WorldWideScience

Sample records for edge sensor bolometer

  1. Transition edge sensor series array bolometer

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, J, E-mail: joern.beyer@ptb.d [Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, D-10587 Berlin (Germany)

    2010-10-15

    A transition edge sensor series array (TES-SA) is an array of identical TESs that are connected in series by low-inductance superconducting wiring. The array elements are equally and well thermally coupled to the absorber and respond to changes in the absorber temperature in synchronization. The TES-SA total resistance increases compared to a single TES while the shape of the superconducting transition is preserved. We are developing a TES-SA with a large number, hundreds to thousands, of array elements with the goal of enabling the readout of a TES-based bolometer operated at 4.2 K with a semiconductor-based amplifier located at room temperature. The noise and dynamic performance of a TES-SA bolometer based on a niobium/aluminum bilayer is analyzed. It is shown that stable readout of the bolometer with a low-noise transimpedance amplifier is feasible.

  2. Transition edge sensor series array bolometer

    International Nuclear Information System (INIS)

    Beyer, J

    2010-01-01

    A transition edge sensor series array (TES-SA) is an array of identical TESs that are connected in series by low-inductance superconducting wiring. The array elements are equally and well thermally coupled to the absorber and respond to changes in the absorber temperature in synchronization. The TES-SA total resistance increases compared to a single TES while the shape of the superconducting transition is preserved. We are developing a TES-SA with a large number, hundreds to thousands, of array elements with the goal of enabling the readout of a TES-based bolometer operated at 4.2 K with a semiconductor-based amplifier located at room temperature. The noise and dynamic performance of a TES-SA bolometer based on a niobium/aluminum bilayer is analyzed. It is shown that stable readout of the bolometer with a low-noise transimpedance amplifier is feasible.

  3. Antenna-coupled bolometer arrays using transition-edge sensors

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Michael J. [Department of Physics, University of California, Berkeley, California 94720 (United States)]. E-mail: mmyers@cosmology.berkeley.edu; Ade, Peter [School of Physics and Astronomy, Cardiff University, Cardiff, Wales (United Kingdom); Arnold, Kam [Department of Physics, University of California, Berkeley, California 94720 (United States); Engargiola, Greg [Department of Astronomy, University of California, Berkeley, California 94720 (United States); Holzapfel, Bill [Department of Physics, University of California, Berkeley, California 94720 (United States); Lee, Adrian T. [Department of Physics, University of California, Berkeley, California 94720 (United States); O' Brient, Roger [Department of Physics, University of California, Berkeley, California 94720 (United States); Richards, Paul L. [Department of Physics, University of California, Berkeley, California 94720 (United States); Smith, Andy [Northrop Grumman, Redondo Beach, California 90278 (United States); Spieler, Helmuth [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Tran, Huan T. [Department of Physics, University of California, Berkeley, California 94720 (United States)

    2006-04-15

    We are developing antenna-coupled Transition-Edge Sensor (TES) bolometer arrays for use in measurements of the CMB polarization. TES bolometers have many well-known advantages over conventional bolometers, such as increased speed, linearity, and the existence of readout multiplexers. Antenna-coupled bolometers use an on-chip planar antenna to couple light into the bolometer. The antenna directivity and polarization sensitivity, along with the potential for on-chip band defining filters and channelizing circuits, allow a significant increase in focal plane integration. This eliminates the bulky horns, quasioptical filters, dichroics, and polarizers which might otherwise be needed in a conventional bolometric system. This simplification will ease the construction of receivers with larger numbers of pixels. We report on the fabrication and optical testing of single antenna-coupled bolometer pixels with integrated band defining filters. We will also discuss current progress on fabrication of a bolometer array based on this design.

  4. Molybdenum-gold proximity bilayers as transition edge sensors for microcalorimeters and bolometers

    International Nuclear Information System (INIS)

    Chen, T.C.; Bier, A.; DiCamillo, B.; Finkbeiner, F. M.

    1999-01-01

    Mo/Au proximity bilayers as transition edge sensors (TESs) are promising candidates for low-temperature thermometry. The transition temperature of the bilayers can be easily tuned between 50 and 600 mK, yielding sensors which can be used in a variety of calorimetric and bolometric applications. With phase transition widths of less than 1 mK, Mo/Au TESs show very high temperature sensitivity (d(logR)/d(logT)∼2500). Also, Mo/Au TESs show improved thermal and chemical stability compared to most other bilayer configurations. Fabrication issues and detector performance of Mo/Au TESs on Si 3 N 4 membranes are discussed. (author)

  5. Optimization of Advanced ACTPol Transition Edge Sensor Bolometer Operation Using R(T,I) Transition Measurements

    Science.gov (United States)

    Salatino, Maria

    2017-06-01

    In the current submm and mm cosmology experiments the focal planes are populated by kilopixel transition edge sensors (TESes). Varying incoming power load requires frequent rebiasing of the TESes through standard current-voltage (IV) acquisition. The time required to perform IVs on such large arrays and the resulting transient heating of the bath reduces the sky observation time. We explore a bias step method that significantly reduces the time required for the rebiasing process. This exploits the detectors' responses to the injection of a small square wave signal on top of the dc bias current and knowledge of the shape of the detector transition R(T,I). This method has been tested on two detector arrays of the Atacama Cosmology Telescope (ACT). In this paper, we focus on the first step of the method, the estimate of the TES %Rn.

  6. Commercialization of Micro-fabrication of Antenna-Coupled Transition Edge Sensor Bolometer Detectors for Studies of the Cosmic Microwave Background

    Science.gov (United States)

    Suzuki, Aritoki; Bebek, Chris; Garcia-Sciveres, Maurice; Holland, Stephen; Kusaka, Akito; Lee, Adrian T.; Palaio, Nicholas; Roe, Natalie; Steinmetz, Leo

    2018-04-01

    We report on the development of commercially fabricated multichroic antenna-coupled transition edge sensor (TES) bolometer arrays for cosmic microwave background (CMB) polarimetry experiments. CMB polarimetry experiments have deployed instruments in stages. Stage II experiments deployed with O(1000) detectors and reported successful detection of B-mode (divergence-free) polarization pattern in the CMB. Stage III experiments have recently started observing with O(10,000) detectors with wider frequency coverage. A concept for a stage IV experiment, CMB-S4, is emerging to make a definitive measurement of CMB polarization from the ground with O(400,000) detectors. The orders of magnitude increase in detector count for CMB-S4 require a new approach in detector fabrication to increase fabrication throughput and reduce the cost. We report on collaborative efforts with two commercial micro-fabrication foundries to fabricate antenna-coupled TES bolometer detectors. The detector design is based on the sinuous antenna-coupled dichroic detector from the POLARBEAR-2 experiment. The TES bolometers showed the expected I-V response, and the RF performance agrees with the simulation. We will discuss the motivation, design consideration, fabrication processes, test results, and how industrial detector fabrication could be a path to fabricate hundreds of detector wafers for future CMB polarimetry experiments.

  7. Bolometer

    International Nuclear Information System (INIS)

    Zasavithi, Efim; Sidorenco, Anatolii

    2011-01-01

    The invention relates to the cooled infrared detectors and can be used in spectroscopy, radiometry, geophysics, astrophysics. The bolometer contains a helium cryostat, in which is installed a solenoid for creation of a magnetic field, connected to a power supply. In the solenoid is placed a superconducting sensor, made of lead telluride doped with thallium Pb 1-x Tl x Te, where x = 0.01...0.0225, to which is connected a recording device. The result of the invention consists in obtaining a stable mode of operation of the bolometer.

  8. Development of plasma bolometers using fiber-optic temperature sensors

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, M. L., E-mail: reinkeml@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Han, M.; Liu, G. [University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States); Eden, G. G. van [Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven (Netherlands); Evenblij, R.; Haverdings, M. [Technobis, Pyrietstraat 2, 1812 SC Alkmaar (Netherlands); Stratton, B. C. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)

    2016-11-15

    Measurements of radiated power in magnetically confined plasmas are important for exhaust studies in present experiments and expected to be a critical diagnostic for future fusion reactors. Resistive bolometer sensors have long been utilized in tokamaks and helical devices but suffer from electromagnetic interference (EMI). Results are shown from initial testing of a new bolometer concept based on fiber-optic temperature sensor technology. A small, 80 μm diameter, 200 μm long silicon pillar attached to the end of a single mode fiber-optic cable acts as a Fabry–Pérot cavity when broadband light, λ{sub o} ∼ 1550 nm, is transmitted along the fiber. Changes in temperature alter the optical path length of the cavity primarily through the thermo-optic effect, resulting in a shift of fringes reflected from the pillar detected using an I-MON 512 OEM spectrometer. While initially designed for use in liquids, this sensor has ideal properties for use as a plasma bolometer: a time constant, in air, of ∼150 ms, strong absorption in the spectral range of plasma emission, immunity to local EMI, and the ability to measure changes in temperature remotely. Its compact design offers unique opportunities for integration into the vacuum environment in places unsuitable for a resistive bolometer. Using a variable focus 5 mW, 405 nm, modulating laser, the signal to noise ratio versus power density of various bolometer technologies are directly compared, estimating the noise equivalent power density (NEPD). Present tests show the fiber-optic bolometer to have NEPD of 5-10 W/m{sup 2} when compared to those of the resistive bolometer which can achieve <0.5 W/m{sup 2} in the laboratory, but this can degrade to 1-2 W/m{sup 2} or worse when installed on a tokamak. Concepts are discussed to improve the signal to noise ratio of this new fiber-optic bolometer by reducing the pillar height and adding thin metallic coatings, along with improving the spectral resolution of the interrogator.

  9. Fabrication of antenna-coupled transition edge polarization-sensitive bolometer arrays

    International Nuclear Information System (INIS)

    Yun, Minhee; Bock, James; Leduc, Henry; Day, Peter; Kim, Moon J.

    2004-01-01

    We have fabricated antenna-coupled superconducting transition edge sensor (TES) arrays for far-infrared and millimeter-wave applications. The advantage of antenna coupling is that the large optical coupling structure required for far-infrared/millimeter wavelengths is not thermally active. The sensor can thus be as small as lithographic techniques permit. By eliminating large absorbers, this technology enables bolometers working at frequencies as low as 30 GHz, covering the entire spectral region of interest for future space-borne studies of cosmic microwave background polarization. We developed a focal plane architecture with dual-polarization sensitivity in a single spectral band, or single-polarization sensitivity in multiple spectral bands. We use TES layers consisting of Al/Ti/Au/Ti thin films and Nb electrical contacts on a low-stress Si 3 N 4 membrane

  10. Bolometer

    International Nuclear Information System (INIS)

    Sidorenko, Anatolie; Zasavitchi, Efim

    2007-01-01

    The invention relates to the cooled infra-red radiation detectors and may be used in spectroscopy, radiometry, geophysics and astrophysics. The bolometer contains a helium refrigerator, wherein it is installed a superconductive sensing element, to which it is connected a recording device. Novelty of the invention consists in that into the refrigerator it is placed a temperature control, and the superconductive sensing element is made of a semiconductor, for example, of lead tellurium doped with thallium Pb 1-x Tl x Te, where x=0,01...0,0225.

  11. Feedhorn-Coupled Transition-Edge Superconducting Bolometer Arrays for Cosmic Microwave Background Polarimetry

    Science.gov (United States)

    Hubmayr, J.; Austermann, J.; Beall, J.; Becker, D.; Cho, H.-M.; Datta, R.; Duff, S. M.; Grace, E.; Halverson, N.; Henderson, S. W.; hide

    2015-01-01

    NIST produces large-format, dual-polarization-sensitive detector arrays for a broad range of frequencies (30-1400 GHz). Such arrays enable a host of astrophysical measurements. Detectors optimized for cosmic microwave background observations are monolithic, polarization-sensitive arrays based on feedhorn and planar Nb antenna-coupled transition-edge superconducting (TES) bolometers. Recent designs achieve multiband, polarimetric sensing within each spatial pixel. In this proceeding, we describe our multichroic, feedhorn-coupled design; demonstrate performance at 70-380 GHz; and comment on current developments for implementation of these detector arrays in the advanced Atacama Cosmology Telescope receiver

  12. Investigation of CeO2 Buffer Layer Effects on the Voltage Response of YBCO Transition-Edge Bolometers

    DEFF Research Database (Denmark)

    Mohajeri, Roya; Nazifi, Rana; Wulff, Anders Christian

    2016-01-01

    The effect on the thermal parameters of superconducting transition-edge bolometers produced on a single crystalline SrTiO3 (STO) substrate with and without a CeO2 buffer layer was investigated. Metal-organic deposition was used to deposit the 20-nm CeO2 buffer layer, whereas RF magnetron sputtering...

  13. An alternative geometry for bolometer sensors for use at high operating temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Meister, H., E-mail: meister@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching b. München (Germany); Langer, H. [KRP-Mechatec Engineering GbR, Lichtenbergstr. 8, D-85748 Garching b. München (Germany); Schmitt, S. [Fraunhofer ICT-IMM, Carl-Zeiss-Str. 18-20, D-55129 Mainz (Germany)

    2016-11-15

    Highlights: • Alternative design for bolometer sensors based on flexure hinges is proposed. • FE analysis confirms mechanical stability at high temperatures. • First prototypes successfully pass thermal cycling tests. • Expected bolometer calibration constants are estimated. • Tests using fully functional prototypes have to confirm applicability of design. - Abstract: Bolometer sensors are a key component to determine the total radiation and the radiation profile in fusion devices. For future devices like ITER the need arose to develop new sensors in order to adapt to loads, in particular neutron irradiation and enhanced thermal loads. The method proposed here to deal effectively with the stresses in the absorber and its supporting membrane is to support the absorber by flexure hinges, thus allowing deformations in all dimensions and reducing stresses. First, a design for the flexure hinges is proposed. Then finite-element analyses (FEA) have been carried out to investigate expected deformations due to residual stresses from the manufacturing process as well as due to additional thermal loads at 450 °C. The results showed stress levels below the expected tensile strength of Si. In addition, calculations show that the proposed design is expected to provide acceptable cooling time constants. Thus, prototypes based on the proposed design have been manufactured. Measurements of their deformation at room temperature are in agreement with predictions from FEA. Also, all prototypes were successfully subjected to thermal cycling up to 450 °C without any failures, thus demonstrating a successful development. However, for future application as bolometer sensor, a change in calibration parameters is expected: a factor of five for the heat capacity and a factor of two for the cooling time constant. Further prototypes including meanders and electrical contacts need to be developed and tested to finally validate if flexure hinges are a viable means for bolometer

  14. Frequency-domain readout multiplexing of transition-edge sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lanting, T.M. [Physics Department, University of California, Berkeley, CA 94720 (United States)]. E-mail: tlanting@berkeley.edu; Arnold, K. [Physics Department, University of California, Berkeley, CA 94720 (United States); Cho, Hsiao-Mei [Physics Department, University of California, Berkeley, CA 94720 (United States); Clarke, John [Physics Department, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Dobbs, Matt [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Holzapfel, William [Physics Department, University of California, Berkeley, CA 94720 (United States); Lee, Adrian T. [Physics Department, University of California, Berkeley, CA 94720 (United States); Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lueker, M. [Physics Department, University of California, Berkeley, CA 94720 (United States); Richards, P.L. [Physics Department, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Smith, A.D. [Northrop-Grumman, Redondo Beach, CA 94278 (United States); Spieler, H.G. [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2006-04-15

    We have demonstrated frequency-domain readout multiplexing of eight channels for superconducting transition-edge sensor bolometer arrays. The multiplexed readout noise is 6.5 pA/{radical}Hz, well below the bolometer dark noise of 15-20 pA/{radical}Hz. We measure an upper limit on crosstalk of 0.004 between channels adjacent in frequency which meets our design requirement of 0.01. We have observed vibration insensitivity in our frequency-domain multiplexed transition-edge sensors, making this system very attractive for telescope and satellite observations. We also discuss extensions to our multiplexed readout. In particular, we are developing a SQUID flux-locked loop that is entirely cold and collaborating on digital multiplexer technology in order to scale up the number of multiplexed channels.

  15. Noise and specific detectivity measurements on high-temperature superconducting transition-edge bolometers

    International Nuclear Information System (INIS)

    Black, R.D.; Mogro-campero, A.; Turner, L.G.

    1990-01-01

    The effects of thermal fluctuation noise in thermal detectors can be lessened by reducing heat capacity and thermal conductance. An attempt to accomplish this with the YBa2Cu3O(7-x) (YBCO) bolometer by making YBCO resistors on thermally isolated membranes is reported. The spectral power of the electrical noise of YBCO films on SrTiO3, bulk silicon with a buffer layer, and in thin dielectric membranes is measured. It is found that 1/f noise predominates in polycrystalline YBCO films on silicon-based substrates. Films on SrTiO3 with good electrical properties are dominated by thermal fluctuation noise, just as in the case of low-temperature superconductors. The implications of these findings for bolometer are addressed. The specific detectivity of a bolometric pixel made on bulk SrTiO3 is reported. 14 refs

  16. Edge measurements of T/sub e/,T/sub i/,n,E/sub r/ on the DITE tokamak using a biased power bolometer

    International Nuclear Information System (INIS)

    Stangeby, P.C.; McCracken, G.M.; Erents, S.K.; Vince, J.E.; Wilden, R.

    1983-01-01

    A new edge probe, the biased power bolometer or combined heat flux/Langmuir probe, has been used on the DITE tokamak to obtain detailed spatial and temporal information on plasma density, electron and ion temperature (separately), and radial electric field. The radial electric field is of a magnitude and direction to result in local ambipolar flow to each part of a large equipotential surface such as a limiter

  17. Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Yuryev, V. A., E-mail: vyuryev@kapella.gpi.ru; Chizh, K. V.; Chapnin, V. A.; Mironov, S. A.; Dubkov, V. P.; Uvarov, O. V.; Kalinushkin, V. P. [A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119991 (Russian Federation); Senkov, V. M. [P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Avenue, Moscow 119991 (Russian Federation); Nalivaiko, O. Y. [JSC “Integral” – “Integral” Holding Management Company, 121A, Kazintsa I. P. Street, Minsk 220108 (Belarus); Novikau, A. G.; Gaiduk, P. I. [Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk (Belarus)

    2015-05-28

    Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si{sub 3}N{sub 4}/SiO{sub 2}/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy. Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about −2%/ °C in the temperature interval from 25 to 50 °C.

  18. AlMn Transition Edge Sensors for Advanced ACTPol

    Science.gov (United States)

    Li, Dale; Austermann, Jason E.; Beall, James A.; Tucker, Daniel T.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Hilton, Gene C.; Ho, Shuay-Pwu; Hubmayr, Johannes; hide

    2016-01-01

    Advanced ACTPol (Adv ACT) will use an array of multichroic polarization sensitive AIMn transition edge sensor (TES) bolometers read out through time-division multiplexing. Aluminum doped with a low concentration of manganese can be deposited to a bulk film thickness for a more reliable superconducting critical temperature uniformity compared to thin bilayers. To build the TES, the AlMn alloy is deposited, over Nb wiring, to a specific thickness to set the TES normal resistance. The doping concentration of manganese coarsely defines the TES critical temperature, while a fine tuning is achieved by heating the deposited film to a specific temperature. The TES island is connected to the thermal bath via four silicon-nitride membranes, where their geometry defines the thermal conductance to the temperature of the bath. Lastly, the TES heat capacity is increased by addition of PdAu electrically connected to the AlMn film. Designs and performance characteristics of these AlMn TESs are presented for use in AdvACT.

  19. AlMn Transition Edge Sensors for Advanced ACTPol

    Science.gov (United States)

    Li, Dale; Austermann, Jason E.; Beall, James A.; Becker, Daniel T.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Hilton, Gene C.; Ho, Shuay-Pwu; Hubmayr, Johannes; Koopman, Brian J.; McMahon, Jeffrey J.; Nati, Federico; Niemack, Michael D.; Pappas, Christine G.; Salatino, Maria; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Van Lanen, Jeff; Ward, Jonathan T.; Wollack, Edward J.

    2016-07-01

    Advanced ACTPol (AdvACT) will use an array of multichroic polarization-sensitive AlMn transition edge sensor (TES) bolometers read out through time-division multiplexing. Aluminum doped with a low concentration of manganese can be deposited to a bulk film thickness for a more reliable superconducting critical temperature uniformity compared to thin bilayers. To build the TES, the AlMn alloy is deposited, over Nb wiring, to a specific thickness to set the TES normal resistance. The doping concentration of manganese coarsely defines the TES critical temperature, while a fine tuning is achieved by heating the deposited film to a specific temperature. The TES island is connected to the thermal bath via four silicon-nitride membranes, where their geometry defines the thermal conductance to the temperature of the bath. Lastly, the TES heat capacity is increased by addition of PdAu electrically connected to the AlMn film. Designs and performance characteristics of these AlMn TESs are presented for use in AdvACT.

  20. Performance of active edge pixel sensors

    Science.gov (United States)

    Bomben, M.; Ducourthial, A.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Calderini, G.; D'Eramo, L.; Giacomini, G.; Marchiori, G.; Zorzi, N.; Rummler, A.; Weingarten, J.

    2017-05-01

    To cope with the High Luminosity LHC harsh conditions, the ATLAS inner tracker has to be upgraded to meet requirements in terms of radiation hardness, pile up and geometrical acceptance. The active edge technology allows to reduce the insensitive area at the border of the sensor thanks to an ion etched trench which avoids the crystal damage produced by the standard mechanical dicing process. Thin planar n-on-p pixel sensors with active edge have been designed and produced by LPNHE and FBK foundry. Two detector module prototypes, consisting of pixel sensors connected to FE-I4B readout chips, have been tested with beams at CERN and DESY. In this paper the performance of these modules are reported. In particular the lateral extension of the detection volume, beyond the pixel region, is investigated and the results show high hit efficiency also at the detector edge, even in presence of guard rings.

  1. Suppression of excess noise in Transition-Edge Sensors using magnetic field and geometry

    International Nuclear Information System (INIS)

    Ullom, J.N.; Doriese, W.B.; Hilton, G.C.; Beall, J.A.; Deiker, S.; Irwin, K.D.; Reintsema, C.D.; Vale, L.R.; Xu, Y.

    2004-01-01

    We report recent progress at NIST on Mo/Cu Transition-Edge Sensors (TESs). While the signal-band noise of our sensors agrees with theory, we observe excess high-frequency noise. We describe this noise and demonstrate that it can be strongly suppressed by a magnetic field perpendicular to the plane of the sensor. Both the excess noise and α=(T/R)(dR/dT) depend strongly on field so our results show that accurate comparisons between devices are only possible when the field is well known or constant. We also present results showing the noise performance of TES designs incorporating parallel and perpendicular normal metal bars, an array of normal metal islands, and in wedge-shaped devices. We demonstrate significant reduction of high-frequency noise with the perpendicular bar devices at the cost of reduced α. Both the bars and the magnetic field are useful noise reduction techniques for bolometers

  2. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  3. An analytical model for pulse shape and electrothermal stability in two-body transition-edge sensor microcalorimeters

    International Nuclear Information System (INIS)

    Bennett, D. A.; Horansky, R. D.; Schmidt, D. R.; Swetz, D. S.; Vale, L. R.; Ullom, J. N.; Hoover, A. S.; Hoteling, N. J.; Rabin, M. W.

    2010-01-01

    High-resolution superconducting gamma-ray sensors show potential for the more accurate analysis of nuclear material. These devices are part of a larger class of microcalorimeters and bolometers based on transition edge sensors (TESs) that have two distinct thermal bodies. We derive the time domain behavior of the current and temperature for compound TES devices in the small signal limit and demonstrate the utility of these equations for device design and characterization. In particular, we use the model to fit pulses from our gamma-ray microcalorimeters and demonstrate how critical damping and electrothermal stability can be predicted.

  4. Performance of resistive microcalorimeters and bolometers

    International Nuclear Information System (INIS)

    Galeazzi, M.

    2004-01-01

    Despite the impressive results achieved by microcalorimeters and bolometers, their performance is still significantly worse than that predicted by Mather's ideal model (Appl. Opt. 21 (1982) 1125). The difference is due both to non-ideal effects and to excess noise of unknown origin. The non-ideal effects have been recently quantified and include hot-electron effect, absorber decoupling, thermometer non-ohmic behavior, and all related extra noise sources. The excess noise affects primarily Transition Edge Sensors (TES) and is currently under experimental and theoretical investigation. This paper reviews the origin of non-ideal effects in microcalorimeters and bolometers and their effect on energy resolution and noise equivalent power. It also reviews the results on the characterization and suppression of the excess noise in TES, and the recent theoretical investigations to explain its origin in relation to fundamental physics in superconductors

  5. Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements.

    Science.gov (United States)

    Dobbs, M A; Lueker, M; Aird, K A; Bender, A N; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Cho, H-M; Clarke, J; Crawford, T M; Crites, A T; Flanigan, D I; de Haan, T; George, E M; Halverson, N W; Holzapfel, W L; Hrubes, J D; Johnson, B R; Joseph, J; Keisler, R; Kennedy, J; Kermish, Z; Lanting, T M; Lee, A T; Leitch, E M; Luong-Van, D; McMahon, J J; Mehl, J; Meyer, S S; Montroy, T E; Padin, S; Plagge, T; Pryke, C; Richards, P L; Ruhl, J E; Schaffer, K K; Schwan, D; Shirokoff, E; Spieler, H G; Staniszewski, Z; Stark, A A; Vanderlinde, K; Vieira, J D; Vu, C; Westbrook, B; Williamson, R

    2012-07-01

    A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.

  6. The 160 TES bolometer read-out using FDM for SAFARI

    Science.gov (United States)

    Hijmering, R. A.; den Hartog, R. H.; van der Linden, A. J.; Ridder, M.; Bruijn, M. P.; van der Kuur, J.; van Leeuwen, B. J.; van Winden, P.; Jackson, B.

    2014-07-01

    For the read out of the Transition Edge Sensors (TES) bolometer arrays of the SAFARI instrument on the Japanese background-limited far-IR SPICA mission SRON is developing a Frequency Domain Multiplexing (FDM) read-out system. The next step after the successful demonstration of the read out of 38 TES bolometers using FDM was to demonstrate the FDM readout of the required 160 TES bolometers. Of the 160 LC filter and TES bolometer chains 151 have been connected and after cooldown 148 of the resonances could be identified. Although initial operation and locking of the pixels went smoothly the experiment revealed several complications. In this paper we describe the 160 pixel FDM set-up, show the results and discuss the issues faced during operation of the 160 pixel FDM experiment.

  7. Performance of a low-noise test facility for the SAFARI TES bolometer arrays

    NARCIS (Netherlands)

    Audley, M.D.; De Lange, G.; Ferrari, L.; Gao, J.R.; Hijmering, R.A.; Khosropanah, P.; Lindeman, M.; Ridder, M.L.

    2012-01-01

    We have constructed a test facility for characterizing the focal plane arrays of SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI’s three bolometer arrays are populated with extremely sensitive (NEP ? 2 × 10?19 W/? Hz) transition edge sensors with a transition

  8. Performance of a Low-Noise Test Facility for the SAFARI TES Bolometer Arrays

    NARCIS (Netherlands)

    Audley, M. D.; de Lange, G.; Ferrari, L.; Gao, J-R.; Hijmering, R. A.; Khosropanah, P.; Lindeman, M.; de Ridder, M.

    We have constructed a test facility for characterizing the focal plane arrays of SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI's three bolometer arrays are populated with extremely sensitive (NEP similar to 2 x 10(-19) W/root Hz) transition edge sensors with a

  9. Bolometer electronics

    International Nuclear Information System (INIS)

    Groenig, D.E.

    1981-01-01

    High quality is required to the electronic which works with bolometer made of metal for measuring the radiation power in plasmaphysical experiments. If the bandwidth is to be 1 kHz, and the time constant of the bolometer is about 160 ms by high overall gain the critical parameters are the noise of the amplifier, pick up to the system, stability and decoupling of common mode signals. The high overall gain is necessary to be able to measure lowest radiation power. The design made is a good approach to the desired property. (orig.) [de

  10. Thermal physics of transition edge sensor arrays

    International Nuclear Information System (INIS)

    Hoevers, H.F.C.

    2006-01-01

    Thermal transport in transition edge sensor (TES)-based microcalorimeter arrays is reviewed. The fundamentals of thermal conductance in Si 3 N 4 membranes are discussed and the magnitude of the electron-phonon coupling and Kapitza coupling in practical devices is summarized. Next, the thermal transport in high-stopping power and low-heat capacity absorbers, required for arrays of TES microcalorimeters, is discussed in combination with a performance analysis of detectors with mushroom-absorbers. Finally, the phenomenology of unexplained excess noise, observed in both Mo- and Ti-based TESs, is briefly summarized and related with the coupling of the TES to the heat bath

  11. Vortex dynamics in superconducting transition edge sensors

    Science.gov (United States)

    Ezaki, S.; Maehata, K.; Iyomoto, N.; Asano, T.; Shinozaki, B.

    2018-02-01

    The temperature dependence of the electrical resistance (R-T) and the current-voltage (I-V) characteristics has been measured and analyzed in a 40 nm thick Ti thin film, which is used as a transition edge sensor (TES). The analyses of the I-V characteristics with the vortex-antivortex pair dissociation model indicate the possible existence of the Berezinskii-Kosterlitz-Thouless (BKT) transition in two-dimensional superconducting Ti thin films. We investigated the noise due to the vortices' flow in TESs. The values of the current noise spectral density in the TESs were estimated by employing the vortex dynamics caused by the BKT transition in the Ti thin films. The estimated values of the current noise spectral density induced by the vortices' flow were in respectable agreement with the values of excess noise experimentally observed in the TESs with Ti/Au bilayer.

  12. Bolometers for far-infrared and submillimetre astronomy

    International Nuclear Information System (INIS)

    Griffin, M.J.

    2000-01-01

    Important scientific goals of far-infrared and submillimetre astronomy include measurements of anisotropies in the cosmic background radiation, deep imaging surveys for detection of high-red-shift galaxies, and imaging and spectroscopy of star formation regions and the interstellar medium in the milky way and nearby galaxies. Use of sensitive bolometer arrays leads to very large improvements in observing speed. Recent progress in the development of bolometric detector systems for ground-based and space-borne far-infrared and submillimetre astronomical observations is reviewed, including spider-web NTD bolometers, transition-edge superconducting sensors, and micromachined planar arrays of ion-implanted silicon bolometers. Future arrays may be based on planar absorbers without feedhorns, which offer potential advantages including more efficient use of space in the focal plane and improved instantaneous sampling of the telescope point spread function, but present challenges in suppression of stray light and RF interference. FIRST and Planck Surveyor are planned satellite missions involving passively cooled (∼70 K) telescopes, and bolometer array developments for these missions are described

  13. Position-sensitive transition-edge sensors

    International Nuclear Information System (INIS)

    Iyomoto, N.; Bandler, S.R.; Brekosky, R.P.; Chervenak, J.A.; Figueroa-Feliciano, E.; Finkbeiner, F.M.; Kelley, R.L.; Kilbourne, C.A.; Lindeman, M.A.; Murphy, K.; Porter, F.S.; Saab, T.; Sadleir, J.E.; Talley, D.J.

    2006-01-01

    We report the latest results from our development of Position-Sensitive Transition-edge sensors (PoSTs), which are one-dimensional imaging spectrometers. In PoSTs with segmented Au absorbers, we obtained 8eV energy resolution on K Kα lines, which is consistent to the baseline energy resolution and the design values, on all of the nine pixels, by choosing the best combination of the thermal conductance in absorbers and in links that connects the absorbers. The pulse decay time of 193μs is fast enough for our purpose. In a PoST with a continuous Bi/Cu absorber, by dividing the events into 63 effective pixels, we obtained energy resolutions of 16eV at the center 'pixel', which is comparable to the baseline energy resolution, and 33eV at the outer 'pixel'. The degradation of the energy resolution in the outer 'pixel' is due to position dependence, which we can cancel out by dividing the events into smaller 'pixels' when we have sufficient X-ray events

  14. Development of transition edge superconducting bolometers for the SAFARI Far-Infrared spectrometer on the SPICA space-borne telescope

    NARCIS (Netherlands)

    Mauskopf, P.; Morozov, D.; Glowacka, D.; Goldie, D.; Withington, S.; Bruijn, M.; De Korte, P.; Hoevers, H.; Ridder, M.; Van der Kuur, J.; Gao, J.R.

    2008-01-01

    We describe the optimization of transition edge superconducting (TES) detectors for use in a far-infrared (FIR) Fourier transform spectrometer (FTS) mounted on a cryogenically cooled space-borne telescope (e.g. SPICA). The required noise equivalent power (NEP) of the detectors is approximately 10?19

  15. Microcalorimetry and the transition-edge sensor

    Science.gov (United States)

    Lindeman, Mark Anton

    2000-10-01

    Many scientific and industrial applications call for quantum-efficient high-energy-resolution microcalorimeters for the measurement of x rays. The applications driving the development of these detectors involve the measurement of faint sources of x rays in which few photons reach the detector. Interesting astrophysical applications for these microcalorimeters include the measurement of composition and temperatures of stellar atmospheres and diffuse interstellar plasmas. Other applications of microcalorimeter technology include x-ray fluorescence (XRF) measurements of industrial or scientific samples. We are attempting to develop microcalorimeters with energy resolutions of several eV because many sources (such as celestial plasmas) contain combinations of elements producing emission lines spaced only a few eV apart. Our microcalorimeters consist of a metal-film absorber (250mum x 250mum x 3mum of copper) coupled to a superconducting transition-edge-sensor (TES) thermometer. This microcalorimeter demonstrated an energy resolution of 42 eV (FWHM) at 6 keV, excellent linearity, and showed no evidence of position dependent response. The response of our microcalorimeters depends both on the temperature of the microcalorimeter and on the electrical current conducted through the TES thermometer. We present a microcalorimeter model that extends previous microcalorimeter theory to include additional current dependent effects. The model makes predictions about the effects of various forms of noise. In addition, the model helps us to understand what measurements are useful for characterizing TES microcalorimeters. While the energy resolution we obtained was quite good (twice as good as conventional semiconductor-based x-ray detectors), the obtained resolution was not as good as expected, due to excess noise from fluctuations in the TES thermometer. The energy resolution of future TES microcalorimeters can be improved by redesigning the calorimeters to minimize the noise due

  16. Microcalorimetry and the transition-edge sensor

    International Nuclear Information System (INIS)

    Lindeman, M A

    2000-01-01

    Many scientific and industrial applications call for quantum-efficient high-energy-resolution microcalorimeters for the measurement of x rays. The applications driving the development of these detectors involve the measurement of faint sources of x rays in which few photons reach the detector. Interesting astrophysical applications for these microcalorimeters include the measurement of composition and temperatures of stellar atmospheres and diffuse interstellar plasmas. Other applications of microcalorimeter technology include x-ray fluorescence (XRF) measurements of industrial or scientific samples. We are attempting to develop microcalorimeters with energy resolutions of several eV because many sources (such as celestial plasmas) contain combinations of elements producing emission lines spaced only a few eV apart. Our microcalorimeters consist of a metal-film absorber (250 (micro)m x 250(micro)m x 3 (micro)m of copper) coupled to a superconducting transition-edge-sensor (TES) thermometer. This microcalorimeter demonstrated an energy resolution of 42 eV (FWHM) at 6 keV, excellent linearity, and showed no evidence of position dependent response. The response of our microcalorimeters depends both on the temperature of the microcalorimeter and on the electrical current conducted through the TES thermometer. We present a microcalorimeter model that extends previous microcalorimeter theory to include additional current dependent effects. The model makes predictions about the effects of various forms of noise. In addition, the model helps us to understand what measurements are useful for characterizing TES microcalorimeters. While the energy resolution we obtained was quite good (twice as good as conventional semiconductor-based x-ray detectors), the obtained resolution was not as good as expected, due to excess noise from fluctuations in the TES thermometer. The energy resolution of future TES microcalorimeters can be improved by redesigning the calorimeters to

  17. Longitudinal Proximity Effect Superconducting Transition-Edge Sensor

    Data.gov (United States)

    National Aeronautics and Space Administration — Superconducting Transition-Edge Sensors (TESs) hold the highest energy resolving power of any nondispersive spectrometer.   They are used for imaging spectroscopy...

  18. Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy

    Science.gov (United States)

    Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John

    We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.

  19. Characteristics of Ir/Au transition edge sensor

    International Nuclear Information System (INIS)

    Kunieda, Yuichi; Ohno, Masashi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Fukuda, Daiji; Ohkubo, Masataka

    2004-01-01

    A new type of microcalorimeter has been developed using a transition edge sensor (TES) and an electro-thermal feedback (ETF) method to achieve higher energy resolution and higher count rate. We are developing a superconducting Ir-based transition edge sensor (TES) microcalorimeters. To improve thermal conductivity and achieve higher energy resolution with an Ir-TES, we fabricated an Ir/Au bilayer TES by depositing gold on Ir and investigated the influence of intermediate between superconducting and normal states at the transition edge for signal responses by microscopic observation in the Ir/Au-TES. (T. Tanaka)

  20. All Metal Organic Deposited High-Tc Superconducting Transition Edge Bolometer on Yttria-Stabilized Zirconia Substrate

    DEFF Research Database (Denmark)

    Mohajeri, Roya; Opata, Yuri Aparecido; Wulff, Anders Christian

    2016-01-01

    of voltage amplitude and phase was analysed and measured through four-probe technique in a liquid nitrogen cooling system. An increase in voltage amplitude response was observed for the fabricated YBCO/CLO/YSZ bolometer compared to previously reported TEBs with similarly deposited YBCO thin film on a SrTiO3...

  1. Planar slim-edge pixel sensors for the ATLAS upgrades

    International Nuclear Information System (INIS)

    Altenheiner, S; Goessling, C; Jentzsch, J; Klingenberg, R; Lapsien, T; Rummler, A; Troska, G; Wittig, T; Muenstermann, D

    2012-01-01

    The ATLAS detector at CERN is a general-purpose experiment at the Large Hadron Collider (LHC). The ATLAS Pixel Detector is the innermost tracking detector of ATLAS and requires a sufficient level of hermeticity to achieve superb track reconstruction performance. The current planar n-type pixel sensors feature a pixel matrix of n + -implantations which is (on the opposite p-side) surrounded by so-called guard rings to reduce the high voltage stepwise towards the cutting edge and an additional safety margin. Because of the inactive region around the active area, the sensor modules have been shingled on top of each other's edge which limits the thermal performance and adds complexity in the present detector. The first upgrade phase of the ATLAS pixel detector will consist of the insertable b-layer (IBL), an additional b-layer which will be inserted into the present detector in 2013. Several changes in the sensor design with respect to the existing detector had to be applied to comply with the IBL's specifications and are described in detail. A key issue for the ATLAS upgrades is a flat arrangement of the sensors. To maintain the required level of hermeticity in the detector, the inactive sensor edges have to be reduced to minimize the dead space between the adjacent detector modules. Unirradiated and irradiated sensors with the IBL design have been operated in test beams to study the efficiency performance in the sensor edge region and it was found that the inactive edge width could be reduced from 1100 μm to less than 250 μm.

  2. Results from bonding of the SALT primary mirror edge sensors

    Science.gov (United States)

    Strydom, Ockert J.; Love, Jonathan; Gajjar, Hitesh

    2016-07-01

    The Southern African Large Telescope has till recently operated without active closed loop control of its Primary Mirror. The reason for this was that there were no suitable edge sensor system available on the market. Recently a system became available and SALT form Fogale Nanotech. The system consist of a sensor, cables and control electronics. The system was still under development and SALT was responsible for the integration of the sensors before deployment on the Telescope. Several issues still had to be addressed. One of these issues was the integration of the sensors at an appropriate production rate. The sensors was supplied as flexible pc boards with different types making up the transmitters and receivers. These flexible boards were bonded to ClearCeram Z L-Brackets before the appropriate connectors were installed. This paper describes the process used to integrate and test the sensors.

  3. 16 CFR 1211.12 - Requirements for edge sensors.

    Science.gov (United States)

    2010-01-01

    ... Section 1211.12 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... that the axis is perpendicular to the plane of the door. For an edge sensor intended to be used on a... direction perpendicular to the plane of the door. See figure 6. (2) With respect to the test of paragraph (a...

  4. Bolometer Simulation Using SPICE

    Science.gov (United States)

    Jones, Hollis H.; Aslam, Shahid; Lakew, Brook

    2004-01-01

    A general model is presented that assimilates the thermal and electrical properties of the bolometer - this block model demonstrates the Electro-Thermal Feedback (ETF) effect on the bolometers performance. This methodology is used to construct a SPICE model that by way of analogy combines the thermal and electrical phenomena into one simulation session. The resulting circuit diagram is presented and discussed.

  5. Characteristics of Ti films for transition-edge sensor microcalorimeters

    International Nuclear Information System (INIS)

    Ukibe, M.; Koyanagi, M.; Ohkubo, M.; Pressler, H.; Kobayashi, N.

    1999-01-01

    We are developing X-ray microcalorimeters using superconducting transition-edge sensors (TESs), which can be operated at relatively high base temperatures of a 3 He cryostat. For this purpose, we have selected Ti films to be used as TESs. The Ti films were deposited on different substrates by RF-sputtering. It was found that the superconducting properties of the Ti films depended on Ar pressure, film thickness, and substrate surface roughness

  6. Characteristics of Ti films for transition-edge sensor microcalorimeters

    CERN Document Server

    Ukibe, M; Ohkubo, M; Pressler, H; Kobayashi, N

    1999-01-01

    We are developing X-ray microcalorimeters using superconducting transition-edge sensors (TESs), which can be operated at relatively high base temperatures of a sup 3 He cryostat. For this purpose, we have selected Ti films to be used as TESs. The Ti films were deposited on different substrates by RF-sputtering. It was found that the superconducting properties of the Ti films depended on Ar pressure, film thickness, and substrate surface roughness.

  7. DC and AC biasing of a transition edge sensor microcalorimeter

    International Nuclear Information System (INIS)

    Cunningham, M.F.; Ullom, J.N.; Miyazaki, T.; Drury, O.; Loshak, A.; Berg, M.L. van den; Labov, S.E.

    2002-01-01

    We are developing AC-biased transition edge sensor (TES) microcalorimeters for use in large arrays with frequency-domain multiplexing. Using DC bias, we have achieved a resolution of 17 eV FWHM at 2.6 keV with a decay time of 90 μs and an effective detector diameter of 300 μm. We have successfully measured thermal pulses with a TES microcalorimeter operated with an AC bias. We present here preliminary results from a single pixel detector operated under DC and AC bias conditions

  8. Operation of transition-edge sensors with excess thermal noise

    International Nuclear Information System (INIS)

    Maasilta, I J; Kinnunen, K M; Nuottajaervi, A K; Leppaeniemi, J; Luukanen, A

    2006-01-01

    The superconducting transition-edge sensor (TES) is currently one of the most attractive choices for ultra-high resolution calorimetry in the keV x-ray band, and is being considered for future ESA and NASA missions. We have performed a study on the noise characteristics of Au/Ti bilayer TESs, at operating temperatures around ∼100 mK, with the SQUID readout at 1.5 K. Experimental results indicate that without modifications the back-action noise from the SQUID chip degrades the noise characteristics significantly. We present a simple and effective solution to the problem: by installing an extra shunt resistor which absorbs the excess radiation from the SQUID input, we have reduced the excess thermal (photon) noise power down by approximately a factor of five, allowing high resolution operation of the sensors

  9. Determination of the Tc distribution for 1000 Transition Edge Sensors

    International Nuclear Information System (INIS)

    Brink, P.L.; Saab, T.; Miller, A.J.; Cabrera, B.; Castle, J.P.; Chang, C.; Young, B.A.; Akerib, D.S.; Discroll, D.; Kamat, S.; Perera, T.A.; Schnee, R.W.; Wang, G.; Emes, J.H.; Gaitskell, R.J.; Mandic, V.; Meunier, P.; Rau, W.; Sadoulet, B.; Seitz, D.N.

    2002-01-01

    The ZIP detectors deployed in the CDMS II experiment utilize phonon sensors comprising W Transition Edge Sensors (TESs). In order to ensure uniform collection of the athermal phonon signal the TESs are dispersed uniformly on one side of a 1 cm thick, 3 inch diameter, disk. Each quadrant contains 1036 TESs connected in parallel to one series-array SQUID amplifier. The initial superconducting transition temperatures of these TESs tend to be too high for our requirements, and substantial gradients make the operation of the detectors difficult. Hence our implementation of Fe-56 ion implantation, as reported at the previous LTD meeting, to reduce in a controlled manner the transition temperature. However, the successful implementation of this ion-implantation scheme requires accurate knowledge of the initial transition temperature of each TES in a given quadrant. We report on our approaches and techniques employed to address the issue of determining the initial Tc distribution

  10. Edge-TCT measurements on irradiated HV CMOS sensors

    CERN Document Server

    Weisser, Constantin

    2014-01-01

    Passive $100 \\times 100 \\,\\mu$m test diodes in an unirradiated and an irradiated HV2FEI4v3 HV-CMOS silicon sensor were analysed using the edge TCT technique. To integrate the sensor into the setup a PCB was designed to extract the signals, a cooling mechanism was constructed and the system housed in a shielding box. The observed signal had fast and slow contributions, that were interpreted as drift and diffusion. The former peaked in a region, that was interpreted as the depletion region, while the latter peaked further in the bulk material. Raising the bias voltage increased the depth of the former region, while pushing the latter region further into the bulk. The irradiated sample lost signal strength mainly in its slow part compared to the unirradiated sample, while its quick signal remained largely unaffected. As only the signal interpreted as drift is fast enough to be useful in LHC operation the investigated sensors could be considered radiation hard for this purpose. This gives further promise to ...

  11. Ultra-Sensitive Transition-Edge Sensors for the Background Limited Infrared/Sub-mm Spectrograph (BLISS)

    Science.gov (United States)

    Beyer, A. D.; Kenyon, M. E.; Echternach, P. M.; Chui, T.; Eom, B.-H.; Day, P. K.; Bock, J. J.; Holmes, W.A.; Bradford, C. M.

    2011-01-01

    We report progress in fabricating ultra-sensitive superconducting transition-edge sensors (TESs) for BLISS. BLISS is a suite of grating spectrometers covering 35-433 micron with R approx. 700 cooled to 50 mK that is proposed to fly on the Japanese space telescope SPICA. The detector arrays for BLISS are TES bolometers readout with a time domain SQUID multiplexer. The required noise equivalent power (NEP) for BLISS is NEP = 10(exp -19) W/Hz(exp 1/2) with an ultimate goal of NEP= 5 x 10(exp -20) W/Hz(exp 1/2) to achieve background limited noise performance. The required and goal response times are tau = 150 ms and tau = 50ms respectively to achieve the NEP at the required and goal optical chop frequency 1-5 Hz. We measured prototype BLISS arrays and have achieved NEP = 6 x 10(exp -18) W/Hz(exp 1/2) and tau = 1.4 ms with a Ti TES (T(sub C) = 565 mK) and NEP approx. 2.5 x 10(exp -19) W/Hz(exp 1/2) and tau approximates 4.5 ms with an Ir TES (T(sub C) = 130 mK). Dark power for these tests is estimated at 1-5 fW.

  12. Multi-channel bolometer system on JFT-2M tokamak

    International Nuclear Information System (INIS)

    Tamai, Hiroshi; Maeno, Masaki; Matsuda, Toshiaki; Matoba, Tohru

    1988-07-01

    Multi-channel bolometer system is designed and installed to observe the radiation profile on JFT-2M tokamak. Sensor head is made of Thinistor, which is a kind of semiconductor, because it has the advantage of higher sensitivity of about one order of magnitude than the conventional metal foil bolometer and is suitable for the profile measurement in which the signal from the plasma is relatively small. The response and cooling characteristics of the bolometer sensor are suitable for the condition of JFT-2M tokamak plasma. Low noise circuit of bridge and differentiator is developed to optimize the signal to noise ratio in the JFT-2M operating condition. With use of the bolometer system, the radiation profile in joule heating plasma as well as additional heating plasma especially in H-mode plasma is successfully observed. (author)

  13. Fast Resistive Bolometer

    International Nuclear Information System (INIS)

    Deeney, C.; Fehl, D.L.; Hanson, D.L.; Keltner, N.R.; McGurn, J.S.; McKenney, J.L.; Spielman, R.B.

    1999-01-01

    Resistive bolometry is an accurate, robust, spectrally broadband technique for measuring absolute x-ray fluence and flux. Bolometry is an independent technique for x-ray measurements that is based on a different set of physical properties than other diagnostics such as x-ray diodes, photoconducting detectors, and P-I-N diodes. Bolometers use the temperature-driven change in element resistivity to determine the total deposited energy. The calibration of such a device is based on fundamental material properties and its physical dimensions. We describe the use of nickel and gold bolometers to measure x rays generated by high-power z pinches on Sandia's Saturn and Z accelerators. The Sandia bolometer design described herein has a pulse response of ∼1 ns. We describe in detail the fabrication, fielding, and data analysis issues leading to highly accurate x-ray measurements. The fundamental accuracy of resistive bolometry will be discussed

  14. Cosmic Microwave Background Polarization Detector with High Efficiency, Broad Bandwidth, and Highly Symmetric Coupling to Transition Edge Sensor Bolometers

    Science.gov (United States)

    Wollack, E.; Cao, N.; Chuss, D.; Denis, K.; Hsieh, W.-T.; Moseley, S. Harvey; Schneider, G.; Stevenson, T.; Travers, D.; U-yen, K.

    2008-01-01

    Four probe antennas transfer signals from waveguide to microstrip lines. The probes not only provide broadband impedance matching, but also thermally isolate waveguide and detector. In addition, we developed a new photonic waveguide choke joint design, with four-fold symmetry, to suppress power leakage at the interface. We have developed facilities to test superconducting circuit elements using a cryogenic microwave probe station, and more complete systems in waveguide. We used the ring resonator shown below to measure a dielectric loss tangent 99% coupling efficiency over 30% fractional bandwidth.

  15. Frequency selective bolometers

    DEFF Research Database (Denmark)

    Kowitt, M.S.; Fixsen, D.J.; Goldin, A.

    1996-01-01

    We propose a concept for radiometry in the millimeter, the submillimeter, and the far-IR spectral regions, the frequency selective bolometer (FSB). This system uses a bolometer as a coupled element of a tuned quasi-optical interference filter in which the absorption, the transmission......-dimensional transmission-line model. Instruments based on FSB technology should have several advantages over current multiband bolometric radiometers including smaller and more compact cryogenic optics; reduced demands on cryostat size and weight, high coupling efficiency, minimum constraints on the geometry in the focal...

  16. The Magnetically-Tuned Transition-Edge Sensor

    Science.gov (United States)

    Sadleir, John E.; Lee, Sang-Jun; Smith, Stephen J.; Busch, Sarah E.; Bandler, Simon R.; Adams, Joseph S.; Eckart, Megan E.; Chevenak, James A.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2014-01-01

    We present the first measurements on the proposed magnetically-tuned superconducting transition-edge sensor (MTES) and compare the modified resistive transition with the theoretical prediction. A TES's resistive transition is customarily characterized in terms of the unit less device parameters alpha and beta corresponding to the resistive response to changes in temperature and current respectively. We present a new relationship between measured IV quantities and the parameters alpha and beta and use these relations to confirm we have stably biased a TES with negative beta parameter with magnetic tuning. Motivated by access to this new unexplored parameter space, we investigate the conditions for bias stability of a TES taking into account both self and externally applied magnetic fields.

  17. Fabrication of Ultrasensitive Transition Edge Sensor Bolometric Detectors for HIRMES

    Science.gov (United States)

    Brown, Ari-David; Brekosky, Regis; Franz, David; Hsieh, Wen-Ting; Kutyrev, Alexander; Mikula, Vilem; Miller, Timothy; Moseley, S. Harvey; Oxborrow, Joseph; Rostem, Karwan; hide

    2017-01-01

    The high resolution mid-infrared spectrometer (HIRMES) is a high resolving power (R approx. 100,000) instrument operating in the 25-122 micron spectral range and will fly on board the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA) in 2019. Central ot HIRMES are its two transition edge sensor (TES) bolometric cameras, an 8x16 detector high resolution array and a 64x16 detector low resolution array. Both types of detectors consist of MoAu TES fabricated on leg-isolated Si membranes. Whereas the high resolution detectors, with noise equivalent power (NEP) approx. 2 aW/square root of (Hz), are fabricated on 0.45 micron Si substrates, the low resolution detectors, with NEP approx. 10 aW/square root of (Hz), are fabricated on 1.40 micron Si. Here we discuss the similarities and difference in the fabrication methodologies used to realize the two types of detectors.

  18. Single-photon light detection with transition-edge sensors

    International Nuclear Information System (INIS)

    Rajteri, M.; Taralli, E.; Portesi, C.; Monticone, E.

    2008-01-01

    Transition-Edge Sensors (TESs) are micro calorimeters that measure the energy of incident single-photons by the resistance increase of a superconducting film biased within the superconducting-to-normal transition. TES are able to detect single photons from x-ray to IR with an intrinsic energy resolution and photon-number discrimination capability. Metrological, astronomical and quantum communication applications are the fields where these properties can be particularly important. In this work, we report about characterization of different TESs based on Ti films. Single-photons have been detected from 200 nm to 800 nm working at T c ∼ 100 m K. Using a pulsed laser at 690 nm we have demonstrated the capability to resolve up to five photons.

  19. Analytical expressions for transition edge sensor excess noise models

    International Nuclear Information System (INIS)

    Brandt, Daniel; Fraser, George W.

    2010-01-01

    Transition edge sensors (TESs) are high-sensitivity thermometers used in cryogenic microcalorimeters which exploit the steep gradient in resistivity with temperature during the superconducting phase transition. Practical TES devices tend to exhibit a white noise of uncertain origin, arising inside the device. We discuss two candidate models for this excess noise, phase slip shot noise (PSSN) and percolation noise. We extend the existing PSSN model to include a magnetic field dependence and derive a basic analytical model for percolation noise. We compare the predicted functional forms of the noise current vs. resistivity curves of both models with experimental data and provide a set of equations for both models to facilitate future experimental efforts to clearly identify the source of excess noise.

  20. Development of X-ray microcalorimeters using transition edge sensors

    International Nuclear Information System (INIS)

    Ukibe, M; Hirayama, F.; Tanaka, K.; Koyanagi, M.; Ohkubo, M.; Kobayashi, N.; Morooka, T.; Chinone, K.

    2000-01-01

    We are developing X-ray microcalorimeters using superconducting transition edge sensors (TESs), which can be operated at relatively high temperatures in a 3 He cryostat, and DC-SQUID current amplifiers to realize an X-ray spectroscopy with a high energy resolution and a high counting rate. The TESs are proximity bilayers of Ti and Au on SiN x membranes with 500-1000 nm thicknesses. The typical TES has a T c value of 0.4 K and a ΔT c value of 2 mK. Two types of DC-SQUID amplifiers were developed; the single stage with 200-series SQUIDs and the double stage with an input SQUID and 50-series SQUIDs. The X-ray detection experiment is in progress. (author)

  1. X-ray imaging characterization of active edge silicon pixel sensors

    International Nuclear Information System (INIS)

    Ponchut, C; Ruat, M; Kalliopuska, J

    2014-01-01

    The aim of this work was the experimental characterization of edge effects in active-edge silicon pixel sensors, in the frame of X-ray pixel detectors developments for synchrotron experiments. We produced a set of active edge pixel sensors with 300 to 500 μm thickness, edge widths ranging from 100 μm to 150 μm, and n or p pixel contact types. The sensors with 256 × 256 pixels and 55 × 55 μm 2 pixel pitch were then bump-bonded to Timepix readout chips for X-ray imaging measurements. The reduced edge widths makes the edge pixels more sensitive to the electrical field distribution at the sensor boundaries. We characterized this effect by mapping the spatial response of the sensor edges with a finely focused X-ray synchrotron beam. One of the samples showed a distortion-free response on all four edges, whereas others showed variable degrees of distortions extending at maximum to 300 micron from the sensor edge. An application of active edge pixel sensors to coherent diffraction imaging with synchrotron beams is described

  2. SQUID readout multiplexers for transition-edge sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Adrian T. [Physics Department, University of California, Berkeley, CA 94720 (United States) and Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)]. E-mail: atl@physics.berkeley.edu

    2006-04-15

    Two classes of SQUID multiplexer are being developed for large arrays of cryogenic sensors, distinguished by their operation in either the time domain or frequency domain. Several systems optimized for use with Transition-Edge Sensors (TES) are reaching a high level of maturity, and will be deployed on funded astrophysics experiments in the next several years. A useful technical figure of merit is the product of the number of detectors multplexed multipled by the bandwidth of the detectors, which can be termed the 'total signal bandwidth' of a multiplexer system. This figure of merit is comparable within a factor of two for the mature systems. Several new concepts for increasing the total bandwidth are being developed in the broad class of frequency domain multiplexers. Another notable area of progress is in the level of integration of muliplexer and detector array. The time domain system for SCUBA-II is a sophisticated bump-bonded sandwich structure, and the Jena/MPI group is integrating detectors and a time domain multiplexer on one substrate. Finally, the Kinetic Inductance Detectors (KID)/HEMT (non-SQUID) detector/multiplexer system, will be discussed briefly.

  3. Probing active-edge silicon sensors using a high precision telescope

    NARCIS (Netherlands)

    Akiba, K.; Artuso, M.; van Beveren, V.; van Beuzekom, M.; Boterenbrood, H.; Buytaert, J.; Collins, P.; Dumps, R.; van der Heijden, B.; Hombach, C.; Hynds, D.; Hsu, D.; John, M.; Koffeman, E.; Leflat, A.; Li, Y.; Longstaff, I.; Morton, A.; PérezTrigo, E.; Plackett, R.; Reid, M.M.; Rodríguez Perez, P.; Schindler, H.; Tsopelas, P.; Vázquez Sierra, C.; Wysokiński, M.

    2015-01-01

    The performance of prototype active-edge VTT sensors bump-bonded to the Timepix ASIC is presented. Non-irradiated sensors of thicknesses 100-200 μm and pixel-to-edge distances of 50 μm and 100 μm were probed with a beam of charged hadrons with sub-pixel precision using the Timepix telescope

  4. Probing active-edge silicon sensors using a high precision telescope

    Energy Technology Data Exchange (ETDEWEB)

    Akiba, K. [Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Artuso, M. [Syracuse University, Syracuse, NY (United States); Beveren, V. van; Beuzekom, M. van; Boterenbrood, H. [Nikhef, Amsterdam (Netherlands); Buytaert, J.; Collins, P.; Dumps, R. [CERN, the European Organisation for Nuclear Research, Geneva (Switzerland); Heijden, B. van der [Nikhef, Amsterdam (Netherlands); Hombach, C. [University of Manchester, Manchester, Lancashire (United Kingdom); Hynds, D. [Glasgow University, Glasgow, Lanarkshire (United Kingdom); Hsu, D. [Syracuse University, Syracuse, NY (United States); John, M. [University of Oxford, Oxfordshire (United Kingdom); Koffeman, E. [Nikhef, Amsterdam (Netherlands); Leflat, A. [Lomonosov Moscow State University, Moscow (Russian Federation); Li, Y. [Tsinghua University, Beijing (China); Longstaff, I.; Morton, A. [Glasgow University, Glasgow, Lanarkshire (United Kingdom); Pérez Trigo, E. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Plackett, R. [Diamond Light Source Ltd., Didcot, Oxfordshire (United Kingdom); and others

    2015-03-21

    The performance of prototype active-edge VTT sensors bump-bonded to the Timepix ASIC is presented. Non-irradiated sensors of thicknesses 100–200 μm and pixel-to-edge distances of 50 μm and 100 μm were probed with a beam of charged hadrons with sub-pixel precision using the Timepix telescope assembled at the SPS at CERN. The sensors are shown to be highly efficient up to a few micrometers from the physical edge of the sensor. The distortion of the electric field lines at the edge of the sensors is studied by reconstructing the streamlines of the electric field using two-pixel clusters. These results are supported by TCAD simulations. The reconstructed streamlines are used to study the field distortion as a function of the bias voltage and to apply corrections to the cluster positions at the edge.

  5. Transition-edge sensor imaging arrays for astrophysics applications

    Science.gov (United States)

    Burney, Jennifer Anne

    Many interesting objects in our universe currently elude observation in the optical band: they are too faint or they vary rapidly and thus any structure in their radiation is lost over the period of an exposure. Conventional photon detectors cannot simultaneously provide energy resolution and time-stamping of individual photons at fast rates. Superconducting detectors have recently made the possibility of simultaneous photon counting, imaging, and energy resolution a reality. Our research group has pioneered the use of one such detector, the Transition-Edge Sensor (TES). TES physics is simple and elegant. A thin superconducting film, biased at its critical temperature, can act as a particle detector: an incident particle deposits energy and drives the film into its superconducting-normal transition. By inductively coupling the detector to a SQUID amplifier circuit, this resistance change can be read out as a current pulse, and its energy deduced by integrating over the pulse. TESs can be used to accurately time-stamp (to 0.1 [mu]s) and energy-resolve (0.15 eV at 1.6 eV) near-IR/visible/near-UV photons at rates of 30~kHz. The first astronomical observations using fiber-coupled detectors were made at the Stanford Student Observatory 0.6~m telescope in 1999. Further observations of the Crab Pulsar from the 107" telescope at the University of Texas McDonald Observatory showed rapid phase variations over the near-IR/visible/near-UV band. These preliminary observations provided a glimpse into a new realm of observations of pulsars, binary systems, and accreting black holes promised by TES arrays. This thesis describes the development, characterization, and preliminary use of the first camera system based on Transition-Edge Sensors. While single-device operation is relatively well-understood, the operation of a full imaging array poses significant challenges. This thesis addresses all aspects related to the creation and characterization of this cryogenic imaging

  6. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    Science.gov (United States)

    Maneuski, D.; Bates, R.; Blue, A.; Buttar, C.; Doonan, K.; Eklund, L.; Gimenez, E. N.; Hynds, D.; Kachkanov, S.; Kalliopuska, J.; McMullen, T.; O'Shea, V.; Tartoni, N.; Plackett, R.; Vahanen, S.; Wraight, K.

    2015-03-01

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.

  7. Optical response of Al/Ti bilayer transition edge sensors

    International Nuclear Information System (INIS)

    Zhang Qing-Ya; Liu Jian-She; Dong Wen-Hui; He Gen-Fang; Li Tie-Fu; Chen Wei; Wang Tian-Shun; Zhou Xing-Xiang

    2014-01-01

    We report the optical response characteristics of Al/Ti bilayer transition edge sensors (TESs), which are mainly comprised of Al/Ti bilayer thermometers and suspended SiN membranes for thermal isolation. The measurement was performed in a 3 He sorption refrigerator and the device's response to optical pulses was investigated using a pulsed laser source. Based on these measurements, we obtained the effective recovery time (τ eff ) of the devices at different biases and discussed the dependence of τ eff on the bias. The device with a 940 μm × 940 μm continuous suspended SiN membrane demonstrated a fast response speed with τ eff = 3.9 μs, which indicates a high temperature sensitivity (α = T/R · dR/dT = 326). The results also showed that the TES exhibits good linearity under optical pulses of variable widths. (interdisciplinary physics and related areas of science and technology)

  8. Fabrication of large NbSi bolometer arrays for CMB applications

    International Nuclear Information System (INIS)

    Ukibe, M.; Belier, B.; Camus, Ph.; Dobrea, C.; Dumoulin, L.; Fernandez, B.; Fournier, T.; Guillaudin, O.; Marnieros, S.; Yates, S.J.C.

    2006-01-01

    Future cosmic microwave background experiments for high-resolution anisotropy mapping and polarisation detection require large arrays of bolometers at low temperature. We have developed a process to build arrays of antenna-coupled bolometers for that purpose. With adjustment of the Nb x Si 1-x alloy composition, the array can be made of high impedance or superconductive (TES) sensors

  9. Low Thermal Conductance Transition Edge Sensor (TES) for SPICA

    International Nuclear Information System (INIS)

    Khosropanah, P.; Dirks, B.; Kuur, J. van der; Ridder, M.; Bruijn, M.; Popescu, M.; Hoevers, H.; Gao, J. R.; Morozov, D.; Mauskopf, P.

    2009-01-01

    We fabricated and characterized low thermal conductance transition edge sensors (TES) for SAFARI instrument on SPICA. The device is based on a superconducting Ti/Au bilayer deposited on suspended SiN membrane. The critical temperature of the device is 113 mK. The low thermal conductance is realized by using long and narrow SiN supporting legs. All measurements were performed having the device in a light-tight box, which to a great extent eliminates the loading of the background radiation. We measured the current-voltage (IV) characteristics of the device in different bath temperatures and determine the thermal conductance (G) to be equal to 320 fW/K. This value corresponds to a noise equivalent power (NEP) of 3x10 -19 W/√(Hz). The current noise and complex impedance is also measured at different bias points at 55 mK bath temperature. The measured electrical (dark) NEP is 1x10 -18 W/√(Hz), which is about a factor of 3 higher than what we expect from the thermal conductance that comes out of the IV curves. Despite using a light-tight box, the photon noise might still be the source of this excess noise. We also measured the complex impedance of the same device at several bias points. Fitting a simple first order thermal-electrical model to the measured data, we find an effective time constant of about 2.7 ms and a thermal capacity of 13 fJ/K in the middle of the transition.

  10. Transition edge sensors for bolometric applications: responsivity and saturation

    International Nuclear Information System (INIS)

    Goldie, D. J.; Audley, M. D.; Glowacka, D. M.; Tsaneva, V. N.; Withington, S.

    2008-01-01

    Microstrip-coupled transition edge sensors (TESs) combined with waveguide-horn technology produce sensitive bolometric detectors with well-defined, single-mode beam patterns and excellent polarization characteristics. These devices are now being deployed for astronomical observations. In bolometric applications, where power levels are monitored, the critical parameter that characterizes the detection is the power-to-current responsivity s I (ω), where ω is the postdetection angular frequency. In real applications, such as on a ground-based telescope, the signal of interest is superimposed on a background such as the thermal emission from the atmosphere. The power emitted by the atmosphere changes slowly in time and these changes may change the responsivity of the detector. A detailed understanding of how s I (ω) changes as a function of applied power levels and how the TES response saturates is vital for accurate calibration of astronomical data. In this paper we describe measurements of the changes in the current flowing through a TES as a function of the circuit bias and the applied power. From these measurements we calculate the efficiency of the coupling of power into the TES from a closely thermally coupled microstrip termination resistor and we determine the zero frequency responsivity s I (0) as a function of both the circuit bias and power. The variation of the responsivity is compared with predictions of a small-signal model: for the case when the loop gain L I is high, when simplifying approximations to the full solution to the electrothermal equations apply; and using the electrothermal parameters of the TES, determined by impedance measurements, as inputs to the full model solution. We find good agreement between theory and measurement in both cases in the relevant regimes

  11. Ship Sensor Observations for Life on the Edge 2005 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the R/V Seward Johnson during the "Life on the Edge 2005" expedition sponsored by the National Oceanic and...

  12. Ship Sensor Observations for Life on the Edge 2004 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the R/V Seward Johnson during the "Life on the Edge 2004" expedition sponsored by the National Oceanic and...

  13. Oriented Edge-Based Feature Descriptor for Multi-Sensor Image Alignment and Enhancement

    Directory of Open Access Journals (Sweden)

    Myung-Ho Ju

    2013-10-01

    Full Text Available In this paper, we present an efficient image alignment and enhancement method for multi-sensor images. The shape of the object captured in a multi-sensor images can be determined by comparing variability of contrast using corresponding edges across multi-sensor image. Using this cue, we construct a robust feature descriptor based on the magnitudes of the oriented edges. Our proposed method enables fast image alignment by identifying matching features in multi-sensor images. We enhance the aligned multi-sensor images through the fusion of the salient regions from each image. The results of stitching the multi-sensor images and their enhancement demonstrate that our proposed method can align and enhance multi-sensor images more efficiently than previous methods.

  14. Functional characterization of planar sensors with active edges using laser and X-ray beam scans

    International Nuclear Information System (INIS)

    Povoli, M.; Bagolini, A.; Boscardin, M.; Dalla Betta, G.-F.; Giacomini, G.; Hasi, J.; Oh, A.; Zorzi, N.

    2013-01-01

    We report on the functional characterization of planar sensors with active edges fabricated at Fondazione Bruno Kessler (FBK), Trento, Italy. The measurements here reported were performed by means of laser and X-ray beam scans mainly focusing on the signal efficiency of the edge region of the devices. Results are very encouraging and show very good sensitivity up to few microns away from the device physical edge

  15. Functional characterization of planar sensors with active edges using laser and X-ray beam scans

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: povoli@disi.unitn.it [Dipartimento di Ingegneria e Scienza dell' Informazione, Università di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento),Via Sommarive, 14, I-38123 Povo di Trento (Italy); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Università di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento),Via Sommarive, 14, I-38123 Povo di Trento (Italy); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Hasi, J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025-7015 (United States); Oh, A. [The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy)

    2013-08-01

    We report on the functional characterization of planar sensors with active edges fabricated at Fondazione Bruno Kessler (FBK), Trento, Italy. The measurements here reported were performed by means of laser and X-ray beam scans mainly focusing on the signal efficiency of the edge region of the devices. Results are very encouraging and show very good sensitivity up to few microns away from the device physical edge.

  16. First experimental results on active and slim-edge silicon sensors for XFEL

    International Nuclear Information System (INIS)

    Pancheri, L.; Benkechcache, M. E. A.; Betta, G.-F. Dalla; Xu, H.; Verzellesi, G.; Ronchin, S.; Boscardin, M.; Ratti, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Vacchi, C.; Manghisoni, M.; Re, V.; Traversi, G.; Batignani, G.; Bettarini, S.; Casarosa, G.; Giorgi, M.; Forti, F.

    2016-01-01

    This work presents the first characterization results obtained on a pilot fabrication run of planar sensors, tailored for X-ray imaging applications at FELs, developed in the framework of INFN project PixFEL. Active and slim-edge p-on-n sensors are fabricated on n-type high-resistivity silicon with 450 μm thickness, bonded to a support wafer. Both diodes and pixelated sensors with a pitch of 110 μm are included in the design. Edge structures with different number of guard rings are designed to comply with the large bias voltage required by the application after accumulating an ionizing radiation dose as large as 1GGy. Preliminary results from the electrical characterization of the produced sensors, providing a first assessment of the proposed approach, are discussed. A functional characterization of the sensors with a pulsed infrared laser is also presented, demonstrating the validity of slim-edge configurations.

  17. SALT segmented primary mirror: laboratory test results for FOGALE inductive edge sensors

    Science.gov (United States)

    Menzies, John; Gajjar, Hitesh; Buous, Sébastien; Buckley, David; Gillingham, Peter

    2010-07-01

    At the Southern African Large Telescope (SALT), in collaboration with FOGALE Nanotech, we have been testing the recently-developed new generation inductive edge sensors. The Fogale inductive sensor is one technology being evaluated as a possible replacement for the now defunct capacitance-based edge sensing system. We present the results of exhaustive environmental testing of two variants of the inductive sensor. In addition to the environmental testing including RH and temperature cycles, the sensor was tested for sensitivity to dust and metals. We also consider long-term sensor stability, as well as that of the electronics and of the glue used to bond the sensor to its supporting structure. A prototype design for an adjustable mount is presented which will allow for in-plane gap and shear variations present in the primary mirror configuration without adversely disturbing the figure of the individual mirror segments or the measurement accuracy.

  18. Unexpected Nonlinear Effects in Superconducting Transition-Edge Sensors

    Science.gov (United States)

    Sadleir, John

    2016-01-01

    When a normal metal transitions into the superconducting state the DC resistance drops from a finite value to zero over some finite transition width in temperature, current, and magnetic field. Superconducting transition-edge sensors (TESs) operate within this transition region and uses resistive changes to measure deposited thermal energy. This resistive transition is not perfectly smooth and a wide range of TES designs and materials show sub-structure in the resistive transition (as seen in smooth nonmonotonic behavior, jump discontinuities, and hysteresis in the devices current-voltage relation and derivatives of the resistance with respect to temperature, bias current, and magnetic field). TES technology has advanced to the point where for many applications this structure is the limiting factor in performance and optimization consists of finding operating points away from these structures. For example, operating at or near this structure can lead to nonlinearity in the detectors response and gain scale, limit the spectral range of the detector by limiting the usable resistive range, and degrade energy resolution. The origin of much of this substructure is unknown. This presentation investigates a number of possible sources in turn. First we model the TES as a superconducting weak-link and solve for the characteristic differential equations current and voltage time dependence. We find:(1) measured DC biased current-voltage relationship is the time-average of a much higher frequency limit cycle solution.(2) We calculate the fundamental frequency and estimate the power radiated from the TES treating the bias leads as an antennae.(3) The solution for a set of circuit parameters becomes multivalued leading to current transitions between levels.(4)The circuit parameters can change the measure resistance and mask the true critical current. As a consequence the TES resistance surface is not just a function of temperature, current, and magnetic field but is also a

  19. Edge-TCT for the investigation of radiation damaged silicon strip sensors

    Energy Technology Data Exchange (ETDEWEB)

    Feindt, Finn

    2017-02-15

    The edge Transient Current Technique (TCT) is a method for the investigation of silicon sensors. This method requires infrared light from a sub-ns pulsed laser to be focused to a μm-size spot and scanned across the polished cut edge of a sensor. Electron-hole pairs are generated along the light beam in the sensor. These charge carriers drift in the electric field and induce transient currents on the sensor electrodes. The current transients are analyzed as a function of the applied voltage, temperature, absorbed dose and position of the laser-light focus, in order to determine the the drift velocities, electric field and the charge collection in the strip sensor. In the scope of this work, a new edge-TCT setup is commissioned, a procedure for the polishing of the cut edge is implemented and a method to position the focus of the laser light with respect to the sensor is developed. First edge-TCT measurements are performed on non-irradiated, 285 μm thick n-type strip sensors, and the pulse shape and charge collection is studied under different conditions. Furthermore, the prompt current of the transients is extracted, which is the first step towards the determination of the electric field. A new method to measure the attenuation of light in silicon is tested on a non-irradiated sensor and on sensors irradiated with up to a 1 MeV neutron equivalent fluence of 1.14 x 10{sup 15} cm{sup -2}, using laser light with a wavelength of 1052 nm.

  20. Edge-TCT for the investigation of radiation damaged silicon strip sensors

    International Nuclear Information System (INIS)

    Feindt, Finn

    2017-02-01

    The edge Transient Current Technique (TCT) is a method for the investigation of silicon sensors. This method requires infrared light from a sub-ns pulsed laser to be focused to a μm-size spot and scanned across the polished cut edge of a sensor. Electron-hole pairs are generated along the light beam in the sensor. These charge carriers drift in the electric field and induce transient currents on the sensor electrodes. The current transients are analyzed as a function of the applied voltage, temperature, absorbed dose and position of the laser-light focus, in order to determine the the drift velocities, electric field and the charge collection in the strip sensor. In the scope of this work, a new edge-TCT setup is commissioned, a procedure for the polishing of the cut edge is implemented and a method to position the focus of the laser light with respect to the sensor is developed. First edge-TCT measurements are performed on non-irradiated, 285 μm thick n-type strip sensors, and the pulse shape and charge collection is studied under different conditions. Furthermore, the prompt current of the transients is extracted, which is the first step towards the determination of the electric field. A new method to measure the attenuation of light in silicon is tested on a non-irradiated sensor and on sensors irradiated with up to a 1 MeV neutron equivalent fluence of 1.14 x 10"1"5 cm"-"2, using laser light with a wavelength of 1052 nm.

  1. An Ideal Integrating Bolometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a novel detector to enable a new class of far-IR spectroscopic surveys.  The detector, the Ideal Integrating Bolometer (IIB) is able to...

  2. Superconducting transition edge sensors and methods for design and manufacture thereof

    Science.gov (United States)

    Sadleir, John E. (Inventor)

    2013-01-01

    Methods for forming sensors using transition edge sensors (TES) and sensors therefrom are described. The method includes forming a plurality of sensor arrays includes at least one TES device. The TES device includes a TES device body, a first superconducting lead contacting a first portion of the TES device body, and a second superconducting lead contacting of a second portion of the TES device body, where the first and second superconducting leads separated on the TES device body by a lead spacing. The lead spacing can be selected to be different for at least two of the plurality of sensor arrays. The method also includes determining a transition temperature for each of the plurality of sensor arrays and generating a signal responsive to detecting a change in the electrical characteristics of one of the plurality of sensor arrays meeting a transition temperature criterion.

  3. FTU bolometer electronic system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Pollastrone, Fabio, E-mail: fabio.pollastrone@enea.it [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Neri, Carlo; Florean, Marco; Ciccone, Giovanni [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy)

    2013-10-15

    Highlights: ► Design and realization of a new bolometer electronic system. ► Many improvements over the actual commercial system. ► Architecture based on digital electronic hardware with minimal analog front end. ► Auto off-set correction, real time visualization features and small system size. ► Test results for the electronic system. -- Abstract: The FTU (Frascati Tokamak Upgrade) requires a bolometer diagnostic in order to measure the total plasma radiation. The current diagnostic architecture is based on a full analog multichannel AC bolometer system, which uses a carrier frequency amplifier with a synchronous demodulation. Taking into account the technological upgrades in the field of electronics, it was decided to realize an upgrade for the bolometric electronic system by using a hybrid analog/digital implementation. The new system developed at the ENEA Frascati laboratories has many improvements, and mainly a massive system volume reduction, a good measurement linearity and a simplified use. The new hardware system consists of two subsystems: the Bolometer Digital Control and the Bolometer Analog System. The Bolometer Digital Control can control 16 bolometer bridges through the Bolometer Analog System. The Bolometer Digital Control, based on the FPGA architecture, is connected via Ethernet with a PC; therefore, it can receive commands settings from the PC and send the stream of bolometric measurements in real time to the PC. In order to solve the cross-talk between the bridges and the cables, each of the four bridges in the bolometer head receives a different synthesized excitation frequency. Since the system is fully controlled by a PC GUI (Graphic User Interface), it is very user friendly. Moreover, some useful features have been developed, such as: auto off-set correction, bridge amplitude regulation, software gain setting, real time visualization, frequency excitation selection and noise spectrum analyzer embedded function. In this paper, the

  4. Frequency selective bolometer development at Argonne National Laboratory

    Science.gov (United States)

    Datesman, Aaron; Pearson, John; Wang, Gensheng; Yefremenko, Volodymyr; Divan, Ralu; Downes, Thomas; Chang, Clarence; McMahon, Jeff; Meyer, Stephan; Carlstrom, John; Logan, Daniel; Perera, Thushara; Wilson, Grant; Novosad, Valentyn

    2008-07-01

    We discuss the development, at Argonne National Laboratory, of a four-pixel camera suitable for photometry of distant dusty galaxies located by Spitzer and SCUBA, and for study of other millimeter-wave sources such as ultra-luminous infrared galaxies, the Sunyaev-Zeldovich (SZ) effect in clusters, and galactic dust. Utilizing Frequency Selective Bolometers (FSBs) with superconducting Transition-Edge Sensors (TESs), each of the camera's four pixels is sensitive to four colors, with frequency bands centered approximately at 150, 220, 270, and 360 GHz. The current generation of these devices utilizes proximity effect superconducting bilayers of Mo/Au or Ti/Au for TESs, along with frequency selective circuitry on membranes of silicon nitride 1 cm across and 1 micron thick. The operational properties of these devices are determined by this circuitry, along with thermal control structures etched into the membranes. These etched structures do not perforate the membrane, so that the device is both comparatively robust mechanically and carefully tailored in terms of its thermal transport properties. In this paper, we report on development of the superconducting bilayer TES technology and characterization of the FSB stacks. This includes the use of new materials, the design and testing of thermal control structures, the introduction of desirable thermal properties using buried layers of crystalline silicon underneath the membrane, detector stability control, and optical and thermal test results. The scientific motivation, FSB design, FSB fabrication, and measurement results are discussed.

  5. Measurements of the Optical Performance of Prototype TES Bolometers for SAFARI

    Science.gov (United States)

    Audley, M. D.; de Lange, G.; Ranjan, M.; Gao, J.-R.; Khosropanah, P.; Ridder, M. L.; Mauskopf, P. D.; Morozov, D.; Doherty, S.; Trappe, N.; Withington, S.

    2014-09-01

    We have measured the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI's three bolometer arrays, coupled with a Fourier transform spectrometer, will provide images of a 2'×2' field of view with spectral information over the wavelength range 34-210 μm. Each horn-coupled bolometer consists of a transition edge sensor (TES), with a transition temperature close to 100 mK, and a thin-film Ta absorber on a thermally-isolated silicon nitride membrane. SAFARI requires extremely sensitive detectors ( NEP˜2×10-19 W/), with correspondingly low saturation powers (˜5 fW), to take advantage of SPICA's cooled optics. To meet the challenge of testing such sensitive detectors we have constructed an ultra-low background test facility based on a cryogen-free high-capacity dilution refrigerator, paying careful attention to stray-light exclusion, shielding, and vibration isolation. For optical measurements the system contains internal cold (3-30 K) and hot (˜300 K) black-body calibration sources, as well as a light pipe for external illumination. We discuss our measurements of high optical efficiency in prototype SAFARI detectors and describe recent improvements to the test facility that will enable us to test the full SAFARI focal-plane arrays.

  6. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    Science.gov (United States)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey; hide

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  7. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    International Nuclear Information System (INIS)

    Terzo, S; Macchiolo, A; Nisius, R; Paschen, B

    2014-01-01

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 μm, produced at CiS, and 100-200 μm thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of 1.4 × 10 16 n eq /cm 2

  8. Testing and assembly of the detectors for the Millimeter Bolometer Array Camera on ACT

    International Nuclear Information System (INIS)

    Marriage, T.A.; Chervenak, J.A.; Doriese, W.B.

    2006-01-01

    The Millimeter Bolometer Array Camera (MBAC) for the Atacama Cosmology Telescope consists of three Transition Edge Sensor (TES) arrays to make simultaneous observations of the Cosmic Microwave Background in three frequency bands. MBAC TESs are NASA Goddard Pop-Up Detectors (PUD) which are read-out by NIST time-domain multiplexers. MBAC is constructed by stacking 1x32 TES columns to form the 32x32 element arrays. The arrays are modular (connectorized) at the 1x32 column level such that array assembly is reversible and camera repair possible. Prior to assembly, each column is tested in a quick (2h) cycling 4 He/ 3 He adsorption refrigerator. Tests include measurements of TES current-voltage curves and TES complex impedance

  9. Testing and assembly of the detectors for the Millimeter Bolometer Array Camera on ACT

    Energy Technology Data Exchange (ETDEWEB)

    Marriage, T.A. [Physics Department, Princeton University, Washington Road, Princeton, NJ 08544 (United States)]. E-mail: marriage@princeton.edu; Chervenak, J.A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Doriese, W.B. [National Institute of Standards, 325 Broadway, Boulder, CO 80305 (United States)

    2006-04-15

    The Millimeter Bolometer Array Camera (MBAC) for the Atacama Cosmology Telescope consists of three Transition Edge Sensor (TES) arrays to make simultaneous observations of the Cosmic Microwave Background in three frequency bands. MBAC TESs are NASA Goddard Pop-Up Detectors (PUD) which are read-out by NIST time-domain multiplexers. MBAC is constructed by stacking 1x32 TES columns to form the 32x32 element arrays. The arrays are modular (connectorized) at the 1x32 column level such that array assembly is reversible and camera repair possible. Prior to assembly, each column is tested in a quick (2h) cycling {sup 4}He/{sup 3}He adsorption refrigerator. Tests include measurements of TES current-voltage curves and TES complex impedance.

  10. Arrays of membrane isolated yttrium-barium-copper-oxide kinetic inductance bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Lindeman, M. A., E-mail: mark.a.lindeman@jpl.nasa.gov; Bonetti, J. A.; Bumble, B.; Day, P. K.; Holmes, W. A.; Kleinsasser, A. W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Eom, B. H. [California Institute of Technology, Pasadena, California 91125 (United States)

    2014-06-21

    We are developing of arrays of membrane isolated resonator-bolometers, each with a kinetic inductance device (KID) to measure the temperature of the membrane. The KIDs are fabricated out of the high temperature superconductor YBCO to allow operation at relatively high temperatures. The bolometers are designed to offer higher sensitivity than sensors operating at 300 K, but they require less expensive and lighter weight cooling than even more sensitive conventional superconducting detectors operating at lower temperatures. The bolometer arrays are applicable as focal planes in infrared imaging spectrometers, such as for planetary science missions or earth observing satellites. We describe the devices and present measurements of their sensitivity.

  11. Arrays of membrane isolated yttrium-barium-copper-oxide kinetic inductance bolometers

    International Nuclear Information System (INIS)

    Lindeman, M. A.; Bonetti, J. A.; Bumble, B.; Day, P. K.; Holmes, W. A.; Kleinsasser, A. W.; Eom, B. H.

    2014-01-01

    We are developing of arrays of membrane isolated resonator-bolometers, each with a kinetic inductance device (KID) to measure the temperature of the membrane. The KIDs are fabricated out of the high temperature superconductor YBCO to allow operation at relatively high temperatures. The bolometers are designed to offer higher sensitivity than sensors operating at 300 K, but they require less expensive and lighter weight cooling than even more sensitive conventional superconducting detectors operating at lower temperatures. The bolometer arrays are applicable as focal planes in infrared imaging spectrometers, such as for planetary science missions or earth observing satellites. We describe the devices and present measurements of their sensitivity.

  12. Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Ullom, Joel N; Bennett, Douglas A

    2015-01-01

    We present a review of emerging x-ray and gamma-ray spectrometers based on arrays of superconducting transition-edge sensors (TESs). Special attention will be given to recent progress in TES applications and in understanding TES physics. (paper)

  13. Measurement of quasiparticle transport in aluminum films using tungsten transition-edge sensors

    International Nuclear Information System (INIS)

    Yen, J. J.; Shank, B.; Cabrera, B.; Moffatt, R.; Redl, P.; Young, B. A.; Tortorici, E. C.; Brink, P. L.; Cherry, M.; Tomada, A.; Kreikebaum, J. M.

    2014-01-01

    We report on experimental studies of phonon sensors which utilize quasiparticle diffusion in thin aluminum films connected to tungsten transition-edge-sensors (TESs) operated at 35 mK. We show that basic TES physics and a simple physical model of the overlap region between the W and Al films in our devices enables us to accurately reproduce the experimentally observed pulse shapes from x-rays absorbed in the Al films. We further estimate quasiparticle loss in Al films using a simple diffusion equation approach. These studies allow the design of phonon sensors with improved performance.

  14. The GISMO-2 Bolometer Camera

    Science.gov (United States)

    Staguhn, Johannes G.; Benford, Dominic J.; Fixsen, Dale J.; Hilton, Gene; Irwin, Kent D.; Jhabvala, Christine A.; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; Miller, Timothy M.; hide

    2012-01-01

    We present the concept for the GISMO-2 bolometer camera) which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISM0-2 will operate Simultaneously in the 1 mm and 2 mm atmospherical windows. The 1 mm channel uses a 32 x 40 TES-based Backshort Under Grid (BUG) bolometer array, the 2 mm channel operates with a 16 x 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISM0-2 was strongly influenced by our experience with the GISMO 2 mm bolometer camera which is successfully operating at the 30m telescope. GISMO is accessible to the astronomical community through the regular IRAM call for proposals.

  15. An edge-TCT setup for the investigation of radiation damaged silicon sensors

    Energy Technology Data Exchange (ETDEWEB)

    Feindt, Finn; Scharf, Christian; Garutti, Erika; Klanner, Robert [Institute for Experimental Physics, Hamburg University, Luruper Chaussee 149, D-22761 Hamburg (Germany)

    2016-07-01

    The aim of this work is to measure the electric field, drift velocity and charge collection of electrons and holes in radiation-damaged silicon strip sensors. For this purpose the edge Transient Current Technique (TCT) is employed. In contrast to conventional TCT, this method requires light from a sub-ns pulsed, infrared laser to be focused to a μm-size spot and scanned across the polished edge of a strip sensor. Thus electron-hole pairs are generated at a known depth in the sensor. Electrons and holes drift in the electric field and induce transient currents on the sensor electrodes. The current wave forms are analyzed as a function of the applied voltage and the position of the laser focus in order to determine the electric field, the drift velocities and the charge collection. In this talk the setup and the procedure for polishing the sensor edge are described, and first results, regarding the measurement of the laser light focus are presented.

  16. Fabrication of large NbSi bolometer arrays for CMB applications

    Energy Technology Data Exchange (ETDEWEB)

    Ukibe, M. [AIST, Tsukuba Central 2, Tsukuba, Ibaraki 305-8568 (Japan); CNRS-CSNSM, Bat 104, Orsay Campus F-91405 (France); Belier, B. [CNRS-IEF, Bat 220, Orsay Campus F-91405 (France); Camus, Ph. [CNRS-CRTBT, 25 avenue des Martyrs, Grenoble F-38042 (France)]. E-mail: philippe.camus@grenoble.cnrs.fr; Dobrea, C. [CNRS-CSNSM, Bat 104, Orsay Campus F-91405 (France); Dumoulin, L. [CNRS-CSNSM, Bat 104, Orsay Campus F-91405 (France); Fernandez, B. [CNRS-CRTBT, 25 avenue des Martyrs, Grenoble F-38042 (France); Fournier, T. [CNRS-CRTBT, 25 avenue des Martyrs, Grenoble F-38042 (France); Guillaudin, O. [CNRS-LPSC, 53 avenue des Martyrs, Grenoble F-38042 (France); Marnieros, S. [CNRS-CSNSM, Bat 104, Orsay Campus F-91405 (France); Yates, S.J.C. [CNRS-CSNSM, Bat 104, Orsay Campus F-91405 (France)

    2006-04-15

    Future cosmic microwave background experiments for high-resolution anisotropy mapping and polarisation detection require large arrays of bolometers at low temperature. We have developed a process to build arrays of antenna-coupled bolometers for that purpose. With adjustment of the Nb{sub x}Si{sub 1-x} alloy composition, the array can be made of high impedance or superconductive (TES) sensors.

  17. Neutron transmutation doped Ge bolometers

    Science.gov (United States)

    Haller, E. E.; Kreysa, E.; Palaio, N. P.; Richards, P. L.; Rodder, M.

    1983-01-01

    Some conclusions reached are as follow. Neutron Transmutation Doping (NTD) of high quality Ge single crystals provides perfect control of doping concentration and uniformity. The resistivity can be tailored to any given bolometer operating temperature down to 0.1 K and probably lower. The excellent uniformity is advantaged for detector array development.

  18. Slim edge studies, design and quality control of planar ATLAS IBL pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Tobias

    2013-05-08

    One of the four large experiments at the LHC at CERN is the ATLAS detector, a multi purpose detector. Its pixel detector, composed of three layers, is the innermost part of the tracker. As it is closest to the interaction point, it represents a basic part of the track reconstruction. Besides the requested high resolution one main requirement is the radiation hardness. In the coming years the radiation damage will cause deteriorations of the detector performance. With the planned increase of the luminosity, especially after the upgrade to the High Luminosity LHC, this radiation damage will be even intensified. This circumstance necessitates a new pixel detector featuring improved radiation hard sensors and read-out chips. The present shutdown of the LHC is already utilized to insert an additional b-layer (IBL) into the existing ATLAS pixel detector. The current n-in-n pixel sensor design had to be adapted to the new read-out chip and the module specifications. The new stave geometry requests a reduction of the inactive sensor edge. In a prototype wafer production all modifications have been implemented. The sensor quality control was supervised which led to the decision of the final sensor thickness. In order to evaluate the performance of the sensor chip assemblies with an innovative slim edge design, they have been operated in test beam setups before and after irradiation. Furthermore, the quality control of the planar IBL sensor wafer production was supervised from the stage of wafer delivery to that before the flip chip process to ensure a sufficient amount of functional sensors for the module production.

  19. First results from Position-Sensitive quantum calorimeters using Mo/Au Transition-Edge Sensors

    International Nuclear Information System (INIS)

    Figueroa-Feliciano, Enectali; Chervenak, Jay; Finkbeiner, Fred M.; Li, Mary; Lindeman, Mark A.; Stahle, Caroline K.; Stahle, Carl M.

    2002-01-01

    We report the first results from a high-energy-resolution imaging spectrometer called a Position-Sensitive Transition-Edge Sensor (PoST). A PoST is a quantum calorimeter consisting of two Transition Edge Sensors (TESs) on the ends of a long absorber to do one dimensional imaging spectroscopy. Comparing rise time and energy information, the position of the event in the PoST is determined. Energy is inferred from the sum of the two pulses. We have fabricated 7- and 15-pixel PoSTs using Mo-Au TESs and Au absorbers. We have achieved 32 eV FWHM energy resolution at 1.5 keV with a 7-pixel PoST calorimeter

  20. Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors.

    Science.gov (United States)

    Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin

    2018-04-03

    Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison.

  1. Ship Sensor Observations for Life on the Edge 2003: Exploring Deep Ocean Habitats - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the R/V Seward Johnson during the "Life on the Edge 2003: Exploring Deep Ocean Habitats" expedition sponsored by...

  2. Spatial asymmetry in tactile sensor skin deformation aids perception of edge orientation during haptic exploration.

    Science.gov (United States)

    Ponce Wong, Ruben D; Hellman, Randall B; Santos, Veronica J

    2014-01-01

    Upper-limb amputees rely primarily on visual feedback when using their prostheses to interact with others or objects in their environment. A constant reliance upon visual feedback can be mentally exhausting and does not suffice for many activities when line-of-sight is unavailable. Upper-limb amputees could greatly benefit from the ability to perceive edges, one of the most salient features of 3D shape, through touch alone. We present an approach for estimating edge orientation with respect to an artificial fingertip through haptic exploration using a multimodal tactile sensor on a robot hand. Key parameters from the tactile signals for each of four exploratory procedures were used as inputs to a support vector regression model. Edge orientation angles ranging from -90 to 90 degrees were estimated with an 85-input model having an R (2) of 0.99 and RMS error of 5.08 degrees. Electrode impedance signals provided the most useful inputs by encoding spatially asymmetric skin deformation across the entire fingertip. Interestingly, sensor regions that were not in direct contact with the stimulus provided particularly useful information. Methods described here could pave the way for semi-autonomous capabilities in prosthetic or robotic hands during haptic exploration, especially when visual feedback is unavailable.

  3. Pixel Sensors with slim edges and small pitches for the CMS upgrades for HL-LHC

    CERN Document Server

    AUTHOR|(CDS)2084134; Bolla, Gino; Rivera, Ryan Allen; Uplegger, Lorenzo; Zoi, Irene

    2016-01-01

    Planar n-in-n silicon detectors with small pitches and slim edges are being investigated for the innermost layers of tracking devices for the foreseen upgrades of the LHC. Sensor prototypes compatible with the CMS readout, fabricated by Sintef, were tested in the laboratory and with a 120~GeV/c proton beam at the Fermilab test beam facility before and after irradiation with up to 2x10$^{15}$ n$_{eq}/$cm$^2$ fluence. Preliminary results of the data analysis are presented.

  4. Percolation model of excess electrical noise in transition-edge sensors

    International Nuclear Information System (INIS)

    Lindeman, M.A.; Anderson, M.B.; Bandler, S.R.; Bilgri, N.; Chervenak, J.; Gwynne Crowder, S.; Fallows, S.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.; Kilbourne, C.A.; Lai, T.; Man, J.; McCammon, D.; Nelms, K.L.; Porter, F.S.; Rocks, L.E.; Saab, T.; Sadleir, J.; Vidugiris, G.

    2006-01-01

    We present a geometrical model to describe excess electrical noise in transition-edge sensors (TESs). In this model, a network of fluctuating resistors represents the complex dynamics inside a TES. The fluctuations can cause several resistors in series to become superconducting. Such events short out part of the TES and generate noise because much of the current percolates through low resistance paths. The model predicts that excess white noise increases with decreasing TES bias resistance (R/R N ) and that perpendicular zebra stripes reduce noise and alpha of the TES by reducing percolation

  5. Pixel sensors with slim edges and small pitches for the CMS upgrades for HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Vernieri, Caterina, E-mail: cvernier@fnal.gov [Fermilab, Batavia, IL 60510 (United States); Bolla, Gino; Rivera, Ryan; Uplegger, Lorenzo [Fermilab, Batavia, IL 60510 (United States); Zoi, Irene [Fermilab, Batavia, IL 60510 (United States); University of Florence, Firenze, 50121 (Italy)

    2017-02-11

    Planar n-in-n silicon detectors with small pitches and slim edges are being investigated for the innermost layers of tracking devices for the foreseen upgrades of the LHC experiments. Sensor prototypes compatible with the CMS readout, fabricated by Sintef, were tested in the laboratory and with a 120 GeV/c proton beam at the Fermilab test beam facility before and after irradiation with up to 2×10{sup 15} n{sub eq}/cm{sup 2} fluence. Preliminary results of the data analysis are presented.

  6. Impedance measurements on a fast transition-edge sensor for optical and near-infrared range

    International Nuclear Information System (INIS)

    Taralli, E; Portesi, C; Lolli, L; Monticone, E; Rajteri, M; Novikov, I; Beyer, J

    2010-01-01

    Impedance measurements of superconducting transition-edge sensors (TESs) are a powerful tool to obtain information about the TES thermal and electrical properties. We apply this technique to a 20 μm x 20 μm Ti/Au TES, suitable for application in the optical and near-infrared range, and extend the measurements up to 250 kHz in order to obtain a complete frequency response in the complex plane. From these measurements we obtain important thermal and electrical device parameters such as heat capacity C, thermal conductance G and effective thermal time constant τ eff that will be compared with the corresponding values obtained from noise measurements.

  7. Thermal properties of calorimeters with Ti/Au transition-edge sensors on silicon nitride membranes

    International Nuclear Information System (INIS)

    Ukibe, M.; Tanaka, K.; Koyanagi, M.; Morooka, T.; Pressler, H.; Ohkubo, M.; Kobayashi, N.

    2000-01-01

    We are developing X-ray microcalorimeters employing superconducting-transition-edge sensors (TESs) for relatively high operation-temperatures of an 3 He cryostat. The TESs are proximity bilayers of Ti and Au. An important thermal parameters, the thermal conductance G, of the microcalorimeters on SiN x membranes was evaluated by a simple method using R-T curves at different bias currents. It has been shown that the G value can be controlled by altering the membrane thickness and size

  8. Development of active edge pixel sensors and four-side buttable modules using vertical integration technologies

    CERN Document Server

    INSPIRE-00219560; Moser, H.-G.; Nisius, R.; Richter, R.H.; Terzo, S.; Weigell, P.

    2014-01-01

    We present an R&D activity focused on the development of novel modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The modules consist of n-in-p pixel sensors, 100 or 200 $\\mu$m thick, produced at VTT (Finland) with an active edge technology, which considerably reduces the dead area at the periphery of the device. The sensors are interconnected with solder bump-bonding to the ATLAS FE-I3 and FE-I4 read-out chips, and characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements will be discussed for devices before and after irradiation up to a fluence of $5\\times 10^{15}$ \

  9. X-ray metrology of an array of active edge pixel sensors for use at synchrotron light sources

    Science.gov (United States)

    Plackett, R.; Arndt, K.; Bortoletto, D.; Horswell, I.; Lockwood, G.; Shipsey, I.; Tartoni, N.; Williams, S.

    2018-01-01

    We report on the production and testing of an array of active edge silicon sensors as a prototype of a large array. Four Medipix3RX.1 chips were bump bonded to four single chip sized Advacam active edge n-on-n sensors. These detectors were then mounted into a 2 by 2 array and tested on B16 at Diamond Light Source with an x-ray beam spot of 2um. The results from these tests, compared with optical metrology demonstrate that this type of sensor is sensitive to the physical edge of the silicon, with only a modest loss of efficiency in the final two rows of pixels. We present the efficiency maps recorded with the microfocus beam and a sample powder diffraction measurement. These results give confidence that this sensor technology can be used effectively in larger arrays of detectors at synchrotron light sources.

  10. Simplified two-fluid current–voltage relation for superconductor transition-edge sensors

    International Nuclear Information System (INIS)

    Wang, Tian-Shun; Chen, Jun-Kang; Zhang, Qing-Ya; Li, Tie-Fu; Liu, Jian-She; Chen, Wei; Zhou, Xingxiang

    2013-01-01

    We propose a simplified current–voltage (IV) relation for the analysis and simulation of superconductor transition-edge sensor (TES) circuits. Compared to the conventional approach based on the effective TES resistance, our expression describes the device behavior more thoroughly covering the superconducting, transitional, and normal-state for TES currents in both directions. We show how to use our IV relation to perform small-signal analysis and derive the device's temperature and current sensitivities based on its physical parameters. We further demonstrate that we can use our IV relation to greatly simplify TES device modeling and make SPICE simulation of TES circuits easily accessible. We present some interesting results as examples of valuable simulations enabled by our IV relation. -- Highlights: •We propose an IV relation for superconductor transition-edge sensors (TES). •We derive the dependence of the sensitivity of TES on its physical parameters. •We use our IV relation for SPICE modeling of TES device. •We present simulation results using device model based on our IV relation

  11. Simplified two-fluid current–voltage relation for superconductor transition-edge sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tian-Shun; Chen, Jun-Kang [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei City, Anhui Province 230026 (China); Zhang, Qing-Ya; Li, Tie-Fu; Liu, Jian-She [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Chen, Wei, E-mail: weichen@tsinghua.edu.cn [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Zhou, Xingxiang, E-mail: xizhou@ustc.edu.cn [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei City, Anhui Province 230026 (China)

    2013-11-21

    We propose a simplified current–voltage (IV) relation for the analysis and simulation of superconductor transition-edge sensor (TES) circuits. Compared to the conventional approach based on the effective TES resistance, our expression describes the device behavior more thoroughly covering the superconducting, transitional, and normal-state for TES currents in both directions. We show how to use our IV relation to perform small-signal analysis and derive the device's temperature and current sensitivities based on its physical parameters. We further demonstrate that we can use our IV relation to greatly simplify TES device modeling and make SPICE simulation of TES circuits easily accessible. We present some interesting results as examples of valuable simulations enabled by our IV relation. -- Highlights: •We propose an IV relation for superconductor transition-edge sensors (TES). •We derive the dependence of the sensitivity of TES on its physical parameters. •We use our IV relation for SPICE modeling of TES device. •We present simulation results using device model based on our IV relation.

  12. High-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array

    Science.gov (United States)

    Guss, Paul; Rabin, Michael; Croce, Mark; Hoteling, Nathan; Schwellenbach, David; Kruschwitz, Craig; Mocko, Veronika; Mukhopadhyay, Sanjoy

    2017-09-01

    We demonstrate very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor (TES) array. The readout circuit consists of superconducting microwave resonators coupled to radio frequency superconducting-quantum-interference devices (RF-SQUIDs) and transduces changes in input current to changes in phase of a microwave signal. We used a flux-ramp modulation to linearize the response and avoid low-frequency noise. The result is a very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array. We performed and validated a small-scale demonstration and test of all the components of our concept system, which encompassed microcalorimetry, microwave multiplexing, RF-SQUIDs, and software-defined radio (SDR). We shall display data we acquired in the first simultaneous combination of all key innovations in a 4-pixel demonstration, including microcalorimetry, microwave multiplexing, RF-SQUIDs, and SDR. We present the energy spectrum of a gadolinium-153 (153Gd) source we measured using our 4-pixel TES array and the RF-SQUID multiplexer. For each pixel, one can observe the two 97.4 and 103.2 keV photopeaks. We measured the 153Gd photon source with an achieved energy resolution of 70 eV, full width half maximum (FWHM) at 100 keV, and an equivalent readout system noise of 90 pA/pHz at the TES. This demonstration establishes a path for the readout of cryogenic x-ray and gamma ray sensor arrays with more elements and spectral resolving powers. We believe this project has improved capabilities and substantively advanced the science useful for missions such as nuclear forensics, emergency response, and treaty verification through the explored TES developments.

  13. Improved fabrication techniques for infrared bolometers

    Science.gov (United States)

    Lange, A. E.; Mcbride, S. E.; Richards, P. L.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Ion implantation and sputter metallization are used to produce ohmic electrical contacts to Ge:Ga chips. The method is shown to give a high yield of small monolithic bolometers with very little low-frequency noise. It is noted that when one of the chips is used as the thermometric element of a composite bolometer it must be bonded to a dielectric substrate. The thermal resistance of the conventional epoxy bond is measured and found to be undesirably large. A procedure for soldering the chip to a metallized portion of the substrate in such a way as to reduce this resistance is outlined. An evaluation is made of the contribution of the metal film absorber to the heat capacity of a composite bolometer. It is found that the heat capacity of a NiCr absorber at 1.3 K can dominate the bolometer performance. A Bi absorber possesses significantly lower heat capacity. A low-temperature blackbody calibrator is built to measure the optical responsivity of bolometers. A composite bolometer system with a throughput of approximately 0.1 sr sq cm is constructed using the new techniques. The noise in this bolometer is white above 2.5 Hz and is slightly below the value predicted by thermodynamic equilibrium theory.

  14. Development of active edge pixel sensors and four-side buttable modules using vertical integration technologies

    Energy Technology Data Exchange (ETDEWEB)

    Macchiolo, A., E-mail: Anna.Macchiolo@mpp.mpg.de [Max-Planck-Institut for Physics, Föhringer Ring 6, D-80805 Munich (Germany); Andricek, L. [Semiconductor Laboratory of the Max-Planck-Society, Otto Hahn Ring 6, D-81739 Munich (Germany); Moser, H.-G.; Nisius, R. [Max-Planck-Institut for Physics, Föhringer Ring 6, D-80805 Munich (Germany); Richter, R.H. [Semiconductor Laboratory of the Max-Planck-Society, Otto Hahn Ring 6, D-81739 Munich (Germany); Terzo, S.; Weigell, P. [Max-Planck-Institut for Physics, Föhringer Ring 6, D-80805 Munich (Germany)

    2014-11-21

    We present an R and D activity focused on the development of novel modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The modules consist of n-in-p pixel sensors, 100 or 200 μm thick, produced at VTT (Finland) with an active edge technology, which considerably reduces the dead area at the periphery of the device. The sensors are interconnected with solder bump-bonding to the ATLAS FE-I3 and FE-I4 read-out chips, and characterised with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements will be discussed for devices before and after irradiation up to a fluence of 5×10{sub 15}n{sub eq}/cm{sup 2}. We will also report on the R and D activity to obtain Inter Chip Vias (ICVs) on the ATLAS read-out chip in collaboration with the Fraunhofer Institute EMFT. This step is meant to prove the feasibility of the signal transport to the newly created readout pads on the backside of the chips allowing for four side buttable devices without the presently used cantilever for wire bonding. The read-out chips with ICVs will be interconnected to thin pixel sensors, 75 μm and 150 μm thick, with the Solid Liquid Interdiffusion (SLID) technology, which is an alternative to the standard solder bump-bonding.

  15. Optimization of Transition Edge Sensor Arrays for Cosmic Microwave Background Observations With the South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Junjia; Ade, P. A. R.; Anderson, A. J.; Avva, J.; Ahmed, Z.; Arnold, K.; Austermann, J. E.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Byrum, K.; Carlstrom, J. E.; Carter, F. W.; Chang, C. L.; Cho, H. M.; Cliche, J. F.; Cukierman, A.; Czaplewski, D.; Divan, R.; de Haan, T.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Gilbert, A.; Gannon, R.; Guyser, R.; Halverson, N. W.; Harrington, N. L.; Hattori, K.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Hubmayr, J.; Huang, N.; Irwin, K. D.; Jeong, O.; Khaire, T.; Kubik, D.; Kuo, C. L.; Lee, A. T.; Leitch, E. M.; Meyer, S. S.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Shariff, J. A.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J.; Stan, L.; Stark, A. A.; Story, K.; Suzuki, A.; Tang, Q. Y.; Thakur, R. B.; Thompson, K. L.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Wu, W. L. K.; Yefremenko, V.; Yoon, K. W.

    2017-06-01

    In this paper, we describe the optimization of transition-edge-sensor (TES) detector arrays for the third-generation camera for the South PoleTelescope. The camera, which contains similar to 16 000 detectors, will make high-angular-resolution maps of the temperature and polarization of the cosmic microwave background. Our key results are scatter in the transition temperature of Ti/Au TESs is reduced by fabricating the TESs on a thin Ti(5 nm)/Au(5 nm) buffer layer and the thermal conductivity of the legs that support our detector islands is dominated by the SiOx dielectric in the microstrip transmission lines that run along the legs.

  16. Phonon-mediated superconducting transition-edge sensor X-ray detectors for use in astronomy

    Science.gov (United States)

    Leman, Steven W.; Martinez-Galarce, Dennis S.; Brink, Paul L.; Cabrera, Blas; Castle, Joseph P.; Morse, Kathleen; Stern, Robert A.; Tomada, Astrid

    2004-09-01

    Superconducting Transition-Edge Sensors (TESs) are generating a great deal of interest in the areas of x-ray astrophysics and space science, particularly to develop them as large-array, imaging x-ray spectrometers. We are developing a novel concept that is based on position-sensitive macro-pixels placing TESs on the backside of a silicon or germanium absorber. Each x-ray absorbed will be position (X/δX and Y/δY ~ 100) and energy (E/δE ~ 1000) resolved via four distributed TES readouts. In the future, combining such macropixels with advances in multiplexing could lead to 30 by 30 arrays of close-packed macro-pixels equivalent to imaging instruments of 10 megapixels or more. We report on our progress to date and discuss its application to a plausible solar satellite mission and plans for future development.

  17. An investigation of excess noise in transition-edge sensors on a solid silicon substrate

    International Nuclear Information System (INIS)

    Crowder, S.G.; Lindeman, M.A.; Anderson, M.B.; Bandler, S.R.; Bilgri, N.; Bruijn, M.P.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Germeau, A.; Hoevers, H.F.C.; Iyomoto, N.; Kelly, R.; Kilbourne, C.A.; Lai, T.; Man, J.; McCammon, D.; Nelms, K.L.; Porter, F.S.; Rocks, L.; Saab, T.; Sadleir, J.; Vidugiris, G.

    2006-01-01

    Transition-edge sensors (TESs) exhibit two major types of excess noise above the expected and unavoidable thermodynamic fluctuation noise (TFN) to the heat sink and Johnson noise. High-resistance TESs such as those made by the Netherlands Institute for Space Research (SRON) show excess noise consistent with internal TFN (ITFN) caused by random energy transport within the TES itself while low resistance TESs show an excess voltage noise of unknown origin seemingly unrelated to temperature fluctuations. Running a high-resistance TES on a high thermal conductivity substrate should suppress ITFN and allow detection of any excess voltage noise. We tested two TESs on a solid silicon substrate fabricated by SRON of a relatively high normal state resistance of ∼200 mΩ. After determining a linear model of the TES response to noise for the devices, we found little excess TFN and little excess voltage noise for bias currents of up to ∼20 μA

  18. Fabrication of Transition Edge Sensor Microcalorimeters for X-Ray Focal Planes

    Science.gov (United States)

    Chervenak, James A.; Adams, Joseph S.; Audley, Heather; Bandler, Simon R.; Betancourt-Martinez, Gabriele; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline; Lee, Sang Jun; hide

    2015-01-01

    Requirements for focal planes for x-ray astrophysics vary widely depending on the needs of the science application such as photon count rate, energy band, resolving power, and angular resolution. Transition edge sensor x-ray calorimeters can encounter limitations when optimized for these specific applications. Balancing specifications leads to choices in, for example, pixel size, thermal sinking arrangement, and absorber thickness and material. For the broadest specifications, instruments can benefit from multiple pixel types in the same array or focal plane. Here we describe a variety of focal plane architectures that anticipate science requirements of x-ray instruments for heliophysics and astrophysics. We describe the fabrication procedures that enable each array and explore limitations for the specifications of such arrays, including arrays with multiple pixel types on the same array.

  19. Optimizing Transition Edge Sensors for High-Resolution X-ray Spectroscopy

    International Nuclear Information System (INIS)

    Saab, Tarek; Bandler, Simon R.; Boyce, Kevin; Chervenak, James A.; Figueroa-Feliciano, Enectali; Iyomoto, Naoko; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E.

    2006-01-01

    Transition Edge Sensors (TES) have found applications as astronomical detectors ranging from the microwave to the gamma ray energy bands. Each energy band, however, imposes a different set of requirements on the TES such as energy and timing resolution, focal plane coverage, and the mechanisms by which the signal is coupled to the detector. This paper focuses on the development of TESs optimized for the 0.1-10 keV energy range at the NASA Goddard Space Flight Center. Such detectors are suitable candidates for some of the upcoming X-ray observatories such as NeXT and Constellation-X. Ongoing efforts at producing, characterizing, and modeling such devices, as well as the latest results, are discussed

  20. Characterization and reduction of noise in Mo/Au transition edge sensors

    International Nuclear Information System (INIS)

    Lindeman, Mark A.; Bandler, Simon; Brekosky, Regis P.; Chervenak, James A.; Figueroa-Feliciano, Enectali; Finkbeiner, Fred M.; Saab, Tarek; Stahle, Caroline K.

    2004-01-01

    We measured noise in a variety of Mo/Au transition-edge sensor (TES) X-ray calorimeters. We investigated the relationship between the noise, bias, and the superconducting phase transition in the TESs. Our square TES calorimeters have achieved very good energy resolutions (2.4 eV at 1.5 keV) but their resolutions have been limited by broadband white excess noise generated by the TES when it is biased in the phase transition. We have recently fabricated Mo/Cu TESs with interdigitated normal metal bars deposited on top of the bilayer. The new TES calorimeters have demonstrated little or no excess noise in the phase transition. These results point the way to development of TES calorimeters with higher energy resolution

  1. Transition-edge sensor arrays for UV-optical-IR astrophysics

    International Nuclear Information System (INIS)

    Burney, J.; Bay, T.J.; Barral, J.; Brink, P.L.; Cabrera, B.; Castle, J.P.; Miller, A.J.; Nam, S.; Rosenberg, D.; Romani, R.W.; Tomada, A.

    2006-01-01

    Our research group has developed and characterized transition-edge sensor (TES) arrays for near IR-optical-near UV astrophysical observations. These detectors have a time-stamp accuracy of 0.3μs and an energy resolution of 0.16eV for 2.33eV photons at very high rates (30kHz). We have installed a 6x6 array of these TESs in an adiabatic demagnetization refrigerator equipped with windows for direct imaging. We discuss new instrumentation progress and current data in all aspects related to successful operation of this camera system, including: detector and array performance, position dependence and cross-talk, low-temperature and readout electronics, quantum and system efficiency, IR filtering, and focus and imaging

  2. Microstructure Analysis of Bismuth Absorbers for Transition-Edge Sensor X-ray Microcalorimeters

    Science.gov (United States)

    Yan, Daikang; Divan, Ralu; Gades, Lisa M.; Kenesei, Peter; Madden, Timothy J.; Miceli, Antonino; Park, Jun-Sang; Patel, Umeshkumar M.; Quaranta, Orlando; Sharma, Hemant; Bennett, Douglas A.; Doriese, William B.; Fowler, Joseph W.; Gard, Johnathon D.; Hays-Wehle, James P.; Morgan, Kelsey M.; Schmidt, Daniel R.; Swetz, Daniel S.; Ullom, Joel N.

    2018-03-01

    Given its large X-ray stopping power and low specific heat capacity, bismuth (Bi) is a promising absorber material for X-ray microcalorimeters and has been used with transition-edge sensors (TESs) in the past. However, distinct X-ray spectral features have been observed in TESs with Bi absorbers deposited with different techniques. Evaporated Bi absorbers are widely reported to have non-Gaussian low-energy tails, while electroplated ones do not show this feature. In this study, we fabricated Bi absorbers with these two methods and performed microstructure analysis using scanning electron microscopy and X-ray diffraction microscopy. The two types of material showed the same crystallographic structure, but the grain size of the electroplated Bi was about 40 times larger than that of the evaporated Bi. This distinction in grain size is likely to be the cause of their different spectral responses.

  3. High Temperature Superconductor Bolometers for Planetary Science

    Data.gov (United States)

    National Aeronautics and Space Administration — This work is a design study of an instrument optimized for JPL's novel high temperature superconductor bolometers. The work involves designing an imaging...

  4. Non-linear effects in transition edge sensors for X-ray detection

    International Nuclear Information System (INIS)

    Bandler, S.R.; Figueroa-Feliciano, E.; Iyomoto, N.; Kelley, R.L.; Kilbourne, C.A.; Murphy, K.D.; Porter, F.S.; Saab, T.; Sadleir, J.

    2006-01-01

    In a microcalorimeter that uses a transition-edge sensor to detect energy depositions, the small signal energy resolution improves with decreasing heat capacity. This improvement remains true up to the point where non-linear and saturation effects become significant. This happens when the energy deposition causes a significant change in the sensor resistance. Not only does the signal size become a non-linear function of the energy deposited, but also the noise becomes non-stationary over the duration of the pulse. Algorithms have been developed that can calculate the optimal performance given this non-linear behavior that typically requires significant processing and calibration work-both of which are impractical for space missions. We have investigated the relative importance of the various non-linear effects, with the hope that a computationally simple transformation can overcome the largest of the non-linear and non-stationary effects, producing a highly linear 'gain' for pulse-height versus energy, and close to the best energy resolution at all energies when using a Wiener filter

  5. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    Science.gov (United States)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; hide

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  6. Performance of the TFTR bolometers

    International Nuclear Information System (INIS)

    Schivell, J.

    1985-01-01

    For the past year we have been making use of a horizontally viewing 19-channel array and a bolometer which views a narrow cross-sectional slice of the plasma. More recently, we have also obtained results from a second, vertically viewing array. Software has been developed to translate the data from general plasma and array locations to plasma minor radius and to do the Abel inversion with an antisymmetrical term included. Experience has been obtained on the noise and response-time characteristics, as well as the accuracy of total radiated power and radial profiles. Representative cases of radiated power profiles and local power balance are presented, as well as comparisons with other measurements of impurity concentration and trends with electron density and limiter coating. Although most of the ohmic-heating input power leaves by radiation, most of this loss occurs near the outer part of the plasma. Also, the behavior of power profiles during neutral beam injection and disruptions is discussed briefly

  7. Low-cost far infrared bolometer camera for automotive use

    Science.gov (United States)

    Vieider, Christian; Wissmar, Stanley; Ericsson, Per; Halldin, Urban; Niklaus, Frank; Stemme, Göran; Källhammer, Jan-Erik; Pettersson, Håkan; Eriksson, Dick; Jakobsen, Henrik; Kvisterøy, Terje; Franks, John; VanNylen, Jan; Vercammen, Hans; VanHulsel, Annick

    2007-04-01

    A new low-cost long-wavelength infrared bolometer camera system is under development. It is designed for use with an automatic vision algorithm system as a sensor to detect vulnerable road users in traffic. Looking 15 m in front of the vehicle it can in case of an unavoidable impact activate a brake assist system or other deployable protection system. To achieve our cost target below €100 for the sensor system we evaluate the required performance and can reduce the sensitivity to 150 mK and pixel resolution to 80 x 30. We address all the main cost drivers as sensor size and production yield along with vacuum packaging, optical components and large volume manufacturing technologies. The detector array is based on a new type of high performance thermistor material. Very thin Si/SiGe single crystal multi-layers are grown epitaxially. Due to the resulting valence barriers a high temperature coefficient of resistance is achieved (3.3%/K). Simultaneously, the high quality crystalline material provides very low 1/f-noise characteristics and uniform material properties. The thermistor material is transferred from the original substrate wafer to the read-out circuit using adhesive wafer bonding and subsequent thinning. Bolometer arrays can then be fabricated using industry standard MEMS process and materials. The inherently good detector performance allows us to reduce the vacuum requirement and we can implement wafer level vacuum packaging technology used in established automotive sensor fabrication. The optical design is reduced to a single lens camera. We develop a low cost molding process using a novel chalcogenide glass (GASIR®3) and integrate anti-reflective and anti-erosion properties using diamond like carbon coating.

  8. Comparing Transition-Edge Sensor Response Times in a Modified Contact Scheme with Different Support Beams

    Science.gov (United States)

    Beyer, A. D.; Kenyon, M. E.; Bumble, B.; Runyan, M. C.; Echternach, P. E.; Holmes, W. A.; Bock, J. J.; Bradford, C. M.

    2013-01-01

    We present measurements of the thermal conductance, G, and effective time constants, tau, of three transition-edge sensors (TESs) populated in arrays operated from 80-87mK with T(sub C) approximately 120mK. Our TES arrays include several variations of thermal architecture enabling determination of the architecture that demonstrates the minimum noise equivalent power (NEP), the lowest tau and the trade-offs among designs. The three TESs we report here have identical Mo/Cu bilayer thermistors and wiring structures, while the thermal architectures are: 1) a TES with straight support beams of 1mm length, 2) a TES with meander support beams of total length 2mm and with 2 phononfilter blocks per beam, and 3) a TES with meander support beams of total length 2mm and with 6 phonon-filter blocks per beam. Our wiring scheme aims to lower the thermistor normal state resistance R(sub N) and increase the sharpness of the transition alpha=dlogR/dlogT at the transition temperature T(sub C). We find an upper limit of given by (25+/-10), and G values of 200fW/K for 1), 15fW/K for 2), and 10fW/K for 3). The value of alpha can be improved by slightly increasing the length of our thermistors.

  9. Absorber Materials for Transition-Edge Sensor X-ray Microcalorimeters

    Science.gov (United States)

    Brown, Ari-David; Bandler, Simon; Brekosky, Regis; Chervenak, James; Figueroa-Feliciano, Enectali; Finkbeiner, Fred; Sadleir, Jack; Iyomoto, Naoko; Kelley, Richard; Kilbourne, Caroline; hide

    2007-01-01

    Arrays of superconducting transition-edge sensors (TES) can provide high spatial and energy resolution necessary for x-ray astronomy. High quantum efficiency and uniformity of response can be achieved with a suitable absorber material, in which absorber x-ray stopping power, heat capacity, and thermal conductivity are relevant parameters. Here we compare these parameters for bismuth and gold. We have fabricated electroplated gold, electroplated gold/electroplated bismuth, and evaporated gold/evaporated bismuth 8x8 absorber arrays and find that a correlation exists between the residual resistance ratio (RRR) and thin film microstructure. This finding indicates that we can tailor absorber material conductivity via microstructure alteration, so as to permit absorber thermalization on timescales suitable for high energy resolution x-ray microcalorimetry. We show that by incorporating absorbers possessing large grain size, including electroplated gold and electroplated gold/electroplated bismuth, into our current Mo/Au TES, devices with tunable heat capacity and energy resolution of 2.3 eV (gold) and 2.1 eV (gold/bismuth) FWHM at 6 keV have been fabricated.

  10. Towards Development of Microcalorimeter Arrays of Mo/Au Transition-Edge Sensors with Bismuth Absorbers

    Science.gov (United States)

    Tralshawala, Nilesh; Brekosky, Regis; Figueroa-Feliciano, Enectali; Li, Mary; Stahle, Carl; Stahle, Caroline

    2000-01-01

    We report on our progress towards the development of arrays of X-ray microcalorimeters as candidates for the high resolution x-ray spectrometer on the Constellation-X mission. The microcalorimeter arrays (30 x 30) with appropriate pixel sizes (0.25 mm. x 0.25 mm) and high packing fractions (greater than 96%) are being developed. Each individual pixel has a 10 micron thick Bi X-ray absorber that is shaped like a mushroom to increase the packing fraction, and a Mo/Au proximity effect superconducting transition edge sensor (TES). These are deposited on a 0.25 or 0.5 micron thick silicon nitride membrane with slits to provide a controllable weak thermal link to the sink temperature. Studies are underway to model, test and optimize the TES pixel uniformity, critical current, heat capacity and the membrane thermal conductance in the array structure. Fabrication issues and procedures, and results of our efforts based on these optimizations will be provided.

  11. Multi-Absorber Transition-Edge Sensors for X-Ray Astronomy Applications

    Science.gov (United States)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; hide

    2012-01-01

    We are developing multi-absorber Transition-Edge Sensors (TESs) for applications in x-ray astronomy. These position-sensitive devices consist of multiple x-ray absorbers each with a different thermal coupling to a single readout TES. Heat diffusion between the absorbers and the TES gives rise to a characteristic pulse shape corresponding to each absorber element and enables position discrimination. The development of these detectors is motivated by a desire to maximize focal plane arrays with the fewest number of readout channels. In this contribution we report on the first results from devices consisting of nine) 65 X 65 sq. microns Au x-ray absorbers) 5 microns thick. These are coupled to a single 35 X 35 sq. microns Mo/Au bilayer TES. These devices have demonstrated full-width-half-maximum (FWHM) energy resolution of 2.1 eV at 1.5 keV) 2.5 eV at 5.9 keV and 3.3 eV at 8 keV. This is coupled with position discrimination from pulse shape over the same energy range. We use a finite-element model to reproduce the measured pulse shapes and investigate the detector non-linearity with energy) which impacts on the devices position sensitivity and energy resolution.

  12. Small Pitch Transition-Edge Sensors with Broadband High Spectral Resolution for Solar Physics

    Science.gov (United States)

    Smith, S. J.; Adams, J. S.; Eckart, M. E.; Smith, Adams; Bailey, C. N.; Bandler, S. R.; Chevenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; hide

    2012-01-01

    We are developing small pitch transition-edge sensor (TES) X-ray detectors optimized for solar astronomy. These devices are fabricated on thick Si substrates with embedded Cu heat-sink layer. We use 35 x 35 square micrometers Mo/Au TESs with 4.5 micrometer thick Au absorbers. We have tested devices with different geometric absorber stem contact areas with the TES and surrounding substrate area. This allows us to investigate the loss of athermal phonons to the substrate. Results show a correlation between thc stem contact area and a broadening in the spectral line shape indicative of athermal phonon loss. When the contact area is minimized we have obtained exceptional broadband spectral resolution of 1.28 plus or minus 0.03 eV at an energy of 1.5 keV, 1.58 plus or minus 0.07 eV at 5.9 keV and 1.96 plus or minus 0.08 eV at 8 keV. The linearity in the measured gain scale is understood in the context of the longitudinal proximity effect from the electrical bias leads resulting in transition characteristics that are strongly dependent upon TES size.

  13. Complex Impedance of Fast Optical Transition Edge Sensors up to 30 MHz

    Science.gov (United States)

    Hattori, K.; Kobayashi, R.; Numata, T.; Inoue, S.; Fukuda, D.

    2018-03-01

    Optical transition edge sensors (TESs) are characterized by a very fast response, of the order of μs, which is 10^3 times faster than TESs for X-ray and gamma-ray. To extract important parameters associated with the optical TES, complex impedances at high frequencies (> 1 MHz) need to be measured, where the parasitic impedance in the circuit and reflections of electrical signals due to discontinuities in the characteristic impedance of the readout circuits become significant. This prevents the measurements of the current sensitivity β , which can be extracted from the complex impedance. In usual setups, it is hard to build a circuit model taking into account the parasitic impedances and reflections. In this study, we present an alternative method to estimate a transfer function without investigating the details of the entire circuit. Based on this method, the complex impedance up to 30 MHz was measured. The parameters were extracted from the impedance and were compared with other measurements. Using these parameters, we calculated the theoretical limit on an energy resolution and compared it with the measured energy resolution. In this paper, the reasons for the deviation of the measured value from theoretically predicted values will be discussed.

  14. Characterization and fabrication of Ti/Pd bilayers for transition-edge sensors

    International Nuclear Information System (INIS)

    Monticone, E; Taralli, E; Portesi, C; Fretto, M; Rocci, R; Cerri, R; Rajteri, M

    2009-01-01

    Transition-edge sensor (TES) microcalorimeters are extensively used as single photon detectors from infrared to x-ray. Their good energy resolution and photon number resolving capability at visible and near-infrared wavelengths make them powerful tools for quantum information and quantum computation. In this work we report details on the fabrication of Ti/Pd TESs deposited by e-beam evaporation on silicon nitride substrates. By the proximity effect between Ti and Pd, the Ti critical temperature was tuned down to 100 mK, usual working temperature for these devices. Sharp transition of two-three mK and reproducible Tc were obtained. The Pd material can be a valid alternative to widely used Au proximity material thanks to its stronger influence on the Ti layer, that allows to obtain the same temperature reduction with thinner layers. Thermal and electrical characteristics of Ti/Au and Ti/Pd bilayers are compared in view of single photon detection.

  15. SQUID multiplexing using baseband feedback for space application of transition-edge sensor microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Takei, Y; Yamasaki, N Y; Hirakoso, W; Kimura, S; Mitsuda, K, E-mail: takei@astro.isas.jaxa.j [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, 229-8510 (Japan)

    2009-11-15

    A microcalorimeter array based on a transition-edge sensor (TES) thermometer is a promising imaging spectrometer for use in future x-ray astronomy missions. A TES microcalorimeter achieves {approx}<5 eV energy resolution and an array of >100 pixels also provides a moderate imaging capability. For a large format array, signal multiplexing at the low temperature stage is mandatory in order to reduce heat loads from cold stage preamplifiers and through wirings. We are developing frequency division multiplexing (FDM). In FDM, each TES is ac-biased with a different carrier frequency. Signals from several pixels are summed and then read out by one dc SQUID (superconducting quantum interference device). The maximum number of multiplexed pixels is limited by the bandwidth of a SQUID in a flux-locked loop. Assuming 1 m cable length between the room temperature and the cold stage, the bandwidth is only <1 MHz with a standard flux-locked loop, due to the delay and phase shift of wirings. We report our development of baseband feedback, a new feedback scheme that overcomes the bandwidth limitation. In baseband feedback, the signal ({approx}<10 kHz) from the TES is sent back to the SQUID after the phase of carrier frequency ({approx}1 MHz) has been adjusted. We demonstrated open-loop gain of 8 for 10 kHz signal at 5 MHz carrier frequency, which indicates the possibility of {approx}40-pixel multiplexing of the TES signal.

  16. The ITER bolometer diagnostic: Status and plans

    International Nuclear Information System (INIS)

    Meister, H.; Giannone, L.; Horton, L. D.; Raupp, G.; Zeidner, W.; Grunda, G.; Kalvin, S.; Fischer, U.; Serikov, A.; Stickel, S.; Reichle, R.

    2008-01-01

    A consortium consisting of four EURATOM Associations has been set up to develop the project plan for the full development of the ITER bolometer diagnostic and to continue urgent R and D activities. An overview of the current status is given, including detector development, line-of-sight optimization, performance analysis as well as the design of the diagnostic components and their integration in ITER. This is complemented by the presentation of plans for future activities required to successfully implement the bolometer diagnostic, ranging from the detector development over diagnostic design and prototype testing to RH tools for calibration.

  17. The ITER bolometer diagnostic: Status and plansa)

    Science.gov (United States)

    Meister, H.; Giannone, L.; Horton, L. D.; Raupp, G.; Zeidner, W.; Grunda, G.; Kalvin, S.; Fischer, U.; Serikov, A.; Stickel, S.; Reichle, R.

    2008-10-01

    A consortium consisting of four EURATOM Associations has been set up to develop the project plan for the full development of the ITER bolometer diagnostic and to continue urgent R&D activities. An overview of the current status is given, including detector development, line-of-sight optimization, performance analysis as well as the design of the diagnostic components and their integration in ITER. This is complemented by the presentation of plans for future activities required to successfully implement the bolometer diagnostic, ranging from the detector development over diagnostic design and prototype testing to RH tools for calibration.

  18. Energy-Aware Computation Offloading of IoT Sensors in Cloudlet-Based Mobile Edge Computing.

    Science.gov (United States)

    Ma, Xiao; Lin, Chuang; Zhang, Han; Liu, Jianwei

    2018-06-15

    Mobile edge computing is proposed as a promising computing paradigm to relieve the excessive burden of data centers and mobile networks, which is induced by the rapid growth of Internet of Things (IoT). This work introduces the cloud-assisted multi-cloudlet framework to provision scalable services in cloudlet-based mobile edge computing. Due to the constrained computation resources of cloudlets and limited communication resources of wireless access points (APs), IoT sensors with identical computation offloading decisions interact with each other. To optimize the processing delay and energy consumption of computation tasks, theoretic analysis of the computation offloading decision problem of IoT sensors is presented in this paper. In more detail, the computation offloading decision problem of IoT sensors is formulated as a computation offloading game and the condition of Nash equilibrium is derived by introducing the tool of a potential game. By exploiting the finite improvement property of the game, the Computation Offloading Decision (COD) algorithm is designed to provide decentralized computation offloading strategies for IoT sensors. Simulation results demonstrate that the COD algorithm can significantly reduce the system cost compared with the random-selection algorithm and the cloud-first algorithm. Furthermore, the COD algorithm can scale well with increasing IoT sensors.

  19. How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review.

    Science.gov (United States)

    Arduini, Fabiana; Cinti, Stefano; Scognamiglio, Viviana; Moscone, Danila; Palleschi, Giuseppe

    2017-03-22

    Through the years, scientists have developed cutting-edge technologies to make (bio)sensors more convenient for environmental analytical purposes. Technological advancements in the fields of material science, rational design, microfluidics, and sensor printing, have radically shaped biosensor technology, which is even more evident in the continuous development of sensing systems for the monitoring of hazardous chemicals. These efforts will be crucial in solving some of the problems constraining biosensors to reach real environmental applications, such as continuous analyses in field by means of multi-analyte portable devices. This review (with 203 refs.) covers the progress between 2010 and 2015 in the field of technologies enabling biosensor applications in environmental analysis, including i) printing technology, ii) nanomaterial technology, iii) nanomotors, iv) biomimetic design, and (v) microfluidics. Next section describes futuristic cutting-edge technologies that are gaining momentum in recent years, which furnish highly innovative aspects to biosensing devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Ultra-low-noise transition edge sensors for the SAFARI L-band on SPICA

    Science.gov (United States)

    Goldie, D. J.; Gao, J. R.; Glowacka, D. M.; Griffin, D. K.; Hijmering, R.; Khosropanah, P.; Jackson, B. D.; Mauskopf, P. D.; Morozov, D.; Murphy, J. A.; Ridder, M.; Trappe, N.; O'Sullivan, C.; Withington, S.

    2012-09-01

    The Far-Infrared Fourier transform spectrometer instrument SAFARI-SPICA which will operate with cooled optics in a low-background space environment requires ultra-sensitive detector arrays with high optical coupling efficiencies over extremely wide bandwidths. In earlier papers we described the design, fabrication and performance of ultra-low-noise Transition Edge Sensors (TESs) operated close to 100mk having dark Noise Equivalent Powers (NEPs) of order 4 × 10-19W/√Hz close to the phonon noise limit and an improvement of two orders of magnitude over TESs for ground-based applications. Here we describe the design, fabrication and testing of 388-element arrays of MoAu TESs integrated with far-infrared absorbers and optical coupling structures in a geometry appropriate for the SAFARI L-band (110 - 210 μm). The measured performance shows intrinsic response time τ ~ 11ms and saturation powers of order 10 fW, and a dark noise equivalent powers of order 7 × 10-19W/√Hz. The 100 × 100μm2 MoAu TESs have transition temperatures of order 110mK and are coupled to 320×320μm2 thin-film β-phase Ta absorbers to provide impedance matching to the incoming fields. We describe results of dark tests (i.e without optical power) to determine intrinsic pixel characteristics and their uniformity, and measurements of the optical performance of representative pixels operated with flat back-shorts coupled to pyramidal horn arrays. The measured and modeled optical efficiency is dominated by the 95Ω sheet resistance of the Ta absorbers, indicating a clear route to achieve the required performance in these ultra-sensitive detectors.

  1. An optimized knife-edge method for on-orbit MTF estimation of optical sensors using powell parameter fitting

    Science.gov (United States)

    Han, Lu; Gao, Kun; Gong, Chen; Zhu, Zhenyu; Guo, Yue

    2017-08-01

    On-orbit Modulation Transfer Function (MTF) is an important indicator to evaluate the performance of the optical remote sensors in a satellite. There are many methods to estimate MTF, such as pinhole method, slit method and so on. Among them, knife-edge method is quite efficient, easy-to-use and recommended in ISO12233 standard for the wholefrequency MTF curve acquisition. However, the accuracy of the algorithm is affected by Edge Spread Function (ESF) fitting accuracy significantly, which limits the range of application. So in this paper, an optimized knife-edge method using Powell algorithm is proposed to improve the ESF fitting precision. Fermi function model is the most popular ESF fitting model, yet it is vulnerable to the initial values of the parameters. Considering the characteristics of simple and fast convergence, Powell algorithm is applied to fit the accurate parameters adaptively with the insensitivity to the initial parameters. Numerical simulation results reveal the accuracy and robustness of the optimized algorithm under different SNR, edge direction and leaning angles conditions. Experimental results using images of the camera in ZY-3 satellite show that this method is more accurate than the standard knife-edge method of ISO12233 in MTF estimation.

  2. Upcoming planetary missions and the applicability of high-temperature-superconductor bolometers

    International Nuclear Information System (INIS)

    Brasunas, J.; Kunde, V.; Moseley, H.; Lakew, B.

    1991-01-01

    Planetary missions to Mars and beyond can last 11 years and longer, making impractical the use of stored cryogens. Passive radiative coolers and single-stage mechanical coolers remain possibilities. Cassini and Comet Rendezvous/Asteroid Fly-by (CRAF), both using the newly developed Mariner Mark 2 spacecraft, will be the next outer planet missions after Galileo; they are intended to provide information on the origin and evolution of the solar system. CRAF is slated for a 1994 launch. Cassini was chosen by ESA and will be launched by a Titan 4/Centaur in 1996. It will fly by Jupiter in 2000, inject an ESA-supplied probe into Titan in 2002, and take data in Saturn's orbit from 2002 to 2006. NASA/Goddard is currently developing a prototype Fourier transform spectrometer, the Composite Infrared Spectrometer (CIRS), for the Cassini mission. The baseline infrared detectors for CIRS are HgCdTe to 16 microns and Schwarz-type thermopiles from 16 to 1000 microns. The far infrared focal plane could be switched from thermopiles to high temperature superconductor (HTS) bolometers between now and 1996. An HTS bolometer could be built using the kinetic inductance effect, or the sharp resistance change at the transition. The transition-edge bolometer is more straightforward to implement, and initial efforts at NASA/Goddard are directed to that device. A working device was made and tested in early 1989. It also has somewhat elevated noise levels below 100 Hz. Upcoming efforts will center on reducing the time constant of the HTS bolometer by attempting to deposit an HTS film on a diamond substrate, and by thinning SrTiO3 substrates. Attempts will be made to improve the film quality to reduce the 1/4 noise level, and to improve the thermal isolation to increase the bolometer sensitivity

  3. Distributed transition-edge sensors for linearized position response in a phonon-mediated X-ray imaging spectrometer

    Science.gov (United States)

    Cabrera, Blas; Brink, Paul L.; Leman, Steven W.; Castle, Joseph P.; Tomada, Astrid; Young, Betty A.; Martínez-Galarce, Dennis S.; Stern, Robert A.; Deiker, Steve; Irwin, Kent D.

    2004-03-01

    For future solar X-ray satellite missions, we are developing a phonon-mediated macro-pixel composed of a Ge crystal absorber with four superconducting transition-edge sensors (TES) distributed on the backside. The X-rays are absorbed on the opposite side and the energy is converted into phonons, which are absorbed into the four TES sensors. By connecting together parallel elements into four channels, fractional total energy absorbed between two of the sensors provides x-position information and the other two provide y-position information. We determine the optimal distribution for the TES sub-elements to obtain linear position information while minimizing the degradation of energy resolution.

  4. Neutron Transmutation Doped (NTD) germanium thermistors for sub-mm bolometer applications

    Science.gov (United States)

    Haller, E. E.; Itoh, K. M.; Beeman, J. W.

    1996-01-01

    Recent advances in the development of neutron transmutation doped (NTD) semiconductor thermistors fabricated from natural and controlled isotopic composition germanium are reported. The near ideal doping uniformity that can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor preamplifiers led to the widespread acceptance of these thermal sensors in ground-based, airborne and spaceborne radio telescopes. These features made possible the development of efficient bolometer arrays.

  5. Design and TCAD simulation of planar p-on-n active-edge pixel sensors for the next generation of FELs

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, G.-F., E-mail: gianfranco.dallabetta@unitn.it [Università di Trento, Dipartimento di Ingegneria Industriale, I-38123 Trento (Italy); TIFPA INFN, I-38123 Trento (Italy); Batignani, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Benkechkache, M.A. [TIFPA INFN, I-38123 Trento (Italy); University Constantine 1, Department of Electronics in the Science and Technology Faculty, I-25017 Constantine (Algeria); Bettarini, S.; Casarosa, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Comotti, D. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Fabris, L. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); Forti, F. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Grassi, M. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Latreche, S. [University Constantine 1, Department of Electronics in the Science and Technology Faculty, I-25017 Constantine (Algeria); Lodola, L.; Malcovati, P. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Manghisoni, M. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); and others

    2016-07-11

    We report on the design and TCAD simulations of planar p-on-n sensors with active edge aimed at a four-side buttable X-ray detector module for future FEL applications. Edge terminations with different number of guard rings were designed to find the best trade-off between breakdown voltage and border gap size. The methodology of the sensor design, the optimization of the most relevant parameters to maximize the breakdown voltage and the final layout are described.

  6. Design and TCAD simulation of planar p-on-n active-edge pixel sensors for the next generation of FELs

    International Nuclear Information System (INIS)

    Dalla Betta, G.-F.; Batignani, G.; Benkechkache, M.A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Fabris, L.; Forti, F.; Grassi, M.; Latreche, S.; Lodola, L.; Malcovati, P.; Manghisoni, M.

    2016-01-01

    We report on the design and TCAD simulations of planar p-on-n sensors with active edge aimed at a four-side buttable X-ray detector module for future FEL applications. Edge terminations with different number of guard rings were designed to find the best trade-off between breakdown voltage and border gap size. The methodology of the sensor design, the optimization of the most relevant parameters to maximize the breakdown voltage and the final layout are described.

  7. Thermoelectrical-electrothermal feedback (te-et f) enhanced performance characteristics of a high temperature superconductor far-infrared bolometer

    International Nuclear Information System (INIS)

    Kaila, M.M.; Russell, G.J.

    2000-01-01

    Full text: It is more than a decade since the discovery of new a High Temperature Superconducting (HTSC) materials. Their adaptation to large scale applications e.g. high magnetic fields, friction-less motors, levitation trains etc., is still long way to go. Small scale applications e.g., far-infrared sensors, has certainly been established as a highly suitable area for immediate economically viable commercial exploitation. The semiconductor counterparts, NT(Neutron Transmutation doped)Ge, CD(Compensation Doped)Si sensors are not only expensive and difficult to manufacture but also require liquid helium refrigeration at mK temperatures to operate. Although the work around the world has centered on photo-electrical bolometers, in our approach we have adopted a much simpler, temperature stable and a better performing photo-thermoelectrical mode of operation. It is well known that the semi-metal BiSb has the highest electronic thermoelectric figure of merit at liquid nitrogen temperatures. One can obtain a value around 1x10 -2 / K by application of a magnetic field to the BiSb leg of a composite. BiSb-HTSC bolometer. We can use this high figure of merit to our advantage in two different modes of operation of the detector. One is the static mode where the thermoelectric power generated across the semi-metal leg (connected in parallel with the HTSC leg) of the bolometer drives the external electronic circuitry. This circuitry can be remotely (no direct electrical contact) coupled to the bolometer e.g. through the primary coil of a SQUID current amplifier, which can be connected in series with the bolometer inside the cryostat, for better noise performance, or outside, for convenience. Second is the heterodyne operation. The external bias is applied in a constant voltage bias mode. The direction of the bias is so chosen that the transient Peltier power generated, from the incident radiation, in the circuit extracts additional heat at the sensitive area of the bolometer

  8. Deformable trailing edge flaps for modern megawatt wind turbine controllers using strain gauge sensors

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Henriksen, Lars Christian; Gaunaa, Mac

    2010-01-01

    . By enabling the trailing edge to move independently and quickly along the spanwise position of the blade, local small flutuations in the aerodynamic forces can be alleviated by deformation of the airfoil flap. Strain gauges are used as input for the flap controller, and the effect of placing strain gauges......The present work contains a deformable trailing edge flap controller integrated in a numerically simulated modern, variablespeed, pitch-regulated megawatt (MW)-size wind turbine. The aeroservoelastic multi-body code HAWC2 acts as a component in the control loop design. At the core of the proposed...... edge flaps on a wind turbine blade rather than a conclusive control design with traditional issues like stability and robustness fully investigated. Recent works have shown that the fatigue load reduction by use of trailing edge flaps may be greater than for traditional pitch control methods...

  9. Measurements of the optical performance of bolometers for SPICA/SAFARI

    Science.gov (United States)

    Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Ridder, Marcel; Ferrari, Lorenza; Laauwen, Wouter M.; Ranjan, Manisha; Mauskopf, Philip D.; Morozov, Dmitry; Trappe, Neil A.

    2012-09-01

    We have measured the optical response of detectors designed for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. To take advantage of SPICA's cooled optics, SAFARI’s three bolometer arrays are populated with extremely sensitive (NEP~2×10-19 W/√Hz) transition edge sensors with a transition temperature close to 100 mK. The extreme sensitivity and low saturation power (~4 fW) of SAFARI’s detectors present challenges to characterizing them. We have therefore built up an ultra-low background test facility with a cryogen-free high-capacity dilution refrigerator, paying careful attention to stray-light exclusion. Our use of a pulse-tube cooler to pre-cool the dilution refrigerator required that the SAFARI Detector System Test Facility provide a high degree electrical, magnetic, and mechanical isolation for the detectors. We have carefully characterized the performance of the test facility in terms of background power loading. The test facility has been designed to be flexible and easily reconfigurable with internal illuminators that allow us to characterize the optical response of the detectors. We describe the test facility and some of the steps we took to create an ultra-low background test environment. We have measured the optical response of two detectors designed for SAFARI’s short-wave wavelength band in combination with a spherical backshort and conical feedhorn. We find an overall optical efficiency of 40% for both, compared with an ideal-case predicted optical efficiency of 66%.

  10. High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Noroozian, Omid [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, Colorado 80309 (United States); Mates, John A. B.; Bennett, Douglas A.; Brevik, Justus A.; Fowler, Joseph W.; Gao, Jiansong; Hilton, Gene C.; Horansky, Robert D.; Irwin, Kent D.; Schmidt, Daniel R.; Vale, Leila R.; Ullom, Joel N. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Kang, Zhao [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States)

    2013-11-11

    We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a {sup 153}Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/√(Hz) at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than 10{sup 3} elements and spectral resolving powers R=λ/Δλ>10{sup 3}.

  11. Data acquisition and real-time bolometer tomography using LabVIEW RT

    International Nuclear Information System (INIS)

    Giannone, L.; Eich, T.; Fuchs, J.C.; Ravindran, M.; Ruan, Q.; Wenzel, L.; Cerna, M.; Concezzi, S.

    2011-01-01

    The currently available multi-core PCI Express systems running LabVIEW RT (real-time), equipped with FPGA cards for data acquisition and real-time parallel signal processing, greatly shorten the design and implementation cycles of large-scale, real-time data acquisition and control systems. This paper details a data acquisition and real-time tomography system using LabVIEW RT for the bolometer diagnostic on the ASDEX Upgrade tokamak (Max Planck Institute for Plasma Physics, Garching, Germany). The transformation matrix for tomography is pre-computed based on the geometry of distributed radiation sources and sensors. A parallelized iterative algorithm is adapted to solve a constrained linear system for the reconstruction of the radiated power density. Real-time bolometer tomography is performed with LabVIEW RT. Using multi-core machines to execute the parallelized algorithm, a cycle time well below 1 ms is reached.

  12. Development of phonon-mediated transition-edge-sensor x-ray detectors for use in astronomy

    Science.gov (United States)

    Leman, Steven W.

    Low temperature detectors have grown in popularity over the years for a variety of reasons. Reduced thermal noise and the associated reduction in statistical fluctuations improve signal to noise. Novel material properties at low temperature such as superconductivity can be exploited. And let us not forget easier access to cryogenic techniques, for example industry made and sold refrigerators eliminating the need for graduate students to make their own. In this thesis I discuss development of a novel phonon-mediated distributed transition-edge-sensor x-ray detector which would be useful for astrophysical studies such as magnetic recombination in the solar corona, the warm-hot intergalactic medium and surveys of clusters and groups of galaxies. The detector uses a large semiconductor absorber and Transition-Edge-Sensors (TESs) to readout the absorbed energy. Calorimetry is performed on individual photons and a partitioning of the energy between various TESs allows for position determination. Hence time varying astronomical sources can be spectroscopically studied and imaged. I will conclude with a discussion of the detector's performance and propose a next generation detector which could make significant improvements on the design discussed in this thesis.

  13. Neutron-transmutation-doped germanium bolometers

    International Nuclear Information System (INIS)

    Palaio, N.P.; Rodder, M.; Haller, E.E.; Kreysa, E.

    1983-02-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 16 and 1.88 x 10 18 cm - 2 . After thermal annealing the resistivity was measured down to low temperatures ( 0 exp(δ/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers

  14. Neutron-transmutation-doped germanium bolometers

    Science.gov (United States)

    Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.

  15. Active-Optical Sensors Using Red NDVI Compared to Red Edge NDVI for Prediction of Corn Grain Yield in North Dakota, U.S.A.

    Science.gov (United States)

    Sharma, Lakesh K; Bu, Honggang; Denton, Anne; Franzen, David W

    2015-11-02

    Active-optical sensor readings from an N non-limiting area standard established within a farm field are used to predict yield in the standard. Lower yield predictions from sensor readings obtained from other parts of the field outside of the N non-limiting standard area indicate a need for supplemental N. Active-optical sensor algorithms for predicting corn (Zea mays, L.) yield to direct in-season nitrogen (N) fertilization in corn utilize red NDVI (normalized differential vegetative index). Use of red edge NDVI might improve corn yield prediction at later growth stages when corn leaves cover the inter-row space resulting in "saturation" of red NDVI readings. The purpose of this study was to determine whether the use of red edge NDVI in two active-optical sensors (GreenSeeker™ and Holland Scientific Crop Circle™) improved corn yield prediction. Nitrogen rate experiments were established at 15 sites in North Dakota (ND). Sensor readings were conducted at V6 and V12 corn. Red NDVI and red edge NDVI were similar in the relationship of readings with yield at V6. At V12, the red edge NDVI was superior to the red NDVI in most comparisons, indicating that it would be most useful in developing late-season N application algorithms.

  16. Active-Optical Sensors Using Red NDVI Compared to Red Edge NDVI for Prediction of Corn Grain Yield in North Dakota, U.S.A.

    Science.gov (United States)

    Sharma, Lakesh K.; Bu, Honggang; Denton, Anne; Franzen, David W.

    2015-01-01

    Active-optical sensor readings from an N non-limiting area standard established within a farm field are used to predict yield in the standard. Lower yield predictions from sensor readings obtained from other parts of the field outside of the N non-limiting standard area indicate a need for supplemental N. Active-optical sensor algorithms for predicting corn (Zea mays, L.) yield to direct in-season nitrogen (N) fertilization in corn utilize red NDVI (normalized differential vegetative index). Use of red edge NDVI might improve corn yield prediction at later growth stages when corn leaves cover the inter-row space resulting in “saturation” of red NDVI readings. The purpose of this study was to determine whether the use of red edge NDVI in two active-optical sensors (GreenSeeker™ and Holland Scientific Crop Circle™) improved corn yield prediction. Nitrogen rate experiments were established at 15 sites in North Dakota (ND). Sensor readings were conducted at V6 and V12 corn. Red NDVI and red edge NDVI were similar in the relationship of readings with yield at V6. At V12, the red edge NDVI was superior to the red NDVI in most comparisons, indicating that it would be most useful in developing late-season N application algorithms. PMID:26540057

  17. The CRESST-III iStick veto. Stable operation of multiple transition edge sensors in one readout circuit

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Johannes [Max-Planck-Institut f. Physik (Werner-Heisenberg-Institut) (Germany); Ludwig-Maximilians-Universitaet Muenchen (Germany); Collaboration: CRESST-Collaboration

    2016-07-01

    To enable complete rejection of holder-related events in the upcoming CRESST-III dark matter search experiment, the scintillating target crystals are held by calcium tungstate sticks (iSticks) instrumented with tungsten transition edge sensors (TESs). Since the iStick signals are used exclusively for vetoing, it is sufficient to register if an event happened in any stick, without knowing which one. This allows the operation of all iSticks in a single readout circuit, requiring just one SQUID magnetometer. The talk describes the effect of bias current heating and corresponding hysteresis phenomena known in single-TES circuits, and the resulting conditions for stability in multiple-TES circuits. The fundamentally different behaviour of parallel and series circuits and resulting design choices are explored.

  18. Performance of horn-coupled transition edge sensors for L- and S-band optical detection on the SAFARI instrument

    Science.gov (United States)

    Goldie, D. J.; Glowacka, D. M.; Withington, S.; Chen, Jiajun; Ade, P. A. R.; Morozov, D.; Sudiwala, R.; Trappe, N. A.; Quaranta, O.

    2016-07-01

    We describe the geometry, architecture, dark- and optical performance of ultra-low-noise transition edge sensors as THz detectors for the SAFARI instrument. The TESs are fabricated from superconducting Mo/Au bilayers coupled to impedance-matched superconducting β-phase Ta thin-film absorbers. The detectors have phonon-limited dark noise equivalent powers of order 0.5 - 1.0 aW/ √ Hz and saturation powers of order 20 - 40 fW. The low temperature test configuration incorporating micro-machined backshorts is also described, and construction and typical performance characteristics for the optical load are shown. We report preliminary measurements of the optical performance of these TESs for two SAFARI bands; L-band at 110 - 210 μm and S-band 34 - 60 μm .

  19. Design and Optimization of Multi-Pixel Transition-Edge Sensors for X-Ray Astronomy Applications

    Science.gov (United States)

    Smith, Stephen J.; Adams, Joseph S.; Bandler, Simon R.; Chervenak, James A.; Datesman, Aaron Michael; Eckart, Megan E.; Ewin, Audrey J.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2017-01-01

    Multi-pixel transition-edge sensors (TESs), commonly referred to as 'hydras', are a type of position sensitive micro-calorimeter that enables very large format arrays to be designed without commensurate increase in the number of readout channels and associated wiring. In the hydra design, a single TES is coupled to discrete absorbers via varied thermal links. The links act as low pass thermal filters that are tuned to give a different characteristic pulse shape for x-ray photons absorbed in each of the hydra sub pixels. In this contribution we report on the experimental results from hydras consisting of up to 20 pixels per TES. We discuss the design trade-offs between energy resolution, position discrimination and number of pixels and investigate future design optimizations specifically targeted at meeting the readout technology considered for Lynx.

  20. Eliminating the non-Gaussian spectral response of X-ray absorbers for transition-edge sensors

    Science.gov (United States)

    Yan, Daikang; Divan, Ralu; Gades, Lisa M.; Kenesei, Peter; Madden, Timothy J.; Miceli, Antonino; Park, Jun-Sang; Patel, Umeshkumar M.; Quaranta, Orlando; Sharma, Hemant; Bennett, Douglas A.; Doriese, William B.; Fowler, Joseph W.; Gard, Johnathon D.; Hays-Wehle, James P.; Morgan, Kelsey M.; Schmidt, Daniel R.; Swetz, Daniel S.; Ullom, Joel N.

    2017-11-01

    Transition-edge sensors (TESs) as microcalorimeters for high-energy-resolution X-ray spectroscopy are often fabricated with an absorber made of materials with high Z (for X-ray stopping power) and low heat capacity (for high resolving power). Bismuth represents one of the most compelling options. TESs with evaporated bismuth absorbers have shown spectra with undesirable and unexplained low-energy tails. We have developed TESs with electroplated bismuth absorbers over a gold layer that are not afflicted by this problem and that retain the other positive aspects of this material. To better understand these phenomena, we have studied a series of TESs with gold, gold/evaporated bismuth, and gold/electroplated bismuth absorbers, fabricated on the same die with identical thermal coupling. We show that the bismuth morphology is linked to the spectral response of X-ray TES microcalorimeters.

  1. Progress in the Development of Mo-Au Transition-Edge Sensors for X-Ray Spectroscopy

    Science.gov (United States)

    Stahle, Caroline K.; Brekosky, Regis P.; Figueroa-Feliciano, Enectali; Finkbeiner, Fred M.; Gygax, John D.; Li, Mary J.; Lindeman, Mark A..; Porter, F. Scott; Tralshawalaa, Nilesh

    2000-01-01

    X-ray microcalorimeters using transition-edge sensors (TES) show great promise for use in astronomical x-ray spectroscopy. We have obtained very high energy resolution (2.8 electronvolts at 1.5 kiloelectronvolts and 3.7 electronvolts at 3.3 kiloelectronvolts) in a large, isolated TES pixel using a Mo/Au proximity-effect bilayer on a silicon nitride membrane. We will discuss the performance and our characterization of that device. In order to be truly suitable for use behind an x-ray telescope, however, such devices need to be arrayed with a pixel size and focal-plane coverage commensurate with the telescope focal length and spatial resolution. Since this requires fitting the TES and its thermal link, a critical component of each calorimeter pixel, into a far more compact geometry than has previously been investigated, we must study the fundamental scaling laws in pixel optimization. We have designed a photolithography mask that will allow us to probe the range in thermal conductance that can be obtained by perforating the nitride membrane in a narrow perimeter around the sensor. This mask will also show the effects of reducing the TES area. Though we have not yet tested devices of the compact designs, we will present our progress in several of the key processing steps and discuss the parameter space of our intended investigations.

  2. Investigation of electrical noise in selenium-immersed thermistor bolometers

    Science.gov (United States)

    Tarpley, J. L.; Sarmiento, P. D.

    1980-01-01

    The selenium immersed, thermistor bolometer, IR detector failed due to spurious and escalating electrical noise outburst as a function of time at elevated temperatures during routine ground based testing in a space simulated environment. Spectrographic analysis of failed bolometers revealed selenium pure zones in the insulating selenium arsenic (Se-As) glass film which surrounds the active sintered Mn, Ni, Co oxide flake. The selenium pure film was identified as a potentially serious failure mechanism. Significant changes were instituted in the manufacturing techniques along with more stringent process controls which eliminated the selenium pure film and successfully produced 22study bolometers.

  3. Electromagnetic Design of Feedhorn-Coupled Transition-Edge Sensors for Cosmic Microwave Background Polarimetery

    Science.gov (United States)

    Chuss, David T.

    2011-01-01

    Observations of the cosmic microwave background (CMB) provide a powerful tool for probing the evolution of the early universe. Specifically, precision measurement of the polarization of the CMB enables a direct test for cosmic inflation. A key technological element on the path to the measurement of this faint signal is the capability to produce large format arrays of background-limited detectors. We describe the electromagnetic design of feedhorn-coupled, TES-based sensors. Each linear orthogonal polarization from the feed horn is coupled to a superconducting microstrip line via a symmetric planar orthomode transducer (OMT). The symmetric OMT design allows for highly-symmetric beams with low cross-polarization over a wide bandwidth. In addition, this architecture enables a single microstrip filter to define the passband for each polarization. Care has been taken in the design to eliminate stray coupling paths to the absorbers. These detectors will be fielded in the Cosmology Large Angular Scale Surveyor (CLASS).

  4. Quasiparticle Diffusion in Al Films Coupled to Tungsten Transition Edge Sensors

    Science.gov (United States)

    Yen, J. J.; Young, B. A.; Cabrera, B.; Brink, P. L.; Cherry, M.; Moffatt, R.; Pyle, M.; Redl, P.; Tomada, A.; Tortorici, E. C.

    2014-08-01

    We report recent results obtained from several W/Al test devices on Si wafers fabricated specifically to better understand energy collection in phonon sensors used for the Cryogenic Dark Matter Search (CDMS) experiment. The devices under study consist of three different lengths of 250 m-wide by 300 nm-thick Al absorber films, coupled to 250 m x 250 m (40 nm thick) W-TESs at each end of the Al film. An Fe source was used to excite a NaCl reflector producing 2.6 keV Cl X-rays that were absorbed in our test device after passing through a collimator. The impinging X-rays broke Cooper pairs in the Al film, producing quasiparticles that we detected after they propagated into the W-TESs. We studied the diffusion of these quasiparticles in the Al, trapping effects in the Al film, and energy transmission at the Al/W interfaces.

  5. Advanced load alleviation for wind turbines using adaptive trailing edge flaps: Sensoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Peter Bjoern

    2010-02-15

    The purpose of wind turbines and their predecessors the windmill, is to convert the energy in the wind to usable energy forms. Whereas windmills of the past focused on the conversion of wind power to torque for grinding, pumping and winching, modern wind turbines convert the wind energy into electric power. They do so through incorporation of generators, which convert mechanical torque into electricity. Wind turbines are designed to keep the overall cost per produced Kilo Watt hour as low as possible. One way of improving the performance and lifetime of the wind turbine is through active flow control. Active control is often considered costly but if the lifespan of the components can be increased it could be justifiable. This thesis covers various aspects of 'smart control' such as control theory, sensoring, optimization, experiments and numerical modeling. (author)

  6. Active control of an edge-mode-based plasmon-induced absorption sensor.

    Science.gov (United States)

    Li, Yong; Su, Yi; Lin, Qi; Zhai, Xiang; Wang, Ling-Ling

    2018-04-01

    We investigate the formation and evolution of plasmon-induced absorption (PIA) effect in a three-dimensional graphene waveguide structure. The PIA window is formed by near-field coupling of the graphene edge mode, the extremely destructive interference between the radiative mode and sub-radiative mode of graphene nanoribbons. The resonance intensity has a significant dependence on the coupling distance between the graphene nanoribbons. At the same time, it is particularly sensitive to the refractive index of the environment, which is promising for sensing devices. In addition, the resonant wavelength can be actively controlled by changing the Fermi energy of graphene. Moreover, it can be seen that the group time delay of the PIA window reaches -0.28   ps , which is a good candidate for ultrafast light application. Finally, additional graphene nanoribbons can also form a double-channel PIA window. Our work may provide an excellent platform for controlling the optical transmission of highly integrated plasmonic components.

  7. Fabrication of Feedhorn-Coupled Transition Edge Sensor Arrays for Measurement of the Cosmic Microwave Background Polarization

    Science.gov (United States)

    Denis, Kevin L.; Aamir, A.; Bennett, C. L.; Chang, M. P.; Chuss, D. T.; Colazo, F. A.; Costen, N.; Essinger-Hileman, T.; Hu, R.; Marriage, T.; hide

    2015-01-01

    Characterization of the minute cosmic microwave background polarization signature requires multi-frequency high-throughput precision instrument systems. We have previously described the detector fabrication of a 40 GHz focal plane and now describe the fabrication of the detector modules for measurement of the CMB at 90GHz. The 74-TES based bolometers in each module are coupled to a niobium based planar orthomode transducer with integrated band defining filters implemented in microstrip transmission line. A single crystal silicon dielectric substrate serves as microstrip dielectric and as a thermal link between the membrane isolated MoAu TES operating at 150mK and the heat bath. A short silicon leg between the heat bath and the TES bolometer is designed for ballistic phonon transport and provides improved process control and uniformity of thermal conductance in the presence of phonon scattering on roughened surfaces. Micro-machined structures are used to realize the orthomode transducer backshort, provide out of band signal rejection, and a silicon photonic choke for feedhorn coupling are described. The backshort, choke wafer, and detector wafer are indium bump bonded to create a single 37-element dual-polarization detector module. Fourteen such hexagonally shaped modules each 90 mm in size comprise two focal planes. These, along with the recently delivered 40GHz focal plane, will survey a large fraction of the sky as part of the Johns Hopkins University led ground based CLASS (Cosmology Large Angular Scale Surveyor) telescope.

  8. Tuning SPT-3G Transition-Edge-Sensor Electrical Properties with a Four-Layer Ti-Au-Ti-Au Thin-Film Stack

    Science.gov (United States)

    Carter, F. W.; Ade, P. A. R.; Ahmed, Z.; Anderson, A. J.; Austermann, J. E.; Avva, J. S.; Thakur, R. Basu; Bender, A. N.; Benson, B. A.; Carlstrom, J. E.; Cecil, T.; Chang, C. L.; Cliche, J. F.; Cukierman, A.; Denison, E. V.; de Haan, T.; Ding, J.; Divan, R.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Foster, A.; Gannon, R. N.; Gilbert, A.; Groh, J. C.; Halverson, N. W.; Harke-Hosemann, A. H.; Harrington, N. L.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O. B.; Jonas, M.; Khaire, T.; Kofman, A. M.; Korman, M.; Kubik, D.; Kuhlmann, S.; Kuo, C. L.; Kutepova, V.; Lee, A. T.; Lowitz, A. E.; Meyer, S. S.; Michalik, D.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Noble, G. I.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Ruhl, J. E.; Saunders, L. J.; Sayre, J. T.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J. A.; Stan, L.; Stark, A. A.; Story, K. T.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vale, L. R.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.; Young, M. R.

    2018-04-01

    We have developed superconducting Ti transition-edge sensors with Au protection layers on the top and bottom for the South Pole Telescope's third-generation receiver (a cosmic microwave background polarimeter, due to be upgraded this austral summer of 2017/2018). The base Au layer (deposited on a thin Ti glue layer) isolates the Ti from any substrate effects; the top Au layer protects the Ti from oxidation during processing and subsequent use of the sensors. We control the transition temperature and normal resistance of the sensors by varying the sensor width and the relative thicknesses of the Ti and Au layers. The transition temperature is roughly six times more sensitive to the thickness of the base Au layer than to that of the top Au layer. The normal resistance is inversely proportional to sensor width for any given film configuration. For widths greater than five micrometers, the critical temperature is independent of width.

  9. Superconducting cuprate heterostructures for hot electron bolometers

    Science.gov (United States)

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-11-01

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La2-xSrxCuO4 layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV ˜γI3, with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ /dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area ge -ph≈1 W/K cm2 at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.

  10. Superconducting cuprate heterostructures for hot electron bolometers

    International Nuclear Information System (INIS)

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-01-01

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La 2−x Sr x CuO 4 layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV∼γI 3 , with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ/dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area g e−ph ≈1 W/K cm 2 at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity

  11. UEDGE code comparisons with DIII-D bolometer data

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, J.M.

    1994-12-01

    This paper describes the work done to develop a bolometer post processor that converts volumetric radiated power values taken from a UEDGE solution, to a line integrated radiated power along chords of the bolometers in the DIII-D tokamak. The UEDGE code calculates plasma physics quantities, such as plasma density, radiated power, or electron temperature, and compares them to actual diagnostic measurements taken from the scrape off layer (SOL) and divertor regions of the DIII-D tokamak. Bolometers are devices measuring radiated power within the tokamak. The bolometer interceptors are made up of two complete arrays, an upper array with a vertical view and a lower array with a horizontal view, so that a two dimensional profile of the radiated power may be obtained. The bolometer post processor stores line integrated values taken from UEDGE solutions into a file in tabular format. Experimental data is then put into tabular form and placed in another file. Comparisons can be made between the UEDGE solutions and actual bolometer data. Analysis has been done to determine the accuracy of the plasma physics involved in producing UEDGE simulations.

  12. Transition edge sensor-energy-dispersive spectrometer (TES-EDS) using a cryogen-free dilution refrigerator for material analysis

    International Nuclear Information System (INIS)

    Tanaka, Keiichi; Odawara, Akikazu; Nagata, Atsushi; Ikeda, Masanori; Baba, Yukari; Nakayama, Satoshi; Chinone, Kazuo

    2006-01-01

    A cryogen-free energy-dispersive spectrometer (EDS) using a transition edge sensor (TES) was developed for material analysis. This system can maintain a temperature at 130 mK within 30 μK, and has good energy resolution (19 eV for Mn-Kα) for long-time measurement with a drift in the DC level of less than 0.02 eV/min. This system utilizes a dilution refrigerator (φ 272 mmxheight 572 mm) and has a snout (370 mm long and φ25 mm) similar to that in a conventional EDS system. The dilution refrigerator is pre-cooled by a GM refrigerator. A flexible tube between the dilution refrigerator and GM refrigerator damps the mechanical vibration of the GM refrigerator. Two shields (4 and 80 K) thermally protect the Cu rod (φ8 mm) cooled to be 100 mK. Windows composed of polyimide+Al film allow X-ray detection above the C-Kα line. A TES (6 mmx6 mm) and array SQUID amplifier (1.5 mmx3 mm) are mounted on top of the Cu rod. For Mn-Kα, the pulse height is 5.5 μA and decay time (τ eff ) is 90 μs. The maximum count rate (1/20 τ eff ) is estimated at about 500 cps

  13. Fabrication of close-packed TES microcalorimeter arrays using superconducting molybdenum/gold transition-edge sensors

    Science.gov (United States)

    Finkbeiner, F. M.; Brekosky, R. P.; Chervenak, J. A.; Figueroa-Feliciano, E.; Li, M. J.; Lindeman, M. A.; Stahle, C. K.; Stahle, C. M.; Tralshawala, N.

    2002-02-01

    We present an overview of our efforts in fabricating Transition-Edge Sensor (TES) microcalorimeter arrays for use in astronomical x-ray spectroscopy. Two distinct types of array schemes are currently pursued: 5×5 single pixel TES array where each pixel is a TES microcalorimeter, and Position-Sensing TES (PoST) array. In the latter, a row of 7 or 15 thermally-linked absorber pixels is read out by two TES at its ends. Both schemes employ superconducting Mo/Au bilayers as the TES. The TES are placed on silicon nitride membranes for thermal isolation from the structural frame. The silicon nitride membranes are prepared by a Deep Reactive Ion Etch (DRIE) process into a silicon wafer. In order to achieve the concept of closely packed arrays without decreasing its structural and functional integrity, we have already developed the technology to fabricate arrays of cantilevered pixel-sized absorbers and slit membranes in silicon nitride films. Furthermore, we have started to investigate ultra-low resistance through-wafer micro-vias to bring the electrical contact out to the back of a wafer. .

  14. Development of High Frequency Transition-Edge-Sensor Polarimeters for Next Generation Cosmic Microwave Background Experiments and Galactic Foreground Measurements

    Science.gov (United States)

    Walker, Samantha; Sierra, Carlos E.; Austermann, Jason Edward; Beall, James; Becker, Dan; Dober, Bradley; Duff, Shannon; Hilton, Gene; Hubmayr, Johannes; Van Lanen, Jeffrey L.; McMahon, Jeff; Simon, Sara M.; Ullom, Joel; Vissers, Michael R.; NIST Quantum Sensors Group

    2018-06-01

    Observations of the cosmic microwave background (CMB) provide a powerful tool for probing the earliest moments of the universe and therefore have the potential to transform our understanding of cosmology. In particular, precision measurements of its polarization can reveal the existence of gravitational waves produced during cosmic inflation. However, these observations are complicated by the presence of astrophysical foregrounds, which may be separated by using broad frequency coverage, as the spectral energy distribution between foregrounds and the CMB is distinct. For this purpose, we are developing large-bandwidth, feedhorn-coupled transition-edge-sensor (TES) arrays that couple polarized light from waveguide to superconducting microstrip by use of a symmetric, planar orthomode transducer (OMT). In this work, we describe two types of pixels, an ultra-high frequency (UHF) design, which operates from 195 GHz-315 GHz, and an extended ultra-high frequency (UHF++) design, which operates from 195 GHz-420 GHz, being developed for next generation CMB experiments that will come online in the next decade, such as CCAT-prime and the Simons Observatory. We present the designs, simulation results, fabrication, and preliminary measurements of these prototype pixels.

  15. Ultra-Sensitive Transition-Edge Sensors (TESs) for Far-IR/Submm Space-Borne Spectroscopy

    Science.gov (United States)

    Kenyon, M.; Day, P. K.; Bradford, C. M.; Bock, J .J.; Leduc, H. G.

    2011-01-01

    We have built surface micromachined thin-film metallized Si(x)N(y) optical absorbers for transition-edge sensors (TESs) suitable for the Background - Limited far-IR/Submm Spectrograph (BLISS). BLISS is a broadband (38 micrometers - 433 micrometers), grating spectrometer consisting of five wavebands each with a modest resolution of R (is) approx. 1000. Because BLISS requires the effective noise equivalent power (NEP) of the TES to be below 10 (exp 19) W/Hz(exp 1/2), our TESs consist of four long (1000 micrometers), narrow (0.4 micrometers ), and thin (0.25 micrometers ) Si(x) N(y) support beams that reduce the thermal conductance G between the substrate and the optical absorber. To reduce the heat capacity of the absorber and make the response time tau fast enough for BLISS, our absorbers are patterned into a mesh geometry with a fill factor of less than 10%. We use a bilayer of Ti/Au to make the effective impedance of the absorber match the impedance of the incoming radiation for each band. Measurements of the response time of the metallized absorbers to heat pulses show that their heat capacity exceeds the predictions of the Debye model. Our results are suggestive that the surface of the low pressure chemical vapor deposition (LPCVD) Si(x)N(y) used in the absorbers' construction is the source of microstates that dominate the heat capacity.

  16. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, J.; Doriese, W. B.; Fowler, J. W.; Swetz, D. S.; Jaye, C.; Fischer, D. A.; Reintsema, C. D.; Bennett, D. A.; Vale, L. R.; Mandal, U.; O' Neil, G. C.; Miaja-Avila, L.; Joe, Y. I.; El Nahhas, A.; Fullagar, W.; Parnefjord Gustafsson, F.; Sundström, V.; Kurunthu, D.; Hilton, G. C.; Schmidt, D. R.; Ullom, J. N.

    2015-04-21

    X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.

  17. A novel sensor for two-degree-of-freedom motion measurement of linear nanopositioning stage using knife edge displacement sensing technique

    Science.gov (United States)

    Zolfaghari, Abolfazl; Jeon, Seongkyul; Stepanick, Christopher K.; Lee, ChaBum

    2017-06-01

    This paper presents a novel method for measuring two-degree-of-freedom (DOF) motion of flexure-based nanopositioning systems based on optical knife-edge sensing (OKES) technology, which utilizes the interference of two superimposed waves: a geometrical wave from the primary source of light and a boundary diffraction wave from the secondary source. This technique allows for two-DOF motion measurement of the linear and pitch motions of nanopositioning systems. Two capacitive sensors (CSs) are used for a baseline comparison with the proposed sensor by simultaneously measuring the motions of the nanopositioning system. The experimental results show that the proposed sensor closely agrees with the fundamental linear motion of the CS. However, the two-DOF OKES technology was shown to be approximately three times more sensitive to the pitch motion than the CS. The discrepancy in the two sensor outputs is discussed in terms of measuring principle, linearity, bandwidth, control effectiveness, and resolution.

  18. Design of a bolometer for total-energy measurement of the linear coherent light source pulsed X-ray laser

    International Nuclear Information System (INIS)

    Friedrich, S.; Li, L.; Ott, L.L.; Kolgani, Rajeswari M.; Yong, G.J.; Ali, Z.A.; Drury, O.B.; Ables, E.; Bionta, R.M.

    2006-01-01

    We are developing a cryogenic bolometer to measure the total energy of the linear coherent light source (LCLS) free electron X-ray laser to be built at the Stanford Linear Accelerator Center. The laser will produce ultrabright X-ray pulses in the energy range between 0.8 and 8 keV with ∼10 12 photons per ∼200 fs pulse at a repeat interval of 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. The bolometer is designed to determine the total energy of each laser pulse to within (1- x ) Sr x MnO 3 sensor array at the metal-insulator transition, where the composition x is adjusted to produce the desired transition temperature. We discuss design considerations and material choices, and present numerical simulations of the thermal response

  19. Photoactivated Mixed In-Plane and Edge-Enriched p-Type MoS2 Flake-Based NO2 Sensor Working at Room Temperature.

    Science.gov (United States)

    Agrawal, Abhay V; Kumar, Rahul; Venkatesan, Swaminathan; Zakhidov, Alex; Yang, Guang; Bao, Jiming; Kumar, Mahesh; Kumar, Mukesh

    2018-05-25

    Toxic gases are produced during the burning of fossil fuels. Room temperature (RT) fast detection of toxic gases is still challenging. Recently, MoS 2 transition metal dichalcogenides have sparked great attention in the research community due to their performance in gas sensing applications. However, MoS 2 based gas sensors still suffer from long response and recovery times, especially at RT. Considering this challenge, here, we report photoactivated highly reversible and fast detection of NO 2 sensors at room temperature (RT) by using mixed in-plane and edge-enriched p-MoS 2 flakes (mixed MoS 2 ). The sensor showed fast response with good sensitivity of ∼10.36% for 10 ppm of NO 2 at RT without complete recovery. However, complete recovery was obtained with better sensor performance under UV light illumination at RT. The UV assisted NO 2 sensing showed improved performance in terms of fast response and recovery kinetics with enhanced sensitivity to 10 ppm NO 2 concentration. The sensor performance is also investigated under thermal energy, and a better sensor performance with reduced sensitivity and high selectivity toward NO 2 was observed. A detailed gas sensing mechanism based on the density functional theory (DFT) calculations for favorable NO 2 adsorption sites on in-plane and edge-enriched MoS 2 flakes is proposed. This study revealed the role of favorable adsorption sites in MoS 2 flakes for the enhanced interaction of target gases and developed a highly sensitive, reversible, and fast gas sensor for next-generation toxic gases at room temperature.

  20. Construction and calibration of a fast superconducting bolometer for molecular beams detection

    International Nuclear Information System (INIS)

    Gallinaro, G.; Varone, R.

    1975-01-01

    A tin bolometer evaporated on an anodized aluminum block is described. The noise equivalent power of the bolometer is of 10 -13 watt Hzsup(-1/2) and the time constant is 3μ sec. The bolometer is a suitable fast molecular beam detector

  1. Low-Noise Wide Bandwith, Hot Electron Bolometer Mixers for Submillimeter Wavelengths

    Science.gov (United States)

    McGrath, W. R.

    1995-01-01

    Recently a novel superconductive hot-electron micro-bolometer has been proposed which is both fast and sensitive (D. E. Prober, Appl. Phys. Lett. 62, 2119, 1993). This device has several important properties which make it useful as a heterodyne sensor for radioastronomy applications at frequencies above 1 THz. The thermal response time of the device is fast enough, several 10's of picoseconds, to allow for IF's of several GHz. This bolometer mixer should operate well up to at least 10 THz. There is no energy gap limitation as in an SIS mixer, since the mixing process relies on heating of the electron gas. In fact, rf power is absorbed more uniformly above the gap frequency. The mixer noise should be near quantum-limited, and the local oscillator (LO) power requirement is very low: / 10 nW for a Nb device. One of the unique features of this device is that it employs rapid electron diffusion into a normal metal, rather than phonon emission, as the thermal conductance that cools the heated electrons. In order for diffusion to dominate over phonon emission, the device must be short, less than 0.5.

  2. Multichannel bolometer for radiation measurements on the TCA tokamak

    International Nuclear Information System (INIS)

    Joye, B.; Marmillod, P.; Nowak, S.

    1986-01-01

    A multichannel radiation bolometer has been developed for the Tokamak Chauffage Alfven (TCA) tokamak. It has 16 equally spaced chords that view the plasma through a narrow horizontal slit. Almost an entire vertical plasma cross section can be observed. The bolometer operates on the basis of a semiconducting element which serves as a temperature-dependent resistance. A new electronic circuit has been developed which takes advantage of the semiconductor characteristics of the detector by using feedback techniques. Measurements made with this instrument are discussed

  3. X-ray microanalysis with transition edge sensors. The future of material analysis with scanning electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Hollerith, C.

    2006-07-05

    In current experiments and technical applications the demand for new and advanced concepts for the detection of radiation and particle is increasing. Low temperature detectors such as Transition Edge Sensors (TES) have been developed as ultrahigh-resolution radiation and particle detectors offering advantages in manifold applications. They were designed primarily for astrophysical experiments such as the dark matter search. In material analysis they have been introduced to revolutionize mass spectroscopy of biological molecules and Energy Dispersive X-ray Spectroscopy (EDS). EDS is the determination of the elemental constitution of samples in scanning electron microscopes (SEMs) with characteristic X-ray radiation excited by the electron beam. The use of TES detectors improves the EDS analysis of small volumes such as particles or thin layers. This is especially important for the semiconductor industry because of the continual shrinking of device size. Current structure sizes of 65 nm are already demanding new approaches in analytic methodology. In this thesis the introduction and improvement of a fully automated TES detector system in the industrial environment of a semiconductor failure analysis lab is described. This system, marketed under the trade name of 'Polaris' by the manufacturer, is based on a mechanical pulse tube cooler in combination with an adiabatic demagnetization refrigerator (ADR) for cooling the TES detector to its operating temperature. Several large improvements had to be made to the system during the total system integration. The energy resolution could be improved significantly thus enabling a better peak separation and the measurement of chemical shifts. Due to the small area of TES detectors compared with conventional EDS detectors the efficiency of the system proved to be too low for everyday use. A polycapillary X-ray lens was added to the system in order to solve this problem. The application of the lens, however, brought its

  4. Development of a high energy resolution magnetic bolometer for the determination of photon emission intensities by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Rodrigues, M.

    2007-12-01

    In this research thesis, a first chapter describes the metrological difficulties for the determination of radionuclide photon emission intensities. Then, it discusses the understanding and the required tools for the computing of a magnetic bolometer signal with respect to the different operation parameters and to the sensor geometry. The author describes the implementation of the experimental device and its validation with a first sensor. The new sensor is then optimised for the measurement of photon emission intensities with a good efficiency and a theoretical energy resolution less than 100 eV up to 200 keV. The sensor's detection efficiency and operation have been characterized with a 133 Ba source. The author finally presents the obtained results

  5. Quantum noise in a terahertz hot electron bolometer mixer

    NARCIS (Netherlands)

    Zhang, W.; Khosropanah, P.; Gao, J. R.; Kollberg, E. L.; Yngvesson, K. S.; Bansal, T.; Barends, R.; Klapwijk, T. M.

    2010-01-01

    We have measured the noise temperature of a single, sensitive superconducting NbN hot electron bolometer (HEB) mixer in a frequency range from 1.6 to 5.3 THz, using a setup with all the key components in vacuum. By analyzing the measured receiver noise temperature using a quantum noise (QN) model

  6. Scintillating bolometers: A promising tool for rare decays search

    Energy Technology Data Exchange (ETDEWEB)

    Pattavina, L., E-mail: luca.pattavina@mib.infn.it

    2013-12-21

    The idea of using a scintillating bolometer was first suggested for solar neutrino experiments in 1989. After many years of developments, now we are able to exploit this experimental technique, based on the calorimetric approach with cryogenic particle detectors, to investigate rare events such as Neutrinoless Double Beta Decay and interaction of Dark Matter candidates. The possibility to have high resolution detectors in which a very large part of the natural background can be discriminated with respect to the weak expected signal is very appealing. The goal to distinguish the different types of interactions in the detector can be achieved by means of scintillating bolometer. The simultaneous read-out of the heat and scintillation signals made with two independent bolometers enable this precious feature leading to possible background free experiment. In the frame of the LUCIFER project we report on how exploiting this technique to investigate Double Beta Decay for different isotope candidates. Moreover we demonstrate how scintillating bolometers are suited for investigating other rare events such as α decays of long living isotopes of lead and bismuth.

  7. Structural health monitoring method for wind turbine trailing edge: Crack growth detection using Fibre Bragg Grating sensor embedded in composite materials

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    In this article a novel method to assess a crack growing/damage event in composite material using Fibre Bragg Grating (FBG) sensors embedded in a host material and its application into a composite material structure, Wind Turbine Trailing Edge, is presented. A Structure-Material-FBG model......, such as compression fields ahead the crack or non-uniform strain fields, and then identify the presence of such damage in the structure. Experimental tests were conducted to fully characterize this concept and support the model. Double Cantilever Beams (DCB), made with two glass fibre beams glued with structural...

  8. Transition-Edge Hot-Electron Microbolometers for Millimeter and Submillimeter Astrophysics

    Science.gov (United States)

    Hsieh, Wen-Ting; Stevenson, Thomas; U-yen, Kongpop; Wollack, Edward; Barrentine, Emily

    2014-01-01

    The millimeter and the submillimeter wavelengths of the electromagnetic spectrum hold a wealth of information about the evolution of the universe. In particular, cosmic microwave background (CMB) radiation and its polarization carry the oldest information in the universe, and provide the best test of the inflationary paradigm available to astronomy today. Detecting gravity waves through their imprint on the CMB polarization would have extraordinary repercussions for cosmology and physics. A transition-edge hot-electron micro - bolometer (THM) consists of a superconducting bilayer transition-edge sensor (TES) with a thin-film absorber. Unlike traditional monolithic bolometers that make use of micromachined structures, the THM em ploys the decoupling between electrons and phonons at millikelvin temperatures to provide thermal isolation. The devices are fabricated photolithographically and are easily integrated with antennas via microstrip transmission lines, and with SQUID (superconducting quantum interference device) readouts. The small volume of the absorber and TES produces a short thermal time constant that facilitates rapid sky scanning. The THM consists of a thin-film metal absorber overlapping a superconducting TES. The absorber forms the termination of a superconducting microstripline that carries RF power from an antenna. The purpose of forming a separate absorber and TES is to allow flexibility in the optimization of the two components. In particular, the absorbing film's impedance can be chosen to match the antenna, while the TES impedance can be chosen to match to the readout SQUID amplifier. This scheme combines the advantages of the TES with the advantages of planar millimeter-wave transmission line circuits. Antenna-coupling to the detectors via planar transmission lines allows the detector dimensions to be much smaller than a wavelength, so the technique can be extended across the entire microwave, millimeter, and submillimeter wavelength ranges. The

  9. Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Eden, G. G. van; Morgan, T. W. [Dutch Institute for Fundamental Energy Research, 5612 AJ Eindhoven (Netherlands); Reinke, M. L.; Gray, T. K.; Lore, J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Peterson, B. J.; Mukai, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Delgado-Aparicio, L. F.; Jaworski, M. A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Sano, R. [National Institutes for Quantum and Radiological Science and Technology, Naka 311-0193 (Japan); Pandya, S. N. [Institute for Plasma Research, Bhat Village, Gandhinagar, 382428 Gujarat (India)

    2016-11-15

    The InfraRed Video Bolometer (IRVB) is a powerful tool to measure radiated power in magnetically confined plasmas due to its ability to obtain 2D images of plasma emission using a technique that is compatible with the fusion nuclear environment. A prototype IRVB has been developed and installed on NSTX-U to view the lower divertor. The IRVB is a pinhole camera which images radiation from the plasma onto a 2.5 μm thick, 9 × 7 cm{sup 2} Pt foil and monitors the resulting spatio-temporal temperature evolution using an IR camera. The power flux incident on the foil is calculated by solving the 2D+time heat diffusion equation, using the foil’s calibrated thermal properties. An optimized, high frame rate IRVB, is quantitatively compared to results from a resistive bolometer on the bench using a modulated 405 nm laser beam with variable power density and square wave modulation from 0.2 Hz to 250 Hz. The design of the NSTX-U system and benchtop characterization are presented where signal-to-noise ratios are assessed using three different IR cameras: FLIR A655sc, FLIR A6751sc, and SBF-161. The sensitivity of the IRVB equipped with the SBF-161 camera is found to be high enough to measure radiation features in the NSTX-U lower divertor as estimated using SOLPS modeling. The optimized IRVB has a frame rate up to 50 Hz, high enough to distinguish radiation during edge-localized-modes (ELMs) from that between ELMs.

  10. 3D active edge silicon sensors: Device processing, yield and QA for the ATLAS-IBL production

    Energy Technology Data Exchange (ETDEWEB)

    Da Vià, Cinzia; Boscardil, Maurizio; Dalla Betta, GianFranco; Darbo, Giovanni; Fleta, Celeste; Gemme, Claudia; Giacomini, Gabriele; Grenier, Philippe; Grinstein, Sebastian; Hansen, Thor-Erik; Hasi, Jasmine; Kenney, Christopher; Kok, Angela; La Rosa, Alessandro; Micelli, Andrea; Parker, Sherwood; Pellegrini, Giulio; Pohl, David-Leon; Povoli, Marco; Vianello, Elisa; Zorzi, Nicola; Watts, S. J.

    2013-01-01

    3D silicon sensors, where plasma micromachining is used to etch deep narrow apertures in the silicon substrate to form electrodes of PIN junctions, were successfully manufactured in facilities in Europe and USA. In 2011 the technology underwent a qualification process to establish its maturity for a medium scale production for the construction of a pixel layer for vertex detection, the Insertable B-Layer (IBL) at the CERN-LHC ATLAS experiment. The IBL collaboration, following that recommendation from the review panel, decided to complete the production of planar and 3D sensors and endorsed the proposal to build enough modules for a mixed IBL sensor scenario where 25% of 3D modules populate the forward and backward part of each stave. The production of planar sensors will also allow coverage of 100% of the IBL, in case that option was required. This paper will describe the processing strategy which allowed successful 3D sensor production, some of the Quality Assurance (QA) tests performed during the pre-production phase and the production yield to date.

  11. 3D active edge silicon sensors: Device processing, yield and QA for the ATLAS-IBL production

    Energy Technology Data Exchange (ETDEWEB)

    Da Vià, Cinzia, E-mail: cinzia.da.via@cern.ch [School of Physics and Astronomy, The University of Manchester, Oxford Road, M13 9PL Manchester (United Kingdom); Boscardil, Maurizio [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy); Dalla Betta, GianFranco [DISI, Università degli Studi di Trento and INFN, Via Sommarive 14, I-38123 Trento (Italy); Darbo, Giovanni [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Fleta, Celeste [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Gemme, Claudia [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Giacomini, Gabriele [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy); Grenier, Philippe [SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Grinstein, Sebastian [Institut de Fisica d' Altes Energies (IFAE) and ICREA, Universitat Autonoma de Barcelona (UAB) E-08193, Bellaterra, Barcelona (Spain); Hansen, Thor-Erik [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); Hasi, Jasmine; Kenney, Christopher [SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Kok, Angela [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); La Rosa, Alessandro [CERN CH 1211, Geneva 23 (Switzerland); Micelli, Andrea [Tne University of Udine and INFN, via del Cotonificio 108, 33100 Udine (Italy); Parker, Sherwood [University of Hawaii, c/o Lawrence Berkeley Laboratory, Berkeley, CA 94720 (United States); Pellegrini, Giulio [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Pohl, David-Leon [Physikalisches Institut der Universität Bonn, Nußallee 12 D-53115, Bonn, Federal Republic of Germany (Germany); Povoli, Marco [DISI, Università degli Studi di Trento and INFN, Via Sommarive 14, I-38123 Trento (Italy); and others

    2013-01-21

    3D silicon sensors, where plasma micromachining is used to etch deep narrow apertures in the silicon substrate to form electrodes of PIN junctions, were successfully manufactured in facilities in Europe and USA. In 2011 the technology underwent a qualification process to establish its maturity for a medium scale production for the construction of a pixel layer for vertex detection, the Insertable B-Layer (IBL) at the CERN-LHC ATLAS experiment. The IBL collaboration, following that recommendation from the review panel, decided to complete the production of planar and 3D sensors and endorsed the proposal to build enough modules for a mixed IBL sensor scenario where 25% of 3D modules populate the forward and backward part of each stave. The production of planar sensors will also allow coverage of 100% of the IBL, in case that option was required. This paper will describe the processing strategy which allowed successful 3D sensor production, some of the Quality Assurance (QA) tests performed during the pre-production phase and the production yield to date.

  12. Development of neutron-transmutation-doped germanium bolometer material

    International Nuclear Information System (INIS)

    Palaio, N.P.

    1983-08-01

    The behavior of lattice defects generated as a result of the neutron-transmutation-doping of germanium was studied as a function of annealing conditions using deep level transient spectroscopy (DLTS) and mobility measurements. DLTS and variable temperature Hall effect were also used to measure the activation of dopant impurities formed during the transmutation process. In additioon, a semi-automated method of attaching wires on to small chips of germanium ( 3 ) for the fabrication of infrared detecting bolometers was developed. Finally, several different types of junction field effect transistors were tested for noise at room and low temperature (approx. 80 K) in order to find the optimum device available for first stage electronics in the bolometer signal amplification circuit

  13. Terahertz hot electron bolometer waveguide mixers for GREAT

    OpenAIRE

    Pütz, P.; Honingh, C. E.; Jacobs, K.; Justen, M.; Schultz, M.; Stutzki, J.

    2012-01-01

    Supplementing the publications based on the first-light observations with the German Receiver for Astronomy at Terahertz frequencies (GREAT) on SOFIA, we present background information on the underlying heterodyne detector technology. We describe the superconducting hot electron bolometer (HEB) detectors that are used as frequency mixers in the L1 (1400 GHz), L2 (1900 GHz), and M (2500 GHz) channels of GREAT. Measured performance of the detectors is presented and background information on the...

  14. Antenna-coupled TES bolometers for the SPIDER experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, C.L. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)]|[California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125 (United States)]. E-mail: clkuo@astro.caltech.edu; Ade, P. [University of Wales, Cardiff, 5 The Parade, Cardiff, CF24 3YB, Wales (United Kingdom); Bock, J.J. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)]|[California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125 (United States); Day, P. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)]|[California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125 (United States); Goldin, A.; Golwala, S.; Hristov, V.; Jones, W.C.; Lange, A.E.; Rossinot, P.; Vayonakis, A.; Wang, G. [California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125 (United States); Halpern, M. [University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4 (Canada); Hilton, G.; Irwin, K. [National Institute of Standards and Technology, 325 Broadway, Boulder, CO (United States); Holmes, W.; Kenyon, M.; LeDuc, H.G. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); MacTavish, C. [University of Toronto, 60 St. George Street, Toronto, ON, M5S 1A7 (Canada); Montroy, T.; Ruhl, J. [Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Netterfield, C.B. [University of Toronto, 60 St. George Street, Toronto, ON, M5S 1A7 (Canada); Yun, M. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)]|[University of Pittsburgh, 348 Benedum Engineering Hall, Pittsburgh, PA 15261 (United States); Zmuidzinas, J. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)]|[California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125 (United States)

    2006-04-15

    SPIDER is a proposed balloon-borne experiment designed to search for the imprints of gravity waves on the polarization of the cosmic microwave background radiation. The required wide frequency coverage, large number of sensitive detectors, and the stringent power constraints on a balloon are made possible by antenna-coupled TES bolometers. Several prototype devices have been fabricated and optically characterized. Their spectral and angular responses agree well with the theoretical expectations.

  15. The detector calibration system for the CUORE cryogenic bolometer array

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, Jeremy S., E-mail: jeremy.cushman@yale.edu [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Dally, Adam [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Davis, Christopher J. [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Ejzak, Larissa; Lenz, Daniel [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Lim, Kyungeun E. [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Heeger, Karsten M., E-mail: karsten.heeger@yale.edu [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Maruyama, Reina H. [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Nucciotti, Angelo [Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126 (Italy); INFN – Sezione di Milano Bicocca, Milano I-20126 (Italy); Sangiorgio, Samuele [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Wise, Thomas [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2017-02-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of {sup 130}Te and other rare events. The CUORE detector consists of 988 TeO{sub 2} bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.

  16. Regional estimation of savanna grass nitrogen using the red-edge band of the RapidEye sensor

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2012-10-01

    Full Text Available recent high resolution spaceborne multispectral sensor (i.e. RapidEye) in the Kruger National Park (KNP) and its surrounding areas, South Africa. The RapidEyesensor contains five spectral bands in the visible-to-near infrared (VNIR), including a red...

  17. Infrared detection with high-[Tc] bolometers and response of Nb tunnel junctions to picosecond voltage pulses

    Energy Technology Data Exchange (ETDEWEB)

    Verghese, S.

    1993-05-01

    Oxide superconductors with high critical temperature [Tc] make sensitive thermometers for several types of infrared bolometers. The authors built composite bolometers with YBa[sub 2]Cu[sub 3]O[sub 7[minus][delta

  18. Update on scribe–cleave–passivate (SCP) slim edge technology for silicon sensors: Automated processing and radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Fadeyev, V., E-mail: fadeyev@ucsc.edu [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Ely, S.; Galloway, Z.; Ngo, J.; Parker, C.; Sadrozinski, H.F.-W. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Christophersen, M.; Phlips, B.F. [U.S. Naval Research Laboratory, Code 7654, 4555 Overlook Avenue, Southwest Washington, DC 20375 (United States); Pellegrini, G.; Rafi, J.M.; Quirion, D. [Instituto de Microelectrónica de Barcelona, IMB-CNM-CSIC, Bellaterra, Barcelona (Spain); Dalla Betta, G.-F. [INFN and University of Trento, Via Sommarive, 14, 38123 Povo di Trento (Italy); Boscardin, M. [Fondazione Bruno Kessler, Via Sommarive, 18, 38123 Povo di Trento (Italy); Casse, G. [Department of Physics, University of Liverpool, O. Lodge Laboratory, Oxford Street, Liverpool L69 7ZE (United Kingdom); Gorelov, I.; Hoeferkamp, M.; Metcalfe, J.; Seidel, S. [Department of Physics and Astronomy, University of New Mexico, MSC 07 4220, 1919 Lomas Boulevard NE, Albuquerque, NM 87131 (United States); Gaubas, E.; Ceponis, T. [Institute of Applied Research, Vilnius University, Sauletekio 9, LT-10222 Vilnius (Lithuania); and others

    2014-11-21

    We pursue scribe–cleave–passivate (SCP) technology for making “slim edge” sensors. The goal is to reduce the inactive region at the periphery of the devices while maintaining their performance. In this paper we report on two aspects of the current efforts. The first one involves fabrication options for mass production. We describe the automated cleaving tests and a simplified version of SCP post-processing of n-type devices. Another aspect is the radiation resistance of the passivation. We report on the radiation tests of n- and p-type devices with protons and neutrons.

  19. Design of a four-channel bolometer module for ASDEX upgrade and tore supra

    International Nuclear Information System (INIS)

    Mueller, E.R.; Weber, G.; Mast, F.; Schramm, G.; Buchelt, E.; Andelfinger, C.

    1985-10-01

    A new small-sized four-bolometer module for application in high-temperature plasma diagnostics has been designed. The four bolometers and the four reference bolometers shielded against radiation are placed side by side on one kapton foil, the entire arrangement occupying an area of 2.0x3.3 cm 2 . The central part of each bolometer consists of a 1.5x4 mm 2 large, 4 to 15 μm thick radiation absorber made of gold, a 7.5 μm thick kapton carrier foil, and a 0.05 μm thick meander-like gold resistor (conduction path width: 30 μm). It offers all the advantages already provided by the well-known ASDEX and JET bolometers, such as very high operating reliability and resistance to nuclear radiation damage. It is optional to enlarge the cooling time constant of the bolometer in a controlled way from a few milliseconds up to several hundreds, thus improving the sensitivity to very weak signals in the low-frequency (<=20 Hz) part of the radiation spectrum, by means of an additional (thin) gold layer that delays the heat losses from the bolometer foil to the cooling body. Since the bolometer is very suitable for AC-bridge electronics and all bridge resistors are arranged on a minimum area interference signals should be suppressed to extremely low levels. (orig.)

  20. Antenna-coupled 30 THz hot electron bolometer mixers

    OpenAIRE

    Shcherbatenko, M.; Lobanov, Y.; Benderov, O.; Shurakov, A.; Ignatov, A.; Titova, N.; Finkel, M.; Maslennikov, S.; Kaurova, N.; Voronov, B.M.; Rodin, A.; Klapwijk, T.M.; Gol'tsman, G.N.

    2015-01-01

    We report on design and characterization of a superconducting Hot Electron Bolometer Mixer integrated with a logarithmic spiral antenna for mid-IR range observations. The antenna parameters have been adjusted to achieve the ultimate performance at 10 ?m (30 THz) range where O3, NH3, CO2, CH4, N2O, …. lines in the Earth’s atmosphere, in planetary atmospheres and in the interstellar space can be observed. The HEB mixer is made of a thin NbN film deposited onto a GaAs substrate. To couple the ra...

  1. Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers

    Science.gov (United States)

    Skalare, Anders; McGrath, William; Bumble, Bruce; LeDuc, Henry

    2004-01-01

    A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/normal- conducting transition in a thin strip of niobium and that was described elsewhere.

  2. Quantum noise in a terahertz hot electron bolometer mixer

    OpenAIRE

    Zhang, W.; Khosropanah, P.; Gao, J. R.; Kollberg, E. L.; Yngvesson, K. S.; Bansal, T.; Barends, R.; Klapwijk, T. M.

    2010-01-01

    We have measured the noise temperature of a single, sensitive superconducting NbN hot electron bolometer (HEB) mixer in a frequency range from 1.6 to 5.3 THz, using a setup with all the key components in vacuum. By analyzing the measured receiver noise temperature using a quantum noise (QN) model for HEB mixers, we confirm the effect of QN. The QN is found to be responsible for about half of the receiver noise at the highest frequency in our measurements. The ?-factor (the quantum efficiency ...

  3. Sea level characterization of a 1100 g sapphire bolometer

    CERN Document Server

    Pécourt, S; Bobin, C; Coron, N; Jesus, M D; Hadjout, J P; Leblanc, J W; Marcillac, P D

    1999-01-01

    A first characterization of a 1100 g sapphire bolometer, performed at sea level and at a working temperature of 40 mK, is presented. Despite perturbations coming from the high-radioactive background and cosmic rays, calibration spectra could be achieved with an internal alpha source and a sup 5 sup 7 Co gamma-ray source: the experimental threshold is 25 keV, while the FWHM resolution is 17.4 keV for the 122 keV peak. Possible heat release effects are discussed, and a new limit of 9x10 sup - sup 1 sup 4 W/g is obtained for sapphire.

  4. Surface Sensitive Bolometer for the CUORE background reduction

    International Nuclear Information System (INIS)

    Pedretti, M.; Foggetta, L.; Giuliani, A.; Nones, C.; Sangiorgio, S.

    2005-01-01

    The most critical point of the CUORE Project [CUORE Proposal, see the web page: http://crio.mib.infn.it/wig] is the background level (BKGL) in the neutrinoless double beta decay (0νββ) region that is dominated by degraded particles coming from materials that face the detectors. Surface Sensitive Bolometers (SSBs) have been developed in order to reduce the BKGL by means of an active background discrimination. The principle of this technique and the first results obtained are briefly described in the following paper

  5. A new method for background rejection with surface sensitive bolometers

    International Nuclear Information System (INIS)

    Nones, C.; Foggetta, L.; Giuliani, A.; Pedretti, M.; Salvioni, C.; Sangiorgio, S.

    2006-01-01

    We report the performance of three prototype TeO 2 macrobolometers, able to identify events due to energy deposited at the detector surface. This capability is obtained by thermally coupling thin active layers to the main absorber of the bolometer, and is proved by irradiating the detectors with alpha particles. This technique can be very useful in view of background study and reduction for the CUORE experiment, a next generation Double Beta Decay search based on TeO 2 macrobolometers and to be installed in the Laboratori Nazionali del Gran Sasso

  6. Ruthenium oxide resistors as sensitive elements of composite bolometers

    International Nuclear Information System (INIS)

    Benassai, M.; Gallinaro, G.; Gatti, F.; Siri, S.; Vitale, S.

    1988-01-01

    Bolometers for particle detection made with Ruthenium oxide thermistors could be produced by means of a simple technique on a variety of different materials as substrata. Preliminary results on alpha particle detection with devices realized using commercial RuO 2 thick film resistor (Tfr) are considered positive for devices operating between. 3 and .1 k and determined us to pursue further the idea. Ruthenium oxide resistors on sapphire at the moment are being prepared. The behaviour of these devices st temperatures lower than .1 k has to be investigated in more detail

  7. Design of a bolometer for total-energy measurement of the linear coherent light source pulsed X-ray laser

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States)]. E-mail: Friedrich1@llnl.gov; Li, L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Ott, L.L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Kolgani, Rajeswari M. [Department of Physics, Geosciences and Astronomy, Towson University, 8000 York Avenue, Towson MD 21252 (United States); Yong, G.J. [Department of Physics, Geosciences and Astronomy, Towson University, 8000 York Avenue, Towson MD 21252 (United States); Ali, Z.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Drury, O.B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Ables, E. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Bionta, R.M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States)

    2006-04-15

    We are developing a cryogenic bolometer to measure the total energy of the linear coherent light source (LCLS) free electron X-ray laser to be built at the Stanford Linear Accelerator Center. The laser will produce ultrabright X-ray pulses in the energy range between 0.8 and 8 keV with {approx}10{sup 12} photons per {approx}200 fs pulse at a repeat interval of 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. The bolometer is designed to determine the total energy of each laser pulse to within <0.1%, taking into account thermal and mechanical stress to prevent melting in the LCLS beam due to its high energy density. We propose to use a magnetoresistive Nd{sub (1-} {sub x} {sub )}Sr {sub x} MnO{sub 3} sensor array at the metal-insulator transition, where the composition x is adjusted to produce the desired transition temperature. We discuss design considerations and material choices, and present numerical simulations of the thermal response.

  8. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  9. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  10. Status of NTD Ge bolometer material and devices

    International Nuclear Information System (INIS)

    Haller, E.E.; Haegel, N.M.; Park, I.S.

    1985-08-01

    This status report is a direct follow-up to the presentation given at the first IR Detector Technology Workshop which took place at NASA Ames Research Center on July 12 and 13, 1983. The conclusions which we presented at that meeting are still fully valid. In the meantime we have learned more about the physics of hopping conduction at very low temperatures which will be important for bolometer design and operation at ever decreasing temperatures. Resistivity measurements have been extended down to 50 mK. At such low temperatures, precise knowledge of the neutron capture cross sections sigma/sub n/ of the various Ge isotopes is critical if one is to make an accurate prediction of the dopant concentrations and compensation, and therefore resistivity, that will result from a given irradiation. We describe an empirical approach for obtaining the desired resistivity material and are in the process of conducting a set of experiments which will improve the knowledge of the effective sigma/sub n/ values for a given location in a particular reactor. A wider range of NTD Ge samples is now available. Noise measurements on bolometers with ion implanted contacts show that no 1/f noise component appears down to 1 Hz and probably lower. 4 refs., 5 figs

  11. Multi-parameter Nonlinear Gain Correction of X-ray Transition Edge Sensors for the X-ray Integral Field Unit

    Science.gov (United States)

    Cucchetti, E.; Eckart, M. E.; Peille, P.; Porter, F. S.; Pajot, F.; Pointecouteau, E.

    2018-04-01

    With its array of 3840 Transition Edge Sensors (TESs), the Athena X-ray Integral Field Unit (X-IFU) will provide spatially resolved high-resolution spectroscopy (2.5 eV up to 7 keV) from 0.2 to 12 keV, with an absolute energy scale accuracy of 0.4 eV. Slight changes in the TES operating environment can cause significant variations in its energy response function, which may result in systematic errors in the absolute energy scale. We plan to monitor such changes at pixel level via onboard X-ray calibration sources and correct the energy scale accordingly using a linear or quadratic interpolation of gain curves obtained during ground calibration. However, this may not be sufficient to meet the 0.4 eV accuracy required for the X-IFU. In this contribution, we introduce a new two-parameter gain correction technique, based on both the pulse-height estimate of a fiducial line and the baseline value of the pixels. Using gain functions that simulate ground calibration data, we show that this technique can accurately correct deviations in detector gain due to changes in TES operating conditions such as heat sink temperature, bias voltage, thermal radiation loading and linear amplifier gain. We also address potential optimisations of the onboard calibration source and compare the performance of this new technique with those previously used.

  12. Adiabatic Demagnetization Refrigerator Field Mapping and Shielding Models for a 70 mK Superconducting Transition Edge Sensor Array and Associated Electronics

    Science.gov (United States)

    Ladner, D. R.; Martinez-Galarce, D. S.; McCammon, D.

    2006-04-01

    An X-ray detection instrument to be flown on a sounding rocket experiment (the Advanced Technology Solar Spectroscopic Imager - ATSSI) for solar physics observations is being developed by the Lockheed Martin Solar and Astrophysics Laboratory (LMSAL). The detector is a novel class of microcalorimeter, a superconducting Transition-Edge Sensor (TES), that coupled with associated SQUID and feedback electronics requires high temperature stability at ~70 mK to resolve the energy of absorbed X-ray photons emitted from the solar corona. The cooling system incorporates an existing Adiabatic Demagnetization Refrigerator (ADR) developed at the University of Wisconsin (UW), which was previously flown to study the diffuse cosmic X-ray background. The Si thermistor detectors for that project required 130 K shielded JFET electronic components that are much less sensitive to the external field of the ADR solenoid than are the 1st (~70 mK) and 2nd (~2 K) SQUID stages used with TESs for solar observations. Modification of the Wisconsin ADR design, including TES focal plane and electronics re-positioning, therefore requires a tradeoff between the existing ADR solenoid nulling coil geometry and a low mass passive solenoid shield, while preserving the vibration isolation features of the existing design. We have developed models to accurately compute the magnetic field with and without shielding or nulling coils at critical locations to guide the re-design of the detector subsystem. The models and their application are described.

  13. Monolayer Graphene Bolometer as a Sensitive Far-IR Detector

    Science.gov (United States)

    Karasik, Boris S.; McKitterick, Christopher B.; Prober, Daniel E.

    2014-01-01

    In this paper we give a detailed analysis of the expected sensitivity and operating conditions in the power detection mode of a hot-electron bolometer (HEB) made from a few micro m(sup 2) of monolayer graphene (MLG) flake which can be embedded into either a planar antenna or waveguide circuit via NbN (or NbTiN) superconducting contacts with critical temperature approx. 14 K. Recent data on the strength of the electron-phonon coupling are used in the present analysis and the contribution of the readout noise to the Noise Equivalent Power (NEP) is explicitly computed. The readout scheme utilizes Johnson Noise Thermometry (JNT) allowing for Frequency-Domain Multiplexing (FDM) using narrowband filter coupling of the HEBs. In general, the filter bandwidth and the summing amplifier noise have a significant effect on the overall system sensitivity.

  14. Optical characterization of ultra-sensitive TES bolometers for SAFARI

    Science.gov (United States)

    Audley, Michael D.; de Lange, Gerhard; Gao, Jian-Rong; Khosropanah, Pourya; Mauskopf, Philip D.; Morozov, Dmitry; Trappe, Neil A.; Doherty, Stephen; Withington, Stafford

    2014-07-01

    We have characterized the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI's three bolometer arrays will image a 2'×2' field of view with spectral information over the wavelength range 34—210 μm. SAFARI requires extremely sensitive detectors (goal NEP ~ 0.2 aW/√Hz), with correspondingly low saturation powers (~5 fW), to take advantage of SPICA's cooled optics. We have constructed an ultra-low background optical test facility containing an internal cold black-body illuminator and have recently added an internal hot black-body source and a light-pipe for external illumination. We illustrate the performance of the test facility with results including spectral-response measurements. Based on an improved understanding of the optical throughput of the test facility we find an optical efficiency of 60% for prototype SAFARI detectors.

  15. Bolometer Results in the Long-Microwave-Heated WEGA Stellarator

    International Nuclear Information System (INIS)

    Zhang, D.; Otte, M.; Giannone, L.

    2006-01-01

    A 12 channel bolometer camera based on a gold foil absorber has been installed on the WEGA stellarator to measure the radiation power losses of the plasma. The measured total radiation power is typically less than 30% of the ECRH input power. However, this radiated power fraction depends on the ECRH input power, the magnetic configuration and the field strength as well as the working gas. For separatrix-bounded configurations, core-peaked radiation intensity profiles are usually detected, while in a limiter-configuration they are flatter, broader and more asymmetric. In addition, significant radiation originating from the SOL region is measured for all the cases studied. The SOL radiation changes with changing the plasma-wave interaction region, indicating a strong correlation between radiation and power deposition. Under the WEGA-plasma conditions (Te<10 eV), it is considered that the radiation profile reflects the plasma pressure associated with the power deposition distribution of the ECRH

  16. Bolometer Results in the Long-Microwave-Heated WEGA Stellarator

    Science.gov (United States)

    Zhang, D.; Otte, M.; Giannone, L.

    2006-01-01

    A 12 channel bolometer camera based on a gold foil absorber has been installed on the WEGA stellarator to measure the radiation power losses of the plasma. The measured total radiation power is typically less than 30% of the ECRH input power. However, this radiated power fraction depends on the ECRH input power, the magnetic configuration and the field strength as well as the working gas. For separatrix-bounded configurations, core-peaked radiation intensity profiles are usually detected, while in a limiter-configuration they are flatter, broader and more asymmetric. In addition, significant radiation originating from the SOL region is measured for all the cases studied. The SOL radiation changes with changing the plasma-wave interaction region, indicating a strong correlation between radiation and power deposition. Under the WEGA-plasma conditions (Te<10 eV), it is considered that the radiation profile reflects the plasma pressure associated with the power deposition distribution of the ECRH.

  17. An implanted $^{228}$Ra source for response characterization of bolometers

    CERN Multimedia

    TeO$_{2}$ crystals are used as bolometers in experiments searching for Double $\\beta$ Decay without emission of neutrinos. One of the most important issues in this extremely delicate kind of experiments is the discrimination of the background from the real signal. A deep knowledge of the bolometric response to $\\alpha$-particles is therefore needed to recognize and discard them, since it has been proven that $\\alpha$ surface contamination could be a major contribution in our background budget. We would like to use ISOLDE’s capability of implanting $^{228}$Ra to make a long-lived source feeding several monochromatic $\\alpha$- and recoiling nuclei, with little or no $\\alpha$-peak broadening due to the source itself, for tests of our detectors in Milano and Gran Sasso INFN National Lab.

  18. A strained silicon cold electron bolometer using Schottky contacts

    Energy Technology Data Exchange (ETDEWEB)

    Brien, T. L. R., E-mail: tom.brien@astro.cf.ac.uk; Ade, P. A. R.; Barry, P. S.; Dunscombe, C.; Morozov, D. V.; Sudiwala, R. V. [School of Physics and Astronomy, Cardiff University, Queen' s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Leadley, D. R.; Myronov, M.; Parker, E. H. C.; Prest, M. J.; Whall, T. E. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Prunnila, M. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT Espoo (Finland); Mauskopf, P. D. [School of Physics and Astronomy, Cardiff University, Queen' s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Department of Physics and School of Earth and Space Exploration, Arizona State University, 650 E. Tyler Mall, Tempe, Arizona 85287 (United States)

    2014-07-28

    We describe optical characterisation of a strained silicon cold electron bolometer (CEB), operating on a 350 mK stage, designed for absorption of millimetre-wave radiation. The silicon cold electron bolometer utilises Schottky contacts between a superconductor and an n{sup ++} doped silicon island to detect changes in the temperature of the charge carriers in the silicon, due to variations in absorbed radiation. By using strained silicon as the absorber, we decrease the electron-phonon coupling in the device and increase the responsivity to incoming power. The strained silicon absorber is coupled to a planar aluminium twin-slot antenna designed to couple to 160 GHz and that serves as the superconducting contacts. From the measured optical responsivity and spectral response, we calculate a maximum optical efficiency of 50% for radiation coupled into the device by the planar antenna and an overall noise equivalent power, referred to absorbed optical power, of 1.1×10{sup −16} W Hz{sup −1/2} when the detector is observing a 300 K source through a 4 K throughput limiting aperture. Even though this optical system is not optimized, we measure a system noise equivalent temperature difference of 6 mK Hz{sup −1/2}. We measure the noise of the device using a cross-correlation of time stream data, measured simultaneously with two junction field-effect transistor amplifiers, with a base correlated noise level of 300 pV Hz{sup −1/2} and find that the total noise is consistent with a combination of photon noise, current shot noise, and electron-phonon thermal noise.

  19. Automated measurement of bolometer line of sight alignment and characteristics for application in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Penzel, Florian Olivier

    2015-07-01

    The line of sight (LOS) alignment and characteristic of a bolometer camera used in a fusion experiment is a crucial parameter for the measurement accuracy of the diagnostic. A robot based LOS measurement device has been developed which allows the fully automatic measurement of the two dimensional transmission function of a bolometer camera. It has been used to optimize camera prototypes for ITER and has been successfully operated in the fusion experiment ASDEX Upgrade in order to measure the LOS alignment.

  20. Design and fabrication of two-dimensional semiconducting bolometer arrays for HAWC and SHARC-II

    Science.gov (United States)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. D.; Harper, D. A.; Jhabvala, Murzy D.; Moseley, S. H.; Rennick, Timothy; Shirron, Peter J.; Smith, W. W.; Staguhn, Johannes G.

    2003-02-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC II) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC "Pop-Up" Detectors (PUD's) use a unique folding technique to enable a 12 × 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 × 32-element array. Engineering results from the first light run of SHARC II at the Caltech Submillimeter Observatory (CSO) are presented.

  1. Transition-Edge Sensor Pixel Parameter Design of the Microcalorimeter Array for the X-Ray Integral Field Unit on Athena

    Science.gov (United States)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; hide

    2016-01-01

    The focal plane of the X-ray integral field unit (X-IFU) for ESA's Athena X-ray observatory will consist of approximately 4000 transition edge sensor (TES) x-ray microcalorimeters optimized for the energy range of 0.2 to 12 kiloelectronvolts. The instrument will provide unprecedented spectral resolution of approximately 2.5 electronvolts at energies of up to 7 kiloelectronvolts and will accommodate photon fluxes of 1 milliCrab (90 counts per second) for point source observations. The baseline configuration is a uniform large pixel array (LPA) of 4.28 arcseconds pixels that is read out using frequency domain multiplexing (FDM). However, an alternative configuration under study incorporates an 18 by × 18 small pixel array (SPA) of 2 arcseconds pixels in the central approximately 36 arcseconds region. This hybrid array configuration could be designed to accommodate higher fluxes of up to 10 milliCrabs (900 counts per second) or alternately for improved spectral performance (less than 1.5 electronvolts) at low count-rates. In this paper we report on the TES pixel designs that are being optimized to meet these proposed LPA and SPA configurations. In particular we describe details of how important TES parameters are chosen to meet the specific mission criteria such as energy resolution, count-rate and quantum efficiency, and highlight performance trade-offs between designs. The basis of the pixel parameter selection is discussed in the context of existing TES arrays that are being developed for solar and x-ray astronomy applications. We describe the latest results on DC biased diagnostic arrays as well as large format kilo-pixel arrays and discuss the technical challenges associated with integrating different array types on to a single detector die.

  2. Transition-edge sensor pixel parameter design of the microcalorimeter array for the x-ray integral field unit on Athena

    Science.gov (United States)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Miniussi, A. R.; Porter, F. S.; Sadleir, J. E.; Sakai, K.; Wakeham, N. A.; Wassell, E. J.; Yoon, W.; Bennett, D. A.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Morgan, K. M.; Pappas, C. G.; Reintsema, C. N.; Swetz, D. S.; Ullom, J. N.; Irwin, K. D.; Akamatsu, H.; Gottardi, L.; den Hartog, R.; Jackson, B. D.; van der Kuur, J.; Barret, D.; Peille, P.

    2016-07-01

    The focal plane of the X-ray integral field unit (X-IFU) for ESA's Athena X-ray observatory will consist of 4000 transition edge sensor (TES) x-ray microcalorimeters optimized for the energy range of 0.2 to 12 keV. The instrument will provide unprecedented spectral resolution of 2.5 eV at energies of up to 7 keV and will accommodate photon fluxes of 1 mCrab (90 cps) for point source observations. The baseline configuration is a uniform large pixel array (LPA) of 4.28" pixels that is read out using frequency domain multiplexing (FDM). However, an alternative configuration under study incorporates an 18 × 18 small pixel array (SPA) of 2" pixels in the central 36" region. This hybrid array configuration could be designed to accommodate higher fluxes of up to 10 mCrab (900 cps) or alternately for improved spectral performance (< 1.5 eV) at low count-rates. In this paper we report on the TES pixel designs that are being optimized to meet these proposed LPA and SPA configurations. In particular we describe details of how important TES parameters are chosen to meet the specific mission criteria such as energy resolution, count-rate and quantum efficiency, and highlight performance trade-offs between designs. The basis of the pixel parameter selection is discussed in the context of existing TES arrays that are being developed for solar and x-ray astronomy applications. We describe the latest results on DC biased diagnostic arrays as well as large format kilo-pixel arrays and discuss the technical challenges associated with integrating different array types on to a single detector die.

  3. Development of Fast, Background-Limited Transition-Edge Sensors for the Background-Limited Infrared/Sub-Millimetre Spectrograph (BLISS) for SPICA

    Science.gov (United States)

    Beyer, Andrew D.; Runyan, M. C.; Kenyon, M.; Echternach, P. M.; Chui, T.; Bumble, B.; Bradford, C. M.; Holmes, W. A.; Bock, J. J.

    2012-01-01

    We report experimental progress toward demonstrating background-limited arrays of membrane-isolated transition-edge sensors (TESs) for the Background Limited Infrared/Sub-mm Spectrograph (BLISS). BLISS is a space-borne instrument with grating spectrometers for wavelengths lambda = 35-435 microns and with R = lambda/(delta)lambda approx. 500. The goals for BLISS TESs are: noise equivalent power (NEP) = 5x10(exp -20) W/Hz(1/2) and response time t or = 135mK) and Mo/Cu proximitized bilayers, where T(sub c) is the thermistor transition temperature. We measured the Ir TES arrays in our 50mK adiabatic demagnetization refrigerator test system, which can measure up to eight 1x32 arrays simultaneously using a time-division multiplexer, as well as our single-pixel test system which can measure down to 15mK. In our previous Ir array measurements our best reported performance was NEP=2.5x10(exp -19) W/Hz(1/2) and tapprox.5ms for straight-beam TESs. In fact, we expected NEPapprox.1.5x10(exp -19)W/Hz(1/2) for meander beam TESs, but did not achieve this previously due to 1/f noise. Here, we detail improvements toward measuring the expected NEP and demonstrate NEP=(1.3+0.2)x10(exp -19)W/Hz(1/2) in our single-pixel test system and NEP=(1.6+0.3)x10(exp -19)W/Hz(1/2) in our array test system.

  4. Development of Fast, Background-Limited Transition-Edge Sensors for the Background-Limited Infrared/Sub-mm Spectrograph (BLISS) for SPICA

    Science.gov (United States)

    Beyer, Andrew D.; Runyan, M. C.; Kenyon, M.; Echternach, P. M .; Chui, T.; Bumble, B.; Bradford, C. M.; Holmes, W. A.; Bock, J. J.

    2012-01-01

    We report experimental progress toward demonstrating background-limited arrays of membrane-isolated transition-edge sensors (TESs) for the Background Limited Infrared/Sub-mm Spectrograph (BLISS). BLISS is a space-borne instrument with grating spectrometers for wavelengths lambda=35-435 micron and with R=lambda/delta lambda approximately equals 500. The goals for BLISS TESs are: noise equivalent power (NEP) = 5x10 (sup -20) W/Hz(exp 1/2) and response time tau = 135mK) and Mo/Cu proximitized bilayers, where T(sub c) is the thermistor transition temperature. We measured the Ir TES arrays in our 50mK adiabatic demagnetization refrigerator test system, which can measure up to eight 1x32 arrays simultaneously using a time-division multiplexer, as well as our single-pixel test system which can measure down to 15mK. In our previous Ir array measurements our best reported performance was NEP=2.5x10(exp -19) W/Hz(sub 1/2) and Tau approximately equals 5ms for straight-beam TESs. In fact, we expected NEP approximately equals 1.5x10(exp -19)?W/Hz(sup 1/2) for meander beam TESs, but did not achieve this previously due to 1/f noise. Here, we detail improvements toward measuring the expected NEP and demonstrate NEP=(1.3+0.2)x10 (sup -19)W/Hz(exp 1/2) in our single-pixel test system and NEP=(1.6+/-0.3)x10(sup -19)W/Hz(sup 1/2) in our array test system.

  5. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    Science.gov (United States)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-06-01

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 104 ≤ Q ≤ 2 × 104 and the square root of spectral density of current noise referred to the SQUID input √SI = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers PMR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √SI is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of PMR) or the quantization noise due to the resolution of 300-K electronics (for large values of PMR). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √SI ≤ 5 pA/√Hz, i.e., close to √SI of

  6. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    International Nuclear Information System (INIS)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-01-01

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 10 4  ≤ Q ≤ 2 × 10 4 and the square root of spectral density of current noise referred to the SQUID input √S I  = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S 21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers P MR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √S I is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of P MR ) or the quantization noise due to the resolution of 300-K electronics (for large values of P MR ). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit

  7. NTD germanium: a novel material for low-temperature bolometers

    International Nuclear Information System (INIS)

    Haller, E.E.; Palaio, N.P.; Rodder, M.; Hansen, W.L.; Kreysa, E.

    1982-06-01

    Six samples of ultra-pure (absolute value N/sub A/ - N/sub D/ absolute value less than or equal to 10 11 cm -3 ), single-crystal germanium have been neutron transmutation doped with neutron doses between 7.5 x 10 16 and 1.88 x 10 18 cm -2 . After thermal annealing at 400 0 C for six hours in a pure argon atmosphere, the samples have been characterized with Hall effect and resistivity measurements between 300 and 0.3 K. Our results show that the resistivity in the low temperature, hopping conduction regime can be approximated with rho = rho 0 exp(Δ/T). The three more heavily doped samples show values for rho 0 and Δ ranging from 430 to 3.3 Ω cm and from 4.9 to 2.8 K, respectively. The excellent reproducibility of neutron transmutation doping and the values of rho 0 and Δ make NTD Ge a prime candidate for the fabrication of low temperature, low noise bolometers. The large variation in the tabulated values of the thermal neutron cross sections for the different germanium isotopes makes it clear that accurate measurements of these cross-sections for well defined neutron energy spectra would be highly desirable

  8. Sensor

    OpenAIRE

    Gleeson, Helen; Dierking, Ingo; Grieve, Bruce; Woodyatt, Christopher; Brimicombe, Paul

    2015-01-01

    An electrical temperature sensor (10) comprises a liquid crystalline material (12). First and second electrically conductive contacts (14), (16), having a spaced relationship there between, contact the liquid crystalline material (12). An electric property measuring device is electrically connected to the first and second contacts (14), (16) and is arranged to measure an electric property of the liquid crystalline material (12). The liquid crystalline material (12) has a transition temperatur...

  9. Novel Magnetically-Tuned TES For Imaging X-ray Spectroscopy Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Superconducting transition-edge sensors (TESs) are the state-of-the art technology for microcalorimeter and bolometer applications across the electromagnetic...

  10. Edge Matters

    DEFF Research Database (Denmark)

    Earon, Ofri

    2013-01-01

    of this container is to separate inside from outside and to protect and provide privacy, psychological as well as physical (Venturi, 1966). But, if dwelling phenomenon takes place both inside and outside the private house – why is the urban house an enclosed box? What is the differentiation between inside...... and outside the contemporary urban house? And what is the interplay between them? The research argues for re-thinking the edge zone between inside and outside the urban house. Therefore, although, residential buildings in the city are the objects of study, the focal point here is the edge zone along...... the building. The research explores and develops the architectural characteristics of correlations between the resident, the singular unit, the building and the given location at the edge zone. It approaches the edge zone of the urban house as a platform for dynamic interactions between these behaviours...

  11. A millisecond-risetime sub-millimeter light source for lab and in flight bolometer calibration

    Science.gov (United States)

    Abbon, Ph.; Delbart, A.; Fesquet, M.; Magneville, C.; Mazeau, B.; Pansart, J.-P.; Yvon, D.; Dumoulin, L.; Marnieros, S.; Camus, Ph.; Durand, T.; Hoffmann, Ch.

    2007-06-01

    The Olimpo balloon project will use a 120 bolometer camera to observe the sky at four frequencies (143, 217, 385 and 600 GHz) with a resolution of 3 to 2 arc-minute. This paper presents the sub-millimeter calibration "lamp" developed for ground testing and in-flight secondary calibration of bolometric detectors. By design, main features of the device are reproducibility and stability of light flux and millisecond rise time. The radiative device will be placed inside the bolometer camera and will illuminate the bolometer array through a hole in the last 2 K mirror. Operation, readout, and monitoring of the device is ensured by warm electronics. Light output flux and duration is programmable, triggered and monitored from a simple computer RS232 interface. It was tested to be reliable in ballooning temperature conditions from -80 to 50C. Design and test's results are explained.

  12. Recent achievements on the development of the HERSCHEL/PACS bolometer arrays

    International Nuclear Information System (INIS)

    Billot, N.; Agnese, P.; Boulade, O.; Cigna, C.; Doumayrou, E.; Horeau, B.; Lepennec, J.; Martignac, J.; Pornin, J.-L.; Reveret, V.; Rodriguez, L.; Sauvage, M.; Simoens, F.; Vigroux, L.

    2006-01-01

    A new type of bolometer arrays sensitive in the far Infrared and Submillimeter range has been developed and manufactured by CEA/LETI/SLIR since 1997. These arrays will be integrated in the PACS instrument (Photodetector Array Camera and Spectrometer) of ESA's Herschel Space Observatory (launch date 2007). The main innovations of CEA bolometers are their collective manufacturing technique (production of 3-side buttable 16x16 arrays) and their high mapping efficiency (large format detector and instantaneous Nyquist sampling). The measured NEP is 2.10 -16 W/Hz and the thermometric passband about 4-5Hz. In this article we describe CEA bolometers and present the results obtained during the last test campaign

  13. Recent achievements on the development of the HERSCHEL/PACS bolometer arrays

    Energy Technology Data Exchange (ETDEWEB)

    Billot, N. [CEA/Saclay/SAp, UMR CEA/CNRS/UP7 Laboratoire AIM, Bat. 709, l' Orme des merisiers, 91191 Gif-sur-Yvette (France)]. E-mail: nbillot@cea.fr; Agnese, P. [CEA/LETI Grenoble, 17 Avenue des Martyrs, 38054 Grenoble (France); Boulade, O. [CEA/Saclay/SAp, UMR CEA/CNRS/UP7 Laboratoire AIM, Bat. 709, l' Orme des merisiers, 91191 Gif-sur-Yvette (France); Cigna, C. [CEA/LETI Grenoble, 17 Avenue des Martyrs, 38054 Grenoble (France); Doumayrou, E. [CEA/Saclay/SAp, UMR CEA/CNRS/UP7 Laboratoire AIM, Bat. 709, l' Orme des merisiers, 91191 Gif-sur-Yvette (France); Horeau, B. [CEA/Saclay/SAp, UMR CEA/CNRS/UP7 Laboratoire AIM, Bat. 709, l' Orme des merisiers, 91191 Gif-sur-Yvette (France); Lepennec, J. [CEA/Saclay/SAp, UMR CEA/CNRS/UP7 Laboratoire AIM, Bat. 709, l' Orme des merisiers, 91191 Gif-sur-Yvette (France); Martignac, J. [CEA/Saclay/SAp, UMR CEA/CNRS/UP7 Laboratoire AIM, Bat. 709, l' Orme des merisiers, 91191 Gif-sur-Yvette (France); Pornin, J.-L. [CEA/LETI Grenoble, 17 Avenue des Martyrs, 38054 Grenoble (France); Reveret, V. [CEA/Saclay/SAp, UMR CEA/CNRS/UP7 Laboratoire AIM, Bat. 709, l' Orme des merisiers, 91191 Gif-sur-Yvette (France); Rodriguez, L. [CEA/Saclay/SAp, UMR CEA/CNRS/UP7 Laboratoire AIM, Bat. 709, l' Orme des merisiers, 91191 Gif-sur-Yvette (France); Sauvage, M. [CEA/Saclay/SAp, UMR CEA/CNRS/UP7 Laboratoire AIM, Bat. 709, l' Orme des merisiers, 91191 Gif-sur-Yvette (France); Simoens, F. [CEA/LETI Grenoble, 17 Avenue des Martyrs, 38054 Grenoble (France); Vigroux, L. [CEA/Saclay/SAp, UMR CEA/CNRS/UP7 Laboratoire AIM, Bat. 709, l' Orme des merisiers, 91191 Gif-sur-Yvette (France); Institut d' Astrophysique de Paris, 75014 Paris (France)

    2006-11-01

    A new type of bolometer arrays sensitive in the far Infrared and Submillimeter range has been developed and manufactured by CEA/LETI/SLIR since 1997. These arrays will be integrated in the PACS instrument (Photodetector Array Camera and Spectrometer) of ESA's Herschel Space Observatory (launch date 2007). The main innovations of CEA bolometers are their collective manufacturing technique (production of 3-side buttable 16x16 arrays) and their high mapping efficiency (large format detector and instantaneous Nyquist sampling). The measured NEP is 2.10{sup -16}W/Hz and the thermometric passband about 4-5Hz. In this article we describe CEA bolometers and present the results obtained during the last test campaign.

  14. Operation of a tangential bolometer on the PBX tokamak

    International Nuclear Information System (INIS)

    Paul, S.F.; Fonck, R.J.; Schmidt, G.L.

    1987-04-01

    A compact 15-channel bolometer array that views plasma emission tangentially across the midplane has been installed on the PBX tokamak to supplement a 19-channel poloidal array which views the plasma perpendicular to the toroidal direction. By comparing measurements from these arrays, poloidal asymmetries in the emission profile can be assessed. The detector array consists of 15 discrete 2-mm x 2-mm Thinistors, a mixed semiconductor material whose temperature coefficient of resistance is relatively high. The accumulated heat incident on a detector gives rise to a change in the resistance in each active element. Operated in tandem with an identical blind detector, the resistance in each pair is compared in a Wheatstone bridge circuit. The variation in voltage resulting from the change in resistance is amplified, stored on a CAMAC transient recorder during the plasma discharge, and transferred to a VAX data acquisition computer. The instantaneous power is obtained by digitally smoothing and differentiating the signals in time, with suitable compensation for the cooling of the detector over the course of a plasma discharge. The detectors are ''free standing,'' i.e., they are supported only by their electrical leads. Having no substrate in contact with the detector reduces the response time and increases the time it takes for the detector to dissipate its accumulated heat, reducing the compensation for cooling required in the data analysis. The detectors were absolutely calibrated with a tungsten-halogen filament lamp and were found to vary by +-3%. The irradiance profiles are inverted to reveal the radially resolved emitted power density from the plasma, which is typically in the 0.1 to 0.5 W/cm 3 range

  15. Terahertz performance of quasioptical front-ends with a hotelectron bolometer

    International Nuclear Information System (INIS)

    Semenov, A; Richter, H; Guenther, B; Huebers, H-W; Karamarkovic, J

    2006-01-01

    We present terahertz performance of quasioptical front-ends consisting of a hotelectron bolometer imbedded in a planar feed antenna and integrated with an immersion lens. The impedance and radiation pattern of the log-spiral and double-slot planar feeds are evaluated using the method of moments; the collimating action of the lens is modelled using the physical optics. The total efficiency of the front-ends is computed taking into account frequency dependent impedance of the bolometer. Measured performance of the front-ends qualifies the simulation technique as a reliable tool for the design of terahertz receivers

  16. Enhanced performance of VOx-based bolometer using patterned gold black absorber

    Science.gov (United States)

    Smith, Evan M.; Panjwani, Deep; Ginn, James; Warren, Andrew; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E.; Shelton, David J.

    2015-06-01

    Patterned highly absorbing gold black film has been selectively deposited on the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves gold black's near unity absorption. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. Infrared responsivity is substantially improved by the gold black coating without significantly increasing noise. The increase in the time constant caused by the additional mass of gold black is a modest 14%.

  17. Measurements of the Optical Performance of Prototype TES Bolometers for SAFARI

    NARCIS (Netherlands)

    Audley, M. D.; de Lange, G.; Ranjan, M.; Gao, J.-R.; Khosropanah, P.; Ridder, M. L.; Mauskopf, P. D.; Morozov, D.; Doherty, S.; Trappe, N.; Withington, S.

    2014-01-01

    We have measured the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI's three bolometer arrays, coupled with a Fourier transform spectrometer, will provide images of a 2'×2' field of view with spectral information over the

  18. Investigation of the Neutral Gas Pressure Effect on the Metal Resistive Bolometer

    International Nuclear Information System (INIS)

    Zhang, D.; Giannone, L.; Piechotka, M.; Windisch, T.; Klinger, T.; Grulke, O.; Stark, A.

    2008-01-01

    The bolometer system planned for W7-X consists mainly of metal (Au) resistive detector arrays. All the detectors are exposed to neutral gas environment. The thin bolometer foil used for detecting the radiated power loss may be sensitive to the neutral gas pressure due to the strain gauge effect. Recently, a prototype of this kind of bolometer camera consisting of 12 channels has been installed on the cylindrical plasma device VINETA in order to investigate the influences of the neutral gas pressure on the bolometer signals. Experiments are carried out for Ar-discharges under different gas pressure conditions. It is found that the pressure effect of the neutral gas can make considerable contributions, thus inducing non-negligible errors of the results in most of the investigated cases. Using the VINETA plasmas (Ar, T e e -19 m -3 ) as examples, the paper demonstrates and discusses how to minimize the neutral gas effects, especially in the data analysis process. The radiated power and the radiation intensity profile obtained in helicon discharges are presented

  19. Investigation of the Neutral Gas Pressure Effect on the Metal Resistive Bolometer

    Science.gov (United States)

    Zhang, D.; Giannone, L.; Grulke, O.; Piechotka, M.; Windisch, T.; Stark, A.; Klinger, T.

    2008-03-01

    The bolometer system planned for W7-X consists mainly of metal (Au) resistive detector arrays. All the detectors are exposed to neutral gas environment. The thin bolometer foil used for detecting the radiated power loss may be sensitive to the neutral gas pressure due to the strain gauge effect. Recently, a prototype of this kind of bolometer camera consisting of 12 channels has been installed on the cylindrical plasma device VINETA in order to investigate the influences of the neutral gas pressure on the bolometer signals. Experiments are carried out for Ar-discharges under different gas pressure conditions. It is found that the pressure effect of the neutral gas can make considerable contributions, thus inducing non-negligible errors of the results in most of the investigated cases. Using the VINETA plasmas (Ar, Te<10 eV, ne<10-19 m-3) as examples, the paper demonstrates and discusses how to minimize the neutral gas effects, especially in the data analysis process. The radiated power and the radiation intensity profile obtained in helicon discharges are presented.

  20. An experimental study of antireflective coatings in Ge light detectors for scintillating bolometers

    Directory of Open Access Journals (Sweden)

    Mancuso M.

    2014-01-01

    Full Text Available Luminescent bolometers are double-readout devices able to measure simultaneously the phonon and the light yields after a particle interaction in the detector. This operation allows in some cases to tag the type of the interacting quantum, crucial issue for background control in rare event experiments such as the search for neutrinoless double beta decay and for interactions of particle dark matter candidates. The light detectors used in the LUCIFER and LUMINEU searches (projects aiming at the study of the double beta interesting candidates 82Se and 100Mo using ZnSe and ZnMoO4 scintillating bolometers consist of hyper-pure Ge thin slabs equipped with NTD thermistors. A substantial sensitivity improvement of the Ge light detectors can be obtained applying a proper anti-reflective coatings on the Ge side exposed to the luminescent bolometer. The present paper deals with the investigation of this aspect, proving and quantifying the positive effect of a SiO2 and a SiO coating and setting the experimental bases for future tests of other coating materials. The results confirm that an appropriate coating procedure helps in improving the sensitivity of bolometric light detectors by an important factor (in the range 20% – 35% and needs to be included in the recipe for the development of an optimized radio-pure scintillating bolometer.

  1. An experimental study of antireflective coatings in Ge light detectors for scintillating bolometers

    Science.gov (United States)

    Mancuso, M.; Beeman, J. W.; Giuliani, A.; Dumoulin, L.; Olivieri, E.; Pessina, G.; Plantevin, O.; Rusconi, C.; Tenconi, M.

    2014-01-01

    Luminescent bolometers are double-readout devices able to measure simultaneously the phonon and the light yields after a particle interaction in the detector. This operation allows in some cases to tag the type of the interacting quantum, crucial issue for background control in rare event experiments such as the search for neutrinoless double beta decay and for interactions of particle dark matter candidates. The light detectors used in the LUCIFER and LUMINEU searches (projects aiming at the study of the double beta interesting candidates 82Se and 100Mo using ZnSe and ZnMoO4 scintillating bolometers) consist of hyper-pure Ge thin slabs equipped with NTD thermistors. A substantial sensitivity improvement of the Ge light detectors can be obtained applying a proper anti-reflective coatings on the Ge side exposed to the luminescent bolometer. The present paper deals with the investigation of this aspect, proving and quantifying the positive effect of a SiO2 and a SiO coating and setting the experimental bases for future tests of other coating materials. The results confirm that an appropriate coating procedure helps in improving the sensitivity of bolometric light detectors by an important factor (in the range 20% - 35%) and needs to be included in the recipe for the development of an optimized radio-pure scintillating bolometer.

  2. Image Sensor

    OpenAIRE

    Jerram, Paul; Stefanov, Konstantin

    2017-01-01

    An image sensor of the type for providing charge multiplication by impact ionisation has plurality of multiplication elements. Each element is arranged to receive charge from photosensitive elements of an image area and each element comprises a sequence of electrodes to move charge along a transport path. Each of the electrodes has an edge defining a boundary with a first electrode, a maximum width across the charge transport path and a leading edge that defines a boundary with a second elect...

  3. Development of planar detectors with active edge

    International Nuclear Information System (INIS)

    Povoli, M.; Bagolini, A.; Boscardin, M.; Dalla Betta, G.-F.; Giacomini, G.; Vianello, E.; Zorzi, N.

    2011-01-01

    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  4. Development of planar detectors with active edge

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: povoli@disi.unitn.it [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Giacomini, G.; Vianello, E.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy)

    2011-12-01

    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  5. Edge Detection,

    Science.gov (United States)

    1985-09-01

    PROJECT. T ASK0 Artificial Inteligence Laboratory AREA It WORK UNIT NUMBERS V 545 Technology Square ( Cambridge, HA 02139 I I* CONTOOL1LIN@4OFFICE NAME...ARD-A1t62 62 EDGE DETECTION(U) NASSACNUSETTS INST OF TECH CAMBRIDGE 1/1 ARTIFICIAL INTELLIGENCE LAB E C HILDRETH SEP 85 AI-M-8 N99SI4-8S-C-6595...used to carry out this analysis. cce~iO a N) ’.~" D LI’BL. P p ------------ Sj. t i MASSACHUSETTS INSTITUTE OF TECHNOLOGY i ARTIFICIAL INTELLIGENCE

  6. Hot-Electron Bolometer Mixers on Silicon-on-Insulator Substrates for Terahertz Frequencies

    Science.gov (United States)

    Skalare, Anders; Stern, Jeffrey; Bumble, Bruce; Maiwald, Frank

    2005-01-01

    A terahertz Hot-Electron Bolometer (HEB) mixer design using device substrates based on Silicon-On-Insulator (SOI) technology is described. This substrate technology allows very thin chips (6 pm) with almost arbitrary shape to be manufactured, so that they can be tightly fitted into a waveguide structure and operated at very high frequencies with only low risk for power leakages and resonance modes. The NbTiN-based bolometers are contacted by gold beam-leads, while other beamleads are used to hold the chip in place in the waveguide test fixture. The initial tests yielded an equivalent receiver noise temperature of 3460 K double-sideband at a local oscillator frequency of 1.462 THz and an intermediate frequency of 1.4 GHz.

  7. Optimization of a bolometer detector for ITER based on Pt absorber on SiN membrane

    Energy Technology Data Exchange (ETDEWEB)

    Meister, H.; Eich, T.; Endstrasser, N.; Giannone, L.; Kannamueller, M.; Kling, A.; Koll, J.; Trautmann, T. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany); Detemple, P.; Schmitt, S. [Institut fuer Mikrotechnik Mainz GmbH, Carl-Zeiss-Str. 18-20, D-55129 Mainz (Germany); Collaboration: ASDEX Upgrade Team

    2010-10-15

    Any plasma diagnostic in ITER must be able to operate at temperatures in excess of 200 deg. C and neutron loads corresponding to 0.1 dpa over its lifetime. To achieve this aim for the bolometer diagnostic, a miniaturized metal resistor bolometer detector based on Pt absorbers galvanically deposited on SiN membranes is being developed. The first two generations of detectors featured up to 4.5 {mu}m thick absorbers. Results from laboratory tests are presented characterizing the dependence of their calibration constants under thermal loads up to 450 deg. C. Several detectors have been tested in ASDEX Upgrade providing reliable data but also pointing out the need for further optimization. A laser trimming procedure has been implemented to reduce the mismatch in meander resistances below 1% for one detector and the thermal drifts from this mismatch.

  8. Optimization of a bolometer detector for ITER based on Pt absorber on SiN membranea)

    Science.gov (United States)

    Meister, H.; Eich, T.; Endstrasser, N.; Giannone, L.; Kannamüller, M.; Kling, A.; Koll, J.; Trautmann, T.; ASDEX Upgrade Team; Detemple, P.; Schmitt, S.

    2010-10-01

    Any plasma diagnostic in ITER must be able to operate at temperatures in excess of 200 °C and neutron loads corresponding to 0.1 dpa over its lifetime. To achieve this aim for the bolometer diagnostic, a miniaturized metal resistor bolometer detector based on Pt absorbers galvanically deposited on SiN membranes is being developed. The first two generations of detectors featured up to 4.5 μm thick absorbers. Results from laboratory tests are presented characterizing the dependence of their calibration constants under thermal loads up to 450 °C. Several detectors have been tested in ASDEX Upgrade providing reliable data but also pointing out the need for further optimization. A laser trimming procedure has been implemented to reduce the mismatch in meander resistances below 1% for one detector and the thermal drifts from this mismatch.

  9. An FPGA-based bolometer for the MAST-U Super-X divertor

    Energy Technology Data Exchange (ETDEWEB)

    Lovell, Jack, E-mail: jack.lovell@durham.ac.uk [Durham University, South Road, Durham DH1 3LE (United Kingdom); Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Naylor, Graham; Field, Anthony [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Drewelow, Peter [MPI für Plasmaphysik, Greifswald (Germany); Sharples, Ray [Durham University, South Road, Durham DH1 3LE (United Kingdom); Collaboration: EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2016-11-15

    A new resistive bolometer system has been developed for MAST-Upgrade. It will measure radiated power in the new Super-X divertor, with millisecond time resolution, along 16 vertical and 16 horizontal lines of sight. The system uses a Xilinx Zynq-7000 series Field-Programmable Gate Array (FPGA) in the D-TACQ ACQ2106 carrier to perform real time data acquisition and signal processing. The FPGA enables AC-synchronous detection using high performance digital filtering to achieve a high signal-to-noise ratio and will be able to output processed data in real time with millisecond latency. The system has been installed on 8 previously unused channels of the JET vertical bolometer system. Initial results suggest good agreement with data from existing vertical channels but with higher bandwidth and signal-to-noise ratio.

  10. Living edge

    DEFF Research Database (Denmark)

    Earon, Ofri

    2014-01-01

    was originally introduced to enhance indoor qualities including light and view. Throughout the paper, it is argued that these ecological motives have grown to architectural and urban dimensions. The paper analyzes the characteristics and potentials of these dimensions and their interconnections. The paper...... on the ground level, but there is a lack of recognition in the significance of communicative characters as well at the higher part of the edge. The city’s planning approach is “Consider urban life before urban space. Consider urban space before buildings” This urban strategy neglects the possible architectural...... contribution to the street atmosphere and its effect on urban life. Bay balcony has been a common architectural element in Copenhagen’s residential buildings, since the end of the twenties. It is a domestic border with an architectural thickness combining window, door, windowsill and balcony. The bay balcony...

  11. Strong Electron Self-Cooling in the Cold-Electron Bolometers Designed for CMB Measurements

    Science.gov (United States)

    Kuzmin, L. S.; Pankratov, A. L.; Gordeeva, A. V.; Zbrozhek, V. O.; Revin, L. S.; Shamporov, V. A.; Masi, S.; de Bernardis, P.

    2018-03-01

    We have realized cold-electron bolometers (CEB) with direct electron self-cooling of the nanoabsorber by SIN (Superconductor-Insulator-Normal metal) tunnel junctions. This electron self-cooling acts as a strong negative electrothermal feedback, improving noise and dynamic properties. Due to this cooling the photon-noise-limited operation of CEBs was realized in array of bolometers developed for the 345 GHz channel of the OLIMPO Balloon Telescope in the power range from 10 pW to 20 pW at phonon temperature Tph =310 mK. The negative electrothermal feedback in CEB is analogous to TES but instead of artificial heating we use cooling of the absorber. The high efficiency of the electron self-cooling to Te =100 mK without power load and to Te=160 mK under power load is achieved by: - a very small volume of the nanoabsorber (0.02 μm3) and a large area of the SIN tunnel junctions, - effective removal of hot quasiparticles by arranging double stock at both sides of the junctions and close position of the normal metal traps, - self-protection of the 2D array of CEBs against interferences by dividing them between N series CEBs (for voltage interferences) and M parallel CEBs (for current interferences), - suppression of Andreev reflection by a thin layer of Fe in the AlFe absorber. As a result even under high power load the CEBs are working at electron temperature Te less than Tph . To our knowledge, there is no analogue in the bolometers technology in the world for bolometers working at electron temperature colder than phonon temperature.

  12. Low temperature composite bolometers using RuO2 films as a thermistor

    International Nuclear Information System (INIS)

    Chapellier, M.; Rasmussen, F.B.

    1989-01-01

    Results from a massive composite bolometer made of a sapphire crystal and ruthenium oxide films are presented. The properties of such RuO 2 films, in the temperature range [50 mK, 200 mK] have been studied. Individual particle detections, using an 241 Am source, have been used to calibrate the system in this temperature interval. Improvements in the performances of such detectors lead to consider them as realistic candidates for the detection of Dark Matter

  13. Liquid helium-cooled MOSFET preamplifier for use with astronomical bolometer

    Science.gov (United States)

    Goebel, J. H.

    1977-01-01

    A liquid helium-cooled p-channel enhancement mode MOSFET, the 3N167, is found to have sufficiently low noise for use as a preamplifier with helium-cooled bolometers that are used in infrared astronomy. Its characteristics at 300, 77, and 4.2 K are presented. It is also shown to have useful application with certain photoconductive and photovoltaic infrared detectors.

  14. Characterization of a ZnSe scintillating bolometer prototype for neutrinoless double beta decay search

    Directory of Open Access Journals (Sweden)

    Tenconi M.

    2014-01-01

    Full Text Available As proposed in the LUCIFER project, ZnSe crystals are attractive materials to realize scintillating bolometers aiming at the search for neutrinoless double beta decay of the promising isotope 82Se. However, the optimization of the ZnSe-based detectors is rather complex and requires a wide-range investigation of the crystal features: optical properties, crystalline quality, scintillation yields and bolometric behaviour. Samples tested up to now show problems in the reproducibility of crucial aspects of the detector performance. In this work, we present the results obtained with a scintillating bolometer operated aboveground at about 25 mK. The detector energy absorber was a single 1 cm3 ZnSe crystal. The good energy resolution of the heat channel (about 14 keV at 1460 keV and the excellent alpha/beta discrimination capability are very encouraging for a successful realization of the LUCIFER program. The bolometric measurements were completed by optical tests on the crystal (optical transmission and luminescence measurements down to 10 K and investigation of the crystalline structure. The work here described provides a set of parameters and procedures useful for a complete pre-characterization of ZnSe crystals in view of the realization of highly performing scintillating bolometers.

  15. Calibration of a novel type of bolometer arrays for the Herschel space observatory

    International Nuclear Information System (INIS)

    Billot, Nicolas

    2007-01-01

    The Herschel mission is a major project at the core of the European Space Agency (ESA) scientific program. The space telescope will perform observations of the universes in the far-infrared regime of the electromagnetic spectrum, which still remains little-known today. Among the many research institutes involved in the development and exploitation of this challenging observatory, the CEA designed a novel type of bolometric detectors to equip the photometer of the PACS instrument on-board the Herschel satellite. During my thesis, my task was twofold, I developed a characterisation procedure that takes advantage of unique features of CEA filled bolometer arrays and I applied it to calibrate the PACS photometer and optimize its performances in the various observing modes open to the scientific community. In this manuscript, I present the basics of infrared astronomy from its very beginning in 1800 to the European Space Agency's Herschel Space Observatory. Then, I describe past and present developments in cryogenic bolometers, emphasising new concepts introduced by CEA. I follow with an explanation of the working principles of CEA bolometer arrays, a prerequisite to grasp the strategy of the characterisation procedure that we developed. Then I expose and analyse thoroughly the results that we obtained during the calibration campaign of the PACS photometer. Finally, I express detector performances in terms of 'observational' performances that future PACS users can comprehend. (author) [fr

  16. Progress on Background-Limited Membrane-Isolated TES Bolometers for Far-IR/Submillimeter Spectroscopy

    Science.gov (United States)

    Kenyon, M.; Day, P. K.; Bradford, C. M.; Bock, J. J.; Leduc, H. G.

    2006-01-01

    To determine the lowest attainable phonon noise equivalent power (NEP) for membrane-isolation bolometers, we fabricated and measured the thermal conductance of suspended Si3N4 beams with different geometries via a noise thermometry technique. We measured beam cross-sectional areas ranging from 0.35 x 0.5 (micro)m(sup 2) to 135 x 1.0 (micro)m(sup 2) and beam lengths ranging from (micro)m to 8300 (micro)m. The measurements directly imply that membrane-isolation bolometers are capable of reaching a phonon noise equivalent power (NEP) of 4 x 10(sup -20)W/Hz(sup 1)/O . This NEP adequate for the Background-Limited Infrared-Submillimeter Spectrograph (BLISS) proposed for the Japanese SPICA observatory, and adequate for NASA's SAFIR observatory, a 10-meter, 4 K telescope to be deployed at L2. Further, we measured the heat capacity of a suspended Si3N4 membrane and show how this result implies that one can make membrane-isolation bolometers with a response time which is fast enough for BLISS.

  17. Millimetre wave attenuation of prototype diagnostic components for the ITER bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Meister, H., E-mail: meister@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Kasparek, W. [Universität Stuttgart, Institut für Grenzflächenverfahrenstechnik & Plasmatechnologie, Stuttgart (Germany); Zhang, D.; Hirsch, M. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Greifswald (Germany); Koll, J. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Zeitler, A. [Universität Stuttgart, Institut für Grenzflächenverfahrenstechnik & Plasmatechnologie, Stuttgart (Germany)

    2015-10-15

    Highlights: • Attenuation of ECRH stray radiation in ITER demonstrated for bolometer prototypes. • Collimator with microwave reflecting grid achieves >70 dB at 170 GHz (ITER frequency). • For frequencies >250 GHz (ECE radiation) ceramic coating showed 40 dB attenuation. • Good shielding at joints of components is prerequisite to prevent microwave leakage. • These methods prevent the impact of ECRH stray radiation on bolometer measurements. - Abstract: Bolometers in current and future fusion devices, in particular those in ITER, are vulnerable to stray radiation from electron cyclotron resonance heating (ECRH) which results in measurement errors for plasma radiation detection. To protect the detectors from this stray radiation in the millimetre wavelength range, dedicated diagnostic components have been designed and tested. One option is to place a top plate which contains a microwave-reflecting grid onto the collimators. Another option investigated is the coating of the collimator channels using a microwave absorbing ceramic. Measurements of the mm-wave attenuation of the collimator in front of the bolometer detectors with and without top plate or coated collimator channels have been performed in the frequency range of 125–420 GHz. The attenuation factor of the collimator channels at 170 GHz (the ECRH frequency for ITER) with neither microwave grid nor coating is typically 10 dB. The coating enhances this to 40 dB and including the microwave grid yields at least an attenuation factor of 70 dB, which is sufficient to reduce the residual ECRH induced signal significantly below the one due to plasma radiation. Placing a bolometer camera (collimator connected to detector housing) inside the isotropic microwave field of the test facility MISTRAL, the attenuation factor of the full diagnostic set-up using a top plate was determined to be in the order of 45 dB. This degraded attenuation implies that particular attention has to be paid to design and quality

  18. Haptic Edge Detection Through Shear

    Science.gov (United States)

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-03-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.

  19. Fast neutron spectrometry by bolometers lithium target for the reduction of background experiences of direct detection of dark matter

    International Nuclear Information System (INIS)

    Gironnet, J.

    2010-01-01

    Fast neutron spectrometry is a common interest for both direct dark matter detection and for nuclear research centres. Fast neutrons are usually detected indirectly. Neutrons are first slowed down by moderating materials for being detected in low energy range. Nevertheless, these detection techniques are and are limited in energy resolution. A new kind of fast neutron spectroscopy has been developed at the Institut d'Astrophysique Spatiale (IAS) in the aim of having a better knowledge of neutron backgrounds by the association of the bolometric technique with neutron sensitive crystals containing Li. Lithium-6 is indeed an element which has one the highest cross section for neutron capture with the 6 Li(n,α) 3 H reaction. This reaction releases 4,78 MeV tagging energetically each neutron capture. In particular for fast neutrons, the total energy measured by the bolometer would be the sum of this energy reaction and of the incoming fast neutron energy. To validate this principle, a spectrometer for fast neutrons, compact and semi-transportable, was built in IAS. This cryogenic detector, operated at 300 - 400 mK, consists of a 0.5 g LiF 95% 6 Li enriched crystal read out by a NTD-Ge sensor. This PhD thesis was on the study of the spectrometer characteristics, from the first measurements at IAS, to the measurements in the nuclear research centre of the Paul Scherrer Institute (PSI) until the final calibration with the Amande instrument of the Institut de Radioprotection et de Surete Nucleaire (IRSN). (author)

  20. Ultra-low noise TES bolometer arrays for SAFARI instrument on SPICA

    Science.gov (United States)

    Khosropanah, P.; Suzuki, T.; Ridder, M. L.; Hijmering, R. A.; Akamatsu, H.; Gottardi, L.; van der Kuur, J.; Gao, J. R.; Jackson, B. D.

    2016-07-01

    SRON is developing ultra-low noise Transition Edge Sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for the SAFARI instrument aboard the SPICA mission. We successfully fabricated TESs with very narrow (0.5-0.7 μm) and thin (0.25 μm) SiN legs on different sizes of SiN islands using deep reactiveion etching process. The pixel size is 840x840 μm2 and there are variety of designs with and without optical absorbers. For TESs without absorbers, we measured electrical NEPs as low as <1x10-19 W/√Hz with response time of 0.3 ms and reached the phonon noise limit. Using TESs with absorbers, we quantified the darkness of our setup and confirmed a photon noise level of 2x10-19 W/√Hz.

  1. Bolometer's development for the detection of dark matter; Instrumentation autour de bolometres pour la recherche de matiere sombre WIMPs

    Energy Technology Data Exchange (ETDEWEB)

    Yvon, D

    2000-06-01

    The author reviews his contributions to the use of bolometers (cryogenic detectors) for the detection of wimps (weakly interactive massive particles). Wimps are detected through their elastic scattering on the nuclei of the detector, a heat signal, luminescence or ionization can be simultaneously detected (at least 2 signals are necessary to discard photon interactions). Bolometers operate at low temperatures (< 50 mK) so they allow very low detection threshold and resolution (< keV) with a full energy conversion for recoiling nuclei. In Saclay the technology of bolometers based on simultaneous detection of heat and ionisation has been developed and improvements have been studied (NbSi thin films bolometers). The first results obtained in the framework of the Edelweiss collaboration are presented. Other developments based on infra-red bolometry (Planck surveyor and Archeops projects) are briefly described. In an appendix the operating principle of a bolometer is presented. (A.C.)

  2. A terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer.

    Energy Technology Data Exchange (ETDEWEB)

    Klaassen, T. O. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Hajenius, M. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Adam, A. J. L. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Klapwijk, T. M. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Baryshev, A. (SRON National Institute for Space Research, Sorbonnelaan, Utrecht, The Netherlands); Kumar, Sushil (Massachusetts Institute of Technology, Cambridge, MA); Baselmans, J. J. A. (SRON National Institute for Space Research, Sorbonnelaan, Utrecht, The Netherlands); Hu, Qing (Massachusetts Institute of Technology, Cambridge, MA); Yang, Z. Q. (SRON National Institute for Space Research, Sorbonnelaan, Utrecht, The Netherlands); Hovenier, J. N. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Williams, Benjamin S. (Massachusetts Institute of Technology, Cambridge, MA); Gao, J. R. (Delft University of Technology, Lorentzweg, Delft, The Netherlands); Reno, John Louis

    2005-03-01

    We report the first demonstration of an all solid-state heterodyne receiver that can be used for high-resolution spectroscopy above 2 THz suitable for space-based observatories. The receiver uses a NbN superconducting hot-electron bolometer as mixer and a quantum cascade laser operating at 2.8 THz as local oscillator. We measure a double sideband receiver noise temperature of 1400 K at 2.8 THz and 4.2 K, and find that the free-running QCL has sufficient power stability for a practical receiver, demonstrating an unprecedented combination of sensitivity and stability.

  3. Non-uniform absorption of terahertz radiation on superconducting hot electron bolometer microbridges

    International Nuclear Information System (INIS)

    Miao, W.; Zhang, W.; Zhong, J. Q.; Shi, S. C.; Delorme, Y.; Lefevre, R.; Feret, A.; Vacelet, T.

    2014-01-01

    We interpret the experimental observation of a frequency-dependence of superconducting hot electron bolometer (HEB) mixers by taking into account the non-uniform absorption of the terahertz radiation on the superconducting HEB microbridge. The radiation absorption is assumed to be proportional to the local surface resistance of the HEB microbridge, which is computed using the Mattis-Bardeen theory. With this assumption the dc and mixing characteristics of a superconducting niobium-nitride (NbN) HEB device have been modeled at frequencies below and above the equilibrium gap frequency of the NbN film

  4. Top-Level Simulation of a Smart-Bolometer Using VHDL Modeling

    Directory of Open Access Journals (Sweden)

    Matthieu DENOUAL

    2012-03-01

    Full Text Available An event-driven modeling technique in standard VHDL is presented in this paper for the high level simulation of a resistive bolometer operating in closed-loop mode and implementing smart functions. The closed-loop mode operation is achieved by the capacitively coupled electrical substitution technique. The event-driven VHDL modeling technique is successfully applied to behavioral modeling and simulation of such a multi-physics system involving optical, thermal and electronics mechanisms. The modeling technique allows the high level simulations for the development and validation of the smart functions algorithms of the future integrated smart-device.

  5. A low-power CMOS readout IC design for bolometer applications

    Science.gov (United States)

    Galioglu, Arman; Abbasi, Shahbaz; Shafique, Atia; Ceylan, Ömer; Yazici, Melik; Kaynak, Mehmet; Durmaz, Emre C.; Arsoy, Elif Gul; Gurbuz, Yasar

    2017-02-01

    A prototype of a readout IC (ROIC) designed for use in high temperature coefficient of resistance (TCR) SiGe microbolometers is presented. The prototype ROIC architecture implemented is based on a bridge with active and blind bolometer pixels with a capacitive transimpedance amplifier (CTIA) input stage and column parallel integration with serial readout. The ROIC is designed for use in high (>= 4 %/K) TCR and high detector resistance Si/SiGe microbolometers with 17x17 μm2 pixel sizes in development. The prototype has been designed and fabricated in 0.25- μm SiGe:C BiCMOS process.

  6. Perspective of Australian uncooled IR sensor technology

    Science.gov (United States)

    Liddiard, Kevin C.

    2000-12-01

    This paper presents an overview of the development in Australia of resistance bolometer technology and associated uncooled infrared sensors. A summary is given of research achievements, with the aim of placing in historic perspective Australian work in comparison with overseas research and development. Extensive research in this field was carried out at the Defence Science and Technology Organisation (DSTO), Salisbury, South Australia, in collaboration with the Australian microelectronic and electro-optic industries, with supporting research in Australian universities. The DSTO research has a history covering five decades, commencing with simple thin film bolometers employed in radiometric sensors, followed by protracted R&D culminating in development of micromachined focal plane detector arrays for non-imaging sensors and lightweight thermal imagers. DSTO currently maintains a microbolometer processing capability for the purposes of research collaboration and support for commercial initiatives based on patented technology. Expertise in microbolometer design, performance and processing technology has transferred to Electro-optic Sensor Design (EOSD) through a licensing agreement. Contemporary development will be described.

  7. Slim edges in double-sided silicon 3D detectors

    International Nuclear Information System (INIS)

    Povoli, M; Dalla Betta, G-F; Bagolini, A; Boscardin, M; Giacomini, G; Vianello, E; Zorzi, N

    2012-01-01

    Minimization of the insensitive edge area is one of the key requirements for silicon radiation detectors to be used in future silicon trackers. In 3D detectors this goal can be achieved with the active edge, at the expense of a high fabrication process complexity. In the framework of the ATLAS 3D sensor collaboration, we produced modified 3D silicon sensors with a double-sided technology. While this approach is not suitable to obtain active edges, because it does not use a support wafer, it allows for a new type of edge termination, the slim edge. In this paper we report on the development of the slim edge, from numerical simulations to design and testing, proving that it works effectively without increasing the fabrication complexity of silicon 3D detectors, and that it could be further optimized to reduce the insensitive edge region to less than 100 μm.

  8. A scintillating bolometer array for double beta decay studies: The LUCIFER experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gironi, L., E-mail: luca.gironi@mib.infn.it [Università degli Studi di Milano-Bicocca, Milano (Italy); INFN – Sezione di Milano-Bicocca, Milano (Italy)

    2016-07-11

    The main goal of the LUCIFER experiment is to study the neutrinoless double beta decay, a rare process allowed if neutrinos are Majorana particles. Although aiming at a discovery, in the case of insufficient sensitivity the LUCIFER technique will be the demonstrator for a higher mass experiment able to probe the entire inverted hierarchy region of the neutrino mass. In order to achieve this challenging result, high resolution detectors with active background discrimination capability are required. This very interesting possibility can be largely fulfilled by scintillating bolometers thanks to the simultaneous read-out of heat and light emitted by the interactions in the detector or by pulse shape analysis. - Highlights: • The LUCIFER technique will be the demonstrator for a higher mass experiment. • Scintillating bolometers allow high energy resolution and background discrimination. • The first choice for the LUCIFER tower are ZnSe crystals. • The LUCIFER setup will consist of an array of 30 individual single module detectors. • An array of ZnMoO4 crystals allowed the bolometric observation of the 2vDBD of {sup 100}Mo.

  9. The Polarization-Sensitive Bolometers for SPICA and their Potential Use for Ground-Based Application

    Science.gov (United States)

    Reveret, Vincent

    2018-01-01

    CEA is leading the development of Safari-POL, an imaging-polarimeter aboard the SPICA space observatory (ESA M5). SPICA will be able to reach unprecedented sensitivities thanks to its cooled telescope and its ultra-sensitive detectors. The detector assembly of Safari-POL holds three arrays that are cooled down to 50 mK and correspond to three spectral bands : 100, 200 and 350 microns. The detectors (silicon bolometers), benefit from the Herschel/PACS legacy and are also a big step forward in term of sensitivity (improved by two orders of magnitude compared to PACS bolometers) and for polarimetry capabilities. Indeed, each pixel is intrinsically sensitive to two polarization components (Horizontal and Vertical). We will present the Safari-POL concept, the first results of measurements made on the detectors, and future plans for possible ground-based instruments using this technology. We will also present the example of the ArTéMiS camera, installed at APEX, that was developped as a ground-based conterpart of the PACS photometer.

  10. Bolometer tomography at the density limit of the HDH mode in the W7-AS stellarator

    International Nuclear Information System (INIS)

    Giannone, L; Brakel, R; Burhenn, R; Ehmler, H; Feng, Y; Grigull, P; McCormick, K; Wagner, F; Baldzuhn, J; Igitkhanov, Y; Knauer, J; Nishimura, K; Pasch, E; Peterson, B J; Ramasubramanian, N; Rust, N; Weller, A; Werner, A

    2003-01-01

    The installation of divertor plates in the W7-AS stellarator has allowed attainment of a high energy confinement regime at high density, where the radiation profiles reached steady state. In this regime, the radial profile of the radiated power is hollow. Raising the density to the point where the radiated power approached the input power led to plasma detachment and a decrease in diamagnetic energy. This defines the density limit in a stellarator and a scaling law for this maximum density can be heuristically derived on the basis of power balance considerations. The installation of two bolometer cameras away from the divertor plates and three bolometer cameras in the vicinity of the divertor plates has provided insight into the features of high density operation of a divertor in a stellarator. In the main chamber, tomographic inversion at the density limit has shown that a poloidally asymmetric radiation profile developed as the density limit was approached. In the divertor, radiation in front of the divertor plates occurred while the plasma was attached and this radiation zone vanished at plasma detachment. Steady state discharges of up to 1.5 s have been achieved for neutral beam injection power of up to 2 MW. A precursor to a spontaneous transition out of the high confinement regime has been identified

  11. Large-format 17μm high-end VOx μ-bolometer infrared detector

    Science.gov (United States)

    Mizrahi, U.; Argaman, N.; Elkind, S.; Giladi, A.; Hirsh, Y.; Labilov, M.; Pivnik, I.; Shiloah, N.; Singer, M.; Tuito, A.; Ben-Ezra, M.; Shtrichman, I.

    2013-06-01

    Long range sights and targeting systems require a combination of high spatial resolution, low temporal NETD, and wide field of view. For practical electro-optical systems it is hard to support these constraints simultaneously. Moreover, achieving these needs with the relatively low-cost Uncooled μ-Bolometer technology is a major challenge in the design and implementation of both the bolometer pixel and the Readout Integrated Circuit (ROIC). In this work we present measured results from a new, large format (1024×768) detector array, with 17μm pitch. This detector meets the demands of a typical armored vehicle sight with its high resolution and large format, together with low NETD of better than 35mK (at F/1, 30Hz). We estimate a Recognition Range for a NATO target of better than 4 km at all relevant atmospheric conditions, which is better than standard 2nd generation scanning array cooled detector. A new design of the detector package enables improved stability of the Non-Uniformity Correction (NUC) to environmental temperature drifts.

  12. Very large scale heterogeneous integration (VLSHI) and wafer-level vacuum packaging for infrared bolometer focal plane arrays

    Science.gov (United States)

    Forsberg, Fredrik; Roxhed, Niclas; Fischer, Andreas C.; Samel, Björn; Ericsson, Per; Hoivik, Nils; Lapadatu, Adriana; Bring, Martin; Kittilsland, Gjermund; Stemme, Göran; Niklaus, Frank

    2013-09-01

    Imaging in the long wavelength infrared (LWIR) range from 8 to 14 μm is an extremely useful tool for non-contact measurement and imaging of temperature in many industrial, automotive and security applications. However, the cost of the infrared (IR) imaging components has to be significantly reduced to make IR imaging a viable technology for many cost-sensitive applications. This paper demonstrates new and improved fabrication and packaging technologies for next-generation IR imaging detectors based on uncooled IR bolometer focal plane arrays. The proposed technologies include very large scale heterogeneous integration for combining high-performance, SiGe quantum-well bolometers with electronic integrated read-out circuits and CMOS compatible wafer-level vacuum packing. The fabrication and characterization of bolometers with a pitch of 25 μm × 25 μm that are arranged on read-out-wafers in arrays with 320 × 240 pixels are presented. The bolometers contain a multi-layer quantum well SiGe thermistor with a temperature coefficient of resistance of -3.0%/K. The proposed CMOS compatible wafer-level vacuum packaging technology uses Cu-Sn solid-liquid interdiffusion (SLID) bonding. The presented technologies are suitable for implementation in cost-efficient fabless business models with the potential to bring about the cost reduction needed to enable low-cost IR imaging products for industrial, security and automotive applications.

  13. Identification of near surface events using athermal phonon signals in low temperature Ge bolometers for the EDELWEISS experiment

    International Nuclear Information System (INIS)

    Marnieros, S.; Juillard, A.; Berge, L.; Collin, S.; Dumoulin, L.

    2004-01-01

    We present a study of a 100 g low temperature Ge detector, allowing identification of surface events down to the energy threshold. The bolometer is fitted with segmented electrodes and two NbSi Anderson insulator thermometric layers. Analysis of the athermal signals amplitudes allows us to identify and reject all events occurring in the first millimeter under the electrodes

  14. Identification of near surface events using athermal phonon signals in low temperature Ge bolometers for the EDELWEISS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marnieros, S. E-mail: marniero@csnsm.in2p3.fr; Juillard, A.; Berge, L.; Collin, S.; Dumoulin, L

    2004-03-11

    We present a study of a 100 g low temperature Ge detector, allowing identification of surface events down to the energy threshold. The bolometer is fitted with segmented electrodes and two NbSi Anderson insulator thermometric layers. Analysis of the athermal signals amplitudes allows us to identify and reject all events occurring in the first millimeter under the electrodes.

  15. Development of an automated method for in situ measurement of the geometrical properties of the ITER bolometer diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Meister, H., E-mail: meister@ipp.mpg.de; Penzel, F.; Giannone, L.; Kannamueller, M.; Kling, A.; Koll, J.; Trautmann, T.

    2011-10-15

    In order to derive the local emission profile of the plasma radiation in a fusion device using the line-integrated measurements of the bolometer diagnostic, tomographic reconstruction methods have to be applied to the measurements from many lines-of-sight. A successful reconstruction needs to take the finite sizes of detectors and apertures and the resulting non-ideal measurements into account. In ITER a method for in situ measurement of the geometrical properties of the various components of the bolometer diagnostic after installation is required as the viewing cones have to pass through narrow gaps between components. The method proposed to be used for ITER uses the beam of a laser with high intensity to illuminate the bolometer assembly from many different angles {xi} and {theta}. A light-weight robot from Kuka Robotics is used to efficiently position the laser on many points covering the complete viewing cone of each line-of-sight and to direct the beam precisely into the entrance aperture of the bolometer. Measuring the response of the bolometer allows for the calculation of the transmission function t({xi}, {theta}), the angular etendue and finally the geometric function in reconstruction space, which is required for the tomography algorithms. Measuring the transmission function for a laboratory assembly demonstrates the viability of the proposed method. Results for a collimator-type camera from a prototype envisaged for ITER are presented. The implemented procedure is discussed in detail, in particular with respect to the automatisation applied which takes the achievable positioning and alignment accuracies of the robot into account. This discussion is extended towards the definition of requirements for a remote-handling tool for ITER.

  16. An Ultrasensitive Hot-Electron Bolometer for Low-Background SMM Applications

    Science.gov (United States)

    Olayaa, David; Wei, Jian; Pereverzev, Sergei; Karasik, Boris S.; Kawamura, Jonathan H.; McGrath, William R.; Sergeev, Andrei V.; Gershenson, Michael E.

    2006-01-01

    We are developing a hot-electron superconducting transition-edge sensor (TES) that is capable of counting THz photons and operates at T = 0.3K. The main driver for this work is moderate resolution spectroscopy (R approx. 1000) on the future space telescopes with cryogenically cooled (approx. 4 K) mirrors. The detectors for these telescopes must be background-limited with a noise equivalent power (NEP) approx. 10(exp -19)-10(exp -20) W/Hz(sup 1/2) over the range v = 0.3-10 THz. Above about 1 THz, the background photon arrival rate is expected to be approx. 10-100/s), and photon counting detectors may be preferable to an integrating type. We fabricated superconducting Ti nanosensors with a volume of approx. 3x10(exp -3) cubic microns on planar substrate and have measured the thermal conductance G to the thermal bath. A very low G = 4x10(exp -14) W/K, measured at 0.3 K, is due to the weak electron-phonon coupling in the material and the thermal isolation provided by superconducting Nb contacts. This low G corresponds to NEP(0.3K) = 3x10(exp -19) W/Hz(sup 1/2). This Hot-Electron Direct Detector (HEDD) is expected to have a sufficient energy resolution for detecting individual photons with v > 0.3 THz at 0.3 K. With the sensor time constant of a few microseconds, the dynamic range is approx. 50 dB.

  17. Stability of edge states and edge magnetism in graphene nanoribbons

    OpenAIRE

    Kunstmann, Jens; Özdoğan, Cem; Quandt, Alexander; Fehske, Holger

    2010-01-01

    We critically discuss the stability of edge states and edge magnetism in zigzag edge graphene nanoribbons (ZGNRs). We point out that magnetic edge states might not exist in real systems, and show that there are at least three very natural mechanisms - edge reconstruction, edge passivation, and edge closure - which dramatically reduce the effect of edge states in ZGNRs or even totally eliminate them. Even if systems with magnetic edge states could be made, the intrinsic magnetism would not be ...

  18. Preliminary design of a tangentially viewing imaging bolometer for NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, B. J., E-mail: peterson@LHD.nifs.ac.jp; Mukai, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); SOKENDAI (The Graduate University for Advance Studies), Toki 509-5292 (Japan); Sano, R. [National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193 (Japan); Reinke, M. L.; Canik, J. M.; Lore, J. D.; Gray, T. K. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Delgado-Aparicio, L. F.; Jaworski, M. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Eden, G. G. van [FOM Institute DIFFER, 5612 AJ Eindhoven (Netherlands)

    2016-11-15

    The infrared imaging video bolometer (IRVB) measures plasma radiated power images using a thin metal foil. Two different designs with a tangential view of NSTX-U are made assuming a 640 × 480 (1280 × 1024) pixel, 30 (105) fps, 50 (20) mK, IR camera imaging the 9 cm × 9 cm × 2 μm Pt foil. The foil is divided into 40 × 40 (64 × 64) IRVB channels. This gives a spatial resolution of 3.4 (2.2) cm on the machine mid-plane. The noise equivalent power density of the IRVB is given as 113 (46) μW/cm{sup 2} for a time resolution of 33 (20) ms. Synthetic images derived from Scrape Off Layer Plasma Simulation data using the IRVB geometry show peak signal levels ranging from ∼0.8 to ∼80 (∼0.36 to ∼26) mW/cm{sup 2}.

  19. LUCIFER: A Scintillating Bolometer Array for the Search of Neutrinoless Double Beta Decay

    International Nuclear Information System (INIS)

    Cardani, L

    2012-01-01

    One of the main limitations in the study of 0vDBD is the presence of a radioactive background in the energy region of interest. This limit can be overcome by the technological approach of the LUCIFER project, which is based the double read-out of the heat and scintillation light produced by ZnSe scintillating bolometers. This experiment aims at a background lower than 10 −3 counts/keV/kg/y in the energy region of the 0νDBD of 82 Se. Such a low background level will provide a sensitivity on the effective neutrino mass of the order of 100 meV. In the following, the results of the recent R and D activity are discussed, the single module for the LUCIFER detector is described, and the process for the production of 82 Se-enriched ZnSe crystals is presented.

  20. A rad-hard, steady state, digital imaging bolometer system for ITER

    International Nuclear Information System (INIS)

    Wurden, G.A.

    1995-01-01

    The concept and design of a new type of bolometer system which can function with excellent spatial resolution and good time resolution in the next generation of long-pulse (or steady-state), harsh-neutron environment fusion plasmas, is outlined. It uses a cooled pinhole camera design, employing a robust, passive, segmented radiation absorber, cooled from the back-side. Infrared emission from the absorber's front surface is relayed by metal mirror optics to a shielded, high-resolution IR video camera with ± 0.01 C temperature resolution. It can make thousands of simultaneous ''pixel'' measurements at up to 50--60 Hz, without any signal wires through the vacuum interface

  1. Nanoindentation near the edge

    Science.gov (United States)

    J.E. Jakes; C.R. Frihart; J.F. Beecher; R.J. Moon; P.J. Resto; Z.H. Melgarejo; O.M. Saurez; H. Baumgart; A.A. Elmustafa; D.S. Stone

    2009-01-01

    Whenever a nanoindent is placed near an edge, such as the free edge of the specimen or heterophase interface intersecting the surface, the elastic discontinuity associated with the edge produces artifacts in the load-depth data. Unless properly handled in the data analysis, the artifacts can produce spurious results that obscure any real trends in properties as...

  2. Relaxation of potential, flows, and density in the edge plasma of Castor tokamak

    International Nuclear Information System (INIS)

    Hron, M.; Weinzettl, V.; Dufkova, E.; Duran, I.; Stoeckel, J.; Hidalgo, C.

    2004-01-01

    Decay times of plasma flows and plasma profiles have been measured after a sudden biasing switch-off in experiments on the Castor tokamak. A biased electrode has been used to polarize the edge plasma. The edge plasma potential and flows have been characterized by means of Langmuir and Mach probes, the radiation was measured using an array of bolometers. Potential profiles and poloidal flows can be well fitted by an exponential decay time in the range of 10 - 30 μs when the electrode biasing is turned off in the Castor tokamak. The radiation shows a slower time scale (about 1 ms), which is linked to the evolution in the plasma density and particle confinement. (authors)

  3. Salient issues of edge physics pertaining to loss of confinement: A resistive MHD analysis

    International Nuclear Information System (INIS)

    Thayer, D.R.

    1991-01-01

    The progress that has been made during this fiscal year is significant in the area of tokamak edge plasma transport. The drift-rippling mode model of edge turbulent transport was extended. In particular, the research areas on which were concentrated include the following topics: (1) The theoretical investigation of the radiatively enhanced transport due to the effects of impurity driven radiation instabilities has been expanded to include a situation with multiple impurities (such as carbon, C 4+ , and oxygen, O 6+ ); (2) In order to validate the use of the impurity radiation input from the tokamak bolometer experiments in the theoretical edge turbulent transport calculations, the analysis that is utilized to transform impurity brightness data to radiated power profiles has been checked for state population and Abel inversion correctness; (3) The drift-rippling model of edge turbulent transport has been extended to include ionization particle sources in addition to the impurity driven thermal instability drive; and (4) The detailed limiter and realistic edge geometric effects on the edge turbulent transport has been included in the drift-rippling model

  4. An edge pedestal model

    International Nuclear Information System (INIS)

    Stacev, W.M.

    2001-01-01

    A new model for calculation of the gradient scale lengths in the edge pedestal region and of the edge transport barrier width in H-mode tokamak plasmas will be described. Model problem calculations which demonstrate the promise of this model for predicting experimental pedestal properties will be discussed. The density and Prague gradient scale lengths (L) in the edge are calculated from the particle and ion and electron energy radial transport equations, making use of (presumed) known particle and energy fluxes flowing across the edge transport barrier from the core into the SOL and of edge transport coefficients. The average values of the particle and heat fluxes in the edge transport barrier are calculated in terms of the fluxes crossing into the SOL and the atomic physics reaction rates (ionisation, charge-exchange, elastic scattering, impurity radiation) in the edge by integrating the respective transport equations from the pedestal to the separatrix. An important implication of this model is that the pedestal gradient scale lengths depend not just on local pedestal platers properties but also on particle and energy fluxes from the core plasma and on recycling neutral fluxes that penetrate into the plasma edge, both of which in turn depend on the pedestal properties. The MHD edge pressure gradient constraint α≤ α C is used to determine the pressure width of the edge transport barrier, Δ TB = Δ TB (α c ). Three different models for the MHD edge pressure gradient constraint have been investigated: (1) nominal ideal ballooning mode theory, (2) ballooning mode theory taking into account the edge geometry and shear to access He second stability region; and pedestal β-limit theory when the ballooning modes are stabilised by diamagnetic effects. A series of calculations have been made for a DIII-D model problem. The calculated gradient scale lengths and edge transport barrier widths are of the magnitude of values observed experimentally, and certain trends

  5. The LUCIFER/CUPID-0 demonstrator: searching for the neutrinoless double-beta decay with Zn82Se scintillating bolometers

    Science.gov (United States)

    Artusa, D. R.; Balzoni, A.; Beeman, J. W.; Bellini, F.; Biassoni, M.; Brofferio, C.; Camacho, A.; Capelli, S.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Clemenza, M.; Cremonesi, O.; Cruciani, A.; D'Addabbo, A.; Dafinei, I.; Di Domizio, S.; di Vacri, M. L.; Ferroni, F.; Gironi, L.; Giuliani, A.; Gotti, C.; Keppel, G.; Maino, M.; Mancuso, M.; Martinez, M.; Morganti, S.; Nagorny, S. S.; Nastasi, M.; Nisi, S.; Nones, C.; Orlandi, D.; Pagnanini, L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Pirro, S.; Pozzi, S.; Previtali, E.; Puiu, A.; Rusconi, C.; Schäffner, K.; Tomei, C.; Vignati, M.; Zolotarova, A.

    2017-09-01

    Future experiments on neutrinoless double beta-decay with the aim of exploring the inverted hierarchy region have to employ detectors with excellent energy resolution and zero background in the energy region of interest. Cryogenic scintillating bolometers turn out to be a suitable candidate since they offer particle discrimination: the dual channel detection of the heat and the scintillation light signal allows for particle identification. In particular such detectors permit for a suppression of α-induced backgrounds, a key-issue for next-generation tonne-scale bolometric experiments. We report on the progress and current status of the LUCIFER/CUPID-0 demonstrator, the first array of scintillating bolometers based on enriched Zn82Se crystals which is expected to start data taking in 2016 and the potential of this detection technique for a future tonne-scale bolometric experiment after CUORE.

  6. Quadrupolar interactions in non-cubic crystal and related extra heat capacities. Possible effects on a sapphire bolometer

    Energy Technology Data Exchange (ETDEWEB)

    Bassou, M. [Tunis Univ. (Tunisia)]|[CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France); Rotter, M. [Karlova Univ., Prague (Czech Republic)]|[CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France); Bernier, M. [CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France); Chapellier, M. [CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France)

    1996-02-11

    It is shown that in a non-cubic crystal, the extra heat capacity due to quadrupolar interaction of nuclear spins >1/2 could be much bigger than the phonon heat capacity when the temperature decreases. The possible coupling between quadrupolar and phonon heat reservoir via paramagnetic impurities is stressed. A NMR experiment done on sapphire is presented with an evaluation of the coupling between the two reservoirs and its consequence on the performance of the bolometer. (orig.).

  7. Quadrupolar interactions in non-cubic crystal and related extra heat capacities. Possible effects on a sapphire bolometer

    International Nuclear Information System (INIS)

    Bassou, M.; Rotter, M.; Bernier, M.; Chapellier, M.

    1996-01-01

    It is shown that in a non-cubic crystal, the extra heat capacity due to quadrupolar interaction of nuclear spins >1/2 could be much bigger than the phonon heat capacity when the temperature decreases. The possible coupling between quadrupolar and phonon heat reservoir via paramagnetic impurities is stressed. A NMR experiment done on sapphire is presented with an evaluation of the coupling between the two reservoirs and its consequence on the performance of the bolometer. (orig.)

  8. Radiation detection at very low temperature. DRTBT 1999 - Balaruc-les-Bains - Course collection

    International Nuclear Information System (INIS)

    Chapellier, M.; Ravex, A.; Pari, P.; Bossy, J.; Garoche, P.; Perrin, Nicole; Loidl, M.; Den Hartog, Roland; Navick, Xavier-Francois; Mailly, Dominique; Chardin, Gabriel; Joyez, Philippe; Goyot, M.; Dumoulin, L.; Aprilli, M.; Torre, J.P.; Bouchez, J.; Benoit, Alain

    1992-01-01

    After four contributions (Introduction to cryogenics, Pulsed tube or recent developments in cryo-coolers, Dilution-based cooling, Adiabatic demagnetisation), the contributions addressed various themes: Low temperature physics (Specific and abnormal heats, Thermal conductivity, Anderson insulator, Superconductors); Physics within bolometers (basic principle of a bolometer, Energy conversion and ionisation, electron-phonon interaction, Edge sensor transition); Example of cryogenic sensors (Sub-millimetre / spider-web, Superconducting Tunnel Junction as photon detectors, ionization-heat massive bolometers); Signal processing (SQUID amplifiers, Elementary statistics, Signal processing and data analysis, Measurement electronics for bolometers, Single electron transistor, Preamplifiers)

  9. Edge printability: techniques used to evaluate and improve extreme wafer edge printability

    Science.gov (United States)

    Roberts, Bill; Demmert, Cort; Jekauc, Igor; Tiffany, Jason P.

    2004-05-01

    The economics of semiconductor manufacturing have forced process engineers to develop techniques to increase wafer yield. Improvements in process controls and uniformities in all areas of the fab have reduced film thickness variations at the very edge of the wafer surface. This improved uniformity has provided the opportunity to consider decreasing edge exclusions, and now the outermost extents of the wafer must be considered in the yield model and expectations. These changes have increased the requirements on lithography to improve wafer edge printability in areas that previously were not even coated. This has taxed all software and hardware components used in defining the optical focal plane at the wafer edge. We have explored techniques to determine the capabilities of extreme wafer edge printability and the components of the systems that influence this printability. We will present current capabilities and new detection techniques and the influence that the individual hardware and software components have on edge printability. We will show effects of focus sensor designs, wafer layout, utilization of dummy edge fields, the use of non-zero overlay targets and chemical/optical edge bead optimization.

  10. Hot-electron bolometer terahertz mixers for the Herschel Space Observatory.

    Science.gov (United States)

    Cherednichenko, Sergey; Drakinskiy, Vladimir; Berg, Therese; Khosropanah, Pourya; Kollberg, Erik

    2008-03-01

    We report on low noise terahertz mixers (1.4-1.9 THz) developed for the heterodyne spectrometer onboard the Herschel Space Observatory. The mixers employ double slot antenna integrated superconducting hot-electron bolometers (HEBs) made of thin NbN films. The mixer performance was characterized in terms of detection sensitivity across the entire rf band by using a Fourier transform spectrometer (from 0.5 to 2.5 THz, with 30 GHz resolution) and also by measuring the mixer noise temperature at a limited number of discrete frequencies. The lowest mixer noise temperature recorded was 750 K [double sideband (DSB)] at 1.6 THz and 950 K DSB at 1.9 THz local oscillator (LO) frequencies. Averaged across the intermediate frequency band of 2.4-4.8 GHz, the mixer noise temperature was 1100 K DSB at 1.6 THz and 1450 K DSB at 1.9 THz LO frequencies. The HEB heterodyne receiver stability has been analyzed and compared to the HEB stability in the direct detection mode. The optimal local oscillator power was determined and found to be in a 200-500 nW range.

  11. YBCO hot-electron bolometers dedicated to THz detection and imaging: Embedding issues

    International Nuclear Information System (INIS)

    Aurino, M; Tuerer, I; Martinez, A; Gensbittel, A; Degardin, A F; Kreisler, A J

    2010-01-01

    High-T c hot-electron bolometers (HEB) are an interesting alternative to other superconducting heterodyne mixers in the terahertz frequency range because of low-cost cooling investment, ultra-wide instantaneous bandwidth and low intrinsic noise level, even at 80 K. A technological process to fabricate stacked yttrium-based (YBCO) / praseodymium-based (PBCO) ultra-thin films (in the 15 to 40 nm thickness range) etched to form 0.5 μm x 0.5 μm constrictions, elaborated on (100) MgO substrates, has been previously described. Ageing effects were also considered, with the consequence of increased electrical resistance, significant degradation of the regular THz response and no HEB mixing action. Electron and UV lithography steps are revisited here to realize HEB mixers based on nano-bridges covered by a log-periodic planar gold antenna, dedicated to the 1 to 7 THz range. Several measures have been attempted to reduce the conversion losses, mainly by considering the embedding issues related to the YBCO nano-bridge impedance matching to the antenna and the design of optimized intermediate frequency circuitry. Antenna simulations were performed and validated through experiments on scaled models at GHz frequencies. Electromagnetic coupling to the incoming radiation was also studied, including crosstalk between neighbour antennas forming a linear imaging array.

  12. LUCIFER: Scintillating bolometers for the search of Neutrinoless Double Beta Decay

    Energy Technology Data Exchange (ETDEWEB)

    Vignati, M. [Sapienza Universita di Roma and INFN Sezione di Roma, Roma, I-00185 (Italy)

    2012-08-15

    The nature of neutrino mass is one of the frontier problems of particle physics. Neutrinoless Double Beta Decay (0{nu}DBD) is a powerful tool to measure the neutrino mass and to test possible extensions of the Standard Model. Bolometers are excellent detectors to search for this rare decay, thanks to their good energy resolution and to the low background conditions in which they can operate. The current challenge consists in the reduction of the background, represented by environmental {gamma}'s and {alpha}'s, in view of a zero background experiment. We present the LUCIFER R and D, funded by an European grant, in which the background can be reduced by an order of magnitude with respect to the present generation experiments. The technique is based on the simultaneous bolometric measurement of the heat and of the scintillation light produced by a particle, that allows to discriminate between {beta} and {alpha} particles. The {gamma} background is reduced by choosing 0{nu}DBD candidate isotopes with transition energy above the environmental {gamma}'s spectrum. The prospect of this R and D are discussed.

  13. Enriched TeO2 bolometers with active particle discrimination: Towards the CUPID experiment

    Directory of Open Access Journals (Sweden)

    D.R. Artusa

    2017-04-01

    Full Text Available We present the performances of two 92% enriched 130TeO2 crystals operated as thermal bolometers in view of a next generation experiment to search for neutrinoless double beta decay of 130Te. The crystals, 435 g each, show an energy resolution, evaluated at the 2615 keV γ-line of 208Tl, of 6.5 and 4.3 keV FWHM. The only observable internal radioactive contamination arises from 238U (15 and 8 μBq/kg, respectively. The internal activity of the most problematic nuclei for neutrinoless double beta decay, 226Ra and 228Th, are both evaluated as <3.1 μBq/kg for one crystal and <2.3 μBq/kg for the second. Thanks to the readout of the weak Cherenkov light emitted by β/γ particles by means of Neganov–Luke bolometric light detectors we were able to perform an event-by-event identification of β/γ events with a 95% acceptance level, while establishing a rejection factor of 98.21% and 99.99% for α particles.

  14. Terahertz imaging and spectroscopy based on hot electron bolometer (HEB) heterodyne detection

    Science.gov (United States)

    Gerecht, Eyal; You, Lixing

    2008-02-01

    Imaging and spectroscopy at terahertz frequencies have great potential for healthcare, plasma diagnostics, and homeland security applications. Terahertz frequencies correspond to energy level transitions of important molecules in biology and astrophysics. Terahertz radiation (T-rays) can penetrate clothing and, to some extent, can also penetrate biological materials. Because of their shorter wavelengths, they offer higher spatial resolution than do microwaves or millimeter waves. We are developing hot electron bolometer (HEB) mixer receivers for heterodyne detection at terahertz frequencies. HEB detectors provide unprecedented sensitivity and spectral resolution at terahertz frequencies. We describe the development of a two-pixel focal plane array (FPA) based on HEB technology. Furthermore, we have demonstrated a fully automated, two-dimensional scanning, passive imaging system based on our HEB technology operating at 0.85 THz. Our high spectral resolution terahertz imager has a total system noise equivalent temperature difference (NEΔT) value of better than 0.5 K and a spatial resolution of a few millimeters. HEB technology is becoming the basis for advanced terahertz imaging and spectroscopic technologies for the study of biological and chemical agents over the entire terahertz spectrum.

  15. LUCIFER: a scintillating bolometer array for the search of neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Cardani, Laura

    2011-01-01

    In spite of the high precision achieved in the field of neutrino oscillations, there are some fundamental questions that can not be addressed by a study of ths phenomenon. We do not know in fact the absolute mass of neutrino and weather it is a Dirac or a Majorana particle. The LUCIFER experiment, financed by the ERC-AdG, will play an important role in this field. This project aims to push beyond the actual technological limits the possibility of observation of the Neutrinoless Double Beta Decay (0νDBD). The detection of this extremely rare decay would indeed demonstrate that neutrino is a Majorana particle and, at the same time, would allow to set its absolute mass scale. LUCIFER will study the 0νDBD do 82 Se through ZnSe scintillating bolometers. Thanks to the simultaneous red-out of the heat and light produced by an interaction in the crystal, the background rate in the region of interest will be lower than 10 -3 counts/kg/keV/years. In the following, the expected performance of LUCIFER are discussed.

  16. Edge effects in composites

    International Nuclear Information System (INIS)

    Guz, A.N.; Kokhanenko, Yu.V.

    1995-01-01

    In the present article we survey papers on edge effects investigated by the rigorous approach. We interpret edge effects as stressed states created in a composite as a result of zones in which the stresses exhibit a rapidly changing behavior in comparison with the slow variation of the stresses outside such zones. Here the range of the edge effect is defined as the distance from the point of its inception to the boundary of the edge zone in a given direction. The transition of the stresses to the slowly varying state is determined within prescribed error limits. The size and configuration of the edge zone depends on the tolerated error. Clearly, the main difficulty associated with the rigorous approach is finding solutions of the elasticity problems. The finite-difference approach is suggested for the approximate solution of these problems. In light of the comparative time consumption of the finite-difference approach, it is best directed at certain classes of problems rather than at particular individual problems. Not too many papers on the investigation of edge effects by the rigorous approach have been published to date. Below, following in their footsteps, we formulate edge effect problems in composites, determine classes of problems, and investigate edge effects in composite materials and structural elements using them in Cartesian (planar and three-dimensional problems) and cylindrical (axisymmetric problems) coordinate frames. We note that the division of approaches to the study of edge effects into qualitative (nonrigorous) and quantitative (rigorous) reflects the authors own point of view. Of course, other schemes of classification of the approaches to the investigation of the regions of rapidly varying states in composites are possible

  17. Edge colouring by total labellings

    DEFF Research Database (Denmark)

    Brandt, Stephan; Rautenbach, D.; Stiebitz, M.

    2010-01-01

    We introduce the concept of an edge-colouring total k-labelling. This is a labelling of the vertices and the edges of a graph G with labels 1, 2, ..., k such that the weights of the edges define a proper edge colouring of G. Here the weight of an edge is the sum of its label and the labels of its...

  18. Adobe Edge Quickstart Guide

    CERN Document Server

    Labrecque, Joseph

    2012-01-01

    Adobe Edge Quickstart Guide is a practical guide on creating engaging content for the Web with Adobe's newest HTML5 tool. By taking a chapter-by-chapter look at each major aspect of Adobe Edge, the book lets you digest the available features in small, easily understandable chunks, allowing you to start using Adobe Edge for your web design needs immediately. If you are interested in creating engaging motion and interactive compositions using web standards with professional tooling, then this book is for you. Those with a background in Flash Professional wanting to get started quickly with Adobe

  19. Design considerations for TES and QET sensors

    International Nuclear Information System (INIS)

    Cabrera, B.

    2000-01-01

    We summarize some of the effects that must be taken into account in the design of superconducting Transition Edge Sensors (TES) and Quasiparticle-trap-assisted Electrothermal-feedback Transition-edge-sensors (QET). For the TES these include determining time constants, maintaining voltage bias, avoid electrothermal oscillations, critical current limitations, and saturation. For QET phonon sensors, voltage bias was conceived to allow the simultaneous biasing of parallel TESs with different transition temperatures, and preventing normal-superconducting phase separation

  20. Adobe Edge Preview 3

    CERN Document Server

    Grover, Chris

    2011-01-01

    Want to use an Adobe tool to design animated web graphics that work on iPhone and iPad? You've come to the right book. Adobe Edge Preview 3: The Missing Manual shows you how to build HTML5 graphics using simple visual tools. No programming experience? No problem. Adobe Edge writes the underlying code for you. With this eBook, you'll be designing great-looking web elements in no time. Get to know the workspace. Learn how Adobe Edge Preview 3 performs its magic.Create and import graphics. Make drawings with Edge's tools, or use art you designed in other programs.Work with text. Build menus, lab

  1. Pavement edge treatment.

    Science.gov (United States)

    2013-01-01

    Four projects were built over two construction seasons using special devices attached to the paving machine that produces a 30 slope on the outside pavement edge instead of the near vertical drop-off common with conventional paving equipment. This ...

  2. Edge Simulation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, Sergei I. [Univ. of California, San Diego, CA (United States); Angus, Justin [Univ. of California, San Diego, CA (United States); Lee, Wonjae [Univ. of California, San Diego, CA (United States)

    2018-01-05

    The goal of the Edge Simulation Laboratory (ESL) multi-institutional project is to advance scientific understanding of the edge plasma region of magnetic fusion devices via a coordinated effort utilizing modern computing resources, advanced algorithms, and ongoing theoretical development. The UCSD team was involved in the development of the COGENT code for kinetic studies across a magnetic separatrix. This work included a kinetic treatment of electrons and multiple ion species (impurities) and accurate collision operators.

  3. Multichroic Antenna-Coupled Bolometers for CMB Polarization and Sub-mm Observations

    Science.gov (United States)

    Lee, Adrian

    We propose to develop planar antenna-coupled superconducting bolometer arrays for observations at sub-millimeter to millimeter wavelengths. Our pixel architecture features a dual-polarization log-periodic antenna with a 4:1-bandwidth ratio, followed by a filter bank that divides the total bandwidth into several broad photometric bands. The advantages of this approach, compared with those using conventional single-color pixels, include a combination of greatly reduced focal-plane mass, higher array sensitivity, and a larger number of spectral bands. These advantages have the potential to greatly reduce the cost and/or increase the performance of NASA missions in the sub-millimeter to millimeter bands. For CMB polarization measurements, a wide frequency range of roughly 30 to 300 GHz is required to subtract galactic foregrounds. The multichroic architecture we propose enables a relatively low-cost 30-cm aperture space mission to have sufficient sensitivity to probe below the tensor-to-scalar ratio r = 0.01. For a larger aperture mission, such as the EPIC-IM concept, the proposed technology could reduce the focal-plane mass by a factor of 2-3, with great savings in required cryocooler performance and therefore cost. We have demonstrated the lens-coupled antenna concept in the POLARBEAR ground-based CMB polarization experiment now operating in Chile. That experiment uses a single-band planar antenna and produces excellent beam properties and optical efficiency. In the laboratory, we have measured two octaves of total bandwidth in the log-periodic sinuous antenna. We have built filter banks of 2, 3, and 7 bands with 4, 6, and 14 bolometers per pixel for two linear polarizations. Building on these accomplishments, the deliverables for the proposed work include: *Two pixel types that together cover the range from 30 to 300 GHz. The low-frequency pixel will have bands centered at 35, 50, and 80 GHz and the high frequency pixel will have bands centered at 120, 180, and 270

  4. Development of {sup 100}Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search

    Energy Technology Data Exchange (ETDEWEB)

    Armengaud, E.; Gros, M.; Herve, S.; Magnier, P.; Navick, X.F.; Nones, C.; Paul, B.; Penichot, Y.; Zolotarova, A.S. [Universite Paris-Saclay, IRFU, CEA, Gif-sur-Yvette (France); Augier, C.; Billard, J.; Cazes, A.; Charlieux, F.; Jesus, M. de; Gascon, J.; Juillard, A.; Queguiner, E.; Sanglard, V.; Vagneron, L. [Univ Lyon, Universite Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne (France); Barabash, A.S.; Konovalov, S.I.; Umatov, V.I. [National Research Centre Kurchatov Institute, Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Beeman, J.W. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Bekker, T.B. [V.S. Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the RAS, Novosibirsk (Russian Federation); Bellini, F.; Ferroni, F. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN, Sezione di Roma, Rome (Italy); Benoit, A.; Camus, P. [CNRS-Neel, Grenoble (France); Berge, L.; Chapellier, M.; Dumoulin, L.; Humbert, V.; Le Sueur, H.; Marcillac, P. de; Marnieros, S.; Marrache-Kikuchi, C.; Novati, V.; Olivieri, E.; Plantevin, O. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Bergmann, T.; Kleifges, M.; Tcherniakhovski, D.; Weber, M. [Karlsruhe Institute of Technology, Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruhe (Germany); Boiko, R.S.; Danevich, F.A.; Kobychev, V.V.; Nikolaichuk, M.O.; Tretyak, V.I. [Institute for Nuclear Research, Kyiv (Ukraine); Broniatowski, A. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Karlsruhe Institute of Technology, Institut fuer Experimentelle Teilchenphysik, Karlsruhe (Germany); Brudanin, V.; Rozov, S.; Yakushev, E. [JINR, Laboratory of Nuclear Problems, Dubna, Moscow Region (Russian Federation); Capelli, S.; Gironi, L.; Pavan, M.; Pessina, G. [Universita di Milano Bicocca, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano Bicocca, Milan (Italy); Cardani, L.; Casali, N.; Dafinei, I.; Tomei, C.; Vignati, M. [INFN, Sezione di Roma, Rome (Italy); Chernyak, D.M. [Institute for Nuclear Research, Kyiv (Ukraine); The University of Tokyo, Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, Kashiwa, Chiba (Japan); Combarieu, M. de; Pari, P. [Universite Paris-Saclay, IRAMIS, CEA, Gif-sur-Yvette (France); Coron, N.; Redon, T. [Universite Paris-Sud, IAS, CNRS, Orsay (France); Devoyon, L.; Koskas, F.; Strazzer, O. [Universite Paris-Saclay, Orphee, CEA, Gif-sur-Yvette (France); Di Domizio, S. [Universita di Genova, Dipartimento di Fisica, Genoa (Italy); INFN Sezione di Genova, Genoa (Italy); Eitel, K.; Siebenborn, B. [Karlsruhe Institute of Technology, Institut fuer Kernphysik, Karlsruhe (Germany); Enss, C.; Fleischmann, A.; Gastaldo, L. [Heidelberg University, Kirchhoff Institute for Physics, Heidelberg (Germany); Foerster, N.; Kozlov, V. [Karlsruhe Institute of Technology, Institut fuer Experimentelle Teilchenphysik, Karlsruhe (Germany); Giuliani, A. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Universita dell' Insubria, DISAT, Como (Italy); Grigorieva, V.D.; Ivannikova, N.V.; Ivanov, I.M.; Makarov, E.P.; Shlegel, V.N.; Vasiliev, Ya.V. [Nikolaev Institute of Inorganic Chemistry, Novosibirsk (Russian Federation); Hehn, L. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Karlsruhe Institute of Technology, Institut fuer Kernphysik, Karlsruhe (Germany); Jin, Y. [Laboratoire de Photonique et de Nanostructures, CNRS, Marcoussis (France); Kraus, H. [University of Oxford, Department of Physics, Oxford (United Kingdom); Kudryavtsev, V.A. [University of Sheffield, Department of Physics and Astronomy, Sheffield (United Kingdom); Laubenstein, M.; Nagorny, S.; Pattavina, L.; Pirro, S. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); Loidl, M.; Rodrigues, M. [CEA-Saclay, CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), Gif-sur-Yvette Cedex (France); Mancuso, M. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Universita dell' Insubria, DISAT, Como (Italy); Max-Planck-Institut fuer Physik, Munich (Germany); Pagnanini, L.; Schaeffner, K. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); INFN, Gran Sasso Science Institute, L' Aquila (Italy); Piperno, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Poda, D.V. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Institute for Nuclear Research, Kyiv (Ukraine); Rusconi, C. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Scorza, S. [Karlsruhe Institute of Technology, Institut fuer Experimentelle Teilchenphysik, Karlsruhe (Germany); SNOLAB, Lively, ON (Canada); Velazquez, M. [Universite de Bordeaux, ICMCB, CNRS, Pessac (France)

    2017-11-15

    This paper reports on the development of a technology involving {sup 100}Mo-enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass (∝ 1 kg), high optical quality, radiopure {sup 100}Mo-containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2-0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q-value of the double-beta transition of {sup 100}Mo (3034 keV) is 4-6 keV FWHM. The rejection of the α-induced dominant background above 2.6 MeV is better than 8σ. Less than 10 μBq/kg activity of {sup 232}Th({sup 228}Th) and {sup 226}Ra in the crystals is ensured by boule recrystallization. The potential of {sup 100}Mo-enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10 kg x d exposure: the two neutrino double-beta decay half-life of {sup 100}Mo has been measured with the up-to-date highest accuracy as T{sub 1/2} = [6.90 ± 0.15(stat.) ± 0.37(syst.)] x 10{sup 18} years. Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of {sup 100}Mo. (orig.)

  5. A search for non-baryonic dark matter using an ionisation bolometer in the edelweiss experiment

    International Nuclear Information System (INIS)

    Di Stefano, Ph.

    1998-01-01

    The EDELWEISS experiment is an underground direct-detection search for hypothetical supersymmetric WIMPs that might solve the problem of dark matter. We have employed a cryogenic 70 g germanium ionisation bolometer, in which a WIMP would scatter elastically off a nucleus, creating both a heat and an ionisation signal. To offset the various electronic noises present in our necessarily small signals, we have s applied an optimal filtering technique in the frequency domain. This allows us to reach resolutions of 1.2 keV FWHM at 122 keV on north channels. It also provides good separation right down to low energies between the expected signal of nuclear recoils, and the photonic background of electron recoils which ionize more for a given energy. Calibration data show that we are able to reject 99.7 % of this background, while keeping 95% of the signal. However, our 1.17 kg.days of data searching for WIMPs show a third population encroaching on the expected signal. This is probably due to low energy photons or electrons interacting in the outer layers of the crystal, where charges are incompletely collected. Nevertheless, by trading off half of the conserved signal, we still manage to reject 98.5 % of the background. Thus the raw rate of 40 evts/d/kg/keV yields a conservative 90 % upper limit on the signal of 0.6 evts/d/kg/keV. This represents nearly a three orders of magnitude improvement for EDELWEISS, and puts the predicted supersymmetric phase space within two orders of magnitude. (author)

  6. Deep learning for plasma tomography using the bolometer system at JET

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Francisco A. [Instituto Superior Técnico (IST), University of Lisbon (Portugal); Ferreira, Diogo R., E-mail: diogo.ferreira@tecnico.ulisboa.pt [Instituto Superior Técnico (IST), University of Lisbon (Portugal); Carvalho, Pedro J. [Instituto de Plasmas e Fusão Nuclear (IPFN), IST, University of Lisbon (Portugal)

    2017-01-15

    Highlights: • Plasma tomography is able to reconstruct the plasma profile from radiation measurements along several lines of sight. • The reconstruction can be performed with neural networks, but previous work focused on learning a parametric model. • Deep learning can be used to reconstruct the full 2D plasma profile with the same resolution as existing tomograms. • We introduce a deep neural network to generate an image from 1D projection data based on a series of up-convolutions. • After training on JET data, the network provides accurate reconstructions with an average pixel error as low as 2%. - Abstract: Deep learning is having a profound impact in many fields, especially those that involve some form of image processing. Deep neural networks excel in turning an input image into a set of high-level features. On the other hand, tomography deals with the inverse problem of recreating an image from a number of projections. In plasma diagnostics, tomography aims at reconstructing the cross-section of the plasma from radiation measurements. This reconstruction can be computed with neural networks. However, previous attempts have focused on learning a parametric model of the plasma profile. In this work, we use a deep neural network to produce a full, pixel-by-pixel reconstruction of the plasma profile. For this purpose, we use the overview bolometer system at JET, and we introduce an up-convolutional network that has been trained and tested on a large set of sample tomograms. We show that this network is able to reproduce existing reconstructions with a high level of accuracy, as measured by several metrics.

  7. Deep learning for plasma tomography using the bolometer system at JET

    International Nuclear Information System (INIS)

    Matos, Francisco A.; Ferreira, Diogo R.; Carvalho, Pedro J.

    2017-01-01

    Highlights: • Plasma tomography is able to reconstruct the plasma profile from radiation measurements along several lines of sight. • The reconstruction can be performed with neural networks, but previous work focused on learning a parametric model. • Deep learning can be used to reconstruct the full 2D plasma profile with the same resolution as existing tomograms. • We introduce a deep neural network to generate an image from 1D projection data based on a series of up-convolutions. • After training on JET data, the network provides accurate reconstructions with an average pixel error as low as 2%. - Abstract: Deep learning is having a profound impact in many fields, especially those that involve some form of image processing. Deep neural networks excel in turning an input image into a set of high-level features. On the other hand, tomography deals with the inverse problem of recreating an image from a number of projections. In plasma diagnostics, tomography aims at reconstructing the cross-section of the plasma from radiation measurements. This reconstruction can be computed with neural networks. However, previous attempts have focused on learning a parametric model of the plasma profile. In this work, we use a deep neural network to produce a full, pixel-by-pixel reconstruction of the plasma profile. For this purpose, we use the overview bolometer system at JET, and we introduce an up-convolutional network that has been trained and tested on a large set of sample tomograms. We show that this network is able to reproduce existing reconstructions with a high level of accuracy, as measured by several metrics.

  8. Phase-locking of a terahertz solid-state source using a superconducting hot-electron bolometer mixer

    International Nuclear Information System (INIS)

    Miao, W; Zhang, W; Zhou, K M; Li, S L; Zhang, K; Duan, W Y; Yao, Q J; Shi, S C

    2013-01-01

    We report on a scheme whereby the local-oscillator (LO) of a THz heterodyne receiver can be phase-locked by the mixer of the heterodyne receiver. This scheme is demonstrated for the phase-locking of an 847.6 GHz Gunn oscillator and multiplier chain combined source with a superconducting hot-electron bolometer (HEB) mixer. We show that with this technique the phase-locked beat signal can reach a signal-to-noise ratio higher than 70 dB in a resolution bandwidth (RBW) of 1 Hz. This phase-locking scheme should find good use in THz heterodyne spectrometers. (paper)

  9. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  10. Properties on the edge: graphene edge energies, edge stresses, edge warping, and the Wulff shape of graphene flakes

    International Nuclear Information System (INIS)

    Branicio, Paulo S; Jhon, Mark H; Gan, Chee Kwan; Srolovitz, David J

    2011-01-01

    It has been shown that the broken bonds of an unreconstructed graphene edge generate compressive edge stresses leading to edge warping. Here, we investigate edge energies and edge stresses of graphene nanoribbons with arbitrary orientations from armchair to zigzag, considering both flat and warped edge shapes in the presence and absence of hydrogen. We use the second generation reactive empirical bond order potential to calculate the edge energies and stresses for clean and hydrogenated edges. Using these energies, we perform a Wulff construction to determine the equilibrium shapes of flat graphene flakes as a function of hydrogen chemical potential. While edge stresses for clean, flat edges are compressive, they become tensile if allowed to warp. Conversely, we find that edge energies change little (∼1%) with edge warping. Hydrogenation of the edges virtually eliminates both the edge energy and edge stresses. For warped edges an approximately linear relationship is found between amplitudes and wavelengths. The equilibrium shape of a graphene flake is determined by the value of the hydrogen chemical potential. For very small (and large) values of it the flakes have a nearly hexagonal (dodecagon) shape with zigzag oriented edges, while for intermediate values graphene flakes are found with complex shapes

  11. Theory of edge radiation

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Kocharyan, V.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2008-08-15

    We formulate a complete theory of Edge Radiation based on a novel method relying on Fourier Optics techniques. Similar types of radiation like Transition UndulatorRadiation are addressed in the framework of the same formalism. Special attention is payed in discussing the validity of approximations upon which the theory is built. Our study makes consistent use of both similarity techniques and comparisons with numerical results from simulation. We discuss both near and far zone. Physical understanding of many asymptotes is discussed. Based on the solution of the field equation with a tensor Green's function technique, we also discuss an analytical model to describe the presence of a vacuum chamber. In particular, explicit calculations for a circular vacuum chamber are reported. Finally, we consider the use of Edge Radiation as a tool for electron beam diagnostics. We discuss Coherent Edge Radiation, Extraction of Edge Radiation by a mirror, and other issues becoming important at high electron energy and long radiation wavelength. Based on this work we also study the impact of Edge Radiation on XFEL setups and we discuss recent results. (orig.)

  12. High Speed Edge Detection

    Science.gov (United States)

    Prokop, Norman F (Inventor)

    2016-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  13. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  14. Characterization of TES bolometers used in 2-dimensional Backshort-Under-Grid (BUG) arrays for far-infrared astronomy

    International Nuclear Information System (INIS)

    Staguhn, J.G.; Allen, C.A.; Benford, D.J.; Chervenak, J.A.; Chuss, D.T.; Miller, T.M.; Moseley, S.H.; Wollack, E.J.

    2006-01-01

    We have produced a laboratory demonstration of our new Backshort-Under-Grid (BUG) bolometer array architecture in a monolithic, 2-dimensional, 8x8 format. The detector array is designed as a square grid of suspended, 1μm thick silicon bolometers with superconducting molybdium/gold bilayer TESs. These detectors use an additional layer of gold bars deposited on top of the bilayer, oriented transverse to the direction of the current flow, for the suppression of excess noise. This detector design has earlier been shown to provide near fundamental noise limited device performance. We present results from performance measurements of witness devices. In particular we demonstrate that the inband excess noise level of the TES detectors is less than 20% above the thermodynamic phonon noise limit and not significantly higher out of band at frequencies that cannot be attenuated by the Nyquist filter. Our 8x8 BUG arrays will be used in the near future for astronomical observations in several (sub-)millimeter instruments

  15. Study and optimization of bolometers designed to measure both ionization and heat in order to detect black matter

    International Nuclear Information System (INIS)

    Navick, X.F.

    1997-01-01

    The detection of black matter in the form of wimp (weakly interactive massive particle) requires the identification of the incident particle so that events due to wimp interactions can be set apart from events due to surrounding radioactivity. Bolometers allow to measure both the energy deposited and the ionization made by a particle. The amount of energy is determined by calorimetry. Wimp detection implies bolometers to run at very low temperature. After a presentation of particle interactions with matter, this thesis describes the physical phenomena involved in heat and ionization measurements. The behaviour of semiconductors at low temperature is investigated and qualitative expectations are drawn about the working of metal-semiconductor interface and the pin diode. An experimental setting is presented. The operating voltage needs to be very low in order to be the least disturbing possible. At so low voltage, a decrease of the ionization signal in terms of time appears. It is shown that this phenomenon is linked to the level density in the forbidden band of the semiconductor and to the intensity of infrared radiation reaching the detector. (A.C.)

  16. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance.

    Science.gov (United States)

    Sassi, U; Parret, R; Nanot, S; Bruna, M; Borini, S; De Fazio, D; Zhao, Z; Lidorikis, E; Koppens, F H L; Ferrari, A C; Colli, A

    2017-01-31

    There is a growing number of applications demanding highly sensitive photodetectors in the mid-infrared. Thermal photodetectors, such as bolometers, have emerged as the technology of choice, because they do not need cooling. The performance of a bolometer is linked to its temperature coefficient of resistance (TCR, ∼2-4% K -1 for state-of-the-art materials). Graphene is ideally suited for optoelectronic applications, with a variety of reported photodetectors ranging from visible to THz frequencies. For the mid-infrared, graphene-based detectors with TCRs ∼4-11% K -1 have been demonstrated. Here we present an uncooled, mid-infrared photodetector, where the pyroelectric response of a LiNbO 3 crystal is transduced with high gain (up to 200) into resistivity modulation for graphene. This is achieved by fabricating a floating metallic structure that concentrates the pyroelectric charge on the top-gate capacitor of the graphene channel, leading to TCRs up to 900% K -1 , and the ability to resolve temperature variations down to 15 μK.

  17. MgB2-Based Bolometer Array for Far Infra-Red Thermal Imaging and Fourier Transform Spectroscopy Applications

    Science.gov (United States)

    Lakew, B.; Aslam, S.; Brasunas, J.

    2012-01-01

    The mid-superconducting critical temperature (T(sub c) approximately 39 K) of the simple binary, intermetallic MgB, [1] makes it a very good candidate for the development of the next generation of electrooptical devices (e.g. [2]). In particular, recent advances in thin film deposition teclmiques to attain higb quality polycrystalline thin film MgB, deposited on SiN-Si substrates, with T(sub c) approximately 38K [3] coupled with the low voltage noise performance of the film [4] makes it higbly desirable for the development of moderately cooled bolometer arrays for integration into future space-bourne far infra-red (FIR) spectrometers and thermal mappers for studying the outer planets, their icy moons and other moons of interest in the 17-250 micrometer spectral wavelength range. Presently, commercially available pyroelectric detectors operating at 300 K have specific detectivity, D(*), around 7 x 10(exp 8) to 2 x 10(exp 9) centimeters square root of Hz/W. However, a MgB2 thin film based bolometer using a low-stress (less than 140 MPa) SiN membrane isolated from the substrate by a small thermal conductive link, operating at 38 K, promises to have two orders of magnitude higher specific detectivity [5][6].

  18. MgB2 Thin-Film Bolometer for Applications in Far-Infrared Instruments on Future Planetary Missions

    Science.gov (United States)

    Lakew, B.; Aslam, S.; Brasunas, J.; Cao, N.; Costen, N.; La, A.; Stevenson, T.; Waczynski, A.

    2012-01-01

    A SiN membrane based MgB2 thin-film bolometer, with a non-optimized absorber, has been fabricated that shows an electrical noise equivalent power of 256 fW/square root Hz operating at 30 Hz in the 8.5 - 12.35 micron spectral bandpass. This value corresponds to an electrical specific detectivity of 7.6 x 10(exp 10) cm square root Hz/W. The bolometer shows a measured blackbody (optical) specific detectivity of 8.8 x 10(exp 9) cm square root Hz/W, with a responsivity of 701.5 kV/W and a first-order time constant of 5.2 ms. It is predicted that with the inclusion of a gold black absorber that a blackbody specific detectivity of 6.4 x 10(exp 10) cm/square root Hz/W at an operational frequency of 10 Hz, can be realized for integration into future planetary exploration instrumentation where high sensitivity is required in the 17 - 250 micron spectral wavelength range.

  19. Applying the computer code ''beam scanning' for obtaining the electron beam energy spectrum and monitoring the beam scanning system with a faraday cup and edge current sensors

    International Nuclear Information System (INIS)

    Bystrov, P.A.

    2014-01-01

    The results of experiments simulation, obtained in the development of technique for controlling the parameters of the electron beam in a compact radiation sterilization installation are presented. Calculations were performed with a help of a computer code ''BEAM SCANNING'', developed in MRTI. Proposed a method to obtain the spectrum of the electron beam by simulation the experiments in which a Faraday cup waveforms were measured. Preliminary results are presented. Also the results of the experiments and calculations obtained in the development of the amplitude angle sensors are presented. The experiments for the beam irradiation of lead plates proposed as current sensors were modeled. Results are presented in comparison with experimental data. Also are presented the simulation results for the device designed to control scanning system.

  20. Triangulation-based edge measurement using polyview optics

    Science.gov (United States)

    Li, Yinan; Kästner, Markus; Reithmeier, Eduard

    2018-04-01

    Laser triangulation sensors as non-contact measurement devices are widely used in industry and research for profile measurements and quantitative inspections. Some technical applications e.g. edge measurements usually require a configuration of a single sensor and a translation stage or a configuration of multiple sensors, so that they can measure a large measurement range that is out of the scope of a single sensor. However, the cost of both configurations is high, due to the additional rotational axis or additional sensor. This paper provides a special measurement system for measurement of great curved surfaces based on a single sensor configuration. Utilizing a self-designed polyview optics and calibration process, the proposed measurement system allows an over 180° FOV (field of view) with a precise measurement accuracy as well as an advantage of low cost. The detailed capability of this measurement system based on experimental data is discussed in this paper.

  1. The Inner Urban Edge

    Science.gov (United States)

    Ferebee, Ann; Carpenter, Edward K.

    1974-01-01

    In this article, renewal of the inner urban edge is discussed. Norfolk (Virginia) is attempting to blur the difference between old and new neighbor hoods through zoning and architectural controls. Cincinnati (Ohio) is developing an environmentally sound hillside design. Reading (Pennsylvania) is utilizing old railyards for greenbelts of hiking and…

  2. Swords with Blunt Edges

    Science.gov (United States)

    Popham, W. James

    2004-01-01

    Many U.S. educators now wonder whether they're teachers or targets. This mentality stems from the specter of their school being sanctioned for failing the state accountability tests mandated under No Child Left Behind (NCLB). According to this author, most of those tests are like blunt-edged swords: They function badly in two directions. While…

  3. AC bias characterization of low noise bolometers for SAFARI using an open-loop frequency domain SQUID-based multiplexer operating between 1 and 5 MHz

    NARCIS (Netherlands)

    Gottardi, L.; Bruijn, M.; Gao, J.R.; Den Hartog, R.; Hijmering, R.; Hoevers, H.; Khosropanah, P.; De Korte, P.; Van der Kuur, J.; Lindeman, M.; Ridder, M.

    2012-01-01

    SRON is developing the Frequency Domain Multiplexing (FDM) read-out and the ultra low NEP TES bolometers array for the infra-red spectrometer SAFARI on board of the Japanese space mission SPICA. The FDM prototype of the instrument requires critical and complex optimizations. For single pixel

  4. Oil-spill remote sensors : new tools that provide solutions to old problems

    International Nuclear Information System (INIS)

    Brown, C.E.; Fingas, M.F.; Goodman, R.H.

    1998-01-01

    A review of remote sensors used for oil spill detection and monitoring was presented. New technologies and developments in the area were highlighted. The infrared (IR) camera or a combination infrared/ultraviolet system are the two most commonly used sensors currently being used. They can detect oil under a variety of conditions, discriminate oil from some backgrounds and they have the lowest cost of any sensor. Their weakness is that they cannot identify oil on beaches, among weeds or debris, through fog, or at dawn and dusk. Also, water-in-oil emulsions are often not detected with infrared sensors. The ability of IR sensors to detect the thickness of spills was also discussed. Present day cameras use micro-bolometer technology making them more economical and practical to operate than older IR systems. The use of satellite imagery for tracking oil spills is one important new trend that can prove to be useful for wide-area searching. 37 refs

  5. The SKED: speckle knife edge detector

    International Nuclear Information System (INIS)

    Sharpies, S D; Light, R A; Achamfuo-Yeboah, S O; Clark, M; Somekh, M G

    2014-01-01

    The knife edge detector—also known as optical beam deflection—is a simple and robust method of detecting ultrasonic waves using a laser. It is particularly suitable for detection of high frequency surface acoustic waves as the response is proportional to variation of the local tilt of the surface. In the case of a specular reflection of the incident laser beam from a smooth surface, any lateral movement of the reflected beam caused by the ultrasonic waves is easily detected by a pair of photodiodes. The major disadvantage of the knife edge detector is that it does not cope well with optically rough surfaces, those that give a speckled reflection. The optical speckles from a rough surface adversely affect the efficiency of the knife edge detector, because 'dark' speckles move synchronously with 'bright' speckles, and their contributions to the ultrasonic signal cancel each other out. We have developed a new self-adapting sensor which can cope with the optical speckles reflected from a rough surface. It is inelegantly called the SKED—speckle knife edge detector—and like its smooth surface namesake it is simple, cheap, compact, and robust. We describe the theory of its operation, and present preliminary experimental results validating the overall concept and the operation of the prototype device

  6. The SKED: speckle knife edge detector

    Science.gov (United States)

    Sharpies, S. D.; Light, R. A.; Achamfuo-Yeboah, S. O.; Clark, M.; Somekh, M. G.

    2014-06-01

    The knife edge detector—also known as optical beam deflection—is a simple and robust method of detecting ultrasonic waves using a laser. It is particularly suitable for detection of high frequency surface acoustic waves as the response is proportional to variation of the local tilt of the surface. In the case of a specular reflection of the incident laser beam from a smooth surface, any lateral movement of the reflected beam caused by the ultrasonic waves is easily detected by a pair of photodiodes. The major disadvantage of the knife edge detector is that it does not cope well with optically rough surfaces, those that give a speckled reflection. The optical speckles from a rough surface adversely affect the efficiency of the knife edge detector, because 'dark' speckles move synchronously with 'bright' speckles, and their contributions to the ultrasonic signal cancel each other out. We have developed a new self-adapting sensor which can cope with the optical speckles reflected from a rough surface. It is inelegantly called the SKED—speckle knife edge detector—and like its smooth surface namesake it is simple, cheap, compact, and robust. We describe the theory of its operation, and present preliminary experimental results validating the overall concept and the operation of the prototype device.

  7. Novel design and sensitivity analysis of displacement measurement system utilizing knife edge diffraction for nanopositioning stages.

    Science.gov (United States)

    Lee, ChaBum; Lee, Sun-Kyu; Tarbutton, Joshua A

    2014-09-01

    This paper presents a novel design and sensitivity analysis of a knife edge-based optical displacement sensor that can be embedded with nanopositioning stages. The measurement system consists of a laser, two knife edge locations, two photodetectors, and axillary optics components in a simple configuration. The knife edge is installed on the stage parallel to its moving direction and two separated laser beams are incident on knife edges. While the stage is in motion, the direct transverse and diffracted light at each knife edge is superposed producing interference at the detector. The interference is measured with two photodetectors in a differential amplification configuration. The performance of the proposed sensor was mathematically modeled, and the effect of the optical and mechanical parameters, wavelength, beam diameter, distances from laser to knife edge to photodetector, and knife edge topography, on sensor outputs was investigated to obtain a novel analytical method to predict linearity and sensitivity. From the model, all parameters except for the beam diameter have a significant influence on measurement range and sensitivity of the proposed sensing system. To validate the model, two types of knife edges with different edge topography were used for the experiment. By utilizing a shorter wavelength, smaller sensor distance and higher edge quality increased measurement sensitivity can be obtained. The model was experimentally validated and the results showed a good agreement with the theoretically estimated results. This sensor is expected to be easily implemented into nanopositioning stage applications at a low cost and mathematical model introduced here can be used for design and performance estimation of the knife edge-based sensor as a tool.

  8. High-resolution three-dimensional imaging of a depleted CMOS sensor using an edge Transient Current Technique based on the Two Photon Absorption process (TPA-eTCT)

    CERN Document Server

    García, Marcos Fernández; Echeverría, Richard Jaramillo; Moll, Michael; Santos, Raúl Montero; Moya, David; Pinto, Rogelio Palomo; Vila, Iván

    2016-01-01

    For the first time, the deep n-well (DNW) depletion space of a High Voltage CMOS sensor has been characterized using a Transient Current Technique based on the simultaneous absorption of two photons. This novel approach has allowed to resolve the DNW implant boundaries and therefore to accurately determine the real depleted volume and the effective doping concentration of the substrate. The unprecedented spatial resolution of this new method comes from the fact that measurable free carrier generation in two photon mode only occurs in a micrometric scale voxel around the focus of the beam. Real three-dimensional spatial resolution is achieved by scanning the beam focus within the sample.

  9. High-resolution three-dimensional imaging of a depleted CMOS sensor using an edge Transient Current Technique based on the Two Photon Absorption process (TPA-eTCT)

    Energy Technology Data Exchange (ETDEWEB)

    García, Marcos Fernández; Sánchez, Javier González; Echeverría, Richard Jaramillo [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain); Moll, Michael [CERN, Organisation europénne pour la recherche nucléaire, CH-1211 Genéve 23 (Switzerland); Santos, Raúl Montero [SGIker Laser Facility, UPV/EHU, Sarriena, s/n - 48940 Leioa-Bizkaia (Spain); Moya, David [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain); Pinto, Rogelio Palomo [Departamento de Ingeniería Electrónica, Escuela Superior de Ingenieros Universidad de Sevilla (Spain); Vila, Iván [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain)

    2017-02-11

    For the first time, the deep n-well (DNW) depletion space of a High Voltage CMOS sensor has been characterized using a Transient Current Technique based on the simultaneous absorption of two photons. This novel approach has allowed to resolve the DNW implant boundaries and therefore to accurately determine the real depleted volume and the effective doping concentration of the substrate. The unprecedented spatial resolution of this new method comes from the fact that measurable free carrier generation in two photon mode only occurs in a micrometric scale voxel around the focus of the beam. Real three-dimensional spatial resolution is achieved by scanning the beam focus within the sample.

  10. Nanophotonic Image Sensors.

    Science.gov (United States)

    Chen, Qin; Hu, Xin; Wen, Long; Yu, Yan; Cumming, David R S

    2016-09-01

    The increasing miniaturization and resolution of image sensors bring challenges to conventional optical elements such as spectral filters and polarizers, the properties of which are determined mainly by the materials used, including dye polymers. Recent developments in spectral filtering and optical manipulating techniques based on nanophotonics have opened up the possibility of an alternative method to control light spectrally and spatially. By integrating these technologies into image sensors, it will become possible to achieve high compactness, improved process compatibility, robust stability and tunable functionality. In this Review, recent representative achievements on nanophotonic image sensors are presented and analyzed including image sensors with nanophotonic color filters and polarizers, metamaterial-based THz image sensors, filter-free nanowire image sensors and nanostructured-based multispectral image sensors. This novel combination of cutting edge photonics research and well-developed commercial products may not only lead to an important application of nanophotonics but also offer great potential for next generation image sensors beyond Moore's Law expectations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. ICRF edge modeling

    International Nuclear Information System (INIS)

    1991-01-01

    This report describes the technical progress for the DOE sponsored grant, ''ICRF Edge Modeling.'' An emphasis is placed on the progress since the Technical Progress Report (January 10, 1990) was submitted to the Department of Energy. The design of ICRF antennas for C-Mod and TFTR was investigated during this period. In addition, quasilinear models for electron heating were refined and applied to the design of ICRF antennas. The relevant professional activities sponsored by this grant are given. 4 refs., 11 figs

  12. ICRF edge modeling studies

    Energy Technology Data Exchange (ETDEWEB)

    Lehrman, I.S. (Grumman Corp. Research Center, Princeton, NJ (USA)); Colestock, P.L. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1990-04-01

    Theoretical models have been developed, and are currently being refined, to explain the edge plasma-antenna interaction that occurs during ICRF heating. The periodic structure of a Faraday shielded antenna is found to result in strong ponderomotive force in the vicinity of the antenna. A fluid model, which incorporates the ponderomotive force, shows an increase in transport to the Faraday shield. A kinetic model shows that the strong antenna near fields act to increase the energy of deuterons which strike the shield, thereby increasing the sputtering of shield material. Estimates of edge impurity harmonic heating show no significant heating for either in or out-of-phase antenna operation. Additionally, a particle model for electrons near the shield shows that heating results from the parallel electric field associated with the fast wave. A quasilinear model for edge electron heating is presented and compared to the particle calculations. The models' predictions are shown to be consistent with measurements of enhanced transport. (orig.).

  13. Magnetism of Nanographene-Based Microporous Carbon and Its Applications: Interplay of Edge Geometry and Chemistry Details in the Edge State

    Science.gov (United States)

    Enoki, Toshiaki; Kiguchi, Manabu

    2018-03-01

    magnetic moments of nanographenes. For applications, the edge-state spins in nanographene-based microporous carbon can be a good tool as a molecule sensor in detecting molecules having different chemical properties and sizes. The on-off magnetic switching phenomena upon the adsorption of H2O and other OH-containing molecules offers a molecule sensor. A He sensor, in which the edge-state spins is employed as a probe, is also proposed on the basis of a huge condensation of He into ultramicropores.

  14. Focal Plane Development for the Transition-Edge EBIT Microcalorimeter Spectrometer

    Data.gov (United States)

    National Aeronautics and Space Administration — I propose to produce the first fully operational 1000-pixel X-ray Transition-Edge Sensor microcalorimeter imaging spectrometer system, and to deliver it to the...

  15. Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Robert H. Morris

    2014-11-01

    Full Text Available Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medical point of care diagnostics. This great diversity is seeing exciting developments in magnetic resonance sensing technology published in application specific journals where they are often not seen by the wider sensor community. It is clear that there is enormous interest in magnetic resonance sensors which represents a significant growth area. The aim of this special edition of Sensors was to address the wide distribution of relevant articles by providing a forum to disseminate cutting edge research in this field in a single open source publication.[...

  16. Smoothness in Binomial Edge Ideals

    Directory of Open Access Journals (Sweden)

    Hamid Damadi

    2016-06-01

    Full Text Available In this paper we study some geometric properties of the algebraic set associated to the binomial edge ideal of a graph. We study the singularity and smoothness of the algebraic set associated to the binomial edge ideal of a graph. Some of these algebraic sets are irreducible and some of them are reducible. If every irreducible component of the algebraic set is smooth we call the graph an edge smooth graph, otherwise it is called an edge singular graph. We show that complete graphs are edge smooth and introduce two conditions such that the graph G is edge singular if and only if it satisfies these conditions. Then, it is shown that cycles and most of trees are edge singular. In addition, it is proved that complete bipartite graphs are edge smooth.

  17. MgB2 thin-film bolometer for applications in far-infrared instruments on future planetary missions

    International Nuclear Information System (INIS)

    Lakew, B.; Aslam, S.; Brasunas, J.; Cao, N.; Costen, N.; La, A.; Nguyen, L.; Stevenson, T.; Waczynski, A.

    2012-01-01

    A SiN membrane based MgB 2 thin-film bolometer, with a non-optimized absorber, has been fabricated that shows an electrical noise equivalent power of 2.56 × 10 -13 W/√Hz operating at 30 Hz and a responsivity of 702 kV/W. It is predicted that with the inclusion of a gold black absorber that an optical specific detectivity of 8.3 × 10 10 cm/√Hz/W at an operational frequency of 10 Hz, can be realized for integration into future planetary exploration instrumentation where high sensitivity is required in the 17-250 μm spectral wavelength range.

  18. Optimization of transition-edge calorimeter performance

    International Nuclear Information System (INIS)

    Ullom, J.N.; Beall, J.A.; Doriese, W.B.; Duncan, W.D.; Ferreira, L.; Hilton, G.C.; Irwin, K.D.; O'Neil, G.C.; Reintsema, C.D.; Vale, L.R.; Zink, B.L.

    2006-01-01

    Calorimeters that exploit the superconducting-to-normal transition are used to detect individual photons from near-infrared to γ-ray wavelengths. Across this wide range, absorption efficiency, speed, and energy resolution are key performance parameters. Here, we describe recent improvements in the resolution of X-ray and γ-ray transition-edge sensors (TESs). Using the measured dependencies of the high-frequency unexplained noise in TESs, we have optimized the design of our TES X-ray sensors and achieved FWHM energy resolutions of 2.4 eV at 5.9 keV in Constellation-X style sensors and ∼2.9 eV at 5.9 keV in larger sensors suitable for materials analysis. We have also achieved a FWHM energy resolution of 42 eV at 103 keV in a TES calorimeter optimized for the detection of hard X-rays and γ-rays

  19. Competing edge networks

    Science.gov (United States)

    Parsons, Mark; Grindrod, Peter

    2012-06-01

    We introduce a model for a pair of nonlinear evolving networks, defined over a common set of vertices, subject to edgewise competition. Each network may grow new edges spontaneously or through triad closure. Both networks inhibit the other's growth and encourage the other's demise. These nonlinear stochastic competition equations yield to a mean field analysis resulting in a nonlinear deterministic system. There may be multiple equilibria; and bifurcations of different types are shown to occur within a reduced parameter space. This situation models competitive communication networks such as BlackBerry Messenger displacing SMS; or instant messaging displacing emails.

  20. Degenerate band edge laser

    Science.gov (United States)

    Veysi, Mehdi; Othman, Mohamed A. K.; Figotin, Alexander; Capolino, Filippo

    2018-05-01

    We propose a class of lasers based on a fourth-order exceptional point of degeneracy (EPD) referred to as the degenerate band edge (DBE). EPDs have been found in parity-time-symmetric photonic structures that require loss and/or gain; here we show that the DBE is a different kind of EPD since it occurs in periodic structures that are lossless and gainless. Because of this property, a small level of gain is sufficient to induce single-frequency lasing based on a synchronous operation of four degenerate Floquet-Bloch eigenwaves. This lasing scheme constitutes a light-matter interaction mechanism that leads also to a unique scaling law of the laser threshold with the inverse of the fifth power of the laser-cavity length. The DBE laser has the lowest lasing threshold in comparison to a regular band edge laser and to a conventional laser in cavities with the same loaded quality (Q ) factor and length. In particular, even without mirror reflectors the DBE laser exhibits a lasing threshold which is an order of magnitude lower than that of a uniform cavity laser of the same length and with very high mirror reflectivity. Importantly, this novel DBE lasing regime enforces mode selectivity and coherent single-frequency operation even for pumping rates well beyond the lasing threshold, in contrast to the multifrequency nature of conventional uniform cavity lasers.

  1. Taste sensor; Mikaku sensor

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K. [Kyushu University, Fukuoka (Japan)

    1998-03-05

    This paper introduces a taste sensor having a lipid/polymer membrane to work as a receptor of taste substances. The paper describes the following matters: this sensor uses a hollow polyvinyl chloride rod filled with KCl aqueous solution, and placed with silver and silver chloride wires, whose cross section is affixed with a lipid/polymer membrane as a lipid membrane electrode to identify taste from seven or eight kinds of response patterns of electric potential output from the lipid/polymer membrane; measurements of different substances presenting acidic taste, salty taste, bitter taste, sweet taste and flavor by using this sensor identified clearly each taste (similar response is shown to a similar taste even if the substances are different); different responses are indicated on different brands of beers; from the result of measuring a great variety of mineral waters, a possibility was suggested that this taste sensor could be used for water quality monitoring sensors; and application of this taste sensor may be expected as a maturation control sensor for Japanese sake (wine) and miso (bean paste) manufacturing. 2 figs., 1 tab.

  2. Cheating on the edge.

    Directory of Open Access Journals (Sweden)

    Lee Alan Dugatkin

    2008-07-01

    Full Text Available We present the results of an individual agent-based model of antibiotic resistance in bacteria. Our model examines antibiotic resistance when two strategies exist: "producers"--who secrete a substance that breaks down antibiotics--and nonproducers ("cheats" who do not secrete, or carry the machinery associated with secretion. The model allows for populations of up to 10,000, in which bacteria are affected by their nearest neighbors, and we assume cheaters die when there are no producers in their neighborhood. Each of 10,000 slots on our grid (a torus could be occupied by a producer or a nonproducer, or could (temporarily be unoccupied. The most surprising and dramatic result we uncovered is that when producers and nonproducers coexist at equilibrium, nonproducers are almost always found on the edges of clusters of producers.

  3. Challenges in edge modeling

    International Nuclear Information System (INIS)

    Schneider, R.

    2007-01-01

    Fluid models like B2, UEDGE or EDGE2D are the working horses for scrape-off layer physics, both for design and experimental support. The concept of a numerical tokamak, aiming at a predictive code for ITER, triggers the need to re-assess the available tools and their necessary extensions. These additional physics issues will be summarized from a personal point-of-view. Depending on the specific problem, several complexity levels of scrape-off layer models will be needed. Therefore, a hierarchy of tools is necessary, which will be discussed. Furthermore, the experience existing in other scientific fields with multi-scale problems and modeling should be used. Here, the coupling of different length and time scales are in particular of interest for fusion problems. (author)

  4. Edge remap for solids

    Energy Technology Data Exchange (ETDEWEB)

    Kamm, James R.; Love, Edward; Robinson, Allen C; Young, Joseph G.; Ridzal, Denis

    2013-12-01

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approach is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.

  5. Playing on the edge

    DEFF Research Database (Denmark)

    Cermak-Sassenrath, Daniel

    2018-01-01

    and specific ways. For instance, gambling for money, party and drinking games, professional play and show sports, art installations, violent and military propaganda computer games, pervasive/mobile gaming, live-action role playing, festivals, performances, and games such as Ghosting and Planking. It is argued......Everything gets more interesting, challenging, or intense the closer it gets to the edge, and so does play. How edgy can play become and still be play? Based on Huizinga’s notion of play, this chapter discusses how a wide range of playful activities pushes the boundaries of play in different...... that in concert with a number of characteristics that mark an activity as play, play is essentially a subjective perspective and individual decision of the player. Huizinga calls this attitude the play spirit, which informs a player’s actions and is in turn sustained by them. Edgy digital or mobile games do...

  6. Competing edge networks

    International Nuclear Information System (INIS)

    Parsons, Mark; Grindrod, Peter

    2012-01-01

    We introduce a model for a pair of nonlinear evolving networks, defined over a common set of vertices, subject to edgewise competition. Each network may grow new edges spontaneously or through triad closure. Both networks inhibit the other's growth and encourage the other's demise. These nonlinear stochastic competition equations yield to a mean field analysis resulting in a nonlinear deterministic system. There may be multiple equilibria; and bifurcations of different types are shown to occur within a reduced parameter space. This situation models competitive communication networks such as BlackBerry Messenger displacing SMS; or instant messaging displacing emails. -- Highlights: ► A model for edgewise-competing evolving network pairs is introduced. ► Defined competition equations yield to a mean field analysis. ► Multiple equilibrium states and different bifurcation types can occur. ► The system is sensitive to sparse initial conditions and near unstable equilibriums.

  7. Improved signal to noise ratio and sensitivity of an infrared imaging video bolometer on large helical device by using an infrared periscope

    International Nuclear Information System (INIS)

    Pandya, Shwetang N.; Sano, Ryuichi; Peterson, Byron J.; Mukai, Kiyofumi; Enokuchi, Akito; Takeyama, Norihide

    2014-01-01

    An Infrared imaging Video Bolometer (IRVB) diagnostic is currently being used in the Large Helical Device (LHD) for studying the localization of radiation structures near the magnetic island and helical divertor X-points during plasma detachment and for 3D tomography. This research demands high signal to noise ratio (SNR) and sensitivity to improve the temporal resolution for studying the evolution of radiation structures during plasma detachment and a wide IRVB field of view (FoV) for tomography. Introduction of an infrared periscope allows achievement of a higher SNR and higher sensitivity, which in turn, permits a twofold improvement in the temporal resolution of the diagnostic. Higher SNR along with wide FoV is achieved simultaneously by reducing the separation of the IRVB detector (metal foil) from the bolometer's aperture and the LHD plasma. Altering the distances to meet the aforesaid requirements results in an increased separation between the foil and the IR camera. This leads to a degradation of the diagnostic performance in terms of its sensitivity by 1.5-fold. Using an infrared periscope to image the IRVB foil results in a 7.5-fold increase in the number of IR camera pixels imaging the foil. This improves the IRVB sensitivity which depends on the square root of the number of IR camera pixels being averaged per bolometer channel. Despite the slower f-number (f/# = 1.35) and reduced transmission (τ 0 = 89%, due to an increased number of lens elements) for the periscope, the diagnostic with an infrared periscope operational on LHD has improved in terms of sensitivity and SNR by a factor of 1.4 and 4.5, respectively, as compared to the original diagnostic without a periscope (i.e., IRVB foil being directly imaged by the IR camera through conventional optics). The bolometer's field of view has also increased by two times. The paper discusses these improvements in apt details

  8. First scintillating bolometer tests of a CLYMENE R&D on Li2MoO4 scintillators towards a large-scale double-beta decay experiment

    Science.gov (United States)

    Buşe, G.; Giuliani, A.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; Olivieri, E.; Poda, D. V.; Redon, T.; Sand, J.-B.; Veber, P.; Velázquez, M.; Zolotarova, A. S.

    2018-05-01

    A new R&D on lithium molybdate scintillators has begun within a project CLYMENE (Czochralski growth of Li2MoO4 crYstals for the scintillating boloMeters used in the rare EveNts sEarches). One of the main goals of the CLYMENE is a realization of a Li2MoO4 crystal growth line to be complementary to the one recently developed by LUMINEU in view of a mass production capacity for CUPID, a next-generation tonne-scale bolometric experiment to search for neutrinoless double-beta decay. In the present paper we report the investigation of performance and radiopurity of 158-g and 13.5-g scintillating bolometers based on a first large-mass (230 g) Li2MoO4 crystal scintillator developed within the CLYMENE project. In particular, a good energy resolution (2-7 keV FWHM in the energy range of 0.2-5 MeV), one of the highest light yield (0.97 keV/MeV) amongst Li2MoO4 scintillating bolometers, an efficient alpha particles discrimination (10 σ) and potentially low internal radioactive contamination (below 0.2-0.3 mBq/kg of U/Th, but 1.4 mBq/kg of 210Po) demonstrate prospects of the CLYMENE in the development of high quality and radiopure Li2MoO4 scintillators for CUPID.

  9. Cutting Edge Localisation in an Edge Profile Milling Head

    NARCIS (Netherlands)

    Fernandez Robles, Laura; Azzopardi, George; Alegre, Enrique; Petkov, Nicolai

    2015-01-01

    Wear evaluation of cutting tools is a key issue for prolonging their lifetime and ensuring high quality of products. In this paper, we present a method for the effective localisation of cutting edges of inserts in digital images of an edge profile milling head. We introduce a new image data set of

  10. Planar Hall effect sensor with magnetostatic compensation layer

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Donolato, Marco; Hansen, Mikkel Fougt

    2012-01-01

    Demagnetization effects in cross-shaped planar Hall effect sensors cause inhomogeneous film magnetization and a hysteretic sensor response. Furthermore, when using sensors for detection of magnetic beads, the magnetostatic field from the sensor edges attracts and holds magnetic beads near...... the sensor edges causing inhomogeneous and non-specific binding of the beads. We show theoretically that adding a compensation magnetic stack beneath the sensor stack and exchange-biasing it antiparallel to the sensor stack, the magnetostatic field is minimized. We show experimentally that the compensation...... stack removes nonlinear effects from the sensor response, it strongly reduces hysteresis, and it increases the homogeneity of the bead distribution. Finally, it reduces the non-specific binding due to magnetostatic fields allowing us to completely remove beads from the compensated sensor using a water...

  11. Automated and observer based light field indicator edge evaluation in diagnostic X-ray equipment

    OpenAIRE

    Bottaro, Márcio; Nagy, Balázs Vince; Soares, Fernanda Cristina Salvador; Rosendo, Danilo Cabral

    2017-01-01

    Abstract Introduction To analyze edge detection and optical contrast calculation of light field-indicators used in X-ray via automated- and observer-based methods, and comparison with current standard approaches, which do not give exact definition for light field edge determination. Methods Automated light sensor array was used to measure the penumbra zone of the edge in the standard X-ray equipment, while trained and naïve human observers were asked to mark the light field edge according t...

  12. First principles study of edge carboxylated graphene quantum dots

    Science.gov (United States)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-05-01

    The structure stability and electronic properties of edge carboxylated hexagonal and triangular graphene quantum dots are investigated using density functional theory. The calculated binding energies show that the hexagonal clusters with armchair edges have the highest stability among all the quantum dots. The binding energy of carboxylated graphene quantum dots increases by increasing the number of carboxyl groups. Our study shows that the total dipole moment significantly increases by adding COOH with the highest value observed in triangular clusters. The edge states in triangular graphene quantum dots with zigzag edges produce completely different energy spectrum from other dots: (a) the energy gap in triangular zigzag is very small as compared to other clusters and (b) the highest occupied molecular orbital is localized at the edges which is in contrast to other clusters where it is distributed over the cluster surface. The enhanced reactivity and the controllable energy gap by shape and edge termination make graphene quantum dots ideal for various nanodevice applications such as sensors. The infrared spectra are presented to confirm the stability of the quantum dots.

  13. Edge instabilities of topological superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Johannes S. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Assaad, Fakher F. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Schnyder, Andreas P. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2016-07-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground state degeneracy and a diverging density of states. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry broken phases, which lift the ground-state degeneracy. Here, we employ Monte Carlo simulations combined with mean-field considerations to examine the instabilities of the flat-band edge states of d{sub xy}-wave superconductors. We find that attractive interactions induce a complex s-wave pairing instability together with a density wave instability. Repulsive interactions, on the other hand, lead to ferromagnetism mixed with spin-triplet pairing at the edge. We discuss the implications of our findings for experiments on cuprate high-temperature superconductors.

  14. Lateral terahertz hot-electron bolometer based on an array of Sn nanothreads in GaAs

    Science.gov (United States)

    Ponomarev, D. S.; Lavrukhin, D. V.; Yachmenev, A. E.; Khabibullin, R. A.; Semenikhin, I. E.; Vyurkov, V. V.; Ryzhii, M.; Otsuji, T.; Ryzhii, V.

    2018-04-01

    We report on the proposal and the theoretical and experimental studies of the terahertz hot-electron bolometer (THz HEB) based on a gated GaAs structure like the field-effect transistor with the array of parallel Sn nanothreads (Sn-NTs). The operation of the HEB is associated with an increase in the density of the delocalized electrons due to their heating by the incoming THz radiation. The quantum and the classical device models were developed, the quantum one was based on the self-consistent solution of the Poisson and Schrödinger equations, the classical model involved the Poisson equation and density of states omitting quantization. We calculated the electron energy distributions in the channels formed around the Sn-NTs for different gate voltages and found the fraction of the delocalized electrons propagating across the energy barriers between the NTs. Since the fraction of the delocalized electrons strongly depends on the average electron energy (effective temperature), the proposed THz HEB can exhibit an elevated responsivity compared with the HEBs based on more standard heterostructures. Due to a substantial anisotropy of the device structure, the THz HEB may demonstrate a noticeable polarization selectivity of the response to the in-plane polarized THz radiation. The features of the THz HEB might be useful in their practical applications in biology, medicine and material science.

  15. Frequency Modulation and Absorption Improvement of THz Micro-bolometer with Micro-bridge Structure by Spiral-Type Antennas.

    Science.gov (United States)

    Gou, Jun; Niu, Qingchen; Liang, Kai; Wang, Jun; Jiang, Yadong

    2018-03-05

    Antenna-coupled micro-bridge structure is proven to be a good solution to extend infrared micro-bolometer technology for THz application. Spiral-type antennas are proposed in 25 μm × 25 μm micro-bridge structure with a single separate linear antenna, two separate linear antennas, or two connected linear antennas on the bridge legs, in addition to traditional spiral-type antenna on the support layer. The effects of structural parameters of each antenna on THz absorption of micro-bridge structure are discussed for optimized absorption of 2.52 THz wave radiated by far infrared CO 2 lasers. The design of spiral-type antenna with two separate linear antennas for wide absorption peak and spiral-type antenna with two connected linear antennas for relatively stable absorption are good candidates for high absorption at low absorption frequency with a rotation angle of 360*n (n = 1.6). Spiral-type antenna with extended legs also provides a highly integrated micro-bridge structure with fast response and a highly compatible, process-simplified way to realize the structure. This research demonstrates the design of several spiral-type antenna-coupled micro-bridge structures and provides preferred schemes for potential device applications in room temperature sensing and real-time imaging.

  16. Superconducting hot-electron bolometer: from the discovery of hot-electron phenomena to practical applications

    International Nuclear Information System (INIS)

    Shurakov, A; Lobanov, Y; Goltsman, G

    2016-01-01

    The discovery of hot-electron phenomena in a thin superconducting film in the last century was followed by numerous experimental studies of its appearance in different materials aiming for a better understanding of the phenomena and consequent implementation of terahertz detection systems for practical applications. In contrast to the competitors such as superconductor-insulator-superconductor tunnel junctions and Schottky diodes, the hot electron bolometer (HEB) did not demonstrate any frequency limitation of the detection mechanism. The latter, in conjunction with a decent performance, rapidly made the HEB mixer the most attractive candidate for heterodyne observations at frequencies above 1 THz. The successful operation of practical instruments (the Heinrich Hertz Telescope, the Receiver Lab Telescope, APEX, SOFIA, Hershel) ensures the importance of the HEB technology despite the lack of rigorous theoretical routine for predicting the performance. In this review, we provide a summary of experimental and theoretical studies devoted to understanding the HEB physics, and an overview of various fabrication routes and materials. (topical review)

  17. An array of cold-electron bolometers with SIN tunnel junctions and JFET readout for cosmology instruments

    International Nuclear Information System (INIS)

    Kuzmin, L

    2008-01-01

    A novel concept of the parallel/series array of Cold-Electron Bolometers (CEB) with Superconductor-Insulator-Normal (SIN) Tunnel Junctions has been proposed. The concept was developed specially for matching the CEB with JFET amplifier at conditions of high optical power load. The CEB is a planar antenna-coupled superconducting detector with high sensitivity. For combination of effective HF operation and low noise properties the current-biased CEBs are connected in series for DC and in parallel for HF signal. A signal is concentrated from an antenna to the absorber through the capacitance of the tunnel junctions and through additional capacitance for coupling of superconducting islands. Using array of CEBs the applications can be considerably extended to higher power load by distributing the power between N CEBs and decreasing the electron temperature. Due to increased responsivity the noise matching is so effective that photon NEP could be easily achieved at 300 mK with a room temperature JFET for wide range of optical power loads. The concept of the CEB array has been developed for the BOOMERanG balloon telescope and other Cosmology instruments

  18. Numerical modeling of Czochralski growth of Li2MoO4 crystals for heat-scintillation cryogenic bolometers

    Science.gov (United States)

    Stelian, Carmen; Velázquez, Matias; Veber, Philippe; Ahmine, Abdelmounaim; Sand, Jean-Baptiste; Buşe, Gabriel; Cabane, Hugues; Duffar, Thierry

    2018-06-01

    Lithium molybdate Li2MoO4 (LMO) crystals of mass ranging between 350 and 500 g are excellent candidates to build heat-scintillation cryogenic bolometers likely to be used for the detection of rare events in astroparticle physics. In this work, numerical modeling is applied in order to investigate the Czochralski growth of Li2MoO4 crystals in an inductive furnace. The numerical model was validated by comparing the numerical predictions of the crystal-melt interface shape to experimental visualization of the growth interface. Modeling was performed for two different Czochralski furnaces that use inductive heating. The simulation of the first furnace, which was used to grow Li2MoO4 crystals of 3-4 cm in diameter, reveals non-optimal heat transfer conditions for obtaining good quality crystals. The second furnace, which will be used to grow crystals of 5 cm in diameter, was numerically optimized in order to reduce the temperature gradients in the crystal and to avoid fast crystallization of the bath at the later stages of the growth process.

  19. Automated and observer based light field indicator edge evaluation in diagnostic X-ray equipment

    Directory of Open Access Journals (Sweden)

    Márcio Bottaro

    Full Text Available Abstract Introduction To analyze edge detection and optical contrast calculation of light field-indicators used in X-ray via automated- and observer-based methods, and comparison with current standard approaches, which do not give exact definition for light field edge determination. Methods Automated light sensor array was used to measure the penumbra zone of the edge in the standard X-ray equipment, while trained and naïve human observers were asked to mark the light field edge according to their own determination. Different interpretations of the contrast were then calculated and compared. Results In contrast to automated measurements of edge definition and detection, measurements by human observers showed large inter-observer variation independent of their training with X-ray equipment. Different contrast calculations considering the different edge definitions gave very different contrast values. Conclusion As the main conclusion, we propose a more exact edge definition of the X-ray light field, corresponding well to the average human observer’s edge determination. The new edge definition method with automated systems would reduce human variability in edge determination. Such errors could potentially affect the approval of X-ray equipment, and also increase the radiation dose. The automated measurement based on human observers’ edge definition and the corresponding contrast calculation may lead to a more precise light field calibration, which enables reduced irradiation doses on radiology patients.

  20. Automated and observer based light field indicator edge evaluation in diagnostic X-ray equipment

    International Nuclear Information System (INIS)

    Bottaro, Marcio; Nagy, Balazs Vince; Soares, Fernanda Cristina Salvador; Rosendo, Danilo Cabral

    2017-01-01

    Introduction: To analyze edge detection and optical contrast calculation of light field-indicators used in X-ray via automated- and observer-based methods, and comparison with current standard approaches, which do not give exact definition for light field edge determination. Methods: Automated light sensor array was used to measure the penumbra zone of the edge in the standard X-ray equipment, while trained and naive human observers were asked to mark the light field edge according to their own determination. Different interpretations of the contrast were then calculated and compared. Results: In contrast to automated measurements of edge definition and detection, measurements by human observers showed large inter-observer variation independent of their training with X-ray equipment. Different contrast calculations considering the different edge definitions gave very different contrast values. Conclusion: As the main conclusion, we propose a more exact edge definition of the X-ray light field, corresponding well to the average human observer's edge determination. The new edge definition method with automated systems would reduce human variability in edge determination. Such errors could potentially affect the approval of X-ray equipment, and also increase the radiation dose. The automated measurement based on human observers’ edge definition and the corresponding contrast calculation may lead to a more precise light field calibration, which enables reduced irradiation doses on radiology patients. (author)

  1. Automated and observer based light field indicator edge evaluation in diagnostic X-ray equipment

    Energy Technology Data Exchange (ETDEWEB)

    Bottaro, Marcio; Nagy, Balazs Vince; Soares, Fernanda Cristina Salvador; Rosendo, Danilo Cabral, E-mail: marcio@iee.usp.br [Universidade de Sao Paulo (USP), SP (Brazil); Optics and Engineering Informatics, Budapest University of Technology and Economics, Budapest (Hungary)

    2017-04-15

    Introduction: To analyze edge detection and optical contrast calculation of light field-indicators used in X-ray via automated- and observer-based methods, and comparison with current standard approaches, which do not give exact definition for light field edge determination. Methods: Automated light sensor array was used to measure the penumbra zone of the edge in the standard X-ray equipment, while trained and naive human observers were asked to mark the light field edge according to their own determination. Different interpretations of the contrast were then calculated and compared. Results: In contrast to automated measurements of edge definition and detection, measurements by human observers showed large inter-observer variation independent of their training with X-ray equipment. Different contrast calculations considering the different edge definitions gave very different contrast values. Conclusion: As the main conclusion, we propose a more exact edge definition of the X-ray light field, corresponding well to the average human observer's edge determination. The new edge definition method with automated systems would reduce human variability in edge determination. Such errors could potentially affect the approval of X-ray equipment, and also increase the radiation dose. The automated measurement based on human observers’ edge definition and the corresponding contrast calculation may lead to a more precise light field calibration, which enables reduced irradiation doses on radiology patients. (author)

  2. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under

  3. The edge of space time

    International Nuclear Information System (INIS)

    Hawking, S.

    1993-01-01

    What happened at the beginning of the expansion of the universe. Did space time have an edge at the Big Bang. The answer is that, if the boundary conditions of the universe are that it has no boundary, time ceases to be well-defined in the very early universe as the direction ''north'' ceases to be well defined at the North Pole of the Earth. The quantity that we measure as time has a beginning but that does not mean spacetime has an edge, just as the surface of the Earth does not have an edge at the North Pole. 8 figs

  4. An ultra-precision tool nanoindentation instrument for replication of single point diamond tool cutting edges

    Science.gov (United States)

    Cai, Yindi; Chen, Yuan-Liu; Xu, Malu; Shimizu, Yuki; Ito, So; Matsukuma, Hiraku; Gao, Wei

    2018-05-01

    Precision replication of the diamond tool cutting edge is required for non-destructive tool metrology. This paper presents an ultra-precision tool nanoindentation instrument designed and constructed for replication of the cutting edge of a single point diamond tool onto a selected soft metal workpiece by precisely indenting the tool cutting edge into the workpiece surface. The instrument has the ability to control the indentation depth with a nanometric resolution, enabling the replication of tool cutting edges with high precision. The motion of the diamond tool along the indentation direction is controlled by the piezoelectric actuator of a fast tool servo (FTS). An integrated capacitive sensor of the FTS is employed to detect the displacement of the diamond tool. The soft metal workpiece is attached to an aluminum cantilever whose deflection is monitored by another capacitive sensor, referred to as an outside capacitive sensor. The indentation force and depth can be accurately evaluated from the diamond tool displacement, the cantilever deflection and the cantilever spring constant. Experiments were carried out by replicating the cutting edge of a single point diamond tool with a nose radius of 2.0 mm on a copper workpiece surface. The profile of the replicated tool cutting edge was measured using an atomic force microscope (AFM). The effectiveness of the instrument in precision replication of diamond tool cutting edges is well-verified by the experimental results.

  5. Reduction of airfoil trailing edge noise by trailing edge blowing

    International Nuclear Information System (INIS)

    Gerhard, T; Carolus, T; Erbslöh, S

    2014-01-01

    The paper deals with airfoil trailing edge noise and its reduction by trailing edge blowing. A Somers S834 airfoil section which originally was designed for small wind turbines is investigated. To mimic realistic Reynolds numbers the boundary layer is tripped on pressure and suction side. The chordwise position of the blowing slot is varied. The acoustic sources, i.e. the unsteady flow quantities in the turbulent boundary layer in the vicinity of the trailing edge, are quantified for the airfoil without and with trailing edge blowing by means of a large eddy simulation and complementary measurements. Eventually the far field airfoil noise is measured by a two-microphone filtering and correlation and a 40 microphone array technique. Both, LES-prediction and measurements showed that a suitable blowing jet on the airfoil suction side is able to reduce significantly the turbulence intensity and the induced surface pressure fluctuations in the trailing edge region. As a consequence, trailing edge noise associated with a spectral hump around 500 Hz could be reduced by 3 dB. For that a jet velocity of 50% of the free field velocity was sufficient. The most favourable slot position was at 90% chord length

  6. Diffraction at a Straight Edge

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 5. Diffraction at a Straight Edge: A Gem from Sommerfeld's Work in Classical Physics. Rajaram Nityananda. General Article Volume 20 Issue 5 May 2015 pp 389-400 ...

  7. DAVs: Red Edge and Outbursts

    Science.gov (United States)

    Luan, Jing

    2018-04-01

    As established by ground based surveys, white dwarfs with hydrogen atmospheres pulsate as they cool across the temperature range, 12500Kred edge is a two-decade old puzzle. Recently, Kepler discovered a number of cool DAVs exhibiting sporadic outbursts separated by days, each lasting several hours, and releasing \\sim 10^{33}-10^{34} {erg}. We provide quantitative explanations for both the red edge and the outbursts. The minimal frequency for overstable modes rises abruptly near the red edge. Although high frequency overstable modes exist below the red edge, their photometric amplitudes are generally too small to be detected by ground based observations. Nevertheless, these overstable parent modes can manifest themselves through nonlinear mode couplings to damped daughter modes which generate limit cycles giving rise to photometric outbursts.

  8. Edge Fracture in Complex Fluids.

    Science.gov (United States)

    Hemingway, Ewan J; Kusumaatmaja, Halim; Fielding, Suzanne M

    2017-07-14

    We study theoretically the edge fracture instability in sheared complex fluids, by means of linear stability analysis and direct nonlinear simulations. We derive an exact analytical expression for the onset of edge fracture in terms of the shear-rate derivative of the fluid's second normal stress difference, the shear-rate derivative of the shear stress, the jump in shear stress across the interface between the fluid and the outside medium (usually air), the surface tension of that interface, and the rheometer gap size. We provide a full mechanistic understanding of the edge fracture instability, carefully validated against our simulations. These findings, which are robust with respect to choice of rheological constitutive model, also suggest a possible route to mitigating edge fracture, potentially allowing experimentalists to achieve and accurately measure flows stronger than hitherto possible.

  9. ESTO Investments in Innovative Sensor Technologies for Remote Sensing

    Science.gov (United States)

    Babu, Sachidananda R.

    2017-01-01

    For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.

  10. Advanced Multiplexed Transition-Edge Sensor Microcalorimeter Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "X-ray measurements are critical for the understanding of cycles of matter and energy in the Universe, for understanding the nature of dark matter and dark energy,...

  11. Edge of polar cap patches

    Science.gov (United States)

    Hosokawa, K.; Taguchi, S.; Ogawa, Y.

    2016-04-01

    On the night of 4 December 2013, a sequence of polar cap patches was captured by an all-sky airglow imager (ASI) in Longyearbyen, Norway (78.1°N, 15.5°E). The 630.0 nm airglow images from the ASI of 4 second exposure time, oversampled the emission of natural lifetime (with quenching) of at least ˜30 sec, introduce no observational blurring effects. By using such high-quality ASI images, we succeeded in visualizing an asymmetry in the gradients between the leading/trailing edges of the patches in a 2-D fashion. The gradient in the leading edge was found to be 2-3 times steeper than that in the trailing edge. We also identified fingerlike structures, appearing only along the trailing edge of the patches, whose horizontal scale size ranged from 55 to 210 km. These fingers are considered to be manifestations of plasma structuring through the gradient-drift instability (GDI), which is known to occur only along the trailing edge of patches. That is, the current 2-D observations visualized, for the first time, how GDI stirs the patch plasma and such a mixing process makes the trailing edge more gradual. This result strongly implies a close connection between the GDI-driven plasma stirring and the asymmetry in the large-scale shape of patches and then suggests that the fingerlike structures can be used as markers to estimate the fine-scale structure in the plasma flow within patches.

  12. Fabrication of ultra-fine nanostructures using edge transfer printing.

    Science.gov (United States)

    Xue, Mianqi; Li, Fengwang; Cao, Tingbing

    2012-03-21

    The exploration of new methods and techniques for application in diverse fields, such as photonics, microfluidics, biotechnology and flexible electronics is of increasing scientific and technical interest for multiple uses over distance of 10-100 nm. This article discusses edge transfer printing--a series of unconventional methods derived from soft lithography for nanofabrication. It possesses the advantages of easy fabrication, low-cost and great serviceability. In this paper, we show how to produce exposed edges and use various materials for edge transfer printing, while nanoskiving, nanotransfer edge printing and tunable cracking for nanogaps are introduced. Besides this, different functional materials, such as metals, inorganic semiconductors and polymers, as well as localised heating and charge patterning, are described here as unconventional "inks" for printing. Edge transfer printing, which can effectively produce sub-100 nm scale ultra-fine structures, has broad applications, including metallic nanowires as nanoelectrodes, semiconductor nanowires for chemical sensors, heterostructures of organic semiconductors, plasmonic devices and so forth. This journal is © The Royal Society of Chemistry 2012

  13. Attention Sensor

    NARCIS (Netherlands)

    Börner, Dirk; Kalz, Marco; Specht, Marcus

    2014-01-01

    This software sketch was used in the context of an experiment for the PhD project “Ambient Learning Displays”. The sketch comprises a custom-built attention sensor. The sensor measured (during the experiment) whether a participant looked at and thus attended a public display. The sensor was built

  14. Protected Edge Modes without Symmetry

    Directory of Open Access Journals (Sweden)

    Michael Levin

    2013-05-01

    Full Text Available We discuss the question of when a gapped two-dimensional electron system without any symmetry has a protected gapless edge mode. While it is well known that systems with a nonzero thermal Hall conductance, K_{H}≠0, support such modes, here we show that robust modes can also occur when K_{H}=0—if the system has quasiparticles with fractional statistics. We show that some types of fractional statistics are compatible with a gapped edge, while others are fundamentally incompatible. More generally, we give a criterion for when an electron system with Abelian statistics and K_{H}=0 can support a gapped edge: We show that a gapped edge is possible if and only if there exists a subset of quasiparticle types M such that (1 all the quasiparticles in M have trivial mutual statistics, and (2 every quasiparticle that is not in M has nontrivial mutual statistics with at least one quasiparticle in M. We derive this criterion using three different approaches: a microscopic analysis of the edge, a general argument based on braiding statistics, and finally a conformal field theory approach that uses constraints from modular invariance. We also discuss the analogous result for two-dimensional boson systems.

  15. Lithium technologies for edge plasma control

    International Nuclear Information System (INIS)

    Sergeev, Vladimir Yu.; Kuteev, Boris V.; Bykov, Aleksey S.; Krylov, Sergey V.; Skokov, Viacheslav G.; Timokhin, Vladimir M.

    2012-01-01

    Highlights: ► We have investigated two new modes of operation been in T-10 limiter tokamak experiments with a novel rotary feeder of lithium dust. ► The observed decreases of bolometer and D β signals, with increase of the electron density during the lithium dust injection, reveal the effects of the first wall conditioning. ► The lithium technology may provide inherent safety mission for major disruption mitigation in a tokamak reactor, which requires demonstration in contemporary tokamak experiments. - Abstract: We have investigated two new modes of operation been in T-10 limiter tokamak experiments with a novel rotary feeder of lithium dust. Quasi steady-state mode I and pulse mode II of dust delivery were realized in both OH and OH + ECRH disruption free plasmas at the lithium flow rate up to 2 × 10 21 atoms/s. A higher flow rate in mode II with injection rate of ∼5 × 10 21 atoms/s caused a series of minor disruptions, which was completed by discharge termination after the major disruption. The observed decreases of bolometer and D β signals, with increase of the electron density during the lithium dust injection, reveal the effects of the first wall conditioning. The lithium technology may provide inherent safety pathway for major disruption mitigation in a tokamak reactor, which requires demonstration in contemporary tokamak experiments.

  16. Development of a superconducting transition edge thermometer for calorimetric detection of heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Meier, J; Boehmer, W; Egelhof, P; Henning, W; Kienlin, A v [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany) Mainz Univ. (Germany). Inst. fuer Physik; Shepard, K W [Argonne National Lab., IL (United States)

    1991-10-01

    A low temperature bolometer for the calorimetric detection of heavy ions was constructed and tested. An aluminium thin-film microstrip, patterned in a meander-line structure by photolithographic techniques, serves as superconducting transition edge thermometer on a sapphire absorber. A transition width {delta}T of the thermometer of the order of some mK, and a resistance of up to R{sub c} = 60 k{Omega} at the working point (T{sub c} {approx equal} 1.5 K) is achieved. In tests with {alpha}-particles signals of typically 1 V pulseheight after the preamplifier and decaytimes around hundred {mu}s were observed. For 5.5 MeV {alpha}-particles the measured energy resolution is {Delta}E = 50 keV, corresponding to a temperature resolution of about 1 {mu}K. First measurements were performed with {sup 20}Ne ions (E = 116 MeV). The dependence of the pulseheight and the FWHM on the working point were investigated and qualitatively explained. The best energy resolution was {Delta}E = 2.6 MeV; most probably the present limitations are determined by the temperature stabilization. (orig.).

  17. Subpixel edge localization with reduced uncertainty by violating the Nyquist criterion

    Science.gov (United States)

    Heidingsfelder, Philipp; Gao, Jun; Wang, Kun; Ott, Peter

    2014-12-01

    In this contribution, the extent to which the Nyquist criterion can be violated in optical imaging systems with a digital sensor, e.g., a digital microscope, is investigated. In detail, we analyze the subpixel uncertainty of the detected position of a step edge, the edge of a stripe with a varying width, and that of a periodic rectangular pattern for varying pixel pitches of the sensor, thus also in aliased conditions. The analysis includes the investigation of different algorithms of edge localization based on direct fitting or based on the derivative of the edge profile, such as the common centroid method. In addition to the systematic error of these algorithms, the influence of the photon noise (PN) is included in the investigation. A simplified closed form solution for the uncertainty of the edge position caused by the PN is derived. The presented results show that, in the vast majority of cases, the pixel pitch can exceed the Nyquist sampling distance by about 50% without an increase of the uncertainty of edge localization. This allows one to increase the field-of-view without increasing the resolution of the sensor and to decrease the size of the setup by reducing the magnification. Experimental results confirm the simulation results.

  18. All-graphene edge contacts

    DEFF Research Database (Denmark)

    Jacobsen, Kåre Wedel; Falkenberg, Jesper Toft; Papior, Nick Rübner

    2016-01-01

    Using ab-initio methods we investigate the possibility of three-terminalgraphene "T-junction" devices and show that these all-graphene edge contactsare energetically feasible when the 1D interface itself is free from foreignatoms. We examine the energetics of various junction structures as a func......Using ab-initio methods we investigate the possibility of three-terminalgraphene "T-junction" devices and show that these all-graphene edge contactsare energetically feasible when the 1D interface itself is free from foreignatoms. We examine the energetics of various junction structures...... to be in therange of 1-10 kΩμm which is comparable to the best contact resistance reportedfor edge-contacted graphene-metal contacts. We conclude that conductingall-carbon T-junctions should be feasible....

  19. Improving color constancy by photometric edge weighting

    NARCIS (Netherlands)

    Gijsenij, A.; Gevers, T.; van de Weijer, J.

    2012-01-01

    Edge-based color constancy methods make use of image derivatives to estimate the illuminant. However, different edge types exist in real-world images, such as material, shadow, and highlight edges. These different edge types may have a distinctive influence on the performance of the illuminant

  20. The knife-edge chamber

    International Nuclear Information System (INIS)

    Barasch, E.F.; Bowcock, T.J.V.; Drew, M.M.; Elliott, S.M.; Lee, B.; McIntyre, P.M.; Pang, Y.; Popovic, M.; Smith, D.D.

    1990-01-01

    In this paper the design for a new technology for particle track detectors is described. Using standard IC fabrication techniques, a pattern of microscopic knife edges and field-shaping electrodes can be fabricated on a silicon substrate. The knife-edge chamber uniquely offers attractive performance for the track chambers required for SSC detectors, for which no present technology is yet satisfactory. Its features include: excellent radiation hardness (10 Mrad), excellent spatial resolution (∼20 μm), short drift time (20 ns), and large pulse height (1 mV)

  1. Sensors, Volume 4, Thermal Sensors

    Science.gov (United States)

    Scholz, Jorg; Ricolfi, Teresio

    1996-12-01

    'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume describes the construction and applicational aspects of thermal sensors while presenting a rigorous treatment of the underlying physical principles. It provides a unique overview of the various categories of sensors as well as of specific groups, e.g. temperature sensors (resistance thermometers, thermocouples, and radiation thermometers), noise and acoustic thermometers, heat-flow and mass-flow sensors. Specific facettes of applications are presented by specialists from different fields including process control, automotive technology and cryogenics. This volume is an indispensable reference work and text book for both specialists and newcomers, researchers and developers.

  2. At the edge of intonation

    DEFF Research Database (Denmark)

    Niebuhr, Oliver

    2012-01-01

    The paper is concerned with the 'edge of intonation' in a twofold sense. It focuses on utterance-final F0 movements and crosses the traditional segment-prosody divide by investigating the interplay of F0 and voiceless fricatives in speech production. An experiment was performed for German with four...

  3. Capillary Sharp Inner Edge Manufacturing

    Czech Academy of Sciences Publication Activity Database

    Hošek, Jan; Studenovský, K.; Najdek, D.

    2009-01-01

    Roč. 19, č. 35 (2009), s. 19-25 ISSN 1584-5982. [MECAHITECH 09 /1./. Bukurešť, 08.10.2009-09.10.2009] R&D Projects: GA AV ČR IAA200760905 Institutional research plan: CEZ:AV0Z20760514 Keywords : capillary * edge * manufacturing Subject RIV: JR - Other Machinery

  4. Development of edge effects around experimental ecosystem hotspots is affected by edge density and matrix type

    Science.gov (United States)

    Ecological edge effects are sensitive to landscape context. In particular, edge effects can be altered by matrix type and by the presence of other nearby edges. We experimentally altered patch configurations in an African savanna to determine how edge density and matrix type influence edge effect de...

  5. Digital solar edge tracker for the Halogen Occultation Experiment

    Science.gov (United States)

    Mauldin, L. E., III; Moore, A. S.; Stump, C. W.; Mayo, L. S.

    1987-01-01

    The optical and electronic design of the Halogen Occultation Experiment (Haloe) elevation sun sensor is described. The Haloe instrument is a gas-correlation radiometer now being developed at NASA Langley for the Upper Atmosphere Research Satellite. The system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned monolithic CCD. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the Haloe science instantaneous field of view (IFOV) across the vertical solar diameter during instrument calibration and then to maintain the science IFOV 4 arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 700-nm operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability.

  6. Epitaxial strain relaxation by provoking edge dislocation dipoles

    Science.gov (United States)

    Soufi, A.; El-Hami, K.

    2018-02-01

    Thin solid films have been used in various devices and engineering systems such as rapid development of highly integrated electronic circuits, the use of surface coatings to protect structural materials in high temperature environments, and thin films are integral parts of many micro-electro-mechanical systems designed to serve as sensors, actuators. Among techniques of ultra-thin films deposition, the heteroepitaxial method becomes the most useful at nanoscale level to obtain performed materials in various applications areas. On the other hand, stresses that appeared during the elaboration of thin films could rise deformations and fractures in materials. The key solution to solve this problem at the nanoscale level is the nucleation of interface dislocations from free surfaces. By provoking edge dislocation dipoles we obtained a strain relaxation in thin films. Moreover, the dynamic of nucleation in edge dislocations from free lateral surfaces was also studied.

  7. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  8. Gas Sensor

    KAUST Repository

    Luebke, Ryan; Eddaoudi, Mohamed; Omran, Hesham; Belmabkhout, Youssef; Shekhah, Osama; Salama, Khaled N.

    2015-01-01

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  9. Sensor web

    Science.gov (United States)

    Delin, Kevin A. (Inventor); Jackson, Shannon P. (Inventor)

    2011-01-01

    A Sensor Web formed of a number of different sensor pods. Each of the sensor pods include a clock which is synchronized with a master clock so that all of the sensor pods in the Web have a synchronized clock. The synchronization is carried out by first using a coarse synchronization which takes less power, and subsequently carrying out a fine synchronization to make a fine sync of all the pods on the Web. After the synchronization, the pods ping their neighbors to determine which pods are listening and responded, and then only listen during time slots corresponding to those pods which respond.

  10. Edge-injective and edge-surjective vertex labellings

    DEFF Research Database (Denmark)

    Brandt, Stephan; Rautenbach, D.; Regen, F.

    2010-01-01

    For a graph G = (V, E) we consider vertex-k-labellings f : V → {1,2, ,k} for which the induced edge weighting w : E → {2, 3,., 2k} with w(uv) = f(u) + f(v) is injective or surjective or both. We study the relation between these labellings and the number theoretic notions of an additive basis and ...

  11. Generalized Multi-Edge Analysis for K-Edge Densitometry

    International Nuclear Information System (INIS)

    Collins, M.

    1998-01-01

    In K-edge densitometry (KED), a continuous-energy x-ray beam is transmitted through a liquid sample. The actinide content of the sample can be measured through analysis of the transmitted portion of the x-ray beam. Traditional methods for KED analysis allow the simultaneous calculation of, at most, two actinide concentrations. A generalized multi-edge KED analytical method is presented, allowing up to six actinide concentrations to be calculated simultaneously. Applications of this method for hybrid KED/x-ray fluorescence (HKED) systems are discussed. Current HKED systems require the operator to know the approximate actinide content of each sample, and manually select the proper analysis mode. The new multi-edge KED technique allows rapid identification of the major actinide components in a sample, independent of actinide content. The proper HKED analysis mode can be selected automatically, without requiring sample content information from the user. Automatic HKED analysis would be especially useful in an analytical laboratory setting, where samples with truly unknown characteristics are encountered. Because this technique requires no hardware modifications, several facilities that use HKED may eventually benefit from this approach

  12. Optofluidic tuning of photonic crystal band edge lasers

    DEFF Research Database (Denmark)

    Bernal, Felipe; Christiansen, Mads Brøkner; Gersborg-Hansen, Morten

    2007-01-01

    We demonstrate optofluidic tuning of polymer photonic crystal band edge lasers with an imposed rectangular symmetry. The emission wavelength depends on both lattice constant and cladding refractive index. The emission wavelength is shown to change 1 nm with a cladding refractive index change of 10......−2. The rectangular symmetry modification alters the emission characteristics of the devices and the relative emission intensities along the symmetry axes depend on cladding refractive index, suggesting a sensor concept based on detection of intensity rather than wavelength....

  13. Edge imaging in intense beams

    Directory of Open Access Journals (Sweden)

    S. Bernal

    2002-06-01

    Full Text Available The appearance of rings of charge observed near the edge of beams from high-perveance guns is described with a simple ray tracing technique inspired by the particle-core model. We illustrate the technique, which has no analog in light optics, with examples from experiments employing solenoid focusing of an electron beam. The rings of charge result from the combined effects of external focusing and space-charge forces acting on paraxial fringe particles with relatively large initial transverse velocities. The model is independent of the physical mechanisms responsible for the fringe particles. Furthermore, the focal length for edge imaging in a uniform focusing channel is derived using a linearized trajectory equation for the motion of fringe particles. Counterintuitively, the focal length decreases as the beam current increases.

  14. Radiation profile measurements for edge transport barrier discharges in Compact Helical System using AXUV photodiode arrays

    International Nuclear Information System (INIS)

    Suzuki, C.; Okamura, S.; Minami, T.; Akiyama, T.; Fujisawa, A.; Ida, K.; Isobe, M.; Matsuoka, K.; Nagaoka, K.; Nishimura, S.; Peterson, B. J.; Shimizu, A.; Takahashi, C.; Toi, K.; Yoshimura, Y.

    2005-01-01

    The formation of edge transport barrier (ETB) has recently been found in Compact Helical System (CHS) plasmas heated by co-injected neutral beam injection (NBI) with strong gas puffing. This regime is characterized by the appearance of the steep gradient of the electron density near the edge following the abrupt drop of hydrogen Balmer alpha (H α ) line intensity. In addition to single channel pyroelectric detector as a conventional bolometer, we have employed unfiltered absolute extreme ultraviolet (AXUV) photodiode arrays as a simple and low-cost diagnostic to investigate spatial and temporal variations of radiation emissivity in the ETB discharges. A compact mounting module for a 20 channel AXUV photodiode array including an in-vacuum preamplifier for immediate current-voltage conversion has successfully been designed and fabricated. Two identical modules installed in the upper and lower viewports provide 40 lines of sight covering the inboard and outboard sides within the horizontally elongated cross section of the CHS plasma with wide viewing angle. Although spectral uniformity of the detector sensitivity of the AXUV photodiode is unsatisfied for photon energies lower than 200 eV, it has been confirmed that the signals of AXUV photodiode and pyroelectric detector in the ETB discharges show roughly the same behavior except for the very beginning and end of the discharges. The results of the measurements in typical ETB discharges show that the signals of all the channels of the AXUV photodiode arrays begin to increase more rapidly at the moment of the transition than before. The rate of the increase is larger for the edge viewing chords than for the center viewing ones, which indicates the flattening of the radiation profile following the change in the electron density profile after the formation of the ETB. However, the signals for the edge chords tend to saturate after several tens of milliseconds, while they still continue to increase for the central chords

  15. Laser Truss Sensor for Segmented Telescope Phasing

    Science.gov (United States)

    Liu, Duncan T.; Lay, Oliver P.; Azizi, Alireza; Erlig, Herman; Dorsky, Leonard I.; Asbury, Cheryl G.; Zhao, Feng

    2011-01-01

    A paper describes the laser truss sensor (LTS) for detecting piston motion between two adjacent telescope segment edges. LTS is formed by two point-to-point laser metrology gauges in a crossed geometry. A high-resolution (distribution can be optimized using the range-gated metrology (RGM) approach.

  16. Nonreference Medical Image Edge Map Measure

    Directory of Open Access Journals (Sweden)

    Karen Panetta

    2014-01-01

    Full Text Available Edge detection is a key step in medical image processing. It is widely used to extract features, perform segmentation, and further assist in diagnosis. A poor quality edge map can result in false alarms and misses in cancer detection algorithms. Therefore, it is necessary to have a reliable edge measure to assist in selecting the optimal edge map. Existing reference based edge measures require a ground truth edge map to evaluate the similarity between the generated edge map and the ground truth. However, the ground truth images are not available for medical images. Therefore, a nonreference edge measure is ideal for medical image processing applications. In this paper, a nonreference reconstruction based edge map evaluation (NREM is proposed. The theoretical basis is that a good edge map keeps the structure and details of the original image thus would yield a good reconstructed image. The NREM is based on comparing the similarity between the reconstructed image with the original image using this concept. The edge measure is used for selecting the optimal edge detection algorithm and optimal parameters for the algorithm. Experimental results show that the quantitative evaluations given by the edge measure have good correlations with human visual analysis.

  17. Study on measurement of leading and trailing edges of blades based on optical scanning system

    Science.gov (United States)

    Chao, Bi; Liu, Hongguang; Bao, Longxiang; Li, Di

    2017-10-01

    In the field of aeronautics, the geometry and dimensional accuracy of the blade edges has a large influence on the aerodynamic performance of aero engine. Therefore, a non-contact optical scanning system is established to realize the measurement of leading and trailing edges of blades in a rapid, precise and efficient manner in the paper. Based on the mechanical framework of a traditional CMM, the system is equipped with a specified sensing device as the scanning probe, which is made up by two new-style laser scanning sensors installed at a certain angle to each other by a holder. In the measuring procedure, the geometric dimensions of the measured blade edges on every contour plane are determined by the contour information on five transversals at the leading or trailing edges, which can be used to determine the machining allowance of the blades. In order to verify the effectiveness and practicality of the system set up, a precision forging blade after grinded is adopted as the measured object and its leading and trailing edges are measured by the system respectively. In the experiment, the thickness of blade edges on three contour planes is measured by the optical scanning system several times. As the experiment results show, the repeatability accuracy of the system can meet its design requirements and the inspecting demands of the blade edges. As a result, the optical scanning system could serve as a component of the intelligent manufacturing system of blades to improve the machining quality of the blade edges.

  18. Gyrosheath near the tokamak edge

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Xiao, H.; Valanju, P.M.

    1993-03-01

    A new model for the structure of the radial electric field profile in the edge during the H-mode is proposed. Charge separation caused by the difference between electron and ion gyromotion, or more importantly in a tokamak, the banana motion (halo effect) can self-consistently produce an electric dipole moment that causes the sheared radial electric field. The calculated results based on the model are consistent with D-III D and TEXTOR experimental results

  19. Chemical sensors

    International Nuclear Information System (INIS)

    Hubbard, C.W.; Gordon, R.L.

    1987-05-01

    The revolution in analytical chemistry promised by recent developments in the field of chemical sensors has potential for significant positive impact on both research and production activities conducted by and for the Department of Energy. Analyses which were, in the past, performed only with a roomful of expensive equipment can now be performed with miniature solid-state electronic devices or small optical probes. Progress in the development of chemical sensors has been rapid, and the field is currently growing at a great rate. In accordance, Pacific Northwest Laboratory initiated a survey of recent literature so that contributors to active programs in research on analytical methods could be made aware of principles and applications of this new technology. This report presents the results of that survey. The sensors discussed here are divided into three types: micro solid-state devices, optical sensors, and piezoelectric crystal devices. The report is divided into three corresponding sections. The first section, ''Micro Solid-State Devices,'' discusses the design, operation, and application of electronic sensors that are produced in much the same way as standard solid-state electronic devices. The second section, ''Optrodes,'' covers the design and operation of chemical sensors that use fiber optics to detect chemically induced changes in optical properties. The final section, ''Piezoelectric Crystal Detectors,'' discusses two types of chemical sensors that depend on the changes in the properties of an oscillating piezoelectric crystal to detect the presence of certain materials. Advantages and disadvantages of each type of sensor are summarized in each section

  20. Knife-edge seal for vacuum bagging

    Science.gov (United States)

    Rauschl, J. A.

    1980-01-01

    Cam actuated clamps pinch bagging material between long knife edge (mounted to clamps) and high temperature rubber cushion bonded to baseplate. No adhesive, tape, or sealing groove is needed to seal edge of bagging sheet against base plate.

  1. Environmental Dataset Gateway (EDG) REST Interface

    Data.gov (United States)

    U.S. Environmental Protection Agency — Use the Environmental Dataset Gateway (EDG) to find and access EPA's environmental resources. Many options are available for easily reusing EDG content in other...

  2. Organizing on the Edge: Appreciation and Critique

    National Research Council Canada - National Science Library

    Scott, W. R

    2006-01-01

    .... Hayes, "Power to the Edge: Command, Control in the Information Age" (2003). The author places the "edge" perspective in the broader context of organizational studies, noting both its strengths and limitations...

  3. Edge effect on weevils and spiders

    Directory of Open Access Journals (Sweden)

    R. Horváth

    2002-05-01

    Full Text Available The edge effect on weevils and spiders was tested along oak forest – meadow transects using sweep-net samples at the Síkfökút Project in Hungary. For spiders the species richness was significantly higher in the forest edge than either in the meadow or the forest interior. For weevils the species richness of the forest edge was higher than that of the meadow, but the difference was not statistically significant whereas the species richness of the forest interior was significantly lower than that of the forest edge and the meadow. The composition of the spider assemblage of the edge was more similar to the forest, while the composition of weevils in the edge was more similar to the meadow. Our results based on two invertebrate groups operating on different trophic levels suggest that there is a significant edge effect for the studied taxa resulting in higher species richness in the edge.

  4. Silicon sensor technologies for ATLAS IBL upgrade

    CERN Document Server

    Grenier, P; The ATLAS collaboration

    2011-01-01

    New pixel sensors are currently under development for ATLAS Upgrades. The first upgrade stage will consist in the construction of a new pixel layer that will be installed in the detector during the 2013 LHC shutdown. The new layer (Insertable-B-Layer, IBL) will be inserted between the inner most layer of the current pixel detector and the beam pipe at a radius of 3.2cm. The expected high radiation levels require the use of radiation hard technology for both the front-end chip and the sensor. Two different pixel sensor technologies are envisaged for the IBL. The sensor choice will occur in July 2011. One option is developed by the ATLAS Planar Pixel Sensor (PPS) Collaboration and is based on classical n-in-n planar silicon sensors which have been used for the ATLAS Pixel detector. For the IBL, two changes were required: The thickness was reduced from 250 um to 200 um to improve the radiation hardness. In addition, so-called "slim edges" were designed to reduce the inactive edge of the sensors from 1100 um to o...

  5. Pyroelectric response mechanism of barium strontium titanate ceramics in dielectric bolometer mode: The underlying essence of the enhancing effect of direct current bias field

    International Nuclear Information System (INIS)

    Mao, Chaoliang; Cao, Sheng; Yan, Shiguang; Yao, Chunhua; Cao, Fei; Wang, Genshui; Dong, Xianlin; Hu, Xu; Yang, Chunli

    2013-01-01

    Pyroelectric response mechanism of Ba 0.70 Sr 0.30 TiO 3 ceramics under dielectric bolometer (DB) mode was investigated by dielectric and pyroelectric properties measurement. The variations of total, intrinsic, and induced pyroelectric coefficients (p tot , p int , p ind ) with temperatures and bias fields were analyzed. p int plays the dominant role to p tot through most of the temperature range and p ind will be slightly higher than p int above T 0 . The essence of the enhancing effect of DC bias field on pyroelectric coefficient can be attributed to the high value of p int . This mechanism is useful for the pyroelectric materials (DB mode) applications.

  6. First test of an enriched {sup 116}CdWO{sub 4} scintillating bolometer for neutrinoless double-beta-decay searches

    Energy Technology Data Exchange (ETDEWEB)

    Barabash, A.S.; Konovalov, S.I.; Umatov, V.I. [ITEP, National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Danevich, F.A. [MSP, Institute for Nuclear Research, Kyiv (Ukraine); Gimbal-Zofka, Y. [Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, CSNSM, Orsay (France); Linnaeus University, Department of Physics and Electrical Engineering, Kalmar (Sweden); Giuliani, A.; Mancuso, M. [Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, CSNSM, Orsay (France); DISAT, Universita dell' Insubria, Como (Italy); Marcillac, P. de; Marnieros, S.; Novati, V.; Olivieri, E. [Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, CSNSM, Orsay (France); Nones, C.; Zolotarova, A.S. [DSM/IRFU, CEA Saclay, Gif-sur-Yvette Cedex (France); Poda, D.V. [MSP, Institute for Nuclear Research, Kyiv (Ukraine); Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, CSNSM, Orsay (France); Shlegel, V.N. [Nikolaev Institute of Inorganic Chemistry, Novosibirsk (Russian Federation); Tretyak, V.I. [MSP, Institute for Nuclear Research, Kyiv (Ukraine); INFN, Sezione di Roma, Rome (Italy)

    2016-09-15

    For the first time, a cadmium tungstate crystal scintillator enriched in {sup 116}Cd has been succesfully tested as a scintillating bolometer. The measurement was performed above ground at a temperature of 18 mK. The crystal mass was 34.5 g and the enrichment level ∝ 82 %. Despite a substantial pile-up effect due to above-ground operation, the detector demonstrated high energy resolution (2-7 keV FWHM in 0.2-2.6 MeV γ energy range and 7.5 keV FWHM at the {sup 116}Cd double-beta decay transition energy of 2813 keV), a powerful particle identification capability and a high level of internal radio-purity. These results prove that cadmium tungstate is a promising detector material for a next-generation neutrinoless double-beta decay bolometric experiment, like that proposed in the CUPID project (CUORE Upgrade with Particle IDentification). (orig.)

  7. Development of N+ in P pixel sensors for a high-luminosity large hadron collider

    International Nuclear Information System (INIS)

    Kamada, Shintaro; Yamamura, Kazuhisa; Unno, Yoshinobu; Ikegami, Yoichi

    2014-01-01

    Hamamatsu Photonics K. K. is developing an N+ in a p planar pixel sensor with high radiation tolerance for the high-luminosity large hadron collider (HL-LHC). The N+ in the p planar pixel sensor is a candidate for the HL-LHC and offers the advantages of high radiation tolerance at a reasonable price compared with the N+ in an n planar sensor, the three-dimensional sensor, and the diamond sensor. However, the N+ in the p planar pixel sensor still presents some problems that need to be solved, such as its slim edge and the danger of sparks between the sensor and readout integrated circuit. We are now attempting to solve these problems with wafer-level processes, which is important for mass production. To date, we have obtained a 250-μm edge with an applied bias voltage of 1000 V. To protect against high-voltage sparks from the edge, we suggest some possible designs for the N+ edge. - Highlights: • We achieved a tolerance of 1000 V with a 250-μm edge by Al2O3 side wall passivation. • Above is a wafer process and suitable for mass production. • For edge-spark protection, we suggest N+ edge with an isolation

  8. CFAR Edge Detector for Polarimetric SAR Images

    DEFF Research Database (Denmark)

    Schou, Jesper; Skriver, Henning; Nielsen, Allan Aasbjerg

    2003-01-01

    Finding the edges between different regions in an image is one of the fundamental steps of image analysis, and several edge detectors suitable for the special statistics of synthetic aperture radar (SAR) intensity images have previously been developed. In this paper, a new edge detector for polar...

  9. Energetics of highly kinked step edges

    NARCIS (Netherlands)

    Zandvliet, Henricus J.W.

    2010-01-01

    We have determined the step edge free energy, the step edge stiffness and dimensionless inverse step edge stiffness of the highly kinked < 010> oriented step on a (001) surface of a simple square lattice within the framework of a solid-on-solid model. We have found an exact expression for the step

  10. Acyclicity in edge-colored graphs

    DEFF Research Database (Denmark)

    Gutin, Gregory; Jones, Mark; Sheng, Bin

    2017-01-01

    A walk W in edge-colored graphs is called properly colored (PC) if every pair of consecutive edges in W is of different color. We introduce and study five types of PC acyclicity in edge-colored graphs such that graphs of PC acyclicity of type i is a proper superset of graphs of acyclicity of type...

  11. Cooperative robots and sensor networks 2014

    CERN Document Server

    Khelil, Abdelmajid

    2014-01-01

    This book is the second volume on Cooperative Robots and Sensor Networks. The primary objective of this book is to provide an up-to-date reference for cutting-edge studies and research trends related to mobile robots and wireless sensor networks, and in particular for the coupling between them. Indeed, mobile robots and wireless sensor networks have enabled great potentials and a large space for ubiquitous and pervasive applications. Robotics and wireless sensor networks have mostly been considered as separate research fields and little work has investigated the marriage between these two technologies. However, these two technologies share several features, enable common cyber-physical applications and provide complementary support to each other. The book consists of ten chapters, organized into four parts. The first part of the book presents three chapters related to localization of mobile robots using wireless sensor networks. Two chapters presented new solutions based Extended Kalman Filter and Particle Fi...

  12. Secure Wireless Sensor Networks: Problems and Solutions

    Directory of Open Access Journals (Sweden)

    Fei Hu

    2003-08-01

    Full Text Available As sensor networks edge closer towards wide-spread deployment, security issues become a central concern. So far, the main research focus has been on making sensor networks feasible and useful, and less emphasis was placed on security. This paper analyzes security challenges in wireless sensor networks and summarizes key issues that should be solved for achieving the ad hoc security. It gives an overview of the current state of solutions on such key issues as secure routing, prevention of denial-of-service and key management service. We also present some secure methods to achieve security in wireless sensor networks. Finally we present our integrated approach to securing sensor networks.

  13. Automotive sensors

    Science.gov (United States)

    Marek, Jiri; Illing, Matthias

    2003-01-01

    Sensors are an essential component of most electronic systems in the car. They deliver input parameters for comfort features, engine and emission control as well as for the active and passive safety systems. New technologies such as silicon micromachining play an important role for the introduction of these sensors in all vehicle classes. The importance and use of these sensor technologies in today"s automotive applications will be shown in this article. Finally an outlook on important current developments and new functions in the car will be given.

  14. Piezoceramic Sensors

    CERN Document Server

    Sharapov, Valeriy

    2011-01-01

    This book presents the latest and complete information about various types of piezosensors. A sensor is a converter of the measured physical size to an electric signal. Piezoelectric transducers and sensors are based on piezoelectric effects. They have proven to be versatile tools for the measurement of various processes. They are used for quality assurance, process control and for research and development in many different industries. In each area of application specific requirements to the parameters of transducers and sensors are developed. This book presents the fundamentals, technical des

  15. Edge and coupled core/edge transport modelling in tokamaks

    International Nuclear Information System (INIS)

    Lodestro, L.L.; Casper, T.A.; Cohen, R.H.

    1999-01-01

    Recent advances in the theory and modelling of tokamak edge, scrape-off-layer (SOL) and divertor plasmas are described. The effects of the poloidal E x B drift on inner/outer divertor-plate asymmetries within a 1D analysis are shown to be in good agreement with experimental trends; above a critical v ExB , the model predicts transitions to supersonic flow at the inboard midplane. 2D simulations show the importance of E x B flow in the private-flux region and of ∇ B-drifts. A theory of rough plasma-facing surfaces is given, predicting modifications to the SOL plasma. The parametric dependence of detached-plasma states in slab geometry has been explored; with sufficient pumping, the location of the ionization front can be controlled; otherwise only fronts near the plate or the X-point are stable. Studies with a more accurate Monte-Carlo neutrals model and a detailed non-LTE radiation-transport code indicate various effects are important for quantitative modelling. Detailed simulations of the DIII-D core and edge are presented; impurity and plasma flow are discussed and shown to be well modelled with UEDGE. (author)

  16. Edge and coupled core-edge transport modelling in tokamaks

    International Nuclear Information System (INIS)

    Lodestro, L.L.; Casper, T.A.; Cohen, R.H.

    2001-01-01

    Recent advances in the theory and modelling of tokamak edge, scrape-off-layer (SOL) and divertor plasmas are described. The effects of the poloidal ExB drift on inner/outer divertor-plate asymmetries within a 1D analysis are shown to be in good agreement with experimental trends; above a critical v ExB, the model predicts transitions to supersonic SOL flow at the inboard midplane. 2D simulations show the importance of ExB flow in the private-flux region and of ∇ B-drifts. A theory of rough plasma-facing surfaces is given, predicting modifications to the SOL plasma. The parametric dependence of detached-plasma states in slab geometry has been explored; with sufficient pumping, the location of the ionization front can be controlled; otherwise only fronts near the plate or the X-point are stable. Studies with a more accurate Monte-Carlo neutrals model and a detailed non-LTE radiation-transport code indicate various effects are important for quantitative modelling. Detailed simulations of the DIII-D core and edge are presented; impurity and plasma flow are discussed and shown to be well modelled with UEDGE. (author)

  17. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet

    Science.gov (United States)

    Yuan, Wenjing; Zhou, Yu; Li, Yingru; Li, Chun; Peng, Hailin; Zhang, Jin; Liu, Zhongfan; Dai, Liming; Shi, Gaoquan

    2013-01-01

    Graphene has a unique atom-thick two-dimensional structure and excellent properties, making it attractive for a variety of electrochemical applications, including electrosynthesis, electrochemical sensors or electrocatalysis, and energy conversion and storage. However, the electrochemistry of single-layer graphene has not yet been well understood, possibly due to the technical difficulties in handling individual graphene sheet. Here, we report the electrochemical behavior at single-layer graphene-based electrodes, comparing the basal plane of graphene to its edge. The graphene edge showed 4 orders of magnitude higher specific capacitance, much faster electron transfer rate and stronger electrocatalytic activity than those of graphene basal plane. A convergent diffusion effect was observed at the sub-nanometer thick graphene edge-electrode to accelerate the electrochemical reactions. Coupling with the high conductivity of a high-quality graphene basal plane, graphene edge is an ideal electrode for electrocatalysis and for the storage of capacitive charges. PMID:23896697

  18. Image Edge Tracking via Ant Colony Optimization

    Science.gov (United States)

    Li, Ruowei; Wu, Hongkun; Liu, Shilong; Rahman, M. A.; Liu, Sanchi; Kwok, Ngai Ming

    2018-04-01

    A good edge plot should use continuous thin lines to describe the complete contour of the captured object. However, the detection of weak edges is a challenging task because of the associated low pixel intensities. Ant Colony Optimization (ACO) has been employed by many researchers to address this problem. The algorithm is a meta-heuristic method developed by mimicking the natural behaviour of ants. It uses iterative searches to find the optimal solution that cannot be found via traditional optimization approaches. In this work, ACO is employed to track and repair broken edges obtained via conventional Sobel edge detector to produced a result with more connected edges.

  19. K-edge densitometer (KED)

    Energy Technology Data Exchange (ETDEWEB)

    Sprinkle, J.K.; Hansen, W.J.

    1993-02-11

    In 1979, a K-edge densitometer (KED) was installed by the Safeguards Assay group from Los Alamos National Laboratory in the PNC reprocessing plant at Tokai-mura, Japan. It uses an active nondestructive assay technique, KED, to measure the plutonium concentration of the product solution. The measurement uncertainty of an assay depends on the count time chosen, but can be 0.5% or better. The computer hardware and software were upgraded in 1992. This manual describes the operation of the instrument, with an emphasis on the user interface to the software.

  20. Instant Adobe Edge Inspect starter

    CERN Document Server

    Khan, Joseph

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This easy-to-understand Starter guide will get you up to speed with Adobe Edge Inspect quickly and with little effort.This book is for frontend web developers and designers who are developing and testing web applications targeted for mobile browsers. It's assumed that you have a basic understanding of creating web applications using HTML, CSS, and JavaScript, as well as being familiar with running web pages from local HTTP servers. Readers are a

  1. How Forest Inhomogeneities Affect the Edge Flow

    DEFF Research Database (Denmark)

    Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas

    2016-01-01

    Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities (>1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark...... is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between...... the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge...

  2. Energetics of edge oxidization of graphene nanoribbons

    Science.gov (United States)

    Yasuma, Airi; Yamanaka, Ayaka; Okada, Susumu

    2018-06-01

    On the basis of the density functional theory, we studied the geometries and energetics of O atoms adsorbed on graphene edges for simulating the initial stage of the edge oxidization of graphene. Our calculations showed that oxygen atoms are preferentially adsorbed onto the graphene edges with the zigzag portion, resulting in a large adsorption energy of about 5 eV. On the other hand, the edges with armchair shape are rarely oxidized, or the oxidization causes substantial structural reconstructions, because of the stable covalent bond at the armchair edge with the triple bond nature. Furthermore, the energetics sensitively depends on the edge angles owing to the inhomogeneity of the charge density at the edge atomic sites.

  3. Optischer Sensor

    OpenAIRE

    Brandenburg, A.; Hutter, F.; Edelhaeuser, R.

    1992-01-01

    WO 2010040565 A1 UPAB: 20100506 NOVELTY - The integrated optical sensor comprises a first waveguide (4), a second waveguide (5) optically coupled to the first waveguide via a directional coupler, a substrate, which carries the first and the second waveguides, a single waveguide coupled with a light source, and an output waveguide coupled with a light-sensitive element. The sensor has a functional surface in the region of the directional coupler for depositing or deposition of the substance to...

  4. Wireless sensor

    Science.gov (United States)

    Lamberti, Vincent E.; Howell, JR, Layton N.; Mee, David K.; Sepaniak, Michael J.

    2016-02-09

    Disclosed is a sensor for detecting a target material. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon exposure to vapor or liquid from the target material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The target material is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  5. Sensors and sensor integration; Proceedings of the Meeting, Orlando, FL, Apr. 4, 1991

    Science.gov (United States)

    Dean, Peter D.

    Consideration is given to adaptive control of propellant slosh for launch vehicles, a lidar for expendable launch vehicles, a high-resolution airborne multisensor system, an optical velocity sensor for air data applications, and use of absorption spectroscopy for refined petroleum product discrimination. Attention is also given to edge effects in silicon photodiode arrays, sensing and environment perception for a mobile vehicle, distributed-effect optical fiber sensors for trusses and plates, and instrumentation concepts for multiplexed Bragg grating sensors. (For individual items see A93-21962 to A93-21972)

  6. Predicted solar cell edge radiation effects

    International Nuclear Information System (INIS)

    Gates, M.T.

    1993-01-01

    The Advanced Solar Cell Orbital Test (ASCOT) will test six types of solar cells in a high energy proton environment. During the design of the experiment a question was raised about the effects of proton radiation incident on the edge of the solar cells and whether edge radiation shielding was required. Historical geosynchronous data indicated that edge radiation damage is not detectable over the normal end of life solar cell degradation; however because the ASCOT radiation environment has a much higher and more energetic fluence of protons, considerably more edge damage is expected. A computer analysis of the problem was made by modeling the expected radiation damage at the cell edge and using a network model of small interconnected solar cells to predict degradation in the cell's electrical output. The model indicated that the deepest penetration of edge radiation was at the top of the cell near the junction where the protons have access to the cell through the low density cell/cover adhesive layer. The network model indicated that the cells could tolerate high fluences at their edge as long as there was high electrical resistance between the edge radiated region and the contact system on top of the cell. The predicted edge radiation related loss was less than 2% of maximum power for GaAs/Ge solar cells. As a result, no edge radiation protection was used for ASCOT

  7. Ethical decisions at the edge.

    Science.gov (United States)

    Gillett, Grant

    2008-05-01

    Medicine grows incrementally in its ability to treat patients and at the growing edge it poses problems about the appropriateness of treatments that are different from those where good practice conforms to widely agreed standards. The growth of access to medical knowledge and the diversity of contemporary theoretical and clinical medicine have spawned deep divisions in the profession and divergent opinions about what constitutes reasonable care. That hallmark of acceptable practice is also under pressures from the threat of litigation, a highly commercialised contemporary medical environment, patient demands based on medical journalism and the internet and the exponential growth of bio-medical technology. Patient empowerment can result in complaints arising in new and complex areas and expert opinion can often differ markedly depending on where on the medical spectrum the experts are aligned. This column lays out some broad-brush principles to assess the adequacy of medical advice in such a climate.

  8. Imaging edges of nanostructured graphene

    DEFF Research Database (Denmark)

    Kling, Jens; Cagliani, Alberto; Booth, T. J.

    Graphene, as the forefather of 2D-materials, attracts much attention due to its extraordinary properties like transparency, flexibility and outstanding high conductivity, together with a thickness of only one atom. However, graphene also possesses no band gap, which makes it unsuitable for many...... electronic applications like transistors. It has been shown theoretically that by nanostructuring pristine graphene, e.g. with regular holes, the electronic properties can be tuned and a band gap introduced. The size, distance and edge termination of these “defects” influence the adaptability....... Such nanostructuring can be done experimentally, but especially characterization at atomic level is a huge challenge. High-resolution TEM (HRTEM) is used to characterize the atomic structure of graphene. We optimized the imaging conditions used for the FEI Titan ETEM. To reduce the knock-on damage of the carbon atoms...

  9. Magnetohydrodynamic stability of tokamak edge plasmas

    International Nuclear Information System (INIS)

    Connor, J.W.; Hastie, R.J.; Wilson, H.R.; Miller, R.L.

    1998-01-01

    A new formalism for analyzing the magnetohydrodynamic stability of a limiter tokamak edge plasma is developed. Two radially localized, high toroidal mode number n instabilities are studied in detail: a peeling mode and an edge ballooning mode. The peeling mode, driven by edge current density and stabilized by edge pressure gradient, has features which are consistent with several properties of tokamak behavior in the high confinement open-quotes Hclose quotes-mode of operation, and edge localized modes (or ELMs) in particular. The edge ballooning mode, driven by the pressure gradient, is identified; this penetrates ∼n 1/3 rational surfaces into the plasma (rather than ∼n 1/2 , expected from conventional ballooning mode theory). Furthermore, there exists a coupling between these two modes and this coupling provides a picture of the ELM cycle

  10. Radiation sensor

    International Nuclear Information System (INIS)

    Brown, W.L.; Geronime, R.L.

    1977-01-01

    Radiation sensor and thermocouple, respectively, which can be used for reactor in-core instrumentation. The radiation sensor consists of an inconel conductor wire and rhodium emitter wire, the thermocouple of two intertwined alumel or chromel wires. Both are arranged in the center of a metal tube relative to which they are separated by an insulator made of SiO 2 fibers. This insulator is first introduced as a loose fabric between the radiation sensor and the thermocouple, respectively, and the metal tube and then compacted to a density of 35-73% of pure SiO 2 by drawing the tube. There is no need for soldering or welding. The insulation resistivity at room temperature ist between 10 14 and 10 15 ohms. (ORU) [de

  11. Water Sensors

    Science.gov (United States)

    1992-01-01

    Mike Morris, former Associate Director of STAC, formed pHish Doctor, Inc. to develop and sell a pH monitor for home aquariums. The monitor, or pHish Doctor, consists of a sensor strip and color chart that continually measures pH levels in an aquarium. This is important because when the level gets too high, ammonia excreted by fish is highly toxic; at low pH, bacteria that normally break down waste products stop functioning. Sales have run into the tens of thousands of dollars. A NASA Tech Brief Technical Support Package later led to a salt water version of the system and a DoE Small Business Innovation Research (SBIR) grant for development of a sensor for sea buoys. The company, now known as Ocean Optics, Inc., is currently studying the effects of carbon dioxide buildup as well as exploring other commercial applications for the fiber optic sensor.

  12. Edge and line detection of complicated and blurred objects

    OpenAIRE

    Haugsdal, Kari

    2010-01-01

    This report deals with edge and line detection in pictures with complicated and/or blurred objects. It explores the alternatives available, in edge detection, edge linking and object recognition. Choice of methods are the Canny edge detection and Local edge search processing combined with regional edge search processing in the form of polygon approximation.

  13. The Boom in 3D-Printed Sensor Technology

    Science.gov (United States)

    Xu, Yuanyuan; Wu, Xiaoyue; Guo, Xiao; Kong, Bin; Zhang, Min; Qian, Xiang; Mi, Shengli; Sun, Wei

    2017-01-01

    Future sensing applications will include high-performance features, such as toxin detection, real-time monitoring of physiological events, advanced diagnostics, and connected feedback. However, such multi-functional sensors require advancements in sensitivity, specificity, and throughput with the simultaneous delivery of multiple detection in a short time. Recent advances in 3D printing and electronics have brought us closer to sensors with multiplex advantages, and additive manufacturing approaches offer a new scope for sensor fabrication. To this end, we review the recent advances in 3D-printed cutting-edge sensors. These achievements demonstrate the successful application of 3D-printing technology in sensor fabrication, and the selected studies deeply explore the potential for creating sensors with higher performance. Further development of multi-process 3D printing is expected to expand future sensor utility and availability. PMID:28534832

  14. Polymethine Dye as Sensors of NH3 and CO

    Directory of Open Access Journals (Sweden)

    Petro O. Kondratenko

    2017-01-01

    Full Text Available We have investigated the properties of polymethine dyes (PMD and the purpose of using them as sensors of hazardous gases presence. Research indicates that in case of utilizing PMD as a sensor of hazardous gases we need to use the monochromatic light which wavelength corresponds to the inflection point of the long-wave absorption edge of PMD. Such sensor of hazardous gases can detect changes in the optical density of the sensor layer or the light intensity transmitted through the layer.

  15. Embedded Bragg grating fiber optic sensor for composite flexbeams

    Science.gov (United States)

    Bullock, Daniel; Dunphy, James; Hufstetler, Gerard

    1993-03-01

    An embedded fiber-optic (F-O) sensor has been developed for translaminar monitoring of the structural integrity of composites, with a view to application in composite helicopter flexbeams for bearingless main rotor hubs. This through-thickness strain sensor is much more sensitive than conventional in-plane embedded F-O sensors to ply delamination, on the basis of a novel insertion technique and innovative Bragg grating sensor. Experimental trials have demonstrated the detection by this means of potential failures in advance of the edge-delamination or crack-propagation effect.

  16. Continuous liquid level monitoring sensor system using fiber Bragg grating

    Science.gov (United States)

    Sengupta, Dipankar; Kishore, Putha

    2014-01-01

    The design and packaging of simple, small, and low cost sensor heads, used for continuous liquid level measurement using uniformly thinned (etched) optical fiber Bragg grating (FBG) are proposed. The sensor system consists of only an FBG and a simple detection system. The sensitivity of sensor is found to be 23 pm/cm of water column pressure. A linear optical fiber edge filter is designed and developed for the conversion of Bragg wavelength shift to its equivalent intensity. The result shows that relative power measured by a photo detector is linearly proportional to the liquid level. The obtained sensitivity of the sensor is nearly -15 mV/cm.

  17. Study of airfoil trailing edge bluntness noise

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2010-01-01

    This paper deals with airfoil trailing edge noise with special focus on airfoils with blunt trailing edges. Two methods are employed to calculate airfoil noise: The flow/acoustic splitting method and the semi-empirical method. The flow/acoustic splitting method is derived from compressible Navier...... design or optimization. Calculations from both methods are compared with exist experiments. The airfoil blunt noise is found as a function of trailing edge bluntness, Reynolds number, angle of attack, etc....

  18. Selective Electroless Silver Deposition on Graphene Edges

    DEFF Research Database (Denmark)

    Durhuus, D.; Larsen, M. V.; Andryieuski, Andrei

    2015-01-01

    We demonstrate a method of electroless selective silver deposition on graphene edges or between graphene islands without covering the surface of graphene. Modifications of the deposition recipe allow for decoration of graphene edges with silver nanoparticles or filling holes in damaged graphene...... on silica substrate and thus potentially restoring electric connectivity with minimal influence on the overall graphene electrical and optical properties. The presented technique could find applications in graphene based transparent conductors as well as selective edge functionalization and can be extended...

  19. Discursive Maps at the Edge of Chaos

    Science.gov (United States)

    2017-05-25

    Discursive Maps at the Edge of Chaos A Monograph by Major Mathieu Primeau Canadian Army, Royal Canadian Engineer School of Advanced Military...Master’s Thesis 3. DATES COVERED (From - To) JUN 2016 – MAY 2017 4. TITLE AND SUBTITLE Discursive Maps at the Edge of Chaos 5a. CONTRACT NUMBER 5b...meaning of boundaries and polarize conflict towards violence. The edge of chaos is the fine line between disorder and coherence. Discursive maps

  20. Edge effect on weevils and spiders

    OpenAIRE

    Horváth, R.; Magura, T.; Péter, G.; Tóthmérész, B.

    2002-01-01

    The edge effect on weevils and spiders was tested along oak forest – meadow transects using sweep-net samples at the Síkfökút Project in Hungary. For spiders the species richness was significantly higher in the forest edge than either in the meadow or the forest interior. For weevils the species richness of the forest edge was higher than that of the meadow, but the difference was not statistically significant whereas the species richness of the forest...

  1. Leading-Edge Flow Sensing for Aerodynamic Parameter Estimation

    Science.gov (United States)

    Saini, Aditya

    The identification of inflow air data quantities such as airspeed, angle of attack, and local lift coefficient on various sections of a wing or rotor blade provides the capability for load monitoring, aerodynamic diagnostics, and control on devices ranging from air vehicles to wind turbines. Real-time measurement of aerodynamic parameters during flight provides the ability to enhance aircraft operating capabilities while preventing dangerous stall situations. This thesis presents a novel Leading-Edge Flow Sensing (LEFS) algorithm for the determination of the air -data parameters using discrete surface pressures measured at a few ports in the vicinity of the leading edge of a wing or blade section. The approach approximates the leading-edge region of the airfoil as a parabola and uses pressure distribution from the exact potential-ow solution for the parabola to _t the pressures measured from the ports. Pressures sensed at five discrete locations near the leading edge of an airfoil are given as input to the algorithm to solve the model using a simple nonlinear regression. The algorithm directly computes the inflow velocity, the stagnation-point location, section angle of attack and lift coefficient. The performance of the algorithm is assessed using computational and experimental data in the literature for airfoils under different ow conditions. The results show good correlation between the actual and predicted aerodynamic quantities within the pre-stall regime, even for a rotating blade section. Sensing the deviation of the aerodynamic behavior from the linear regime requires additional information on the location of ow separation on the airfoil surface. Bio-inspired artificial hair sensors were explored as a part of the current research for stall detection. The response of such artificial micro-structures can identify critical ow characteristics, which relate directly to the stall behavior. The response of the microfences was recorded via an optical microscope for

  2. Moveable Leading Edge Device for a Wing

    Science.gov (United States)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.

  3. Visible imaging of edge turbulence in NSTX

    International Nuclear Information System (INIS)

    Zweben, S.; Maqueda, R.; Hill, K.; Johnson, D.

    2000-01-01

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radical heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of gas puff imaging to locally illuminate the edge density turbulence

  4. IMAGE ANALYSIS BASED ON EDGE DETECTION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K-means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model,gray level l, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.

  5. Object detection using categorised 3D edges

    DEFF Research Database (Denmark)

    Kiforenko, Lilita; Buch, Anders Glent; Bodenhagen, Leon

    2015-01-01

    is made possible by the explicit use of edge categories in the feature descriptor. We quantitatively compare our approach with the state-of-the-art template based Linemod method, which also provides an effective way of dealing with texture-less objects, tests were performed on our own object dataset. Our...... categorisation algorithm for describing objects in terms of its different edge types. Relying on edge information allow our system to deal with objects with little or no texture or surface variation. We show that edge categorisation improves matching performance due to the higher level of discrimination, which...

  6. Visible imaging of edge turbulence in NSTX

    International Nuclear Information System (INIS)

    S. Zweben; R. Maqueda; K. Hill; D. Johnson; S. Kaye; H. Kugel; F. Levinton; R. Maingi; L. Roquemore; S. Sabbagh; G. Wurden

    2000-01-01

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radial heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of ''gas puff imaging'' to locally illuminate the edge density turbulence

  7. Cooperative robots and sensor networks

    CERN Document Server

    Khelil, Abdelmajid

    2014-01-01

    Mobile robots and Wireless Sensor Networks (WSNs) have enabled great potentials and a large space for ubiquitous and pervasive applications. Robotics and WSNs have mostly been considered as separate research fields and little work has investigated the marriage between these two technologies. However, these two technologies share several features, enable common cyber-physical applications and provide complementary support to each other.
 The primary objective of book is to provide a reference for cutting-edge studies and research trends pertaining to robotics and sensor networks, and in particular for the coupling between them. The book consists of five chapters. The first chapter presents a cooperation strategy for teams of multiple autonomous vehicles to solve the rendezvous problem. The second chapter is motivated by the need to improve existing solutions that deal with connectivity prediction, and proposed a genetic machine learning approach for link-quality prediction. The third chapter presents an arch...

  8. Edge passivation induced single-edge ferromagnetism of zigzag MoS_2 nanoribbons

    International Nuclear Information System (INIS)

    Wang, Rui; Sun, Hui; Ma, Ben; Hu, Jingguo; Pan, Jing

    2017-01-01

    We performed density functional theory study on electronic structure, magnetic properties and stability of zigzag MoS_2 nanoribbons (ZMoS_2NRs) with and without oxygen (O) passivation. The bare ZMoS_2NRs are magnetic metal with ferromagnetic edge states, edge passivation decreases their magnetism because of the decrease of edge unsaturated electrons. Obviously, the electronic structure and magnetic properties of ZMoS_2NRs greatly depend on edge states. When both edges are passivated by O atoms, ZMoS_2NRs are nonmagnetic metals. When either edge is passivated by O atoms, the systems exhibit single-edge ferromagnetism and magnetism concentrates on the non-passivated edge. Edge passivation can not only tune the magnetism of ZMoS_2NRs, but also enhance their stability by eliminating dangling bonds. These interesting findings on ZMoS_2NRs may open the possibility of their application in nanodevices and spintronics. - Highlights: • Edge passivation for tuning magnetism of zigzag MoS_2 nanoribbons (ZMoS_2NRs) is proposed. • Edge passivation can tune ZMoS_2NRs from nonmagnetic metal to ferromagnetic metal. • When either edge is passivated, the systems exhibit single-edge ferromagnetic states. • These findings may inspire great interest in the community of ZMoS_2NRs and motivate numerous experimental researches.

  9. Practical Use Technique of Sensor

    International Nuclear Information System (INIS)

    Hwang, Gyu Seop

    1985-11-01

    This book tells of practical use technology of sensor, introducing the recent trend of sensor for electronic industry, IC temperature sensor, radiation temperature sensor of surface acoustic wave, optical fiber temperature sensor, a polyelectrolyte film humidity sensor, semiconductor pressure sensor for industrial instrumentation, silicon integration pressure sensor, thick film humidity sensor and its application, photo sensor reflection type, and color sensor. It also deals with sensor for FA, sensor for a robot and sensor for the chemical industry.

  10. Practical Use Technique of Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gyu Seop

    1985-11-15

    This book tells of practical use technology of sensor, introducing the recent trend of sensor for electronic industry, IC temperature sensor, radiation temperature sensor of surface acoustic wave, optical fiber temperature sensor, a polyelectrolyte film humidity sensor, semiconductor pressure sensor for industrial instrumentation, silicon integration pressure sensor, thick film humidity sensor and its application, photo sensor reflection type, and color sensor. It also deals with sensor for FA, sensor for a robot and sensor for the chemical industry.

  11. Chemical sensor

    Science.gov (United States)

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  12. Load sensor

    NARCIS (Netherlands)

    Van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder

  13. Gas sensor

    Science.gov (United States)

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  14. Saturn's Rings Edge-on

    Science.gov (United States)

    1995-01-01

    In one of nature's most dramatic examples of 'now-you see-them, now-you-don't', NASA's Hubble Space Telescope captured Saturn on May 22, 1995 as the planet's magnificent ring system turned edge-on. This ring-plane crossing occurs approximately every 15 years when the Earth passes through Saturn's ring plane.For comparison, the top picture was taken by Hubble on December 1, 1994 and shows the rings in a more familiar configuration for Earth observers.The bottom picture was taken shortly before the ring plane crossing. The rings do not disappear completely because the edge of the rings reflects sunlight. The dark band across the middle of Saturn is the shadow of the rings cast on the planet (the Sun is almost 3 degrees above the ring plane.) The bright stripe directly above the ring shadow is caused by sunlight reflected off the rings onto Saturn's atmosphere. Two of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are, from left to right, Tethys (slightly above the ring plane) and Dione.This observation will be used to determine the time of ring-plane crossing and the thickness of the main rings and to search for as yet undiscovered satellites. Knowledge of the exact time of ring-plane crossing will lead to an improved determination of the rate at which Saturn 'wobbles' about its axis (polar precession).Both pictures were taken with Hubble's Wide Field Planetary Camera 2. The top image was taken in visible light. Saturn's disk appears different in the bottom image because a narrowband filter (which only lets through light that is not absorbed by methane gas in Saturn's atmosphere) was used to reduce the bright glare of the planet. Though Saturn is approximately 900 million miles away, Hubble can see details as small as 450 miles across.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and

  15. The ATLAS Planar Pixel Sensor R and D project

    International Nuclear Information System (INIS)

    Beimforde, M.

    2011-01-01

    Within the R and D project on Planar Pixel Sensor Technology for the ATLAS inner detector upgrade, the use of planar pixel sensors for highest fluences as well as large area silicon detectors is investigated. The main research goals are optimizing the signal size after irradiations, reducing the inactive sensor edges, adjusting the readout electronics to the radiation induced decrease of the signal sizes, and reducing the production costs. Planar n-in-p sensors have been irradiated with neutrons and protons up to fluences of 2x10 16 n eq /cm 2 and 1x10 16 n eq /cm 2 , respectively, to study the collected charge as a function of the irradiation dose received. Furthermore comparisons of irradiated standard 300μm and thin 140μm sensors will be presented showing an increase of signal sizes after irradiation in thin sensors. Tuning studies of the present ATLAS front end electronics show possibilities to decrease the discriminator threshold of the present FE-I3 read out chips to less than 1500 electrons. In the present pixel detector upgrade scenarios a flat stave design for the innermost layers requires reduced inactive areas at the sensor edges to ensure low geometric inefficiencies. Investigations towards achieving slim edges presented here show possibilities to reduce the width of the inactive area to less than 500μm. Furthermore, a brief overview of present simulation activities within the Planar Pixel R and D project is given.

  16. Competitive edge through technological innovation

    International Nuclear Information System (INIS)

    Gottlieb, M.

    1997-01-01

    The vital role of advanced technology in natural gas cost reduction has been described. Among advanced technologies, seismic, drilling and fracturing technologies have been singled out as being the most important. Access to new supply frontiers (aided by the application of advanced technology), and more effective business strategies were considered as the other most influential factors in efficiently exploiting oil and gas resources. In view of predictions of substantially increased demand, advanced technology is poised to be even more important in the future. With this as background, an examination of the level of investment for the development of advanced technology revealed that energy industry R and D expenditures were lowest among industries in the U.S. (only 0.7 per cent of sales). It was concluded that notwithstanding industry's ability to improve output per R and D dollar invested, the achievement of the necessary technological advancements is a strategic imperative for both the industry and the U.S. as a whole. As far as the industry is concerned, its ability to maintain a competitive edge over competing energy forms, will be determined largely on the basis of its willingness to invest in future advanced technology development. 2 refs., 14 figs

  17. CMS kinematic edge from sbottoms

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Peisi; Wagner, Carlos E. M.

    2015-01-01

    We present two scenarios in the Minimal Supersymmetric Extension of the Standard Model (MSSM) that can lead to an explanation of the excess in the invariant mass distribution of two opposite charged, same flavor leptons, and the corresponding edge at an energy of about 78 GeV, recently reported by the CMS Collaboration. In both scenarios, sbottoms are pair produced, and decay to neutralinos and a b-jet. The heavier neutralinos further decay to a pair of leptons and the lightest neutralino through on-shell sleptons or off-shell neutral gauge bosons. These scenarios are consistent with the current limits on the sbottoms, neutralinos, and sleptons. Assuming that the lightest neutralino is stable we discuss the predicted relic density as well as the implications for darkmatter direct detection. We show that consistency between the predicted and the measured value of the muon anomalous magnetic moment may be obtained in both scenarios. Finally, we define the signatures of these models that may be tested at the 13 TeV run of the LHC

  18. Field demonstration of a portable, X-ray, K-edge heavy-metal detector

    International Nuclear Information System (INIS)

    Jensen, T.; Aljundi, T.; Whitmore, C.; Zhong, H.; Gray, J.N.

    1997-01-01

    Under the Characterization, Monitoring, and Sensor Technology Crosscutting Program, the authors have designed and built a K-edge heavy metal detector that measures the level of heavy metal contamination inside closed containers in a nondestructive, non-invasive way. The device employs a volumetric technique that takes advantage of the X-ray absorption characteristics of heavy elements, and is most suitable for characterization of contamination inside pipes, processing equipment, closed containers, and soil samples. The K-edge detector is a fast, efficient, and cost-effective in situ characterization tool. More importantly, this device will enhance personnel safety while characterizing radioactive and toxic waste. The prototype K-edge system was operated at the Materials and Chemistry Laboratory User Facility at the Oak Ridge K-25 Site during February 1997. Uranium contaminated pipes and valves from a UF 6 feed facility were inspected using the K-edge technique as well as a baseline nondestructive assay method. Operation of the K-edge detector was demonstrated for uranium contamination ranging from 10 to 6,000 mg/cm 2 and results from the K-edge measurements were found to agree very well with nondestructive assay measurements

  19. LES tests on airfoil trailing edge serration

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2016-01-01

    In the present study, a large number of acoustic simulations are carried out for a low noise airfoil with different Trailing Edge Serrations (TES). The Ffowcs Williams-Hawkings (FWH) acoustic analogy is used for noise prediction at trailing edge. The acoustic solver is running on the platform...

  20. Automatic Edging and Trimming of Hardwood Lumber

    Science.gov (United States)

    D. Earl Kline; Eugene M. Wengert; Philip A. Araman

    1990-01-01

    Studies have shown that there is a potential to increase hardwood lumber value by more than 20 percent through optimum edging and trimming. Even a small portion of this percentage can boost the profitability of hardwood lumber manufacturers substantially. The objective of this research project is to develop an automated system which would assist in correct edging and...

  1. Annotated Bibliography of EDGE2D Use

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  2. Annotated Bibliography of EDGE2D Use

    International Nuclear Information System (INIS)

    Strachan, J.D.; Corrigan, G.

    2005-01-01

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables

  3. Making transducers and sensors which lead to safer mining

    Energy Technology Data Exchange (ETDEWEB)

    Laird, R

    1977-10-20

    MRDE work on transducers and sensors is described. A device containing a radioactive source has already been developed for detecting the edge of a coal seam; on a device which senses the edge of the seam by measuring natural radiation form the neighbouring rocks. Hard bands or dirt in a seam can be located by measuring pick force or pick vibrations. Environmental monitors, sensors for measuring pressure and flow in methane drainage pipes, vibration monitors for fans, means of detecting cage position in pit shaft, and bunker control systems are also mentioned.

  4. Through-flow cell of immersion sensor

    International Nuclear Information System (INIS)

    Svandelik, J.

    1986-01-01

    The cell consists of a jacket in shape of a triangular pyramid whose two opposite and skew edges are truncated. It is provided with inlet and outlet openings. The measuring immersion sensor is inserted through the outlet opening or through an opening provided in one of the jacket side walls. The immersion sensor cell is mainly used for in-service inspection of radioactivity of the ion exchanger at the output of the elution column in the manufacture of chemical concentrates of uranium from ores. (J.B.). 4 figs

  5. Unconventional applications of conventional intrusion detection sensors

    International Nuclear Information System (INIS)

    Williams, J.D.; Matter, J.C.

    1983-01-01

    A number of conventional intrusion detection sensors exists for the detection of persons entering buildings, moving within a given volume, and crossing a perimeter isolation zone. Unconventional applications of some of these sensors have recently been investigated. Some of the applications which are discussed include detection on the edges and tops of buildings, detection in storm sewers, detection on steam and other types of large pipes, and detection of unauthorized movement within secure enclosures. The enclosures can be used around complicated control valves, electrical control panels, emergency generators, etc

  6. Multimodal surveillance sensors, algorithms, and systems

    CERN Document Server

    Zhu, Zhigang

    2007-01-01

    From front-end sensors to systems and environmental issues, this practical resource guides you through the many facets of multimodal surveillance. The book examines thermal, vibration, video, and audio sensors in a broad context of civilian and military applications. This cutting-edge volume provides an in-depth treatment of data fusion algorithms that takes you to the core of multimodal surveillance, biometrics, and sentient computing. The book discusses such people and activity topics as tracking people and vehicles and identifying individuals by their speech.Systems designers benefit from d

  7. Magnetism of zigzag edge phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhili, E-mail: zlzhu@zzu.edu.cn, E-mail: jiayu@zzu.edu.cn; Li, Chong; Yu, Weiyang; Chang, Dahu; Sun, Qiang; Jia, Yu, E-mail: zlzhu@zzu.edu.cn, E-mail: jiayu@zzu.edu.cn [International Joint Research Laboratory for Quantum Functional Materials of Henan, and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2014-09-15

    We have investigated, by means of ab initio calculations, the electronic and magnetic structures of zigzag edge phosphorene nanoribbons (ZPNRs) with various widths. The stable magnetic state was found in pristine ZPNRs by allowing the systems to be spin-polarized. The ground state of pristine ZPNRs prefers ferromagnetic order in the same edge but antiferromagnetic order between two opposite edges. The magnetism arises from the dangling bond states as well as edge localized π-orbital states. The presence of a dangling bond is crucial to the formation of the magnetism of ZPNRs. The hydrogenated ZPNRs get nonmagnetic semiconductors with a direct band gap. While, the O-saturated ZPNRs show magnetic ground states due to the weak P-O bond in the ribbon plane between the p{sub z}-orbitals of the edge O and P atoms.

  8. Edge separation using diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Ravel, B.; Bouldin, C.E.; Renevier, H.; Hodeau, J.L.; Berar, J.F.

    1999-01-01

    We exploit the crystallographic sensitivity of the Diffraction Anomalous Fine-Structure (DAFS) measurement to separate the fine structure contributions of different atomic species with closely spaced resonant energies. In BaTiO 3 the Ti K edge and Ba Lm edges are separated by 281 eV, or about 8.2 Angstrom -1 ), thus severely limiting the information content of the Ti K edge signal. Using the site selectivity of DAFS we can separate the two fine structure spectra using an iterative Kramers-Kronig method, thus extending the range of the Ti K edge spectrum. This technique has application to many rare earth/transition metal compounds, including many magnetic materials of technological significance for which K and L edges overlap in energy. (au)

  9. Optically Immersed Bolometer IR Detectors Based on V2O5 Thin Films with Polyimide Thermal Impedance Control Layer for Space Applications

    Science.gov (United States)

    Sumesh, M. A.; Thomas, Beno; Vijesh, T. V.; Mohan Rao, G.; Viswanathan, M.; Karanth, S. P.

    2018-01-01

    Optically immersed bolometer IR detectors were fabricated using electron beam evaporated vanadium oxide as the sensing material. Spin-coated polyimide was used as medium to optically immerse the sensing element to the flat surface of a hemispherical germanium lens. This optical immersion layer also serves as the thermal impedance control layer and decides the performance of the devices in terms of responsivity and noise parameters. The devices were packaged in suitable electro-optical packages and the detector parameters were studied in detail. Thermal time constant varies from 0.57 to 6.0 ms and responsivity from 75 to 757 V W-1 corresponding to polyimide thickness in the range 2 to 70 μm for a detector bias of 9 V in the wavelength region of 14-16 μm. Highest D* obtained was 1.2×108 cmHz1/2 W-1. Noise equivalent temperature difference (NETD) of 20 mK was achieved for devices with polyimide thickness more than 32 μm. The figure of merit, NETD × τ product which describes trade-off between thermal time constant and sensitivity is also extensively studied for devices having different thickness of thermal impedance layers.

  10. Status of LUMINEU program to search for neutrinoless double beta decay of {sup 100}Mo with cryogenic ZnMoO{sub 4} scintillating bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Danevich, F. A., E-mail: danevich@kinr.kiev.ua; Boiko, R. S.; Chernyak, D. M.; Kobychev, V. V. [Institute for Nuclear Research, MSP 03680 Kyiv (Ukraine); Bergé, L.; Chapellier, M.; Drillien, A.-A.; Dumoulin, L.; Humbert, V.; Marcillac, P. de; Marnieros, S.; Marrache-Kikuchi, C.; Olivieri, E.; Plantevin, O.; Tenconi, M. [Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS/IN2P3, Université Paris-Sud, 91405 Orsay (France); Coron, N.; Redon, T.; Torres, L. [IAS, CNRS, Université Paris-Sud, 91405 Orsay (France); Devoyon, L.; Koskas, F. [CEA, Centre d’Etudes Saclay, Orphée, 91191 Gif-Sur-Yvette Cedex (France); and others

    2015-10-28

    The LUMTNEU program aims at performing a pilot experiment on 0ν2β decay of {sup 100}Mo using radiopure ZnMoO{sub 4} crystals enriched in {sup 100}Mo operated as cryogenic scintillating bolometers. Large volume ZnMoO{sub 4} crystal scintillators (∼ 0.3 kg) were developed and tested showing high performance in terms of radiopurity, energy resolution and α/β particle discrimination capability. Zinc molybdate crystal scintillators enriched in {sup 100}Mo were grown for the first time by the low-thermal-gradient Czochralski technique with a high crystal yield and an acceptable level of enriched molybdenum irrecoverable losses. A background level of ∼ 0.5 counts/(yr keV ton) in the region of interest can be reached in a large detector array thanks to the excellent detectors radiopurity and particle discrimination capability, suppression of randomly coinciding events by pulse-shape analysis, and anticoincidence cut. These results pave the way to future sensitive searches based on the LUMTNEU technology, capable of approachingand exploring the inverted hierarchy region of the neutrino mass pattern.

  11. Model predictive control of trailing edge flaps on a wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Castaignet, D.B.

    2011-11-15

    Trailing edge flaps on wind turbine blades have been investigated for several years. Aero-servoelastic simulations carried out with different simulation tools, trailing edge flaps configurations and controller designs proved that trailing edge flaps are a suitable solution for reducing some of the wind turbine fatigue and extreme loads. This potential was confirmed with wind tunnel tests made on blade sections with trailing edge flaps and on a scaled two-bladed wind turbine in a wind tunnel. The work presented in this thesis includes a full-scale test run on a Vestas V27 wind turbine equipped with three trailing edge flaps on one blade, located on DTU's Risoe Campus in Roskilde, Denmark. This thesis is divided into three parts: the controller design, results from simulations, and results from the experiments. The trailing edge flaps controller designed for this project is based on a frequency-weighted model predictive control, tuned in order to target only the flapwise blade root loads at the frequencies contributing the most to blade root fatigue damage (the 1P, 2P and 3P frequencies), and to avoid unnecessary wear and tear of the actuators at high frequencies. A disturbance model consisting in periodic disturbances at the rotor speed harmonic frequencies and a quasi-steady input disturbance is aggregated to an analytical model of a spinning blade with trailing edge flaps. Simulations on a multi-megawatt wind turbine show the potential of the trailing edge flaps to reduce the flapwise blade root fatigue loads by 23%, but also the main shaft and the tower fatigue loads by up to 32%. Extreme loads during normal production also benefit from the trailing edge flaps. At last, the same controller was run on the Vestas V27 wind turbine located at the Risoe Campus of the Technical University of Denmark, in Roskilde, Denmark. One blade of the turbine was equipped with three independent trailing edge flaps. In spite of the failure of several sensors and actuators, the

  12. Semiconductor sensors

    International Nuclear Information System (INIS)

    Hartmann, Frank

    2011-01-01

    Semiconductor sensors have been around since the 1950s and today, every high energy physics experiment has one in its repertoire. In Lepton as well as Hadron colliders, silicon vertex and tracking detectors led to the most amazing physics and will continue doing so in the future. This contribution tries to depict the history of these devices exemplarily without being able to honor all important developments and installations. The current understanding of radiation damage mechanisms and recent R and D topics demonstrating the future challenges and possible technical solutions for the SLHC detectors are presented. Consequently semiconductor sensor candidates for an LHC upgrade and a future linear collider are also briefly introduced. The work presented here is a collage of the work of many individual silicon experts spread over several collaborations across the world.

  13. Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction

    Science.gov (United States)

    Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); Moore, James B. (Inventor); Su, Ji (Inventor); Turner, Travis L. (Inventor); Lin, John C. (Inventor); Taminger, Karen M. (Inventor); Kahng, Seun K. (Inventor); Verden, Scott A. (Inventor)

    2014-01-01

    A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings.

  14. Localized Edge Vibrations and Edge Reconstruction by Joule Heating in Graphene Nanostructures

    DEFF Research Database (Denmark)

    Engelund, Mads; Fürst, Joachim Alexander; Jauho, Antti-Pekka

    2010-01-01

    Control of the edge topology of graphene nanostructures is critical to graphene-based electronics. A means of producing atomically smooth zigzag edges using electronic current has recently been demonstrated in experiments [Jia et al., Science 323, 1701 (2009)]. We develop a microscopic theory...... for current-induced edge reconstruction using density functional theory. Our calculations provide evidence for localized vibrations at edge interfaces involving unpassivated armchair edges. We demonstrate that these vibrations couple to the current, estimate their excitation by Joule heating, and argue...

  15. SPIDER: CMB Polarimetry from the Edge of Space

    Energy Technology Data Exchange (ETDEWEB)

    Gualtieri, R.; et al.

    2017-11-28

    SPIDER is a balloon-borne instrument designed to map the polarization of the millimeter-wave sky at large angular scales. SPIDER targets the B-mode signature of primordial gravitational waves in the cosmic microwave background (CMB), with a focus on mapping a large sky area with high fidelity at multiple frequencies. SPIDER's first longduration balloon (LDB) flight in January 2015 deployed a total of 2400 antenna-coupled Transition Edge Sensors (TESs) at 90 GHz and 150 GHz. In this work we review the design and in-flight performance of the SPIDER instrument, with a particular focus on the measured performance of the detectors and instrument in a space-like loading and radiation environment. SPIDER's second flight in December 2018 will incorporate payload upgrades and new receivers to map the sky at 285 GHz, providing valuable information for cleaning polarized dust emission from CMB maps.

  16. Load sensor

    OpenAIRE

    Van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder forming 30-60% by volume of the composite, and wherein the PZT powder forms 40-50% by volume of the composite.

  17. Optischer Sensor

    OpenAIRE

    Brandenburg, A.; Fischer, A.

    1995-01-01

    An optical sensor (1) comprising an integrated optical arrangement has a waveguide (4) and at least one defraction grating (5) arranged in this waveguide. Light can launched into the waveguide via the defraction grating. In the reflection area of defraction grating, part of the light is dispersed through the waveguide at the beam angle for which the launch conditions and thus the defraction in the waveguide are fulfilled, so that, at this angle, a dark line (14) occurs whose position is evalu...

  18. Gas sensor

    International Nuclear Information System (INIS)

    Dorogan, V.; Korotchenkov, Gh.; Vieru, T.; Prodan, I.

    2003-01-01

    The invention relates to the gas sensors on base of metal-oxide films (SnO, InO), which may be used for enviromental control, in the fireextinguishing systema etc. The gas includes an insulating substrate, an active layer, a resistive layer with ohmic contacts. The resistive layer has two or more regions with dofferent resistances , and on the active layer are two or more pairs of ohmic contacts

  19. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.

    Science.gov (United States)

    Ryou, Junga; Park, Jinwoo; Kim, Gunn; Hong, Suklyun

    2017-06-21

    Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the Γ point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs.

  20. Power deposition on misaligned edges in COMPASS

    Directory of Open Access Journals (Sweden)

    R. Dejarnac

    2017-08-01

    Full Text Available If the decision is made not to apply a toroidal chamfer to tungsten monoblocks at ITER divertor vertical targets, exposed leading edges will arise as a result of assembly tolerances between adjacent plasma-facing components. Then, the advantage of glancing magnetic field angles for spreading plasma heat flux on top surfaces is lost at the misaligned edges with an interaction occurring at near normal incidence, which can drive melting for the expected inter-ELM heat fluxes. A dedicated experiment has been performed on the COMPASS tokamak to thoroughly study power deposition on misaligned edges using inner-wall limited discharges on a special graphite tile presenting gaps and leading edges directly viewed by a high resolution infra-red camera. The parallel power flux deducted from the unperturbed measurement far from the gap is fully consistent with the observed temperature increase at the leading edge, respecting the power balance. All the power flowing into the gap is deposited at the leading edge and no mitigation factor is required to explain the thermal response. Particle-in-cell simulations show that the ion Larmor smoothing effect is weak and that the power deposition on misaligned edges is well described by the optical approximation because of an electron dominated regime associated with non-ambipolar parallel current flow.

  1. AliEn - EDG Interoperability in ALICE

    CERN Document Server

    Bagnasco, S; Buncic, P; Carminati, F; Cerello, P G; Saiz, P

    2003-01-01

    AliEn (ALICE Environment) is a GRID-like system for large scale job submission and distributed data management developed and used in the context of ALICE, the CERN LHC heavy-ion experiment. With the aim of exploiting upcoming Grid resources to run AliEn-managed jobs and store the produced data, the problem of AliEn-EDG interoperability was addressed and an in-terface was designed. One or more EDG (European Data Grid) User Interface machines run the AliEn software suite (Cluster Monitor, Storage Element and Computing Element), and act as interface nodes between the systems. An EDG Resource Broker is seen by the AliEn server as a single Computing Element, while the EDG storage is seen by AliEn as a single, large Storage Element; files produced in EDG sites are registered in both the EDG Replica Catalogue and in the AliEn Data Catalogue, thus ensuring accessibility from both worlds. In fact, both registrations are required: the AliEn one is used for the data management, the EDG one to guarantee the integrity and...

  2. A Survey on Data Storage and Information Discovery in the WSANs-Based Edge Computing Systems.

    Science.gov (United States)

    Ma, Xingpo; Liang, Junbin; Liu, Renping; Ni, Wei; Li, Yin; Li, Ran; Ma, Wenpeng; Qi, Chuanda

    2018-02-10

    In the post-Cloud era, the proliferation of Internet of Things (IoT) has pushed the horizon of Edge computing, which is a new computing paradigm with data are processed at the edge of the network. As the important systems of Edge computing, wireless sensor and actuator networks (WSANs) play an important role in collecting and processing the sensing data from the surrounding environment as well as taking actions on the events happening in the environment. In WSANs, in-network data storage and information discovery schemes with high energy efficiency, high load balance and low latency are needed because of the limited resources of the sensor nodes and the real-time requirement of some specific applications, such as putting out a big fire in a forest. In this article, the existing schemes of WSANs on data storage and information discovery are surveyed with detailed analysis on their advancements and shortcomings, and possible solutions are proposed on how to achieve high efficiency, good load balance, and perfect real-time performances at the same time, hoping that it can provide a good reference for the future research of the WSANs-based Edge computing systems.

  3. A Survey on Data Storage and Information Discovery in the WSANs-Based Edge Computing Systems

    Science.gov (United States)

    Liang, Junbin; Liu, Renping; Ni, Wei; Li, Yin; Li, Ran; Ma, Wenpeng; Qi, Chuanda

    2018-01-01

    In the post-Cloud era, the proliferation of Internet of Things (IoT) has pushed the horizon of Edge computing, which is a new computing paradigm with data processed at the edge of the network. As the important systems of Edge computing, wireless sensor and actuator networks (WSANs) play an important role in collecting and processing the sensing data from the surrounding environment as well as taking actions on the events happening in the environment. In WSANs, in-network data storage and information discovery schemes with high energy efficiency, high load balance and low latency are needed because of the limited resources of the sensor nodes and the real-time requirement of some specific applications, such as putting out a big fire in a forest. In this article, the existing schemes of WSANs on data storage and information discovery are surveyed with detailed analysis on their advancements and shortcomings, and possible solutions are proposed on how to achieve high efficiency, good load balance, and perfect real-time performances at the same time, hoping that it can provide a good reference for the future research of the WSANs-based Edge computing systems. PMID:29439442

  4. A Survey on Data Storage and Information Discovery in the WSANs-Based Edge Computing Systems

    Directory of Open Access Journals (Sweden)

    Xingpo Ma

    2018-02-01

    Full Text Available In the post-Cloud era, the proliferation of Internet of Things (IoT has pushed the horizon of Edge computing, which is a new computing paradigm with data processed at the edge of the network. As the important systems of Edge computing, wireless sensor and actuator networks (WSANs play an important role in collecting and processing the sensing data from the surrounding environment as well as taking actions on the events happening in the environment. In WSANs, in-network data storage and information discovery schemes with high energy efficiency, high load balance and low latency are needed because of the limited resources of the sensor nodes and the real-time requirement of some specific applications, such as putting out a big fire in a forest. In this article, the existing schemes of WSANs on data storage and information discovery are surveyed with detailed analysis on their advancements and shortcomings, and possible solutions are proposed on how to achieve high efficiency, good load balance, and perfect real-time performances at the same time, hoping that it can provide a good reference for the future research of the WSANs-based Edge computing systems.

  5. Graphene-edge dielectrophoretic tweezers for trapping of biomolecules.

    Science.gov (United States)

    Barik, Avijit; Zhang, Yao; Grassi, Roberto; Nadappuram, Binoy Paulose; Edel, Joshua B; Low, Tony; Koester, Steven J; Oh, Sang-Hyun

    2017-11-30

    The many unique properties of graphene, such as the tunable optical, electrical, and plasmonic response make it ideally suited for applications such as biosensing. As with other surface-based biosensors, however, the performance is limited by the diffusive transport of target molecules to the surface. Here we show that atomically sharp edges of monolayer graphene can generate singular electrical field gradients for trapping biomolecules via dielectrophoresis. Graphene-edge dielectrophoresis pushes the physical limit of gradient-force-based trapping by creating atomically sharp tweezers. We have fabricated locally backgated devices with an 8-nm-thick HfO 2 dielectric layer and chemical-vapor-deposited graphene to generate 10× higher gradient forces as compared to metal electrodes. We further demonstrate near-100% position-controlled particle trapping at voltages as low as 0.45 V with nanodiamonds, nanobeads, and DNA from bulk solution within seconds. This trapping scheme can be seamlessly integrated with sensors utilizing graphene as well as other two-dimensional materials.

  6. Edge-Disjoint Fibonacci Trees in Hypercube

    Directory of Open Access Journals (Sweden)

    Indhumathi Raman

    2014-01-01

    Full Text Available The Fibonacci tree is a rooted binary tree whose number of vertices admit a recursive definition similar to the Fibonacci numbers. In this paper, we prove that a hypercube of dimension h admits two edge-disjoint Fibonacci trees of height h, two edge-disjoint Fibonacci trees of height h-2, two edge-disjoint Fibonacci trees of height h-4 and so on, as subgraphs. The result shows that an algorithm with Fibonacci trees as underlying data structure can be implemented concurrently on a hypercube network with no communication latency.

  7. Natural and artificial spectral edges in exoplanets

    Science.gov (United States)

    Lingam, Manasvi; Loeb, Abraham

    2017-09-01

    Technological civilizations may rely upon large-scale photovoltaic arrays to harness energy from their host star. Photovoltaic materials, such as silicon, possess distinctive spectral features, including an 'artificial edge' that is characteristically shifted in wavelength shortwards of the 'red edge' of vegetation. Future observations of reflected light from exoplanets would be able to detect both natural and artificial edges photometrically, if a significant fraction of the planet's surface is covered by vegetation or photovoltaic arrays, respectively. The stellar energy thus tapped can be utilized for terraforming activities by transferring heat and light from the day side to the night side on tidally locked exoplanets, thereby producing detectable artefacts.

  8. Adobe Edge Animate CC for dummies

    CERN Document Server

    Rohde, Michael

    2013-01-01

    The easy way to build HTML5 mobile and web apps using Adobe's new Edge Animate CC Edge Animate CC is an approachable WYSIWYG alternative for leveraging the power of languages like HTML5, CSS3, and JavaScript to design and develop for the web and mobile devices, even if you have no programming experience. Written by Michael Rohde, the book calls on this seasoned web developer's wealth of experience using Edge Animate CC, and a companion website includes all code from the book to help you apply what you learn as you go. Features an easy-to-use interface, with a propert

  9. Edge-Matching Problems with Rotations

    DEFF Research Database (Denmark)

    Ebbesen, Martin; Fischer, Paul; Witt, Carsten

    2011-01-01

    Edge-matching problems, also called puzzles, are abstractions of placement problems with neighborhood conditions. Pieces with colored edges have to be placed on a board such that adjacent edges have the same color. The problem has gained interest recently with the (now terminated) Eternity II...... puzzle, and new complexity results. In this paper we consider a number of settings which differ in size of the puzzles and the manipulations allowed on the pieces. We investigate the effect of allowing rotations of the pieces on the complexity of the problem, an aspect that is only marginally treated so...

  10. Edge enhancement improves disruptive camouflage by emphasising false edges and creating pictorial relief.

    Science.gov (United States)

    Egan, John; Sharman, Rebecca J; Scott-Brown, Kenneth C; Lovell, Paul George

    2016-12-06

    Disruptive colouration is a visual camouflage composed of false edges and boundaries. Many disruptively camouflaged animals feature enhanced edges; light patches are surrounded by a lighter outline and/or a dark patches are surrounded by a darker outline. This camouflage is particularly common in amphibians, reptiles and lepidopterans. We explored the role that this pattern has in creating effective camouflage. In a visual search task utilising an ultra-large display area mimicking search tasks that might be found in nature, edge enhanced disruptive camouflage increases crypsis, even on substrates that do not provide an obvious visual match. Specifically, edge enhanced camouflage is effective on backgrounds both with and without shadows; i.e. this is not solely due to background matching of the dark edge enhancement element with the shadows. Furthermore, when the dark component of the edge enhancement is omitted the camouflage still provided better crypsis than control patterns without edge enhancement. This kind of edge enhancement improved camouflage on all background types. Lastly, we show that edge enhancement can create a perception of multiple surfaces. We conclude that edge enhancement increases the effectiveness of disruptive camouflage through mechanisms that may include the improved disruption of the object outline by implying pictorial relief.

  11. Intrusion detection sensors

    International Nuclear Information System (INIS)

    Williams, J.D.

    1978-07-01

    Intrusion detection sensors are an integral part of most physical security systems. Under the sponsorship of the U.S. Department of Energy, Office of Safeguards and Security, Sandia Laboratories has conducted a survey of available intrusion detection sensors and has tested a number of different sensors. An overview of these sensors is provided. This overview includes (1) the operating principles of each type of sensor, (2) unique sensor characteristics, (3) desired sensor improvements which must be considered in planning an intrusion detection system, and (4) the site characteristics which affect the performance of both exterior and interior sensors. Techniques which have been developed to evaluate various intrusion detection sensors are also discussed

  12. Flow distortion at a dense forest edge

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Bingöl, Ferhat; Mann, Jakob

    2014-01-01

    The flow near tall forest edges is complex, yet poorly described. A field experiment using two meteorological masts equipped with sonic anemometers and a horizontally staring lidar was performed upwind and downwind of the interface between an open flat farmland and a tall (hc = 24 m) beech forest......, relative to the measurements upwind of the edge. The lidar data taken at several positions between the masts at 1.25hc show that the minimum wind speed occurred just upwind of the edge. At the 1.25hc level, at the forest mast, the momentum flux (\\documentclass...... qualitatively be explained with the concept of eddy‐blocking by the canopy top, which could also explain the observed increase in lateral variance and the decrease in the vertical variance. Despite the short distance to the edge of approximately 1.5hc, the beginning of a new internal boundary layer was visible...

  13. Floquet edge states in germanene nanoribbons

    KAUST Repository

    Tahir, Muhammad; Zhang, Qingyun; Schwingenschlö gl, Udo

    2016-01-01

    We theoretically demonstrate versatile electronic properties of germanene monolayers under circularly, linearly, and elliptically polarized light. We show for the high frequency regime that the edge states can be controlled by tuning the amplitude

  14. Edge energies and shapes of nanoprecipitates.

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, John C.

    2006-01-01

    In this report we present a model to explain the size-dependent shapes of lead nano-precipitates in aluminum. Size-dependent shape transitions, frequently observed at nanolength scales, are commonly attributed to edge energy effects. This report resolves an ambiguity in the definition and calculation of edge energies and presents an atomistic calculation of edge energies for free clusters. We also present a theory for size-dependent shapes of Pb nanoprecipitates in Al, introducing the concept of ''magic-shapes'' defined as precipitate shapes having near zero elastic strains when inserted into similarly shaped voids in the Al matrix. An algorithm for constructing a complete set of magic-shapes is presented. The experimental observations are explained by elastic strain energies and interfacial energies; edge energies play a negligible role. We replicate the experimental observations by selecting precipitates having magic-shapes and interfacial energies less than a cutoff value.

  15. Thermal stability of the tokamak plasma edge

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1997-01-01

    The general linear, fluid, thermal instability theory for the plasma edge has been extended. An analysis of a two-dimensional fluid model of the plasma edge has identified the importance of many previously unappreciated phenomena associated with parallel and gyroviscous forces in the presence of large radial gradients, with large radial or parallel flows, with the temperature dependence of transport coefficients, and with the coupling of temperature, flow and density perturbations. The radiative condensation effect is generalized to include a further destabilizing condensation effect associated with radial heat conduction. Representative plasma edge neutral and impurity densities are found to be capable of driving thermal instabilities in the edge transport barrier and radiative mantle, respectively. (author)

  16. Folded membrane dialyzer with mechanically sealed edges

    Energy Technology Data Exchange (ETDEWEB)

    Markley, F.W.

    A semipermeable membrane is folded in accordion fashion to form a stack of pleats and the edges are sealed so as to isolate the opposite surfaces of the membrane. The stack is contained within a case that provides ports for flow of blood in contact with one surface of the membrane through channels formed by the pleats and also provides ports for flow of a dialysate through channels formed by the pleats in contact with the other surface of the membrane. The serpentine side edges of the membrane are sealed by a solidified plastic material, whereas effective mechanical means are provided to seal the end edges of the folded membrane. The mechanical means include a clamping strip which biases case sealing flanges into a sealed relationship with end portions of the membrane near the end edges, which portions extend from the stack and between the sealing flanges.

  17. Cover Art: River's Edge: Downward, Outward, Upward

    Directory of Open Access Journals (Sweden)

    Jonee Kulman Brigham

    2017-10-01

    Full Text Available Artist's Statement for the cover art of IJPS volume 4, issue 3: River's Edge: Downward, Outward, Upward, 2015. Mixed Media: photograph, inkjet printed on presentation matte of colored pencil over photograph.

  18. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  19. Edge and core dynamics in harness

    International Nuclear Information System (INIS)

    Ball, R.

    2007-01-01

    Resistive kink oscillations in tokamak plasmas are usually treated as core localized events, yet there there are several mechanisms by which they may interact with the edge dynamics. This suggests that we may regulate edge oscillatory behaviour, or ELMs, by harnessing the natural or contrived sawtooth period and amplitude. In this work I investigate core-edge oscillatory entrainment through direct propagation of heat pulses, inductive coupling, and global higher order resonance effects. In the core of auxiliary heated tokamak plasmas the ineluctable rhythm of slow buildup and rapid conversion of potential energy governs electron and heat radial transport. The growth phase of the sawtooth is accompanied by significant reconnection, then during the collapse the temperature and density in the core fall dramatically. There is evidence from experiments in reversed field pinch devices that ensuing energy fluxes can affect flow shear and confinement at the edge. The basis for this study is the dynamical (BDS) model for edge plasma behavior that was derived from electrostatic resistive MHD equations. The BDS model reflects the major qualitative features of edge dynamics that have been observed, such as L-H transitions and associated ELMs, hysteresis, and spontaneous reversal of poloidal shear flow. Under poorly dissipative conditions the transient behavior of the model can exhibit period-doubling, blue-sky, homoclinic, and other exotic bifurcations. Thus we might ask questions such as: Is it possible to mode-lock the edge dynamics to the core sawteeth? Can we induce, or prevent, a change in direction of shear flow? What about MHD effects? Is core-edge communication one way or is there some feedback? In the simplest prototype for coupled core-edge dynamics I model the sawtooth crash as a periodic power input to the edge potential energy reservoir. This is effected by coupling the BDS model to the dynamical system u = u(1 - u 2 - x 2 ) - ω s x, x = x(1-u 2 -x 2 ) + ω s u

  20. Numerical simulation of edge plasma in tokamak

    International Nuclear Information System (INIS)

    Chen Yiping; Qiu Lijian

    1996-02-01

    The transport process and transport property of plasma in edge layer of Tokamak are simulated by solving numerically two-dimensional and multi-fluid plasma transport equations using suitable simulation code. The simulation results can show plasma parameter distribution characteristics in the area of edge layer, especially the characteristics near the first wall and divertor target plate. The simulation results play an important role in the design of divertor and first wall of Tokamak. (2 figs)