There is only a set of stresses for a cross section and non integration over the cross section area is needed. Connected strains are axis curvature, torsion, uniform strains. The definition of the yield surface is the most important item. A practical way is to use a diagonal quadratic fonction of the stress components. But the coefficients are depending of the shape of the pipe element, especially for curved segments. Indications will be given on the yield fonctions used. Some examples of applications in structural analysis are added to the text [fr

  16. Parallel processing of structural integrity analysis codes

    International Nuclear Information System (INIS)

    Swami Prasad, P.; Dutta, B.K.; Kushwaha, H.S.

    1996-01-01

    Structural integrity analysis forms an important role in assessing and demonstrating the safety of nuclear reactor components. This analysis is performed using analytical tools such as Finite Element Method (FEM) with the help of digital computers. The complexity of the problems involved in nuclear engineering demands high speed computation facilities to obtain solutions in reasonable amount of time. Parallel processing systems such as ANUPAM provide an efficient platform for realising the high speed computation. The development and implementation of software on parallel processing systems is an interesting and challenging task. The data and algorithm structure of the codes plays an important role in exploiting the parallel processing system capabilities. Structural analysis codes based on FEM can be divided into two categories with respect to their implementation on parallel processing systems. The first category codes such as those used for harmonic analysis, mechanistic fuel performance codes need not require the parallelisation of individual modules of the codes. The second category of codes such as conventional FEM codes require parallelisation of individual modules. In this category, parallelisation of equation solution module poses major difficulties. Different solution schemes such as domain decomposition method (DDM), parallel active column solver and substructuring method are currently used on parallel processing systems. Two codes, FAIR and TABS belonging to each of these categories have been implemented on ANUPAM. The implementation details of these codes and the performance of different equation solvers are highlighted. (author). 5 refs., 12 figs., 1 tab

  17. Music Structure Analysis from Acoustic Signals

    Science.gov (United States)

    Dannenberg, Roger B.; Goto, Masataka

    Music is full of structure, including sections, sequences of distinct musical textures, and the repetition of phrases or entire sections. The analysis of music audio relies upon feature vectors that convey information about music texture or pitch content. Texture generally refers to the average spectral shape and statistical fluctuation, often reflecting the set of sounding instruments, e.g., strings, vocal, or drums. Pitch content reflects melody and harmony, which is often independent of texture. Structure is found in several ways. Segment boundaries can be detected by observing marked changes in locally averaged texture.

  18. Analysis of fluid structural instability in water

    International Nuclear Information System (INIS)

    Piccirillo, N.

    1997-02-01

    Recent flow testing of stainless steel hardware in a high pressure/high temperature water environment produced an apparent fluid-structural instability. The source of instability was investigated by studying textbook theory and by performing NASTRAN finite element analyses. The modal analyses identified the mode that was being excited, but the flutter instability analysis showed that the design is stable if minimal structural damping is present. Therefore, it was suspected that the test hardware was the root cause of the instability. Further testing confirmed this suspicion

  19. Structural analysis of lithium lanthanum titanate with perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Koji [Department of Condensed Matter Chemistry and Physics, Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka (Japan); Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo (Japan); Kawakita, Yukinobu; Takeda, Shin' ichi [Department of Physics, Faculty of Sciences, Kyushu University (Japan); Temleitner, Laszlo; Pusztai, Laszlo [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, Budapest (Hungary); Kohara, Shinji [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo (Japan); Jono, Atsushi; Shimakura, Hironori [Department of Condensed Matter Chemistry and Physics, Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka (Japan); Inoue, Naoki [Department of Physics, Faculty of Sciences, Ehime University, Ehime (Japan)

    2009-05-15

    Neutron and high-energy X-ray diffraction analysis of polycrystalline La{sub 4/3-x}Li{sub 3x}Ti{sub 2}O{sub 6} have been performed to clarify the extent of disorder of the distribution of La and Li ions and to understand the relation of these distributions to ionic conduction. The distributions of the La and Li ions in a 10 x 10 x 20 cubic box (i.e., 10 x 10 x 10 unit cell) super-structure, in which Ti and O atoms are fixed onto their regular sites, were obtained by the reverse Monte Carlo (RMC) structural modelling of both diffraction data sets. When the occupancy of La ions in the planes perpendicular to the c-axis is analysed, one can find a La-rich and La-poor layers alternating, which is consistent with the results of earlier Rietveld analysis (Stramare et al., Chem. Mater. 15, 3974 (2003)[1]). Of particular interest, the Li ions are found mainly on the interstitial sites between the O-3 triangle plane of the TiO{sub 6} octahedron and a La ion, which is different from the earlier work (Yashima et al., J. Am. Chem. Soc. 127, 3491 (2005)[2]). (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Characterization of the adhesion of thin film by Cross-Sectional Nanoindentation. Analysis of the substrate edge chipping and the film delamination

    Science.gov (United States)

    Felder, Eric; Roy, Sébastien; Darque-Ceretti, Evelyne

    2011-07-01

    Cross-Sectional Nanoindentation (CSN) is a recent method for adhesion measurement of nanoscale thin films in Ultra-Large Scale Integrated circuits. In the case of ductile thin films, the motion of the substrate chip implies significant plastic deformation of the film and complex geometry of delaminated areas. This article recalls first the experimental procedure and the two main features observed in this test performed on various plane copper films deposited on silicon: the critical force producing silicon edge chipping increases linearly with the distance of the indenter to the interface; on the section the delaminated length of the film ( a-b) is proportional to the residual silicon chip displacement u and the ratio S=u/(a-b) depends on the manufacturing process of the film, and is so related to its adhesion to the substrate. One proposes a simple analysis of the silicon edge chipping. Then a model of pull-off of an elastic-strain hardening plastic film is developed, which suggests an explanation for the delamination process. Application of the model to experimental results starting from films plastic properties deduced from nanoindentation measurements provides plausible results. Some improvements for performing the CSN test are proposed in order to make easier its interpretation.