WorldWideScience

Sample records for edge fluctuations comparative

  1. Characterization of edge plasma fluctuations in ASDEX

    International Nuclear Information System (INIS)

    Qin, J.; Carlson, A.; Endler, M.; Giannone, L.; Niedermeyer, H.; Rudyj, A.; Theimer, G.

    1991-04-01

    Nonlinear dynamical characterizations of the edge plasma fluctuations measured by both H α -light diagnostic and Langmuir probes in ASDEX are presented. The edge plasma fluctuations are stochastic rather than chaotic, they have a higher-dimensional structure in phase space. In time, the edge turbulence is found to have memory properties, the time required to lose the memory is different in the different cases. (orig.)

  2. Magnetic fluctuations associated with density fluctuations in the tokamak edge

    International Nuclear Information System (INIS)

    Kim, Y.J.; Gentle, K.W.; Ritz, C.P.; Rhodes, T.L.; Bengtson, R.D.

    1989-01-01

    Electrostatic density and potential fluctuations occurring with high amplitude near the edge of a tokamak are correlated with components of the fluctuating magnetic field measured outside the limiter radius. It has been established that this turbulence is associated with fluctuations in current as well as density and potential. The correlation extends for substantial toroidal distances, but only if the probes are displaced approximately along field lines, consistent with the short coherence lengths poloidally but long coherence lengths parallel to the field which are characteristic for this turbulence. Furthermore, the correlation can be found only with density fluctuations measured inside the limiter radius; density fluctuations behind the limiter have no detectable magnetic concomitant for the toroidally spaced probes used here. (author). Letter-to-the-editor. 12 refs, 3 figs

  3. Measurement of fluctuations in the plasma edge (Particularly on ATF)

    International Nuclear Information System (INIS)

    Hidalgo, C.

    1992-01-01

    The observed energy losses in tokamaks and stellarator are larger than those predicted by the neoclassical theory (i.e. the transport is anomalous). Making progress in understanding the basic mechanisms causing the experimentally observed anomalous transport is one of the key issues currently confronting fusion research. Turbulence studies performed in the edge region of many devices has shown that fluctuations are large enough to explain anomalous transport in the edge plasma region. The study of edge fluctuations provides a good chance to identify the instabilities and the energy source of the turbulence. By comparing the structure of the edge turbulence in devices with different sizes and magnetic structures (tokamaks and stellarators) additional experimental criteria to test theoretical models may be provided. The characteristics of the edge turbulence are described, with emphasis in the structure of the fluctuations in the Advanced Toroidal Facility (ATF). (Author)

  4. Edge plasma fluctuations measurements in fusion experiments

    International Nuclear Information System (INIS)

    Schrittwieser, R.; Ionitha, C.; Balan, P.C.; Varandas, C.A.F.; Figueiredo, H.F.C.; Silva, C.; Stoeckel, J.; Adamek, J.; Hron, M.; Tichy, M.; Hidalgo, C.; Pedrosa, M.A.; Calderon, E.; Martines, E.; Van Oost, G.; Rasmussen, J.J.; Naulin, V.

    2005-01-01

    We report on investigations on electrostatic fluctuations in the edge plasma region which have been carried out during the last few years at several European fusion experiments. Various methods and probe arrangements have been used to determine fluctuations of the plasma potential, the electric field and the electron temperature. Investigations were under-taken in ISTTOK (Instituto Superior Tecnico TOKamak), Lisbon, Portugal, in CASTOR (Czech Academy of Science TORus), Prague, Czech Republic, and the TJ-II Flexible Heliac at CIEMAT in Madrid, Spain. (author)

  5. Unidirectional edge modes launched by surface fluctuation in magnetic metamaterials

    Science.gov (United States)

    Chen, Huajin; Luo, Youzhu; Liang, Chenghua; Li, Zhenglin; Liu, Shiyang; Lin, Zhifang

    2018-03-01

    We demonstrate theoretically that the surface fluctuation can be used to launch the unidirectional electromagnetic edge mode for a Gaussian beam incident normal to the magnetic metamaterials (MMs) composed of an array of ferrite rods with the uppermost layer introduced position or size fluctuation in the coupling region. Such an edge mode is solely allowed to propagate in one direction due to the time-reversal symmetry breaking in MMs under the exertion of an external magnetic field, and it is substantially enhanced by the magnetic surface plasmon resonance. The nonreciprocal excitation of the edge states can also be understood by examining the scattering amplitudes of different partial waves, which indicate that the 1st order of the angular momentum channel plays a crucial role in realizing the nonreciprocity. The present research might be significant for the implementation of unidirectional absorption and the reexamination of bound states in the continuum in the context of MMs. In addition, the unique optical property can be exploited to design electromagnetic waveguide devices, such as one-way waveguide and wave bender, which are strongly robust against the obstacles placed in the channel of designed devices, facilitating to realize optical integrated circuits.

  6. Profiles and fluctuations in edge and SOL turbulence

    DEFF Research Database (Denmark)

    Naulin, Volker; Xu, G.; Vianello, N.

    2012-01-01

    The time and space averaged profiles of temperature, particle density, and momentum are in the scrape off layer determined by the intermittent transport generated at the edge shear layer. The distinction between profiles and fluctuations becomes arbitrary for situations where the transport...... propagating structures and parallel transport sets up the observed profiles and how intermittency influences edge conditions. The filamentary blob structures also transport and generate currents in the SOL, which can be investigated by means of local magnetic diagnostics. Finally, the ratio of ion to electron...... temperature in the SOL is an important measure for the influence of finite larmor radius effects on the propagation properties of blobs. Numerical investigations indicate that these effects can lead to an increased self confinement and radial reach of these structures. © 2012 WILEY-VCH Verlag GmbH & Co. KGa...

  7. Airfoil Trailing Edge Noise Generation and Its Surface Pressure Fluctuation

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2015-01-01

    where the time history pressure data are recorded by the surface pressure microphones. After the flow-field is stabilized, the generated noise from the airfoil Trailing Edge (TE) is predicted using the acoustic analogy solver, where the results from LES are the input. It is found that there is a strong......In the present work, Large Eddy Simulation (LES) of turbulent flows over a NACA 0015 airfoil is performed. The purpose of such numerical study is to relate the aerodynamic surface pressure with the noise generation. The results from LES are validated against detailed surface pressure measurements...... relation between TE noise and the aerodynamic pressure. The results of power spectrum density show that the fluctuation of aerodynamic pressure is responsible for noise generation....

  8. Edge transport and fluctuation induced turbulence characteristics in early SST-1 plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kakati, B., E-mail: bharat.kakati@ipr.res.in; Pradhan, S., E-mail: pradhan@ipr.res.in; Dhongde, J.; Semwal, P.; Yohan, K.; Banaudha, M.

    2017-02-15

    Highlights: • Anomalous particle transport during the high MHD activity at SST-1. • Electrostatic turbulence is modulated by MHD activity at SST-1 tokamak. • Edge floating potential fluctuations shows poloidal long-range cross correlation. - Abstract: Plasma edge transport characteristics are known to be heavily influenced by the edge fluctuation induced turbulences. These characteristics play a critical role towards the confinement of plasma column in a Tokamak. The edge magnetic fluctuations and its subsequent effect on electrostatic fluctuations have been experimentally investigated for the first time at the edge of the SST-1 plasma column. This paper reports the correlations that exist and is experimentally been observed between the edge densities and floating potential fluctuations with the magnetic fluctuations. The edge density and floating potential fluctuations have been measured with the help of poloidally separated Langmuir probes, whereas the magnetic fluctuations have been measured with poloidally spaced Mirnov coils. Increase in magnetic fluctuations associated with enhanced MHD activities has been found to increase the floating potential and ion saturation current. These observations indicate electrostatic turbulence getting influenced with the MHD activities and reveal the edge anomalous particle transport during SST-1 tokamak discharge. Large-scale coherent structures have been observed in the floating potential fluctuations, indicating long-distance cross correlation in the poloidal directions. From bispectral analysis, a strong nonlinear coupling among the floating potential fluctuations is observed in the low-frequency range about 0–15 kHz.

  9. Structure of Edge Plasma Fluctuations: Monofractal or Multifractal

    Science.gov (United States)

    Carreras, B. A.; Lynch, V. E.; Newman, D.; Hidalgo, C.; Balbin, R.; Sanchez, E.; van Milligen, B.; Garcia-Cortes, I.; Pedrosa, M. A.; Bleuel, J.; Endler, M.

    1999-11-01

    Plasma edge fluctuations measured in several types of confinement devices presented a self-similar character with self-similar exponents varying little from one device to another.(B. A. Carreras, B. v. Milligen, M. A. Pedrosa et al., Phys. Plasmas 5), 3632-3643 (1998) In doing this determination, a single measure was used. Therefore, it was not possible to ascertain if their structure is monofractal or multifractal. Here we are exploring this distinction using ion saturation measurements from W7-AS and TJ-I. We have found that the moments of the time derivative of the fluctuation measurements offer the best measure in this study. The data indicates a multifractal nature at smallest scales with the intermittency is found at the point where the flow is zero. The multifractal character changes from inside the plasma to the scrape-off layer. They type of f (α ) functions have a strong similarity to the ones obtained in the analysis of fluid turbulence.(C. Meneveau and K. R. Sreenivasan, J. Fluid Mech. 224), 429-484 (1991

  10. Edge fluctuations in the MST [Madison Symmetric Torus] reversed field pinch

    International Nuclear Information System (INIS)

    Almagri, A.; Assadi, S.; Beckstead, J.; Chartas, G.; Crocker, N.; Den Hartog, D.; Dexter, R.; Hokin, S.; Holly, D.; Nilles, E.; Prager, S.; Rempel, T.; Sarff, J.; Scime, E.; Shen, W.; Spragins, C.; Sprott, J.; Starr, G.; Stoneking, M.; Watts, C.

    1990-10-01

    Edge magnetic and electrostatic fluctuations are measured in the Madison Symmetric Torus (MST) reversed field pinch. At low frequency ( e > p e /p e where φ and p e are the fluctuating potential and pressure, respectively). From measurements of the fluctuating density, temperature, and potential we infer that the electrostatic fluctuation induced transport of particles and energy can be substantial. 13 refs., 11 figs

  11. Edge transport and mode structure of a QCM-like fluctuation driven by the Shoelace antenna

    Science.gov (United States)

    Golfinopoulos, T.; LaBombard, B.; Brunner, D.; Terry, J. L.; Baek, S. G.; Ennever, P.; Edlund, E.; Han, W.; Burke, W. M.; Wolfe, S. M.; Irby, J. H.; Hughes, J. W.; Fitzgerald, E. W.; Granetz, R. S.; Greenwald, M. J.; Leccacorvi, R.; Marmar, E. S.; Pierson, S. Z.; Porkolab, M.; Vieira, R. F.; Wukitch, S. J.; The Alcator C-Mod Team

    2018-05-01

    The Shoelace antenna was built to drive edge fluctuations in the Alcator C-Mod tokamak, matching the wavenumber (k\\perp≈1.5 cm‑1) and frequency (30≲ f ≲ 200 kHz) of the quasi-coherent mode (QCM), which is responsible for regulating transport across the plasma boundary in the steady-state, ELM-free Enhanced D α (EDA) H-mode. Initial experiments in 2012 demonstrated that the antenna drove a resonant response in the edge plasma in steady-state EDA and transient, non-ELMy H-modes, but transport measurements were unavailable. In 2016, the Shoelace antenna was relocated to enable direct measurements of driven transport by a reciprocating Mirror Langmuir Probe, while also making available gas puff imaging and reflectometer data to provide additional radial localization of the driven fluctuation. This new data suggests a  ∼4 mm-wide mode layer centered on or just outside the separatrix. Fluctuations coherent with the antenna produced a radial electron flux with {Γ_e}/{n_e}∼4 m s‑1 in EDA H-mode, smaller than but comparable to the QCM level. But in transient ELM-free H-mode, {Γ_e}/{n_e} was an order of magnitude smaller, and driven fluctuations reduced by a factor of ≳ 3. The driven mode is quantitatively similar to the intrinsic QCM across measured spectral quantities, except that it is more coherent and weaker. This work informs the prospect of achieving control of edge transport by direct coupling to edge modes, as well as the use of such active coupling for diagnostic purposes.

  12. Empirical Similarity of Frequency Spectra of the Edge-Plasma Fluctuations in Toroidal Magnetic-Confinement Systems

    Science.gov (United States)

    Pedrosa, M. A.; Hidalgo, C.; Carreras, B. A.; Balbín, R.; García-Cortés, I.; Newman, D.; van Milligen, B.; Sánchez, E.; Bleuel, J.; Endler, M.; Davies, S.; Matthews, G. F.

    1999-05-01

    Frequency spectra of fluctuations of the ion saturation current, floating potential, and turbulent transport measured in the plasma edge of different fusion devices (tokamaks and stellarators) have been compared. All of the spectra show the same behavior over the whole frequency range investigated, which supports universality of plasma turbulence or turbulent transport. The results obtained are an indication of edge-plasma turbulence evolving into a critical state, independent of the size and plasma characteristics of the device.

  13. Effects of density gradients and fluctuations at the plasma edge on ECEI measurements at ASDEX Upgrade

    Science.gov (United States)

    Vanovac, B.; Wolfrum, E.; Denk, S. S.; Mink, F.; Laggner, F. M.; Birkenmeier, G.; Willensdorfer, M.; Viezzer, E.; Hoelzl, M.; Freethy, S. J.; Dunne, M. G.; Lessig, A.; Luhmann, N. C., Jr.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2018-04-01

    Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (T e ) and its fluctuations (δT e ). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects, the scrape-off layer region is not accessible to the ECEI measurements in steady state conditions and that the signal is dominated by the shine-through emission. Transient effects, such as filaments, can change the radiation transport locally, but cannot be distinguished from the shine-through. Local density measurements are essential for the correct interpretation of the electron cyclotron emission, since the density fluctuations influence the temperature measurements at the plasma edge. As an example, a low frequency 8 kHz mode, which causes 10%-15% fluctuations in the signal level of the ECEI, is analysed. The same mode has been measured with the lithium beam emission spectroscopy density diagnostic, and is very well correlated in time with high frequency magnetic fluctuations. With radiation transport modelling of the electron cyclotron radiation in the ECEI geometry, it is shown that the density contributes significantly to the radiation temperature (T rad) and the experimental observations have shown the amplitude modulation in both density and temperature measurements. The poloidal velocity of the low frequency mode measured by the ECEI is 3 km s-1. The calculated velocity of the high frequency mode measured with the magnetic pick-up coils is about 25 km s-1. Velocities are compared with the E × B background flow velocity and possible explanations for the origin of the low frequency mode are discussed.

  14. Wild Band Edges: The Role of Bandgap Grading and Band-Edge Fluctuations in High-Efficiency Chalcogenide Devices: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Repins, Ingrid; Mansfield, Lorelle; Kanevce, Ana; Jensen, Soren A.; Kuciauskas, Darius; Glynn, Stephen; Barnes, Teresa; Metzger, Wyatt; Burst, James; Jiang, Chun-Sheng; Dippo, Patricia; Harvey, Steve; Teeter, Glenn; Perkins, Craig; Egaas, Brian; Zakutayev, Andriy; Alsmeier, J.-H.; Lussky, T.; Korte, L.; Wilks, R. G.; Bar, M.; Yan, Y.; Lany, Stephan; Zawadzki, Pawel; Park, Ji-Sang; Wei, Suhuai

    2016-06-16

    Band-edge effects -- including grading, electrostatic fluctuations, bandgap fluctuations, and band tails -- affect chalcogenide device efficiency. These effects now require more careful consideration as efficiencies increase beyond 20%. Several aspects of the relationships between band-edge phenomena and device performance for NREL absorbers are examined. For Cu(In,Ga)Se2 devices, recent increases in diffusion length imply changes to optimum bandgap profile. The origin, impact, and modification of electrostatic and bandgap fluctuations are also discussed. The application of the same principles to devices based on CdTe, kesterites, and emerging absorbers (Cu2SnS3, CuSbS2), considering differences in materials properties and defect formation energies, is examined.

  15. The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks

    DEFF Research Database (Denmark)

    Bertelli, N.; Balakin, A.A.; Westerhof, E.

    2010-01-01

    A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation...... are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi......-optical calculations are shown by using edge density fluctuations as calculated by two-dimensional interchange turbulence simulations and validated with the experimental data [O. E. Garcia et al, Nucl. Fusion 47 (2007) 667]...

  16. Controlling fluctuations and transport in the reversed field pinch with edge current drive and plasma biasing

    International Nuclear Information System (INIS)

    Craig, D.J.G.

    1998-09-01

    Two techniques are employed in the Madison Symmetric Torus (MST) to test and control different aspects of fluctuation induced transport in the Reversed Field Pinch (RFP). Auxiliary edge currents are driven along the magnetic field to modify magnetic fluctuations, and the particle and energy transport associated with them. In addition, strong edge flows are produced by plasma biasing. Their effect on electrostatic fluctuations and the associated particle losses is studied. Both techniques are accomplished using miniature insertable plasma sources that are biased negatively to inject electrons. This type of emissive electrode is shown to reliably produce intense, directional current without significant contamination by impurities. The two most important conclusions derived from these studies are that the collective modes resonant at the reversal surface play a role in global plasma confinement, and that these modes can be controlled by modifying the parallel current profile outside of the reversal surface. This confirms predictions based on magnetohydrodynamic (MHD) simulations that auxiliary current drive in the sense to flatten the parallel current profile can be successful in controlling magnetic fluctuations in the RFP. However, these studies expand the group of magnetic modes believed to cause transport in MST and suggest that current profile control efforts need to address both the core resonant magnetic modes and those resonant at the reversal surface. The core resonant modes are not significantly altered in these experiments; however, the distribution and/or amplitude of the injected current is probably not optimal for affecting these modes. Plasma biasing generates strong edge flows with shear and particle confinement likely improves in these discharges. These experiments resemble biased H modes in other magnetic configurations in many ways. The similarities are likely due to the common role of electrostatic fluctuations in edge transport

  17. Density fluctuation measurement at edge and internal transport barriers in JT-60U

    International Nuclear Information System (INIS)

    Oyama, N; Bruskin, L G; Takenaga, H; Shinohara, K; Isayama, A; Ide, S; Sakamoto, Y; Suzuki, T; Fujita, T; Kamada, Y; Miura, Y

    2004-01-01

    A new analytical method using a combination of the O-mode reflectometer and a time-dependent two-dimensional full-wave simulation code has been developed for the quantitative evaluation of density fluctuations in JT-60U. Two statistical parameters of the reflectometer signals, fluctuation index (F) and elongation factor (χ), are introduced as measures of the fluctuation amplitude (γ) and the width of the poloidal wave number spectrum (k θ0 ). This method is applied to the edge transport barrier (ETB) and internal transport barrier (ITB). At the transition to the ELM free H-mode phase, analysis suggests that the density fluctuation level reduced from 1.9-3.2% to 0.29-0.44%, while the value of k θ0 changed from 1.6-2.0 to 0.77-0.81 cm -1 in the ETB region. On the other hand, the amplitude of the density fluctuation was evaluated as 1.0-2.0% at the ITB region, even after the formation of the box type ITB. Instead, when a pellet was injected into the plasma with a box type ITB as an external perturbation, a remarkable change in the frequency spectrum was observed. Analysis suggests a reduction in the density fluctuation level to 0.4-0.6% after the pellet injection

  18. Two-dimensional density and density fluctuation diagnostic for the edge plasma in fusion devices

    Science.gov (United States)

    Zoletnik, S.; Petravich, G.; Bencze, A.; Berta, M.; Fiedler, S.; McCormick, K.; Schweinzer, J.

    2005-07-01

    A technique is described for the two-dimensional measurement of electron density profile and fluctuations in edge regions of magnetically confined fusion plasmas. The method is based on existing lithium beam beam emission spectroscopy technique, two-dimensional resolution is achieved by electrostatically scanning the beam. If scanning is performed faster than the lifetime of the turbulent structures in the plasma, the diagnostic is capable of measuring the structure of electron density fluctuations as well. The beam strength of currently available beams makes the detection of single fluctuation events impossible, but the full two-dimensional spatial structure of correlations can still be determined. The article describes the technique and fast beam deflection tests up to 250kHz. The capabilities of such a diagnostic for fluctuation measurement are explored by simulating measurement signals. Measurement of both the two-dimensional density profile, fluctuation correlation function and poloidal flow velocity are demonstrated at the Wendelstein 7-AS stellarator. The shape of the density profile, the radial and poloidal correlation lengths and the flow velocity are in agreement with expectations and previous Langmuir probe measurement.

  19. Edge fluctuation measurements by phase contrast imaging on DIII-D

    International Nuclear Information System (INIS)

    Coda, S.; Porkolab, M.

    1994-05-01

    A novel CO 2 laser phase contrast imaging diagnostic has been developed for the DIII-D tokamak, where it is being employed to investigate density fluctuations at the outer edge of the plasma. This system generates 16-point, 1-D images of a 7.6 cm wide region in the radial direction, and is characterized by long wavelength (7.6 cm) and high frequency (100 MHz) capability, as well as excellent sensitivity (rvec n approx-gt 10 9 cm -3 ). The effects of vertical line integration have been studied in detail, both analytically and numerically with actual flux surface geometries generated by the EFITD magnetic equilibrium code. It is shown that in the present configuration the measurement is mostly sensitive to radial wave vectors. Experimental results on fluctuation suppression at the L- to H-mode transition and on the L-mode wave number spectrum are discussed briefly. Finally, future plans for extending the measurement to the core of the plasma and for investigating externally launched fast waves are presented

  20. Local adaptation at range edges: comparing elevation and latitudinal gradients.

    Science.gov (United States)

    Halbritter, A H; Billeter, R; Edwards, P J; Alexander, J M

    2015-10-01

    Local adaptation at range edges influences species' distributions and how they respond to environmental change. However, the factors that affect adaptation, including gene flow and local selection pressures, are likely to vary across different types of range edge. We performed a reciprocal transplant experiment to investigate local adaptation in populations of Plantago lanceolata and P. major from central locations in their European range and from their latitudinal and elevation range edges (in northern Scandinavia and Swiss Alps, respectively). We also characterized patterns of genetic diversity and differentiation in populations using molecular markers. Range-centre plants of P. major were adapted to conditions at the range centre, but performed similarly to range-edge plants when grown at the range edges. There was no evidence for local adaptation when comparing central and edge populations of P. lanceolata. However, plants of both species from high elevation were locally adapted when compared with plants from high latitude, although the reverse was not true. This asymmetry was associated with greater genetic diversity and less genetic differentiation over the elevation gradient than over the latitudinal gradient. Our results suggest that adaptation in some range-edge populations could increase their performance following climate change. However, responses are likely to differ along elevation and latitudinal gradients, with adaptation more likely at high-elevation. Furthermore, based upon these results, we suggest that gene flow is unlikely to constrain adaptation in range-edge populations of these species. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  1. Conditional analysis of floating potential fluctuations at the edge of the Texas Experimental Tokamak Upgrade (TEXT-U)

    International Nuclear Information System (INIS)

    Filippas, A.V.; Bengston, R.D.; Li, G.; Meier, M.; Ritz, C.P.; Powers, E.J.

    1995-01-01

    Fluctuations in floating potential in the scrape-off layer and plasma edge were analyzed using a conditional statistical analysis technique. The floating potential fluctuations had a nearly Gaussian probability density function with the largest deviation from a Gaussian at the shear layer. The conditional averaging technique followed the statistical evolution of selected conditions in the floating potential signal. The decay rate of a conditional feature in time or space showed a small systematic variation with the amplitude of condition chosen. Either long-lived coherent structures are not present in statistically significant numbers, or the fluctuations are dominated by a large number of coherent structures with a nearly Gaussian distribution of fluctuation amplitudes, or conditional analysis using the amplitude of the floating potential as a condition is not a sensitive technique for identifying coherent structures

  2. Self-similarity of fluctuation particle fluxes in the plasma edge of the stellarator L-2M

    Energy Technology Data Exchange (ETDEWEB)

    Saenko, V.V. [Ulyanovsk State University, Leo Tolstoy str., 42, Ulyanovsk (Russian Federation)

    2010-05-15

    Results are presented of statistical studies of probability density of fluctuations of plasma density, floating potential, and turbulent particle fluxes measured by a Langmuir probe in the edge plasma of the L-2M stellarator. Empirical probability densities differ from Gaussian distributions. The empirical probability density distributions have heavy tails decreasing as x{sup -{alpha}}{sup -1} and are leptokurtic. Fractional stable distributions were successfully applied to describing such distributions. It is shown that fractional stable distributions give good fit to the distri-butions of increments of fluctuation amplitudes of physical variables under study. The distribution parameters are statistically estimated from measured time sequences (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Self-similarity of fluctuation particle fluxes in the plasma edge of the stellarator L-2M

    International Nuclear Information System (INIS)

    Saenko, V.V.

    2010-01-01

    Results are presented of statistical studies of probability density of fluctuations of plasma density, floating potential, and turbulent particle fluxes measured by a Langmuir probe in the edge plasma of the L-2M stellarator. Empirical probability densities differ from Gaussian distributions. The empirical probability density distributions have heavy tails decreasing as x -α-1 and are leptokurtic. Fractional stable distributions were successfully applied to describing such distributions. It is shown that fractional stable distributions give good fit to the distri-butions of increments of fluctuation amplitudes of physical variables under study. The distribution parameters are statistically estimated from measured time sequences (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Effect of static charge fluctuations on the conduction along the edge of two-dimensional topological insulator

    Science.gov (United States)

    Vayrynen, Jukka; Goldstein, Moshe; Glazman, Leonid

    2013-03-01

    Static charge disorder may create electron puddles in the bulk of a material which nominally is in the insulating state. A single puddle - quantum dot - coupled to the helical edge of a two-dimensional topological insulator enhances the electron backscattering within the edge. The backscattering rate increases with the electron dwelling time in the dot. While remaining inelastic, the backscattering off a dot may be far more effective than the proposed earlier inelastic processes involving a local scatterer with no internal structure. We find the temperature dependence of the dot-induced correction to the universal conductance of the edge. In addition to the single-dot effect, we calculate the classical temperature-independent conductance correction caused by a weakly conducting bulk. We use our theory to assess the effect of static charge fluctuations in a heterostructure on the edge electron transport in a two-dimensional topological insulator. The work at Yale University is supported by NSF DMR Grant No. 1206612 and the Simons Foundation.

  5. Equilibration of quantum hall edge states and its conductance fluctuations in graphene p-n junctions

    Science.gov (United States)

    Kumar, Chandan; Kuiri, Manabendra; Das, Anindya

    2018-02-01

    We report an observation of conductance fluctuations (CFs) in the bipolar regime of quantum hall (QH) plateaus in graphene (p-n-p/n-p-n) devices. The CFs in the bipolar regime are shown to decrease with increasing bias and temperature. At high temperature (above 7 K) the CFs vanishes completely and the flat quantized plateaus are recovered in the bipolar regime. The values of QH plateaus are in theoretical agreement based on full equilibration of chiral channels at the p-n junction. The amplitude of CFs for different filling factors follows a trend predicted by the random matrix theory. Although, there are mismatch in the values of CFs between the experiment and theory but at higher filling factors the experimental values become closer to the theoretical prediction. The suppression of CFs and its dependence has been understood in terms of time dependent disorders present at the p-n junctions.

  6. A comparative analysis of watershed and edge based segmentation ...

    African Journals Online (AJOL)

    A database that contains both images was created in the Matlab environment. Edge-based segmentation and watershed segmentation were performed on the images. The edge based segmentation involves finding ridges, lines and contours along the images, while the watershed segmentation involves opening and ...

  7. Dynamical Scaling Implications of Ferrari, Prähofer, and Spohn's Remarkable Spatial Scaling Results for Facet-Edge Fluctuations

    Science.gov (United States)

    Einstein, T. L.; Pimpinelli, Alberto

    2014-06-01

    Spurred by theoretical predictions from Ferrari et al. (Phys Rev E 69:035102(R), 2004), we rederived and extended their result heuristically. With experimental colleagues we used STM line scans to corroborate their prediction that the fluctuations of the step bounding a facet exhibit scaling properties distinct from those of isolated steps or steps on vicinal surfaces. The correlation functions was shown to go as , decidedly different from the behavior for fluctuations of isolated steps.

  8. Measurement of magnetic turbulence structure and nonlinear mode coupling of tearing fluctuations in the Madison Symmetric Torus reversed field pinch edge

    International Nuclear Information System (INIS)

    Assadi, S.

    1994-01-01

    Linear and nonlinear magnetohydrodynamic (MHD) stability of current-driven modes are studied in the MST reversed field pinch. Measured low frequency (f < 35 kHz) magnetic fluctuations are consistent with the global resistive tearing instabilities predicted by 3-D MHD simulations. At frequencies above 35 kHz, the magnetic fluctuations were detected to be localized and externally resonant. Discrete dynamo events, ''sawtooth oscillations,'' have been observed in the experimental RFP plasmas. This phenomenon causes the plasma to become unstable to m = 1 tearing modes. The modes that may be important in different phases of these oscillations are identified. These results then assist in nonlinear studies and also help to interpret the spectral broadening of the measured data during a discrete dynamo event. Three-wave nonlinear coupling of spectral Fourier modes is measured in the MST by applying bispectral analysis to magnetic fluctuations measured at the plasma edge at 64 toroidal locations and 16 poloidal locations, permitting observation of coupling over 8 poloidal and 32 toroidal modes. Comparison to bispectra predicted by resistive MHD computation indicates reasonably good agreement. However, during the crash phase of the sawtooth oscillation the nonlinear coupling is strongly enhanced, concomitant with a broadened k-spectrum. During the sawtooth formation the plasma is undergoing a pure diffusive process. The dynamo only occurs during the sawtooth crash. High frequency activity prior to a sawtooth crash is caused by nonlinear frequency (small-scale) mode coupling. Growth rate and coupling coefficients of toroidal mode spectra are calculated by statistical modeling. Temporal evolution of edge toroidal mode spectra has been predicted by transfer function analysis. The driving sources of electrostatic fields are different than for the magnetic fields. The characteristics of tearing modes can be altered by external field errors and addition of impurities to the plasma

  9. Multiplicity Fluctuations in One- and Two-Dimensional Angular Intervals Compared with Analytic QCD Calculations

    CERN Document Server

    Abreu, P; Adye, T; Adzic, P; Ajinenko, I; Albrecht, Z; Alderweireld, T; Alekseev, G D; Alemany, R; Allmendinger, T; Allport, P P; Almehed, S; Amaldi, Ugo; Amapane, N; Amato, S; Anassontzis, E G; Andersson, P; Andreazza, A; Andringa, S; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbiellini, Guido; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Beillière, P; Belokopytov, Yu A; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Blom, H M; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Branchini, P; Brenke, T; Brenner, R A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschbeck, Brigitte; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camporesi, T; Canale, V; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chierici, R; Shlyapnikov, P; Chochula, P; Chorowicz, V; Chudoba, J; Cieslik, K; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crépé, S; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Dris, M; Duperrin, A; Durand, J D; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Ferrari, P; Ferrer, A; Ferrer-Ribas, E; Ferro, F; Fichet, S; Firestone, A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gamblin, S; Gandelman, M; García, C; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerdyukov, L N; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grimm, H J; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Hansen, J; Harris, F J; Hedberg, V; Heising, S; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hughes, G J; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Kersevan, Borut P; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B J; Kinvig, A; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kriznic, E; Krstic, P S; Krumshtein, Z; Kubinec, P; Kurowska, J; Kurvinen, K L; Lamsa, J; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Maltezos, S; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Meroni, C; Meyer, W T; Myagkov, A; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Moch, M; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Morton, G A; Müller, U; Münich, K; Mulders, M; Mulet-Marquis, C; Muresan, R; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Nassiakou, M; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nikolenko, M; Nomokonov, V P; Normand, Ainsley; Nygren, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Royon, C; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwemling, P; Schwering, B; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Siebel, M; Simard, L C; Simonetto, F; Sissakian, A N; Smadja, G; Smirnova, O G; Smith, G R; Sokolov, A; Sopczak, André; Sosnowski, R; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stanic, S; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Chikilev, O G; Tegenfeldt, F; Terranova, F; Thomas, J; Timmermans, J; Tinti, N; Tkatchev, L G; Todorova-Nová, S; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tzamarias, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Vollmer, C F; Voulgaris, G; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wolf, G; Yi, J; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G

    1999-01-01

    Multiplicity fluctuations in rings around the jet axis and in off-axis cones have been measured by the DELPHI collaboration in $e^+e^-$ annihilations into hadrons at LEP energies. The measurements are compared with analytical perturbative QCD calculations for the corresponding multiparton system, using the concept of Local Parton Hadron Duality. Some qualitative features are confirmed by the data but substantial quantitative deviations are observed.

  10. A comparative study on the edge states in phosphorene quantum dots and rings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Z.T., E-mail: jiangzhaotan@bit.edu.cn; Liang, F.X.; Zhang, X.D.

    2017-01-30

    Using the tight-binding Hamiltonian approach, we comparatively investigate the energy spectrums of triangular zigzag phosphorene quantum dots (PQDs) and rings (PQRs), as well as their potential applications. In comparison with the outer edge states in the PQD, new extra inner edge states can be produced in the PQR by its internal hole. A transition from the uncoupled to coupled edge states can be induced by decreasing the width between the outer and inner edges of the PQR. Also, the edge states in PQD/PQR are all anisotropically localized in one side, rather than three sides as in triangular graphene quantum dots (QDs) and rings (QRs). Furthermore, the PQD/PQR energy levels can be anisotropically manipulated by the external electric fields and strains, clearly demonstrating their potential applications in field effect transistors or electromechanical devices. In the meanwhile, we also consider the electron probability distributions corresponding to the different energy levels, clearly exposing the characteristics of the PQD/PQR energy levels. The comparison between the asymmetrical triangular PQDs/PQRs and the symmetrical triangular QDs/QRs in graphene should be instructive for understanding the similar triangular QDs/QRs in other two-dimensional layered materials, as well as other types of QDs/QRs of different shapes. - Highlights: • We make a comparative study on the energy levels of the phosphorene quantum dots and rings. • The energy levels can be anisotropically controlled by the electric field and the strains, different from those in graphene counterparts. • The edge states in phosphorene triangular quantum dot and rings are anisotropic. • A helpful reference for understanding phosphorene nanostructures of other shapes and designing devices.

  11. COMPARATIVE STUDY OF EDGE BASED LSB MATCHING STEGANOGRAPHY FOR COLOR IMAGES

    Directory of Open Access Journals (Sweden)

    A.J. Umbarkar

    2016-02-01

    Full Text Available Steganography is a very pivotal technique mainly used for covert transfer of information over a covert communication channel. This paper proposes a significant comparative study of the spatial LSB domain technique that focuses on sharper edges of the color as well as gray scale images for the purpose of data hiding and hides secret message first in sharper edge regions and then in smooth regions of the image. Message embedding depends on content of the image and message size. The experimental results illustrate that, for low embedding rate the method hides the message in sharp edges of cover image to get better stego image visualization quality. For high embedding rate, smooth regions and edges of the cover image are used for the purpose of data hiding. In this steganography method, color image and textured kind of image preserves better visual quality of stego image. The novelty of the comparative study is that, it helps to analyze the efficiency and performance of the method as it gives better results because it directly works on color images instead of converting to gray scale image.

  12. External excitation of a short-wavelength fluctuation in the Alcator C-Mod edge plasma and its relationship to the quasi-coherent mode

    International Nuclear Information System (INIS)

    Golfinopoulos, T.; LaBombard, B.; Parker, R. R.; Burke, W.; Davis, E.; Granetz, R.; Greenwald, M.; Irby, J.; Leccacorvi, R.; Marmar, E.; Parkin, W.; Porkolab, M.; Terry, J.; Vieira, R.; Wolfe, S.

    2014-01-01

    A novel “Shoelace” antenna has been used to inductively excite a short-wavelength edge fluctuation in a tokamak boundary layer for the first time. The principal design parameters, k ⊥ =1.5±0.1 cm −1 and 45 ⊥ ∼1.5 cm −1 , f∼50−150 kHz) in Alcator C-Mod, responsible for exhausting impurities in the steady-state, ELM-free Enhanced D α H-mode. In H-mode, whether or not there is a QCM, the antenna drives coherent, field-aligned perturbations in density, n ~ e , and field, B ~ θ , which are guided by field lines, propagate in the electron diamagnetic drift direction, and exhibit a weakly damped (γ/ω 0 ∼5%−10%) resonance near the natural QCM frequency. This result is significant, offering the possibility that externally driven modes may be used to enhance particle transport. In L-mode, the antenna drives only a non-resonant B ~ θ response. The facts that the driven mode has the same wave number and propagation direction as the QCM, and is resonant at the QCM frequency, suggest the antenna may couple to this mode, which we have shown elsewhere to be predominantly drift-mode-like [B. LaBombard et al., Phys. Plasmas 21, 056108 (2014)

  13. Changes in density fluctuations associated with confinement transitions close to a rational edge rotational transform in the W7-AS stellarator

    DEFF Research Database (Denmark)

    Zoletnik, S,; Basse, Nils Plesner; Saffman, Mark

    2002-01-01

    and magnetic fluctuation measurements with Mirnov coils. Clear correspondence between plasma fluctuations and confinement degradation is observed: the weight of larger structures increases, fluctuations increase in the plasma core, the poloidal flow velocity decreases and regions of mode-like activity move...

  14. A comparative study on the reliability of co-authorship networks with emphases on edges and nodes

    Directory of Open Access Journals (Sweden)

    Sandra Cristina de Oliveira

    2016-06-01

    Full Text Available A scientific co-authorship network may be modeled by a graph G composed of k nodes and m edges. Researchers that make up this network may be interpreted as its nodes and the link between these agents (co-authored papers as its edges. Current work evaluated and compared the reliability measure of networks with two emphases: 1 On nodes (perfectly reliable edges and 2 On edges (perfectly reliable nodes. Specifically, the reliability of a fictitious co-authorship network at a given time t was analyzed taking into account, first, the reliability of nodes (researchers equal and different, and, second, the reliability of edges (co-authorship relations, equal and different. Additionally, centrality measures of nodes were obtained to identify situations where the insertion of an edge significantly increased the reliability of the network. Results showed that the reliability of the co-authorship network focusing on edges is more sensitive to changes in individual reliabilities than the reliability of the network focusing on nodes. Additionally, the use of centrality measures was viable to identify possible insertions of edges or co-authorship relations to increase the reliability of the network in the two approaches.

  15. Short-term fluctuations in bivalve larvae compared with some environmental factors in a coastal lagoon (South Portugal

    Directory of Open Access Journals (Sweden)

    Luis M.Z. Chícaro

    2000-12-01

    Full Text Available In this study, short-term fluctuations in bivalve larvae were compared with some triggering factors for a period of sixteen months. Data on the abundance of planktonic larvae, collected two to three times a week were related to water temperature, salinity, wind velocity, tidal amplitude and chlorophyll a. Higher densities of planktonic bivalve larvae were caught between May and August, but intense fluctuations in abundance were observed. Planktonic bivalve larvae of eighteen taxa were identified. Larvae of Mytilus galloprovincialis, Cerastoderma edule, Ruditapes decussates and Venerupis spp. were the most abundant. The seasonal fluctuations of bivalve abundance seem to be controlled by temperature, the major factor in the timing of the reproduction of bivalves. Nevertheless, advection may be also a key factor during the planktonic life of bivalve species in coastal systems, such as the Ria Formosa.

  16. Dipole moments associated with edge atoms; a comparative study on stepped Pt, Au and W surfaces

    International Nuclear Information System (INIS)

    Besocke, K.; Krahl-Urban, B.; Wagner, H.

    1977-01-01

    Work function measurements have been performed on stepped Pt and Au surfaces with (111) terraces and on W surfaces with (110) terraces. In each case the work function decreases linearly with increasing step density and depends on the step orientation. The work function changes are attributed to dipole moments associated with the step edges. The dipole moments per unit step length are larger for open edge structures than for densely packed ones. The dipole moments for Pt are about twice as large as for Au and W. (Auth.)

  17. Letter to the Editor Low-frequency electric field fluctuations and field-aligned electron beams around the edge of an auroral acceleration region

    Directory of Open Access Journals (Sweden)

    T. Mukai

    Full Text Available Electron beams narrowly collimated to the magnetic field line were observed continuously from a down-ward current region to an auroral acceleration region (i.e., upward current region. They were well correlated with low-frequency electric field fluctuations in the auroral acceleration region as well as in the adjacent downward current region. Magnetic field fluctuations were found only in the downward current region. The analysis suggests that static field-aligned electric fields are not fully responsible for the filed-aligned electron acceleration; the ac electric field, presumably associated with Alfvenic fluctuations, should also be involved in the acceleration of ionospheric electrons.Key words. Ionosphere (particle acceleration – Magnetospheric physics (auroral phenomena; magnetosphere-ionosphere interactions

  18. The fluctuation-dissipation relation: how does one compare correlation functions and responses?

    International Nuclear Information System (INIS)

    Villamaina, D; Baldassarri, A; Puglisi, A; Vulpiani, A

    2009-01-01

    We discuss the well known Einstein and the Kubo fluctuation-dissipation relations (FDRs) in the wider framework of a generalized FDR for systems with a stationary probability distribution. A multivariate linear Langevin model, which includes dynamics with memory, is used as a treatable example to show how the usual relations are recovered only in particular cases. This study brings to the fore the ambiguities of a check of the FDR done without knowing the significant degrees of freedom and their coupling. An analogous scenario emerges in the dynamics of diluted shaken granular media. There, the correlation between position and velocity of particles, due to spatial inhomogeneities, induces violation of usual FDRs. The search for the appropriate correlation function which could restore the FDR can be more insightful than a definition of 'non-equilibrium' or 'effective temperatures'

  19. Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2009-01-01

    An analysis of seven different technologies is presented. The technologies integrate fluctuating renewable energy sources (RES) such as wind power production into the electricity supply, and the Danish energy system is used as a case. Comprehensive hour-by-hour energy system analyses are conducted...... of a complete system meeting electricity, heat and transport demands, and including RES, power plants, and combined heat and power production (CHP) for district heating and transport technologies. In conclusion, the most fuel-efficient and least-cost technologies are identified through energy system...... and feasibility analyses. Large-scale heat pumps prove to be especially promising as they efficiently reduce the production of excess electricity. Flexible electricity demand and electric boilers are low-cost solutions, but their improvement of fuel efficiency is rather limited. Battery electric vehicles...

  20. Management of fluctuations in wind power and CHP comparing two possible Danish strategies

    International Nuclear Information System (INIS)

    Lund, H.; Clark, W.W.

    2002-01-01

    Both CHP (combined heat and power production) and wind power are important elements of Danish energy policy. Today, approximately 50% of both the Danish electricity and heat demand are produced in CHP and more than 15% of the electricity demand is produced by wind turbines. Both technologies are essential for the implementation of Danish climate change response objectives, and both technologies are intended for further expansion in the coming decade. Meanwhile, the integration of CHP and wind power is subject to fluctuations in electricity production. Wind turbines depend on the wind, and CHP depends on the heat demand. This article discusses and analyses two different national strategies for solving this problem. One strategy, which is the current official government policy known as the export strategy, proposes to take advantage of the Nordic and European markets for selling and buying electricity. In this case, surplus electricity from wind power and CHP simply will be sold to neighbouring countries. Another strategy, the self-supply strategy, runs the CHP units to meet both demand and the fluctuations in the wind scheduling. In this case, investments in heat storages are necessary and heat pumps have to be added to the CHP units. Based on official Danish energy policy and energy plans, this article quantifies the problem for the year 2015 in terms of the amount of surplus electricity, and investments in heat pumps, etc. needed to solve the problem are calculated. Based on these results between the two different strategies, the conclusion is that the self-supply strategy is recommended over the official export strategy. (author)

  1. A comparative fluctuating asymmetry study between two walnut (Juglans regia L.) populations may contribute as an early signal for bio-monitoring

    NARCIS (Netherlands)

    Kourmpetis, Y.I.A.; Aravanopoulos, F.A.

    2010-01-01

    Developmental stability, the ability of an individual to eliminate environmental disturbances while expressing a heritable phenotypic trait, was compared in two walnut (Juglans regia L.) populations, a natural and an artificial. Bilateral leaf morphometrics were used to estimate fluctuating

  2. Flux-driven turbulence GDB simulations of the IWL Alcator C-Mod L-mode edge compared with experiment

    Science.gov (United States)

    Francisquez, Manaure; Zhu, Ben; Rogers, Barrett

    2017-10-01

    Prior to predicting confinement regime transitions in tokamaks one may need an accurate description of L-mode profiles and turbulence properties. These features determine the heat-flux width upon which wall integrity depends, a topic of major interest for research aid to ITER. To this end our work uses the GDB model to simulate the Alcator C-Mod edge and contributes support for its use in studying critical edge phenomena in current and future tokamaks. We carried out 3D electromagnetic flux-driven two-fluid turbulence simulations of inner wall limited (IWL) C-Mod shots spanning closed and open flux surfaces. These simulations are compared with gas puff imaging (GPI) and mirror Langmuir probe (MLP) data, examining global features and statistical properties of turbulent dynamics. GDB reproduces important qualitative aspects of the C-Mod edge regarding global density and temperature profiles, within reasonable margins, and though the turbulence statistics of the simulated turbulence follow similar quantitative trends questions remain about the code's difficulty in exactly predicting quantities like the autocorrelation time A proposed breakpoint in the near SOL pressure and the posited separation between drift and ballooning dynamics it represents are examined This work was supported by DOE-SC-0010508. This research used resources of the National Energy Research Scientific Computing Center (NERSC).

  3. Comparing Transition-Edge Sensor Response Times in a Modified Contact Scheme with Different Support Beams

    Science.gov (United States)

    Beyer, A. D.; Kenyon, M. E.; Bumble, B.; Runyan, M. C.; Echternach, P. E.; Holmes, W. A.; Bock, J. J.; Bradford, C. M.

    2013-01-01

    We present measurements of the thermal conductance, G, and effective time constants, tau, of three transition-edge sensors (TESs) populated in arrays operated from 80-87mK with T(sub C) approximately 120mK. Our TES arrays include several variations of thermal architecture enabling determination of the architecture that demonstrates the minimum noise equivalent power (NEP), the lowest tau and the trade-offs among designs. The three TESs we report here have identical Mo/Cu bilayer thermistors and wiring structures, while the thermal architectures are: 1) a TES with straight support beams of 1mm length, 2) a TES with meander support beams of total length 2mm and with 2 phononfilter blocks per beam, and 3) a TES with meander support beams of total length 2mm and with 6 phonon-filter blocks per beam. Our wiring scheme aims to lower the thermistor normal state resistance R(sub N) and increase the sharpness of the transition alpha=dlogR/dlogT at the transition temperature T(sub C). We find an upper limit of given by (25+/-10), and G values of 200fW/K for 1), 15fW/K for 2), and 10fW/K for 3). The value of alpha can be improved by slightly increasing the length of our thermistors.

  4. Broadband magnetic and density fluctuations in the TCA tokamak

    International Nuclear Information System (INIS)

    Hollenstein, Ch.; Keller, R.; Pochelon, A.; Ryter, F.; Sawley, M.L.; Simm, W.; Weisen, H.

    1987-01-01

    The results of comparative studies of broadband magnetic and density fluctuations during ohmic discharges in the TCA tokamak are described. Long coherence lengths are observed in poloidal and toroidal directions between magnetic probes in the scrape-off layer. A phase contrast diagnostic provides a newly accessible range of density fluctuations in the bulk plasma with very long wavelengths. Langmuir probes provide similar measurements in the scrape-off layer. Statistical dispersion relations for both density and magnetic fluctuations are deduced and are shown to be substantially different. Low mean poloidal wavenumbers (m ∼ 2 at 100 kHz) are obtained for the magnetic fluctuations, in contrast to the much higher values measured for density fluctuations. The difference between magnetic and density fluctuations is also reflected in different scalings with plasma parameters and with electron confinement time. The helicity of the coherent magnetic structures is analyzed to show that interior regions of the plasma, such as the q = 2 region contribute to the magnetic activity at the edge. This explains why the magnetic fluctuations measured at the edge are likely to reflect the confinement properties of the bulk plasma. The results of detailed probe rotation experiments and coherence measurements give indications of the physical nature and origin of magnetic fluctuations

  5. Anomalous transport in the tokamak edge

    International Nuclear Information System (INIS)

    Vayakis, G.

    1991-04-01

    The tokamak edge has been studied with arrays of Langmuir and magnetic probes on the DITE and COMPASS-C devices. Measurements of plasma parameters such as density, temperature and radial magnetic field were taken in order to elucidate the character, effect on transport and origin of edge fluctuations. The tokamak edge is a strongly-turbulent environment, with large electrostatic fluctuation levels and broad spectra. The observations, including direct correlation measurements, are consistent with a picture in which the observed magnetic field fluctuations are driven by the perturbations in electrostatic parameters. The propagation characteristics of the turbulence, investigated using digital spectral techniques, appear to be dominated by the variation of the radial electric field, both in limiter and divertor plasmas. A shear layer is formed, associated in each case with the last closed flux surface. In the shear layer, the electrostatic wavenumber spectra are significantly broader. The predictions of a drift wave model (DDGDT) and of a family of models evolving from the rippling mode (RGDT group), are compared with experimental results. RGDT, augmented by impurity radiation effects, is shown to be the most reasonable candidate to explain the nature of the edge turbulence, only failing in its estimate of the wavenumber range. (Author)

  6. Life on the Edge: A Comparative Study of Ecophysiological Adaptations of Frogs to Tropical Semiarid Environments.

    Science.gov (United States)

    Cruz-Piedrahita, Catalina; Navas, Carlos A; Crawford, Andrew J

    A key goal of ecology and evolution is to understand the relative contributions of environment and history in determining the geographic distribution of organisms. For the Neotropical lowlands, where temperatures are similar across landscapes, we hypothesize that water balance may be a critical but understudied factor in determining the distribution of species. Amphibians are especially sensitive to variation in precipitation due to their permeable skin. Here we focused on lowland frogs of northwestern South America and investigated variation among 17 species in potentially important ecologically relevant performance variables related to water balance, testing for possible adaptations to semiarid conditions within species. We studied frogs from coastal xeric, savannah, and wet forest biomes under common laboratory conditions and quantified rates of evaporative water loss, rates of water uptake, and variation in water-searching behavior and performance. We found significant differences in all three performance variables among species even after accounting for shared evolutionary history. A phylogenetic ANCOVA showed that categorizing species by ecological habit (terrestrial vs. arboreal) explained much of the ecoperformance trait variation among species. Secondarily, environment explained additional variation; for example, coastal xeric species showed reduced rates of water loss, and terrestrial savannah amphibians showed lower rates of water uptake. Conspecific frog populations from different biomes exhibited similar performance. We compare our results with previous studies and conclude that ecological habit is the principle factor that predicts ecophysiological trait variation and the possible geographic distribution of lowland Neotropical frogs.

  7. Videodensitometric quantitative angiography after coronary balloon angioplasty, compared to edge-detection quantitative angiography and intracoronary ultrasound imaging

    NARCIS (Netherlands)

    Peters, R. J.; Kok, W. E.; Pasterkamp, G.; von Birgelen, C.; Prins, M. [=Martin H.; Serruys, P. W.

    2000-01-01

    AIMS: To assess the value of videodensitometric quantification of the coronary lumen after angioplasty by comparison to two other techniques of coronary artery lumen quantification. METHODS AND RESULTS: Videodensitometric quantitative angiography, edge detection quantitative angiography and 30 MHz

  8. Measurement of magnetic fluctuation induced energy transport

    International Nuclear Information System (INIS)

    Fiksel, G.; Prager, S.C.; Shen, W.; Stoneking, M.

    1993-11-01

    The local electron energy flux produced by magnetic fluctuations has been measured directly in the MST reversed field pinch (over the radial range r/a > 0.75). The flux, produced by electrons traveling parallel to a fluctuating magnetic field, is obtained from correlation between the fluctuations in the parallel heat flux and the radial magnetic field. The fluctuation induced flux is large (100 kW/cm 2 ) in the ''core'' (r/a 2 ) in the edge

  9. Fluctuation analysis

    International Nuclear Information System (INIS)

    Clarke, J.

    1980-01-01

    This paper briefly reviews sources of noise in Josephson junctions, and the limits they impose on the sensitivity of dc and rf SQUIDS. The results are strictly valid only for a resistively shunted junction (RSJ) with zero capacitance, but should be applicable to point contact junctions and microbridges in so far as these devices can be approximated by the RSJ model. Fluctuations arising from Nyquist noise in the resistive shunt of a single junction are discussed in the limit eI/sub o/R/k/sub B/T << 1 in which a classical treatment is appropriate, and then extend the treatment to the limit eI/sub o/R/k/sub B/T greater than or equal to 1 in which quantum effects become important. The Nyquist limit theory is used to calculate the noise in a dc SQUID, and the results are compared with a number of practical devices. The quantum limit is briefly considered. Results for the predicted sensitivity of rf SQUIDS are presented, and also compared with a number of practical devices. Finally, the importance of l/f noise (f is the frequency) in limiting the low frequency performance of SQUIDS is discussed

  10. Alpine bistort (Bistorta vivipara) in edge habitat associates with fewer but distinct ectomycorrhizal fungal species: a comparative study of three contrasting soil environments in Svalbard.

    Science.gov (United States)

    Mundra, Sunil; Bahram, Mohammad; Eidesen, Pernille Bronken

    2016-11-01

    Bistorta vivipara is a widespread arctic-alpine ectomycorrhizal (ECM) plant species. Recent findings suggest that fungal communities associated with B. vivipara roots appear random over short distances, but at larger scales, environmental filtering structure fungal communities. Habitats in highly stressful environments where specialist species with narrower niches may have an advantage represent unique opportunity to test the effect of environmental filtering. We utilised high-throughput amplicon sequencing to identify ECM communities associated with B. vivipara in Svalbard. We compared ECM communities in a core habitat where B. vivipara is frequent (Dryas-heath) with edge habitats representing extremes in terms of nutrient availability where B. vivipara is less frequent (bird-manured meadow and a nutrient-depleted mine tilling). Our analysis revealed that soil conditions in edge habitats favour less diverse but more distinct ECM fungal communities with functional traits adapted to local conditions. ECM richness was overall lower in both edge habitats, and the taxonomic compositions of ECM fungi were in line with our functional expectations. Stress-tolerant genera such as Laccaria and Hebeloma were abundant in nutrient-poor mine site whereas functional competitors genera such as Lactarius and Russula were dominant in the nutrient-rich bird-cliff site. Our results suggest that ECM communities in rare edge habitats are most likely not subsets of the larger pool of ECM fungi found in natural tundra, and they may represent a significant contribution to the overall diversity of ECM fungi in the Arctic.

  11. Comparative analysis of nodal and edge finite element method for numerical analysis of 3-D magnetostatic systems

    International Nuclear Information System (INIS)

    Mintchev, Pavel; Dimitrov, Marin; Balinov, Stoimen

    2002-01-01

    The possibilities for applying the Finite Element Method (FEM) with gauged magnetic vector potential and the Edge Element Method (EEM) for three-dimensional numerical analysis of magnetostatic systems are analyzed. It is established that the EEM ensures sufficient accuracy for engineering calculations but in some cases its use results in bad convergence. The use of the FEM with gauged magnetic vector potential instead of the EEM is recommended for preliminary calculations of devices with complex geometry and large air gaps between the ferromagnetic parts. (Author)

  12. Edge Turbulence Imaging on NSTX and Alcator C-Mod

    International Nuclear Information System (INIS)

    S.J. Zweben; R.A. Maqueda; J.L. Terry; B. Bai; C.J. Boswell; C.E. Bush; D. D'Ippolito; E.D. Fredrickson; M. Greenwald; K. Hallatschek; S. Kaye; B. LaBombard; R. Maingi; J. Myra; W.M. Nevins; B.N. Rogers; D.P. Stotler; J. Wilgen; and X.Q. Xu

    2002-01-01

    Edge turbulence images have been made using an ultra-high speed CCD camera on both NSTX and Alcator C-Mod. In both cases, the D-alpha or HeI (587.6 nm) line emission from localized deuterium or helium gas puffs was viewed along a local magnetic field line near the outer midplane. Fluctuations in this line emission reflect fluctuations in electron density and/or electron temperature through the atomic excitation rates, which can be modeled using the DEGAS-2 code. The 2-D structure of the measured turbulence can be compared with theoretical simulations based on 3-D fluid models

  13. Effects of Resonanat Magnetic Perturbations in the DIII-D Edge Plasma

    International Nuclear Information System (INIS)

    Boedo, J.A.; Rudakov, D.L.; McKee, G.R.; Joseph, I.; Reiser, D.; Evans, T.E.; Moyer, R.A.; Watkins, J.G.; Allen, S.L.; Brooks, N.H.; Fenstermacher, M.E.; Groth, M.; Holland, C.; Hollmann, E.M.; Lasnier, C.J.; Leonard, A.W.; Schaffer, M.J.; Tynan, G.R.; West, W.P.; Zeng, L.

    2007-01-01

    Resonant magnetic perturbations (RMPs) are applied to the boundary of DIII-D with a variety of global effects such as edge localized mode (ELM) suppression and global density increase/decrease. How the applied perturbations affect the transport and the plasma edge stability and thus suppress the ELMs, are among the fundamental questions to be answered because of the high heat load created by the ELMs on the plasma facing components. We present fast probe measurements of the effects of applying RMPs to: (1) low power (ohmic) and (2) H-mode DIII-D discharges. In the low power discharges, the effect of islands is clearly seen in the edge plasma as structures in the profiles and changes in the fluctuations as far as 4 cm inside the separatrix. These observations compare well to calculations using 3D field mapping codes, indicating that the island structures modulate the edge parameters and transport. On the high power discharges, measurements of probes and other diagnostics (such as BES) are made at various points in the edge and changes in the profiles and fluctuations are compared. We find that fluctuations can be affected (enhanced or reduced) in narrow (1-2 cm) regions in the pedestal and in the scrape-off layer. The changes in the profiles and fluctuations are dependent on the structure of the applied fields that can be varied in both intensity and mode number.

  14. Quantum fluctuations

    International Nuclear Information System (INIS)

    Reynaud, S.; Giacobino, S.; Zinn-Justin, J.

    1997-01-01

    This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)

  15. An investigation of the flap edge flowfield

    Science.gov (United States)

    Pye, John David

    To identify and understand the fluid dynamic processes associated with flow in the region of a flap side edge, a NACA 63-215 Mod B main element with a half-span Fowler flap was tested in the JIAA Low Speed Wind Tunnel at Stanford University. Measurements were made using a variety of techniques to capture the effects of the flap edge vortex. Pressure sensitive paint was applied to the upper surface of both the flap and main element, as well as to the flap side edge. Fast response pressure transducers were mounted interior to the model to measure surface pressure fluctuations on the flap side edge. Single component hotwire data was taken in the near wake region of the flap edge. In addition to the data experimentally obtained, a computational data set of a geometrically similar model at a flight Reynolds number was used for comparison. The data indicates the presence of a dual vortex structure along the flap side edge. This structure is seen to grow, merge, and ultimately become a single symmetric vortex as it progresses downstream. Surface pressure fluctuations on the side edge scale as three power laws with free stream velocity as different flow regions are encountered. By varying the model rigging, indications of a confined source region for the pressure fluctuations were observed. A spatial survey of the correlation between flap side edge surface pressure fluctuations and the near-wake fluctuating velocity field shows increased correlation coefficients for the region surrounding the vortex core.

  16. On the study of wavy leading-edge vanes to achieve low fan interaction noise

    Science.gov (United States)

    Tong, Fan; Qiao, Weiyang; Xu, Kunbo; Wang, Liangfeng; Chen, Weijie; Wang, Xunnian

    2018-04-01

    The application of wavy leading-edge vanes to reduce a single-stage axial fan noise is numerically studied. The aerodynamic and acoustic performance of the fan is numerically investigated using a hybrid unsteady Reynolds averaged Navier-Stokes (URANS)/acoustic analogy method (Goldstein equations). First, the hybrid URANS/Goldstein method is developed and successfully validated against experiment results. Next, numerical simulations are performed to investigate the noise reduction effects of the wavy leading-edge vanes. The aerodynamic and acoustic performance is assessed for a fan with vanes equipped with two different wavy leading-edge profiles and compared with the performance of conventional straight leading-edge vanes. Results indicate that a fan with wavy leading-edge vanes produces lower interaction noise than the baseline fan without a significant loss in aerodynamic performance. In fact, it is demonstrated that wavy leading-edge vanes have the potential to lead to both aerodynamic and acoustic improvements. The two different wavy leading-edge profiles are shown to successfully reduce the fan tone sound power level by 1.2 dB and 4.3 dB, respectively. Fan efficiency is also improved by about 1% with one of the tested wavy leading-edge profiles. Large eddy simulation (LES) is also performed for a simplified fan stage model to assess the effects of wavy leading-edge vanes on the broadband fan noise. Results indicate that the overall sound power level of a fan can be reduced by about 4 dB with the larger wavy leading-edge profile. Finally, the noise reduction mechanisms are investigated and analysed. It is found that the wavy leading-edge profiles can induce significant streamwise vorticity around the leading-edge protuberances and reduce pressure fluctuations (especially at locations of wavy leading-edge hills) and unsteady forces on the stator vanes. The underlying mechanism of the reduced pressure fluctuations is also discussed by examining the magnitude

  17. Comparative Multifractal Detrended Fluctuation Analysis of Heavy Ion Interactions at a Few GeV to a Few Hundred GeV

    Directory of Open Access Journals (Sweden)

    Gopa Bhoumik

    2016-01-01

    Full Text Available We have studied the multifractality of pion emission process in 16O-AgBr interactions at 2.1 AGeV  and  60 AGeV, 12C-AgBr  and  24Mg-AgBr interactions at 4.5 AGeV, and 32S-AgBr interactions at 200 AGeV using Multifractal Detrended Fluctuation Analysis (MFDFA method which is capable of extracting the actual multifractal property filtering out the average trend of fluctuation. The analysis reveals that the pseudorapidity distribution of the shower particles is multifractal in nature for all the interactions; that is, pion production mechanism has inbuilt multiscale self-similarity property. We have employed MFDFA method for randomly generated events for 32S-AgBr interactions at 200 AGeV. Comparison of expt. results with those obtained from randomly generated data set reveals that the source of multifractality in our data is the presence of long range correlation. Comparing the results obtained from different interactions, it may be concluded that strength of multifractality decreases with projectile mass for the same projectile energy and for a particular projectile it increases with energy. The values of ordinary Hurst exponent suggest that there is long range correlation present in our data for all the interactions.

  18. Comparing the effects of genetic drift and fluctuating selection on genotype frequency changes in the scarlet tiger moth.

    Science.gov (United States)

    O'Hara, R B

    2005-01-22

    One of the recurring arguments in evolutionary biology is whether evolution occurs principally through natural selection or through neutral processes such as genetic drift. A 60-year-long time series of changes in the genotype frequency of a colour polymorphism of the scarlet tiger moth, Callimorpha dominula, was used to compare the relative effects of genetic drift and variable natural selection. The analysis showed that most of the variation in frequency was the result of genetic drift. In addition, although selection was acting, mean fitness barely increased. This supports the 'Red Queen's hypothesis' that long-term improvements in fitness may not occur, because populations have to keep pace with changes in the environment.

  19. Observations of a quasi-coherent fluctuation mode in the KT-5C tokamak during -90 deg. phase shift feedback

    International Nuclear Information System (INIS)

    Zhai Kan; Wen Yizhi; Yu Changxuan; Liu Wandong; Wan Shude; Zhuang Ge; Yu Wen; Xu Zhizhan

    1997-01-01

    A new fluctuation phenomenon is observed through Langmuir probe measurements at the edge plasma in the KT-5C tokamak by applying a -90 deg. phase shift feedback. Using a two point correlation technique, it is found that this fluctuation mode has a longer poloidal wavelength and a definite frequency when compared with the usual edge turbulence. It is also found through bispectral analysis that this mode is a spontaneously excited quasi-coherent mode, which has almost no contribution to the cross-field particle flux. (author)

  20. A Comparative Study of the Crystallite Size and the Dislocation Density of Bent Steel Plates using Bragg-edge Transmission Imaging, TOF Neutron Diffraction and EBSD

    Science.gov (United States)

    Oikawa, K.; Su, Y. H.; Tomota, Y.; Kawasaki, T.; Shinohara, T.; Kai, T.; Hiroi, K.; Zhang, S. Y.; Parker, J. D.; Sato, H.; Kiyanagi, Y.

    Line broadening analysis was performed on the time-of-flight neutron diffraction data for the plastically bent plates of a ferritic steel and a duplex stainless steel. A Rietveld analysis program, Z-Rietveld ver. 1.0 was used to fit the anisotropically broadened patterns where the increase in Lorentzian full width at half maximum (FWHM) and the Gaussian FWHM involves information of the crystallite size and the dislocation density, respectively. The derived results were compared with those obtained by using Bragg-edge transmission spectrum analysis and electron backscatter diffraction (EBSD) observations.

  1. Living edge

    DEFF Research Database (Denmark)

    Earon, Ofri

    2014-01-01

    on the ground level, but there is a lack of recognition in the significance of communicative characters as well at the higher part of the edge. The city’s planning approach is “Consider urban life before urban space. Consider urban space before buildings” This urban strategy neglects the possible architectural...... is a collection of material from the case study of an ongoing PhD study titled: LIVING EDGE - The Architectural and Urban Prospect of Domestic Borders. The paper includes a description of the problem analysis, research question, method, discussion and conclusion.......“What is an edge? We can think about an edge as having been of two sorts. In one, it is a border. In the other, it is a boundary. A border is a zone of interaction where things meet and intersect. A boundary is a place where something ends” Architects and planners normally approach domestic borders...

  2. Edge Matters

    DEFF Research Database (Denmark)

    Earon, Ofri

    2013-01-01

    and outside the contemporary urban house? And what is the interplay between them? The research argues for re-thinking the edge zone between inside and outside the urban house. Therefore, although, residential buildings in the city are the objects of study, the focal point here is the edge zone along...... the building. The research explores and develops the architectural characteristics of correlations between the resident, the singular unit, the building and the given location at the edge zone. It approaches the edge zone of the urban house as a platform for dynamic interactions between these behaviours...... of this container is to separate inside from outside and to protect and provide privacy, psychological as well as physical (Venturi, 1966). But, if dwelling phenomenon takes place both inside and outside the private house – why is the urban house an enclosed box? What is the differentiation between inside...

  3. Edge Matters

    DEFF Research Database (Denmark)

    Earon, Ofri

    2013-01-01

    of this container is to separate inside from outside and to protect and provide privacy, psychological as well as physical (Venturi, 1966). But, if dwelling phenomenon takes place both inside and outside the private house – why is the urban house an enclosed box? What is the differentiation between inside...... and outside the contemporary urban house? And what is the interplay between them? The research argues for re-thinking the edge zone between inside and outside the urban house. Therefore, although, residential buildings in the city are the objects of study, the focal point here is the edge zone along...... the building. The research explores and develops the architectural characteristics of correlations between the resident, the singular unit, the building and the given location at the edge zone. It approaches the edge zone of the urban house as a platform for dynamic interactions between these behaviours...

  4. Universal mesoscopic conductance fluctuations

    International Nuclear Information System (INIS)

    Evangelou, S.N.

    1992-01-01

    The theory of conductance fluctuations in disordered metallic systems with size large compared to the mean free path of the electron but small compared to localization length is considered. It is demonstrates that fluctuations have an universal character and are due to repulsion between levels and spectral rigidity. The basic fluctuation measures for the energy spectrum in the mesoscopic regime of disordered systems are consistent with the Gaussian random matrix ensemble predictions. Although our disordered electron random matrix ensemble does not belong to the Gaussian ensemble the two ensembles turn out to be essentially similar. The level repulsion and the spectral rigidity found in nuclear spectra should also be observed in the metallic regime of Anderson localization. 7 refs. (orig.)

  5. Magnetic field fluctuations during RFP operation in Extrap T1-Upgrade

    International Nuclear Information System (INIS)

    Mazur, S.; Nordlund, P.; Drake, J.R.

    1992-10-01

    Magnetic fluctuations have been studied during Reversed Field Pinch operation in the Extrap T1-Upgrade device using external poloidal and toroidal arrays of edge coils. Statistical techniques have been adopted to determine the spatial structure of the edge fluctuating field. For frequencies below 200 kHz a global mode structure is found with poloidal mode numbers m=0 and 1 and negligible power for modes with m≥2. Fluctuation activity with higher frequencies appears to be of a turbulent nature with a scale length shorter than the coil separation length. The derived toroidal mode power spectrum is peaked around mode number /n/=12 to 22. This peak corresponds to helical m=1 modes resonant on the q-profile inside the reversal surface. Comparatively low power is found in n>0 external kink modes. (au)

  6. Edge eigen-stress and eigen-displacement of armchair molybdenum disulfide nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Quan; Li, Xi [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Volinsky, Alex A., E-mail: volinsky@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620 (United States); Su, Yanjing, E-mail: yjsu@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China)

    2017-05-10

    Edge effects on mechanical properties of armchair molybdenum disulfide nanoribbons were investigated using first principles calculations. The edge eigen-stress model was applied to explain the relaxation process of forming molybdenum disulfide nanoribbon. Edge effects on surface atoms fluctuation degree were obtained from each fully relaxed nanoribbon with different width. Changes of the relaxed armchair molybdenum disulfide nanoribbons structure can be expressed using hexagonal perimeters pattern. Based on the thickness change, relaxed armchair molybdenum disulfide nanoribbons tensile/compression tests were simulated, providing intrinsic edge elastic parameters, such as eigen-stress, Young's modulus and Poisson's ratio. - Highlights: • Edge effects on mechanical properties of armchair MoS{sub 2} nanoribbons were investigated. • Structure changes of different width armchair MoS{sub 2} nanoribbons were obtained. • Tensile/compressive tests were conducted to determine elastic constants. • Mechanical properties are compared for two and three dimensional conditions.

  7. Properties of the edge plasma in the rebuilt Extrap-T2R reversed field pinch experiment

    Science.gov (United States)

    Vianello, N.; Spolaore, M.; Serianni, G.; Bergsåker, H.; Antoni, V.; Drake, J. R.

    2002-12-01

    The edge region of the rebuilt Extrap-T2R reversed field pinch experiment has been investigated using Langmuir probes. Radial profiles of main plasma parameters are obtained and compared with those of the previous device Extrap-T2. The spontaneous setting up of a double shear layer of E×B toroidal velocity is confirmed. The particle flux induced by electrostatic fluctuations is calculated and the resulting effective diffusion coefficient is consistent with the Bohm estimate. A close relationship between electrostatic fluctuations at the edge and non-linear coupling of MHD modes in the core is found.

  8. High Speed Edge Detection

    Science.gov (United States)

    Prokop, Norman F (Inventor)

    2016-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  9. Edge effects in composites

    International Nuclear Information System (INIS)

    Guz, A.N.; Kokhanenko, Yu.V.

    1995-01-01

    In the present article we survey papers on edge effects investigated by the rigorous approach. We interpret edge effects as stressed states created in a composite as a result of zones in which the stresses exhibit a rapidly changing behavior in comparison with the slow variation of the stresses outside such zones. Here the range of the edge effect is defined as the distance from the point of its inception to the boundary of the edge zone in a given direction. The transition of the stresses to the slowly varying state is determined within prescribed error limits. The size and configuration of the edge zone depends on the tolerated error. Clearly, the main difficulty associated with the rigorous approach is finding solutions of the elasticity problems. The finite-difference approach is suggested for the approximate solution of these problems. In light of the comparative time consumption of the finite-difference approach, it is best directed at certain classes of problems rather than at particular individual problems. Not too many papers on the investigation of edge effects by the rigorous approach have been published to date. Below, following in their footsteps, we formulate edge effect problems in composites, determine classes of problems, and investigate edge effects in composite materials and structural elements using them in Cartesian (planar and three-dimensional problems) and cylindrical (axisymmetric problems) coordinate frames. We note that the division of approaches to the study of edge effects into qualitative (nonrigorous) and quantitative (rigorous) reflects the authors own point of view. Of course, other schemes of classification of the approaches to the investigation of the regions of rapidly varying states in composites are possible

  10. Living edge

    DEFF Research Database (Denmark)

    Earon, Ofri

    2014-01-01

    “What is an edge? We can think about an edge as having been of two sorts. In one, it is a border. In the other, it is a boundary. A border is a zone of interaction where things meet and intersect. A boundary is a place where something ends” Architects and planners normally approach domestic borders...... of the involved actors at the border. By doing so, the study underlines a forgotten, yet important, role of this edge zone – being a zone of commonality between the house and city, between indoors and outdoors, between the man at home and the man at the street. The city of Copenhagen promotes porous borders...... on the ground level, but there is a lack of recognition in the significance of communicative characters as well at the higher part of the edge. The city’s planning approach is “Consider urban life before urban space. Consider urban space before buildings” This urban strategy neglects the possible architectural...

  11. Nonequilibrium fluctuations in a resistor.

    Science.gov (United States)

    Garnier, N; Ciliberto, S

    2005-06-01

    In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to the dissipation constant in the system, exploiting the fluctuation-dissipation theorem. In nonequilibrium steady systems, fluctuations theorems (FT) additionally describe symmetry properties of the probability density functions (PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model system: an electrical dipole driven out of equilibrium by a small constant current I, and show that FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated power P = R I2 in the system by just studying the PDFs' symmetries.

  12. Edge Detection,

    Science.gov (United States)

    1985-09-01

    PROJECT. T ASK0 Artificial Inteligence Laboratory AREA It WORK UNIT NUMBERS V 545 Technology Square ( Cambridge, HA 02139 I I* CONTOOL1LIN@4OFFICE NAME...ARD-A1t62 62 EDGE DETECTION(U) NASSACNUSETTS INST OF TECH CAMBRIDGE 1/1 ARTIFICIAL INTELLIGENCE LAB E C HILDRETH SEP 85 AI-M-8 N99SI4-8S-C-6595...used to carry out this analysis. cce~iO a N) ’.~" D LI’BL. P p ------------ Sj. t i MASSACHUSETTS INSTITUTE OF TECHNOLOGY i ARTIFICIAL INTELLIGENCE

  13. Edge effect and phenology in Erythroxylum tortuosum (Erythroxylaceae), a typical plant of the Brazilian Cerrado.

    Science.gov (United States)

    Ishino, M N; De Sibio, P R; Rossi, M N

    2012-08-01

    The edge of a forest fragment can be considered a zone of transition between the interior of the fragment and the surrounding habitat matrix. Plants along the edge are more exposed to disturbance and microclimate variation than interior plants, resulting in the so-called edge effect. In this study, we compared leaf area, fluctuating asymmetry and chemical (water, nitrogen and tannins) leaf traits between Erythroxylum tortuosum plants inhabiting the edge with those growing in the interior of a cerrado fragment in Brazil. We also describe the temporal variation in the vegetative and reproductive phenological events of E. tortuosum plants throughout the season. Nitrogen, leaf area and fluctuating asymmetry did not differ between the two plant groups. Young leaves of the edge plants had significantly higher levels of tannins and lower levels of water than those of interior plants. We suggest that differences in leaf chemical concentrations between edge and interior plants may occur due to factors such as light intensity, wind, temperature and leaf age rather than plant stress. With respect to plant phenology, most reproductive events occurred during the spring. Leaf buds and young leaves prevailed during the rainy season. In the dry season, however, the vegetative events decreased due to leaf senescence followed by leaf abscission.

  14. Fluctuations in quantum chaos

    International Nuclear Information System (INIS)

    Casati, G.; Chirikov, B.V.

    1996-01-01

    Various fluctuations in quantum systems with discrete spectrum are discussed, including recent unpublished results. Open questions and unexplained peculiarities of quantum fluctuations are formulated [ru

  15. Fluctuations in Cerebral Hemodynamics

    National Research Council Canada - National Science Library

    Latka, Miroslaw

    2003-01-01

    We demonstrate that the scaling properties of intracranial pressure (ICP) fluctuations and fluctuations of blood flow velocity in middle cerebral arteries are characterized by two scaling exponents...

  16. Trailing edge noise estimation by tomographic Particle Image Velocimetry

    Science.gov (United States)

    Pröbsting, Stefan; Tuinstra, Marthijn; Scarano, Fulvio

    2015-06-01

    The feasibility of estimating broadband trailing edge noise with high-speed tomographic Particle Image Velocimetry (PIV) measurements is studied. A thin plate terminating in a sharp trailing edge provides a generic test case for turbulent boundary layer trailing edge interaction noise. Far-field noise is linked to the wavenumber-frequency spectrum of the surface pressure fluctuations in proximity of the trailing edge through diffraction theory. High-speed tomographic PIV measurements return volumetric and time-resolved information about all velocity components for the resolved spatio-temporal scales and can therefore provide the required statistical quantities. For the turbulent boundary layer interacting with the trailing edge, these statistics include the auto-spectral density, spanwise correlation length, and convection velocity of the unsteady surface pressure, which are thus estimated. Acoustic phased array measurements in an anechoic environment provide a reference for comparison. Over the resolved frequency band, PIV based noise estimation results compare favorably with the reference measurements. Especially at lower frequencies, where existing, empirical models for the unsteady surface pressure spectrum are not accurate, tomographic PIV can offer an alternative approach to complex and intrusive model instrumentation for assessing the relevant statistical quantities.

  17. Experimental investigation of edge sheared flow development and configuration effects in the TJ-II stellarator

    International Nuclear Information System (INIS)

    Pedrosa, M.A.; Hidalgo, C.; Alonso, A.; Calderon, E.; Orozco, O.; Pablos, J.L. de

    2005-01-01

    Experimental results have shown that the generation of spontaneous perpendicular sheared flow (i.e. the naturally occurring shear layer) requires a minimum plasma density or gradient in the TJ-II stellarator. This finding has been observed by means of multiple plasma diagnostics, including probes, fast cameras, reflectometry and HIBP. The obtained shearing rate of the naturally occurring shear layer results in general comparable to the one observed during biasing-improved confinement regimes. It has been found that there is a coupling between the onset of sheared flow development and an increase in the level of plasma edge fluctuations pointing to turbulence as the main ingredient of the radial electric field drive; once the shear flow develops the level of turbulence tends to decrease. The link between the development of sheared flows and plasma density in TJ-II has been observed in different magnetic configurations and plasma regimes. Preliminary results show that the threshold density value depends on the iota value and on the magnetic ripple (plasma volume). Recent experiments carried out in the LHD stellarator have shown that edge sheared flows are also affected by the magnitude of edge magnetic ripple: the threshold density to trigger edge sheared flows increases with magnetic ripple . Those results have been interpreted as an evidence of the importance of neoclassical effect in the physics of ExB sheared flows. For some TJ-II magnetic configurations with higher edge iota (ι/2π≥ 1.8) there is a sharp increase in the edge density gradient simultaneous to a strong reduction of fluctuations and transport and a slight increase of the shearing rate and perpendicular rotation (≥2 km/s) as density increases above the threshold. The role of the edge ripple, the presence of edge rational surfaces and properties of turbulent transport are considered as possible ingredients to explain the spontaneous development of edge sheared flows in TJ-II. (author)

  18. Dynamical interplay between fluctuations, electric fields and ...

    Indian Academy of Sciences (India)

    similarity in the scaling properties of the probability distribution function (PDF) of turbulent transport has been observed in the plasma edge region in fusion plasmas. The investigation of the dynamical interplay between fluctuation in gradients, turbulent transport and radial electric fields has shown that these parameters are ...

  19. Automated ultrasound edge-tracking software comparable to established semi-automated reference software for carotid intima-media thickness analysis.

    Science.gov (United States)

    Shenouda, Ninette; Proudfoot, Nicole A; Currie, Katharine D; Timmons, Brian W; MacDonald, Maureen J

    2017-04-26

    Many commercial ultrasound systems are now including automated analysis packages for the determination of carotid intima-media thickness (cIMT); however, details regarding their algorithms and methodology are not published. Few studies have compared their accuracy and reliability with previously established automated software, and those that have were in asymptomatic adults. Therefore, this study compared cIMT measures from a fully automated ultrasound edge-tracking software (EchoPAC PC, Version 110.0.2; GE Medical Systems, Horten, Norway) to an established semi-automated reference software (Artery Measurement System (AMS) II, Version 1.141; Gothenburg, Sweden) in 30 healthy preschool children (ages 3-5 years) and 27 adults with coronary artery disease (CAD; ages 48-81 years). For both groups, Bland-Altman plots revealed good agreement with a negligible mean cIMT difference of -0·03 mm. Software differences were statistically, but not clinically, significant for preschool images (P = 0·001) and were not significant for CAD images (P = 0·09). Intra- and interoperator repeatability was high and comparable between software for preschool images (ICC, 0·90-0·96; CV, 1·3-2·5%), but slightly higher with the automated ultrasound than the semi-automated reference software for CAD images (ICC, 0·98-0·99; CV, 1·4-2·0% versus ICC, 0·84-0·89; CV, 5·6-6·8%). These findings suggest that the automated ultrasound software produces valid cIMT values in healthy preschool children and adults with CAD. Automated ultrasound software may be useful for ensuring consistency among multisite research initiatives or large cohort studies involving repeated cIMT measures, particularly in adults with documented CAD. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  20. A numerical study of tokamak edge turbulence

    International Nuclear Information System (INIS)

    Hu Shuanghui; Huang Lin; Qiu Xiaoming

    1993-01-01

    The tokamak edge turbulence which contains resistivity and impurity gradients and impurity radiation driven sources is studied numerically. The effect of ohmic dissipation on the evolution and saturation of this turbulence is investigated. The ohmic effect drops the saturation levels of fluctuations efficiently in high density tokamaks (such as Alcator), indicating that the ohmic effect plays an important role in the evolution of tokamak edge turbulence in high density devices

  1. Trailing Edge Noise Model Validation and Application to Airfoil Optimization

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian

    2010-01-01

    The aim of this article is twofold. First, an existing trailing edge noise model is validated by comparing with airfoil surface pressure fluctuations and far field sound pressure levels measured in three different experiments. The agreement is satisfactory in one case but poor in two other cases...... noise emission, trying at the same time to preserve some of its aerodynamic and geometric characteristics. The new designs are characterized by less cambered airfoils and flatter suction sides. The resulting noise reductions seem to be mainly achieved by a reduction in the turbulent kinetic energy...

  2. Molecular evolution under fitness fluctuations.

    Science.gov (United States)

    Mustonen, Ville; Lässig, Michael

    2008-03-14

    Molecular evolution is a stochastic process governed by fitness, mutations, and reproductive fluctuations in a population. Here, we study evolution where fitness itself is stochastic, with random switches in the direction of selection at individual genomic loci. As the correlation time of these fluctuations becomes larger than the diffusion time of mutations within the population, fitness changes from an annealed to a quenched random variable. We show that the rate of evolution has its maximum in the crossover regime, where both time scales are comparable. Adaptive evolution emerges in the quenched fitness regime (evidence for such fitness fluctuations has recently been found in genomic data). The joint statistical theory of reproductive and fitness fluctuations establishes a conceptual connection between evolutionary genetics and statistical physics of disordered systems.

  3. Comparing signal intensity and refraction sensitivity of double and single mask edge illumination lab-based x-ray phase contrast imaging set-ups

    Science.gov (United States)

    Kallon, G. K.; Diemoz, P. C.; Vittoria, F. A.; Basta, D.; Endrizzi, M.; Olivo, A.

    2017-10-01

    Double mask edge illumination (DM-EI) set-ups can detect differential phase and attenuation information from a sample. However, analytical separation of the two signals often requires acquiring two frames with inverted differential phase contrast signals. Typically, between these two acquisitions, the first mask is moved to create a different illumination condition. This can lead to potential errors which adversely affect the data collected. In this paper, we implement a single mask EI laboratory set-up that allows for a single shot retrieval of the differential phase and attenuation images, without the need for a high resolution detector or high magnification. As well as simplifying mask alignment, the advantages of the proposed set-up can be exploited in one of two ways: either the total acquisition time can be halved with respect to the DM-EI set-up or, for the same acquisition time, twice the statistics can be collected. In this latter configuration, the signal-to-noise ratio and contrast in the mixed intensity images, and the angular sensitivity of the two set-ups were compared. We also show that the angular sensitivity of the single mask set-up can be well approximated from its illumination curve, which has been modelled as a convolution between the source spatial distribution at the detector plane, the pre-sample mask and the detector point spread function (PSF). A polychromatic wave optics simulation was developed on these bases and benchmarked against experimental data. It can also be used to predict the angular sensitivity and contrast of any set-up as a function of detector PSF.

  4. Comparing signal intensity and refraction sensitivity of double and single mask edge illumination lab-based x-ray phase contrast imaging set-ups

    International Nuclear Information System (INIS)

    Kallon, G K; Diemoz, P C; Vittoria, F A; Basta, D; Endrizzi, M; Olivo, A

    2017-01-01

    Double mask edge illumination (DM-EI) set-ups can detect differential phase and attenuation information from a sample. However, analytical separation of the two signals often requires acquiring two frames with inverted differential phase contrast signals. Typically, between these two acquisitions, the first mask is moved to create a different illumination condition. This can lead to potential errors which adversely affect the data collected. In this paper, we implement a single mask EI laboratory set-up that allows for a single shot retrieval of the differential phase and attenuation images, without the need for a high resolution detector or high magnification. As well as simplifying mask alignment, the advantages of the proposed set-up can be exploited in one of two ways: either the total acquisition time can be halved with respect to the DM-EI set-up or, for the same acquisition time, twice the statistics can be collected. In this latter configuration, the signal-to-noise ratio and contrast in the mixed intensity images, and the angular sensitivity of the two set-ups were compared. We also show that the angular sensitivity of the single mask set-up can be well approximated from its illumination curve, which has been modelled as a convolution between the source spatial distribution at the detector plane, the pre-sample mask and the detector point spread function (PSF). A polychromatic wave optics simulation was developed on these bases and benchmarked against experimental data. It can also be used to predict the angular sensitivity and contrast of any set-up as a function of detector PSF. (paper)

  5. Active-Optical Sensors Using Red NDVI Compared to Red Edge NDVI for Prediction of Corn Grain Yield in North Dakota, U.S.A.

    Science.gov (United States)

    Sharma, Lakesh K; Bu, Honggang; Denton, Anne; Franzen, David W

    2015-11-02

    Active-optical sensor readings from an N non-limiting area standard established within a farm field are used to predict yield in the standard. Lower yield predictions from sensor readings obtained from other parts of the field outside of the N non-limiting standard area indicate a need for supplemental N. Active-optical sensor algorithms for predicting corn (Zea mays, L.) yield to direct in-season nitrogen (N) fertilization in corn utilize red NDVI (normalized differential vegetative index). Use of red edge NDVI might improve corn yield prediction at later growth stages when corn leaves cover the inter-row space resulting in "saturation" of red NDVI readings. The purpose of this study was to determine whether the use of red edge NDVI in two active-optical sensors (GreenSeeker™ and Holland Scientific Crop Circle™) improved corn yield prediction. Nitrogen rate experiments were established at 15 sites in North Dakota (ND). Sensor readings were conducted at V6 and V12 corn. Red NDVI and red edge NDVI were similar in the relationship of readings with yield at V6. At V12, the red edge NDVI was superior to the red NDVI in most comparisons, indicating that it would be most useful in developing late-season N application algorithms.

  6. Active-Optical Sensors Using Red NDVI Compared to Red Edge NDVI for Prediction of Corn Grain Yield in North Dakota, U.S.A.

    Science.gov (United States)

    Sharma, Lakesh K.; Bu, Honggang; Denton, Anne; Franzen, David W.

    2015-01-01

    Active-optical sensor readings from an N non-limiting area standard established within a farm field are used to predict yield in the standard. Lower yield predictions from sensor readings obtained from other parts of the field outside of the N non-limiting standard area indicate a need for supplemental N. Active-optical sensor algorithms for predicting corn (Zea mays, L.) yield to direct in-season nitrogen (N) fertilization in corn utilize red NDVI (normalized differential vegetative index). Use of red edge NDVI might improve corn yield prediction at later growth stages when corn leaves cover the inter-row space resulting in “saturation” of red NDVI readings. The purpose of this study was to determine whether the use of red edge NDVI in two active-optical sensors (GreenSeeker™ and Holland Scientific Crop Circle™) improved corn yield prediction. Nitrogen rate experiments were established at 15 sites in North Dakota (ND). Sensor readings were conducted at V6 and V12 corn. Red NDVI and red edge NDVI were similar in the relationship of readings with yield at V6. At V12, the red edge NDVI was superior to the red NDVI in most comparisons, indicating that it would be most useful in developing late-season N application algorithms. PMID:26540057

  7. Fluctuations in LC Oscillators

    Directory of Open Access Journals (Sweden)

    O. Ondracek

    1994-03-01

    Full Text Available An analysis of the phase and amplitude fluctuations in oscillators with simple resonant circuit is presented. Negative feedback is used to minimize effect of the inherent noise produced by bipolar transistor on fluctuation characteristics.

  8. An Objective Fluctuation Score for Parkinson's Disease

    Science.gov (United States)

    Horne, Malcolm K.; McGregor, Sarah; Bergquist, Filip

    2015-01-01

    Introduction Establishing the presence and severity of fluctuations is important in managing Parkinson’s Disease yet there is no reliable, objective means of doing this. In this study we have evaluated a Fluctuation Score derived from variations in dyskinesia and bradykinesia scores produced by an accelerometry based system. Methods The Fluctuation Score was produced by summing the interquartile range of bradykinesia scores and dyskinesia scores produced every 2 minutes between 0900-1800 for at least 6 days by the accelerometry based system and expressing it as an algorithm. Results This Score could distinguish between fluctuating and non-fluctuating patients with high sensitivity and selectivity and was significant lower following activation of deep brain stimulators. The scores following deep brain stimulation lay in a band just above the score separating fluctuators from non-fluctuators, suggesting a range representing adequate motor control. When compared with control subjects the score of newly diagnosed patients show a loss of fluctuation with onset of PD. The score was calculated in subjects whose duration of disease was known and this showed that newly diagnosed patients soon develop higher scores which either fall under or within the range representing adequate motor control or instead go on to develop more severe fluctuations. Conclusion The Fluctuation Score described here promises to be a useful tool for identifying patients whose fluctuations are progressing and may require therapeutic changes. It also shows promise as a useful research tool. Further studies are required to more accurately identify therapeutic targets and ranges. PMID:25928634

  9. Nonreference Medical Image Edge Map Measure

    Directory of Open Access Journals (Sweden)

    Karen Panetta

    2014-01-01

    Full Text Available Edge detection is a key step in medical image processing. It is widely used to extract features, perform segmentation, and further assist in diagnosis. A poor quality edge map can result in false alarms and misses in cancer detection algorithms. Therefore, it is necessary to have a reliable edge measure to assist in selecting the optimal edge map. Existing reference based edge measures require a ground truth edge map to evaluate the similarity between the generated edge map and the ground truth. However, the ground truth images are not available for medical images. Therefore, a nonreference edge measure is ideal for medical image processing applications. In this paper, a nonreference reconstruction based edge map evaluation (NREM is proposed. The theoretical basis is that a good edge map keeps the structure and details of the original image thus would yield a good reconstructed image. The NREM is based on comparing the similarity between the reconstructed image with the original image using this concept. The edge measure is used for selecting the optimal edge detection algorithm and optimal parameters for the algorithm. Experimental results show that the quantitative evaluations given by the edge measure have good correlations with human visual analysis.

  10. Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments

    DEFF Research Database (Denmark)

    Madsen, Jens

    Larmor radius effects on the radial plasma transport. The coexistence of low-frequency fluctuations, having length scales comparable to the ion gyroradius, steep pressure gradients and strong E × Bflows in the edge region of fusion plasmas violates the standard gyrokinetic ordering. In this thesis two......-Maxwell equations expressed in guiding-center coordinates are derived including a local energy theorem. The second order terms describe lowest order finite Larmor radius effects. This set of equations might be relevant for edge plasmas due to the capability of capturing strong E ×B - flows and lowest order finite...... Larmor radius effects self-consistently. Next, an extension of the existing gyrokinetic formalism with strong flows is presented. In this work the background electric fields is dynamical, whereas earlier contributions did only incorporate a stationary electric field. In an ordering relevant for edge...

  11. Hydrodynamical fluctuations in smooth shear flows

    International Nuclear Information System (INIS)

    Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.

    1999-11-01

    Background of hydrodynamical fluctuations in a intrinsically/stochastically forced, laminar, uniform shear flow is studied. The employment of so-called nonmodal mathematical analysis makes it possible to represent the background of fluctuations in a new light and to get more insight into the physics of its formation. The basic physical processes responsible for the formation of vortex and acoustic wave fluctuation backgrounds are analyzed. Interplay of the processes at low and moderate shear rates is described. Three-dimensional vortex fluctuations around a given macroscopic state are numerically calculated. The correlation functions of the fluctuations of physical quantities are analyzed. It is shown that there exists subspace D k in the wave-number space (k-space) that is limited externally by spherical surface with radius k ν ≡ A/ν (where A is the velocity shear parameter, ν - the kinematic viscosity) in the nonequilibrium open system under study. The spatial Fourier harmonics of vortex as well as acoustic wave fluctuations are strongly subjected by flow shear (by the open character of the system) at wave-numbers satisfying the condition k ν . Specifically it is shown that in D k : The fluctuations are non-Markovian; the spatial spectral density of energy of the vortex fluctuations by far exceeds the white-noise; the term of a new type associated to the hydrodynamical fluctuation of velocity appears in the correlation function of pressure; the fluctuation background of the acoustic waves is completely different at low and moderate shear rates (at low shear rates it is reduced in D k in comparison to the uniform (non-shear) flow; at moderate shear rates it it comparable to the background of the vortex fluctuations). The fluctuation background of both the vortex and the acoustic wave modes is anisotropic. The possible significance of the fluctuation background of vortices for the subcritical transition to turbulence and Brownian motion of small macroscopic

  12. Partnership for Edge Physics Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kritz, Arnold H. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Physics; Rafiq, Tariq [Lehigh Univ., Bethlehem, PA (United States). Dept. of Physics

    2017-07-31

    A major goal of our participation in the Edge Physics Simulation project has been to contribute to the understanding of the self-organization of tokamak turbulence fluctuations resulting in the formation of a staircase structure in the ion temperature. A second important goal is to demonstrate how small scale turbulence in plasmas self-organizes with dynamically driven quasi-stationary flow shear. These goals have been accomplished through the analyses of the statistical properties of XGC1 flux driven Gyrokinetic electrostatic ion temperature gradient (ITG) turbulence simulation data in which neutrals are included. The ITG turbulence data, and in particular fluctuation data, were obtained from a massively parallel flux-driven gyrokinetic full-f particle-in-cell simulation of a DIII-D like equilibrium. Below some the findings are summarized. It was observed that the emergence of staircase structure is related to the variations in the normalized temperature gradient length (R/LT) and the poloidal flow shear. Average turbulence intensity is found to be large in the vicinity of minima in R/LTi, where ITG growth is expected to be lower. The distributions of the occurrences of potential fluctuation are found to be Gaussian away from the staircase-step locations, but they are found to be non-Gaussian in the vicinity of staircase-step locations. The results of analytically derived expressions for the distribution of the occurrences of turbulence intensity and intensity flux were compared with the corresponding quantities computed using XGC1 simulation data and good agreement is found. The derived expressions predicts inward and outward propagation of turbulence intensity flux in an intermittent fashion. The outward propagation of turbulence intensity flux occurs at staircase-step locations and is related to the change in poloidal flow velocity shear and to the change in the ion temperature gradient. The standard deviation, skewness and kurtosis for turbulence quantities

  13. temperature fluctuation inside inert atmosphere silos

    African Journals Online (AJOL)

    This research was conducted to study temperature fluctuation inside the inert atmosphere silos loaded with wheat, compare the temperature fluctuation across the top, middle and bottom part of the silo in relation to the ambient temperature. Temperature readings of the ambient and at the top, middle and bottom part of the ...

  14. Fast tracking using edge histograms

    Science.gov (United States)

    Rokita, Przemyslaw

    1997-04-01

    This paper proposes a new algorithm for tracking objects and objects boundaries. This algorithm was developed and applied in a system used for compositing computer generated images and real world video sequences, but can be applied in general in all tracking systems where accuracy and high processing speed are required. The algorithm is based on analysis of histograms obtained by summing along chosen axles pixels of edge segmented images. Edge segmentation is done by spatial convolution using gradient operator. The advantage of such an approach is that it can be performed in real-time using available on the market hardware convolution filters. After edge extraction and histograms computation, respective positions of maximums in edge intensity histograms, in current and previous frame, are compared and matched. Obtained this way information about displacement of histograms maximums, can be directly converted into information about changes of target boundaries positions along chosen axles.

  15. Flap--edge flowfield measurements

    Science.gov (United States)

    Pye, John D.; Cantwell, Brian J.

    1997-11-01

    Recent studies of airframe noise suggest that the wing and flap trailing--edges as well as the flap side--edge are areas of significant noise generation. To identify the fluid dynamic processes associated with these noise sources, we are examining the flow--field around a NACA 63--215 Mod B main element airfoil configured with a half--span Fowler flap. The tests are performed in a low--speed wind tunnel at a Reynolds number of ~ 6.0×10^5. A hot wire traverse system is used to map the mean velocities and turbulence intensities in the near wake region of the flow. Measurements of the pressure fluctuations along the flap side--edge and in the cove of the airfoil configuration are made with pressure transducers mounted inside the airfoil. The experimental data are in good qualitative agreement with the numerical simulation of a slightly higher Reynolds number flow ( ~ 1.5×10^6) around a geometrically similar airfoil configuration.

  16. Coupled Quantum Fluctuations and Quantum Annealing

    Science.gov (United States)

    Hormozi, Layla; Kerman, Jamie

    We study the relative effectiveness of coupled quantum fluctuations, compared to single spin fluctuations, in the performance of quantum annealing. We focus on problem Hamiltonians resembling the the Sherrington-Kirkpatrick model of Ising spin glass and compare the effectiveness of different types of fluctuations by numerically calculating the relative success probabilities and residual energies in fully-connected spin systems. We find that for a small class of instances coupled fluctuations can provide improvement over single spin fluctuations and analyze the properties of the corresponding class. Disclaimer: This research was funded by ODNI, IARPA via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  17. Impact of neutral density fluctuations on gas puff imaging diagnostics

    Science.gov (United States)

    Wersal, C.; Ricci, P.

    2017-11-01

    A three-dimensional turbulence simulation of the SOL and edge regions of a toroidally limited tokamak is carried out. The simulation couples self-consistently the drift-reduced two-fluid Braginskii equations to a kinetic equation for neutral atoms. A diagnostic neutral gas puff on the low-field side midplane is included and the impact of neutral density fluctuations on D_α light emission investigated. We find that neutral density fluctuations affect the D_α emission. In particular, at a radial distance from the gas puff smaller than the neutral mean free path, neutral density fluctuations are anti-correlated with plasma density, electron temperature, and D_α fluctuations. It follows that the neutral fluctuations reduce the D_α emission in most of the observed region and, therefore, have to be taken into account when interpreting the amplitude of the D_α emission. On the other hand, higher order statistical moments (skewness, kurtosis) and turbulence characteristics (such as correlation length, or the autocorrelation time) are not significantly affected by the neutral fluctuations. At distances from the gas puff larger than the neutral mean free path, a non-local shadowing effect influences the neutral density fluctuations. There, the D_α fluctuations are correlated with the neutral density fluctuations, and the high-order statistical moments and measurements of other turbulence properties are strongly affected by the neutral density fluctuations.

  18. Magnetic fluctuation measurements in the Tokapole II tokamak

    International Nuclear Information System (INIS)

    LaPointe, M.A.

    1990-09-01

    Magnetic fluctuation measurements have been made in the Tokapole II tokamak in the frequency range 10 kHz ≤ f ≤ 5 MHz. The fluctuations above 500 kHz varied greatly as the effective edge safety factor, q a , was varied over the range 0.8 ≤ q a ≤ 3.8. As q a was varied from 3.8 to 0.8 the high frequency magnetic fluctuation amplitude increased by over three orders of magnitude. The fluctuation amplitude for 0.5 to 2.0 MHz was a factor of 10 lower than the fluctuation amplitude in the range 100 to 400 kHz for q a of 0.8. When q a was increased to 3.8 the difference between the differing frequency ranges increased to a factor of 10 3 . Comparison of the measured broadband fluctuation amplitudes with those predicted from thermally driven Alfven and magnetosonic waves shows that the amplitudes are at least 1000 times larger than the theoretical predictions. This indicates that there is some other mechanism driving the higher frequency magnetic fluctuations. Estimates show that the contribution by the magnetic fluctuations above 500 kHz to the estimated electron energy loss from stochastic fields is negligible. The profiles of the various components of the magnetic fluctuations indicate the possibility that the shear in the magnetic field may stabilize whatever instabilities drive the magnetic fluctuations

  19. Fast temperature fluctuation measurements in SOL of tokamak TCV

    DEFF Research Database (Denmark)

    Horacek, J.; Nielsen, Anders Henry; Pitts, R.A.

    to compare the statistical character of turbulence in the SOL particle flux on TCV with results from the 2D fluid electrostatic model ESEL [2][4]. Using results from the fast sweeping, similar comparisons can now be made with the fluctuating Te and will be described in this contribution. We also present...... basic statistics derived from the Te time series obtained at different radii in the SOL plasma and show, in particular, that the relationship between higher moments of the probability distribution function from both experimental and simulated Te’s may be well described by the Beta probability...... distribution function, introduced for SOL turbulence in [5]. The fast Te capability also allows the SOL response to Edge Localised Modes (ELMs) to be studied and new results will be presented for the far SOL Te response during Type III ELMs....

  20. General description of magnetic fluctuations in TEXT

    International Nuclear Information System (INIS)

    Kim, Y.J.

    1989-01-01

    The magnetic fluctuations in TEXT (R = 1m, a = 0.26m, ohmically heated tokamak with a full poloidal limiter) have been extensively measured with magnetic probes in the shadow of the limiter with an instrumental range of f -1 (m rms p (f > 50kHz) at the limiter radius is found to be of order 10 -5 T, which is too small to produce significant transport directly. Over the range of discharge parameters in TEXT, the B rms p (f > 50kHz) is observed to have a strong q a dependence (q a -2.2 ) and also a density dependence (n eo -0.8 ). Furthermore, the magnetic fluctuations show a significant correlation with edge electrostatic density fluctuations measured by Langmiur probe inside the limiter radius, and extending along magnetic field lines. Phase variation of the correlated components suggests k double-prime/k perpendicular ∼ 0.005. The B p rms (f >50kHz) is also found to be little dependent on parallel electric field E double-prime. Magnetic fluctuations in both low and high frequency ranges have been characterized by their response to gas puffing, pellet injection, impurity injection, and the effect of an ergodic magnetic limiter. The behavior of magnetic fluctuations with electron cyclotron resonance heating (ECRH) has been also investigated in detail

  1. Stability of edge states and edge magnetism in graphene nanoribbons

    OpenAIRE

    Kunstmann, Jens; Özdoğan, Cem; Quandt, Alexander; Fehske, Holger

    2010-01-01

    We critically discuss the stability of edge states and edge magnetism in zigzag edge graphene nanoribbons (ZGNRs). We point out that magnetic edge states might not exist in real systems, and show that there are at least three very natural mechanisms - edge reconstruction, edge passivation, and edge closure - which dramatically reduce the effect of edge states in ZGNRs or even totally eliminate them. Even if systems with magnetic edge states could be made, the intrinsic magnetism would not be ...

  2. Fluctuation measurements on the Wendelstein 7-AS stellarator by means of repetitive lithium laser blow-off

    Science.gov (United States)

    Bruchhausen, M.; Burhenn, R.; Endler, M.; Kocsis, G.; Pospieszczyk, A.; Zoletnik, S.; W7-AS Team

    2004-03-01

    We present a method of beam emission spectroscopy (BES) using an atomic Li beam that is generated by means of laser blow-off for the investigation of electron density fluctuations in the edge and scrape-off layer plasmas of fusion devices. We discuss the operational limits of this technique and compare them to those of other atomic Li beam diagnostics. Furthermore, we apply this method to different Wendelstein 7-AS discharges and study the influence of the line integrated electron density and the direction of the main magnetic field on the fluctuations inside and outside the last closed flux surface, and especially on their movement. The information we obtain on the influence of the main magnetic field on the fluctuations gives some insight into the possible origin of certain features of their spatial structure.

  3. Fluctuating hydrodynamics for ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, Konstantinos [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States); Wickham, Logan [Department of Computer Science, Washington State University, Richland, 99354 (United States); Voulgarakis, Nikolaos, E-mail: n.voulgarakis@wsu.edu [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States)

    2017-04-25

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids. - Highlights: • A new fluctuating hydrodynamics method for ionic liquids. • Description of ionic liquid morphology in bulk and near electrified surfaces. • Direct comparison with experimental measurements.

  4. Quantum fluctuations and inflation

    International Nuclear Information System (INIS)

    Bardeen, J.M.; Bublik, G.J.

    1987-01-01

    The authors study the effect of quantum fluctuations on the roll-down rate of the inflation field in a semiclassical approximation; this is done by treating the inflation field as a classical random field. The quantum fluctuations are simulated by a noise term in the equation of motion. Two different inflationary scenarios (new and chaotic inflation) are considered and it is found that the roll-down rate of the median value of the inflation field is increased by the quantum fluctuations. Non-linear effects may become important in the later stages of the inflationary regime. (author)

  5. Event by Event fluctuations and Inclusive Distribution

    OpenAIRE

    Bialas, A.; Koch, V.

    1999-01-01

    Event-by-event observables are compared with conventional inclusive measurements. We find that moments of event-by-event fluctuations are closely related to inclusive correlation functions. Implications for upcomming heavy ion experiments are discussed.

  6. Fully Quantum Fluctuation Theorems

    Science.gov (United States)

    Åberg, Johan

    2018-02-01

    Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce "conditional" fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.

  7. Fully Quantum Fluctuation Theorems

    Directory of Open Access Journals (Sweden)

    Johan Åberg

    2018-02-01

    Full Text Available Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce “conditional” fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.

  8. Fishing and stock fluctuations

    National Research Council Canada - National Science Library

    Laevastu, Taivo; Favorite, F

    1988-01-01

    .... Scarcely publicized are the multitude of causes of fish stock fluctuations. This book attempts to summarize the available knowledge on the subject and includes original work of the authors on a matter vital to the fisheries industries of the world...

  9. Cu K-edge X-ray Absorption Spectroscopy Reveals Differential Copper Coordimation Within Amyloid-beta Oligomers Compared to Amyloid-beta Monomers

    Energy Technology Data Exchange (ETDEWEB)

    J Shearer; P Callan; T Tran; V Szalai

    2011-12-31

    The fatal neurodegenerative disorder Alzheimer's disease (AD) has been linked to the formation of soluble neurotoxic oligomers of amyloid-{beta} (A{beta}) peptides. These peptides have high affinities for copper cations. Despite their potential importance in AD neurodegeneration few studies have focused on probing the Cu{sup 2+/1+} coordination environment within A{beta} oligomers. Herein we present a Cu K-edge X-ray absorption spectroscopic study probing the copper-coordination environment within oligomers of A{beta}(42) (sequence: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA). We find that the Cu{sup 2+} cation is contained within a square planar mixed N/O ligand environment within A{beta}(42) oligomers, which is similar to the copper coordination environment of the monomeric forms of {l_brace}Cu{sup II}A{beta}(40){r_brace} and {l_brace}Cu{sup II}A{beta}(16){r_brace}. Reduction of the Cu{sup 2+} cation within the A{beta}(42) oligomers to Cu{sup 1+} yields a highly dioxygen sensitive copper-species that contains Cu{sup 1+} in a tetrahedral coordination geometry. This can be contrasted with monomers of {l_brace}Cu{sup I}A{beta}(40){r_brace} and {l_brace}Cu{sup I}A{beta}(16){r_brace}, which contain copper in a dioxygen inert linear bis-histidine ligand environment [Shearer and Szalai, J. Am. Chem. Soc., 2008, 130, 17826]. The biological implications of these findings are discussed.

  10. Scaling metabolic rate fluctuations

    OpenAIRE

    Labra, Fabio A.; Marquet, Pablo A.; Bozinovic, Francisco

    2007-01-01

    Complex ecological and economic systems show fluctuations in macroscopic quantities such as exchange rates, size of companies or populations that follow non-Gaussian tent-shaped probability distributions of growth rates with power-law decay, which suggests that fluctuations in complex systems may be governed by universal mechanisms, independent of particular details and idiosyncrasies. We propose here that metabolic rate within individual organisms may be considered as an example of an emerge...

  11. Conductance fluctuations and distribution in disordered chains in presence of an electric field

    International Nuclear Information System (INIS)

    Senouci, K.

    1995-07-01

    A simple Kronig-Penney model for 1D mesoscopic systems with disordered δ-peak and finite width potentials under an electric field is used to study the conductance fluctuations and distributions in different phase states. The electric field allows us to obtain the insulating, transition and metallic regimes. In the superlocalized electron states found previously near the Brillouin zone edges of the corresponding periodic system the conductance fluctuations are smaller than those of the insulating regime corresponding to the vanishing field, but the conductance probability distribution has a similar behaviour. Extensive results are compared to the previous works on higher dimensions and quasi-1D mesoscopic systems in each regime and found to be in good agreement. Further discussions are also included. (author). 33 refs, 11 figs

  12. Edge Modeling by Two Blur Parameters in Varying Contrasts.

    Science.gov (United States)

    Seo, Suyoung

    2018-06-01

    This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.

  13. The edge engineering of topological Bi(111) bilayer

    OpenAIRE

    Li, Xiao; Liu, Hai-Wen; Jiang, Hua; Wang, Fa; Feng, Ji

    2014-01-01

    A topological insulator is a novel quantum state, characterized by symmetry-protected non-trivial edge/surface states. Our first-principle simulations show the significant effects of the chemical decoration on edge states of topological Bi(111) bilayer nanoribbon, which remove the trivial edge state and recover the Dirac linear dispersion of topological edge state. By comparing the edge states with and without chemical decoration, the Bi(111) bilayer nanoribbon offers a simple system for asse...

  14. Visualization of phosphatidic acid fluctuations in the plasma membrane of living cells.

    Directory of Open Access Journals (Sweden)

    José P Ferraz-Nogueira

    Full Text Available We developed genetically-encoded fluorescent sensors based on Förster Resonance Energy Transfer to monitor phosphatidic acid (PA fluctuations in the plasma membrane using Spo20 as PA-binding motif. Basal PA levels and phospholipase D activity varied in different cell types. In addition, stimuli that activate PA phosphatases, leading to lower PA levels, increased lamellipodia and filopodia formation. Lower PA levels were observed in the leading edge than in the trailing edge of migrating HeLa cells. In MSC80 and OLN93 cells, which are stable cell lines derived from Schwann cells and oligodendrocytes, respectively, a higher ratio of diacylglycerol to PA levels was demonstrated in the membrane processes involved in myelination, compared to the cell body. We propose that the PA sensors reported here are valuable tools to unveil the role of PA in a variety of intracellular signaling pathways.

  15. Experimental investigation of edge localised modes in JET

    International Nuclear Information System (INIS)

    Lindholm Colton, A.

    1993-08-01

    Edge Localised Modes (ELMs) in the JET tokamak have been studied experimentally, using density profile and fluctuation data from a multichannel reflectometer and temperature profile data from an ECE heterodyne radiometer. The following topics have been investigated: The radial extent and localisation of the density and temperature profile perturbations caused by the ELMs. Fluctuations in the density and magnetic field in connection with the ELMs. The correlation between the repetition frequency of the L-H transition ELMs, and the plasma edge temperature and density. Trajectories in n-T space prior to ELMs later in the H-mode. (au) (39 refs.)

  16. An edge pedestal model

    International Nuclear Information System (INIS)

    Stacev, W.M.

    2001-01-01

    A new model for calculation of the gradient scale lengths in the edge pedestal region and of the edge transport barrier width in H-mode tokamak plasmas will be described. Model problem calculations which demonstrate the promise of this model for predicting experimental pedestal properties will be discussed. The density and Prague gradient scale lengths (L) in the edge are calculated from the particle and ion and electron energy radial transport equations, making use of (presumed) known particle and energy fluxes flowing across the edge transport barrier from the core into the SOL and of edge transport coefficients. The average values of the particle and heat fluxes in the edge transport barrier are calculated in terms of the fluxes crossing into the SOL and the atomic physics reaction rates (ionisation, charge-exchange, elastic scattering, impurity radiation) in the edge by integrating the respective transport equations from the pedestal to the separatrix. An important implication of this model is that the pedestal gradient scale lengths depend not just on local pedestal platers properties but also on particle and energy fluxes from the core plasma and on recycling neutral fluxes that penetrate into the plasma edge, both of which in turn depend on the pedestal properties. The MHD edge pressure gradient constraint α≤ α C is used to determine the pressure width of the edge transport barrier, Δ TB = Δ TB (α c ). Three different models for the MHD edge pressure gradient constraint have been investigated: (1) nominal ideal ballooning mode theory, (2) ballooning mode theory taking into account the edge geometry and shear to access He second stability region; and pedestal β-limit theory when the ballooning modes are stabilised by diamagnetic effects. A series of calculations have been made for a DIII-D model problem. The calculated gradient scale lengths and edge transport barrier widths are of the magnitude of values observed experimentally, and certain trends

  17. All-graphene edge contacts

    DEFF Research Database (Denmark)

    Jacobsen, Kåre Wedel; Falkenberg, Jesper Toft; Papior, Nick Rübner

    2016-01-01

    Using ab-initio methods we investigate the possibility of three-terminalgraphene "T-junction" devices and show that these all-graphene edge contactsare energetically feasible when the 1D interface itself is free from foreignatoms. We examine the energetics of various junction structures as a func......Using ab-initio methods we investigate the possibility of three-terminalgraphene "T-junction" devices and show that these all-graphene edge contactsare energetically feasible when the 1D interface itself is free from foreignatoms. We examine the energetics of various junction structures...... to be in therange of 1-10 kΩμm which is comparable to the best contact resistance reportedfor edge-contacted graphene-metal contacts. We conclude that conductingall-carbon T-junctions should be feasible....

  18. Stability and fluctuations in black hole thermodynamics

    International Nuclear Information System (INIS)

    Ruppeiner, George

    2007-01-01

    I examine thermodynamic fluctuations for a Kerr-Newman black hole in an extensive, infinite environment. This problem is not strictly solvable because full equilibrium with such an environment cannot be achieved by any black hole with mass M, angular momentum J, and charge Q. However, if we consider one (or two) of M, J, or Q to vary so slowly compared with the others that we can regard it as fixed, instances of stability occur, and thermodynamic fluctuation theory could plausibly apply. I examine seven cases with one, two, or three independent fluctuating variables. No knowledge about the thermodynamic behavior of the environment is needed. The thermodynamics of the black hole is sufficient. Let the fluctuation moment for a thermodynamic quantity X be √( 2 >). Fluctuations at fixed M are stable for all thermodynamic states, including that of a nonrotating and uncharged environment, corresponding to average values J=Q=0. Here, the fluctuation moments for J and Q take on maximum values. That for J is proportional to M. For the Planck mass it is 0.3990(ℎ/2π). That for Q is 3.301e, independent of M. In all cases, fluctuation moments for M, J, and Q go to zero at the limit of the physical regime, where the temperature goes to zero. With M fluctuating there are no stable cases for average J=Q=0. But, there are transitions to stability marked by infinite fluctuations. For purely M fluctuations, this coincides with a curve which Davies identified as a phase transition

  19. Object detection using categorised 3D edges

    DEFF Research Database (Denmark)

    Kiforenko, Lilita; Buch, Anders Glent; Bodenhagen, Leon

    2015-01-01

    categorisation algorithm for describing objects in terms of its different edge types. Relying on edge information allow our system to deal with objects with little or no texture or surface variation. We show that edge categorisation improves matching performance due to the higher level of discrimination, which...... is made possible by the explicit use of edge categories in the feature descriptor. We quantitatively compare our approach with the state-of-the-art template based Linemod method, which also provides an effective way of dealing with texture-less objects, tests were performed on our own object dataset. Our...

  20. Comparative Investigation of Guided Fuzzy Clustering and Mean Shift Clustering for Edge Detection in Electrical Resistivity Tomography Images of Mineral Deposits

    Science.gov (United States)

    Ward, Wil; Wilkinson, Paul; Chambers, Jon; Bai, Li

    2014-05-01

    Geophysical surveying using electrical resistivity tomography (ERT) can be used as a rapid non-intrusive method to investigate mineral deposits [1]. One of the key challenges with this approach is to find a robust automated method to assess and characterise deposits on the basis of an ERT image. Recent research applying edge detection techniques has yielded a framework that can successfully locate geological interfaces in ERT images using a minimal assumption data clustering technique, the guided fuzzy clustering method (gfcm) [2]. Non-parametric clustering techniques are statistically grounded methods of image segmentation that do not require any assumptions about the distribution of data under investigation. This study is a comparison of two such methods to assess geological structure based on the resistivity images. In addition to gfcm, a method called mean-shift clustering [3] is investigated with comparisons directed at accuracy, computational expense, and degree of user interaction. Neither approach requires the number of clusters as input (a common parameter and often impractical), rather they are based on a similar theory that data can be clustered based on peaks in the probability density function (pdf) of the data. Each local maximum in these functions represents the modal value of a particular population corresponding to a cluster and as such the data are assigned based on their relationships to these model values. The two methods differ in that gfcm approximates the pdf using kernel density estimation and identifies population means, assigning cluster membership probabilities to each resistivity value in the model based on its distance from the distribution averages. Whereas, in mean-shift clustering, the density function is not calculated, but a gradient ascent method creates a vector that leads each datum towards high density distributions iteratively using weighted kernels to calculate locally dense regions. The only parameter needed in both methods

  1. Simulations of Turbulence in Tokamak Edge and Effects of Self-Consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress is reported on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge. This extends previous work to include self-consistent zonal flows and their effects. The previous work addressed simulation of L-mode tokamak edge turbulence using the turbulence code BOUT that solves Braginskii-based plasma fluid equations in tokamak edge domain. The calculations use realistic single-null geometry and plasma parameters of the DIII-D tokamak and produce fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  2. Investigation of the load reduction potential of two trailing edge flap controls using CFD

    DEFF Research Database (Denmark)

    Heinz, Joachim Christian; Sørensen, Niels N.; Zahle, Frederik

    2011-01-01

    In this work, a 2D aero‐servo‐elastic model of an airfoil section with 3 degrees of freedom (DOF) based on the 2D CFD solver EllipSys2D to calculate the aerodynamic forces is utilized to calculate the load reduction potential of an airfoil equipped with an adaptive trailing edge flap (ATEF......) and subjected to a turbulent inflow signal. The employed airfoil model corresponds to a successfully tested prototype airfoil where piezoelectric actuators were used for the flapping. In the present investigation two possible control methods for the flap are compared in their ability to reduce the fluctuating...

  3. Spin fluctuations and the

    Directory of Open Access Journals (Sweden)

    V.M. Loktev

    2008-09-01

    Full Text Available We analyze the spectral properties of a phenomenological model for a weakly doped two-dimensional antiferromagnet, in which the carriers move within one of the two sublattices where they were introduced. Such a constraint results in the free carrier spectra with the maxima at k=(± π/2 , ± π/2 observed in some cuprates. We consider the spectral properties of the model by taking into account fluctuations of the spins in the antiferromagnetic background. We show that such fluctuations lead to a non-pole-like structure of the single-hole Green's function and these fluctuations can be responsible for some anomalous "strange metal" properties of underdoped cuprates in the nonsuperconducting regime.

  4. The fluctuating gap model

    International Nuclear Information System (INIS)

    Cao, Xiaobin

    2011-01-01

    The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T c in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the quasi

  5. The fluctuating gap model

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiaobin

    2011-01-15

    The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T{sub c} in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the

  6. Living on the edge: roads and edge effects on small mammal populations.

    Science.gov (United States)

    Fuentes-Montemayor, Elisa; Cuarón, Alfredo D; Vázquez-Domínguez, Ella; Benítez-Malvido, Julieta; Valenzuela-Galván, David; Andresen, Ellen

    2009-07-01

    1. Roads may affect wildlife populations through habitat loss and disturbances, as they create an abrupt linear edge, increasing the proportion of edge exposed to a different habitat. Three types of edge effects have been recognized: abiotic, direct biotic, and indirect biotic. 2. We explored the direct biotic edge effects of 3- to 4-m wide roads, and also a previously unrecognized type of edge effect: social. We live-trapped two threatened endemic rodents from Cozumel Island (Oryzomys couesi cozumelae and Reithrodontomys spectabilis) in 16 plots delimited by roads on two sides, to compare edge effects between two adjacent edges (corners), single-edge and interior forest, on life history and social variables. 3. No significant edge effects were observed on the life-history variables, with the exception of differences in body condition between males and females of O. c. cozumelae near edges. Both species showed significant and contrasting effects on their social variables. 4. O. c. cozumelae was distributed according to its age and sex: the proportion of adults and males was higher in interior than near edges, while juveniles and females were more abundant near edges. More nonreproductive females were present in corners than in single-edge and interior, while the opposite distribution was observed for nonreproductive males. 5. The distribution of R. spectabilis was related to its age and reproductive condition, but not to its sex. The proportion of adults was significantly higher in corners, while juveniles were only caught in single-edge and interior quadrants. The proportion of reproductive individuals was higher in edge than interior quadrants, while reproductive females were only present in edge quadrants. 6. We found significant differences between the quadrants with the greatest edge exposure in comparison with other quadrants. The social edge effects we identified complement the typology of edge effects recognized in ecological literature. Our study provides

  7. Fluctuating hydrodynamics for ionic liquids

    Science.gov (United States)

    Lazaridis, Konstantinos; Wickham, Logan; Voulgarakis, Nikolaos

    2017-04-01

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau-Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids.

  8. Fluctuating Asymmetry of Human Populations: A Review

    Directory of Open Access Journals (Sweden)

    John H. Graham

    2016-12-01

    Full Text Available Fluctuating asymmetry, the random deviation from perfect symmetry, is a widely used population-level index of developmental instability, developmental noise, and robustness. It reflects a population’s state of adaptation and genomic coadaptation. Here, we review the literature on fluctuating asymmetry of human populations. The most widely used bilateral traits include skeletal, dental, and facial dimensions; dermatoglyphic patterns and ridge counts; and facial shape. Each trait has its advantages and disadvantages, but results are most robust when multiple traits are combined into a composite index of fluctuating asymmetry (CFA. Both environmental (diet, climate, toxins and genetic (aneuploidy, heterozygosity, inbreeding stressors have been linked to population-level variation in fluctuating asymmetry. In general, these stressors increase average fluctuating asymmetry. Nevertheless, there have been many conflicting results, in part because (1 fluctuating asymmetry is a weak signal in a sea of noise; and (2 studies of human fluctuating asymmetry have not always followed best practices. The most serious concerns are insensitive asymmetry indices (correlation coefficient and coefficient of indetermination, inappropriate size scaling, unrecognized mixture distributions, inappropriate corrections for directional asymmetry, failure to use composite indices, and inattention to measurement error. Consequently, it is often difficult (or impossible to compare results across traits, and across studies.

  9. Terrestrial Gravity Fluctuations

    Directory of Open Access Journals (Sweden)

    Jan Harms

    2015-12-01

    Full Text Available Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10^–23 Hz^–1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our

  10. Terrestrial Gravity Fluctuations

    Science.gov (United States)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10-23 Hz-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  11. Adobe Edge Quickstart Guide

    CERN Document Server

    Labrecque, Joseph

    2012-01-01

    Adobe Edge Quickstart Guide is a practical guide on creating engaging content for the Web with Adobe's newest HTML5 tool. By taking a chapter-by-chapter look at each major aspect of Adobe Edge, the book lets you digest the available features in small, easily understandable chunks, allowing you to start using Adobe Edge for your web design needs immediately. If you are interested in creating engaging motion and interactive compositions using web standards with professional tooling, then this book is for you. Those with a background in Flash Professional wanting to get started quickly with Adobe

  12. Resistive fluid turbulence and tokamak edge plasma dynamics

    International Nuclear Information System (INIS)

    Thayer, D.R.; Diamond, P.H.; Ritz, C.P.

    1988-01-01

    Electrostatic and electromagnetic turbulence has been linked to particle and heat transport in tokamaks. Here we report on several related theoretical and experimental investigations of edge plasma dynamics. The theory of thermally-driven convective cell edge turbulence has been developed to treat the coupling of the radiative-condensation instability to the resistivity-gradient expansion free energy. This model of edge turbulence has led to theoretical understanding of several anomalies in electrostatic edge turbulence found from experiment: that fluctuation levels and transport coefficients are larger than naively expected, that potential fluctuations are significantly larger than the density. Impurity gas-puffing experiments on the TEXT tokamak have been performed to test this theory, and have indicated favorable results. Resistive fluid turbulence models have also been explored and applied in the hope of understanding the extensive edge magnetic fluctuation studies. We discuss models of electromagnetic microtearing turbulence, resistive-pressure-gradient-driven turbulence, and ion temperature gradient driven turbulence. In particular we study the role of resistive fluid turbulence with separatrix effects in the L /yield/ H mode transition. 36 refs., 2 figs

  13. Fluctuations in quantum devices

    Directory of Open Access Journals (Sweden)

    H.Haken

    2004-01-01

    Full Text Available Logical gates can be formalized by Boolean algebra whose elementary operations can be realized by devices that employ the interactions of macroscopic numbers of elementary excitations such as electrons, holes, photons etc. With increasing miniaturization to the nano scale and below, quantum fluctuations become important and can no longer be ignored. Based on Heisenberg equations of motion for the creation and annihilation operators of elementary excitations, I determine the noise sources of composite quantum systems.

  14. Physics of fashion fluctuations

    Science.gov (United States)

    Donangelo, R.; Hansen, A.; Sneppen, K.; Souza, S. R.

    2000-12-01

    We consider a market where many agents trade different types of products with each other. We model development of collective modes in this market, and quantify these by fluctuations that scale with time with a Hurst exponent of about 0.7. We demonstrate that individual products in the model occasionally become globally accepted means of exchange, and simultaneously become very actively traded. Thus collective features similar to money spontaneously emerge, without any a priori reason.

  15. Characterization of Unsteady Flow Structures Near Leading-Edge Slat. Part 1; PIV Measurements

    Science.gov (United States)

    Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan

    2004-01-01

    A comprehensive computational and experimental study has been performed at the NASA Langley Research Center as part of the Quiet Aircraft Technology (QAT) Program to investigate the unsteady flow near a leading-edge slat of a two-dimensional, high-lift system. This paper focuses on the experimental effort conducted in the NASA Langley Basic Aerodynamics Research Tunnel (BART) where Particle Image Velocimetry (PIV) data was acquired in the slat cove and at the slat trailing edge of a three-element, high-lift model at 4, 6, and 8 degrees angle of attack and a freestream Mach Number of 0.17. Instantaneous velocities obtained from PIV images are used to obtain mean and fluctuating components of velocity and vorticity. The data show the recirculation in the cove, reattachment of the shear layer on the slat lower surface, and discrete vortical structures within the shear layer emanating from the slat cusp and slat trailing edge. Detailed measurements are used to examine the shear layer formation at the slat cusp, vortex shedding at the slat trailing edge, and convection of vortical structures through the slat gap. Selected results are discussed and compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, and Jenkins (2004). The experimental dataset provides essential flow-field information for the validation of near-field inputs to noise prediction tools.

  16. Study of edge turbulence in tokamak plasmas

    International Nuclear Information System (INIS)

    Sarazin, Y.

    1997-01-01

    The aim of this work is to propose a new frame to study turbulent transport in plasmas. In order to avoid the restraint of scale separability the forcing by flux is used. A critical one-dimension self-organized cellular model is developed. In keeping with experience the average transport can be described by means of diffusion and convection terms whereas the local transport could not. The instability due to interchanging process is thoroughly studied and some simplified equations are derived. The proposed model agrees with the following experimental results: the relative fluctuations of density are maximized on the edge, the profile shows an exponential behaviour and the amplitude of density fluctuations depends on ionization source strongly. (A.C.)

  17. New fluctuation phenomena in the H-mode regime of PDX tokamak plasmas

    International Nuclear Information System (INIS)

    Slusher, R.E.; Surko, C.M.; Valley, J.F.; Crowley, T.; Mazzucato, E.; McGuire, K.

    1984-05-01

    A new kind of quasi-coherent fluctuation is observed near the edge of plasmas in the PDX tokamak during H-mode operation. (The H-mode occurs in neutral beam heated divertor plasmas and is characterized by improved energy containment as well as large density and temperature gradients near the plasma edge.) These fluctuations are evidenced as VUV and density fluctuation bursts at well-defined frequencies (Δω/ω less than or equal to 0.1) in the frequency range between 50 and 180 kHz. They affect the edge temperature-density product, and therefore they may be important for understanding the relationship between the large edge density and temperature gradients and the improved energy confinement

  18. Adobe Edge Preview 3

    CERN Document Server

    Grover, Chris

    2011-01-01

    Want to use an Adobe tool to design animated web graphics that work on iPhone and iPad? You've come to the right book. Adobe Edge Preview 3: The Missing Manual shows you how to build HTML5 graphics using simple visual tools. No programming experience? No problem. Adobe Edge writes the underlying code for you. With this eBook, you'll be designing great-looking web elements in no time. Get to know the workspace. Learn how Adobe Edge Preview 3 performs its magic.Create and import graphics. Make drawings with Edge's tools, or use art you designed in other programs.Work with text. Build menus, lab

  19. Edge Simulation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, Sergei I. [Univ. of California, San Diego, CA (United States); Angus, Justin [Univ. of California, San Diego, CA (United States); Lee, Wonjae [Univ. of California, San Diego, CA (United States)

    2018-01-05

    The goal of the Edge Simulation Laboratory (ESL) multi-institutional project is to advance scientific understanding of the edge plasma region of magnetic fusion devices via a coordinated effort utilizing modern computing resources, advanced algorithms, and ongoing theoretical development. The UCSD team was involved in the development of the COGENT code for kinetic studies across a magnetic separatrix. This work included a kinetic treatment of electrons and multiple ion species (impurities) and accurate collision operators.

  20. Quantum nature of edge magnetism in graphene.

    Science.gov (United States)

    Golor, Michael; Wessel, Stefan; Schmidt, Manuel J

    2014-01-31

    It is argued that the subtle crossover from decoherence-dominated classical magnetism to fluctuation-dominated quantum magnetism is experimentally accessible in graphene nanoribbons. We show that the width of a nanoribbon determines whether the edge magnetism is on the classical side, on the quantum side, or in between. In the classical regime, decoherence is dominant and leads to static spin polarizations at the ribbon edges, which are well described by mean-field theories. The quantum Zeno effect is identified as the basic mechanism which is responsible for the spin polarization and thereby enables the application of graphene in spintronics. On the quantum side, however, the spin polarization is destroyed by dynamical processes. The great tunability of graphene magnetism thus offers a viable route for the study of the quantum-classical crossover.

  1. Roads as edges: Effects on birds in forested landscapes

    Science.gov (United States)

    Yvette K. Ortega; David E. Capen

    2002-01-01

    Numerous studies have documented that forest edges affect habitat use and reproductive success of forest birds, but few studies have considered edges created by narrow breaks in the forest canopy. We compared predation rates on artificial nests placed within forest habitat along edge transects, 10 m from unpaved roads, and along interior transects, 300 m from forest-...

  2. Experimental study of particle transport and density fluctuation in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Morita, S.; Sanin, A.; Michael, C.; Kawahata, K.; Yamada, H.; Miyazawa, J.; Tokuzawa, T.; Akiyama, T.; Goto, M.; Ida, K.; Yoshinuma, M.; Narihara, K.; Yamada, I.; Yokoyama, M.; Masuzaki, S.; Morisaki, T.; Sakamoto, R.; Funaba, H.; Komori, A.; Vyacheslavov, L.N.; Murakami, S.; Wakasa, A.

    2005-01-01

    A variety of electron density (n e ) profiles have been observed in Large Helical Device (LHD). The density profiles change dramatically with heating power and toroidal magnetic field (B t ) under the same line averaged density. The particle transport coefficients, i.e., diffusion coefficient (D) and convection velocity (V) are experimentally obtained from density modulation experiments in the standard configuration. The values of D and V are estimated separately at the core and edge. The diffusion coefficients are strong function of electron temperature (T e ) and are proportional to T e 1.7±0.9 in core and T e 1.1±0.14 in edge. And edge diffusion coefficients are proportional to B t -2.08 . It is found that the scaling of D in edge is close to gyro-Bohm-like in nature. The existence of non-zero V is observed. It is observed that the electron temperature (T e ) gradient can drive particle convection. This is particularly clear in the core region. The convection velocity in the core region reverses direction from inward to outward as the T e gradient increases. In the edge, the convection is inward directed in the most of the case of the present data set. And it shows modest tendency, whose value is proportional to T e gradient keeping inward direction. However, the toroidal magnetic field also significantly affects value and direction of V. The spectrum of density fluctuation changes at different heating power suggesting that it has an influence on particle transport. The peak wavenumber is around 0.1 times the inversed ion Larmor radius, as is expected from gyro-Bohm diffusion. The peaks of fluctuation intensity are localized at the plasma edge, where density gradient becomes negative and diffusion contributes most to the particle flux. These results suggest a qualitative correlation of fluctuations with particle diffusion. (author)

  3. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  4. Strain fluctuations and elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1982-03-01

    It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.

  5. Gambling with Superconducting Fluctuations

    Science.gov (United States)

    Foltyn, Marek; Zgirski, Maciej

    2015-08-01

    Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.

  6. Theory of edge radiation

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Kocharyan, V.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2008-08-15

    We formulate a complete theory of Edge Radiation based on a novel method relying on Fourier Optics techniques. Similar types of radiation like Transition UndulatorRadiation are addressed in the framework of the same formalism. Special attention is payed in discussing the validity of approximations upon which the theory is built. Our study makes consistent use of both similarity techniques and comparisons with numerical results from simulation. We discuss both near and far zone. Physical understanding of many asymptotes is discussed. Based on the solution of the field equation with a tensor Green's function technique, we also discuss an analytical model to describe the presence of a vacuum chamber. In particular, explicit calculations for a circular vacuum chamber are reported. Finally, we consider the use of Edge Radiation as a tool for electron beam diagnostics. We discuss Coherent Edge Radiation, Extraction of Edge Radiation by a mirror, and other issues becoming important at high electron energy and long radiation wavelength. Based on this work we also study the impact of Edge Radiation on XFEL setups and we discuss recent results. (orig.)

  7. Investigation of the impact of dose fluctuations on tumour control

    International Nuclear Information System (INIS)

    Zavgorodni, S.F.; Royal Adelaide Hospital,; Booth, J.; Adelaide University,; Rosenfeld, A.

    2001-01-01

    Full text: The importance of spatial uniformity of the dose across the Planning Target Volume (PTV) has been investigated previously with the conclusion stated in 'uniform dose theorem' concluding that the uniform dose results in the highest Tumour Control Probability (TCP). The dose fluctuations, which appear in fractionated treatments as a result of setup errors, organ motion, treatment machine calibration and other reasons can be seen as temporal dose non-uniformity. The intuitive expectation, that the temporal dose non-uniformity would also reduce TCP, has been tested. The impact of temporal dose non-uniformity has been investigated considering intra and inter-treatment dose fluctuations. The dose was considered to be spatially uniform. The convolution technique was used and analytical expression of TCP accounting for the dose fluctuation has also been derived. Both techniques used Probability Density Function (PDF) to account for the dose fluctuations. The dose fluctuations with PDF symmetrical around its mean value (Gaussian) as well as non-symmetrical PDFs were both investigated. The symmetrical PDFs represented the fluctuations, which appear in the whole PTV as a result of day to day variation in treatment machine output. Non-symmetrical PDFs represented the dose fluctuations at the edges of PTV as a result of setup errors and organ motion. The effect of the dose fluctuations has been expressed in terms of an extra dose δ (positive or negative) which should be added to the value of temporally uniform dose in order to provide the same TCP as the one resulting from temporally non-uniform (fluctuating) dose. Intra-treatment dose fluctuations resulted in an increased TCP, though the effect is relatively small (δ<1 Gy for the treatment dose of 60 Gy). However, inter-treatment fluctuations of the dose reduced TCP for a patient population. The size of effect increases with the standard deviation of the PDF. Random ultra-treatment dose fluctuations resulted in

  8. Investigation of fluctuations in the HDH and H* regime of Wendelstein 7-AS

    International Nuclear Information System (INIS)

    Baeumel, S.; Werner, A.; McCormick, K.

    2003-01-01

    The High Density H-Mode Regime was discovered in Island Divertor operation of the Wendelstein 7-AS (W7-AS)stellerator. This regime is characterized by low impurity, high-energy confinement times - up to twice the value of the International Stellarator Scaling ISS95 - and edge radiated power fractions of up to 90% in detached state. Regarding the enhanced impurity transport at good energy confinement there are similarities to the enhanced D α H-mode found on the Alcator C-Mod tokamak. In W7-AS studies were performed in order to compare the HDH regime with the classical ELM-free discharges (H * ). Although both regimes are similar in collisionality and have almost the same n e (r)- and T e (r)-profile shapes, the H * regime suffers a radiation collapse due to impurity accumulation. The short impurity confinement times in HDH discharges requires enhanced transport at the plasma edge. The cause is not clear and this contribution looks for similarities to the enhanced D α H-mode of Alcator C-Mod, that is, whether quasicoherent modes exist in W7-AS causing enhanced edge transport. Discharges with a variation of magnetic configurations, densities (up to 4.10 20 m -3 ) and powers (up to 3.2 MW absorbed) will be discussed with respect to the different behaviour of fluctuations. (orig.)

  9. Simulations of Tokamak Edge Turbulence Including Self-Consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge is summarized in this mini-conference talk. A more detailed report on this work is presented in a poster at this conference. This work extends our previous work to include self-consistent zonal flows and their effects. The previous work addressed the simulation of L-mode tokamak edge turbulence using the turbulence code BOUT. The calculations used realistic single-null geometry and plasma parameters of the DIII-D tokamak and produced fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  10. Event-by-event fluctuations at SPS

    CERN Document Server

    Appelshauser, Harald; Adamova, D.; Agakichiev, G.; Belaga, V.; Braun-Munzinger, P.; Castillo, A.; Cherlin, A.; Damjanovic, S.; Dietel, T.; Dietrich, L.; Drees, A.; Esumi, S.I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glassel, P.; Hering, G.; Holeczek, J.; Kushpil, V.; Lenkeit, B.; Ludolphs, W.; Maas, A.; Marn, A.; Milosevic, J.; Milov, A.; Miskowiec, D.; Panebrattsev, Yu.; Petchenova, O.; Petracek, V.; Pfeiffer, A.; Rak, J.; Ravinovich, I.; Rehak, P.; Schmitz, W.; Schukraft, J.; Sedykh, S.; Shimansky, S.; Slvova, J.; Stachel, J.; Sumbera, M.; Tilsner, H.; Tserruya, Itzhak; Wessels, J.P.; Wienold, T.; Windelband, B.; Wurm, J.P.; Xie, W.; Yurevich, S.; Yurevich, V.; Appelshauser, Harald; Sako, Hiro

    2005-01-01

    Results on event-by-event fluctuations of the mean transverse momentum and net charge in Pb-Au collisions, measured by the CERES Collaboration at CERN-SPS, are presented. We discuss the centrality and beam energy dependence and compare our data to cascade calculations.

  11. Event-by-event fluctuations at SPS

    Science.gov (United States)

    Appelshäuser, Harald; Sako, Hiro; Adamová, D.; Agakichiev, G.; Appelshäuser, H.; Belaga, V.; Braun-Munzinger, P.; Castillo, A.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Hering, G.; Holeczek, J.; Kushpil, V.; Lenkeit, B.; Ludolphs, W.; Maas, A.; Marín, A.; Milošević, J.; Milov, A.; Miśkowiec, D.; Panebrattsev, Yu.; Petchenova, O.; Petráček, V.; Pfeiffer, A.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Schukraft, J.; Sedykh, S.; Shimansky, S.; Slívová, J.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Wessels, J. P.; Wienold, T.; Windelband, B.; Wurm, J. P.; Xie, W.; Yurevich, S.; Yurevich, V.; Ceres Collaboration

    2005-04-01

    Results on event-by-event fluctuations of the mean transverse momentum and net charge in Pb-Au collisions, measured by the CERES Collaboration at CERN-SPS, are presented. We discuss the centrality and beam energy dependence and compare our data to cascade calculations.

  12. Fluctuations in email size

    Science.gov (United States)

    Matsubara, Yoshitsugu; Musashi, Yasuo

    2017-12-01

    The purpose of this study is to explain fluctuations in email size. We have previously investigated the long-term correlations between email send requests and data flow in the system log of the primary staff email server at a university campus, finding that email size frequency follows a power-law distribution with two inflection points, and that the power-law property weakens the correlation of the data flow. However, the mechanism underlying this fluctuation is not completely understood. We collected new log data from both staff and students over six academic years and analyzed the frequency distribution thereof, focusing on the type of content contained in the emails. Furthermore, we obtained permission to collect "Content-Type" log data from the email headers. We therefore collected the staff log data from May 1, 2015 to July 31, 2015, creating two subdistributions. In this paper, we propose a model to explain these subdistributions, which follow log-normal-like distributions. In the log-normal-like model, email senders -consciously or unconsciously- regulate the size of new email sentences according to a normal distribution. The fitting of the model is acceptable for these subdistributions, and the model demonstrates power-law properties for large email sizes. An analysis of the length of new email sentences would be required for further discussion of our model; however, to protect user privacy at the participating organization, we left this analysis for future work. This study provides new knowledge on the properties of email sizes, and our model is expected to contribute to the decision on whether to establish upper size limits in the design of email services.

  13. Experimental study of particle transport and density fluctuation in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Sanin, A.

    2005-01-01

    A variety of electron density (n e ) profiles have been observed in Large Helical Device (LHD). The density profiles change dramatically with heating power and toroidal magnetic field (B t ) under the same line averaged density. The particle transport coefficients, i.e., diffusion coefficient (D) and convection velocity (V) are experimentally obtained in the standard configuration from density modulation experiments. The values of D and V are estimated separately in the core and edge. The diffusion coefficients are found to be a strong function of electron temperature (T e ) and are proportional to T e 1.7±0.9 in the core and T e 1.1±0.14 in the edge. Edge diffusion coefficients are proportional to B t -2.08 . It is found that the scaling of D in the edge is close to gyro-Bohm-like in nature. Non-zero V is observed and it is found that the electron temperature gradient can drive particle convection, particularly in the core region. The convection velocity in the core reverses direction from inward to outward as the T e gradient increases. In the edge, convection is inward directed in most cases of the present data set. It shows a modest tendency, being proportional to T e gradient and remaining inward directed. However, the toroidal magnetic field also significantly affects the value and direction of V. The density fluctuation spectrum varies with heating power suggesting that it has an influence on particle transport. The value of K sub(perpendicular) ρ i is around 0.1, as expected for gyro-Bohm diffusion. Fluctuations are localized in both positive and negative density gradient regions of the hollow density profiles. The fluctuation power in each region is clearly distinguished having different phase velocity profiles. (author)

  14. COMPAR

    International Nuclear Information System (INIS)

    Kuefner, K.

    1976-01-01

    COMPAR works on FORTRAN arrays with four indices: A = A(i,j,k,l) where, for each fixed k 0 ,l 0 , only the 'plane' [A(i,j,k 0 ,l 0 ), i = 1, isub(max), j = 1, jsub(max)] is held in fast memory. Given two arrays A, B of this type COMPAR has the capability to 1) re-norm A and B ind different ways; 2) calculate the deviations epsilon defined as epsilon(i,j,k,l): =[A(i,j,k,l) - B(i,j,k,l)] / GEW(i,j,k,l) where GEW (i,j,k,l) may be chosen in three different ways; 3) calculate mean, standard deviation and maximum in the array epsilon (by several intermediate stages); 4) determine traverses in the array epsilon; 5) plot these traverses by a printer; 6) simplify plots of these traverses by the PLOTEASY-system by creating input data blocks for this system. The main application of COMPAR is given (so far) by the comparison of two- and three-dimensional multigroup neutron flux-fields. (orig.) [de

  15. Swords with Blunt Edges

    Science.gov (United States)

    Popham, W. James

    2004-01-01

    Many U.S. educators now wonder whether they're teachers or targets. This mentality stems from the specter of their school being sanctioned for failing the state accountability tests mandated under No Child Left Behind (NCLB). According to this author, most of those tests are like blunt-edged swords: They function badly in two directions. While…

  16. Edge effects in magnetoplasmas

    NARCIS (Netherlands)

    Suttorp, L.G.; Kraeft, W.D.; Schlanges, M.

    1996-01-01

    Edge effects in magnetized charged-particle systems are discussed with the help of a multiple-reflection expansion for the Green function. The profiles of the density and the electric current are determined both for the non-degenerate and the highly degenerate case. The asymptotic form of the

  17. The Inner Urban Edge

    Science.gov (United States)

    Ferebee, Ann; Carpenter, Edward K.

    1974-01-01

    In this article, renewal of the inner urban edge is discussed. Norfolk (Virginia) is attempting to blur the difference between old and new neighbor hoods through zoning and architectural controls. Cincinnati (Ohio) is developing an environmentally sound hillside design. Reading (Pennsylvania) is utilizing old railyards for greenbelts of hiking and…

  18. Fluctuations in macroscopically agitated plasma:quasiparticles and effective temperature

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Gresillon, D.

    1994-01-01

    Fluctuations in the plasma, in which macroscopic fluid-like motion is agitated due to large-scale and low-frequency electro-magnetic fields, are studied. Such fields can be produced by external factors or internally, for example due to turbulence. Fluctuation spectral distributions are calculated with regard to the renormalization of the transition probability for a test-particle and of the test-particle shielding. If the correlation length for the random fluid-like motion is large as compared to the fluctuation scale lengths, then the fluctuation spectral distributions can be explained in terms of quasiparticles originating from macroscopic plasma agitation and of an effective temperature

  19. Inflationary fluctuations, entropy generation and baryogenesis in a cold universe

    International Nuclear Information System (INIS)

    Ellis, J.; Enqvist, K.; Nanopoulos, D.V.; Olive, K.A.

    1987-01-01

    We study the implications of a generic inflationary model for scenarios of baryogenesis based on the decays of coherent oscillations of squark and slepton fields. We consider the effects of de Sitter fluctuations on the magnitudes of the coherent oscillations of squarks and sleptons. We see that the largest contribution to the entropy density is due to inflation decays which together with the value of the oscillation amplitude determined by the de Sitter fluctuations leads to a baryon to entropy ratio O(10 -10 ). The isothermal density fluctuations produced by the coherent oscillations are found to be negligible compared with the adiabatic fluctuations produced during inflation. (orig.)

  20. Big Bang or vacuum fluctuation

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1980-01-01

    Some general properties of vacuum fluctuations in quantum field theory are described. The connection between the ''energy dominance'' of the energy density of vacuum fluctuations in curved space-time and the presence of singularity is discussed. It is pointed out that a de-Sitter space-time (with the energy density of the vacuum fluctuations in the Einstein equations) that matches the expanding Friedman solution may describe the history of the Universe before the Big Bang. (P.L.)

  1. Fluctuations of pT from initial size fluctuations

    International Nuclear Information System (INIS)

    Chojnacki, M.; Broniowski, W.; Obara, L.

    2010-01-01

    We investigate the initial transverse size of the source, which comes directly from the Glauber treatment of the earliest stage of relativistic heavy-ion collisions. After the hydrodynamic evolution stage the fluctuations in the transverse velocity flow at the hadronic freeze-out are transformed into the even-by-event fluctuations of the average transverse momentum. The Glauber phase is simulated by GLISSANDO and followed by a realistic hydrodynamic evolution stage. The statistical hadronization is performed by the THERMINATOR. We describe the pT fluctuations at RHIC, in particular the magnitude of the effect, its centrality dependence, and the weak dependence on the incident energy. The results show that the observed event-by-event p T fluctuations are mainly caused by the initial source size fluctuations. (author)

  2. Graphene edges; localized edge state and electron wave interference

    Directory of Open Access Journals (Sweden)

    Enoki Toshiaki

    2012-03-01

    Full Text Available The electronic structure of massless Dirac fermion in the graphene hexagonal bipartite is seriously modified by the presence of edges depending on the edge chirality. In the zigzag edge, strongly spin polarized nonbonding edge state is created as a consequence of broken symmetry of pseudo-spin. In the scattering at armchair edges, the K-K’ intervalley transition gives rise to electron wave interference. The presence of edge state in zigzag edges is observed in ultra-high vacuum STM/STS observations. The electron wave interference phenomenon in the armchair edge is observed in the Raman G-band and the honeycomb superlattice pattern with its fine structure in STM images.

  3. Permutation entropy analysis of density fluctuations in the torsatron TJ-K

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong; Ramisch, Mirko [Institut fuer Grenzflaechenverfahrenstechnik und Plasmatechnologie, Universitaet Stuttgart (Germany)

    2014-07-01

    In order to explore the nature of density fluctuations in the edge of magnetically confined fusion plasmas, the technique of permutation entropy and statistical complexity is used. The location of fluctuations on the entropy versus complexity plane classifies the dynamical behaviour of the system. The behaviour can be differentiated between stochastic and chaotic. The latter is supposed to be connected to a specific temporal form of intermittent density events, i.e. blobs, in the scrape-off layer (SOL). In this contribution, density fluctuations measured with a Langmuir probe in the torsatron TJ-K are analyzed with respect to the dynamical nature. Radial scans are performed across the separatrix to distinguish the dynamics in the inner edge and the SOL. Comparisons with well known test systems indeed point to a qualitative change in the dynamics across the separatrix. In the region of maximum density gradient, the fluctuations are characterized by minimum entropy. The results will be discussed on separated scales.

  4. Biomolecules: Fluctuations and relaxations

    Science.gov (United States)

    Parak, F.; Ostermann, A.; Gassmann, A.; Scherk, C.; Chong, S.-H.; Kidera, A.; Go, N.

    1999-10-01

    The normal-mode refinement of X-ray crystallographic data opened a new possibility to analyze the mean-square displacements in a protein molecule. A comparison of the X-ray structure of myoglobin at several temperatures with Mössbauer data is performed. In the low-temperature regime below 180 K the iron mean-square displacements obtained by Mössbauer spectroscopy are in good agreement with a normal-mode analysis. The X-ray mean-square displacements at the position of the iron, after the motion originated from the external degrees of freedom are subtracted, have practically the same temperature dependence as those from Mössbauer spectroscopy. The difference between the X-ray mean-square displacements and those predicted by normal-mode analysis measures the distribution of molecules into conformational substates. Above 180 K the Mössbauer effect indicates fluctuations between conformational substates. The relaxation from a Fe(III) conformation to a Fe(II) conformation is shown for superoxide dismutase of Propionibacterium shermanii.

  5. Characteristics of edge localized mode in JFT-2M H-mode

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi; Funahashi, Akimasa; Goldston, R.J.

    1989-03-01

    Characteristics of edge localized mode (ELM/ERP) during H-mode plasma of JFT-2M were investigated. It was found that ELM/ERP is mainly a density fluctuation phenomena in the edge, and electron temperature in the edge except just near the separatrix is not very much perturbed. Several experimental conditions to controll ELM/ERP are, plasma density, plasma ion species, heating power, and plasma current ramping. ELM/ERPs found in low density deuterium discharge are suppressed by raising the density. ELM/ERPs are pronounced in hydrogen plasma compared with deuterium plasma. ELM/ERPs seen in hydrogen plasma or in near marginal H-mode conditions are suppressed by increasing the heating power. ELM/ERPs are found to be suppressed by plasma current ramp down, whereas they are enhanced by current ramp up. MHD aspect of ELM/ERP was investigated. No clear MHD features of ELM/ERP were found. However, reversal of mode rotation seen imediately after ELM/ERP suggests the temporal return to L-mode during the ELM/ERP event. (author)

  6. Edge effect correction using ion beam figuring.

    Science.gov (United States)

    Yang, Bing; Xie, Xuhui; Li, Furen; Zhou, Lin

    2017-11-10

    The edge effect is regarded as one of the most difficult technical issues for fabricating large primary mirrors, as it can greatly reduce the key performance of the optical system. Ion beam figuring (IBF) has the advantage of no edge effect, so we can use it to remove high points on the edge and improve surface accuracy. The edge local correction method (ELCM) of IBF processes only the surface edge zone, and is very different from the current full caliber figuring method (FCFM). Therefore, it is necessary to study the ELCM of IBF. In this paper, the key factors of ELCM are analyzed, such as dwell time algorithm, edge data extension methods, and the outward dimension of the starting figuring point. At the same time, the distinctions between ELCM and FCFM are compared. Finally, a 142 mm diameter fused silica mirror is fabricated to verify the validity of the theoretical of ELCM. The experimental results indicate that the figuring precision and efficiency can be obviously improved by ELCM.

  7. Suppressing Quantum Fluctuations in Classicalization

    CERN Document Server

    Vikman, Alexander

    2013-01-01

    We study vacuum quantum fluctuations of simple Nambu-Goldstone bosons - derivatively coupled single scalar-field theories possessing shift-symmetry in field space. We argue that quantum fluctuations of the interacting field can be drastically suppressed with respect to the free-field case. Moreover, the power-spectrum of these fluctuations can soften to become red for sufficiently small scales. In quasiclassical approximation, we demonstrate that this suppression can only occur for those theories that admit such classical static backgrounds around which small perturbations propagate faster than light. Thus a quasiclassical softening of quantum fluctuations is only possible for theories which classicalize instead of having a usual Lorentz invariant and local Wilsonian UV- completion. We illustrate our analysis by estimating the quantum fluctuations for the DBI-like theories.

  8. Gravitons and light cone fluctuations

    International Nuclear Information System (INIS)

    Ford, L.H.

    1995-01-01

    Gravitons in a squeezed vacuum state, the natural result of quantum creation in the early Universe or by black holes, will introduce metric fluctuations. These metric fluctuations will introduce fluctuations of the light cone. It is shown that when the various two-point functions of a quantized field are averaged over the metric fluctuations, the light cone singularity disappears for distinct points. The metric-averaged functions remain singular in the limit of coincident points. The metric-averaged retarded Green's function for a massless field becomes a Gaussian which is nonzero both inside and outside of the classical light cone. This implies some photons propagate faster than the classical light speed, whereas others propagate slower. The possible effects of metric fluctuations upon one-loop quantum processes are discussed and illustrated by the calculation of the one-loop electron self-energy

  9. Smoothness in Binomial Edge Ideals

    Directory of Open Access Journals (Sweden)

    Hamid Damadi

    2016-06-01

    Full Text Available In this paper we study some geometric properties of the algebraic set associated to the binomial edge ideal of a graph. We study the singularity and smoothness of the algebraic set associated to the binomial edge ideal of a graph. Some of these algebraic sets are irreducible and some of them are reducible. If every irreducible component of the algebraic set is smooth we call the graph an edge smooth graph, otherwise it is called an edge singular graph. We show that complete graphs are edge smooth and introduce two conditions such that the graph G is edge singular if and only if it satisfies these conditions. Then, it is shown that cycles and most of trees are edge singular. In addition, it is proved that complete bipartite graphs are edge smooth.

  10. Heavy Neutral Beam Probe for Edge Plasma Analysis in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Castracane, J.

    2001-01-04

    The Heavy Neutral Beam Probe (HNBP) developed initially with DOE funding under the Small Business Innovation Research (SBIR) program was installed on the Tokamak de Varennes (TdeV) at the CCFM. This diagnostic was designed to perform fundamental measurements of edge plasma properties. The hardware was capable of measuring electron density and potential profiles with high spatial and temporal resolution. Fluctuation spectra for these parameters were obtained with HNBP for transport studies.

  11. Heavy Neutral Beam Probe for Edge Plasma Analysis in Tokamaks

    International Nuclear Information System (INIS)

    Castracane, J.

    2001-01-01

    The Heavy Neutral Beam Probe (HNBP) developed initially with DOE funding under the Small Business Innovation Research (SBIR) program was installed on the Tokamak de Varennes (TdeV) at the CCFM. This diagnostic was designed to perform fundamental measurements of edge plasma properties. The hardware was capable of measuring electron density and potential profiles with high spatial and temporal resolution. Fluctuation spectra for these parameters were obtained with HNBP for transport studies

  12. Quantum fluctuations from thermal fluctuations in Jacobson formalism

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Ashour, Amani; Alcheikh, Mohammad [Damascus University, Mathematics Department, Faculty of Science, Damascus (Syrian Arab Republic); Alasfar, Lina [Universite Clermont Auvergne, Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Aubiere (France); Alsaleh, Salwa; Mahroussah, Ahmed [King Saud University, Department of Physics and Astronomy, Riyadh (Saudi Arabia)

    2017-09-15

    In the Jacobson formalism general relativity is obtained from thermodynamics. This is done by using the Bekenstein-Hawking entropy-area relation. However, as a black hole gets smaller, its temperature will increase. This will cause the thermal fluctuations to also increase, and these will in turn correct the Bekenstein-Hawking entropy-area relation. Furthermore, with the reduction in the size of the black hole, quantum effects will also start to dominate. Just as the general relativity can be obtained from thermodynamics in the Jacobson formalism, we propose that the quantum fluctuations to the geometry can be obtained from thermal fluctuations. (orig.)

  13. Fluctuation studies of ECH plasmas in the ATF torsatron and the IMS stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.H.; Wilgen, J.B.; Murakami, M.; Baylor, L.R.; Bigelow, T.S.; Colchin, R.J.; Dory, R.A.; Dominguez, N.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Isler, R.C.; Jernigan, T.C.; Lyon, J.F.; Ma, C.H.; Mioduszewski, P.K.; Rasmussen, D.A.; Saltmarsh, M.J.; Thomas, C.E.; Uckan, T. [Oak Ridge National Lab., TN (United States); Hanson, G.R.; Qualls, A.L. [Oak Ridge Inst. for Science and Engineering, Oak Ridge, TN (United States); Bell, J.D.; Lee, D.K. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Aceto, S.C.; Zielinski, J. [Rensselaer Polytechnic Inst., Troy, NY (United States); Shats, M.G. [Australian National Univ., Canberra, ACT (Australia); Likin, K.M.; Sarksyan, K.A.; Kovrizhnykh, L.M. [AN SSSR, Moscow (Russian Federation). Inst. Obshchey Fiziki; Matthews, P.G.; Peterson, B.J.; Anderson, D.T.; Talmadge, J.N.; Anderson, F.S.B.; Shohet, J.L. [Wisconsin Univ., Madison, WI (United States). Torsatron/Stellarator Lab.; Hidalgo, C. [Association Euratom-Ciemat, Madrid (Spain)

    1992-10-01

    The results of experimental studies of fluctuations and transport in ECH plasmas in the ATF torsatron and the IMS stellarator are presented. In ATF, a variety of diagnostics have been used to measure turbulence amplitudes and spectral characteristics throughout the plasma. In the plasma core, density fluctuations with characteristics like those expected for drift waves (possibly connected with trapped electron effects) are seen. In the gradient region, the density fluctuation levels are consistent with those expected for resistive interchange turbulence. In the edge, fluctuations appear to be correlated with density gradients, and the fluctuation-induced particle flux and global particle confinement can be influenced by positive limiter biasing. In IMS, whose parameters model those in the edge of larger devices, two-dimensional (2-D) probe measurements show substantial poloidal variations in the fluctuation-induced particle flux that are most pronounced at the plasma edge; as in ATF, the particle flux can be reduced by positive limiter biasing. The 2-D probe measurements also show good agreement between the plasma poloidal flow velocities determined from the Reynolds stress and force balance.

  14. Fluctuation studies of ECH plasmas in the ATF torsatron and the IMS stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.H.; Wilgen, J.B.; Murakami, M.; Baylor, L.R.; Bigelow, T.S.; Colchin, R.J.; Dory, R.A.; Dominguez, N.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Isler, R.C.; Jernigan, T.C.; Lyon, J.F.; Ma, C.H.; Mioduszewski, P.K.; Rasmussen, D.A.; Saltmarsh, M.J.; Thomas, C.E.; Uckan, T. (Oak Ridge National Lab., TN (United States)); Hanson, G.R.; Qualls, A.L. (Oak Ridge Inst. for Science and Engineering, Oak Ridge, TN (U

    1992-01-01

    The results of experimental studies of fluctuations and transport in ECH plasmas in the ATF torsatron and the IMS stellarator are presented. In ATF, a variety of diagnostics have been used to measure turbulence amplitudes and spectral characteristics throughout the plasma. In the plasma core, density fluctuations with characteristics like those expected for drift waves (possibly connected with trapped electron effects) are seen. In the gradient region, the density fluctuation levels are consistent with those expected for resistive interchange turbulence. In the edge, fluctuations appear to be correlated with density gradients, and the fluctuation-induced particle flux and global particle confinement can be influenced by positive limiter biasing. In IMS, whose parameters model those in the edge of larger devices, two-dimensional (2-D) probe measurements show substantial poloidal variations in the fluctuation-induced particle flux that are most pronounced at the plasma edge; as in ATF, the particle flux can be reduced by positive limiter biasing. The 2-D probe measurements also show good agreement between the plasma poloidal flow velocities determined from the Reynolds stress and force balance.

  15. Living on the edge: Space use of Eurasian red squirrels in marginal high-elevation habitat

    Science.gov (United States)

    Romeo, Claudia; Wauters, Lucas A.; Preatoni, Damiano; Tosi, Guido; Martinoli, Adriano

    2010-11-01

    In marginal habitats located at the edge of a species' range, environmental conditions are frequently extreme and individuals may be subject to different selective pressures compared to central populations. These so-called edge or marginal populations tend to have lower densities and reproductive rates than populations located in more suitable habitats, but little is known about local adaptations in spacing behavior. We studied space use and social organization in a population of Eurasian red squirrels ( Sciurus vulgaris) in a high-elevation marginal habitat of dwarf mountain pine ( Pinus mugo) and compared it with spacing patterns in high-quality Scots pine ( Pinus sylvestris) forest at lower-elevation. Home ranges and core areas were larger in the marginal habitat. In both habitats, males used larger home ranges than females, but sex differences in core area size were significant only in the edge population. Patterns of core area overlap were similar in both habitats with intra-sexual territoriality among adult females and higher degrees of inter-sexual overlap, typical for the species throughout its range. However, low densities in the edge population resulted in higher female by males overlap in spring-summer, suggesting males increased home ranges and core areas during mating season to augment access to estrus females. Thus, in the marginal habitat, with low food abundance and low population densities, linked with extreme winter conditions, squirrels, especially males, used large home ranges. Finally, squirrels responded more strongly to variation in food availability (inverse relation between home range size and seed abundance), and even to fluctuations in density (inverse relation between core area size and density of animals of the same sex), in the marginal than in the high-quality habitat, suggesting high behavioral plasticity to respond to the ecological constraints in marginal habitats.

  16. Edge detection in digital images using Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Marjan Kuchaki Rafsanjani

    2015-11-01

    Full Text Available Ant Colony Optimization (ACO is an optimization algorithm inspired by the behavior of real ant colonies to approximate the solutions of difficult optimization problems. In this paper, ACO is introduced to tackle the image edge detection problem. The proposed approach is based on the distribution of ants on an image; ants try to find possible edges by using a state transition function. Experimental results show that the proposed method compared to standard edge detectors is less sensitive to Gaussian noise and gives finer details and thinner edges when compared to earlier ant-based approaches.

  17. Edge energy transport barrier and turbulence in the I-mode regime on Alcator C-Moda)

    Science.gov (United States)

    Hubbard, A. E.; Whyte, D. G.; Churchill, R. M.; Cziegler, I.; Dominguez, A.; Golfinopoulos, T.; Hughes, J. W.; Rice, J. E.; Bespamyatnov, I.; Greenwald, M. J.; Howard, N.; Lipschultz, B.; Marmar, E. S.; Reinke, M. L.; Rowan, W. L.; Terry, J. L.

    2011-05-01

    We report extended studies of the I-mode regime [Whyte et al., Nucl. Fusion 50, 105005 (2010)] obtained in the Alcator C-Mod tokamak [Marmar et al., Fusion Sci. Technol. 51(3), 3261 (2007)]. This regime, usually accessed with unfavorable ion B × ∇B drift, features an edge thermal transport barrier without a strong particle transport barrier. Steady I-modes have now been obtained with favorable B × ∇B drift, by using specific plasma shapes, as well as with unfavorable drift over a wider range of shapes and plasma parameters. With favorable drift, power thresholds are close to the standard scaling for L-H transitions, while with unfavorable drift they are ˜ 1.5-3 times higher, increasing with Ip. Global energy confinement in both drift configurations is comparable to H-mode scalings, while density profiles and impurity confinement are close to those in L-mode. Transport analysis of the edge region shows a decrease in edge χeff, by typically a factor of 3, between L- and I-mode. The decrease correlates with a drop in mid-frequency fluctuations (f ˜ 50-150 kHz) observed on both density and magnetics diagnostics. Edge fluctuations at higher frequencies often increase above L-mode levels, peaking at f ˜ 250 kHz. This weakly coherent mode is clearest and has narrowest width (Δf/f ˜ 0.45) at low q95 and high Tped, up to 1 keV. The Er well in I-mode is intermediate between L- and H-mode and is dominated by the diamagnetic contribution in the impurity radial force balance, without the Vpol shear typical of H-modes.

  18. Spectral fluctuations and zeta functions

    International Nuclear Information System (INIS)

    Balazs, N.L.; Schmit, C.; Voros, A.

    1987-01-01

    The study theoretically and numerically the role of the fluctuations of eigenvalue spectra {μ/sub n} in a particular analytical continuation process applied to the (generalized) zeta function Z(s) = Σ/sub n/μ/sub n//sup -s/ for s large and positive. A particularly interesting example is the spectrum of the Laplacian on a triangular domain which tessellates a compact surface of constant negative curvature (of genus two). The authors indeed find that the fluctuations restrict the abscissa of convergence, and also affect the rate of convergence. This then initiates a new approach to the exploration of spectral fluctuations through the convergence of analytical continuation processes

  19. Fluctuation theorem: A critical review

    Science.gov (United States)

    Malek Mansour, M.; Baras, F.

    2017-10-01

    Fluctuation theorem for entropy production is revisited in the framework of stochastic processes. The applicability of the fluctuation theorem to physico-chemical systems and the resulting stochastic thermodynamics were analyzed. Some unexpected limitations are highlighted in the context of jump Markov processes. We have shown that these limitations handicap the ability of the resulting stochastic thermodynamics to correctly describe the state of non-equilibrium systems in terms of the thermodynamic properties of individual processes therein. Finally, we considered the case of diffusion processes and proved that the fluctuation theorem for entropy production becomes irrelevant at the stationary state in the case of one variable systems.

  20. On Detecting Edges.

    Science.gov (United States)

    1986-03-01

    size / uo;1 ) 9 2.5, it has subpixel posi- tion localization (b , < 1/3) and an angular localization better ".- than 10; further, it is designed to be...detection is robust with respect to noise; for (step-size / o.,, ) 2 2.5, it has subpixel posi- tion localization (u, oi. < 1/3) and an angular localization...34"..".- . ’ Page 48 On Detecting Edges *.% intensities photoelectronic noise may dominate thermal noise, rendering our noise-model invalid. Under such

  1. Are networks with more edges easier to synchronize, or not?

    International Nuclear Information System (INIS)

    Zhi-Sheng, Duan; Chao, Liu; Guan-Rong, Chen; Wen-Xu, Wang

    2009-01-01

    In this paper, the relationship between network synchronizability and the edge-addition of its associated graph is investigated. First, it is shown that adding one edge to a cycle definitely decreases the network synchronizability. Then, since sometimes the synchronizability can be enhanced by changing the network structure, the question of whether the networks with more edges are easier to synchronize is addressed. Based on a subgraph and complementary graph method, it is shown by examples that the answer is negative even if the network structure is arbitrarily optimized. This reveals that generally there are redundant edges in a network, which not only make no contributions to synchronization but actually may reduce the synchronizability. Moreover, a simple example shows that the node betweenness centrality is not always a good indicator for the network synchronizability. Finally, some more examples are presented to illustrate how the network synchronizability varies following the addition of edges, where all the examples show that the network synchronizability globally increases but locally fluctuates as the number of added edges increases. (general)

  2. A dynamics investigation into edge plasma turbulence

    International Nuclear Information System (INIS)

    Thomsen, H.

    2002-08-01

    The present experimental work investigates plasma turbulence in the edge region of magnetized high-temperature plasmas. A main topic is the turbulent dynamics parallel to the magnetic field, where hitherto only a small data basis existed, especially for very long scale lengths in the order of ten of meters. A second point of special interest is the coupling of the dynamics parallel and perpendicular to the magnetic field. This anisotropic turbulent dynamics is investigated by two different approaches. Firstly, spatially and temporally high-resolution measurements of fluctuating plasma parameters are investigated by means of two-point correlation analysis. Secondly, the propagation of signals externally imposed into the turbulent plasma background is studied. For both approaches, Langmuir probe arrays were utilized for diagnostic purposes. (orig.)

  3. Urbach's rule derived from thermal fluctuations in the band-gap energy

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1978-01-01

    The exponential absorption edge (known as Urbach's rule) observed in most materials is interpreted in terms of thermal fluctuations in the band-gap energy. The main contribution to the temperature shift of the band-gap energy is due to the temperature-dependent self-energies of the electrons...... and holes interacting with the phonons. Since the phonon number is fluctuating in thermal equilibrium, the band-gap energy is also fluctuating resulting in an exponential absorption tail below the average band-gap energy. These simple considerations are applied to derive Urbach's rule at high temperatures...

  4. Phase dynamics of edge transport bifurcation induced by external biasing

    Science.gov (United States)

    Li, B.; Wang, X. Y.; Xie, Z. J.; Li, P. F.; Gentle, K. W.

    2018-02-01

    Edge transport bifurcation induced by external biasing is explored with self-consistent turbulence simulations in a flux-driven system with both closed and open magnetic field lines. Without bias, the nonlinear evolution of interchange turbulence produces large-scale turbulent eddies, leading to the high levels of radial transport in the edge region. With sufficiently strong biasing, a strong suppression of turbulence is found. The plasma potential structures are strongly modified with the generation of sheared mean flows at the plasma edge. Consequently, the turbulence-driven flux is decreased to a much lower level, indicating a transition to a state of reduced transport. The simulations show that the dynamics of the phase and amplitude of fluctuations play a crucial role in the mechanism of transport suppression driven by biasing.

  5. Influence of fluctuating strain on exciton reflection spectra

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1982-01-01

    , for example, between crossed polarizers or from ellipsometric measurements. Assuming the phase fluctuations to obey a Gaussian distribution, σ can be expressed in a simple way in terms of the degree of polarization or the depolarization of the reflected light. σ is then derived in terms of the standard......The influence of an internal distribution of strain on the exciton reflection spectra is investigated. The resulting fluctuating optical constants give rise to a fluctuating phase of reflectivity. The standard deviation σ of these phase fluctuations is the quantity which can be observed...... to derive the dependence of the phase of reflectivity on the direction of the fluctuating optical axis. The results obtained for σ are compared with the experimental depolarization spectra of ZnO. The only fitting parameter is the common standard deviation of the strain components. It is found...

  6. Extreme fluctuations in stochastic network coordination with time delays

    Science.gov (United States)

    Hunt, D.; Molnár, F.; Szymanski, B. K.; Korniss, G.

    2015-12-01

    We study the effects of uniform time delays on the extreme fluctuations in stochastic synchronization and coordination problems with linear couplings in complex networks. We obtain the average size of the fluctuations at the nodes from the behavior of the underlying modes of the network. We then obtain the scaling behavior of the extreme fluctuations with system size, as well as the distribution of the extremes on complex networks, and compare them to those on regular one-dimensional lattices. For large complex networks, when the delay is not too close to the critical one, fluctuations at the nodes effectively decouple, and the limit distributions converge to the Fisher-Tippett-Gumbel density. In contrast, fluctuations in low-dimensional spatial graphs are strongly correlated, and the limit distribution of the extremes is the Airy density. Finally, we also explore the effects of nonlinear couplings on the stability and on the extremes of the synchronization landscapes.

  7. Fluctuations in Mass-Action Equilibrium of Protein Binding Networks

    Science.gov (United States)

    Yan, Koon-Kiu; Walker, Dylan; Maslov, Sergei

    2008-12-01

    We consider two types of fluctuations in the mass-action equilibrium in protein binding networks. The first type is driven by slow changes in total concentrations of interacting proteins. The second type (spontaneous) is caused by quickly decaying thermodynamic deviations away from equilibrium. We investigate the effects of network connectivity on fluctuations by comparing them to scenarios in which the interacting pair is isolated from the network and analytically derives bounds on fluctuations. Collective effects are shown to sometimes lead to large amplification of spontaneous fluctuations. The strength of both types of fluctuations is positively correlated with the complex connectivity and negatively correlated with complex concentration. Our general findings are illustrated using a curated network of protein interactions and multiprotein complexes in baker’s yeast, with empirical protein concentrations.

  8. The Fluctuation Niche in Plants

    International Nuclear Information System (INIS)

    Terradas, J.; Penuelas, J.; Lloret, F.; Penuelas, J.

    2009-01-01

    Classical approaches to niche in coexisting plants have undervalued temporal fluctuations. We propose that fluctuation niche is an important dimension of the total niche and interacts with habitat and life-history niches to provide a better understanding of the multidimensional niche space where ecological interactions occur. To scale a fluctuation niche, it is necessary to relate environmental constrictions or species performance not only to the absolute values of the usual environmental and eco physiological variables but also to their variances or other measures of variability. We use Mediterranean plant communities as examples, because they present characteristic large seasonal and inter annual fluctuations in water and nutrient availabilities, along an episodic-constant gradient, and because the plant responses include a number of syndromes coupled to this gradient.

  9. The Fluctuation Niche in Plants

    Directory of Open Access Journals (Sweden)

    Jaume Terradas

    2009-01-01

    Full Text Available Classical approaches to niche in coexisting plants have undervalued temporal fluctuations. We propose that fluctuation niche is an important dimension of the total niche and interacts with habitat and life-history niches to provide a better understanding of the multidimensional niche space where ecological interactions occur. To scale a fluctuation niche, it is necessary to relate environmental constrictions or species performance not only to the absolute values of the usual environmental and ecophysiological variables but also to their variances or other measures of variability. We use Mediterranean plant communities as examples, because they present characteristic large seasonal and interannual fluctuations in water and nutrient availabilities, along an episodic-constant gradient, and because the plant responses include a number of syndromes coupled to this gradient.

  10. Fluctuating attention in Parkinson's disease

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Aarsland, Dag; Janvin, Carmen

    2001-01-01

    great variability in performance in reactiontime tasks. Aiming to investigate fluctuation of attention in PD, we re- analysed data from a cue-target reactiontime task, specifically searching for differences in variability between patients and controls. The subjects included were a representative group...... a significant difference (pattention might be fluctuating on a moment to moment basis in PD. Some of the PD patients have also been tested with a choice reaction time...... task, shown by Walker et al. (2000) to be sensi- tive to fluctuation of cognition in DLB patients. Preliminary data-analysis indicate that PD patients also show considerable intra-individual variation in performance on this test. These findings suggest that fluctuating attention and cogni- tion...

  11. Fluctuations and Instability in Sedimentation

    KAUST Repository

    Guazzelli, Élisabeth

    2011-01-21

    This review concentrates on the fluctuations of the velocities of sedimenting spheres, and on the structural instability of a suspension of settling fibers. For many years, theoretical estimates and numerical simulations predicted the fluctuations of the velocities of spheres to increase with the size of the container, whereas experiments found no such variation. Two ideas have increased our understanding. First, the correlation length of the velocity fluctuations was found experimentally to be 20 interparticle separations. Second, in dilute suspensions, a vertical variation in the concentration due to the spreading of the front with the clear fluid can inhibit the velocity fluctuations. In a very dilute regime, a homogeneous suspension of fibers suffers a spontaneous instability in which fast descending fiber-rich columns are separated by rising fiber-sparse columns. In a semidilute regime, the settling is hindered, more so than for spheres. © 2011 by Annual Reviews. All rights reserved.

  12. Nonequilibrium quantum fluctuations of work.

    Science.gov (United States)

    Allahverdyan, A E

    2014-09-01

    The concept of work is basic for statistical thermodynamics. To gain a fuller understanding of work and its (quantum) features, it needs to be represented as an average of a fluctuating quantity. Here I focus on the work done between two moments of time for a thermally isolated quantum system driven by a time-dependent Hamiltonian. I formulate two natural conditions needed for the fluctuating work to be physically meaningful for a system that starts its evolution from a nonequilibrium state. The existing definitions do not satisfy these conditions due to issues that are traced back to noncommutativity. I propose a definition of fluctuating work that is free of previous drawbacks and that applies for a wide class of nonequilibrium initial states. It allows the deduction of a generalized work-fluctuation theorem that applies for an arbitrary (out-of-equilibrium) initial state.

  13. Primordial fluctuations from nonlinear couplings

    International Nuclear Information System (INIS)

    Calzetta, E.A.; Gonorazky, S.

    1997-01-01

    We study the spectrum of primordial fluctuations in theories where the inflaton field is nonlinearly coupled to massless fields and/or to itself. Conformally invariant theories generically predict a scale-invariant spectrum. Scales entering the theory through infrared divergences cause logarithmic corrections to the spectrum, tilting it towards the blue. We discuss in some detail whether these fluctuations are quantum or classical in nature. copyright 1997 The American Physical Society

  14. Edge remap for solids

    Energy Technology Data Exchange (ETDEWEB)

    Kamm, James R.; Love, Edward; Robinson, Allen C; Young, Joseph G.; Ridzal, Denis

    2013-12-01

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approach is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.

  15. Edge-on!

    Science.gov (United States)

    2007-08-01

    Peering at Uranus's Rings as they Swing Edge-on to Earth for the First Time Since their Discovery in 1977 As Uranus coasts through a brief window of time when its rings are edge-on to Earth - a view of the planet we get only once every 42 years - astronomers peering at the rings with ESO's Very Large Telescope and other space or ground-based telescopes are getting an unprecedented view of the fine dust in the system, free from the glare of the bright rocky rings. They may even find a new moon or two. ESO PR Photo 37/07 ESO PR Photo 37/07 The Uranus System "ESO's VLT took data at the precise moment when the rings were edge-on to Earth," said Imke de Pater, of University of California, Berkeley who coordinated the worldwide campaign. She worked with two team members observing in Chile: Daphne Stam of the Technical University Delft in the Netherlands and Markus Hartung of ESO. The observations were done with NACO, one of the adaptive optics instruments installed at the VLT. With adaptive optics, it is possible to obtain images almost free from the blurring effect of the atmosphere. It is as if the 8.2-m telescope were observing from space. Observations were also done with the Keck telescope in Hawaii, the Hubble Space Telescope, and at the Palomar Observatory. "Using different telescopes around the world allows us to observe as much of the changes during the ring-plane crossing as possible: when Uranus sets as seen from the VLT, it can still be observed by the Keck," emphasised Stam. Uranus orbits the Sun in 84 years. Twice during a Uranian year, the rings appear edge-on to Earth for a brief period. The rings were discovered in 1977, so this is the first time for a Uranus ring-crossing to be observed from Earth. The advantage of observations at a ring-plane crossing is that it becomes possible to look at the rings from the shadowed or dark side. From that vantage point, the normally bright outer rings grow fainter because their centimetre- to metre-sized rocks obscure

  16. Performance characterization of edge detectors

    Science.gov (United States)

    Ramesh, Visvanathan; Haralick, Robert M.

    1992-03-01

    Edge detection is the most fundamental step in vision algorithms. A number of edge detectors have been discussed in the computer vision literature. Examples of classic edge detectors include the Marr-Hildreth edge operator, facet edge operator, and the Canny edge operator. Edge detection using morphological techniques are attractive because they can be efficiently implemented in near real time machine vision systems that have special hardware support. However, little performance characterization of edge detectors has been done. In general, performance characterization of edge detectors has been done mainly by plotting empirical curves of performance. Quantitative performance evaluation of edge detectors was first performed by Abdou and Pratt. It is the goal of this paper to perform a theoretical comparison of gradient based edge detectors and morphological edge detectors. By assuming that an ideal edge is corrupted with additive noise we derive theoretical expressions for the probability of misdetection (the probability of labeling of a true edge pixel as a nonedge pixel in the output). Further, we derive theoretical expressions for the probability of false alarm (the probability of labeling of a nonedge pixel as an output edge pixel) by assuming that the input to the operator is a region of flat graytone intensity corrupted with additive Gaussian noise of zero mean and variance (sigma) 2. Even though the blurring step in the morphological operator introduces correlation in the additive noise, we make an approximation that the output samples after blurring are i.i.d. Gaussian random variables with zero mean and variance (sigma) 2/M where M is the window size of the blurring kernel. The false alarm probabilities obtained by using this approximation can be shown to be upperbounds of the false alarm probabilities computed without the approximation. The theory indicates that the blur- min operator is clearly superior when a 3 X 3 window size is used. Since we only have

  17. Edge Response and NIIRS Estimates for Commercial Remote Sensing Satellites

    Science.gov (United States)

    Blonski, Slawomir; Ryan, Robert E.; Pagnutti, mary; Stanley, Thomas

    2006-01-01

    Spatial resolution of panchromatic imagery from commercial remote sensing satellites was characterized based on edge response measurements using edge targets and the tilted-edge technique. Relative Edge Response (RER) was estimated as a geometric mean of normalized edge response differences measured in two directions of image pixels at points distanced from the edge by -0.5 and 0.5 of ground sample distance. RER is one of the engineering parameters used in the General Image Quality Equation to provide predictions of imaging system performance expressed in terms of the National Imagery Interpretability Rating Scale (NIIRS). By assuming a plausible range of signal-to-noise ratio and assessing the effects of Modulation Transfer Function compensation, the NIIRS estimates were made and then compared with vendor-provided values and evaluations conducted by the National Geospatial-Intelligence Agency.

  18. Edge colouring by total labellings

    DEFF Research Database (Denmark)

    Brandt, Stephan; Rautenbach, D.; Stiebitz, M.

    2010-01-01

    We introduce the concept of an edge-colouring total k-labelling. This is a labelling of the vertices and the edges of a graph G with labels 1, 2, ..., k such that the weights of the edges define a proper edge colouring of G. Here the weight of an edge is the sum of its label and the labels of its...... two endvertices. We define χ (G) to be the smallest integer k for which G has an edge-colouring total k-labelling. This parameter has natural upper and lower bounds in terms of the maximum degree Δ of G : ⌈ (Δ + 1) / 2 ⌉ ≤ χ (G) ≤ Δ + 1. We improve the upper bound by 1 for every graph and prove χ (G...

  19. Water-level fluctuations influence sediment porewater ...

    Science.gov (United States)

    Reservoirs typically have elevated fish mercury (Hg) levels compared to natural lakes and rivers. A unique feature of reservoirs is water-level management which can result in sediment exposure to the air. The objective of this study is to identify how reservoir water-level fluctuations impact Hg cycling, particularly the formation of the more toxic and bioaccumulative methylmercury (MeHg). Total-Hg (THg), MeHg, stable isotope methylation rates and several ancillary parameters were measured in reservoir sediments (including some in porewater and overlying water) that are seasonally and permanently inundated. The results showed that sediment and porewater MeHg concentrations were over 3-times higher in areas experiencing water-level fluctuations compared to permanently inundated sediments. Analysis of the data suggest that the enhanced breakdown of organic matter in sediments experiencing water-level fluctuations has a two-fold effect on stimulating Hg methylation: 1) it increases the partitioning of inorganic Hg from the solid phase into the porewater phase (lower log Kd values) where it is more bioavailable for methylation; and 2) it increases dissolved organic carbon (DOC) in the porewater which can stimulate the microbial community that can methylate Hg. Sulfate concentrations and cycling were enhanced in the seasonally inundated sediments and may have also contributed to increased MeHg production. Overall, our results suggest that reservoir management a

  20. Intermittent character of interplanetary magnetic field fluctuations

    International Nuclear Information System (INIS)

    Bruno, Roberto; Carbone, Vincenzo; Chapman, Sandra; Hnat, Bogdan; Noullez, Alain; Sorriso-Valvo, Luca

    2007-01-01

    Interplanetary magnetic field magnitude fluctuations are notoriously more intermittent than velocity fluctuations in both fast and slow wind. This behavior has been interpreted in terms of the anomalous scaling observed in passive scalars in fully developed hydrodynamic turbulence. In this paper, the strong intermittent nature of the interplanetary magnetic field is briefly discussed comparing results performed during different phases of the solar cycle. The scaling properties of the interplanetary magnetic field magnitude show solar cycle variation that can be distinguished in the scaling exponents revealed by structure functions. The scaling exponents observed around the solar maximum coincide, within the errors, to those measured for passive scalars in hydrodynamic turbulence. However, it is also found that the values are not universal in the sense that the solar cycle variation may be reflected in dependence on the structure of the velocity field

  1. Detecting quantum critical points using bipartite fluctuations.

    Science.gov (United States)

    Rachel, Stephan; Laflorencie, Nicolas; Song, H Francis; Le Hur, Karyn

    2012-03-16

    We show that the concept of bipartite fluctuations F provides a very efficient tool to detect quantum phase transitions in strongly correlated systems. Using state-of-the-art numerical techniques complemented with analytical arguments, we investigate paradigmatic examples for both quantum spins and bosons. As compared to the von Neumann entanglement entropy, we observe that F allows us to find quantum critical points with much better accuracy in one dimension. We further demonstrate that F can be successfully applied to the detection of quantum criticality in higher dimensions with no prior knowledge of the universality class of the transition. Promising approaches to experimentally access fluctuations are discussed for quantum antiferromagnets and cold gases.

  2. Memory versus fluctuations in heavy ion fusion

    Science.gov (United States)

    Chushnyakova, M. V.; Gontchar, I. I.

    2013-09-01

    We model collisions of complex nuclei leading to capture using the Langevin equations, with white and colored noises and with instant and retarding friction, respectively. The friction force is supposed to be proportional to the squared derivative of the strong nucleus-nucleus interaction potential (SnnP). The SnnP is calculated within the framework of the double folding model with the density-dependent M3Y NN-forces possessing the finite range exchange term. Comparing results obtained in the presence and in the absence of fluctuations, we found that the fluctuations influence the capture cross sections weakly, typically within 5%. In contradistinction, the influence of the memory effects is found to be about 20%.

  3. Polarimetric Edge Detector Based on the Complex Wishart Distribution

    DEFF Research Database (Denmark)

    Skriver, Henning; Schou, Jesper; Nielsen, Allan Aasbjerg

    2001-01-01

    A new edge detector for polarimetric SAR data has been developed. The edge detector is based on a newly developed test statistic for equality of two complex covariance matrices following the complex Wishart distribution and an associated asymptotic probability for the test statistic. The new...... for the full polarimetric detector compared to single channel approaches....

  4. Fluctuation theorem for Hamiltonian Systems: Le Chatelier's principle

    Science.gov (United States)

    Evans, Denis J.; Searles, Debra J.; Mittag, Emil

    2001-05-01

    For thermostated dissipative systems, the fluctuation theorem gives an analytical expression for the ratio of probabilities that the time-averaged entropy production in a finite system observed for a finite time takes on a specified value compared to the negative of that value. In the past, it has been generally thought that the presence of some thermostating mechanism was an essential component of any system that satisfies a fluctuation theorem. In the present paper, we point out that a fluctuation theorem can be derived for purely Hamiltonian systems, with or without applied dissipative fields.

  5. Cutting Edge Localisation in an Edge Profile Milling Head

    NARCIS (Netherlands)

    Fernandez Robles, Laura; Azzopardi, George; Alegre, Enrique; Petkov, Nicolai

    2015-01-01

    Wear evaluation of cutting tools is a key issue for prolonging their lifetime and ensuring high quality of products. In this paper, we present a method for the effective localisation of cutting edges of inserts in digital images of an edge profile milling head. We introduce a new image data set of

  6. Design of the electromagnetic fluctuations diagnostic for MFTF-B

    International Nuclear Information System (INIS)

    House, P.A.; Goerz, D.A.; Martin, R.

    1983-01-01

    The Electromagnetic Fluctuations (EMF) diagnostic will be used to monitor ion fluctuations which could be unstable in MFTF-B. Each probe assembly includes a high impedance electrostatic probe to measure potential fluctuations, and a group of nested, single turn loops to measure magnetic fluctuations in three directions. Eventually, more probes and loops will be added to each probe assembly for making more detailed measurements. The sensors must lie physically close to the plasma edge and are radially positionable. Also, probes at separate axial locations can be positioned to connect along the same magnetic field line. These probes are similar in concept to the rf probes used on TMX, but the high thermal load for 30-second shots on MFTF-B requires a water-cooled design along with temperature monitors. Each signal channel has a bandwidth of .001 to 150 MHz and is monitored by up to four different data channels which obtain amplitude and frequency information. This paper describes the EMF diagnostic and presents the detailed mechanical and electrical designs

  7. Sawteeth fluctuations detection

    International Nuclear Information System (INIS)

    Vannucci, A.; Nascimento, I.C. do; Caldas, I.L.; Sanada, E.K.; Tuszel, A.G.; Fagundes, A.N.

    1988-01-01

    Sawteeth oscillations were identified during the discharges in the small Tokamak TBR-1 through a pin-hole camera and their main characteristics were studied. Comparing the measured period of the internal disruption (sawteeth) with the ones expected from scaling laws, good agreement is reached. The measured sawteeth crashes agree with the value expected from Kadomtsev's model. However, there some sawteeth oscillations, corresponding to conditions of higher Z eff of the plasma, which showed longer crashes that could not be explained by this model. (author) [pt

  8. Edge-edge interactions in stacked graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Cruz Silva, Eduardo [ORNL; Terrones Maldonado, Humberto [ORNL; Terrones Maldonado, Mauricio [ORNL; Jia, Xiaoting [Massachusetts Institute of Technology (MIT); Sumpter, Bobby G [ORNL; Dresselhaus, M [Massachusetts Institute of Technology (MIT); Meunier, V. [Rensselaer Polytechnic Institute (RPI)

    2013-01-01

    High-resolution transmission electron microscopy (HRTEM) studies show the dynamics of small graphene platelets on larger graphene layers. The platelets move nearly freely to eventually lock in at well-defined positions close to the edges of the larger underlying graphene sheet. While such movement is driven by a shallow potential energy surface described by an interplane interaction, the lock-in position occurs by via edge-edge interactions of the platelet and the graphene surface located underneath. Here we quantitatively study this behavior using van der Waals density functional calculations. Local interactions at the open edges are found to dictate stacking configurations that are different from Bernal (AB) stacking. These stacking configurations are known to be otherwise absent in edge-free two-dimensional (2D) graphene. The results explain the experimentally observed platelet dynamics and provide a detailed account of the new electronic properties of these combined systems.

  9. Fast light pulse measurements and temporal fluctuations in photomultipliers

    International Nuclear Information System (INIS)

    Miehe, J.A.; Sipp, B.

    1975-01-01

    This paper reviews the results on time fluctuations in high gain first dynode photomultipliers used in single photon timing experiments; the theoretical analysis of the measurement of the shape of light pulses is recalled and the previously obtained results concerning time dispersion in the photocathode, first dynode space are discussed. In addition, the influence of the variations of the electron transit time in the multiplier on the time resolution curves of the detector is examined: the curves obtained by leading-edge triggering of the anodic pulse show a strong dependence on the threshold level of the discriminator. A single-photoelectron timing resolution of 270ps is measured using a low leading edge discrimination [fr

  10. Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments

    International Nuclear Information System (INIS)

    Madsen, Jens

    2010-09-01

    The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite Larmor radius effects on the radial plasma transport. The coexistence of low-frequency fluctuations, having length scales comparable to the ion gyroradius, steep pressure gradients and strong E x B flows in the edge region of fusion plasmas violates the standard gyrokinetic ordering. In this thesis two models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov-Maxwell equations expressed in guiding-center coordinates are derived including a local energy theorem. The second order terms describe lowest order finite Larmor radius effects. This set of equations might be relevant for edge plasmas due to the capability of capturing strong E x B flows and lowest order finite Larmor radius effects self-consistently. Next, an extension of the existing gyrokinetic formalism with strong flows is presented. In this work the background electric fields is dynamical, whereas earlier contributions did only incorporate a stationary electric field. In an ordering relevant for edge plasma turbulence, fully electromagnetic second order gyrokinetic coordinates and the corresponding gyrokinetic Vlasov-Maxwell equations are derived, including a local energy theorem. By taking the polarization and magnetization densities in the drift kinetic limit, we present the gyrokinetic Vlasov-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor

  11. Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Jens

    2010-09-15

    The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite Larmor radius effects on the radial plasma transport. The coexistence of low-frequency fluctuations, having length scales comparable to the ion gyroradius, steep pressure gradients and strong E x B flows in the edge region of fusion plasmas violates the standard gyrokinetic ordering. In this thesis two models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov-Maxwell equations expressed in guiding-center coordinates are derived including a local energy theorem. The second order terms describe lowest order finite Larmor radius effects. This set of equations might be relevant for edge plasmas due to the capability of capturing strong E x B flows and lowest order finite Larmor radius effects self-consistently. Next, an extension of the existing gyrokinetic formalism with strong flows is presented. In this work the background electric fields is dynamical, whereas earlier contributions did only incorporate a stationary electric field. In an ordering relevant for edge plasma turbulence, fully electromagnetic second order gyrokinetic coordinates and the corresponding gyrokinetic Vlasov-Maxwell equations are derived, including a local energy theorem. By taking the polarization and magnetization densities in the drift kinetic limit, we present the gyrokinetic Vlasov-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor

  12. Measurement of nonlinear mode coupling of tearing fluctuations

    International Nuclear Information System (INIS)

    Assadi, S.; Prager, S.C.; Sidikman, K.L.

    1992-03-01

    Three-wave nonlinear coupling of spatial Fourier modes is measured in the MST reversed field pinch by applying bi-spectral analysis to magnetic fluctuations measured at the plasma edge at 64 toroidal locations and 16 poloidal locations, permitting observation of coupling over 8 polodial modes and 32 toroidal modes. Comparison to bi-spectra predicted by MHD computation indicates reasonably good agreement. However, during the crash phase of the sawtooth oscillation the nonlinear coupling is strongly enhanced, concomittant with a broadened (presumably nonlinearly generated) k-spectrum

  13. Short Wavelength Fluctuations and Electron Transport in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    K.L. Wong; K. Itoh; S.-I. Itoh; A. Fukuyama; M. Yagi

    2000-09-08

    Correlation between electron heat diffusivity and short wavelength (kri {approximately} 5) fluctuation amplitude was observed in the Tokamak Fusion Test Reactor (TFTR) tokamak in the core of enhanced reversed shear (ERS) plasmas [1]. These fluctuations propagate in the ion diamagnetic drift direction with wave number comparable to wpe/c. Further analysis of these data yields the ratios ce/ci and ce/De, and their values are consistent with the picture that the electron transport is mainly induced by the short wavelength fluctuations in the plasma core where the long wavelength (kri {approximately} 1) fluctuations are absent. Although there is not enough information to identify these short wavelength modes, the values of ce is found to be comparable to theoretical predictions based on the current diffusive ballooning mode theory [2].

  14. Modeling fluctuations in scattered waves

    CERN Document Server

    Jakeman, E

    2006-01-01

    Fluctuations in scattered waves limit the performance of imaging and remote sensing systems that operate on all wavelengths of the electromagnetic spectrum. To better understand these fluctuations, Modeling Fluctuations in Scattered Waves provides a practical guide to the phenomenology, mathematics, and simulation of non-Gaussian noise models and discusses how they can be used to characterize the statistics of scattered waves.Through their discussion of mathematical models, the authors demonstrate the development of new sensing techniques as well as offer intelligent choices that can be made for system analysis. Using experimental results and numerical simulation, the book illustrates the properties and applications of these models. The first two chapters introduce statistical tools and the properties of Gaussian noise, including results on phase statistics. The following chapters describe Gaussian processes and the random walk model, address multiple scattering effects and propagation through an extended med...

  15. Fluctuations in the multiparticle dynamics

    International Nuclear Information System (INIS)

    Bozek, P.; Ploszajczak, M.

    1993-01-01

    The appearance and properties of intermittent fluctuations in physical systems, in particular the formation of rare structures in transport phenomena are discussed. The distribution of fluctuations approaches a limiting log-normal statistical distribution. The log-normal distribution is introduced as a simple parametrization of the energy fluctuations leading to the subthreshold production of particles in nuclear collisions, and it is shown that it fits all available data both for total π 0 production cross section as well as the π 0 kinetic energy spectra for E/A < 90 MeV. It is suggested that the same universal distribution should also describe the subthreshold production of other hadrons like η and K. (author) 36 refs., 11 figs

  16. Spatial and temporal patterns of microclimates at an urban forest edge and their management implications.

    Science.gov (United States)

    Li, Yingnan; Kang, Wanmo; Han, Yiwen; Song, Youngkeun

    2018-01-23

    Fragmented forests generate a variety of forest edges, leading to microclimates in the edge zones that differ from those in the forest interior. Understanding microclimatic variation is an important consideration for managers because it helps when making decisions about how to restrict the extent of edge effects. Thus, our study attempted to characterize the changing microclimate features at an urban forest edge located on Mt. Gwanak, Seoul, South Korea. We examined edge effects on air temperature, relative humidity, soil temperature, soil moisture, and photosynthetically active radiation (PAR) during the hottest three consecutive days in August 2016. Results showed that each variable responded differently to the edge effects. This urban forest edge had an effect on temporal changes at a diurnal scale in all microclimate variables, except soil moisture. In addition, all variables except relative humidity were significantly influenced by the edge effect up to 15 m inward from the forest boundary. The relative humidity fluctuated the most and showed the deepest extent of the edge effect. Moreover, the edge widths calculated from the relative humidity and air temperature both peaked in the late afternoon (16:00 h). Our findings provide a reference for forest managers in designing urban forest zones and will contribute to the conservation of fragmented forests in urban areas.

  17. Structure and motion of edge turbulence in the National Spherical Torus Experiment and Alcator C-Moda)

    Science.gov (United States)

    Zweben, S. J.; Maqueda, R. J.; Terry, J. L.; Munsat, T.; Myra, J. R.; D'Ippolito, D.; Russell, D. A.; Krommes, J. A.; LeBlanc, B.; Stoltzfus-Dueck, T.; Stotler, D. P.; Williams, K. M.; Bush, C. E.; Maingi, R.; Grulke, O.; Sabbagh, S. A.; White, A. E.

    2006-05-01

    In this paper we compare the structure and motion of edge turbulence observed in L-mode vs. H-mode plasmas in the National Spherical Torus Experiment (NSTX) [M. Ono, M. G. Bell, R. E. Bell et al., Plasma Phys. Controlled Fusion 45, A335 (2003)]. The radial and poloidal correlation lengths are not significantly different between the L-mode and the H-mode in the cases examined. The poloidal velocity fluctuations are lower and the radial profiles of the poloidal turbulence velocity are somewhat flatter in the H-mode compared with the L-mode plasmas. These results are compared with similar measurements Alcator C-Mod [E. Marmar, B. Bai, R. L. Boivin et al., Nucl. Fusion 43, 1610 (2003)], and with theoretical models.

  18. Origin of cosmological density fluctuations

    International Nuclear Information System (INIS)

    Carr, B.J.

    1984-11-01

    The density fluctuations required to explain the large-scale cosmological structure may have arisen spontaneously as a result of a phase transition in the early Universe. There are several ways in which such fluctuations may have ben produced, and they could have a variety of spectra, so one should not necessarily expect all features of the large-scale structure to derive from a simple power law spectrum. Some features may even result from astrophysical amplification mechanisms rather than gravitational instability. 128 references

  19. Avalanche fluctuations within the multigap resistive plate chamber

    International Nuclear Information System (INIS)

    Cerron Zeballos, E.; Crotty, I.; Lamas Valverde, J.; Veenhof, R.J.; Williams, M.C.S.; Zichichi, A.

    1996-01-01

    The multigap resistive plate chamber (MRPC) was originally designed to have improved time resolution (compared to the wide gap RPC), but also to keep the good high rate behaviour and ease of construction associated with the wide gap RPC. However in addition we observed a very long efficiency plateau, even at high rates. Here we consider fluctuations in avalanche growth, and show that the inherent ''averaging'' of these fluctuations can account for the enhanced performance of the multigap RPC. (orig.)

  20. Diffusion by Infragravity Stokes Drift Fluctuations

    Science.gov (United States)

    Smit, P.; Janssen, T. T.; Herbers, T. H. C.; Kirshner, Z.

    2016-02-01

    The group-scale variability of ocean waves variability drives infragravity Stokes drift fluctuations, which are important for small-scale diffusion of passive tracers (to the order of a few kilometers), and can thus be important for the break-up and dispersion of e.g. oil spills or sewage outflow, and coastal transport in general. The implications of this were first considered theoretically by Herterich and Hasselmann (1982, JPO), who demonstrated that on small scales, wave diffusion can compete with other upper ocean diffusive processes, but their theory has thus far not been extensively validated with field observations. To investigate drift fluctuations and wave-induced diffusion, we consider the wave-induced dispersion of a cluster of O(10) buoys. The experiment, conducted offshore of San Francisco, uses a cluster of Lagrangian drifters equipped with fast-sampling GPS sensor packages, to accurately resolve both the surface wave motions, and directly measure the Lagrangian dynamics, including surface drift fluctuations. We revisit the Herterich and Hasselmann theory, expand it to include shallow water and variable wave conditions, and compare the theoretical predictions with the new observations.

  1. Large fluctuations and fixation in evolutionary games

    International Nuclear Information System (INIS)

    Assaf, Michael; Mobilia, Mauro

    2010-01-01

    We study large fluctuations in evolutionary games belonging to the coordination and anti-coordination classes. The dynamics of these games, modeling cooperation dilemmas, is characterized by a coexistence fixed point separating two absorbing states. We are particularly interested in the problem of fixation that refers to the possibility that a few mutants take over the entire population. Here, the fixation phenomenon is induced by large fluctuations and is investigated by a semiclassical WKB (Wentzel–Kramers–Brillouin) theory generalized to treat stochastic systems possessing multiple absorbing states. Importantly, this method allows us to analyze the combined influence of selection and random fluctuations on the evolutionary dynamics beyond the weak selection limit often considered in previous works. We accurately compute, including pre-exponential factors, the probability distribution function in the long-lived coexistence state and the mean fixation time necessary for a few mutants to take over the entire population in anti-coordination games, and also the fixation probability in the coordination class. Our analytical results compare excellently with extensive numerical simulations. Furthermore, we demonstrate that our treatment is superior to the Fokker–Planck approximation when the selection intensity is finite

  2. Network fluctuations hinder cooperation in evolutionary games.

    Science.gov (United States)

    Antonioni, Alberto; Tomassini, Marco

    2011-01-01

    In this paper we study the influence of random network fluctuations on the behavior of evolutionary games on Barabási-Albert networks. This network class has been shown to promote cooperation on social dilemmas such as the Prisoner's Dilemma and the Snowdrift games when the population network is fixed. Here we introduce exogenous random fluctuations of the network links through several noise models, and we investigate the evolutionary dynamics comparing them with the known static network case. The results we obtain show that even a moderate amount of random noise on the network links causes a significant loss of cooperation, to the point that cooperation vanishes altogether in the Prisoner's Dilemma when the noise rate is the same as the agents' strategy revision rate. The results appear to be robust since they are essentially the same whatever the type of the exogenous noise. Besides, it turns out that random network noise is more important than strategy noise in suppressing cooperation. Thus, even in the more favorable situation of accumulated payoff in which links have no cost, the mere presence of random external network fluctuations act as a powerful limitation to the attainment of high levels of cooperation.

  3. Selective sampling and edge enhancement in bar code laser scanning

    Science.gov (United States)

    Shellhammer, Stephen J.; Goren, David P.; Pavlidis, Theo

    1996-03-01

    This paper describes the basic design principles for a new series of bar code scanners from Symbol Technologies. Traditional bar code scanners include an edge detector which has several innate limitations. We propose replacing this edge detector with a selective sampling circuit. While the superiority of decoding the analog signal has been demonstrated, its implementation is too costly because of the need for considerable additional memory. Selective sampling achieves most of the advantages of analog decoding at a cost comparable to that of conventional decoders. Instead of sampling the signal periodically, it is only sampled when a certain event (e.g. an edge) is detected. At each edge two data values are produced: the edge time and the sampled value, often referred to as the edge strength. This strength value gives a measure of the intensity of the edge. Using selective sampling the new scanners can read poorly printed and noisy bar codes that cannot be read by traditional scanners. Another innate limitation of bar code laser scanners is the density of bar code that can be read. This limitation is due to the blurring of the bar code when scanned by a laser beam with a finite spot size. We propose the addition of an edge enhancement filter to the scanner, which compensates for the finite width of the optical beam. The proposed filter is designed to enhance the edges of the bar code so that for a given optical focusing it is possible to read higher density bar codes.

  4. Fuzzy Index to Evaluate Edge Detection in Digital Images

    Science.gov (United States)

    Perez-Ornelas, Felicitas; Mendoza, Olivia; Melin, Patricia; Castro, Juan R.; Rodriguez-Diaz, Antonio; Castillo, Oscar

    2015-01-01

    In literature, we can find different metrics to evaluate the detected edges in digital images, like Pratt's figure of merit (FOM), Jaccard’s index (JI) and Dice’s coefficient (DC). These metrics compare two images, the first one is the reference edges image, and the second one is the detected edges image. It is important to mention that all existing metrics must binarize images before their evaluation. Binarization step causes information to be lost because an incomplete image is being evaluated. In this paper, we propose a fuzzy index (FI) for edge evaluation that does not use a binarization step. In order to process all detected edges, images are represented in their fuzzy form and all calculations are made with fuzzy sets operators and fuzzy Euclidean distance between both images. Our proposed index is compared to the most used metrics using synthetic images, with good results. PMID:26115362

  5. Detecting a many-body mobility edge with quantum quenches

    Directory of Open Access Journals (Sweden)

    Piero Naldesi, Elisa Ercolessi, Tommaso Roscilde

    2016-10-01

    Full Text Available The many-body localization (MBL transition is a quantum phase transition involving highly excited eigenstates of a disordered quantum many-body Hamiltonian, which evolve from "extended/ergodic" (exhibiting extensive entanglement entropies and fluctuations to "localized" (exhibiting area-law scaling of entanglement and fluctuations. The MBL transition can be driven by the strength of disorder in a given spectral range, or by the energy density at fixed disorder - if the system possesses a many-body mobility edge. Here we propose to explore the latter mechanism by using "quantum-quench spectroscopy", namely via quantum quenches of variable width which prepare the state of the system in a superposition of eigenstates of the Hamiltonian within a controllable spectral region. Studying numerically a chain of interacting spinless fermions in a quasi-periodic potential, we argue that this system has a many-body mobility edge; and we show that its existence translates into a clear dynamical transition in the time evolution immediately following a quench in the strength of the quasi-periodic potential, as well as a transition in the scaling properties of the quasi-stationary state at long times. Our results suggest a practical scheme for the experimental observation of many-body mobility edges using cold-atom setups.

  6. Universal fluctuations in orbital diamagnetism

    Science.gov (United States)

    Pal, P. S.; Saha, Arnab; Jayannavar, A. M.

    2018-03-01

    Bohr-van Leuween theorem has attracted the notice of physicists for more than 100 years. The theorem states about the absence of magnetisation in classical systems in thermal equilibrium. In this paper, we discuss about fluctuations of magnetic moment in classical systems. In recent years, this topic has been investigated intensively and it is not free from controversy. We have considered a system consisting of a single particle moving in a plane. A magnetic field is applied perpendicular to the plane. The system is in contact with a thermal bath. We have considered three cases: (a) particle moving in a homogeneous medium, (b) particle moving in a medium with space-dependent friction and (c) particle moving in a medium with space-dependent temperature. For all the three cases, the average magnetic moment and fluctuations in magnetic moment have been calculated. Average magnetic moment saturates to a finite value in the case of free particle but goes to zero when the particle is confined by a 2D harmonic potential. Fluctuations in magnetic moment shows universal features in the presence of arbitrary friction inhomogeneity. For this case, the system reaches equilibrium asymptotically. In the case of space-dependent temperature profile, the stationary distribution is non-Gibbsian and fluctuations deviate from universal value for the bounded system only.

  7. Universal fluctuations in orbital diamagnetism

    Indian Academy of Sciences (India)

    P S Pal

    2018-01-31

    Jan 31, 2018 ... Indian Academy of Sciences https://doi.org/10.1007/s12043-018-1521-5. Universal fluctuations ... dissertation almost a century ago. They had shown that in the presence of constant magnetic field ..... Ph.D. Thesis (Indian Institute of Science, Bengaluru,. 1982). [7] N Kumar and K Vijay Kumar, Europhys. Lett.

  8. Fluctuation relation for heat engines

    International Nuclear Information System (INIS)

    Sinitsyn, N A

    2011-01-01

    We derive the exact equality, referred to as the fluctuation relation for heat engines (FRHE), that relates statistics of heat extracted from one of the two heat baths and the work per one cycle of a heat engine operation. Carnot's inequality of classical thermodynamics follows as a direct consequence of the FRHE. (paper)

  9. Reaction rates when barriers fluctuate

    OpenAIRE

    Reimann, Peter

    1999-01-01

    Reaction rates when barriers fluctuate : a path integral approach / P. Hänggi and P. Reimann. - In: International Conference on Path Integrals from peV to TeV : Proceedings of the ... / eds.: R. Casalbuoni ... - Singapore u.a. : World Scientific, 1999. - S. 407-409

  10. Fluctuation conductivity in cuprate superconductors

    Indian Academy of Sciences (India)

    model to be inadequate to describe the fluctuation conductivity in these materials. The modification ... shown by various models which consider several conducting layers per unit cell, with ei- ther interlayer or ..... Pomer et al [6] have observed a large discrepancy of their data measured at 1 tesla from the prediction of eq. (1).

  11. Kondo effect and mesoscopic fluctuations

    Indian Academy of Sciences (India)

    Slave boson/fermion mean-field approach. A complete solution of this problem would presumably involve developing a Fermi liquid theory 'à la Nozières' [15] taking properly into account the mesoscopic fluctuations. A first step in this direction is to use a mean-field treatment based on the slave boson/fermion technique [1] ...

  12. Plasma edge physics in the TEXTOR tokamak with poloidal and toroidal limiters

    International Nuclear Information System (INIS)

    Samm, U.; Bogen, P.; Hartwig, H.; Hintz, E.; Hoethker, K.; Lie, Y.T.; Pospieszczyk, A.; Rusbueldt, D.; Schweer, B.; Yu, Y.J.

    1989-01-01

    Investigations of the plasma edge in TEXTOR are presented on the one hand by comparing results obtained with poloidal and toroidal limiters and on the other hand by discussing general problems of plasma edge physics which are independent of the limiter configuration. The characteristic properties of plasma flow to the different limiters are analyzed and show e.g. that the fraction of total ion flow to the limiter is much larger in the case of a toroidal limiter (80%). Density and heat flux profiles are presented which demonstrate that for both types of limiters a significant steepening of the scrape-off layer (SOL) occurs close to the limiter, leading to a small heat load e-folding length of 5-8 mm. The velocity distribution of recycled neutral hydrogen at a main limiter has been determined from the Doppler broadening of the H α line. The data clearly show that a large fraction of particles (30-50%) is reflected at the limiter surface having energies of about the sheath potential. Significant isotopic effects (H/D) concerning the plasma edge properties and the plasma core are presented and their relation to enhanced particle and energy transport in hydrogen compared to deuterium is discussed. A decrease of the cross field diffusion coefficient with increasing density can be deduced from density profile measurements in the SOL and a comparison with density fluctuations is given. The role of oxygen for impurity release is demonstrated. A new type of wall conditioning - boronization - is described, with two major improvements for quasi stationary conditions: reduction of oxygen and better density control. Best results with ICRH have been obtained under these conditions. (orig.)

  13. The non-linear evolution of edge localized modes

    Energy Technology Data Exchange (ETDEWEB)

    Wenninger, Ronald

    2013-01-09

    Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal

  14. Experimental studies of edge turbulence and confinement in Alcator C-Moda)

    Science.gov (United States)

    Cziegler, I.; Terry, J. L.; Hughes, J. W.; LaBombard, B.

    2010-05-01

    The steep gradient edge region and scrape-off-layer (SOL) on the low-field-side of Alcator C-Mod [I. H. Hutchinson, R. Boivin, F. Bombarda et al., Phys. Plasmas 1, 1511 (1994)] tokamak plasmas are studied using gas-puff-imaging diagnostics. In L-mode plasmas, the region extending ˜2 cm inside the magnetic separatrix has fluctuations showing a broad, turbulent spectrum, propagating in the electron diamagnetic drift direction, whereas features in the open field line region propagate in the ion diamagnetic drift direction. This structure is robust against toroidal field strength, poloidal null-point geometry, plasma current, and plasma density. Global parameter dependence of spectral and spatial structure of the turbulence inside the separatrix is explored and characterized, and both the intensity and spectral distributions are found to depend strongly on the plasma density normalized to the tokamak density limit. In H-mode discharges the fluctuations at and inside the magnetic separatrix show fundamentally different trends compared to L-mode, with the electron diamagnetic direction propagating turbulence greatly reduced in ELM-free [F. Wagner et al., Proceedings of the Thirteenth Conference on Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1982), Vol. I, p. 277], and completely dominated by the modelike structure of the quasicoherent mode in enhanced D-alpha regimes [A. E. Hubbard, R. L. Boivin, R. S. Granetz et al., Phys. Plasmas 8, 2033 (2001)], while the normalized SOL turbulence is largely unaffected.

  15. Spectral characteristics of edge magnetic turbulence in COMPASS-D[Nuclear fusion; Edge localised modes

    Energy Technology Data Exchange (ETDEWEB)

    Han, W.; Thyagaraja, A.; Fielding, S. [and others

    1998-12-01

    Edge fluctuation data from both COMPASS-D and calculations with the large-eddy simulation code CUTIE have been analysed with a number of techniques, revealing coherent structures which exhibit high frequency standing-wave oscillations; some of those observed during ELMs have an 'inverse-chirp' character and these are related to a disturbance of the plasma boundary in the lower-inboard quadrant of the poloidal plane. A 'precursor' mode, seen in Ohmic discharges at about 220kHz just before large ELMs, appears to be outward ballooning in character. Although the CUTIE calculations do not yet include ELM simulations, the results seem to correspond qualitatively with those seen between ELMs or during ELM-free periods on COMPASS-D. (author)

  16. Hierarchical structure of stock price fluctuations in financial markets

    International Nuclear Information System (INIS)

    Gao, Ya-Chun; Cai, Shi-Min; Wang, Bing-Hong

    2012-01-01

    The financial market and turbulence have been broadly compared on account of the same quantitative methods and several common stylized facts they share. In this paper, the She–Leveque (SL) hierarchy, proposed to explain the anomalous scaling exponents deviating from Kolmogorov monofractal scaling of the velocity fluctuation in fluid turbulence, is applied to study and quantify the hierarchical structure of stock price fluctuations in financial markets. We therefore observed certain interesting results: (i) the hierarchical structure related to multifractal scaling generally presents in all the stock price fluctuations we investigated. (ii) The quantitatively statistical parameters that describe SL hierarchy are different between developed financial markets and emerging ones, distinctively. (iii) For the high-frequency stock price fluctuation, the hierarchical structure varies with different time periods. All these results provide a novel analogy in turbulence and financial market dynamics and an insight to deeply understand multifractality in financial markets. (paper)

  17. Enhancement of large fluctuations to extinction in adaptive networks

    Science.gov (United States)

    Hindes, Jason; Schwartz, Ira B.; Shaw, Leah B.

    2018-01-01

    During an epidemic, individual nodes in a network may adapt their connections to reduce the chance of infection. A common form of adaption is avoidance rewiring, where a noninfected node breaks a connection to an infected neighbor and forms a new connection to another noninfected node. Here we explore the effects of such adaptivity on stochastic fluctuations in the susceptible-infected-susceptible model, focusing on the largest fluctuations that result in extinction of infection. Using techniques from large-deviation theory, combined with a measurement of heterogeneity in the susceptible degree distribution at the endemic state, we are able to predict and analyze large fluctuations and extinction in adaptive networks. We find that in the limit of small rewiring there is a sharp exponential reduction in mean extinction times compared to the case of zero adaption. Furthermore, we find an exponential enhancement in the probability of large fluctuations with increased rewiring rate, even when holding the average number of infected nodes constant.

  18. Thermal and active fluctuations of a compressible bilayer vesicle

    Science.gov (United States)

    Sachin Krishnan, T. V.; Yasuda, Kento; Okamoto, Ryuichi; Komura, Shigeyuki

    2018-05-01

    We discuss thermal and active fluctuations of a compressible bilayer vesicle by using the results of hydrodynamic theory for vesicles. Coupled Langevin equations for the membrane deformation and the density fields are employed to calculate the power spectral density matrix of membrane fluctuations. Thermal contribution is obtained by means of the fluctuation dissipation theorem, whereas active contribution is calculated from exponentially decaying time correlation functions of active random forces. We obtain the total power spectral density as a sum of thermal and active contributions. An apparent response function is further calculated in order to compare with the recent microrheology experiment on red blood cells. An enhanced response is predicted in the low-frequency regime for non-thermal active fluctuations.

  19. Rescattering and Fluctuations in Ultrarelativistic Heavy-Ion Collisions

    Science.gov (United States)

    Friedman, Gerald Alan

    1993-12-01

    We study ultra-relativistic heavy-ion collisions using, as far as possible, known physics and simple assumptions. One focus is on the measurable effects of rescattering of produced particles in the colliding nuclei. Two models for proton -nucleus collisions are presented, one built from independent hadron-hadron collisions, the other based on the Lund model. We use them to study various assumptions about rescattering. Another focus is on fluctuations of global observables. We find a general formula for fluctuations in independent -collision models and show that its predictions are inconsistent with experimental data. We discuss possible explanations of the data. The fluctuations in our previously presented models are calculated and examined in the light of that discussion. Finally we give a method for comparing calculated fluctuations to experimental results.

  20. Predictive intelligence to the edge: impact on edge analytics

    OpenAIRE

    Harth, Natascha; Anagnostopoulos, Christos; Pezaros, Dimitrios

    2017-01-01

    We rest on the edge computing paradigm where pushing processing and inference to the edge of the Internet of Things (IoT) allows the complexity of predictive analytics to be distributed into smaller pieces physically located at the source of the contextual information. This enables a huge amount of rich contextual data to be processed in real time that would be prohibitively complex and costly to deliver on a traditional centralized Cloud. We propose a lightweight, distributed, predictive int...

  1. The edge of space time

    International Nuclear Information System (INIS)

    Hawking, S.

    1993-01-01

    What happened at the beginning of the expansion of the universe. Did space time have an edge at the Big Bang. The answer is that, if the boundary conditions of the universe are that it has no boundary, time ceases to be well-defined in the very early universe as the direction ''north'' ceases to be well defined at the North Pole of the Earth. The quantity that we measure as time has a beginning but that does not mean spacetime has an edge, just as the surface of the Earth does not have an edge at the North Pole. 8 figs

  2. Edges, curvature, and primal sketches.

    Science.gov (United States)

    Watt, Roger

    2012-01-01

    Marr described two versions of the primal sketch: the basic image-processing level in human vision. In line with his broader view of how one should construct explanatory theories in vision, he provided some details of the computational theory for this stage, the algorithms used, and how they might be implemented in neural systems. In this paper I consider how Marr ideas have continued over the past 30 years. In this regard, I pay particular attention to three stages: locating edges; describing edge curvature; linking local edge segments into elongated contours.

  3. Fluctuations of wavefunctions about their classical average

    International Nuclear Information System (INIS)

    Benet, L; Flores, J; Hernandez-Saldana, H; Izrailev, F M; Leyvraz, F; Seligman, T H

    2003-01-01

    Quantum-classical correspondence for the average shape of eigenfunctions and the local spectral density of states are well-known facts. In this paper, the fluctuations of the quantum wavefunctions around the classical value are discussed. A simple random matrix model leads to a Gaussian distribution of the amplitudes whose width is determined by the classical shape of the eigenfunction. To compare this prediction with numerical calculations in chaotic models of coupled quartic oscillators, we develop a rescaling method for the components. The expectations are broadly confirmed, but deviations due to scars are observed. This effect is much reduced when both Hamiltonians have chaotic dynamics

  4. Correlations of stock price fluctuations under multi-scale and multi-threshold scenarios

    Science.gov (United States)

    Sui, Guo; Li, Huajiao; Feng, Sida; Liu, Xueyong; Jiang, Meihui

    2018-01-01

    The multi-scale method is widely used in analyzing time series of financial markets and it can provide market information for different economic entities who focus on different periods. Through constructing multi-scale networks of price fluctuation correlation in the stock market, we can detect the topological relationship between each time series. Previous research has not addressed the problem that the original fluctuation correlation networks are fully connected networks and more information exists within these networks that is currently being utilized. Here we use listed coal companies as a case study. First, we decompose the original stock price fluctuation series into different time scales. Second, we construct the stock price fluctuation correlation networks at different time scales. Third, we delete the edges of the network based on thresholds and analyze the network indicators. Through combining the multi-scale method with the multi-threshold method, we bring to light the implicit information of fully connected networks.

  5. Numerical analysis of temperature fluctuation in core outlet region of China experimental fast reactor

    International Nuclear Information System (INIS)

    Zhu Huanjun; Xu Yijun

    2014-01-01

    The temperature fluctuation in core outlet region of China Experimental Fast Reactor (CEFR) was numerically simulated by the CFD software Star CCM+. With the core outlet temperatures, flows etc. under rated conditions given as boundary conditions, a 1/4 region model of the reactor core outlet region was established and calculated using LES method for this problem. The analysis results show that while CEFR operates under rated conditions, the temperature fluctuation in lower part of core outlet region is mainly concentrated in area over the edge components (steel components, control rod assembly), and one in upper part is remarkable in area above all the components. The largest fluctuation amplitude is 19 K and the remarkable frequency is below 5 Hz, and it belongs to typically low frequency fluctuation. The conclusion is useful for further experimental work. (authors)

  6. Characterization of the up-down asymmetry of density fluctuations induced by a lower modular limiter in Tore Supra

    International Nuclear Information System (INIS)

    Fenzi, C.; Devynck, P.; Garbet, X.; Antar, G.; Capes, H.; Laviron, C.; Truc, A.; Gervais, F.; Hennequin, P.; Quemeneur, A.

    1999-01-01

    In magnetic fusion devices, the effect of plasma facing components on plasma turbulence is a key issue for several reasons. Firstly, the edge turbulence controls the power deposition on plasma facing components. Secondly, the possible influence of the edge parameters on the core fluctuations is a central question, since the core turbulent transport is responsible for the confinement degradation. It is in practice difficult to determine whether the plasma core influences the edge, or the opposite. We show here that spatial edge asymmetries of density fluctuations, and particularly up-down asymmetries, provide a powerful tool to investigate this problem. In TORE SUPRA, previous scaling analyses with various plasma parameters have emphasized that a very clear effect on the asymmetry level appears when the plasma leans on the lower modular limiter located close to the measurement chord. We present here recent measurement results concerning that specific case. They tend to show that the limiter configuration has some effect on the core turbulence. (authors)

  7. The edge of neutral evolution in social dilemmas

    International Nuclear Information System (INIS)

    Cremer, Jonas; Frey, Erwin; Reichenbach, Tobias

    2009-01-01

    The functioning of animal as well as human societies fundamentally relies on cooperation. Yet, defection is often favorable for the selfish individual, and social dilemmas arise. Selection by individuals' fitness, usually the basic driving force of evolution, quickly eliminates cooperators. However, evolution is also governed by fluctuations that can be of greater importance than fitness differences, and can render evolution effectively neutral. Here, we investigate the effects of selection versus fluctuations in social dilemmas. By studying the mean extinction times of cooperators and defectors, a variable sensitive to fluctuations, we are able to identify and quantify an emerging 'edge of neutral evolution' that delineates regimes of neutral and Darwinian evolution. Our results reveal that cooperation is significantly maintained in the neutral regimes. In contrast, the classical predictions of evolutionary game theory, where defectors beat cooperators, are recovered in the Darwinian regimes. Our studies demonstrate that fluctuations can provide a surprisingly simple way to partly resolve social dilemmas. Our methods are generally applicable to estimate the role of random drift in evolutionary dynamics.

  8. Effects of particle shape on growth dynamics at edges of evaporating drops of colloidal suspensions.

    Science.gov (United States)

    Yunker, Peter J; Lohr, Matthew A; Still, Tim; Borodin, Alexei; Durian, D J; Yodh, A G

    2013-01-18

    We study the influence of particle shape on growth processes at the edges of evaporating drops. Aqueous suspensions of colloidal particles evaporate on glass slides, and convective flows during evaporation carry particles from drop center to drop edge, where they accumulate. The resulting particle deposits grow inhomogeneously from the edge in two dimensions, and the deposition front, or growth line, varies spatiotemporally. Measurements of the fluctuations of the deposition front during evaporation enable us to identify distinct growth processes that depend strongly on particle shape. Sphere deposition exhibits a classic Poisson-like growth process; deposition of slightly anisotropic particles, however, belongs to the Kardar-Parisi-Zhang universality class, and deposition of highly anisotropic ellipsoids appears to belong to a third universality class, characterized by Kardar-Parisi-Zhang fluctuations in the presence of quenched disorder.

  9. Exponential power spectra, deterministic chaos and Lorentzian pulses in plasma edge dynamics

    International Nuclear Information System (INIS)

    Maggs, J E; Morales, G J

    2012-01-01

    Exponential spectra have been observed in the edges of tokamaks, stellarators, helical devices and linear machines. The observation of exponential power spectra is significant because such a spectral character has been closely associated with the phenomenon of deterministic chaos by the nonlinear dynamics community. The proximate cause of exponential power spectra in both magnetized plasma edges and nonlinear dynamics models is the occurrence of Lorentzian pulses in the time signals of fluctuations. Lorentzian pulses are produced by chaotic behavior in the separatrix regions of plasma E × B flow fields or the limit cycle regions of nonlinear models. Chaotic advection, driven by the potential fields of drift waves in plasmas, results in transport. The observation of exponential power spectra and Lorentzian pulses suggests that fluctuations and transport at the edge of magnetized plasmas arise from deterministic, rather than stochastic, dynamics. (paper)

  10. DAVs: Red Edge and Outbursts

    Science.gov (United States)

    Luan, Jing

    2018-04-01

    As established by ground based surveys, white dwarfs with hydrogen atmospheres pulsate as they cool across the temperature range, 12500Kred edge is a two-decade old puzzle. Recently, Kepler discovered a number of cool DAVs exhibiting sporadic outbursts separated by days, each lasting several hours, and releasing \\sim 10^{33}-10^{34} {erg}. We provide quantitative explanations for both the red edge and the outbursts. The minimal frequency for overstable modes rises abruptly near the red edge. Although high frequency overstable modes exist below the red edge, their photometric amplitudes are generally too small to be detected by ground based observations. Nevertheless, these overstable parent modes can manifest themselves through nonlinear mode couplings to damped daughter modes which generate limit cycles giving rise to photometric outbursts.

  11. Diffraction at a Straight Edge

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 5. Diffraction at a Straight Edge: A Gem from Sommerfeld's Work in Classical Physics. Rajaram Nityananda. General Article Volume 20 Issue 5 May 2015 pp 389-400 ...

  12. Edge equilibrium code for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xujing [Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190 (China); Zakharov, Leonid E. [Princeton Plasma Physics Laboratory Princeton, MS-27 P.O. Box 451, New Jersey (United States); Drozdov, Vladimir V. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2014-01-15

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.

  13. Extruded edge members for honeycombs

    Science.gov (United States)

    Haskell, D. R.

    1977-01-01

    Edge members in bonded honeycomb panel structures are conventionally made by machining channels in aluminum bars. Open ends are stuffed with honeycomb core, using intumescent adhesive. Less expensive technique eliminates need for stuffing. Extended edges are more reliable, lighter, and easier to install. New manufacturing method may prove useful in fabricating structures such as air-frames, recreational-vehicle frame members, and the like in which weight savings is primary goal.

  14. The text neutral lithium beam edge density diagnostic

    International Nuclear Information System (INIS)

    Howald, A.M.; McChesney, J.M.; West, W.P.

    1994-07-01

    A fast neutral lithium beam has been installed on the TEXT tokamak for Beam Emission Spectroscopy (BES) studies of the edge plasma electron density profile. The diagnostic was recently upgraded from ten to twenty spatial channels, each of which has two detectors, one to measure lithium beam signal and one to monitor plasma background light. The spatial resolution is 6 mm, and the temporal resolution is designed to be as high as 10 ms for studies of transient events including plasma density fluctuations. Initial results are presented from the ten-channel system: Edge electron densities unfolded from the LiI(2 s 2 S - 2 p 2 P) 670.8 nm emission profile have the same general time dependence as the line-averaged density measured by microwave interferometry

  15. Alfven frequency modes at the edge of TFTR plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Z.; Fredrickson, E.D.; Zweben, S.J. [and others

    1995-07-01

    An Alfven frequency mode (AFM) is very often seen in TFTR neutral beam heated plasmas as well as ohmic plasmas. This quasi-coherent mode is so far only seen on the magnetic fluctuation diagnostics (Mirnov coils). A close correlation between the plasma edge density and the mode activity (frequency and amplitude) has been observed, which indicates that the AFM is an edge localized mode with r/a > 0.85. No direct impact of this mode on the plasma global performance or fast ion loss (e.g., the {alpha}-particles in DT experiments) has been observed. This mode is apparently not the conventional TAE (toroidicity-induced Alfven eigenmodes). The present TAE theory cannot explain the observation. Other possible explanations are discussed.

  16. Spectral characteristics of edge magnetic turbulence in COMPASS-D

    Science.gov (United States)

    Han, W. E.; Thyagaraja, A.; Fielding, S. J.; Valovic, M.

    2000-02-01

    Edge fluctuation data from both COMPASS-D and calculations with the large-eddy simulation code CUTIE have been analysed with a number of techniques, revealing coherent structures which exhibit high-frequency, standing-wave oscillations; some of those observed during edge localized modes (ELMs) have an `inverse-chirp' character and these are related to a disturbance of the plasma boundary in the lower-inboard quadrant of the poloidal plane. A `precursor' mode, seen in Ohmic discharges at about 220 kHz just before large ELMs, appears to be outward ballooning in character. Although the CUTIE calculations do not yet include ELM simulations, the results seem to correspond qualitatively with those seen between ELMs or during ELM-free periods on COMPASS-D.

  17. Fluctuation conductivity in cuprate superconductors

    Indian Academy of Sciences (India)

    Abstract. We have measured the in-plane resistivity of Bi2Sr2CaCu2O8+δ and Tl2Ba2. CaCu2O8+δ single crystals in the temperature range 70–300 K. The thermodynamic fluctuations in the conductivity of both the samples start around ∼ 125 K. We find the Lawrence and Doniach [1] model to be inadequate to describe the ...

  18. Random numbers from vacuum fluctuations

    International Nuclear Information System (INIS)

    Shi, Yicheng; Kurtsiefer, Christian; Chng, Brenda

    2016-01-01

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  19. Edge of polar cap patches

    Science.gov (United States)

    Hosokawa, K.; Taguchi, S.; Ogawa, Y.

    2016-04-01

    On the night of 4 December 2013, a sequence of polar cap patches was captured by an all-sky airglow imager (ASI) in Longyearbyen, Norway (78.1°N, 15.5°E). The 630.0 nm airglow images from the ASI of 4 second exposure time, oversampled the emission of natural lifetime (with quenching) of at least ˜30 sec, introduce no observational blurring effects. By using such high-quality ASI images, we succeeded in visualizing an asymmetry in the gradients between the leading/trailing edges of the patches in a 2-D fashion. The gradient in the leading edge was found to be 2-3 times steeper than that in the trailing edge. We also identified fingerlike structures, appearing only along the trailing edge of the patches, whose horizontal scale size ranged from 55 to 210 km. These fingers are considered to be manifestations of plasma structuring through the gradient-drift instability (GDI), which is known to occur only along the trailing edge of patches. That is, the current 2-D observations visualized, for the first time, how GDI stirs the patch plasma and such a mixing process makes the trailing edge more gradual. This result strongly implies a close connection between the GDI-driven plasma stirring and the asymmetry in the large-scale shape of patches and then suggests that the fingerlike structures can be used as markers to estimate the fine-scale structure in the plasma flow within patches.

  20. Domination Edge Lift Critical Trees | Desormeaux | Quaestiones ...

    African Journals Online (AJOL)

    stract. Let uxv be an induced path with center x in a graph G. The edge lifting of uv off x is defined as the action of removing edges ux and vx from the edge set of G, while adding the edge uv to the edge set of G. We study trees for which every possible edge lift changes the domination number. We show that there are no ...

  1. Heat fluctuations and initial ensembles

    Science.gov (United States)

    Kim, Kwangmoo; Kwon, Chulan; Park, Hyunggyu

    2014-09-01

    Time-integrated quantities such as work and heat increase incessantly in time during nonequilibrium processes near steady states. In the long-time limit, the average values of work and heat become asymptotically equivalent to each other, since they only differ by a finite energy change in average. However, the fluctuation theorem (FT) for the heat is found not to hold with the equilibrium initial ensemble, while the FT for the work holds. This reveals an intriguing effect of everlasting initial memory stored in rare events. We revisit the problem of a Brownian particle in a harmonic potential dragged with a constant velocity, which is in contact with a thermal reservoir. The heat and work fluctuations are investigated with initial Boltzmann ensembles at temperatures generally different from the reservoir temperature. We find that, in the infinite-time limit, the FT for the work is fully recovered for arbitrary initial temperatures, while the heat fluctuations significantly deviate from the FT characteristics except for the infinite initial-temperature limit (a uniform initial ensemble). Furthermore, we succeed in calculating finite-time corrections to the heat and work distributions analytically, using the modified saddle point integral method recently developed by us. Interestingly, we find noncommutativity between the infinite-time limit and the infinite-initial-temperature limit for the probability distribution function (PDF) of the heat.

  2. Primordial fluctuations without scalar fields

    Science.gov (United States)

    Magueijo, João; Noller, Johannes

    2010-02-01

    We revisit the question of whether fluctuations in hydrodynamical, adiabatical matter could explain the observed structures in our Universe. We consider matter with variable equation of state w=p0/ɛ0 and a concomitant (under the adiabatic assumption) density dependent speed of sound, cs. We find a limited range of possibilities for a setup when modes start inside the Hubble radius, then leaving it and freezing out. For expanding universes, power-law w(ɛ0) models are ruled out (except when cs2∝w≪1, requiring post-stretching the seeded fluctuations); but sharper profiles in cs do solve the horizon problem. Among these, a phase transition in cs is notable for leading to scale-invariant fluctuations if the initial conditions are thermal. For contracting universes all power-law w(ɛ0) solve the horizon problem, but only one leads to scale-invariance: w∝ɛ02 and cs∝ɛ0. This model bypasses a number of problems with single scalar field cyclic models (for which w is large but constant).

  3. Measurement of Sky Surface Brightness Fluctuations at λ=4 Microns

    Science.gov (United States)

    Xu, Jing; Bock, James J.; Ganga, Ken M.; Gorjian, Varoujan; Uemizu, Kazunori; Kawada, Mitsunobu; Lange, Andrew E.; Matsumoto, Toshio; Watabe, Toyoki

    2002-12-01

    We present a measurement of faint-source confusion in deep, wide-field 4 μm images. The 1.8d×1.8d images with 17" resolution are centered about the nearby edge-on spiral galaxies NGC 4565 and NGC 5907. After removing statistical noise and gain fluctuations in the focal plane array, we measure spatial fluctuations in the sky brightness to be δνIν=2.74+/-0.14 nW m-2 sr-1, approximately 1% of the diffuse background level observed in a single pixel. The brightness fluctuations are confirmed to be associated with the sky by subtracting sequential images of the same region. An autocorrelation analysis shows the fluctuations are well described by unresolved point sources. We see no evidence for surface brightness fluctuations on larger angular scales (2'S)=1.04+0.86-0.34 nW m-2 sr-1 to the cosmic infrared background, evaluated at S=4.0×10-8 nW m-2. From the fluctuation data we can determine the integrated source counts N(>S)=1.79+0.26-0.40×107 sr-1, evaluated at S=4.0×10-8 nW m-2. The observed fluctuations are consistent with reddened K-band galaxy number counts. The number counts of extracted point sources with flux νFν>6.3×10-7 nW m-2 are dominated by stars and agree well with the Galactic stellar model of Wright & Reese. Removing the stellar contribution from DIRBE maps with zodiacal subtraction results in a residual brightness of 14.0+/-2.6 (22.2+/-5.9) nW m-2 sr-1 at 3.5 (4.9) μm for the NGC 5907 field and 24.0+/-2.7 (36.8+/-6.0) nW m-2 sr-1 at 3.5 (4.9) μm for the NGC 4565 field. The NGC 5907 residuals are consistent with tentative detections of the infrared background reported by Dwek & Arendt, Wright & Reese, and Gorjian, Wright, & Chary.

  4. Edge Effects and Ecological Traps: Effects on Shrubland Birds in Missouri

    Science.gov (United States)

    April A. Woodward; Alix D. Fink; Frank R. Thompson III

    2001-01-01

    The effect of habitat edge on avian nesting success has been the focus of considerable debate. We studied relationships between habitat edges, locations of nests, and predation. We tested the ecological trap hypothesis for 5 shrubland bird species in the Missouri Ozarks. We compared habitat selection and daily nest predation rates among 3 distance-to-edge categories....

  5. Electrostatic fluctuation in Low-β plasmas

    International Nuclear Information System (INIS)

    Krane, B

    1997-11-01

    The thesis gives an overview, which by no means is complete, to two dimensional plasma flows. The plasma is taken to be strongly magnetized such that magnetic fields generated by internal currents are small compared to the background magnetic field. This requires that the magnetic pressure exerted by the ambient magnetic field is large compared to the pressure due to thermal fluctuations, i.e. low-β plasma. The author also assume low frequency electrostatic fluctuations with ω c i where ω c i is the ion gyro frequency. A brief introduction to nonlinear phenomena in two dimensional plasma flows has been presented. Particular attention was given to simple models describing flute and drift modes. Although the derivations of the model equations are based on different assumptions regarding the plasma conditions, the resulting equations exhibit similar behavior in some respects. For instance, both the simple guiding center model and the Hasegawa-Mima model have stable dipolar structures. The inverse cascade was also found in both models. However, it is evident that there are significant differences, first of all the Hasegawa-Mima model assumes a background density gradient which makes it an inhomogeneous model. Secondly, in this model the electrons respond instantaneously to variations in the ion density by moving along the magnetic field, thereby introducing Debye shielding

  6. A heuristic approach to edge detection in on-line portal imaging

    International Nuclear Information System (INIS)

    McGee, Kiaran P.; Schultheiss, Timothy E.; Martin, Eric E.

    1995-01-01

    Purpose: Portal field edge detection is an essential component of several postprocessing techniques used in on-line portal imaging, including field shape verification, selective contrast enhancement, and treatment setup error detection. Currently edge detection of successive fractions in a multifraction portal image series involves the repetitive application of the same algorithm. As the number of changes in the field is small compared to the total number of fractions, standard edge detection algorithms essentially recalculate the same field shape numerous times. A heuristic approach to portal edge detection has been developed that takes advantage of the relatively few changes in the portal field shape throughout a fractionation series. Methods and Materials: The routine applies a standard edge detection routine to calculate an initial field edge and saves the edge information. Subsequent fractions are processed by applying an edge detection operator over a small region about each point of the previously defined contour, to determine any shifts in the field shape in the new image. Failure of this edge check indicates that a significant change in the field edge has occurred, and the original edge detection routine is applied to the image. Otherwise the modified edge contour is used to define the new edge. Results: Two hundred and eighty-one portal images collected from an electronic portal imaging device were processed by the edge detection routine. The algorithm accurately calculated each portal field edge, as well as reducing processing time in subsequent fractions of an individual portal field by a factor of up to 14. Conclusions: The heuristic edge detection routine is an accurate and fast method for calculating portal field edges and determining field edge setup errors

  7. Wall pressure fluctuations in rod bundles

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1990-01-01

    Microphones and hot wires were applied for the measurement of wall pressure fluctuations and velocity fluctuations in rod bundles with several aspect ratios. By means of auto and cross spectral density functions their interdependence was investigated. Results show that the pressure fluctuations in rod bundles are mainly associated with the phenomenon of quasi-periodic flow pulsations between subchannels. (author)

  8. Effects of ion temperature fluctuations on the stability of resistive ballooning modes

    International Nuclear Information System (INIS)

    Singh, R.; Nordman, H.; Jarmen, A.; Weiland, J.

    1996-01-01

    The influence of ion temperature fluctuations on the stability of resistive drift- and ballooning-modes is investigated using a two-fluid model. The Eigenmode equations are derived and solved analytically in a low beta model equilibrium. Parameters relevant to L-mode edge plasmas from the Texas Experimental Tokamak are used. The resistive modes are found to be destabilized by ion temperature fluctuations over a broad range of mode numbers. The scaling of the growth rate with magnetic shear and mode number is elucidated. 13 refs, 4 figs

  9. Protected Edge Modes without Symmetry

    Directory of Open Access Journals (Sweden)

    Michael Levin

    2013-05-01

    Full Text Available We discuss the question of when a gapped two-dimensional electron system without any symmetry has a protected gapless edge mode. While it is well known that systems with a nonzero thermal Hall conductance, K_{H}≠0, support such modes, here we show that robust modes can also occur when K_{H}=0—if the system has quasiparticles with fractional statistics. We show that some types of fractional statistics are compatible with a gapped edge, while others are fundamentally incompatible. More generally, we give a criterion for when an electron system with Abelian statistics and K_{H}=0 can support a gapped edge: We show that a gapped edge is possible if and only if there exists a subset of quasiparticle types M such that (1 all the quasiparticles in M have trivial mutual statistics, and (2 every quasiparticle that is not in M has nontrivial mutual statistics with at least one quasiparticle in M. We derive this criterion using three different approaches: a microscopic analysis of the edge, a general argument based on braiding statistics, and finally a conformal field theory approach that uses constraints from modular invariance. We also discuss the analogous result for two-dimensional boson systems.

  10. Parameters Influencing Sulfur Speciation in Environmental Samples Using Sulfur K-Edge X-Ray Absorption Near-Edge Structure

    Directory of Open Access Journals (Sweden)

    Siwatt Pongpiachan

    2012-01-01

    Full Text Available This paper aims to enhance the credibility of applying the sulfur K-edge XANES spectroscopy as an innovative “fingerprint” for characterizing environmental samples. The sensitivities of sulfur K-edge XANES spectra of ten sulfur compound standards detected by two different detectors, namely, Lytle detector (LyD and Germanium detector (GeD, were studied and compared. Further investigation on “self-absorption” effect revealed that the maximum sensitivities of sulfur K-edge XANES spectra were achieved when diluting sulfur compound standards with boron nitride (BN at the mixing ratio of 0.1%. The “particle-size” effect on sulfur K-edge XANES spectrum sensitivities was examined by comparing signal-to-noise ratios of total suspended particles (TSP and particulate matter of less than 10 millionths of a meter (PM10 collected at three major cities of Thailand. The analytical results have demonstrated that the signal-to-noise ratios of sulfur K-edge XANES spectra were positively correlated with sulfate content in aerosols and negatively connected with particle sizes. The combination of hierarchical cluster analysis (HCA and principal component analysis (PCA has proved that sulfur K-edge XANES spectrum can be used to characterize German terrestrial soils and Andaman coastal sediments. In addition, this study highlighted the capability of sulfur K-edge XANES spectra as an innovative “fingerprint” to distinguish tsunami backwash deposits (TBD from typical marine sediments (TMS.

  11. Edge turbulence measurement in Heliotron J using a combination of hybrid probe system and fast cameras

    International Nuclear Information System (INIS)

    Nishino, N.; Zang, L.; Takeuchi, M.; Mizuuchi, T.; Ohshima, S.; Kasajima, K.; Sha, M.; Mukai, K.; Lee, H.Y.; Nagasaki, K.; Okada, H.; Minami, T.; Kobayashi, S.; Yamamoto, S.; Konoshima, S.; Nakamura, Y.; Sano, F.

    2013-01-01

    The hybrid probe system (a combination of Langmuir probes and magnetic probes), fast camera and gas puffing system were installed at the same toroidal section to study edge plasma turbulence/fluctuation in Heliotron J, especially blob (intermittent filament). Fast camera views the location of the probe head, so that the probe system yields the time evolution of the turbulence/fluctuation while the camera images the spatial profile. Gas puff at the same toroidal section was used to control the plasma density and simultaneous gas puff imaging technique. Using this combined system the filamentary structure associated with magnetic fluctuation was found in Heliotron J at the first time. The other kind of fluctuation was also observed at another experiment. This combination measurement enables us to distinguish MHD activity and electro-static activity

  12. Magnetic and electrostatic fluctuation measurements on the ZT-40M reversed field pinch

    International Nuclear Information System (INIS)

    Miller, G.; Ingraham, J.C.; Munson, C.P.; Schoenberg, K.F.; Weber, P.G.; Tsui, H.Y.; Ritz, C.P.

    1990-01-01

    It is presently unknown whether anomalous transport in toroidal, magnetically confined plasma systems, if fluctuation induced, is dominated by electrostatic or magnetic turbulence. We are participating in a joint study of the edge plasmas of tokamak, stellarator, and RFP in an attempt to elucidate this issue. We measure magnetic and electrostatic fields using probes inserted into the edge of the ZT-40M RFP. Using the present technique, with stationary probes, these measurements can be done without damaging the probes only for low current discharges (60 kA). In this initial study, we find that both turbulent magnetic and electrostatic transport are of importance. (author) 10 refs., 2 figs., 1 tab

  13. Emissive probe measurements of plasma potential fluctuations in the edge plasma regions of tokamaks

    Czech Academy of Sciences Publication Activity Database

    Balan, P.; Schrittweiser, R.; Ionita, C.; Cabral, J. A.; Figueiredo, H. F. C.; Fernandes, H.; Varandas, C.; Adámek, Jiří; Hron, Martin; Stöckel, Jan; Martines, E.; Tichý, M.; Van Oost, G.

    2003-01-01

    Roč. 74, č. 3 (2003), s. 1583-1587 ISSN 0034-6748 R&D Projects: GA ČR GA202/00/1217 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma physics, tokamaks, probes Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.343, year: 2003

  14. Conserved number fluctuations in a hadron resonance gas model

    International Nuclear Information System (INIS)

    Garg, P.; Mishra, D.K.; Netrakanti, P.K.; Mohanty, B.; Mohanty, A.K.; Singh, B.K.; Xu, N.

    2013-01-01

    Net-baryon, net-charge and net-strangeness number fluctuations in high energy heavy-ion collisions are discussed within the framework of a hadron resonance gas (HRG) model. Ratios of the conserved number susceptibilities calculated in HRG are being compared to the corresponding experimental measurements to extract information about the freeze-out condition and the phase structure of systems with strong interactions. We emphasize the importance of considering the actual experimental acceptances in terms of kinematics (pseudorapidity (η) and transverse momentum (p T )), the detected charge state, effect of collective motion of particles in the system and the resonance decay contributions before comparisons are made to the theoretical calculations. In this work, based on HRG model, we report that the net-baryon number fluctuations are least affected by experimental acceptances compared to the net-charge and net-strangeness number fluctuations

  15. Critical swelling of fluctuating capsules

    Science.gov (United States)

    Diamant, Haim; Haleva, Emir

    2009-03-01

    In many natural transport processes the solute molecules to be transported are encapsulated in semipermeable, flexible membrane vesicles of micron size. We study the swelling of such fluctuating capsules, as the number of encapsulated particles is increased, or the concentration of the outer solution is decreased. The approach to the maximum volume-to-area ratio and the associated buildup of membrane tension involve a continuous phase transition and follow universal scaling laws. The criticality and its features are model-independent, arising solely from the interplay between volume and surface degrees of freedom.ootnotetextE. Haleva and H. Diamant, Phys. Rev. Lett. 101, 078104 (2008).

  16. Noise and fluctuations an introduction

    CERN Document Server

    MacDonald, D K C

    2006-01-01

    An understanding of fluctuations and their role is both useful and fundamental to the study of physics. This concise study of random processes offers graduate students and research physicists a survey that encompasses both the relationship of Brownian Movement with statistical mechanics and the problem of irreversible processes. It outlines the basics of the physics involved, without the strictures of mathematical rigor.The three-part treatment starts with a general survey of Brownian Movement, including electrical Brownian Movement and ""shot-noise,"" Part two explores correlation, frequency

  17. Fluctuations in Overlapping Generations Economies

    DEFF Research Database (Denmark)

    Tvede, Mich

    In the present paper stationary pure-exchange overlapping generations economies with l  goods per date and m consumers per generation are considered. It is shown that for an open and dense set of utility functions there exist endowment vectors such that n-cycles exist for n = l +1 and l  = m....... The approach to existence of endogenous fluctuations is basic in the sense that the prime ingredients are the implicit function theorem and linear algebra. Moreover the approach is applied to show that for an open and dense set of utility functions there exist endowment vectors such that sunspot equilibria...

  18. Turbulent Spot Pressure Fluctuation Wave Packet Model

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.

  19. Fluctuation between grandiose and vulnerable narcissism.

    Science.gov (United States)

    Gore, Whitney L; Widiger, Thomas A

    2016-10-01

    Current literature on narcissistic personality disorder has emphasized a distinction between grandiose and vulnerable narcissism. Some researchers have further suggested that narcissistic persons fluctuate between grandiose and vulnerable narcissism. However, this perception has been confined largely to clinical experience with no systematic research testing the hypothesis. Clinicians and clinical psychology professors in the current study identified 143 persons who fit a description of either a grandiose or a vulnerable narcissist and indicated the extent to which these persons ever demonstrated traits of the complementary variant. The results supported the fluctuation hypothesis, particularly for episodes of vulnerable narcissism in persons identified as a grandiose narcissist. Correlations of the grandiose and vulnerable narcissism traits with a brief five-factor model measure corroborated past trait descriptions of the 2 respective variants of narcissism. The results of the current study are compared with existing cross-sectional and longitudinal research, and suggestions for future research are provided. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Stable chaos in fluctuation driven neural circuits

    International Nuclear Information System (INIS)

    Angulo-Garcia, David; Torcini, Alessandro

    2014-01-01

    Highlights: • Nonlinear instabilities in fluctuation driven (balanced) neural circuits are studied. • Balanced networks display chaos and stable phases at different post-synaptic widths. • Linear instabilities coexists with nonlinear ones in the chaotic regime. • Erratic motion appears also in linearly stable phase due to stable chaos. - Abstract: We study the dynamical stability of pulse coupled networks of leaky integrate-and-fire neurons against infinitesimal and finite perturbations. In particular, we compare mean versus fluctuations driven networks, the former (latter) is realized by considering purely excitatory (inhibitory) sparse neural circuits. In the excitatory case the instabilities of the system can be completely captured by an usual linear stability (Lyapunov) analysis, whereas the inhibitory networks can display the coexistence of linear and nonlinear instabilities. The nonlinear effects are associated to finite amplitude instabilities, which have been characterized in terms of suitable indicators. For inhibitory coupling one observes a transition from chaotic to non chaotic dynamics by decreasing the pulse-width. For sufficiently fast synapses the system, despite showing an erratic evolution, is linearly stable, thus representing a prototypical example of stable chaos

  1. Near-field tsunami edge waves and complex earthquake rupture

    Science.gov (United States)

    Geist, Eric L.

    2013-01-01

    The effect of distributed coseismic slip on progressive, near-field edge waves is examined for continental shelf tsunamis. Detailed observations of edge waves are difficult to separate from the other tsunami phases that are observed on tide gauge records. In this study, analytic methods are used to compute tsunami edge waves distributed over a finite number of modes and for uniformly sloping bathymetry. Coseismic displacements from static elastic theory are introduced as initial conditions in calculating the evolution of progressive edge-waves. Both simple crack representations (constant stress drop) and stochastic slip models (heterogeneous stress drop) are tested on a fault with geometry similar to that of the M w = 8.8 2010 Chile earthquake. Crack-like ruptures that are beneath or that span the shoreline result in similar longshore patterns of maximum edge-wave amplitude. Ruptures located farther offshore result in reduced edge-wave excitation, consistent with previous studies. Introduction of stress-drop heterogeneity by way of stochastic slip models results in significantly more variability in longshore edge-wave patterns compared to crack-like ruptures for the same offshore source position. In some cases, regions of high slip that are spatially distinct will yield sub-events, in terms of tsunami generation. Constructive interference of both non-trapped and trapped waves can yield significantly larger tsunamis than those that produced by simple earthquake characterizations.

  2. Entropic fluctuations in DNA sequences

    Science.gov (United States)

    Thanos, Dimitrios; Li, Wentian; Provata, Astero

    2018-03-01

    The Local Shannon Entropy (LSE) in blocks is used as a complexity measure to study the information fluctuations along DNA sequences. The LSE of a DNA block maps the local base arrangement information to a single numerical value. It is shown that despite this reduction of information, LSE allows to extract meaningful information related to the detection of repetitive sequences in whole chromosomes and is useful in finding evolutionary differences between organisms. More specifically, large regions of tandem repeats, such as centromeres, can be detected based on their low LSE fluctuations along the chromosome. Furthermore, an empirical investigation of the appropriate block sizes is provided and the relationship of LSE properties with the structure of the underlying repetitive units is revealed by using both computational and mathematical methods. Sequence similarity between the genomic DNA of closely related species also leads to similar LSE values at the orthologous regions. As an application, the LSE covariance function is used to measure the evolutionary distance between several primate genomes.

  3. Potential Fluctuations and Localization Effects in CZTS Single Crystals, as Revealed by Optical Spectroscopy

    Science.gov (United States)

    Bleuse, Joël; Ducroquet, Frédérique; Mariette, Henri

    2018-03-01

    Reports on Cu_2 ZnSn(S_x Se_{1-x} )_4 (CZTSSe) solar cell devices all show an open-circuit voltage lower than expected, especially when compared to CuIn_x Ga_{1-x} (S,Se)_2 devices, which reduces their power efficiency and delays their development. A high concentration of intrinsic defects in CZTSSe, and their stabilization through neutral complex formation, which induces some local fluctuations, are at the origin of local energy shifts in the conduction and valence band edges. The implied band tail in Cu_2 ZnSnS_4 is studied in this work by combining three types of optical spectroscopy data: emission spectra compared to photoluminescence excitation spectroscopy, emission spectra as a function of excitation power, and time-resolved photoluminescence spectra. All these data converge to show that both the bandgap and the band tail of localized states just below are dependent on the degree of order/disorder in the Cu/Zn cation sublattice of the quaternary structure: in the more ordered structures, the bandgap increases by about 50 meV, and the energy range of the band tail is decreased from about 110 to 70 meV.

  4. Capillary Sharp Inner Edge Manufacturing

    Czech Academy of Sciences Publication Activity Database

    Hošek, Jan; Studenovský, K.; Najdek, D.

    2009-01-01

    Roč. 19, č. 35 (2009), s. 19-25 ISSN 1584-5982. [MECAHITECH 09 /1./. Bukurešť, 08.10.2009-09.10.2009] R&D Projects: GA AV ČR IAA200760905 Institutional research plan: CEZ:AV0Z20760514 Keywords : capillary * edge * manufacturing Subject RIV: JR - Other Machinery

  5. Diffraction at a Straight Edge

    Indian Academy of Sciences (India)

    IAS Admin

    integral is a complex number which is a function of the lower limit. We have named it ... (b) Straight edge diffraction according to Young: In this figure, the plane wave from the source simply continues with ... discontinuity in the amplitude at the shadow, which exactly compensates for the discontinuity in the plane wavefront ...

  6. Morpho (?) phono (?) logical fuzzy edges

    African Journals Online (AJOL)

    Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Morpho (?) phono (?) logical fuzzy edges: The case of {-/}/{-/U/} semantic (?) contrast in Shona. K. G. Mkangwanwi. Abstract. (ZAMBEZIA: Journal of Humanities of the Univ of Zimbabwe, 2000 27(1): 47-54). Full Text: EMAIL FULL TEXT EMAIL FULL TEXT

  7. On the Edge of Existence

    DEFF Research Database (Denmark)

    Richter, Line

    2016-01-01

    Based on ethnographic fieldwork among Malian migrants and migration brokers in Mali, Algeria, Morocco, and France, this article investigates life in exile on the edge of Europe. Zooming in on the experiences of interlocutors in Morocco and Algeria, the article will explore the experiential...

  8. Development of edge effects around experimental ecosystem hotspots is affected by edge density and matrix type

    Science.gov (United States)

    Ecological edge effects are sensitive to landscape context. In particular, edge effects can be altered by matrix type and by the presence of other nearby edges. We experimentally altered patch configurations in an African savanna to determine how edge density and matrix type influence edge effect de...

  9. Linear fluctuations of periodic and quasiperiodic instantons

    International Nuclear Information System (INIS)

    Chakrabarti, A.

    1989-01-01

    The linear modes (fluctuations self-dual up to first order) of a class of periodic self-dual SU(2) gauge fields are constructed explicitly. These periodic fields have two topological indices. One is P T =(8π 2 ) -1 S T , S T being the action over one period T. The other is q ( T ), a monopolelike winding number in R 3 . The number of periodic modes turns out to be (8P T -4q), where q=1 for our particular class. The solutions are obtained by constructing the periodic zero modes of spinors of unit isospin in such gauge-field backgrounds. Our results are compared to those of Jackiw and Rebbi for aperiodic instantons. This exhibits clearly the role of the second index q present in our case. Quasiperiodicity is approached as a limit of successive periodic approximations. The number of modes diverges in this limit. The possible consequences of quasiperiodicity are discussed

  10. Cirrus feedback on interannual climate fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C; Dessler, A E; Zelinka, M D; Yang, P; Wang, T

    2014-12-28

    Cirrus clouds are not only important in determining the current climate, but also play an important role in climate change and variability. Analysis of satellite observations shows that the amount and altitude of cirrus clouds (optical depth <3.6, cloud top pressure <440 hPa) increase in response to inter-annual surface warming. Thus, cirrus clouds are likely to act as a positive feedback on short-term climate fluctuations, by reducing the planet’s ability to radiate longwave radiation to space in response to planetary surface warming. Using cirrus cloud radiative kernels, the magnitude of cirrus feedback is estimated to be 0.20±0.21W/m2/°C, which is comparable to the surface albedo feedback. Most of the cirrus feedback comes from increasing cloud amount in the tropical tropopause layer (TTL) and subtropical upper troposphere.

  11. The edge detection enhancement on satellite image using bilateral filter

    Science.gov (United States)

    Fawwaz, I.; Zarlis, M.; Suherman; Rahmat, R. F.

    2018-02-01

    Satellite imagery is the image taken from satellites from outer space. It captures the appearance of the earth’s surface through remote sensing. Usually, satellite image’s object is hardly detected because many objects are covered with cloud shadows in the sky. Edge detection has an important role in image analysis. Edge detection aims to extract the boundary of an object contained in the image. Gaussian Filter is usually used on edge detection to smooth the image and reduce noise. However, in satellite image, we can improve it by using another filter. In this research, we compare gaussian filter with bilateral filter and analyze those two methods. We also using several operators to see the optimized process. After the experiment, by using the comparison parameter such as largest PSNR value, and the smallest MSE value, we can conclude that Bilateral Filter with Canny Operator is the most optimized edge detection for Satellite Imagery.

  12. Inverse halftoning algorithm using edge-based lookup table approach.

    Science.gov (United States)

    Chung, Kuo-Liang; Wu, Shih-Tung

    2005-10-01

    The inverse halftoning algorithm is used to reconstruct a gray image from an input halftone image. Based on the recently published lookup table (LUT) technique, this paper presents a novel edge-based LUT method for inverse halftoning which improves the quality of the reconstructed gray image. The proposed method first uses the LUT-based inverse halftoning method as a preprocessing step to transform the given halftone image to a base gray image, and then the edges are extracted and classified from the base gray image. According to these classified edges, a novel edge-based LUT is built up to reconstruct the gray image. Based on a set of 30 real training images with both low-and high-frequency contents, experimental results demonstrated that the proposed method achieves a better image quality when compared to the currently published two methods, by Chang et al. and Meşe and Vaidyanathan.

  13. Free-edge delamination - Laminate width and loading conditions effects

    Science.gov (United States)

    Murthy, Pappu L. N.; Chamis, Christos C.

    1989-01-01

    The width and loading conditions effects on free-edge stress fields in composite laminates are investigated using a three-dimensional finite element analysis. This analysis includes a special free-edge region refinement or superelement with progressive substructuring (mesh refinement) and finite thickness interply layers. The different loading conditions include in-plane and out-of-plane bending, combined axial tension and in-plane shear, twisting, uniform temperature and uniform moisture. Results obtained indicate that: axial tension causes the smallest magnitude of interlaminar free edge stress compared to other loading conditions; free-edge delamination data obtained from laboratory specimens cannot be scaled to structural components; and composite structural components are not likely to delaminate.

  14. Mitigation of Power System Oscillation Caused by Wind Power Fluctuation

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Chen, Zhe

    2013-01-01

    Wind power is increasingly integrated in modern power grids, which brings new challenges to the power system operation. Wind power is fluctuating because of the uncertain nature of wind, whereas wind shear and tower shadow effects also cause periodic fluctuations. These may lead to serious forced...... oscillation when the frequencies of the periodic fluctuations are close to the natural oscillation frequencies of the connected power system. By using modal analysis and time-domain simulations, this study studies the forced oscillation caused by the wind shear and tower shadow effects. Three forced...... oscillation mitigation controllers are proposed and compared. A model of direct-drive-full-convertor-based wind farm connected to the IEEE 10-machine 39-bus system is adopted as the test system. The calculations and simulations are conducted in DIgSILENT PowerFactory 14.0. Results are presented to show...

  15. Bet Hedging against Demographic Fluctuations

    Science.gov (United States)

    Xue, BingKan; Leibler, Stanislas

    2017-09-01

    Biological organisms have to cope with stochastic variations in both the external environment and the internal population dynamics. Theoretical studies and laboratory experiments suggest that population diversification could be an effective bet-hedging strategy for adaptation to varying environments. Here we show that bet hedging can also be effective against demographic fluctuations that pose a trade-off between growth and survival for populations even in a constant environment. A species can maximize its overall abundance in the long term by diversifying into coexisting subpopulations of both "fast-growing" and "better-surviving" individuals. Our model generalizes statistical physics models of birth-death processes to incorporate dispersal, during which new populations are founded, and can further incorporate variations of local environments. In this way, we unify different bet-hedging strategies against demographic and environmental variations as a general means of adaptation to both types of uncertainties in population growth.

  16. Characterizing flow fluctuations with moments

    Directory of Open Access Journals (Sweden)

    Rajeev S. Bhalerao

    2015-03-01

    Full Text Available We present a complete set of multiparticle correlation observables for ultrarelativistic heavy-ion collisions. These include moments of the distribution of the anisotropic flow in a single harmonic and also mixed moments, which contain the information on correlations between event planes of different harmonics. We explain how all these moments can be measured using just two symmetric subevents separated by a rapidity gap. This presents a multi-pronged probe of the physics of flow fluctuations. For instance, it allows to test the hypothesis that event-plane correlations are generated by non-linear hydrodynamic response. We illustrate the method with simulations of events in A MultiPhase Transport (AMPT model.

  17. Fluctuating nonlinear hydrodynamics of flocking

    Science.gov (United States)

    Yadav, Sunil Kumar; Das, Shankar P.

    2018-03-01

    Starting from a microscopic model, the continuum field theoretic description of the dynamics of a system of active ingredients or "particles" is presented. The equations of motion for the respective collective densities of mass and momentum follow exactly from that of a single element in the flock. The single-particle dynamics has noise and anomalous momentum dependence in its frictional terms. The equations for the collective densities are averaged over a local equilibrium distribution to obtain the corresponding coarse grained equations of fluctuating nonlinear hydrodynamics (FNH). The latter are the equations used frequently for describing active systems on the basis of intuitive arguments. The transport coefficients which appear in the macroscopic FNH equations are determined in terms of the parameters of the microscopic dynamics.

  18. Percolation model of excess electrical noise in transition-edge sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lindeman, M.A. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)]. E-mail: lindeman@wisp.physics.wisc.edu; Anderson, M.B. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Bandler, S.R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bilgri, N. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Chervenak, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gwynne Crowder, S. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Fallows, S. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Figueroa-Feliciano, E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Finkbeiner, F. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Iyomoto, N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelley, R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lai, T. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Man, J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); McCammon, D. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Nelms, K.L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Porter, F.S. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Rocks, L.E. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Saab, T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sadleir, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Vidugiris, G. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2006-04-15

    We present a geometrical model to describe excess electrical noise in transition-edge sensors (TESs). In this model, a network of fluctuating resistors represents the complex dynamics inside a TES. The fluctuations can cause several resistors in series to become superconducting. Such events short out part of the TES and generate noise because much of the current percolates through low resistance paths. The model predicts that excess white noise increases with decreasing TES bias resistance (R/R{sub N}) and that perpendicular zebra stripes reduce noise and alpha of the TES by reducing percolation.

  19. Refining Nodes and Edges of State Machines

    DEFF Research Database (Denmark)

    Hallerstede, Stefan; Snook, Colin

    2011-01-01

    State machines are hierarchical automata that are widely used to structure complex behavioural specifications. We develop two notions of refinement of state machines, node refinement and edge refinement. We compare the two notions by means of examples and argue that, by adopting simple conventions...... refinement theory and UML-B state machine refinement influences the style of node refinement. Hence we propose a method with direct proof of state machine refinement avoiding the detour via Event-B that is needed by UML-B....

  20. Interplanetary Alfvenic fluctuations: A stochastic model

    International Nuclear Information System (INIS)

    Barnes, A.

    1981-01-01

    The strong alignment of the average directions of minimum magnetic variance and mean magnetic field in interplanetary Alfvenic fluctuations is inconsistent with the usual wave-propagation models. We investigate the concept of minimum variance for nonplanar Alfvenic fluctuations in which the field direction varies stochastically. It is found that the tendency of the minimum variance and mean field directions to be aligned may be purely a consequence of the randomness of the field direction. In particular, a well-defined direction of minimum variance does not imply that the fluctuations are necessarily planar. The fluctuation power spectrum is a power law for frequencies much higher than the inverse of the correlation time. The probability distribution of directions a randomly fluctuating field of constant magnitude is calculated. A new approach for observational studies of interplanetary fluctuations is suggested

  1. Optimizing Robinson Operator with Ant Colony Optimization As a Digital Image Edge Detection Method

    Science.gov (United States)

    Yanti Nasution, Tarida; Zarlis, Muhammad; K. M Nasution, Mahyuddin

    2017-12-01

    Edge detection serves to identify the boundaries of an object against a background of mutual overlap. One of the classic method for edge detection is operator Robinson. Operator Robinson produces a thin, not assertive and grey line edge. To overcome these deficiencies, the proposed improvements to edge detection method with the approach graph with Ant Colony Optimization algorithm. The repairs may be performed are thicken the edge and connect the edges cut off. Edge detection research aims to do optimization of operator Robinson with Ant Colony Optimization then compare the output and generated the inferred extent of Ant Colony Optimization can improve result of edge detection that has not been optimized and improve the accuracy of the results of Robinson edge detection. The parameters used in performance measurement of edge detection are morphology of the resulting edge line, MSE and PSNR. The result showed that Robinson and Ant Colony Optimization method produces images with a more assertive and thick edge. Ant Colony Optimization method is able to be used as a method for optimizing operator Robinson by improving the image result of Robinson detection average 16.77 % than classic Robinson result.

  2. Negative pressure wound therapy-associated tissue trauma and pain: a controlled in vivo study comparing foam and gauze dressing removal by immunohistochemistry for substance P and calcitonin gene-related peptide in the wound edge.

    Science.gov (United States)

    Malmsjö, Malin; Gustafsson, Lotta; Lindstedt, Sandra; Ingemansson, Richard

    2011-12-01

    Pain upon negative pressure wound therapy (NPWT) dressing removal has been reported and is believed to be associated with the observation that granulation tissue grows into foam. Wound tissue damage upon removal of the foam may cause the reported pain. Calcitonin gene-related peptide (CGRP) and substance P are neuropeptides that cause inflammation and signal pain and are known to be released when tissue trauma occurs. The aim of this controlled in vivo study was to compare the expression of CGRP and substance P in the wound bed in control wounds and following NPWT and foam or gauze dressing removal. Eight pigs with two wounds each were treated with open-pore structure polyurethane foam or AMD gauze and NPWT of 0 (control) or -80 mm Hg for 72 hours. Following removal of the wound filler, the expression of CGRP and substance P was measured, using arbitrary units, in sections of biopsies from the wound bed using immunofluorescence techniques. Substance P and CGRP were more abundant in the wound edge following the removal of foam than of gauze dressings and least abundant in control wounds. The immunofluorescence staining of the wound edge for CGRP was 52 ± 3 au after the removal of gauze and 97 ± 5 au after the removal of foam (P wound fillers designed to optimize granulation tissue formation and minimize pain issues presumably will be developed in the near future.

  3. Energy flux due to electromagnetic fluctuations during guide field magnetic reconnection

    International Nuclear Information System (INIS)

    Kuwahata, Akihiro; Inomoto, Michiaki; Ono, Yasushi; Yanai, Ryoma

    2016-01-01

    Large electromagnetic fluctuations inside the current sheet and large reconnection electric fields are observed during fast magnetic reconnection in the presence of a guide field. The fluctuations transport 2.5% of the dissipated magnetic energy from the reconnection region. Although the energy gains of the ions and electrons are approximately 60% and 12%, respectively, of the dissipated magnetic energy after the fast reconnection, the energy of fluctuations is not comparable to their energy gains. The fluctuations do not directly contribute to the energy conversion but might cause the fast reconnection leading to the rapid release of magnetic energy. (author)

  4. Edge transport studies in the edge and scrape-off layer of the National Spherical Torus Experiment with Langmuir probes

    Energy Technology Data Exchange (ETDEWEB)

    Boedo, J. A., E-mail: jboedo@ucsd.edu; Rudakov, D. L. [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093 (United States); Myra, J. R.; D' Ippolito, D. A. [Lodestar Research Corp, 2400 Central Ave., Boulder, Colorado 80301 (United States); Zweben, S.; Maingi, R.; Maqueda, R. J.; Bell, R.; Kugel, H.; Leblanc, B.; Roquemore, L. A. [Princeton University, PO Box 451, Princeton, New Jersey 08543 (United States); Soukhanovskii, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Ahn, J. W.; Canik, J. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37830 (United States); Crocker, N. [University of California Los Angeles, PO Box 957099, Los Angeles, California 90095 (United States)

    2014-04-15

    Transport and turbulence profiles were directly evaluated using probes for the first time in the edge and scrape-off layer (SOL) of NSTX [Ono et al., Nucl. Fusion 40, 557 (2000)] in low (L) and high (H) confinement, low power (P{sub in}∼ 1.3 MW), beam-heated, lower single-null discharges. Radial turbulent particle fluxes peak near the last closed flux surface (LCFS) at ≈4×10{sup 21} s{sup −1} in L-mode and are suppressed to ≈0.2×10{sup 21} s{sup −1} in H mode (80%–90% lower) mostly due to a reduction in density fluctuation amplitude and of the phase between density and radial velocity fluctuations. The radial particle fluxes are consistent with particle inventory based on SOLPS fluid modeling. A strong intermittent component is identified. Hot, dense plasma filaments 4–10 cm in diameter, appear first ∼2 cm inside the LCFS at a rate of ∼1×10{sup 21} s{sup −1} and leave that region with radial speeds of ∼3–5 km/s, decaying as they travel through the SOL, while voids travel inward toward the core. Profiles of normalized fluctuations feature levels of 10% inside LCFS to ∼150% at the LCFS and SOL. Once properly normalized, the intermittency in NSTX falls in similar electrostatic instability regimes as seen in other devices. The L-H transition causes a drop in the intermittent filaments velocity, amplitude and number in the SOL, resulting in reduced outward transport away from the edge and a less dense SOL.

  5. High Speed Imaging of Edge Turbulence in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    S.J. Zweben; R. Maqueda; D.P. Stotler; A. Keesee; J. Boedo; C. Bush; S. Kaye; B. LeBlanc; J. Lowrance; V. Mastrocola; R. Maingi; N. Nishino; G. Renda; D. Swain; J. Wilgen; the NSTX Team

    2003-03-01

    The two-dimensional radial versus poloidal structure and motion of edge turbulence in NSTX (National Spherical Torus Experiment) were measured by using high-speed imaging of the visible light emission from a localized neutral gas puff. Edge turbulence images are shown and analyzed for Ohmic, L-mode (low-confinement mode) and H-mode (high-confinement mode) plasma conditions. Typical edge turbulence poloidal correlation lengths as measured using this technique are = 4 {+-} 1 cm and autocorrelation times are 40 {+-} 20 {micro}sec in all three regimes. The relative fluctuation level is typically smaller in H-mode than in L-mode, and transitions from H- to L-mode and can occur remarkably quickly (=30 {micro}sec). The two-dimensional images often show localized regions of strong light emission which move both poloidally and radially through the observed region at a typical speed of =10{sup 5} cm/sec, and sometimes show spatially coherent modes.

  6. Initial Studies of Core and Edge Transport of NSTX Plasmas

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Bell, M.G.; Bell, R.E.; Bush, C.E.; Bourdelle, C.; Darrow, D.; Dorland, W.; Ejiri, A.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; Kubota, S.; Kugel, H.W.; LeBlanc, B.P.; Maingi, R.; Maqueda, R.J.; Menard, J.E.; Mueller, D.; Rosenberg, A.; Sabbagh, S.A.; Stutman, D.; Taylor, G.; Johnson, D.W.; Kaita, R.; Ono, M.; Paoletti, F.; Peebles, W.; Peng, Y-K.M.; Roquemore, A.L.; Skinner, C.H.; Soukhanovskii, V.A.

    2001-01-01

    Rapidly developing diagnostic, operational, and analysis capability is enabling the first detailed local physics studies to begin in high-beta plasmas of the National Spherical Torus Experiment (NSTX). These studies are motivated in part by energy confinement times in neutral-beam-heated discharges that are favorable with respect to predictions from the ITER-89P scaling expression. Analysis of heat fluxes based on profile measurements with neutral-beam injection (NBI) suggest that the ion thermal transport may be exceptionally low, and that electron thermal transport is the dominant loss channel. This analysis motivates studies of possible sources of ion heating not presently accounted for by classical collisional processes. Gyrokinetic microstability studies indicate that long wavelength turbulence with k(subscript ''theta'') rho(subscript ''i'') ∼ 0.1-1 may be suppressed in these plasmas, while modes with k(subscript ''theta'') rho(subscript ''i'') ∼ 50 may be robust. High-harmonic fast-wave (HHFW) heating efficiently heats electrons on NSTX, and studies have begun using it to assess transport in the electron channel. Regarding edge transport, H-mode [high-confinement mode] transitions occur with either NBI or HHFW heating. The power required for low-confinement mode (L-mode) to H-mode transitions far exceeds that expected from empirical edge-localized-mode-free H-mode scaling laws derived from moderate aspect ratio devices. Finally, initial fluctuation measurements made with two techniques are permitting the first characterizations of edge turbulence

  7. Measurements of Ion and Neutral Fluctuation Changes with Pressure in a Large-Scale Helicon Plasma

    Science.gov (United States)

    Dwyer, R. H.; Fisher, D. M.; Kelly, R. F.; Hatch, M. W.; Gilmore, M.

    2017-10-01

    Neutral particle dynamics may play an important role both in laboratory plasmas and in the edge of magnetic fusion devices. However, studies of neutral dynamics in these plasmas have been limited to date. Here we report on a basic study of ion and neutral fluctuations as a function of background neutral gas pressure. These experiments have been conducted in helicon discharges in the HelCat (Helicon-Cathode) dual-source plasma device at the University of New Mexico. The goal is to measure changes in ion and neutral density fluctuations with pressure and to gain an improved understanding of plasma-neutral interactions. Langmuir probe, Ar-I LIF, and high-speed imaging measurements of the fluctuations will be presented. Supported by U.S. National Science Foundation Award 1500423 and The University of New Mexico School of Engineering.

  8. 'Beam-emission spectroscopy' diagnostics also measure edge fast-ion light

    International Nuclear Information System (INIS)

    Heidbrink, W W; Bortolon, A; McKee, G R; Smith, D R

    2011-01-01

    Beam-emission spectroscopy (BES) diagnostics normally detect fluctuations in the light emitted by an injected neutral beam. Under some circumstances, however, light from fast ions that charge exchange in the high neutral-density region at the edge of the plasma make appreciable contributions to the BES signals. This 'passive' fast-ion D α (FIDA) light appears in BES signals from both the DIII-D tokamak and the National Spherical Torus Experiment (NSTX). One type of passive FIDA light is associated with classical orbits that traverse the edge. Another type is caused by instabilities that expel fast ions from the core; this light can complicate measurement of the instability eigenfunction.

  9. Integral fluctuation theorems for stochastic resetting systems

    Science.gov (United States)

    Pal, Arnab; Rahav, Saar

    2017-12-01

    We study the stochastic thermodynamics of resetting systems. Violation of microreversibility means that the well-known derivations of fluctuations theorems break down for dynamics with resetting. Despite that we show that stochastic resetting systems satisfy two integral fluctuation theorems. The first is the Hatano-Sasa relation describing the transition between two steady states. The second integral fluctuation theorem involves a functional that includes both dynamical and thermodynamic contributions. We find that the second law-like inequality found by Fuchs et al. for resetting systems [Europhys. Lett. 113, 60009 (2016), 10.1209/0295-5075/113/60009] can be recovered from this integral fluctuation theorem with the help of Jensen's inequality.

  10. Fluctuations in percolation of sparse complex networks

    Science.gov (United States)

    Bianconi, Ginestra

    2017-07-01

    We study the role of fluctuations in percolation of sparse complex networks. To this end we consider two random correlated realizations of the initial damage of the nodes and we evaluate the fraction of nodes that are expected to remain in the giant component of the network in both cases or just in one case. Our framework includes a message-passing algorithm able to predict the fluctuations in a single network, and an analytic prediction of the expected fluctuations in ensembles of sparse networks. This approach is applied to real ecological and infrastructure networks and it is shown to characterize the expected fluctuations in their response to external damage.

  11. Neutrino propagation in a fluctuating sun

    International Nuclear Information System (INIS)

    Burgess, C.P.; Michaud, D.

    1997-01-01

    We adapt to neutrino physics a general formulation for particle propagation in fluctuating media, initially developed for applications to electromagnetism and neutron optics. In leading approximation this formalism leads to the usual MSW effective Hamiltonian governing neutrino propagation through a medium. Next-to-leading contributions describe deviations from this description, which arise due to neutrino interactions with fluctuations in the medium. We compute these corrections for two types of fluctuations: (i) microscopic thermal fluctuations and (ii) macroscopic fluctuations in the medium s density. While the first of these reproduces standard estimates, which are negligible for applications to solar neutrinos, we find that the second can be quite large, since it grows in size with the correlation length of the fluctuation. We consider two models in some detail. For fluctuations whose correlations extend only over a local region in space of length l, appreciable effects for MSW oscillations arise if (δn/n) 2 l approx-gt 100m or so. Alternatively, a crude model of helioseismic p-waves gives appreciable effects only when (δn/n)approx-gt 1%. In general the dominant effect is to diminish the quality of the resonance, making the suppression of the 7 Be neutrinos a good experimental probe of fluctuations deep within the sun. Fluctuations can also provide a new mechanism for reducing the solar neutrino flux, giving an energy-independent suppression factor of 1/2 away from the resonant region, even for small vacuum mixing angles. copyright 1997 Academic Press, Inc

  12. Quantum fluctuations within the fragmentation theory

    International Nuclear Information System (INIS)

    Maruhn, J.A.; Hahn, J.; Lustig, H.J.; Zeigenhain, K.H.; Greiner, W.

    1980-01-01

    The measured spread of the fragment mass distributions in heavy ion collisions may be due to two quite different physical mechanisms: the quantum-mechanical uncertainty associated with collective motion in the mass asymmetry degree of freedom, and the spread caused by thermal excitation of the nuclear system. The fluctuations in physical observables induced in these ways are referred to as quantum fluctuations and statistical fluctuations. In this lecture quantum fluctuations are studied within the fragmentation theory. Mass distributions for spontaneous fission and low energy heavy ion collisions are investigated. (author)

  13. Edge effect and significant increase of the superconducting transition onset temperature of 2D superconductors in flat and curved geometries

    International Nuclear Information System (INIS)

    Wong, Chi Ho; Lortz, Rolf

    2016-01-01

    Highlights: • The superconducting transition temperature T c in the case of a 2D rectangular sheet, a hollow cylinder and a hollow sphere of one coherence length thickness is compared. • Being extremely thin in a flat rectangular shape is not enough to significantly enhance the T c through phonon softening unless a curvature is added. • The edge effect of such a 2D sheet has a strong broadening effect on T c in addition to the effect of order parameter phase fluctuations. - Abstract: In this paper, we present a simple method to model the curvature activated phonon softening in a 2D superconducting layer. The superconducting transition temperature T c in the case of a 2D rectangular sheet, a hollow cylinder and a hollow sphere of one coherence length thickness is calculated by the quantum mechanical electron–phonon scattering matrix, and a series of collective lattice vibrations in the surface state. We will show that being extremely thin in a flat rectangular shape is not enough to significantly enhance the T c through phonon softening. However, if a curvature is added, T c can be strongly enhanced. The increase in T c with respect to the bulk is greatest in a hollow sphere, intermediate in a hollow cylinder and weakest for the rectangular sheet, when systems of identical length scale are considered. In addition, we find that the edge effect of such a 2D sheet has a strong broadening effect on T c in addition to the effect of order parameter phase fluctuations.

  14. Edge imaging in intense beams

    Directory of Open Access Journals (Sweden)

    S. Bernal

    2002-06-01

    Full Text Available The appearance of rings of charge observed near the edge of beams from high-perveance guns is described with a simple ray tracing technique inspired by the particle-core model. We illustrate the technique, which has no analog in light optics, with examples from experiments employing solenoid focusing of an electron beam. The rings of charge result from the combined effects of external focusing and space-charge forces acting on paraxial fringe particles with relatively large initial transverse velocities. The model is independent of the physical mechanisms responsible for the fringe particles. Furthermore, the focal length for edge imaging in a uniform focusing channel is derived using a linearized trajectory equation for the motion of fringe particles. Counterintuitively, the focal length decreases as the beam current increases.

  15. Galaxies on the Blue Edge

    OpenAIRE

    Cabanela, J. E.; Dickey, J. M.

    2002-01-01

    We have successfully constructed a catalog of HI-rich galaxies selected from the Minnesota Automated Plate Scanner Catalog of the Palomar Observatory Sky Survey (POSS I) based solely on optical criteria. We identify HI-rich candidates by selecting the bluest galaxies at a given apparent magnitude, those galaxies on the "blue edge" of POSS I color-magnitude parameter space. Subsequent 21-cm observations on the upgraded Arecibo 305m dish detected over 50% of the observed candidates. The detecte...

  16. Edge effects and delamination failures

    Science.gov (United States)

    Herakovich, C. T.

    1989-01-01

    The fundamental relationship between the morphology of a composite laminate and the resulting free edge effects is explored and related to delamination failures. Cross-ply, angle-ply, and quasi-isotropic laminates are discussed in detail. It is shown that the local mismatch in elastic properties of adjacent layers and the global stacking sequence of a laminate both have a significant influence on the interlaminar stresses and delamination failures.

  17. Diffraction at a Straight Edge

    Indian Academy of Sciences (India)

    IAS Admin

    have to integrate exp(ikx) × exp(ik(y − y′)2/2x) with respect to y′, from zero to infinity. It is natural to change variables using u2 ... sudden changeover from a continuous line to a dashed line on the circular arc. It might appear difficult to reconcile ... using integration by parts, it precisely gave rise to the. Young edge wave!

  18. Leading Edge Device Aerodynamic Optimization

    Directory of Open Access Journals (Sweden)

    Marius Gabriel COJOCARU

    2015-12-01

    Full Text Available Leading edge devices are conventionally used as aerodynamic devices that enhance performances during landing and in some cases during takeoff. The need to increase the efficiency of the aircrafts has brought the idea of maintaining as much as possible a laminar flow over the wings. This is possible only when the leading edge of the wings is free from contamination, therefore using the leading edge devices with the additional role of shielding during takeoff. Such a device based on the Krueger flap design is aerodynamically analyzed and optimized. The optimization comprises three steps: first, the positioning of the flap such that the shielding criterion is kept, second, the analysis of the flap size and third, the optimization of the flap shape. The first step is subject of a gradient based optimization process of the position described by two parameters, the position along the line and the deflection angle. For the third step the Adjoint method is used to gain insight on the shape of the Krueger flap that will extend the most the stall limit. All these steps have been numerically performed using Ansys Fluent and the results are presented for the optimized shape in comparison with the baseline configuration.

  19. Fluctuations in Supercooled Fluids and Ionic Solutions

    Science.gov (United States)

    Thorpe, Dayton Gray

    An overview of five studies is presented in two parts. The first part presents two studies of supercooled fluids. The second part presents three studies of water and aqueous solutions. Each study seeks a minimal model of a condensed matter system. In the first study, kinetically constrained models (KCM's) are compared to alternative theories of the glass transition in high dimensions. Dimensionality is used as a parameter to tune the connectivity of a lattice, where a higher dimensional model has more interactions between neighboring sites. This study finds that KCM's outperform alternative theories in high dimensions. The second study explores the possibility that bacteria have evolved to exploit the glass transition to enter a dormant state when environmental conditions are unfavorable. Although the available evidence shows that the bacterial cytoplasm does not meet the strict definition of a fragile glass former, much of its behavior is similar to and can be described using close analogies with the glass transition. In the second part, the third study describes the molecular mechanisms that gives rise to large electric field fluctuations, which in turn cause autoionization and ion dissociation. The fourth study analyzes several candidate order parameters as the basis for a Gaussian field theory of ion solvation. Finally, the fifth study discusses the most popular current explanation for observed charge asymmetry at liquid-vapor interfaces. This explanation, based on linear response of the surface polarization to the presence of an ion, is incorrect. Instead, the surface polarization responds non-linearly to the presence of an ion. Incorporating these non-linear fluctuations is essential to predict solvation free energies.

  20. Edge-Guided Single Depth Image Super Resolution.

    Science.gov (United States)

    Jun Xie; Feris, Rogerio Schmidt; Ming-Ting Sun

    2016-01-01

    Recently, consumer depth cameras have gained significant popularity due to their affordable cost. However, the limited resolution and the quality of the depth map generated by these cameras are still problematic for several applications. In this paper, a novel framework for the single depth image superresolution is proposed. In our framework, the upscaling of a single depth image is guided by a high-resolution edge map, which is constructed from the edges of the low-resolution depth image through a Markov random field optimization in a patch synthesis based manner. We also explore the self-similarity of patches during the edge construction stage, when limited training data are available. With the guidance of the high-resolution edge map, we propose upsampling the high-resolution depth image through a modified joint bilateral filter. The edge-based guidance not only helps avoiding artifacts introduced by direct texture prediction, but also reduces jagged artifacts and preserves the sharp edges. Experimental results demonstrate the effectiveness of our method both qualitatively and quantitatively compared with the state-of-the-art methods.

  1. First principles study of edge carboxylated graphene quantum dots

    Science.gov (United States)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-05-01

    The structure stability and electronic properties of edge carboxylated hexagonal and triangular graphene quantum dots are investigated using density functional theory. The calculated binding energies show that the hexagonal clusters with armchair edges have the highest stability among all the quantum dots. The binding energy of carboxylated graphene quantum dots increases by increasing the number of carboxyl groups. Our study shows that the total dipole moment significantly increases by adding COOH with the highest value observed in triangular clusters. The edge states in triangular graphene quantum dots with zigzag edges produce completely different energy spectrum from other dots: (a) the energy gap in triangular zigzag is very small as compared to other clusters and (b) the highest occupied molecular orbital is localized at the edges which is in contrast to other clusters where it is distributed over the cluster surface. The enhanced reactivity and the controllable energy gap by shape and edge termination make graphene quantum dots ideal for various nanodevice applications such as sensors. The infrared spectra are presented to confirm the stability of the quantum dots.

  2. Edge effect on palm diversity in rain forest fragments in western Ecuador

    DEFF Research Database (Denmark)

    Baez, S.; Balslev, Henrik

    2007-01-01

      At the edges of tropical rain forest fragments, altered abiotic and biotic conditions influence the structure and dynamics of plant communities. In Neotropical rain forests, palms (Arecaceae) are important floristic and ecological elements. Palms' responses to edge effects appear...... effects influence the relative proportion of palm adults and juveniles, (2) how distance from the forest edge affects palm density and species richness, (3) how altered forest structure along edges affects palm density. We found that at edges (1) palm communities had a lower proportion of adults relative...... to juvenile individuals compared to continuous forests, (2) the density of two species of palms and the overall species richness of the palm community tended to decrease toward the edges within forest fragments, and, (3) altered forest structure decreased the density of adult palms. Hence, edge effects...

  3. Pressure Fluctuations Induced by a Hypersonic Turbulent Boundary Layer

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a spatially-developed Mach 5.86 turbulent boundary layer. The unsteady pressure field is analyzed at multiple wall-normal locations, including those at the wall, within the boundary layer (including inner layer, the log layer, and the outer layer), and in the free stream. The statistical and structural variations of pressure fluctuations as a function of wall-normal distance are highlighted. Computational predictions for mean velocity pro les and surface pressure spectrum are in good agreement with experimental measurements, providing a first ever comparison of this type at hypersonic Mach numbers. The simulation shows that the dominant frequency of boundary-layer-induced pressure fluctuations shifts to lower frequencies as the location of interest moves away from the wall. The pressure wave propagates with a speed nearly equal to the local mean velocity within the boundary layer (except in the immediate vicinity of the wall) while the propagation speed deviates from the Taylor's hypothesis in the free stream. Compared with the surface pressure fluctuations, which are primarily vortical, the acoustic pressure fluctuations in the free stream exhibit a significantly lower dominant frequency, a greater spatial extent, and a smaller bulk propagation speed. The freestream pressure structures are found to have similar Lagrangian time and spatial scales as the acoustic sources near the wall. As the Mach number increases, the freestream acoustic fluctuations exhibit increased radiation intensity, enhanced energy content at high frequencies, shallower orientation of wave fronts with respect to the flow direction, and larger propagation velocity.

  4. Edge effect on weevils and spiders

    Directory of Open Access Journals (Sweden)

    R. Horváth

    2002-05-01

    Full Text Available The edge effect on weevils and spiders was tested along oak forest – meadow transects using sweep-net samples at the Síkfökút Project in Hungary. For spiders the species richness was significantly higher in the forest edge than either in the meadow or the forest interior. For weevils the species richness of the forest edge was higher than that of the meadow, but the difference was not statistically significant whereas the species richness of the forest interior was significantly lower than that of the forest edge and the meadow. The composition of the spider assemblage of the edge was more similar to the forest, while the composition of weevils in the edge was more similar to the meadow. Our results based on two invertebrate groups operating on different trophic levels suggest that there is a significant edge effect for the studied taxa resulting in higher species richness in the edge.

  5. Edge-based perceptual image coding.

    Science.gov (United States)

    Niu, Yi; Wu, Xiaolin; Shi, Guangming; Wang, Xiaotian

    2012-04-01

    We develop a novel psychovisually motivated edge-based low-bit-rate image codec. It offers a compact description of scale-invariant second-order statistics of natural images, the preservation of which is crucial to the perceptual quality of coded images. Although being edge based, the codec does not explicitly code the edge geometry. To save bits on edge descriptions, a background layer of the image is first coded and transmitted, from which the decoder estimates the trajectories of significant edges. The edge regions are then refined by a residual coding technique based on edge dilation and sequential scanning in the edge direction. Experimental results show that the new image coding technique outperforms the existing ones in both objective and perceptual quality, particularly at low bit rates.

  6. Environmental Dataset Gateway (EDG) REST Interface

    Data.gov (United States)

    U.S. Environmental Protection Agency — Use the Environmental Dataset Gateway (EDG) to find and access EPA's environmental resources. Many options are available for easily reusing EDG content in other...

  7. Environmental Dataset Gateway (EDG) Search Widget

    Data.gov (United States)

    U.S. Environmental Protection Agency — Use the Environmental Dataset Gateway (EDG) to find and access EPA's environmental resources. Many options are available for easily reusing EDG content in other...

  8. Organizing on the Edge: Appreciation and Critique

    National Research Council Canada - National Science Library

    Scott, W. R

    2006-01-01

    .... Hayes, "Power to the Edge: Command, Control in the Information Age" (2003). The author places the "edge" perspective in the broader context of organizational studies, noting both its strengths and limitations...

  9. Fluctuations of offshore wind generation: Statistical modelling

    DEFF Research Database (Denmark)

    Pinson, Pierre; Christensen, Lasse E.A.; Madsen, Henrik

    2007-01-01

    The magnitude of power fluctuations at large offshore wind farms has a significant impact on the control and management strategies of their power output. If focusing on the minute scale, one observes successive periods with smaller and larger power fluctuations. It seems that different regimes yi...

  10. Dynamical interplay between fluctuations, electric fields and ...

    Indian Academy of Sciences (India)

    interplay between fluctuation in gradients, turbulent transport and radial electric fields has shown that these parameters ... electric fields and density fluctuations, ΓE¢B(t) = ˜n(t) ˜Eθ (t)/B. The poloidal electric field has been .... transport increases and the system performs a relaxation which tends to drive the plasma back to the ...

  11. Computer simulations of phospholipid - membrane thermodynamic fluctuations

    DEFF Research Database (Denmark)

    Pedersen, U.R.; Peters, Günther H.j.; Schröder, T.B.

    2008-01-01

    This paper reports all-atom computer simulations of five phospholipid membranes, DMPC, DPPC, DMPG, DMPS, and DMPSH, with a focus on the thermal equilibrium fluctuations of volume, energy, area, thickness, and order parameter. For the slow fluctuations at constant temperature and pressure (defined...

  12. Fast electron studies in the ZT-40M edge plasma

    International Nuclear Information System (INIS)

    Ingraham, J.C.; Ellis, R.F.; Downing, J.N.; Miller, G.; Munson, C.P.; Pickrell, M.M.; Schoenberg, K.F.; Weber, P.G.; Wurden, G.A.

    1990-01-01

    Measurements of the edge plasma on the ZT-40M Reversed Field Pinch (RFP) show the presence of a dilute (1 to 10 per cent of the edge density), fast (T H ≅ (2 - 3)T ε0 ) electron tail with a nearly unidirectional flow along B in a toroidal sense that is against the external applied electric field force. These studies have been extended over a wide range of operating conditions including high density and krypton-injected radiation-dominated (P RAD ≅ 0.9 P IN ) discharges. In all cases the current density of the fast electrons is sufficient to account for the current density required to maintain the RFP. For low current 60 kA discharges this result has been confirmed in to a depth 20 mm inside of the reversal surface suggesting that the source of the fast electrons is the core of the discharge. The fast electrons also carry a large power flux parallel to B (several hundreds of MW/m 2 , typically), and radial transport measurements of the fast electrons in the shadow of a movable limiter for 120 kA standard discharges indicate that the fast electrons are the primary electron energy loss channel. The fast electrons are a significant energy loss channel for a broad range of other cases as well. The collisionality of the fast electrons varies widely over the range of cases studied and it is noted that a small backflowing component of fast electrons increases in relative size as the collisionality increases. An estimate of the magnetic field stochastic diffusivity at the edge is made from the fast electron limiter shadow measurements and shows that the stochasticity of the magnetic field is low at the edge relative to the core, in agreement with magnetic fluctuation diffusivity measurements and MHD simulations. 35 refs., 10 figs

  13. Short-term fluctuations in motivation to quit smoking in a sample of smokers in Hawaii.

    Science.gov (United States)

    Herzog, Thaddeus; Pokhrel, Pallav; Kawamoto, Crissy T

    2015-01-01

    Despite its potential for usefulness in informing the development of smoking cessation interventions, short-term fluctuations in motivation to quit is a relatively understudied topic. To assess the prevalence of smokers' day-to-day fluctuations in motivation to quit, and to assess associations of day-to-day fluctuations in motivation to quit with several established cessation-related variables. A cross-sectional survey was administered to smokers in Hawaii (N = 1,567). To assess short-term fluctuations in motivation to quit smoking, participants were asked to respond "True" or "False" to the statement: "My motivation to quit smoking changes from one day to the next." Other items measured desire to quit smoking, intention to quit, confidence in quitting, cigarette dependence, and other cessation-related variables. "My motivation to quit smoking changes from one day to the next" was endorsed as true by 64.7% of smokers, and false by 35.3%. Analyses revealed that smokers who indicated fluctuating motivation were significantly more interested in quitting as compared to smokers without fluctuations. Fluctuations in motivation to quit also were associated with greater confidence in quitting, lesser cigarette dependence, and more recent quitting activity (all p < .01). Day-to-day fluctuations in motivation to quit are common. Day-to-day fluctuations in motivation to quit are strongly associated with higher motivation to quit, greater confidence in future quitting, and other positive cessation-relevant trends.

  14. Multiplicity Distributions and Charged-neutral Fluctuations

    CERN Document Server

    Nayak, Tapan K.; Agnihotri, A.; Ahammed, Z.; Angelis, A.L.S.; Antonenko, V.; Arefev, V.; Astakhov, V.; Avdeitchikov, V.; Awes, T.C.; Baba, P.V.K.S.; Badyal, S.K.; Baldine, A.; Barabach, L.; Barlag, C.; Bathe, S.; Batiounia, B.; Bernier, T.; Bhalla, K.B.; Bhatia, V.S.; Blume, C.; Bock, R.; Bohne, E.M.; Bucher, D.; Buijs, A.; Buis, E.J.; Busching, H.; Carlen, L.; Chalyshev, V.; Chattopadhyay, S.; Chenawi, K.E.; Cherbatchev, R.; Chujo, T.; Claussen, A.; Das, A.C.; Decowski, M.P.; Djordjadze, V.; Donni, P.; Doubovik, I.; Dubey, A.K.; Dutta Majumda, M.R.; Eliseev, S.; Enosawa, K.; Feldmann, H.; Foka, P.; Fokin, S.; Frolov, V.; Ganti, M.S.; Garpman, S.; Gavrishchuk, O.; Geurts, F.J.M.; Ghosh, T.K.; Glasow, R.; Gupta, S.K.; Guskov, B.; Gustafsson, H.A.; Gutbrod, H.H.; Higuchi, R.; Hrivnacova, I.; Ippolitov, M.; Kalechofsky, H.; Kamermans, R.; Kampert, K.H.; Karadjev, K.; Karpio, K.; Kato, S.; Kees, S.; Kim, H.; Kolb, B.W.; Kosarev, I.; Koutcheryaev, I.; Kugler, A.; Kulinich, P.; Kumar, V.; Kurata, M.; Kurita, K.; Kuzmin, N.; Langbein, I.; Lebedev, A.; Lee, Y.Y.; Lohner, H.; Mahapatra, D.P.; Manko, V.; Martin, M.; Maximov, A.; Mehdiyev, Rashid R.; Mgebrichvili, G.; Miake, Y.; Mikhalev, D.; Mishra, G.C.; Miyamoto, Y.; Mohanty, B.; Morrison, Douglas R.O.; Mukhopadhyay, D.S.; Myalkovski, V.; Naef, H.; Nandi, B.K.; Nayak, S.K.; Nayak, T.K.; Neumaier, S.; Nianine, A.; Nikitine, V.; Nikolaev, S.; Nishimura, S.; Nomokov, P.; Nystrand, J.; Obenshain, F.E.; Oskarsson, A.; Otterlund, I.; Pachr, M.; Parfenov, A.; Pavliouk, S.; Peitzmann, T.; Petracek, V.; Plasil, F.; Purschke, M.L.; Raeven, B.; Rak, J.; Raniwala, R.; Raniwala, S.; Ramamurthy, V.S.; Rao, N.K.; Retiere, F.; Reygers, K.; Roland, G.; Rosselet, L.; Roufanov, I.; Rubio, J.M.; Sambyal, S.S.; Santo, R.; Sato, S.; Schlagheck, H.; Schmidt, H.R.; Shabratova, G.; Sibiriak, I.; Siemiarczuk, T.; Sinha, B.C.; Slavine, N.; Soderstrom, K.; Solomey, N.; Sood, G.; Sorensen, S.P.; Stankus, P.; Stefanek, G.; Steinberg, P.; Stenlund, E.; Stuken, D.; Sumbera, M.; Svensson, T.; Trivedi, M.D.; Tsvetkov, A.; Twenhofel, C.; Tykarski, L.; Urbahn, J.; van Eijndhoven, N.; van Heeringen, W.H.; van Nieuwenhuizen, G.J.; Vinogradov, A.; Viyogi, Y.P.; Vodopianov, A.S.; Voros, S.; Vos, M.A.; Wyslouch, B.; Yagi, K.; Yokota, Y.; Young, G.R.; Nayak, Tapan K.

    2001-01-01

    Results from the multiplicity distributions of inclusive photons and charged particles, scaling of particle multiplicities, event-by-event multiplicity fluctuations, and charged-neutral fluctuations in 158$\\cdot A$ GeV Pb+Pb collisions are presented and discussed. A scaling of charged particle multiplicity as $N_{part}^{1.07\\pm 0.05}$ and photons as $N_{part}^{1.12\\pm 0.03}$ have been observed, indicating violation of naive wounded nucleon model. The analysis of localized charged-neutral fluctuation indicates a model-independent demonstration of non-statistical fluctuations in both charged particles and photons in limited azimuthal regions. However, no correlated charged-neutral fluctuations are observed.

  15. CFAR Edge Detector for Polarimetric SAR Images

    DEFF Research Database (Denmark)

    Schou, Jesper; Skriver, Henning; Nielsen, Allan Aasbjerg

    2003-01-01

    Finding the edges between different regions in an image is one of the fundamental steps of image analysis, and several edge detectors suitable for the special statistics of synthetic aperture radar (SAR) intensity images have previously been developed. In this paper, a new edge detector for polar...

  16. Automated and observer based light field indicator edge evaluation in diagnostic X-ray equipment

    Energy Technology Data Exchange (ETDEWEB)

    Bottaro, Marcio; Nagy, Balazs Vince; Soares, Fernanda Cristina Salvador; Rosendo, Danilo Cabral, E-mail: marcio@iee.usp.br [Universidade de Sao Paulo (USP), SP (Brazil); Optics and Engineering Informatics, Budapest University of Technology and Economics, Budapest (Hungary)

    2017-04-15

    Introduction: To analyze edge detection and optical contrast calculation of light field-indicators used in X-ray via automated- and observer-based methods, and comparison with current standard approaches, which do not give exact definition for light field edge determination. Methods: Automated light sensor array was used to measure the penumbra zone of the edge in the standard X-ray equipment, while trained and naive human observers were asked to mark the light field edge according to their own determination. Different interpretations of the contrast were then calculated and compared. Results: In contrast to automated measurements of edge definition and detection, measurements by human observers showed large inter-observer variation independent of their training with X-ray equipment. Different contrast calculations considering the different edge definitions gave very different contrast values. Conclusion: As the main conclusion, we propose a more exact edge definition of the X-ray light field, corresponding well to the average human observer's edge determination. The new edge definition method with automated systems would reduce human variability in edge determination. Such errors could potentially affect the approval of X-ray equipment, and also increase the radiation dose. The automated measurement based on human observers’ edge definition and the corresponding contrast calculation may lead to a more precise light field calibration, which enables reduced irradiation doses on radiology patients. (author)

  17. Automated and observer based light field indicator edge evaluation in diagnostic X-ray equipment

    Directory of Open Access Journals (Sweden)

    Márcio Bottaro

    Full Text Available Abstract Introduction To analyze edge detection and optical contrast calculation of light field-indicators used in X-ray via automated- and observer-based methods, and comparison with current standard approaches, which do not give exact definition for light field edge determination. Methods Automated light sensor array was used to measure the penumbra zone of the edge in the standard X-ray equipment, while trained and naïve human observers were asked to mark the light field edge according to their own determination. Different interpretations of the contrast were then calculated and compared. Results In contrast to automated measurements of edge definition and detection, measurements by human observers showed large inter-observer variation independent of their training with X-ray equipment. Different contrast calculations considering the different edge definitions gave very different contrast values. Conclusion As the main conclusion, we propose a more exact edge definition of the X-ray light field, corresponding well to the average human observer’s edge determination. The new edge definition method with automated systems would reduce human variability in edge determination. Such errors could potentially affect the approval of X-ray equipment, and also increase the radiation dose. The automated measurement based on human observers’ edge definition and the corresponding contrast calculation may lead to a more precise light field calibration, which enables reduced irradiation doses on radiology patients.

  18. Automated and observer based light field indicator edge evaluation in diagnostic X-ray equipment

    International Nuclear Information System (INIS)

    Bottaro, Marcio; Nagy, Balazs Vince; Soares, Fernanda Cristina Salvador; Rosendo, Danilo Cabral

    2017-01-01

    Introduction: To analyze edge detection and optical contrast calculation of light field-indicators used in X-ray via automated- and observer-based methods, and comparison with current standard approaches, which do not give exact definition for light field edge determination. Methods: Automated light sensor array was used to measure the penumbra zone of the edge in the standard X-ray equipment, while trained and naive human observers were asked to mark the light field edge according to their own determination. Different interpretations of the contrast were then calculated and compared. Results: In contrast to automated measurements of edge definition and detection, measurements by human observers showed large inter-observer variation independent of their training with X-ray equipment. Different contrast calculations considering the different edge definitions gave very different contrast values. Conclusion: As the main conclusion, we propose a more exact edge definition of the X-ray light field, corresponding well to the average human observer's edge determination. The new edge definition method with automated systems would reduce human variability in edge determination. Such errors could potentially affect the approval of X-ray equipment, and also increase the radiation dose. The automated measurement based on human observers’ edge definition and the corresponding contrast calculation may lead to a more precise light field calibration, which enables reduced irradiation doses on radiology patients. (author)

  19. Observations of density fluctuations in an elongated Bose gas: ideal gas and quasicondensate regimes.

    Science.gov (United States)

    Esteve, J; Trebbia, J-B; Schumm, T; Aspect, A; Westbrook, C I; Bouchoule, I

    2006-04-07

    We report in situ measurements of density fluctuations in a quasi-one-dimensional 87Rb Bose gas at thermal equilibrium in an elongated harmonic trap. We observe an excess of fluctuations compared to the shot-noise level expected for uncorrelated atoms. At low atomic density, the measured excess is in good agreement with the expected "bunching" for an ideal Bose gas. At high density, the measured fluctuations are strongly reduced compared to the ideal gas case. We attribute this reduction to repulsive interatomic interactions. The data are compared with a calculation for an interacting Bose gas in the quasicondensate regime.

  20. Timing discriminator using leading-edge extrapolation

    International Nuclear Information System (INIS)

    Gottschalk, B.

    1983-01-01

    A discriminator circuit to recover timing information from slow-rising pulses by means of an output trailing edge, a fixed time after the starting corner of the input pulse, which is nearly independent of risetime and threshold setting. This apparatus comprises means for comparing pulses with a threshold voltage; a capacitor to be charged at a certain rate when the input signal is one-third threshold voltage, and at a lower rate when the input signal is two-thirds threshold voltage; current-generating means for charging the capacitor; means for comparing voltage capacitor with a bias voltage; a flipflop to be set when the input pulse reaches threshold voltage and reset when capacitor voltage reaches the bias voltage; and a clamping means for discharging the capacitor when the input signal returns below one-third threshold voltage

  1. Edge and coupled core-edge transport modelling in tokamaks

    International Nuclear Information System (INIS)

    Lodestro, L.L.; Casper, T.A.; Cohen, R.H.

    2001-01-01

    Recent advances in the theory and modelling of tokamak edge, scrape-off-layer (SOL) and divertor plasmas are described. The effects of the poloidal ExB drift on inner/outer divertor-plate asymmetries within a 1D analysis are shown to be in good agreement with experimental trends; above a critical v ExB, the model predicts transitions to supersonic SOL flow at the inboard midplane. 2D simulations show the importance of ExB flow in the private-flux region and of ∇ B-drifts. A theory of rough plasma-facing surfaces is given, predicting modifications to the SOL plasma. The parametric dependence of detached-plasma states in slab geometry has been explored; with sufficient pumping, the location of the ionization front can be controlled; otherwise only fronts near the plate or the X-point are stable. Studies with a more accurate Monte-Carlo neutrals model and a detailed non-LTE radiation-transport code indicate various effects are important for quantitative modelling. Detailed simulations of the DIII-D core and edge are presented; impurity and plasma flow are discussed and shown to be well modelled with UEDGE. (author)

  2. Edge and coupled core/edge transport modelling in tokamaks

    International Nuclear Information System (INIS)

    Lodestro, L.L.; Casper, T.A.; Cohen, R.H.

    1999-01-01

    Recent advances in the theory and modelling of tokamak edge, scrape-off-layer (SOL) and divertor plasmas are described. The effects of the poloidal E x B drift on inner/outer divertor-plate asymmetries within a 1D analysis are shown to be in good agreement with experimental trends; above a critical v ExB , the model predicts transitions to supersonic flow at the inboard midplane. 2D simulations show the importance of E x B flow in the private-flux region and of ∇ B-drifts. A theory of rough plasma-facing surfaces is given, predicting modifications to the SOL plasma. The parametric dependence of detached-plasma states in slab geometry has been explored; with sufficient pumping, the location of the ionization front can be controlled; otherwise only fronts near the plate or the X-point are stable. Studies with a more accurate Monte-Carlo neutrals model and a detailed non-LTE radiation-transport code indicate various effects are important for quantitative modelling. Detailed simulations of the DIII-D core and edge are presented; impurity and plasma flow are discussed and shown to be well modelled with UEDGE. (author)

  3. Intermittent transport in edge plasma with a 3-D magnetic geometry in the Large Helical Device

    International Nuclear Information System (INIS)

    Tanaka, H.; Masuzaki, S.; Ohno, N.; Morisaki, T.; Tsuji, Y.

    2013-01-01

    Blobby plasma transport is a universally observed phenomenon in magnetic confinement devices, and it is considered to be closely related to edge plasma physics. We have investigated such an intermittent event observed inside the divertor region of the Large Helical Device by using a fast-scanning Langmuir probe with two electrodes. Ion saturation current fluctuations showed negative spikes in the divertor leg and positive spikes in the private region. Further, the time delay between the two fluctuations followed a unique trajectory in the positive-skewness region. We found common as well as different fluctuation characteristics between the LHD and tokamaks. We discuss the analysis results in relation to the blob-generation and propagation behaviors in the three-dimensional magnetic geometry around the divertor leg. In addition, we quantitatively estimated the blob propagation velocity and size based on a theoretical assumption

  4. Interpolation of Gamma-ray buildup Factors for Arbitrary Source Energies in the Vicinity of the K-edge

    International Nuclear Information System (INIS)

    Michieli, I.

    1998-01-01

    Recently, a new buildup factors approximation formula based on the expanded polynomial set (E-P function) was successfully introduced (Michieli 1994.) with the maximum approximation error below 4% throughout the standard data domain. Buildup factors interpolation in E-P function parameters for arbitrary source energies, near the K-edge in lead, was satisfactory. Maximum interpolation error, for lead, lays within 12% what appears to be acceptable for most Point Kernel application. 1991. Harima at. al., showed that, near the K-edge, fluctuation in energy of exposure rate attenuation factors i.e.: D(E)B(E, μ E r)exp(-μ E r), given as a function of penetration depth (r) in ordinary length units (not mfps.), is not nearly as great as that of buildup factors. That phenomenon leads to the recommendation (ANSI/ANS-6.4.3) that interpolations in that energy range should be made in the attenuation factors B(E, μ E r)exp(-μ E r) rather than in the buildup factors alone. In present article, such interpolation approach is investigated by applying it to the attenuation factors in lead, with E-P function representation of exposure buildup factors. Simple form of the E-P function leads to strait calculation of new function parameters for arbitrary source energy near the K-edge and thus allowing the same representation form of buildup factors as in the standard interpolation procedure. results of the interpolation are discussed and compared with those from standard approach. (author)

  5. Fuzzy Logic Based Edge Detection in Smooth and Noisy Clinical Images.

    Directory of Open Access Journals (Sweden)

    Izhar Haq

    Full Text Available Edge detection has beneficial applications in the fields such as machine vision, pattern recognition and biomedical imaging etc. Edge detection highlights high frequency components in the image. Edge detection is a challenging task. It becomes more arduous when it comes to noisy images. This study focuses on fuzzy logic based edge detection in smooth and noisy clinical images. The proposed method (in noisy images employs a 3 × 3 mask guided by fuzzy rule set. Moreover, in case of smooth clinical images, an extra mask of contrast adjustment is integrated with edge detection mask to intensify the smooth images. The developed method was tested on noise-free, smooth and noisy images. The results were compared with other established edge detection techniques like Sobel, Prewitt, Laplacian of Gaussian (LOG, Roberts and Canny. When the developed edge detection technique was applied to a smooth clinical image of size 270 × 290 pixels having 24 dB 'salt and pepper' noise, it detected very few (22 false edge pixels, compared to Sobel (1931, Prewitt (2741, LOG (3102, Roberts (1451 and Canny (1045 false edge pixels. Therefore it is evident that the developed method offers improved solution to the edge detection problem in smooth and noisy clinical images.

  6. Fuzzy Logic Based Edge Detection in Smooth and Noisy Clinical Images.

    Science.gov (United States)

    Haq, Izhar; Anwar, Shahzad; Shah, Kamran; Khan, Muhammad Tahir; Shah, Shaukat Ali

    2015-01-01

    Edge detection has beneficial applications in the fields such as machine vision, pattern recognition and biomedical imaging etc. Edge detection highlights high frequency components in the image. Edge detection is a challenging task. It becomes more arduous when it comes to noisy images. This study focuses on fuzzy logic based edge detection in smooth and noisy clinical images. The proposed method (in noisy images) employs a 3 × 3 mask guided by fuzzy rule set. Moreover, in case of smooth clinical images, an extra mask of contrast adjustment is integrated with edge detection mask to intensify the smooth images. The developed method was tested on noise-free, smooth and noisy images. The results were compared with other established edge detection techniques like Sobel, Prewitt, Laplacian of Gaussian (LOG), Roberts and Canny. When the developed edge detection technique was applied to a smooth clinical image of size 270 × 290 pixels having 24 dB 'salt and pepper' noise, it detected very few (22) false edge pixels, compared to Sobel (1931), Prewitt (2741), LOG (3102), Roberts (1451) and Canny (1045) false edge pixels. Therefore it is evident that the developed method offers improved solution to the edge detection problem in smooth and noisy clinical images.

  7. Surface pressure fluctuations on aircraft flaps and their correlation with far-field noise

    Science.gov (United States)

    Guo, Y. P.; Joshi, M. C.; Bent, P. H.; Yamamoto, K. J.

    2000-07-01

    This paper discusses unsteady surface pressures on aircraft flaps and their correlation with far-field noise. Analyses are made of data from a 4.7% DC-10 aircraft model test, conducted in the 40 × 80 feet wind tunnel at NASA Ames Research Center. Results for various slat/wing/flap configurations and various flow conditions are discussed in detail to reveal major trends in surface pressure fluctuations. Spectral analysis, including cross-correlation/coherence, both among unsteady surface pressures and between far-field noise and near-field fluctuations, is used to reveal the most coherent motions in the near field and identify potential sources of noise related to flap flows. Dependencies of surface pressure fluctuations on mean flow Mach numbers, flap settings and slat angles are discussed. Dominant flow features in flap side edge regions, such as the formation of double-vortex structures, are shown to manifest themselves in the unsteady surface pressures as a series of spectral humps. The spectral humps are shown to correlate well with the radiated noise, indicating the existence of major noise sources in flap side edge regions. Strouhal number scaling is used to collapse the data with satisfactory results. The effects of flap side edge fences on surface pressures are also discussed. It is shown that the application of fences effectively increases the thickness of the flaps so that the double-vortex structures have more time to evolve. As a result, the characteristic timescale of the unsteady sources increases, which in turn leads to a decrease in the dominant frequency of the source process. Based on this, an explanation is proposed for the noise reduction mechanism of flap side edge fences.

  8. K-edge densitometer (KED)

    Energy Technology Data Exchange (ETDEWEB)

    Sprinkle, J.K.; Hansen, W.J.

    1993-02-11

    In 1979, a K-edge densitometer (KED) was installed by the Safeguards Assay group from Los Alamos National Laboratory in the PNC reprocessing plant at Tokai-mura, Japan. It uses an active nondestructive assay technique, KED, to measure the plutonium concentration of the product solution. The measurement uncertainty of an assay depends on the count time chosen, but can be 0.5% or better. The computer hardware and software were upgraded in 1992. This manual describes the operation of the instrument, with an emphasis on the user interface to the software.

  9. Instant Adobe Edge Inspect starter

    CERN Document Server

    Khan, Joseph

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This easy-to-understand Starter guide will get you up to speed with Adobe Edge Inspect quickly and with little effort.This book is for frontend web developers and designers who are developing and testing web applications targeted for mobile browsers. It's assumed that you have a basic understanding of creating web applications using HTML, CSS, and JavaScript, as well as being familiar with running web pages from local HTTP servers. Readers are a

  10. At the edge of intonation

    DEFF Research Database (Denmark)

    Niebuhr, Oliver

    2012-01-01

    The paper is concerned with the 'edge of intonation' in a twofold sense. It focuses on utterance-final F0 movements and crosses the traditional segment-prosody divide by investigating the interplay of F0 and voiceless fricatives in speech production. An experiment was performed for German with four...... types of voiceless fricatives: /f/, /s/, /ʃ/ and /x/. They were elicited with scripted dialogues in the contexts of terminal falling statement and high rising question intonations. Acoustic analyses show that fricatives concluding the high rising question intonations had higher mean centres of gravity...

  11. Wind fluctuations over the North Sea

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Pinson, Pierre; Giebel, Gregor

    2011-01-01

    Climatological patterns in wind speed fluctuations with periods of 1 min to 10 h are analysed using data from a meteorological mast in the Danish North Sea. Fluctuations on these time scales are of particular relevance to the effective management of the power supply from large wind farms. The Hil......Climatological patterns in wind speed fluctuations with periods of 1 min to 10 h are analysed using data from a meteorological mast in the Danish North Sea. Fluctuations on these time scales are of particular relevance to the effective management of the power supply from large wind farms...... a certain class of conditions can be found. Here, the HHT is applied to create conditional spectra which demonstrate patterns in the occurrence of severe wind variability. It is shown that wind fluctuations over the North Sea are more severe for westerly flow than for easterly flow, and that severe...... fluctuations are often observed in the vicinity of precipitation. The most severe wind fluctuations occur in the autumn and winter seasons, and are slightly more common when the pressure tendency is rising. Further, it is found that the wind is more variable for atmospherically unstable conditions than...

  12. Fluctuations and structure of amphiphilic films

    International Nuclear Information System (INIS)

    Gourier, CH.

    1996-01-01

    This thesis is divided in three parts.The first part exposes in a theoretical point of view, how the fluctuations spectrum of an amphiphilic film is governed by its properties and its bidimensional characteristics.The measurements of fluctuations spectra of an interface are accessible with the measurement of intensity that interface diffuses out of the specular angle, we present in the second chapter the principles of the X rays diffusion by a real interface and see how the diffuse diffusion experiments allow to determine the fluctuations spectrum of an amphiphilic film. The second part is devoted to the different experimental techniques that have allowed to realize the study of fluctuation as well as the structural study.The third part is devoted to experimental results concerning the measurements of fluctuations spectra and to the study of the structure of amphiphilic films. We show that it is possible by using an intense source of X rays (ESRF: European Synchrotron Radiation Facility) to measure the water and amphiphilic films fluctuations spectra until molecular scales. The last chapter is devoted to the structural study and film fluctuations made of di-acetylenic molecules. (N.C.)

  13. Profiling the regional wind power fluctuation in China

    International Nuclear Information System (INIS)

    Yu Dayang; Liang Jun; Han Xueshan; Zhao Jianguo

    2011-01-01

    As China starts to build 6 10-GW wind zones in 5 provinces by 2020, accommodating the wind electricity generated from these large wind zones will be a great challenge for the regional grids. Inadequate wind observing data hinders profiling the wind power fluctuations at the regional grid level. This paper proposed a method to assess the seasonal and diurnal wind power patterns based on the wind speed data from the NASA GEOS-5 DAS system, which provides data to the study of climate processes including the long-term estimates of meteorological quantities. The wind power fluctuations for the 6 largest wind zones in China are presented with both the capacity factor and the megawatt wind power output. The measured hourly wind output in a regional grid is compared to the calculating result to test the analyzing model. To investigate the offsetting effect of dispersed wind farms over large regions, the regional correlations of hourly wind power fluctuations are calculated. The result illustrates the different offsetting effects of minute and hourly fluctuations.

  14. Alfvénic fluctuations in "newborn"' polar solar wind

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2005-06-01

    Full Text Available The 3-D structure of the solar wind is strongly dependent upon the Sun's activity cycle. At low solar activity a bimodal structure is dominant, with a fast and uniform flow at the high latitudes, and slow and variable flows at low latitudes. Around solar maximum, in sharp contrast, variable flows are observed at all latitudes. This last kind of pattern, however, is a relatively short-lived feature, and quite soon after solar maximum the polar wind tends to regain its role. The plasma parameter distributions for these newborn polar flows appear very similar to those typically observed in polar wind at low solar activity. The point addressed here is about polar wind fluctuations. As is well known, the low-solar-activity polar wind is characterized by a strong flow of Alfvénic fluctuations. Does this hold for the new polar flows too? An answer to this question is given here through a comparative statistical analysis on parameters such as total energy, cross helicity, and residual energy, that are of general use to describe the Alfvénic character of fluctuations. Our results indicate that the main features of the Alfvénic fluctuations observed in low-solar-activity polar wind have been quickly recovered in the new polar flows developed shortly after solar maximum. Keywords. Interplanetary physics (MHD waves and turbulence; Sources of the solar wind – Space plasma physics (Turbulence

  15. Mermin-Wagner fluctuations in 2D amorphous solids

    Science.gov (United States)

    Illing, Bernd; Fritschi, Sebastian; Kaiser, Herbert; Klix, Christian L.; Maret, Georg; Keim, Peter

    2017-02-01

    In a recent commentary, J. M. Kosterlitz described how D. Thouless and he got motivated to investigate melting and suprafluidity in two dimensions [Kosterlitz JM (2016) J Phys Condens Matter 28:481001]. It was due to the lack of broken translational symmetry in two dimensions—doubting the existence of 2D crystals—and the first computer simulations foretelling 2D crystals (at least in tiny systems). The lack of broken symmetries proposed by D. Mermin and H. Wagner is caused by long wavelength density fluctuations. Those fluctuations do not only have structural impact, but additionally a dynamical one: They cause the Lindemann criterion to fail in 2D in the sense that the mean squared displacement of atoms is not limited. Comparing experimental data from 3D and 2D amorphous solids with 2D crystals, we disentangle Mermin-Wagner fluctuations from glassy structural relaxations. Furthermore, we demonstrate with computer simulations the logarithmic increase of displacements with system size: Periodicity is not a requirement for Mermin-Wagner fluctuations, which conserve the homogeneity of space on long scales.

  16. Edge turbulence control on the KT-5C tokamak by feedback using electrostatic probes

    International Nuclear Information System (INIS)

    Zhai Kan; Wang Cheng; Wen Yizi; Yu Changxuan; Wan Shude; Liu Wandong; Xu Zhizhan

    1998-01-01

    Experiments on edge turbulence control have been performed on the KT-5C tokamak by feedback using two sets of electrostatic probes as the driving probe and detective probe. The results indicate that the feedback can enhance or reduce the turbulence amplitude depending upon the phase shift and gain of the feedback network. When the feedback with 90 degree phase shift and with certain loop gain is applied, the spectrum component of turbulence is reduced obviously and the fluctuation amplitude of the electron density and electron temperature become lower by about 25%. consistently the particle flux across the magnetic field induced by the electrostatic fluctuation also decreases by about 25%. On the other hand, the feedback with 0 degree or 180 degree or -90 degree phase shift can enhance the amplitude of the edge turbulence. These results indicate a nonlinear mechanism of the influence of feedback on the edge turbulence, which to some extent also reflect a specific nonlinear characteristic of the edge turbulence

  17. Quantum Manifestations of Graphene Edge Stress and Edge Instability: A First-Principles Study

    OpenAIRE

    Huang, Bing; Liu, Miao; Su, Ninghai; Wu, Jian; Duan, Wenhui; Gu, Bing-lin; Liu, Feng

    2010-01-01

    We have performed first-principles calculations of graphene edge stresses, which display two interesting quantum manifestations absent from the classical interpretation: the armchair edge stress oscillates with a nanoribbon width, and the zigzag edge stress is noticeably reduced by spin polarization. Such quantum stress effects in turn manifest in mechanical edge twisting and warping instability, showing features not captured by empirical potentials or continuum theory. Edge adsorption of H a...

  18. The Yang-Lee edge singularity for the Ising model on two Sierpinski fractal lattices

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, Milan [Faculty of Physics, University of Belgrade, PO Box 368, 11000 Belgrade (Serbia); Knezevic, Dragica, E-mail: knez@ff.bg.ac.r, E-mail: dknezevic@kg.ac.r [Faculty of Natural Sciences and Mathematics, University of Kragujevac, PO Box 60, 34000 Kragujevac (Serbia)

    2010-10-15

    We study the distribution of zeros of the partition function of the ferromagnetic Ising model near the Yang-Lee edge on two Sierpiski-type lattices. We have shown that relevant correlation length displays a logarithmic divergence near the edge, {xi}{sub YL{approx}}|ln({partial_derivative}h)|{sup {Phi}} where {Phi} is a constant and {delta}h distance from the edge, in the case of a modified Sierpinski gasket with a nonuniform coordination number. It is demonstrated that this critical behavior can be related to the critical behavior of a simple zero-field Gaussian model of the same structure. We have shown that there is no such connection between these two models on a second lattice that has a uniform coordination number. These findings suggest that fluctuations of the lattice coordination number of a nonhomogeneous self-similar structure exert the crucial influence on the critical behavior of both models.

  19. Simulations of edge and scrape off layer turbulence in mega ampere spherical tokamak plasmas

    DEFF Research Database (Denmark)

    Militello, F; Fundamenski, W; Naulin, Volker

    2012-01-01

    of the edge/SOL density and temperature. In addition, we also discuss how the system changes when the length of the divertor leg is modified. This allows one to better understand the regime of operation of the Super-X divertor which will be implemented on MAST-Upgrade. The results obtained qualitatively agree......The L-mode interchange turbulence in the edge and scrape-off-layer (SOL) of the tight aspect ratio tokamak MAST is investigated numerically. The dynamics of the boundary plasma are studied using the 2D drift-fluid code ESEL, which has previously shown good agreement with large aspect ratio machines....... In this context, a MAST-TCV comparison is presented in order to link the present analysis to well documented references. Next, scans of various edge parameters, such as density, temperature and current, are performed in the simulations with the aim of characterizing the profiles, fluctuation level and statistics...

  20. Effect of leading-edge porosity on blade-vortex interaction noise

    Science.gov (United States)

    Lee, Soogab

    1993-01-01

    The effect of the porous leading-edge of an airfoil on the blade-vortex interaction noise, which dominates far-field acoustic spectrum of the helicopter, is investigated. The thin-layer Navier-Stokes equations are solved with a high-order upwind-biased scheme and a multizonal grid system. The Baldwin-Lomax turbulence model is modified for considering transpiration on the surface. The amplitudes of the propagating acoustic wave in the near-field are calculated directly from the computation. The porosity effect on the surface is modeled. Results show leading-edge transpiration can suppress pressure fluctuations at the leading-edge during BVI, and consequently reduce the amplitude of propagating noise by 30 percent at maximum in the near-field. The effect of porosity factor on the noise level is also investigated.

  1. Classical and quantum temperature fluctuations via holography

    Energy Technology Data Exchange (ETDEWEB)

    Balatsky, Alexander [Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Institute for Materials Science, Los Alamos National Laboratory,Los Alamos, NM 87545 (United States); Gudnason, Sven Bjarke; Kedem, Yaron [Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Krikun, Alexander [Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Institute of Theoretical and Experimental Physics,B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation); Thorlacius, Lárus [Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); University of Iceland, Science Institute,Dunhaga 3, IS-107 Reykjavik (Iceland); The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics,Stockholm University, AlbaNova University Centre, 10691 Stockholm (Sweden); Zarembo, Konstantin [Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Institute of Theoretical and Experimental Physics,B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation); Department of Physics and Astronomy, Uppsala University,SE-751 08 Uppsala (Sweden)

    2015-01-07

    We study local temperature fluctuations in a 2+1 dimensional CFT on the sphere, dual to a black hole in asymptotically AdS spacetime. The fluctuation spectrum is governed by the lowest-lying hydrodynamic modes of the system whose frequency and damping rate determine whether temperature fluctuations are thermal or quantum. We calculate numerically the corresponding quasinormal frequencies and match the result with the hydrodynamics of the dual CFT at high temperature. As a by-product of our analysis we determine the appropriate boundary conditions for calculating low-lying quasinormal modes for a four-dimensional Reissner-Nordström black hole in global AdS.

  2. Fluctuations and transport in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Nevins, W.M.; Chen, L.

    1979-11-01

    A formalism is developed for calculating the equilibrium fluctuation level in an inhomogeneous plasma. This formalism is applied to the collisionless drift wave in a sheared magnetic field. The fluctuation level is found to be anomalously large due to both the presence of weakly damped normal modes and convective amplification. As the magnetic shear is reduced, the steady-state fluctuation spectrum is found to increase both in coherence and in amplitude. The transport associated with this mode is evaluated. The diffusion coefficient is found to scale as D is proportional to B 2 /nT/sup 1/2/

  3. Spin-current noise from fluctuation relations

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jong Soo [Institut de Fisica Interdisciplinària i Sistemes Complexos IFISC (UIB-CSIC), E-07122 Palma de Mallorca (Spain); Sánchez, David; López, Rosa [Institut de Fisica Interdisciplinària i Sistemes Complexos IFISC (UIB-CSIC), E-07122 Palma de Mallorca, Spain and Departement de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2013-12-04

    We present fluctuation relations that connect spin-polarized current and noise in mesoscopic conductors. In linear response, these relations are equivalent to the fluctuation-dissipation theorem that relates equilibrium current-current correlations to the linear conductance. More interestingly, in the weakly nonlinear regime of transport, these relations establish a connection between the leading-order rectification spin conductance, the spin noise susceptibility and the third cumulant of spin current fluctuations at equilibrium. Our results are valid even for systems in the presence of magnetic fields and coupled to ferromagnetic electrodes.

  4. Statistical regimes of random laser fluctuations

    International Nuclear Information System (INIS)

    Lepri, Stefano; Cavalieri, Stefano; Oppo, Gian-Luca; Wiersma, Diederik S.

    2007-01-01

    Statistical fluctuations of the light emitted from amplifying random media are studied theoretically and numerically. The characteristic scales of the diffusive motion of light lead to Gaussian or power-law (Levy) distributed fluctuations depending on external control parameters. In the Levy regime, the output pulse is highly irregular leading to huge deviations from a mean-field description. Monte Carlo simulations of a simplified model which includes the population of the medium demonstrate the two statistical regimes and provide a comparison with dynamical rate equations. Different statistics of the fluctuations helps to explain recent experimental observations reported in the literature

  5. A comparative analysis of watershed and edge based segmentation ...

    African Journals Online (AJOL)

    MJP

    2015-03-17

    Mar 17, 2015 ... ABSTRACT. Background: Useful information which is helpful in the diagnosis of various ... from noise.[8] In Matlab, filtering involves using a special filter type, which helps to identifying the range of form of filtration. The table below describes the different .... simulation time increases, memory consumption.

  6. Time fluctuation analysis of forest fire sequences

    Science.gov (United States)

    Vega Orozco, Carmen D.; Kanevski, Mikhaïl; Tonini, Marj; Golay, Jean; Pereira, Mário J. G.

    2013-04-01

    Forest fires are complex events involving both space and time fluctuations. Understanding of their dynamics and pattern distribution is of great importance in order to improve the resource allocation and support fire management actions at local and global levels. This study aims at characterizing the temporal fluctuations of forest fire sequences observed in Portugal, which is the country that holds the largest wildfire land dataset in Europe. This research applies several exploratory data analysis measures to 302,000 forest fires occurred from 1980 to 2007. The applied clustering measures are: Morisita clustering index, fractal and multifractal dimensions (box-counting), Ripley's K-function, Allan Factor, and variography. These algorithms enable a global time structural analysis describing the degree of clustering of a point pattern and defining whether the observed events occur randomly, in clusters or in a regular pattern. The considered methods are of general importance and can be used for other spatio-temporal events (i.e. crime, epidemiology, biodiversity, geomarketing, etc.). An important contribution of this research deals with the analysis and estimation of local measures of clustering that helps understanding their temporal structure. Each measure is described and executed for the raw data (forest fires geo-database) and results are compared to reference patterns generated under the null hypothesis of randomness (Poisson processes) embedded in the same time period of the raw data. This comparison enables estimating the degree of the deviation of the real data from a Poisson process. Generalizations to functional measures of these clustering methods, taking into account the phenomena, were also applied and adapted to detect time dependences in a measured variable (i.e. burned area). The time clustering of the raw data is compared several times with the Poisson processes at different thresholds of the measured function. Then, the clustering measure value

  7. Thermodynamics of the dead zone inner edge in protoplanetary disks

    International Nuclear Information System (INIS)

    Faure, Julien

    2014-01-01

    The dead zone, a quiescent region enclosed in the turbulent flow of a protoplanetary disk, seems to be a promising site for planet formation. Indeed, the development of a density maximum at the dead zone inner edge, that has the property to trap the infalling dust, is a natural outcome of the accretion mismatch at this interface. Moreover, the flow here may be unstable and organize itself into vortical structures that efficiently collect dust grains. The inner edge location is however loosely constrained. In particular, it depends on the thermodynamical prescriptions of the disk model that is considered. It has been recently proposed that the inner edge is not static and that the variations of young stars accretion luminosity are the signature of this interface displacements. This thesis address the question of the impact of the gas thermodynamics onto its dynamics around the dead zone inner edge. MHD simulations including the complex interplay between thermodynamical processes and the dynamics confirmed the dynamical behaviour of the inner edge. A first measure of the interface velocity has been realised. This result has been compared to the predictions of a mean field model. It revealed the crucial role of the energy transport by density waves excited at the interface. These simulations also exhibit a new intriguing phenomenon: vortices forming at the interface follow a cycle of formation-migration-destruction. This vortex cycle may compromise the formation of planetesimals at the inner edge. This thesis claims that thermodynamical processes are at the heart of how the region around the dead zone inner edge in protoplanetary disks works. (author) [fr

  8. New K-edge-balanced contrast phantom for image quality assurance in projection radiography

    Science.gov (United States)

    Cresens, Marc; Schaetzing, Ralph

    2003-06-01

    X-ray-absorber step-wedge phantoms serve in projection radiography to assess a detection system's overall exposure-related signal-to-noise ratio performance and contrast response. Data derived from a phantom image, created by exposing a step-wedge onto the image receptor, are compared with predefined acceptance criteria during periodic image quality assurance (QA). For contrast-related measurements, in particular, the x-ray tube potential requires accurate setting and low ripple, since small deviations from the specified kVp, causing energy spectrum changes, lead to significant image signal variation at high contrast ratios. A K-edge-balanced, rare-earth-metal contrast phantom can generate signals that are significantly more robust to the spectral variability and instability of exposure equipment in the field. The image signals from a hafnium wedge, for example, are up to eight times less sensitive to spectral fluctuations than those of today"s copper phantoms for a 200:1 signal ratio. At 120 kVp (RQA 9), the hafnium phantom still preserves 70% of the subject contrast present at 75 kVp (RQA 5). A copper wedge preserves only 7% of its contrast over the same spectral range. Spectral simulations and measurements on prototype systems, as well as potential uses of this new class of phantoms (e.g., QA, single-shot exposure response characterization) are described.

  9. X-ray and neutron scattering studies of magnetic critical fluctuations in holmium

    International Nuclear Information System (INIS)

    Thurston, T.R.; Helgesen, G.; Gibbs, D.; Shirane, G.; Hill, J.P.; Massachusetts Inst. of Tech., Cambridge, MA; Gaulin, B.D.; McMaster Univ., Hamilton, ON

    1993-01-01

    We describe measurements of the magnetic critical fluctuations of holmium by x-ray scattering techniques. The x-ray results are compared to those obtained in neutron scattering experiments performed on the same sample

  10. REMEDIATION TECHNOLOGY EVALUATION AT THE GILT EDGE MINE, SOUTH DAKOTA

    Science.gov (United States)

    This document reports the findings of the Mine Waste Technology Program's Activity III, Project 29,The Remediation Technology Evaluation Project at the Gilt Edge Mine, S.D. This project consisted of evaluating three emerging acidic waste rock stabilization technologies and compar...

  11. A high-performance, low-cost, leading edge discriminator

    Indian Academy of Sciences (India)

    A high-performance, low-cost, leading edge discriminator has been designed with a timing performance comparable to state-of-the-art, commercially available ... Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India; Graduate School of Science, Osaka City University, Osaka 558-8585, Japan ...

  12. Chemical shift of UL 3 edges in different uranium compounds ...

    Indian Academy of Sciences (India)

    Energy shifts of ∼ 2–3 eV were observed for U L3 edge in the U-compounds compared to their value in elemental U. The different chemical shifts observed for the compounds having the same oxidation state of the cation but different anions or ligands show the effect of different chemical environments surrounding the ...

  13. Predicted solar cell edge radiation effects

    International Nuclear Information System (INIS)

    Gates, M.T.

    1993-01-01

    The Advanced Solar Cell Orbital Test (ASCOT) will test six types of solar cells in a high energy proton environment. During the design of the experiment a question was raised about the effects of proton radiation incident on the edge of the solar cells and whether edge radiation shielding was required. Historical geosynchronous data indicated that edge radiation damage is not detectable over the normal end of life solar cell degradation; however because the ASCOT radiation environment has a much higher and more energetic fluence of protons, considerably more edge damage is expected. A computer analysis of the problem was made by modeling the expected radiation damage at the cell edge and using a network model of small interconnected solar cells to predict degradation in the cell's electrical output. The model indicated that the deepest penetration of edge radiation was at the top of the cell near the junction where the protons have access to the cell through the low density cell/cover adhesive layer. The network model indicated that the cells could tolerate high fluences at their edge as long as there was high electrical resistance between the edge radiated region and the contact system on top of the cell. The predicted edge radiation related loss was less than 2% of maximum power for GaAs/Ge solar cells. As a result, no edge radiation protection was used for ASCOT

  14. Wage Flexibility and Employment Fluctuations: Evidence from the Housing Sector

    OpenAIRE

    Pischke, Jörn-Steffen

    2016-01-01

    Many economists suspect that downward nominal wage rigidities in ongoing labor contracts are an important source of employment fluctuations over the business cycle but there is little direct empirical evidence on this conjecture. This paper compares three occupations in the housing sector with very different wage setting institutions, real estate agents, architects, and construction workers. I study the wage and employment responses of these occupations to the housing cycle, a proxy for labor...

  15. Seasonal fluctuation of bacterial indicators in coastal waters

    OpenAIRE

    Maipa, Vasiliki; Alamanos, Yannis; Bezirtzoglou, Eugenia

    2011-01-01

    The relationships between number of coliforms, fecal coliforms, E. coli, fecal streptococci, location, time and seasonal factors in marine environments of northwest Greece were investigated over a period of 4 years. Research focused on measuring and comparing bacteria in coastal marine waters undergoing heavy bacterial charge during the tourist season. Microbiological pollution was increased during the summer period. Seasonal fluctuation of the fecal indicator bacteria was noted and concerned...

  16. Decoherence, fluctuations and Wigner function in neutron optics

    OpenAIRE

    Facchi, P.; Mariano, A.; Pascazio, S.; Suda, M.

    2002-01-01

    We analyze the coherence properties of neutron wave packets, after they have interacted with a phase shifter undergoing different kinds of statistical fluctuations. We give a quantitative (and operational) definition of decoherence and compare it to the standard deviation of the distribution of the phase shifts. We find that in some cases the neutron ensemble is more coherent, even though it has interacted with a wider (i.e. more disordered) distribution of shifts. This feature is independent...

  17. Multifractal detrended fluctuation analysis of human gait diseases

    OpenAIRE

    Dutta, Srimonti; Ghosh, Dipak; Chatterjee, Sucharita

    2013-01-01

    In this paper multifractal detrended fluctuation analysis (MFDFA) is used to study the human gait time series for normal and diseased sets. It is observed that long range correlation is primarily responsible for the origin of multifractality. The study reveals that the degree of multifractality is more for normal set compared to diseased set. However, the method fails to distinguish between the two diseased sets.

  18. Gluon field fluctuations in nuclear collisions: Multiplicity and eccentricity distributions

    Energy Technology Data Exchange (ETDEWEB)

    Schenke, Björn [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Tribedy, Prithwish [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Venugopalan, Raju [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-06-15

    We discuss different sources of fluctuations in nuclear collisions and their realization in the IP-Glasma model. We present results for multiplicity distributions in p+p and p+A collisions and compare eccentricity (ε{sub 2}, ε{sub 3}, ε{sub 4}) distributions in A + A collisions to the v{sub n} distributions in 10 centrality classes measured by the ATLAS Collaboration.

  19. Detecting image edge from projections using Discrete Radon Transform properties

    International Nuclear Information System (INIS)

    Wang Jing; Li Zheng

    2004-01-01

    The authors studied the distributed 2-D convolution of Discrete Radon Transform, and developed a method of image processing used directly on the projection data in Computerized Tomography. The special case of edge detection and its computer simulated results are demonstrated. The paper also compared the traditional image edge detection method with the new method, analyzed the effecting factors of calculating time. It is proved that the new method is superior to the traditional method in calculating time. The advantage and application potential of the new method are also discussed. (authors)

  20. A dynamic stall model for airfoils with deformable trailing edges

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Christian

    2009-01-01

    The present work contains an extension of the Beddoes-Leishman-type dynamic stall model. In this work, a deformable trailing-edge flap has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments on an airfoil section undergoing arbitrary motion in hea...... for the attached flow region and Hansen et al. The model is compared qualitatively to wind tunnel measurements of a Riso/ B1-18 blade section equipped with deformable trailing-edge flap devices in the form of piezoelectric devices. Copyright © 2009 John Wiley & Sons, Ltd....

  1. Trailing edge noise model applied to wind turbine airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.

    2008-01-15

    The aim of this work is firstly to provide a quick introduction to the theory of noise generation that are relevant to wind turbine technology with focus on trailing edge noise. Secondly, the socalled TNO trailing edge noise model developed by Parchen [1] is described in more details. The model is tested and validated by comparing with other results from the literature. Finally, this model is used in the optimization process of two reference airfoils in order to reduce their noise signature: the RISOE-B1-18 and the S809 airfoils. (au)

  2. Edge effects in angle-ply composite laminates

    Science.gov (United States)

    Hsu, P. W.; Herakovich, C. T.

    1977-01-01

    This paper presents the results of a zeroth-order solution for edge effects in angle-ply composite laminates obtained using perturbation techniques and a limiting free body approach. The general solution for edge effects in laminates of arbitrary angle ply is applied to the special case of a (+ or - 45)s graphite/epoxy laminate. Interlaminar stress distributions are obtained as a function of the laminate thickness-to-width ratio and compared to finite difference results. The solution predicts stable, continuous stress distributions, determines finite maximum tensile interlaminar normal stress and provides mathematical evidence for singular interlaminar shear stresses in (+ or - 45) graphite/epoxy laminates.

  3. Fast Fr\\'echet Distance Between Curves With Long Edges

    OpenAIRE

    Gudmundsson, Joachim; Mirzanezhad, Majid; Mohades, Ali; Wenk, Carola

    2017-01-01

    Computing Fr\\'echet distance between two curves takes roughly quadratic time. In this paper, we show that for curves with long edges the Fr\\'echet distance computations become easier. Let $P$ and $Q$ be two polygonal curves in $\\mathbb{R}^d$ with $n$ and $m$ vertices, respectively. We prove four main results for the case when all edges of both curves are long compared to the Fr\\'echet distance between them: (1) a linear-time algorithm for deciding the Fr\\'echet distance between two curves, (2...

  4. Novikov Engine with Fluctuating Heat Bath Temperature

    Science.gov (United States)

    Schwalbe, Karsten; Hoffmann, Karl Heinz

    2018-04-01

    The Novikov engine is a model for heat engines that takes the irreversible character of heat fluxes into account. Using this model, the maximum power output as well as the corresponding efficiency of the heat engine can be deduced, leading to the well-known Curzon-Ahlborn efficiency. The classical model assumes constant heat bath temperatures, which is not a reasonable assumption in the case of fluctuating heat sources. Therefore, in this article the influence of stochastic fluctuations of the hot heat bath's temperature on the optimal performance measures is investigated. For this purpose, a Novikov engine with fluctuating heat bath temperature is considered. Doing so, a generalization of the Curzon-Ahlborn efficiency is found. The results can help to quantify how the distribution of fluctuating quantities affects the performance measures of power plants.

  5. Synchronous imaging of coherent plasma fluctuations.

    Science.gov (United States)

    Haskey, S R; Thapar, N; Blackwell, B D; Howard, J

    2014-03-01

    A new method for imaging high frequency plasma fluctuations is described. A phase locked loop and field programmable gate array are used to generate gating triggers for an intensified CCD camera. A reference signal from another diagnostic such as a magnetic probe ensures that the triggers are synchronous with the fluctuation being imaged. The synchronous imaging technique allows effective frame rates exceeding millions per second, good signal to noise through the accumulation of multiple exposures per frame, and produces high resolution images without generating excessive quantities of data. The technique can be used to image modes in the MHz range opening up the possibility of spectrally filtered high resolution imaging of MHD instabilities that produce sufficient light fluctuations. Some examples of projection images of plasma fluctuations on the H-1NF heliac obtained using this approach are presented here.

  6. Magnetic fluctuations and heavy electron superconductivity

    International Nuclear Information System (INIS)

    Norman, M.R.

    1988-01-01

    A magnetic fluctuation self-energy based on neutron scattering data is used to calculate mass renormalizations, and superconducting critical temperatures and order parameters, for various heavy electron metals

  7. Temperature fluctuations in the Atlantic Ocean

    International Nuclear Information System (INIS)

    Hjoello, Solfrid Saetre

    2005-01-01

    The article discusses the temperature fluctuations in connection with drought in Africa, the climate in North America, the European heat waves and the frequent tropical hurricanes in the Atlantic Ocean. Problems with climate modelling and some pollution aspects are mentioned

  8. Scalar field fluctuations in the early universe

    International Nuclear Information System (INIS)

    Enqvist, K.; Ng, K.W.; Olive, K.A.

    1988-01-01

    We compute the quantum fluctuations of a non-self-interacting but unstable scalar field of arbitrary mass during the period of inflation. Instead of treating the scalar field in a static De Sitter space, we begin with a scalar field in the Friedmann universe just before the start of inflation, and work out the dynamics of the growing quantum fluctuation of the field after it has entered into the inflationary epoch. We use the physically sensible method of Vilenkin to regularize the theory. We find that in all but two special cases the fluctuations produced are different from those in a static De Sitter space, and the effect of the finite width of the scalar field limits the growth of fluctuations. (orig.)

  9. Electric Current Fluctuations, Entropy and Ionic Conductivity

    OpenAIRE

    Zhang, Yong-Jun

    2016-01-01

    This paper reports a relation between ionic conductivity and electric current fluctuations. The relation was derived using statistical analysis and entropy approach. The relation can be used to calculate ionic conductivity.

  10. Haar wavelets, fluctuations and structure functions: convenient choices for geophysics

    Directory of Open Access Journals (Sweden)

    S. Lovejoy

    2012-09-01

    Full Text Available Geophysical processes are typically variable over huge ranges of space-time scales. This has lead to the development of many techniques for decomposing series and fields into fluctuations Δv at well-defined scales. Classically, one defines fluctuations as differences: (Δvdiff = v(xx-v(x and this is adequate for many applications (Δx is the "lag". However, if over a range one has scaling Δv ∝ ΔxH, these difference fluctuations are only adequate when 0 < H < 1. Hence, there is the need for other types of fluctuations. In particular, atmospheric processes in the "macroweather" range ≈10 days to 10–30 yr generally have −1 < H < 0, so that a definition valid over the range −1 < H < 1 would be very useful for atmospheric applications. A general framework for defining fluctuations is wavelets. However, the generality of wavelets often leads to fairly arbitrary choices of "mother wavelet" and the resulting wavelet coefficients may be difficult to interpret. In this paper we argue that a good choice is provided by the (historically first wavelet, the Haar wavelet (Haar, 1910, which is easy to interpret and – if needed – to generalize, yet has rarely been used in geophysics. It is also easy to implement numerically: the Haar fluctuationvHaar at lag Δx is simply equal to the difference of the mean from x to x+ Δx/2 and from xx/2 to xx. Indeed, we shall see that the interest of the Haar wavelet is this relation to the integrated process rather than its wavelet nature per se.

    Using numerical multifractal simulations, we show that it is quite accurate, and we compare and contrast it with another similar technique, detrended fluctuation analysis. We find that, for estimating scaling exponents, the two methods are very similar, yet

  11. Topographic and spectroscopic characterization of electronic edge states in CVD grown graphene nanoribbons.

    Science.gov (United States)

    Pan, Minghu; Girão, E Costa; Jia, Xiaoting; Bhaviripudi, Sreekar; Li, Qing; Kong, Jing; Meunier, V; Dresselhaus, Mildred S

    2012-04-11

    We used scanning tunneling microscopy and spectroscopy (STM/S) techniques to analyze the relationships between the edge shapes and the electronic structures in as-grown chemical vapor deposition (CVD) graphene nanoribbons (GNRs). A rich variety of single-layered graphene nanoribbons exhibiting a width of several to 100 nm and up to 1 μm long were studied. High-resolution STM images highlight highly crystalline nanoribbon structures with well-defined and clean edges. Theoretical calculations indicate clear spin-split edge states induced by electron-electron Coulomb repulsion. The edge defects can significantly modify these edge states, and different edge structures for both sides of a single ribbon produce asymmetric electronic edge states, which reflect the more realistic features of CVD grown GNRs. Three structural models are proposed and analyzed to explain the observations. By comparing the models with an atomic resolution image at the edge, a pristine (2,1) structure was ruled out in favor of a reconstructed edge structure composed of 5-7 member rings, showing a better match with experimental results, and thereby suggesting the possibility of a defective morphology at the edge of CVD grown nanoribbons. © 2012 American Chemical Society

  12. Atom-Dependent Edge-Enhanced Second-Harmonic Generation on MoS2Monolayers.

    Science.gov (United States)

    Lin, Kuang-I; Ho, Yen-Hung; Liu, Shu-Bai; Ciou, Jian-Jhih; Huang, Bo-Ting; Chen, Christopher; Chang, Han-Ching; Tu, Chien-Liang; Chen, Chang-Hsiao

    2018-02-14

    Edge morphology and lattice orientation of single-crystal molybdenum disulfide (MoS 2 ) monolayers, a transition metal dichalcogenide (TMD), possessing a triangular shape with different edges grown by chemical vapor deposition are characterized by atomic force microscopy and transmission electron microscopy. Multiphoton laser scanning microscopy is utilized to study one-dimensional atomic edges of MoS 2 monolayers with localized midgap electronic states, which result in greatly enhanced optical second-harmonic generation (SHG). Microscopic S-zigzag edge and S-Mo Klein edge (bare Mo atoms protruding from a S-zigzag edge) terminations and the edge-atom dependent resonance energies can therefore be deduced based on SHG images. Theoretical calculations based on density functional theory clearly explain the lower energy of the S-zigzag edge states compared to the corresponding S-Mo Klein edge states. Characterization of the atomic-scale variation of edge-enhanced SHG is a step forward in this full-optical and high-yield technique of atomic-layer TMDs.

  13. [Road Extraction in Remote Sensing Images Based on Spectral and Edge Analysis].

    Science.gov (United States)

    Zhao, Wen-zhi; Luo, Li-qun; Guo, Zhou; Yue, Jun; Yu, Xue-ying; Liu, Hui; Wei, Jing

    2015-10-01

    Roads are typically man-made objects in urban areas. Road extraction from high-resolution images has important applications for urban planning and transportation development. However, due to the confusion of spectral characteristic, it is difficult to distinguish roads from other objects by merely using traditional classification methods that mainly depend on spectral information. Edge is an important feature for the identification of linear objects (e. g. , roads). The distribution patterns of edges vary greatly among different objects. It is crucial to merge edge statistical information into spectral ones. In this study, a new method that combines spectral information and edge statistical features has been proposed. First, edge detection is conducted by using self-adaptive mean-shift algorithm on the panchromatic band, which can greatly reduce pseudo-edges and noise effects. Then, edge statistical features are obtained from the edge statistical model, which measures the length and angle distribution of edges. Finally, by integrating the spectral and edge statistical features, SVM algorithm is used to classify the image and roads are ultimately extracted. A series of experiments are conducted and the results show that the overall accuracy of proposed method is 93% comparing with only 78% overall accuracy of the traditional. The results demonstrate that the proposed method is efficient and valuable for road extraction, especially on high-resolution images.

  14. Thermal turbulent convection: thermal plumes and fluctuations

    International Nuclear Information System (INIS)

    Gibert, M.

    2007-10-01

    In this study we investigate the phenomenon of thermal turbulent convection in new and unprecedented ways. The first system we studied experimentally is an infinite vertical channel, where a constant vertical mean gradient of temperature exists. Inside this channel the average mass flux is null. The results obtained from our measurements reveal that the flow is mainly inertial; indeed the dissipative coefficients (here the viscosity) play a role only to define a coherence length L. This length is the distance over which the thermal plumes can be considered as 'free falling' objects. The horizontal transport, of heat and momentum, is entirely due to fluctuations. The associated 'mixing length' is small compared to the channel width. In the other hand, the vertical heat transport is due to coherent structures: the heat plumes. Those objects were also investigated in a Lagrangian study of the flow in the bulk of a Rayleigh-Benard cell. The probe, which has the same density as the fluid used in this experiment, is a sphere of 2 cm in diameter with embarked thermometers and radio-emitter. The heat plumes transport it, which allows a statistical study of such objects. (author)

  15. Photoelectric interaction below the K edge

    International Nuclear Information System (INIS)

    Reddy, D.K.S.; Premachand, K.; Radha Krishna Murty, V.; Rama Rao, J.; Lakshminarayana, V.

    1976-01-01

    Total photon cross sections are measured, using the transmission method in the heavy elements U, Th, Pb, and Au at energies of 30.9, 35.9, and 55.4 keV, to study the photoelectric interaction below the K edges of these elements. A krypton-filled proportional counter with a 512-channel analyzer is used as the detector of photons. The photoelectric cross sections, obtained by subtracting the small scattering contributions from the total cross section, are compared with theoretical predictions of Scofield and of Storm and Israel. General agreement is obtained, except for U and Th at 30.9 keV where the present experimental values show a slight preference to the calculations of Storm and Israel rather than the theoretical ones used by Scofield

  16. Computational Investigation of Flap-Edges

    Science.gov (United States)

    Cummings, Russell M.

    1997-01-01

    The current study expands the application of computational fluid dynamics to three-dimensional multi-element high-lift systems by investigating the flow dynamics created by a slat edge. Flow is computed over a three-element high-lift configuration using an incompressible Navier-Stokes solver with structured, overset grids processed assuming full turbulence with the one-equation Baldwin-Barth turbulence model. The geometry consists of an unswept wing, which spans the wind tunnel test section, a single element half-span Fowler flap, and a three-quarter span slat. Results are presented for the wing configured for landing with a chord based Reynolds number of 3.7 million. Results for the three-quarter span slat case are compared to the full-span slat and two-dimensional investigations.

  17. Transition edge sensor series array bolometer

    International Nuclear Information System (INIS)

    Beyer, J

    2010-01-01

    A transition edge sensor series array (TES-SA) is an array of identical TESs that are connected in series by low-inductance superconducting wiring. The array elements are equally and well thermally coupled to the absorber and respond to changes in the absorber temperature in synchronization. The TES-SA total resistance increases compared to a single TES while the shape of the superconducting transition is preserved. We are developing a TES-SA with a large number, hundreds to thousands, of array elements with the goal of enabling the readout of a TES-based bolometer operated at 4.2 K with a semiconductor-based amplifier located at room temperature. The noise and dynamic performance of a TES-SA bolometer based on a niobium/aluminum bilayer is analyzed. It is shown that stable readout of the bolometer with a low-noise transimpedance amplifier is feasible.

  18. Fluorescence fluctuation spectroscopy (FFS), part A

    CERN Document Server

    Tetin, Sergey

    2013-01-01

    This new volume of Methods in Enzymology continues the legacy of this premier serial by containing quality chapters authored by leaders in the field. This volume covers Fluorescence Fluctuation SpectroscopyContains chapters on such topics as Time-integrated fluorescence cumulant analysis, Pulsed Interleaved Excitation, and raster image correlation spectroscopy and number and brightness analysis.Continues the legacy of this premier serial with quality chapters authored by leaders in the fieldCovers fluorescence fluctuation spectroscopyContains chapte

  19. Population Genetics with Fluctuating Population Sizes

    OpenAIRE

    Chotibut, Thiparat; Nelson, David R.

    2016-01-01

    Standard neutral population genetics theory with a strictly fixed population size has important limitations. An alternative model that allows independently fluctuating population sizes and reproduces the standard neutral evolution is reviewed. We then study a situation such that the competing species are neutral at the equilibrium population size but population size fluctuations nevertheless favor fixation of one species over the other. In this case, a separation of timescales emerges natural...

  20. Turbulent Coherence Measurements on a Leading Edge Slat

    Science.gov (United States)

    Moriarty, Patrick J.; Storms, Bruce L.; Ross, James C.; Horne, W. Clifton; Dougherty, Robert P.

    1997-11-01

    Turbulence spectra have been measured downstream of the gap between the leading-edge slat and the main airfoil of a generic transport aircraft wing model. The model consisted of a NACA 63_2-215 Mod. B main element with a half span Fowler flap and a full span LB-546 slat. Velocity-pressure coherence spectra were determined using signals from a hot-wire anemometer probe in the flow and unsteady-pressure transducers on the wing surface. The coherence coefficient was significant only in a narrow bandwidth, of the order of 15 percent of the peak frequency. Coherence coefficient magnitudes were as large as 0.25. Coherence coefficient magnitude and frequency were found to depend on the flow velocity through the slat gap, which increased with (negative) slat deflection angle. Frequencies and relative strengths of coherence peaks were in agreement with those of radiated noise spectra (measured in a separate experiment). The results demonstrate a close connection between velocity fluctuation in the slat wake and pressure fluctuations on both surfaces of the slat and the upper surface of the main airfoil. Further work is planned to investigate a postulated hydrodynamic-acoustic resonance.

  1. Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks

    Science.gov (United States)

    Kachan, Devin Michael

    Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. In this dissertation, I explore the role of both thermal and active fluctuations within cross-linked polymer networks. The systems I study are in large part inspired by the amazing physics found within the cytoskeleton of eukaryotic cells. I first predict and verify the existence of a thermal Casimir force between cross-linkers bound to a semi-flexible polymer. The calculation is complicated by the appearance of second order derivatives in the bending Hamiltonian for such polymers, which requires a careful evaluation of the the path integral formulation of the partition function in order to arrive at the physically correct continuum limit and properly address ultraviolet divergences. I find that cross linkers interact along a filament with an attractive logarithmic potential proportional to thermal energy. The proportionality constant depends on whether and how the cross linkers constrain the relative angle between the two filaments to which they are bound. The interaction has important implications for the synthesis of biopolymer bundles within cells. I model the cross-linkers as existing in two phases: bound to the bundle and free in solution. When the cross-linkers are bound, they behave as a one-dimensional gas of particles interacting with the Casimir force, while the free phase is a simple ideal gas. Demanding equilibrium between the two phases, I find a discontinuous transition between a sparsely and a densely bound bundle. This discontinuous condensation transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. This work is supported by the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross-linkers. I

  2. Electron temperature fluctuation in the HT-7 tokamak plasma observed by electron cyclotron emission imaging

    International Nuclear Information System (INIS)

    Xiao-Yuan, Xu; Jun, Wang; Yi, Yu; Yi-Zhi, Wen; Chang-Xuan, Yu; Wan-Dong, Liu; Bao-Nian, Wan; Xiang, Gao; Luhmann, N. C.; Domier, C. W.; Wang, Jian; Xia, Z. G.; Shen, Zuowei

    2009-01-01

    The fluctuation of the electron temperature has been measured by using the electron cyclotron emission imaging in the Hefei Tokamak-7 (HT-7) plasma. The electron temperature fluctuation with a broadband spectrum shows that it propagates in the electron diamagnetic drift direction, and the mean poloidal wave-number k-bar θ is calculated to be about 1.58 cm −1 , or k-bar θρ s thickapprox 0.34. It indicates that the fluctuation should come from the electron drift wave turbulence. The linear global scaling of the electron temperature fluctuation with the gradient of electron temperature is consistent with the mixing length scale qualitatively. Evolution of spectrum of the fluctuation during the sawtooth oscillation phases is investigated, and the fluctuation is found to increase with the gradient of electron temperature increasing during most phases of the sawtooth oscillation. The results indicate that the electron temperature gradient is probably the driver of the fluctuation enhancement. The steady heat flux driven by electron temperature fluctuation is estimated and compared with the results from power balance estimation. (fluids, plasmas and electric discharges)

  3. Longitudinal fluctuations and decorrelation of anisotropic flow

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Long-Gang [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Petersen, Hannah [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Qin, Guang-You [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Roy, Victor [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Wang, Xin-Nian [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division MS70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-12-15

    We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (η) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies.

  4. Origin of density fluctuations in extended inflation

    International Nuclear Information System (INIS)

    Kolb, E.W.; Salopek, D.S.; Turner, M.S.

    1990-01-01

    We calculate both the curvature and isocurvature density fluctuations that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory. The curvature fluctuations that arise due to quantum fluctuations in the Brans-Dicke field in general have a non-scale-invariant spectrum and an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The curvature perturbations that arise due to the Higgs field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential, and the usual formula for the amplitude of curvature perturbations applies directly

  5. Origin of density fluctuations in extended inflation

    International Nuclear Information System (INIS)

    Kolb, E.W.; Salopek, D.S.; Turner, M.S.

    1990-05-01

    The density fluctuations (both curvature and isocurvature) that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory are calculated. Curvature fluctuations arise due to quantum fluctuations in the Brans-Dicke field, in general have a nonscale-invariant spectrum, and can have an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The density perturbations that arise due to the inflation field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential and the usual formula for the amplitude of curvature perturbations applies

  6. Plasma fluctuations in the solar wind

    International Nuclear Information System (INIS)

    Neugebauer, M.; Wu, C.S.; Huba, J.D.

    1978-01-01

    Ogo 5 plasma and magnetic field data are used to compute power spectra of solar wind fluctuations over the frequency interval 10 -3 10 -1 Hz. We confirm the validity of the assumption made in earlier papers that the power spectra calculated from total flux measurements are approximately equal to the power spectra of density fluctuations times the square of the average solar wind speed. The relative density power spectrum P/sub n//n 2 0 is usually of the same order of magnitude as the power spectrum of speed fluctuations relative to the Alfven speed, P/sub v//v 2 /sub A/. All cases studied show evidence of the presence of Alfven waves in this frequency range. In some data sets the density and field fluctuations are consistent with magnetosonic waves. In other sets the ratio of the power in field magnitude fluctuations to that in density fluctuations is inconsistent with magnetosonic waves; for these cases we postulate static inhomogeneities with a balance between electron thermal and magnetic pressures. Finally, we suggest that the power enhancements near 1 Hz reported in earlier papers may be caused by a resonant proton cyclotron instability driven by the proton thermal anisotropy in the solar wind

  7. Imaging edges of nanostructured graphene

    DEFF Research Database (Denmark)

    Kling, Jens; Cagliani, Alberto; Booth, T. J.

    Graphene, as the forefather of 2D-materials, attracts much attention due to its extraordinary properties like transparency, flexibility and outstanding high conductivity, together with a thickness of only one atom. However, graphene also possesses no band gap, which makes it unsuitable for many...... electronic applications like transistors. It has been shown theoretically that by nanostructuring pristine graphene, e.g. with regular holes, the electronic properties can be tuned and a band gap introduced. The size, distance and edge termination of these “defects” influence the adaptability....... Such nanostructuring can be done experimentally, but especially characterization at atomic level is a huge challenge. High-resolution TEM (HRTEM) is used to characterize the atomic structure of graphene. We optimized the imaging conditions used for the FEI Titan ETEM. To reduce the knock-on damage of the carbon atoms...

  8. Ethical decisions at the edge.

    Science.gov (United States)

    Gillett, Grant

    2008-05-01

    Medicine grows incrementally in its ability to treat patients and at the growing edge it poses problems about the appropriateness of treatments that are different from those where good practice conforms to widely agreed standards. The growth of access to medical knowledge and the diversity of contemporary theoretical and clinical medicine have spawned deep divisions in the profession and divergent opinions about what constitutes reasonable care. That hallmark of acceptable practice is also under pressures from the threat of litigation, a highly commercialised contemporary medical environment, patient demands based on medical journalism and the internet and the exponential growth of bio-medical technology. Patient empowerment can result in complaints arising in new and complex areas and expert opinion can often differ markedly depending on where on the medical spectrum the experts are aligned. This column lays out some broad-brush principles to assess the adequacy of medical advice in such a climate.

  9. On the leading edge vortex of thin wings

    Science.gov (United States)

    Arredondo, Abel; Viola, Ignazio Maria

    2016-11-01

    On thin wings, the sharp leading edge triggers laminar separation followed by reattachment, forming a Leading Edge Vortex (LEV). This flow feature is of paramount importance because, if periodically shed, it leads to large amplitude load fluctuations, while if stably attached to the wing, it can provide lift augmentation. We found that on asymmetric-spinnaker-type yacht sails, the LEV can be stable despite the relatively low sweep (30°). This finding, which was recently predicted numerically by Viola et al., has been confirmed through current flume tests on a 1:115th model scale sail. Forces were measured and Particle Image Velocimetry was performed on four horizontal sail sections at a Reynolds number of 1.7x104. Vortex detection revealed that the LEV becomes progressively larger and more stable towards the highest sections, where its axis has a smaller angle with respect to the freestream velocity. Mapping the sail section on a rotating cylinder through a Joukowski transformation, we quantified the lift augmentation provided by the LEV on each sail section. These results open up new sail design strategies based on the manipulation of the LEV and can be applicable to the wings of unmanned aerial vehicles and underwater vehicles. Project funded by Conacyt.

  10. Influence of thermal fluctuations on ligament break-up: a fluctuating lattice Boltzmann study

    Science.gov (United States)

    Xue, Xiao; Biferale, Luca; Sbragaglia, Mauro; Toschi, Federico

    2017-11-01

    Thermal fluctuations are essential ingredients in a nanoscale system, driving Brownian motion of particles and capillary waves at non-ideal interfaces. Here we study the influence of thermal fluctuations on the breakup of liquid ligaments at the nanoscale. We offer quantitative characterization of the effects of thermal fluctuations on the Plateau-Rayleigh mechanism that drives the breakup process of ligaments. Due to thermal fluctuations, the droplet sizes after break-up need to be analyzed in terms of their distribution over an ensemble made of repeated experiments. To this aim, we make use of numerical simulations based on the fluctuating lattice Boltzmann method (FLBM) for multicomponent mixtures. The method allows an accurate and efficient simulation of the fluctuating hydrodynamics equations of a binary mixture, where both stochastic viscous stresses and diffusion fluxes are introduced. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 642069.

  11. Edge effects in phase-shifting masks for 0.25-µm lithography

    Science.gov (United States)

    Wong, Alfred K. K.; Neureuther, Andrew R.

    1993-03-01

    The impact on image quality of scattering from phase-shifter edges and of interactions between phase-shifter and chrome edges is assessed using rigorous electromagnetic simulation. Effects of edge taper in phase-shift masks, spacing between phase-shifter and chrome edges, small outrigger features with a trench phase-shifter, and of the repair of phase defects by etching to 360 degree(s) are considered. Near field distributions and diffraction efficiencies are examined and images are compared with more approximate results from the commonly used Hopkins' theory of imaging.

  12. An analytic investigation for the edge effect on mechanical properties of graphene nanoribbons

    Science.gov (United States)

    Han, Guang-Rong; Sun, Jia-Sheng; Jiang, Jin-Wu

    2018-02-01

    We derive analytical expressions for the Young's modulus and the Poisson's ratio of the graphene nanoribbon, in which free edges are warped by the compressive edge stress. Our analytical formulas explicitly illustrate the reduction of the Young's modulus by the warped free edges, leading to the obvious width dependence for the Young's modulus of the graphene nanoribbon. The Poisson's ratio is also reduced by the warped free edges, and negative Poisson's ratio can be achieved in the graphene nanoribbon with an ultra-narrow width. These results are comparable with previous theoretical works.

  13. Depth edge detection by image-based smoothing and morphological operations

    Directory of Open Access Journals (Sweden)

    Syed Mohammad Abid Hasan

    2016-07-01

    Full Text Available Since 3D measurement technologies have been widely used in manufacturing industries edge detection in a depth image plays an important role in computer vision applications. In this paper, we have proposed an edge detection process in a depth image based on the image based smoothing and morphological operations. In this method we have used the principle of Median filtering, which has a renowned feature for edge preservation properties. The edge detection was done based on Canny Edge detection principle and was improvised with morphological operations, which are represented as combinations of erosion and dilation. Later, we compared our results with some existing methods and exhibited that this method produced better results. However, this method works in multiframe applications with effective framerates. Thus this technique will aid to detect edges robustly from depth images and contribute to promote applications in depth images such as object detection, object segmentation, etc.

  14. Ultrasound image edge detection based on a novel multiplicative gradient and Canny operator.

    Science.gov (United States)

    Zheng, Yinfei; Zhou, Yali; Zhou, Hao; Gong, Xiaohong

    2015-07-01

    To achieve the fast and accurate segmentation of ultrasound image, a novel edge detection method for speckle noised ultrasound images was proposed, which was based on the traditional Canny and a novel multiplicative gradient operator. The proposed technique combines a new multiplicative gradient operator of non-Newtonian type with the traditional Canny operator to generate the initial edge map, which is subsequently optimized by the following edge tracing step. To verify the proposed method, we compared it with several other edge detection methods that had good robustness to noise, with experiments on the simulated and in vivo medical ultrasound image. Experimental results showed that the proposed algorithm has higher speed for real-time processing, and the edge detection accuracy could be 75% or more. Thus, the proposed method is very suitable for fast and accurate edge detection of medical ultrasound images. © The Author(s) 2014.

  15. Fluctuation dynamics in geoelectrical data: an investigation by using multifractal detrended fluctuation analysis

    International Nuclear Information System (INIS)

    Telesca, Luciano; Colangelo, Gerardo; Lapenna, Vincenzo; Macchiato, Maria

    2004-01-01

    We analyzed fluctuations in the time dynamics of nonstationary geoelectrical data, recorded in a seismic area of southern Italy, by means of the multifractal detrended fluctuation analysis (MF-DFA). The multifractal character of the signal depends mostly on the different long-range properties for small and large fluctuations. The time variation of indices, denoting the departure from monofractal behaviour, reveals an enhancement of the multifractality of the signal prior seismic occurrences

  16. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite.

    Science.gov (United States)

    Zougrou, I M; Katsikini, M; Brzhezinskaya, M; Pinakidou, F; Papadopoulou, L; Tsoukala, E; Paloura, E C

    2016-08-01

    Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.

  17. Study of density fluctuation in L-mode and H-mode plasmas on JFT-2M by microwave reflectometer

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Kouji [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1997-08-01

    We propose the model which can explain the runaway phase. The model takes account of the scattered wave which is caused by the density fluctuation near the cut-off layer. We should take a new approach instead of the conventional phase measurement in order to derive the information of the density fluctuation from the data with the runaway phase. The complex spectrum and the rotary spectrum analyses are useful tools to analyze such data. The density fluctuation in L-mode and H-mode plasmas is discussed by using this new approach. We have observed that the reduction of the density fluctuation is localized in the edge region where the sheared electric field is produced. The fluctuations in the range of frequency lower than 100 kHz are mainly reduced. Two interesting features have been observed. One is the detection of the coherent mode around 100 kHz in H-mode. This mode appears about 10 ms after L to H transition. The timing corresponds to the formation of a steep density and temperature gradient in the edge region. The other is the enhancement of the fluctuations with the frequency higher than 300 kHz in H-mode in contrast to the reduction of the fluctuations with the frequency lower than 100 kHz. The Doppler shift is observed in the complex auto-power spectrum of the reflected wave when the plasma is actively moved. We have confirmed that the movement of the plasma is appropriately measured by using the low pass filter. The reflectometer can be used to measure the density profile by using a low pass filter even when the runaway phase phenomenon occurs. (author). 150 refs.

  18. Study of density fluctuation in L-mode and H-mode plasmas on JFT-2M by microwave reflectometer

    International Nuclear Information System (INIS)

    Shinohara, Kouji

    1997-08-01

    We propose the model which can explain the runaway phase. The model takes account of the scattered wave which is caused by the density fluctuation near the cut-off layer. We should take a new approach instead of the conventional phase measurement in order to derive the information of the density fluctuation from the data with the runaway phase. The complex spectrum and the rotary spectrum analyses are useful tools to analyze such data. The density fluctuation in L-mode and H-mode plasmas is discussed by using this new approach. We have observed that the reduction of the density fluctuation is localized in the edge region where the sheared electric field is produced. The fluctuations in the range of frequency lower than 100 kHz are mainly reduced. Two interesting features have been observed. One is the detection of the coherent mode around 100 kHz in H-mode. This mode appears about 10 ms after L to H transition. The timing corresponds to the formation of a steep density and temperature gradient in the edge region. The other is the enhancement of the fluctuations with the frequency higher than 300 kHz in H-mode in contrast to the reduction of the fluctuations with the frequency lower than 100 kHz. The Doppler shift is observed in the complex auto-power spectrum of the reflected wave when the plasma is actively moved. We have confirmed that the movement of the plasma is appropriately measured by using the low pass filter. The reflectometer can be used to measure the density profile by using a low pass filter even when the runaway phase phenomenon occurs. (author). 150 refs

  19. Edge effect on weevils and spiders

    OpenAIRE

    R. Horváth; T. Magura; G. Péter; B. Tóthmérész

    2002-01-01

    The edge effect on weevils and spiders was tested along oak forest – meadow transects using sweep-net samples at the Síkfökút Project in Hungary. For spiders the species richness was significantly higher in the forest edge than either in the meadow or the forest interior. For weevils the species richness of the forest edge was higher than that of the meadow, but the difference was not statistically significant whereas the species richness of the forest...

  20. Effects of suture position on left ventricular fluid mechanics under mitral valve edge-to-edge repair.

    Science.gov (United States)

    Du, Dongxing; Jiang, Song; Wang, Ze; Hu, Yingying; He, Zhaoming

    2014-01-01

    Mitral valve (MV) edge-to-edge repair (ETER) is a surgical procedure for the correction of mitral valve regurgitation by suturing the free edge of the leaflets. The leaflets are often sutured at three different positions: central, lateral and commissural portions. To study the effects of position of suture on left ventricular (LV) fluid mechanics under mitral valve ETER, a parametric model of MV-LV system during diastole was developed. The distribution and development of vortex and atrio-ventricular pressure under different suture position were investigated. Results show that the MV sutured at central and lateral in ETER creates two vortex rings around two jets, compared with single vortex ring around one jet of the MV sutured at commissure. Smaller total orifices lead to a higher pressure difference across the atrio-ventricular leaflets in diastole. The central suture generates smaller wall shear stresses than the lateral suture, while the commissural suture generated the minimum wall shear stresses in ETER.

  1. Studies of Fluctuation Processes in Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ayik, Sakir [Tennessee Technological Univ., Cookeville, TN (United States). Dept. of Physics

    2016-04-14

    The standard one-body transport approaches have been extensively applied to investigate heavy-ion collision dynamics at low and intermediate energies. At low energies the approach is the mean-field description of the time-dependent Hartree-Fock (TDHF) theory. At intermediate energies the approach is extended by including a collision term, and its application has been carried out mostly in the semi-classical framework of the Boltzmann-Uhling-Uhlenbeck (BUU) model. The standard transport models provide a good understanding of the average properties of the collision dynamics in terms of the effective interactions in both low and intermediate energies. However, the standard models are inadequate for describing the fluctuation dynamics of collective motion at low energies and disassembling of the nuclear system into fragments at intermediate energies resulting from the growth of density fluctuations in the spinodal region. Our tasks have been to improve the standard transport approaches by incorporating fluctuation mechanisms into the description. There are mainly two different mechanisms for fluctuations: (i) Collisional fluctuations generated by binary nucleon collisions, which provide the dominant mechanism at intermediate energies, and (ii) One-body mechanism or mean-field fluctuations, which is the dominant mechanism at low energies. In the first part of our project, the PI extended the standard transport model at intermediate energies by incorporating collisional mechanism according to the “Generalized Langevin Description” of Mori formalism. The PI and his collaborators carried out a number of applications for describing dynamical mechanism of nuclear multi fragmentations, and nuclear collective response in the semi-classical framework of the approach, which is known as the Boltzmann-Langevin model. In the second part of the project, we considered dynamical description at low energies. Because of the effective Pauli blocking, the collisional dissipation and

  2. X-ray absorption near edge spectroscopy at the Mn K-edge in highly homogeneous GaMnN diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sancho-Juan, O.; Cantarero, A.; Garro, N.; Cros, A. [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Martinez-Criado, G.; Salome, M.; Susini, J. [ESRF, Polygone Scientifique Louis Neel, 6 rue Jules Horowitz, 38000 Grenoble (France); Olguin, D. [Dept. de Fisica, CINVESTAV-IPN, 07300 Mexico D.F. (Mexico); Dhar, S.; Ploog, K. [Paul Drude Institute, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2006-06-15

    We have studied by X-ray absorption spectroscopy the local environment of Mn in highly homogeneous Ga{sub 1-x}Mn{sub x}N (0.06edges. In this report, we focus our attention to the X-ray absorption near edge spectroscopy (XANES) results. The comparison of the XANES spectra corresponding to the Ga and Mn edges indicates that Mn is substitutional to Ga in all samples studied. The XANES spectra measured at the Mn absorption edge shows in the near-edge region a double peak and a shoulder below the absorption edge and the main absorption peak after the edge, separated around 15 eV above the pre-edge structure. We have compared the position of the edge with that of MnO (Mn{sup 2+}) and Mn{sub 2}O{sub 3} (Mn{sup 3+}). All samples studied present the same Mn oxidation state, 2{sup +}. In order to interprete the near-edge structure, we have performed ab initio calculations with a 2 x 2 x 1supercell ({proportional_to}6% Mn) using the full potential linear augmented plane wave method as implemented in the Wien2k code. The calculations show the appearance of Mn anti-bonding t{sub 2g} bands, which are responsible for the pre-edge absorption. The shoulder and main absorption peaks are due to transitions from the valence band 1s-states of Mn to the p-contributions of the conduction bands. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Edge Segment-Based Automatic Video Surveillance

    Directory of Open Access Journals (Sweden)

    Oksam Chae

    2007-12-01

    Full Text Available This paper presents a moving-object segmentation algorithm using edge information as segment. The proposed method is developed to address challenges due to variations in ambient lighting and background contents. We investigated the suitability of the proposed algorithm in comparison with the traditional-intensity-based as well as edge-pixel-based detection methods. In our method, edges are extracted from video frames and are represented as segments using an efficiently designed edge class. This representation helps to obtain the geometric information of edge in the case of edge matching and moving-object segmentation; and facilitates incorporating knowledge into edge segment during background modeling and motion tracking. An efficient approach for background initialization and robust method of edge matching is presented, to effectively reduce the risk of false alarm due to illumination change and camera motion while maintaining the high sensitivity to the presence of moving object. Detected moving edges are utilized along with watershed algorithm for extracting video object plane (VOP with more accurate boundary. Experiment results with real image sequence reflect that the proposed method is suitable for automated video surveillance applications in various monitoring systems.

  4. Visible imaging of edge turbulence in NSTX

    International Nuclear Information System (INIS)

    S. Zweben; R. Maqueda; K. Hill; D. Johnson; S. Kaye; H. Kugel; F. Levinton; R. Maingi; L. Roquemore; S. Sabbagh; G. Wurden

    2000-01-01

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radial heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of ''gas puff imaging'' to locally illuminate the edge density turbulence

  5. Suppression of large edge localized modes with edge resonant magnetic fields in high confinement DIII-D plasmas

    International Nuclear Information System (INIS)

    Thomas, P.R.; Becoulet, M.; Evans, T.E.; Osborne, T.H.; Groebner, R.J.; Jackson, G.L.; Haye, R.J. La; Schaffer, M.J.; West, W.P.; Moyer, R.A.; Rhodes, T.L.; Rudakov, D.L.; Watkins, J.G.; Boedo, J.A.; Doyle, E.J.; Wang, G.; Zeng, L.; Fenstermacher, M.E.; Groth, M.; Lasnier, C.J.; Finken, K.H.; Harris, J.H.; Pretty, D.G.; Masuzaki, S.; Ohyabu, N.; Reimerdes, H.; Wade, M.R.

    2005-01-01

    Large divertor heat pulses due to Type-I edge localized modes (ELMs) have been eliminated reproducibly in DIII-D with small dc currents driven in a simple magnetic perturbation coil. The current required to eliminate all but a few isolated Type-I ELMs, during a coil pulse, is less than 0.4% of plasma current. Modelling shows that the perturbation fields resonate with plasma flux surfaces across most of the pedestal region (0.9 ≤ N ≤ 1.0), when q95 = 3.7±0.2 creating small remnant magnetic islands surrounded by weakly stochastic field lines. The stored energy, N , H-mode quality factor and global energy confinement time are unaltered by the magnetic perturbation. At high collisionality (ν* ∼0.5-1), there is no obvious effect of the perturbation on the edge profiles and yet ELMs are suppressed, nearly completely, for up to 9τ E . At low collisionality (ν* <0.1), there is a density pump-out and complete ELM suppression, reminiscent of the DIIID QH- mode. Other differences, specifically in the resonance condition and the magnetic fluctuations, suggest that different mechanisms are at play in the different collisionality regimes. In addition to a description and interpretation of the DIIID data, the application of this method to ELM control on other machines, such as JET and ITER will be discussed. (author)

  6. Edge effects at an induced forest-grassland boundary: forest birds in ...

    African Journals Online (AJOL)

    Bird species diversity and guild composition between the edge (5-10 m from the margin) of primary forest abutting grassland and the deep interior (> 500 m from the margin) in the Dngoye Forest Reserve were compared. Edge and interior sites were chosen that were homogeneous with respect to habitat physiognomy i.e. ...

  7. Edge passivation induced single-edge ferromagnetism of zigzag MoS{sub 2} nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui; Sun, Hui; Ma, Ben; Hu, Jingguo, E-mail: jghu@yzu.edu.cn; Pan, Jing, E-mail: panjing_yz@163.com

    2017-01-30

    We performed density functional theory study on electronic structure, magnetic properties and stability of zigzag MoS{sub 2} nanoribbons (ZMoS{sub 2}NRs) with and without oxygen (O) passivation. The bare ZMoS{sub 2}NRs are magnetic metal with ferromagnetic edge states, edge passivation decreases their magnetism because of the decrease of edge unsaturated electrons. Obviously, the electronic structure and magnetic properties of ZMoS{sub 2}NRs greatly depend on edge states. When both edges are passivated by O atoms, ZMoS{sub 2}NRs are nonmagnetic metals. When either edge is passivated by O atoms, the systems exhibit single-edge ferromagnetism and magnetism concentrates on the non-passivated edge. Edge passivation can not only tune the magnetism of ZMoS{sub 2}NRs, but also enhance their stability by eliminating dangling bonds. These interesting findings on ZMoS{sub 2}NRs may open the possibility of their application in nanodevices and spintronics. - Highlights: • Edge passivation for tuning magnetism of zigzag MoS{sub 2} nanoribbons (ZMoS{sub 2}NRs) is proposed. • Edge passivation can tune ZMoS{sub 2}NRs from nonmagnetic metal to ferromagnetic metal. • When either edge is passivated, the systems exhibit single-edge ferromagnetic states. • These findings may inspire great interest in the community of ZMoS{sub 2}NRs and motivate numerous experimental researches.

  8. [Diurnal fluctuations in human refraction].

    Science.gov (United States)

    Krause, K; Taege, A

    1988-01-01

    The spectacle values of young healthy students were determined morning and afternoon by means of phoropter and autorefractometer. In addition, keratometry was performed. When the morning and afternoon refraction values were compared the latter were found to be about 0.25 diopters lower. This effect cannot be attributed exclusively to changes in the radius of the cornea.

  9. Magnetic fluctuations due to thermally excited Alfven waves

    International Nuclear Information System (INIS)

    Agim, Y.Z.; Prager, S.C.

    1990-01-01

    Magnetic fluctuations due to the thermally excited MHD waves are investigated using fluid and kinetic models to describe a stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities which are roughly Lorentzian, exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10 -10 . Physical mechanisms to obtain decay profiles of the spectra with increasing wavenumber due to dispersion and/or different forms of damping are investigated analytically in a cold fluid approximation and numerically, with a kinetic model. The mode dispersion due to the finite ion-gyrofrequency is identified as the leading effect determining the spectral profile shapes. It is found that the amplitude of fluctuations may be within a factor of the value suggested by the cold plasma model. The results from both models are presented and compared in low- and high-β regimes. 21 refs., 6 figs

  10. Multiplicities, fluctuations and QCD Interplay between soft and hard physics?

    CERN Document Server

    Kittel, W.; Mangeol, D.J.; Metzger, W.J.

    1999-01-01

    Multiplicity fluctuations are studied both globaly (in terms of high-order moments) and locally (in terms of small phase-space intervals). The ratio of cumulant factorial to factorial moments of the charged-particle multiplicity distribution shows a quasi-oscillatory behaviour similar to that predicted by the NNLLA of perturbative QCD. However, an analysis of the sub-jet multiplicity distribution at perturbative scales shows that these oscillations cannot be related to the NNLLA prediction. We investigate how it is possible to reproduce the oscillations within the framework of Monte-Carlo models. Furthermore, local multiplicity fluctuations in angular phase-space intervals are compared with Monte-Carlo models and with first-order QCD predictions. While JETSET reproduces the experimental data very well, the predictions of the Double Leading Log Approximations and estimates obtained in Modified Leading Log Approximations deviate significantly from the data.

  11. An Efficient Null Model for Conformational Fluctuations in Proteins

    DEFF Research Database (Denmark)

    Harder, Tim Philipp; Borg, Mikael; Bottaro, Sandro

    2012-01-01

    Protein dynamics play a crucial role in function, catalytic activity, and pathogenesis. Consequently, there is great interest in computational methods that probe the conformational fluctuations of a protein. However, molecular dynamics simulations are computationally costly and therefore are often...... limited to comparatively short timescales. TYPHON is a probabilistic method to explore the conformational space of proteins under the guidance of a sophisticated probabilistic model of local structure and a given set of restraints that represent nonlocal interactions, such as hydrogen bonds or disulfide...... bridges. The choice of the restraints themselves is heuristic, but the resulting probabilistic model is well-defined and rigorous. Conceptually, TYPHON constitutes a null model of conformational fluctuations under a given set of restraints. We demonstrate that TYPHON can provide information...

  12. Scattering of lower-hybrid waves by density fluctuations

    International Nuclear Information System (INIS)

    Andrews, P.L.; Perkins, F.W.

    1981-07-01

    The investigation of the scattering of lower-hybrid waves by density fluctuations in tokamaks is distinguished by the presence in the wave equation of a large, random, derivative-coupling term. Assuming the fluctuations to be of long wavelength compared to the incident wave the similarity of the wave equation to the Schroedinger equation for a particle in a random magnetic field is used to derive a two-way diffusion equation for the wave energy density. The diffusion constant found disagrees with earlier findings and the source of the discrepancy is pointed out. When the correct boundary conditions are imposed this equation can be solved by separation of variables. However most of the important features of the solution are apparent without detailed algebra

  13. The reconstructed edges of the hexagonal BN

    Science.gov (United States)

    Zhao, Ruiqi; Gao, Junfeng; Liu, Zhongfan; Ding, Feng

    2015-05-01

    As an important two-dimensional material which shows exceptional mechanical and chemical stability, superior electronic properties, along with broad applications, the hexagonal-BN (h-BN) has drawn great attention recently. Here we report a systematic study on the structural stability, electronic and magnetic properties of various h-BN edges, including both bare and hydrogen-terminated ones. It is found that along the armchair (AC) direction, the pristine edge is the most stable one because of the formation of a triple B\\z.tbd N bond, while, along the zigzag (ZZ) directions, the reconstructed ones, ZZB + N and ZZN57 are more stable. The pristine edges are more stable in bare BN in most cases if saturated with hydrogen. By applying the theory of Wulff construction, we predicted that an unpassivated BN domain prefers the hexagonal shape enclosed with bare AC edges i.e., AC-Ns, AC, AC-Bs if the feedstock varies from N-rich to B-rich. However, the evolution from ZZN edged triangular domain, to hexagonal domain enclosed with AC edges, and ZZB edged triangle may occur if the edges are terminated by hydrogen atoms. Further calculation shows that these edges present rich type-dependent properties and thus are important for various applications. This theoretical study showed that controlling the morphologies of BN domains and BN edges is crucial for various applications.As an important two-dimensional material which shows exceptional mechanical and chemical stability, superior electronic properties, along with broad applications, the hexagonal-BN (h-BN) has drawn great attention recently. Here we report a systematic study on the structural stability, electronic and magnetic properties of various h-BN edges, including both bare and hydrogen-terminated ones. It is found that along the armchair (AC) direction, the pristine edge is the most stable one because of the formation of a triple B\\z.tbd N bond, while, along the zigzag (ZZ) directions, the reconstructed ones, ZZB + N

  14. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    Science.gov (United States)

    Wang, Mo-Zhu; Liu, Zheng-Yuan; Luo, Fang-Li; Lei, Guang-Chun; Li, Hong-Li

    2016-01-01

    Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii) and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm) of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm) were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions.

  15. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    Directory of Open Access Journals (Sweden)

    Mo-Zhu Wang

    Full Text Available Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions.

  16. Fluctuations in the fragmentation process

    International Nuclear Information System (INIS)

    Botet, R.; Ploszajczak, M.

    1993-01-01

    Some general framework of sequential fragmentation is presented, as provided by the newly proposed Fragmentation - Inactivation - Binary model, and to study briefly its basic and universal features. This model includes as particular cases most of the previous kinetic fragmentation models. In particular it is discussed how one arrives in this framework to the critical behaviour, called the shattering transition. This model is then compared to recent data on gold multifragmentation at 600 MeV/nucl. (authors) 20 refs., 5 figs

  17. Saturn's Rings Edge-on

    Science.gov (United States)

    1995-01-01

    In one of nature's most dramatic examples of 'now-you see-them, now-you-don't', NASA's Hubble Space Telescope captured Saturn on May 22, 1995 as the planet's magnificent ring system turned edge-on. This ring-plane crossing occurs approximately every 15 years when the Earth passes through Saturn's ring plane.For comparison, the top picture was taken by Hubble on December 1, 1994 and shows the rings in a more familiar configuration for Earth observers.The bottom picture was taken shortly before the ring plane crossing. The rings do not disappear completely because the edge of the rings reflects sunlight. The dark band across the middle of Saturn is the shadow of the rings cast on the planet (the Sun is almost 3 degrees above the ring plane.) The bright stripe directly above the ring shadow is caused by sunlight reflected off the rings onto Saturn's atmosphere. Two of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are, from left to right, Tethys (slightly above the ring plane) and Dione.This observation will be used to determine the time of ring-plane crossing and the thickness of the main rings and to search for as yet undiscovered satellites. Knowledge of the exact time of ring-plane crossing will lead to an improved determination of the rate at which Saturn 'wobbles' about its axis (polar precession).Both pictures were taken with Hubble's Wide Field Planetary Camera 2. The top image was taken in visible light. Saturn's disk appears different in the bottom image because a narrowband filter (which only lets through light that is not absorbed by methane gas in Saturn's atmosphere) was used to reduce the bright glare of the planet. Though Saturn is approximately 900 million miles away, Hubble can see details as small as 450 miles across.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and

  18. Aerodynamic noise from rigid trailing edges with finite porous extensions

    Science.gov (United States)

    Kisil, A.; Ayton, L. J.

    2018-02-01

    This paper investigates the effects of finite flat porous extensions to semi-infinite impermeable flat plates in an attempt to control trailing-edge noise through bio-inspired adaptations. Specifically the problem of sound generated by a gust convecting in uniform mean steady flow scattering off the trailing edge and permeable-impermeable junction is considered. This setup supposes that any realistic trailing-edge adaptation to a blade would be sufficiently small so that the turbulent boundary layer encapsulates both the porous edge and the permeable-impermeable junction, and therefore the interaction of acoustics generated at these two discontinuous boundaries is important. The acoustic problem is tackled analytically through use of the Wiener-Hopf method. A two-dimensional matrix Wiener-Hopf problem arises due to the two interaction points (the trailing edge and the permeable-impermeable junction). This paper discusses a new iterative method for solving this matrix Wiener-Hopf equation which extends to further two-dimensional problems in particular those involving analytic terms that exponentially grow in the upper or lower half planes. This method is an extension of the commonly used "pole removal" technique and avoids the needs for full matrix factorisation. Convergence of this iterative method to an exact solution is shown to be particularly fast when terms neglected in the second step are formally smaller than all other terms retained. The final acoustic solution highlights the effects of the permeable-impermeable junction on the generated noise, in particular how this junction affects the far-field noise generated by high-frequency gusts by creating an interference to typical trailing-edge scattering. This effect results in partially porous plates predicting a lower noise reduction than fully porous plates when compared to fully impermeable plates.

  19. Temperature fluctuation spectral analysis of turbulent flow in circular sections with internal roughness

    International Nuclear Information System (INIS)

    Blanco, Rosa L.D.; Moeller, Sergio V.

    1995-01-01

    The experimental study of the temperature fluctuation in a circular section pipe with artificial roughness is presented. Micro thermocouples are applied for the measurements of the temperature and its fluctuations. Auto spectral density functions as well as autocorrelation functions were obtained by means of a Fourier Analyzer. Results compared to measurements performed in a smooth pipe, show that the turbulent scales for the temperature fluctuations increase in the regions near the walls, without significant changes in the regions near the center of the pipe. (author). 15 refs, 10 figs

  20. Fluctuating dermatoglyphic asymmetries in youth at ultrahigh-risk for psychotic disorders.

    Science.gov (United States)

    Russak, Olivia Diane Fern; Ives, Lindsay; Mittal, Vijay A; Dean, Derek J

    2016-02-01

    Fluctuating dermatoglyphic asymmetry represents one specific class of minor physical anomaly that has been proposed to reflect prenatal insult and vulnerability to psychosis. However, very little is known about fluctuating dermatoglyphic asymmetry in youth showing symptoms of ultrahigh risk (UHR) for psychosis. Using high-resolution photographs of fingerprints and clinical interviews, the UHR group in this study showed greater fluctuating dermatoglyphic asymmetry compared to controls; however, this was not further linked to symptomatology. The results of this study provide an important perspective on potential biomarkers and support neurodevelopmental conceptions of psychosis. Published by Elsevier B.V.

  1. Muon fluctuation studies of EAS 10(17) eV

    Science.gov (United States)

    Blake, P. R.; Luksys, M.; Nash, W. F.; Sephton, A. J.

    1985-01-01

    Fluctuation studies need to compare a parameter which is sensitive to longitudinal fluctuations against a parameter which is insensitive. Cascade calculations indicate that the shower size parameter at Haverah Park, rho (500), and the muon density are insensitive while parameters that significantly reflect the longitudinal development of a particular extensive air shower (EAS) include the muon/water Cerenkov response ratio and the muon arrival time dispersion. This paper presents conclusions based on muon fluctuation studies of EAS measured between 1976 and 1981 at Haverah Park.

  2. Anisotropic flow fluctuations in hydro-inspired freeze-out model for relativistic heavy ion collisions

    CERN Document Server

    Bravina, L V; Korotkikh, V L; Lokhtin, I P; Malinina, L V; Nazarova, E N; Petrushanko, S V; Snigirev, A M; Zabrodin, E E

    2015-01-01

    The possible mechanisms contributing to anisotropic flow fluctuations in relativistic heavy ion collisions are discussed. The LHC data on event-by-event harmonic flow coefficients measured in PbPb collisions at center-of-mass energy 2.76 TeV per nucleon pair are analyzed and interpreted within the HYDJET++ model. To compare the model results with the experimental data the unfolding procedure is employed. It is shown that HYDJET++ correctly reproduces dynamical fluctuations of elliptic and triangular flows and related to it eccentricity fluctuations of the initial state.

  3. Mesoscopic fluctuations in the critical current in InAs-coupled Josephson junctions

    International Nuclear Information System (INIS)

    Takayanagi, Hideaki; Hansen, J.B.; Nitta, Junsaku

    1994-01-01

    Mesoscopic fluctuations were confirmed for the critical current in a p-type InAs-coupled Josephson junction. The critical current was measured as a function of the gate voltage corresponding to the change in the Fermi energy. The critical current showed a mesoscopic fluctuation and its behavior was the same as that of the conductance measured at the same time in both the weak and strong localization regimes. The magnitude and the typical period of the fluctuation are discussed and compared to theoretical predictions. ((orig.))

  4. Correlation length of magnetosheath fluctuations: Cluster statistics

    Directory of Open Access Journals (Sweden)

    O. Gutynska

    2008-09-01

    Full Text Available Magnetosheath parameters are usually described by gasdynamic or magnetohydrodynamic (MHD models but these models cannot account for one of the most important sources of magnetosheath fluctuations – the foreshock. Earlier statistical processing of a large amount of magnetosheath observations has shown that the magnetosheath magnetic field and plasma flow fluctuations downstream of the quasiparallel shock are much larger than those at the opposite flank. These studies were based on the observations of a single spacecraft and thus they could not provide full information on propagation of the fluctuations through the magnetosheath. We present the results of a statistical survey of the magnetosheath magnetic field fluctuations using two years of Cluster observations. We discuss the dependence of the cross-correlation coefficients between different spacecraft pairs on the orientation of the separation vector with respect to the average magnetic field and plasma flow vectors and other parameters. We have found that the correlation length does not exceed ~1 RE in the analyzed frequency range (0.001–0.125 Hz and does not depend significantly on the magnetic field or plasma flow direction. A close connection of cross-correlation coefficients computed in the magnetosheath with the cross-correlation coefficients between a solar wind monitor and a magnetosheath spacecraft suggests that solar wind structures persist on the background of magnetosheath fluctuations.

  5. Fluctuation mechanisms in superconductors nanowire single-photon counters, enabled by effective top-down manufacturing

    CERN Document Server

    Bartolf, Holger

    2016-01-01

    Holger Bartolf discusses state-of-the-art detection concepts based on superconducting nanotechnology as well as sophisticated analytical formulæ that model dissipative fluctuation-phenomena in superconducting nanowire single-photon detectors. Such knowledge is desirable for the development of advanced devices which are designed to possess an intrinsic robustness against vortex-fluctuations and it provides the perspective for honorable fundamental science in condensed matter physics. Especially the nanowire detector allows for ultra-low noise detection of signals with single-photon sensitivity and GHz repetition rates. Such devices have a huge potential for future technological impact and might enable unique applications (e.g. high rate interplanetary deep-space data links from Mars to Earth). Contents Superconducting Single-Photon Detectors Nanotechnological Manufacturing; Scale: 10 Nanometer Berezinskii-Kosterlitz Thouless (BKT) Transition, Edge-Barrier, Phase Slips Target Groups Researchers and students of...

  6. CMS kinematic edge from sbottoms

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Peisi; Wagner, Carlos E. M.

    2015-01-01

    We present two scenarios in the Minimal Supersymmetric Extension of the Standard Model (MSSM) that can lead to an explanation of the excess in the invariant mass distribution of two opposite charged, same flavor leptons, and the corresponding edge at an energy of about 78 GeV, recently reported by the CMS Collaboration. In both scenarios, sbottoms are pair produced, and decay to neutralinos and a b-jet. The heavier neutralinos further decay to a pair of leptons and the lightest neutralino through on-shell sleptons or off-shell neutral gauge bosons. These scenarios are consistent with the current limits on the sbottoms, neutralinos, and sleptons. Assuming that the lightest neutralino is stable we discuss the predicted relic density as well as the implications for darkmatter direct detection. We show that consistency between the predicted and the measured value of the muon anomalous magnetic moment may be obtained in both scenarios. Finally, we define the signatures of these models that may be tested at the 13 TeV run of the LHC

  7. Product of normal edge transitive Cayley graphs

    Directory of Open Access Journals (Sweden)

    Amir Assari

    2014-09-01

    Full Text Available For two normal edge transitive Cayley graphs on two groups H and K whichhave no common direct factor and gcd(|H|/|H'|, |Z(K| = 1 = gcd(|K=K′|,|Z(H|,we consider four standard product of them and proved that only tensor product ofthem can be normal edge transitive.

  8. Leading edge gypsy moth population dynamics

    Science.gov (United States)

    M. R. Carter; F. W. Ravlin; M. L. McManus

    1991-01-01

    Leading edge gypsy moth populations have been the focus of several intervention programs (MDIPM, AIPM). Knowledge of gypsy moth population dynamics in leading edge area is crucial for effective management. Populations in these areas tend to reach outbreak levels (noticeable defoliation) within three to four years after egg masses are first detected. Pheromone traps...

  9. Development of planar detectors with active edge

    International Nuclear Information System (INIS)

    Povoli, M.; Bagolini, A.; Boscardin, M.; Dalla Betta, G.-F.; Giacomini, G.; Vianello, E.; Zorzi, N.

    2011-01-01

    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  10. Development of planar detectors with active edge

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: povoli@disi.unitn.it [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Giacomini, G.; Vianello, E.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy)

    2011-12-01

    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  11. Annotated Bibliography of EDGE2D Use

    International Nuclear Information System (INIS)

    Strachan, J.D.; Corrigan, G.

    2005-01-01

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables

  12. Edge effects in Bilayer Graphene Nanoribbons

    Science.gov (United States)

    Lima, Matheus P.; Fazzio, Adalberto; da Silva, Antonio J. R.

    2009-03-01

    We investigate the geometrical and electronic structure of zigzag bilayer graphene nanoribbons (B-ZGNR), with widths that range from w=0.6 to w=4.5 nm. The layers are in the Bernal stacking, which means that there are two types of C atoms, those that are positioned above the center of the hexagons of the other layer, defining a B-sublattice, and those right on top of the C atoms of the other layer, forming an A-sublattice. When we cut the layer along the zigzag edge, there are two possible alignments, α, where the outermost edge atoms belong to the A- sublattice, and β, where the outermost edge atoms belong to the B-sublattice. Thus, only the inter-layer edge interaction differs. We found that the α alignment is energetically favorable, with an inter-layer edges attraction, whereas for the β there is an inter-layer edges repulsion. These edge-related forces cause a deviation from the exact Bernal stacking, resulting in a non-monotonic behavior of the energy gap with the width w for the α B-ZGNR, with a maximum value at w 3.5nm. This is a consequence of the competition between bulk and strongly attractive edge interactions. All results were obtained using density functional theory calculations with the inclusion of parametrized van der Waals interactions.

  13. Connected domination stable graphs upon edge addition ...

    African Journals Online (AJOL)

    A set S of vertices in a graph G is a connected dominating set of G if S dominates G and the subgraph induced by S is connected. We study the graphs for which adding any edge does not change the connected domination number. Keywords: Connected domination, connected domination stable, edge addition ...

  14. Edge effects on moisture reduce wood decomposition rate in a temperate forest.

    Science.gov (United States)

    Crockatt, Martha E; Bebber, Daniel P

    2015-02-01

    Forests around the world are increasingly fragmented, and edge effects on forest microclimates have the potential to affect ecosystem functions such as carbon and nutrient cycling. Edges tend to be drier and warmer due to the effects of insolation, wind, and evapotranspiration and these gradients can penetrate hundreds of metres into the forest. Litter decomposition is a key component of the carbon cycle, which is largely controlled by saprotrophic fungi that respond to variation in temperature and moisture. However, the impact of forest fragmentation on litter decay is poorly understood. Here, we investigate edge effects on the decay of wood in a temperate forest using an experimental approach, whereby mass loss in wood blocks placed along 100 m transects from the forest edge to core was monitored over 2 years. Decomposition rate increased with distance from the edge, and was correlated with increasing humidity and moisture content of the decaying wood, such that the decay constant at 100 m was nearly twice that at the edge. Mean air temperature decreased slightly with distance from the edge. The variation in decay constant due to edge effects was larger than that expected from any reasonable estimates of climatic variation, based on a published regional model. We modelled the influence of edge effects on the decay constant at the landscape scale using functions for forest area within different distances from edge across the UK. We found that taking edge effects into account would decrease the decay rate by nearly one quarter, compared with estimates that assumed no edge effect. © 2014 John Wiley & Sons Ltd.

  15. Mesoscale wind fluctuations over Danish waters

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, C.L.

    2010-12-15

    Mesoscale wind fluctuations affect the large scale integration of wind power because they undermine the day-ahead predictability of wind speed and power production, and because they can result in large fluctuations in power generation that must be balanced using reserve power. Large fluctuations in generated power are a particular problem for offshore wind farms because the typically high concentration of turbines within a limited geographical area means that fluctuations can be correlated across large numbers of turbines. Furthermore, organised mesoscale structures that often form over water, such as convective rolls and cellular convection, have length scales of tens of kilometers, and can cause large wind fluctuations on a time scale of around an hour. This thesis is an exploration of the predictability of mesoscale wind fluctuations using observations from the world's first two large offshore wind farms - Horns Rev I in the North Sea, and Nysted in the Baltic Sea. The thesis begins with a climatological analysis of wind fluctuations on time scales of 1-10 hours at the two sites. A novel method for calculating conditional climatologies of spectral information is proposed, based on binning and averaging the time axis of the Hilbert spectrum. Results reveal clear patterns between wind fluctuations and locally observed meteorological conditions. The analysis is expanded by classifying wind fluctuations on time scales of 1-3 hours according to synoptic patterns, satellite pictures and wind classes. Results indicate that cold air outbreaks and open cellular convection are a significant contributor to mesoscale wind variability at Horns Rev. The predictability of mesoscale wind fluctuations is tested by implementing standard statistical models that relate local wind variability to parameters based on a large scale weather analysis. The models show some skill, but only achieve a 15% improvement on a persistence forecast. The possibility of explicitly modelling

  16. Classical and quantum temperature fluctuations via holography

    Energy Technology Data Exchange (ETDEWEB)

    Balatsky, Alexander V. [KTH Royal Inst. of Technology, Stockholm (Sweden); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gudnason, Sven Bjarke [KTH Royal Inst. of Technology, Stockholm (Sweden); Thorlacius, Larus [KTH Royal Inst. of Technology, Stockholm (Sweden); University of Iceland, Reykjavik (Iceland); Zarembo, Konstantin [KTH Royal Inst. of Technology, Stockholm (Sweden); Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Uppsala Univ. (Sweden); Krikun, Alexander [KTH Royal Inst. of Technology, Stockholm (Sweden); Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Kedem, Yaron [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2014-05-27

    We study local temperature fluctuations in a 2+1 dimensional CFT on the sphere, dual to a black hole in asymptotically AdS space-time. The fluctuation spectrum is governed by the lowest-lying hydrodynamic sound modes of the system whose frequency and damping rate determine whether temperature fluctuations are thermal or quantum. We calculate numerically the corresponding quasinormal frequencies and match the result with the hydrodynamics of the dual CFT at large temperature. As a by-product of our analysis we determine the appropriate boundary conditions for calculating low-lying quasinormal modes for a four-dimensional Reissner-Nordstrom black hole in global AdS.

  17. Fractal Tempo Fluctuation and Pulse Prediction.

    Science.gov (United States)

    Rankin, Summer K; Large, Edward W; Fink, Philip W

    2009-06-01

    WE INVESTIGATED PEOPLES' ABILITY TO ADAPT TO THE fluctuating tempi of music performance. In Experiment 1, four pieces from different musical styles were chosen, and performances were recorded from a skilled pianist who was instructed to play with natural expression. Spectral and rescaled range analyses on interbeat interval time-series revealed long-range (1/ f type) serial correlations and fractal scaling in each piece. Stimuli for Experiment 2 included two of the performances from Experiment 1, with mechanical versions serving as controls. Participants tapped the beat at ¼- and ⅛-note metrical levels, successfully adapting to large tempo fluctuations in both performances. Participants predicted the structured tempo fluctuations, with superior performance at the ¼-note level. Thus, listeners may exploit long-range correlations and fractal scaling to predict tempo changes in music.

  18. Wild Fluctuations of Random Functions with the Pareto Distribution

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available This paper provides the fluctuation analysis of random functions with the Pareto distribution. By the introduced concept of wild fluctuations, we give an alternative way to classify the fluctuations from those with light-tailed distributions. Moreover, the suggested term wildest fluctuation may be used to classify random functions with infinite variance from those with finite variances.

  19. Edge effects on water droplet condensation.

    Science.gov (United States)

    Medici, Marie-Gabrielle; Mongruel, Anne; Royon, Laurent; Beysens, Daniel

    2014-12-01

    In this study we investigate the effect of geometrical or thermal discontinuities on the growth of water droplets condensing on a cooled substrate. Edges, corners, and cooled and noncooled boundaries can have a strong effect on the vapor concentration profile and mass diffusion around the drops. In comparison to growth in a pattern where droplets have to compete to catch vapor, which results in a linear water concentration profile directed perpendicularly to the substrate, droplets near discontinuities can get more vapor (outer edges, corners), resulting in faster growth or less vapor (inner edges), giving lower growth. When the cooling heat flux limits growth instead of mass diffusion (substrate with low thermal conductivity, strong heat exchange with air), edge effects can be canceled. In certain cases, growth enhancement can reach nearly 500% on edges or corners.

  20. Magnetism of zigzag edge phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhili, E-mail: zlzhu@zzu.edu.cn, E-mail: jiayu@zzu.edu.cn; Li, Chong; Yu, Weiyang; Chang, Dahu; Sun, Qiang; Jia, Yu, E-mail: zlzhu@zzu.edu.cn, E-mail: jiayu@zzu.edu.cn [International Joint Research Laboratory for Quantum Functional Materials of Henan, and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2014-09-15

    We have investigated, by means of ab initio calculations, the electronic and magnetic structures of zigzag edge phosphorene nanoribbons (ZPNRs) with various widths. The stable magnetic state was found in pristine ZPNRs by allowing the systems to be spin-polarized. The ground state of pristine ZPNRs prefers ferromagnetic order in the same edge but antiferromagnetic order between two opposite edges. The magnetism arises from the dangling bond states as well as edge localized π-orbital states. The presence of a dangling bond is crucial to the formation of the magnetism of ZPNRs. The hydrogenated ZPNRs get nonmagnetic semiconductors with a direct band gap. While, the O-saturated ZPNRs show magnetic ground states due to the weak P-O bond in the ribbon plane between the p{sub z}-orbitals of the edge O and P atoms.

  1. Edge separation using diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Ravel, B.; Bouldin, C.E.; Renevier, H.; Hodeau, J.L.; Berar, J.F.

    1999-01-01

    We exploit the crystallographic sensitivity of the Diffraction Anomalous Fine-Structure (DAFS) measurement to separate the fine structure contributions of different atomic species with closely spaced resonant energies. In BaTiO 3 the Ti K edge and Ba Lm edges are separated by 281 eV, or about 8.2 Angstrom -1 ), thus severely limiting the information content of the Ti K edge signal. Using the site selectivity of DAFS we can separate the two fine structure spectra using an iterative Kramers-Kronig method, thus extending the range of the Ti K edge spectrum. This technique has application to many rare earth/transition metal compounds, including many magnetic materials of technological significance for which K and L edges overlap in energy. (au)

  2. Fitness effects of fluctuations in biochemical networks

    Science.gov (United States)

    Tanase-Nicola, Sorin

    2009-03-01

    The concentration of many cellular components fluctuates not only as a response to external and internal inputs but also due to random birth and death events of individual molecules. This biochemical noise affects the capacity of every individual cell in a population to respond and adapt to the environment. While the sources and effects of biochemical fluctuations on individual cells have been intensively studied, the effects of noise on the growth rate of a population of cells are much less understood. We present a model of the cell cycle in which the growth and division of individual cells are coupled with the noisy dynamics of their internal components. The model allows us to compute the contribution of the biochemical noise to the average growth rate of a population of cells as a function of the noise strength and the correlation time of the fluctuations. We show that, due to fluctuations, the growth rate of a population of cells is always larger than the average growth rate of a individual cell and can be larger even than a corresponding deterministic model. In most relevant cases it is assumed that the average concentration of a cellular component is close to a value that maximizes the population growth as given by the external, environmental, conditions and the internal cellular regulation. In such cases we show that contribution of fluctuations to the growth rate is negative and increases with the sensitivity of the biochemical networks to the noise sources and the noise correlation time. We also discuss how the selection pressure due to fluctuations affects the structure and parameters of genetic regulatory networks.

  3. Riemannian geometry in thermodynamic fluctuation theory

    International Nuclear Information System (INIS)

    Ruppeiner, G.

    1995-01-01

    Although thermodynamic fluctuation theory originated from statistical mechanics, it may be put on a completely thermodynamic basis, in no essential need of any microscopic foundation. This review views the theory from the macroscopic perspective, emphasizing, in particular, notions of covariance and consistency, expressed naturally using the language of Riemannian geometry. Coupled with these concepts is an extension of the basic structure of thermodynamic fluctuation theory beyond the classical one of a subsystem in contact with an infinite uniform reservoir. Used here is a hierarchy of concentric subsystems, each of which samples only the thermodynamic state of the subsystem immediately larger than it. The result is a covariant thermodynamic fluctuation theory which is plausible beyond the standard second-order entropy expansion. It includes the conservation laws and is mathematically consistent when applied to fluctuations inside subsystems. Tests on known models show improvements. Perhaps most significantly, the covariant theory offers a qualitatively new tool for the study of fluctuation phenomena: the Riemannian thermodynamic curvature. The thermodynamic curvature gives, for any given thermodynamic state, a lower bound for the length scale where the classical thermodynamic fluctuation theory based on a uniform environment could conceivably hold. Straightforward computation near the critical point reveals that the curvature equals the correlation volume, a physically appealing finding. The combination of the interpretation of curvature with a well-known proportionality between the free energy and the inverse of the correlation volume yields a purely thermodynamic theory of the critical point. The scaled equation of state follows from the values of the critical exponents. The thermodynamic Riemannian metric may be put into the broader context of information theory

  4. Critical fluctuations in topologically massive superconductors

    International Nuclear Information System (INIS)

    Malbouisson, A.P.C.; Nogueira, F.S.; Svaiter, N.F.

    1996-09-01

    We consider a topologically massive Ginzburg-Landau model of superconductivity. In the context of a mean field calculation, we show that there is an increase in the critical temperature driven by the topological term. It is shown that this effect persists even if we take into account the critical fluctuations. The renormalization group analysis gives further insight on this behavior. The fixed point structure is such that the critical exponents tend to their mean field for very large values of the topological mass. In this sense, the topological term stabilizes the critical fluctuations of the order parameters. (author). 13 refs

  5. Critical Fluctuations in Spatial Complex Networks

    Science.gov (United States)

    Bradde, Serena; Caccioli, Fabio; Dall'Asta, Luca; Bianconi, Ginestra

    2010-05-01

    An anomalous mean-field solution is known to capture the nontrivial phase diagram of the Ising model in annealed complex networks. Nevertheless, the critical fluctuations in random complex networks remain mean field. Here we show that a breakdown of this scenario can be obtained when complex networks are embedded in geometrical spaces. Through the analysis of the Ising model on annealed spatial networks, we reveal, in particular, the spectral properties of networks responsible for critical fluctuations and we generalize the Ginsburg criterion to complex topologies.

  6. Universal conductance fluctuations in disordered metals

    International Nuclear Information System (INIS)

    Lee, P.A.

    1987-01-01

    The author argues that observed and theoretical fluctuations in the electrical conductance of disordered metals, induced by variations in the magnetic field or the chemical potential, are not time-dependent noise but that the conductance is a deterministic albeit fluctuating function for a given realization of the impurity configuration. A method is constructed for representing the sensitivity of the conductance of a given metal to a small change in the impurity configuration as a function of such variables as sample size, impurities per unit volume, and mean free path. The sensitivity helps explain the size of 1/f noise due to defect motion in disordered metals

  7. Deriving GENERIC from a Generalized Fluctuation Symmetry

    Science.gov (United States)

    Kraaij, Richard; Lazarescu, Alexandre; Maes, Christian; Peletier, Mark

    2018-02-01

    Much of the structure of macroscopic evolution equations for relaxation to equilibrium can be derived from symmetries in the dynamical fluctuations around the most typical trajectory. For example, detailed balance as expressed in terms of the Lagrangian for the path-space action leads to gradient zero-cost flow. We expose a new such fluctuation symmetry that implies GENERIC, an extension of gradient flow where a Hamiltonian part is added to the dissipative term in such a way as to retain the free energy as Lyapunov function.

  8. Fluctuations in high-energy particle collisions

    International Nuclear Information System (INIS)

    Gronqvist, Hanna

    2016-01-01

    We study fluctuations that are omnipresent in high-energy particle collisions. These fluctuations can be either of either classical or quantum origin and we will study both. Firstly, we consider the type of quantum fluctuations that arise in proton-proton collisions. These are computable perturbatively in quantum field theory and we will focus on a specific class of diagrams in this set-up. Secondly, we will consider the fluctuations that are present in collisions between nuclei that can be heavier than protons. These are the quantum laws of nature that describe the positions of nucleons within a nucleus, but also the hydrodynamic fluctuations of classical, thermal origin that affect the evolution of the medium produced in heavy-ion collisions. The fluctuations arising in proton-proton collisions can be computed analytically up to a certain order in perturbative quantum field theory. We will focus on one-loop diagrams of a fixed topology. Loop diagrams give rise to integrals that typically are hard to evaluate. We show how modern mathematical methods can be used to ease their computation. We will study the relations among unitarity cuts of a diagram, the discontinuity across the corresponding branch cut and the coproduct. We show how the original integral corresponding to a given diagram can be reconstructed from the information contained in the coproduct. We expect that these methods can be applied to solve more complicated topologies and help in the computation of new amplitudes in the future. Finally, we study the two types of fluctuations arising in heavy-ion collisions. These are related either to the initial state or the intermediate state of matter produced in such collisions. The initial state fluctuations are experimentally observed to give rise to non-Gaussianities in the final-state spectra. We show how these non-Gaussianities can be explained by the random position and interaction energy of 'sources' in the colliding nuclei. Furthermore, we

  9. Current fluctuations across a nano-pore

    Science.gov (United States)

    Zorkot, Mira; Golestanian, Ramin

    2018-04-01

    The frequency-dependent spectrum of current fluctuations through nano-scale channels is studied using analytical and computational techniques. Using a stochastic Nernst-Planck description and neglecting the interactions between the ions inside the channel, an expression is derived for the current fluctuations, assuming that the geometry of the channel can be incorporated through the lower limits for various wave-vector modes. Since the resulting expression turns out to be quite complex, a number of further approximations are discussed such that relatively simple expressions can be used for practical purposes. The analytical results are validated using Langevin dynamics simulations.

  10. Inverse scattering problem in turbulent magnetic fluctuations

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2016-08-01

    Full Text Available We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gelfand–Levitan–Marchenko equation of quantum mechanical scattering theory. The last of these applies to transmission and reflection in an active medium. The theory of turbulent magnetic fluctuations does not refer to such quantities. It requires a somewhat different formulation. We reduce the theory to the measurement of the low-frequency electromagnetic fluctuation spectrum, which is not the turbulent spectral energy density. The inverse theory in this form enables obtaining information about the turbulent response function of the medium. The dynamic causes of the electromagnetic fluctuations are implicit to it. Thus, it is of vital interest in low-frequency magnetic turbulence. The theory is developed until presentation of the equations in applicable form to observations of turbulent electromagnetic fluctuations as input from measurements. Solution of the final integral equation should be done by standard numerical methods based on iteration. We point to the possibility of treating power law fluctuation spectra as an example. Formulation of the problem to include observations of spectral power densities in turbulence is not attempted. This leads to severe mathematical problems and requires a reformulation of inverse scattering theory. One particular aspect of the present inverse theory of turbulent fluctuations is that its structure naturally leads to spatial information which is obtained from the temporal information that is inherent to the observation of time series. The Taylor assumption is not needed here. This is a consequence of Maxwell's equations, which couple space and time evolution. The inversion procedure takes

  11. Resistance scaling function for two-dimensional superconductors and Monte Carlo vortex-fluctuation simulations

    International Nuclear Information System (INIS)

    Minnhagen, P.; Weber, H.

    1985-01-01

    A Monte Carlo simulation of the Ginsburg-Landau Coulomb-gas model for vortex fluctuations is described and compared to the measured resistance scaling function for two-dimensional superconductors. This constitutes a new, more direct way of confirming the vortex-fluctuation explanation for the resistive tail of high-sheet-resistance superconducting films. The Monte Carlo data obtained indicate a striking accordance between theory and experiments

  12. Emil Lederer’s Theory of Economic Fluctuations and the Role of Financial Institutions

    OpenAIRE

    Vouldis, Angelos; Michaelides, Panayotis G.; Milios, John G.

    2008-01-01

    Emil Lederer was characterized as the “leading academic socialist of Germany in the 1920’s” by Joseph Schumpeter and was a highly respected economist of his time. However, most aspects of his work remain totally unexplored. This paper focuses on Emil Lederer’s theory of economic fluctuations. It defends the thesis that certain aspects of Lederer’s conceptualization of economic fluctuations underwent considerable modifications when his 1925 article Konjunktur und Krisen is compared with his 19...

  13. Biological rhythm in 1/f fluctuations of heart rate in asthmatic children

    Directory of Open Access Journals (Sweden)

    Norio Kazuma

    2004-01-01

    Conclusion: During an asthma attack, the rhythm of 1/f fluctuations is ultradian (cycle length under 20 h, compared with various rhythms during a non-attack period. In future, we will clarify the relevance of the ultradian rhythm of 1/f fluctuations over a 24 h period and the biological life-support system at a point of time of an asthma attack.

  14. A comparison of different measures for dynamical event mean transverse momentum fluctuation

    International Nuclear Information System (INIS)

    Liu Lianshou; Fu Jinghua

    2004-01-01

    Various measures for the dynamical event mean transverse momentum fluctuation are compared with the real dynamical fluctuation using a Monte Carlo model. The variance calculated from the G-moments can reproduce the dynamical variance well, while those obtained by subtraction procedures are approximate measures for not very low multiplicity. Φ pt , proposed by Gazdzicki M and Mrowczynski S, can also serve as an approximate measure after being divided by the square root of mean multiplicity

  15. Conductance Fluctuations in Disordered 2D Topological Insulator Wires: From Quantum Spin-Hall to Ordinary Phases

    Science.gov (United States)

    Hsu, Hsiu-Chuan; Kleftogiannis, Ioannis; Guo, Guang-Yu; Gopar, Víctor A.

    2018-03-01

    Impurities and defects are ubiquitous in topological insulators (TIs) and thus understanding the effects of disorder on electronic transport is important. We calculate the distribution of the random conductance fluctuations P(G) of disordered 2D TI wires modeled by the Bernevig-Hughes-Zhang (BHZ) Hamiltonian with realistic parameters. As we show, the disorder drives the TIs into different regimes: metal (M), quantum spin-Hall insulator (QSHI), and ordinary insulator (OI). By varying the disorder strength and Fermi energy, we calculate analytically and numerically P(G) across the entire phase diagram. The conductance fluctuations follow the statistics of the unitary universality class β = 2. At strong disorder and high energy, however, the size of the fluctuations δG reaches the universal value of the orthogonal symmetry class (β = 1). At the QSHI-M and QSHI-OI crossovers, the interplay between edge and bulk states plays a key role in the statistical properties of the conductance.

  16. Calorimetric evidence for localized spin fluctuations in UA12

    International Nuclear Information System (INIS)

    Trainor, R.J.; Brodsky, M.B.; Isaacs, L.L.

    1974-01-01

    Results of heat capacity measurements on UAl 2 between 1.8 and 400 0 K are presented. The data are compared with recent resistivity and susceptibility measurements which indicate the existence of localized spin fluctuations in a narrow 5f band. Below about 50 0 K the electronic contribution to the heat capacity becomes large, equivalent to γ approximately 70 mJ/mole-K 2 . Below 6 0 K there is an upturn in C/T which is proportional to T 2 log (T/T/sub SF/), where T/sub SF/ = 10.6 0 K is identified as the spin fluctuation temperature. Extrapolation of this term to zero temperature yields m*/m approximately 2 for the spin-fluctuation mass enhancement. At 300 0 K, UAl 2 exhibits more typical metallic behavior, with γ approximately 15 mJ/mole-K 2 . Data are also presented for nonmagnetic URh 3 ; at low temperatures C = γT + βT 3 , with γ = 14.5 mJ/mole-K 2 and β corresponding to theta/sub D/ = 336 0 K. (U.S.)

  17. System for simulating fluctuation diagnostics for application to turbulence computations

    International Nuclear Information System (INIS)

    Bravenec, R.V.; Nevins, W.M.

    2006-01-01

    Present-day nonlinear microstability codes are able to compute the saturated fluctuations of a turbulent fluid versus space and time, whether the fluid be liquid, gas, or plasma. They are therefore able to determine turbulence-induced fluid (or particle) and energy fluxes. These codes, however, must be tested against experimental data not only with respect to transport but also characteristics of the fluctuations. The latter is challenging because of limitations in the diagnostics (e.g., finite spatial resolution) and the fact that the diagnostics typically do not measure exactly the quantities that the codes compute. In this work, we present a system based on IDL registered analysis and visualization software in which user-supplied 'diagnostic filters' are applied to the code outputs to generate simulated diagnostic signals. The same analysis techniques as applied to the measurements, e.g., digital time-series analysis, may then be applied to the synthesized signals. Their statistical properties, such as rms fluctuation level, mean wave numbers, phase and group velocities, correlation lengths and times, and in some cases full S(k,ω) spectra, can then be compared directly to those of the measurements

  18. Fluctuations and correlations of emission from random lasers

    Science.gov (United States)

    Merrill, Jason W.; Cao, Hui; Dufresne, Eric R.

    2016-02-01

    When light travels through strongly scattering media with optical gain, the synergy between diffusive transport and stimulated emission can lead to lasing action. Below the threshold pump power, the emission spectrum is smooth and does not change from shot to shot. Above the lasing threshold, the spectrum of emitted light becomes spiky and shows strong fluctuations from shot to shot. Recent experiments have reported that emitted intensity resembles a power-law distribution (i.e., Lévy statistics). To separate intrinsic intensity fluctuations from the motion of scatterers, we compare the statistics of samples with stationary or freely diffusing scatterers. Consistent with previous reports, we observe Lévy-like statistics when intensity data are pooled across an ensemble of scatterer configurations. For fixed scatterers, we find exponential intensity distributions for individual lasing modes whose mean intensities vary widely from mode to mode. Lévy-like statistics reemerges when data are combined across many lasing modes. Additionally, we find strong correlations of intensity fluctuations of lasing modes across wavelengths. A simple mean-field statistical model captures the observed one- and two-point statistics, where correlations in emission intensity arise from competition among all lasing modes for limited gain.

  19. Random-matrix physics: spectrum and strength fluctuations

    International Nuclear Information System (INIS)

    Brody, T.A.; Flores, J.; French, J.B.; Mello, P.A.; Pandey, A.; Wong, S.S.M.

    1981-01-01

    It now appears that the general nature of the deviations from uniformity in the spectrum of a complicated nucleus is essentially the same in all regions of the spectrum and over the entire Periodic Table. This behavior, moreover, is describable in terms of standard Hamiltonian ensembles which could be generated on the basis of simple information-theory concepts, and which give also a good account of fluctuation phenomena of other kinds and, apparently, in other many-body systems besides nuclei. The main departures from simple behavior are ascribable to the moderation of the level repulsion by effects due to symmetries and collectivities, for the description of which more complicated ensembles are called for. One purpose of this review is to give a self-contained account of the theory, using methods: sometimes approximate: which are consonant with the usual theory of stochastic processes. Another purpose is to give a proper foundation for the use of ensemble theory, to make clear the origin of the simplicities in the observable fluctuations, and to derive other general fluctuation results. In comparing theory and experiment, the authors give an analysis of much of the nuclear-energy-level data, as well as an extended discussion of observable effects in nuclear transitions and reactions and in the low-temperature thermodynamics of aggregates of small metallic particles

  20. Study of thermal and suprathermal electron density fluctuations in a plasma Focus

    International Nuclear Information System (INIS)

    Jolas, Alain.

    1982-02-01

    Thomson scattering of ruby laser light is used to study electron density fluctuations in a plasma Focus. One measures frequency and wavenumber spectra as well as angular distribution of fluctuations at given wavenumber. During the implosion phase, plasma layers with different characteristics are evidenced: a dense plasma layer where density fluctuations are isotropic with a thermal level, and a tenuous plasma layer where fluctuations are clearly anisotropic with a suprathermal level. The suprathermal fluctuations are attributed to microscopic instabilities due to the large electrical current which flows in the transition zone where the magnetic field mixes into the plasma. Thermal fluctuation measurements allow the determination of electron density and electron and ion temperatures of the dense layer plasma. One compares the observed characteristics of spectral components of suprathermal fluctuations with various types of known micro-instabilities. Relying on a simplified shock wave model it is deduced an average electrical resistivity greater than the classical Spitzer relation by two order of magnitudes. The lower hybrid drift instability appears to be dominant at the beginning of the implosion phase [fr

  1. Observational Analysis of Variation Characteristics of GPS-Based TEC Fluctuation over China

    Directory of Open Access Journals (Sweden)

    Xifeng Liu

    2016-12-01

    Full Text Available In this study, the characteristics of the total electron content (TEC fluctuations and their regional differences over China were analyzed by utilizing the rate of the TEC index (ROTI based on GPS data from 21 reference stations across China during a solar cycle. The results show that there were significant regional differences at different latitudes. Strong ionospheric TEC fluctuations were usually observed at lower latitudes in southern China, where the occurrence of TEC fluctuations demonstrated typical nighttime- and season-dependent (equinox months features. This phenomenon was consistent with the ionospheric scintillation characteristics of this region. Additionally, compared to low-latitude China, the intensity of TEC fluctuations over mid-latitude China was significantly weaker, and the occurrence of TEC fluctuations was not a nighttime-dependent phenomenon. Moreover, the intensity of TEC fluctuations was much stronger during high solar activity than during low solar activity. Furthermore, the summer-dependent characteristics of TEC fluctuations gradually emerged over lower mid-latitude areas as equinox characteristics weakened. Similar to the equinox characteristics, the summer-dependent characteristics gradually weakened or even disappeared with the increasing latitude. Relevant discussions of this phenomenon are still relatively rare, and it requires further study and analysis.

  2. Fluctuations measured by flush mounted versus proud divertor Langmuir probes - why are they different?

    Science.gov (United States)

    Garcia, O. E.; Kuang, A. Q.; Brunner, D.; Labombard, B.; Kube, R.

    2017-10-01

    A flush-mounted, toroidally-elongated, and field-aligned divertor `rail' Langmuir probe array was installed in Alcator C-Mod in 2015. This geometry is heat flux tolerant and effectively mitigates sheath expansion effects down to incident field line angles of 0.5 degree. Further complications have arisen that cannot be explained by sheath-expansion. In particular, the `rail' probe geometry measures significantly higher plasma fluctuation levels in the common flux region compared to traditional proud probes, whereas they are similar in the private flux zone. In some instances, the amplitudes of ion saturation current fluctuations normalized to the mean are a factor of 2 higher; probability distribution functions correspondingly record large amplitude events that are not seen by the proud probes. This discrepancy also appears to depend on divertor plasma regime. For example, fluctuations become similar near the strikepoint when the electron temperature is low. To ensure that these discrepancies were not due to perturbations caused by the voltage bias or currents collected by the probes, the two Langmuir probe systems were left to `float' and the fluctuation statistics analyzed. Yet, even in this non-perturbative situation, there exist clear differences in the fluctuation characteristics. The raises two questions: how does the probe geometry affect plasma fluctuations measurements and what are the true plasma fluctuations experienced by the divertor surface? Supported by USDoE awards DE-FC02-99ER54512.

  3. Impact of diurnal temperature fluctuations on larval settlement and growth of the reef coral Pocillopora damicornis

    Science.gov (United States)

    Jiang, Lei; Sun, You-Fang; Zhang, Yu-Yang; Zhou, Guo-Wei; Li, Xiu-Bao; McCook, Laurence J.; Lian, Jian-Sheng; Lei, Xin-Ming; Liu, Sheng; Cai, Lin; Qian, Pei-Yuan; Huang, Hui

    2017-12-01

    Diurnal fluctuations in seawater temperature are ubiquitous on tropical reef flats. However, the effects of such dynamic temperature variations on the early stages of corals are poorly understood. In this study, we investigated the responses of larvae and new recruits of Pocillopora damicornis to two constant temperature treatments (29 and 31 °C) and two diurnally fluctuating treatments (28-31 and 30-33 °C with daily means of 29 and 31 °C, respectively) simulating the 3 °C diel oscillations at 3 m depth on the Luhuitou fringing reef (Sanya, China). Results showed that the thermal stress on settlement at 31 °C was almost negated by the fluctuating treatment. Further, neither elevated temperature nor temperature fluctuations caused bleaching responses in recruits, while the maximum excitation pressure over photosystem II (PSII) was reduced under fluctuating temperatures. Although early growth and development were highly stimulated at 31 °C, oscillations of 3 °C had little effects on budding and lateral growth at either mean temperature. Nevertheless, daytime encounters with the maximum temperature of 33 °C in fluctuating 31 °C elicited a notable reduction in calcification compared to constant 31 °C. These results underscore the complexity of the effects caused by diel temperature fluctuations on early stages of corals and suggest that ecologically relevant temperature variability could buffer warming stress on larval settlement and dampen the positive effects of increased temperatures on coral growth.

  4. Numerical Simulation of Pressure Fluctuation around the Tongue Region in a Centrifugal Pump

    Science.gov (United States)

    Zheng, L. L.; Dou, H.-S.; Chen, X. P.; Zhu, Z. C.; Cui, B. L.

    2016-11-01

    Pressure fluctuation near the tongue is one of the primary sources of pump vibration and noise. In order to investigate the effect of pressure fluctuation near the tongue, the RANS equations and the RNG k-epsilon turbulence model are employed to simulate the flow in the pump. The SIMPLE algorithm is applied to couple the solutions of the system of equations. Flow field within the centrifugal pump under different flow rates are obtained by simulation. The simulation results are compared with the experimental data to verify the reliability of the calculation model. It is found that the pressure fluctuation at each monitor point is a periodic wave but non-uniform under small flow rate. When the flow rate is larger than the design flow rate, average pressure and standard deviation at monitor points is relative uniform. The dominate frequency of pressure fluctuation is the blade passing frequency and the amplitude of pressure fluctuation is regular. At small flow rate, complex unstable flow makes average pressure and standard deviation at monitor points increasing obviously. Amplitude of pressure fluctuation is larger than that of design flow rate conditions and the maximum amplitude of pressure fluctuation in frequency domain exists at the monitor point just behind the tongue along the impeller rotation direction.

  5. Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction

    Science.gov (United States)

    Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); Moore, James B. (Inventor); Su, Ji (Inventor); Turner, Travis L. (Inventor); Lin, John C. (Inventor); Taminger, Karen M. (Inventor); Kahng, Seun K. (Inventor); Verden, Scott A. (Inventor)

    2014-01-01

    A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings.

  6. Localized Edge Vibrations and Edge Reconstruction by Joule Heating in Graphene Nanostructures

    DEFF Research Database (Denmark)

    Engelund, Mads; Fürst, Joachim Alexander; Jauho, Antti-Pekka

    2010-01-01

    Control of the edge topology of graphene nanostructures is critical to graphene-based electronics. A means of producing atomically smooth zigzag edges using electronic current has recently been demonstrated in experiments [Jia et al., Science 323, 1701 (2009)]. We develop a microscopic theory...... for current-induced edge reconstruction using density functional theory. Our calculations provide evidence for localized vibrations at edge interfaces involving unpassivated armchair edges. We demonstrate that these vibrations couple to the current, estimate their excitation by Joule heating, and argue...

  7. [Fluctuations and transport in fusion plasma]: Progress report, October 1, 1989--September 30, 1990

    International Nuclear Information System (INIS)

    1995-01-01

    In the study of plasma collection by obstacles in a tokamak edge plasma, the effect of anomalous transport have been examined using an extension of the 2D fluid code developed here previously (Appendices A and B). The origin of the anomalous transport is assumed to be a randomly fluctuating electric field such as would be caused by drift waves. As before, the magnetic field is assumed to be uniform and perpendicular to the obstacle, which is taken to be an infinite strip. In the absence of ambient plasma flow, the numerical results indicate that ion viscous heating is important near the tip of the obstacle, where there is a large velocity gradient in the flow. For typical plasma parameters, the maximum ion temperature near the tip is up to 85% higher than the ambient ion temperature. When there is a subsonic plasma flow past the obstacle, the numerical results indicate that, near the tip of the obstacle, the ions on the downstream side are hotter than those on the upstream side. Furthermore, the ion density is higher on the upstream side. A detailed report of this work has been prepared and will be submitted as part of the Annual Progress Report. Recently, the 2D parallel electrostatic plasma particle-in-cell (PIC) code described in reference (9) (Appendix B) has been upgraded to a 2D fully electromagnetic PIC code. This code has been successfully tested on the JPL/Caltech Mark III Hypercube concurrent computers and can be used to simulate interactions of electromagnetic waves with a magnetized plasma. It is currently applied to investigate the decay of large amplitude Alfven waves, such as those observed in the solar wind. Large amplitude Alfven waves, propagating parallel to the magnetic field, are predicted to decay into obliquely propagating daughter waves and standing magnetosonic waves. Results from the simulations will be compared with theoretical predictions

  8. [Fluctuations and transport in fusion plasma]: Progress report, October 1, 1989--September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1995-12-31

    In the study of plasma collection by obstacles in a tokamak edge plasma, the effect of anomalous transport have been examined using an extension of the 2D fluid code developed here previously (Appendices A and B). The origin of the anomalous transport is assumed to be a randomly fluctuating electric field such as would be caused by drift waves. As before, the magnetic field is assumed to be uniform and perpendicular to the obstacle, which is taken to be an infinite strip. In the absence of ambient plasma flow, the numerical results indicate that ion viscous heating is important near the tip of the obstacle, where there is a large velocity gradient in the flow. For typical plasma parameters, the maximum ion temperature near the tip is up to 85% higher than the ambient ion temperature. When there is a subsonic plasma flow past the obstacle, the numerical results indicate that, near the tip of the obstacle, the ions on the downstream side are hotter than those on the upstream side. Furthermore, the ion density is higher on the upstream side. A detailed report of this work has been prepared and will be submitted as part of the Annual Progress Report. Recently, the 2D parallel electrostatic plasma particle-in-cell (PIC) code described in reference (9) (Appendix B) has been upgraded to a 2D fully electromagnetic PIC code. This code has been successfully tested on the JPL/Caltech Mark III Hypercube concurrent computers and can be used to simulate interactions of electromagnetic waves with a magnetized plasma. It is currently applied to investigate the decay of large amplitude Alfven waves, such as those observed in the solar wind. Large amplitude Alfven waves, propagating parallel to the magnetic field, are predicted to decay into obliquely propagating daughter waves and standing magnetosonic waves. Results from the simulations will be compared with theoretical predictions.

  9. Nonlinear coupling of tearing fluctuations in the Madison Symmetric Torus

    International Nuclear Information System (INIS)

    Sarff, J.S.; Almagri, A.F.; Cekic, M.; Den Hartog, D.J.; Fiksel, G.; Hokin, S.A.; Ji, H.; Prager, S.C.; Shen, W.; Stoneking, M.R.; Assadi, S.; Sidikman, K.L.

    1992-11-01

    Three-wave, nonlinear, tearing mode coupling has been measured in the Madison Symmetric Torus (MST) reversed-field pinch (RFP) [Fusion Technol. 19, 131 (1991)] using bispectral analysis of edge magnetic fluctuations resolved in ''k-space. The strength of nonlinear three-wave interactions satisfying the sum rules m 1 + m 2 = m 3 and n 1 + n 2 = n 3 is measured by the bicoherency. In the RFP, m=l, n∼2R/a (6 for MST) internally resonant modes are linearly unstable and grow to large amplitude. Large values of bicoherency occur for two m=l modes coupled to an m=2 mode and the coupling of intermediate toroidal modes, e.g., n=6 and 7 coupled to n=13. These experimental bispectral features agree with predicted bispectral features derived from MHD computation. However, in the experiment, enhanced coupling occurs in the ''crash'' phase of a sawtooth oscillation concomitant with a broadened mode spectrum suggesting the onset of a nonlinear cascade

  10. Edge detection methods based on generalized type-2 fuzzy logic

    CERN Document Server

    Gonzalez, Claudia I; Castro, Juan R; Castillo, Oscar

    2017-01-01

    In this book four new methods are proposed. In the first method the generalized type-2 fuzzy logic is combined with the morphological gra-dient technique. The second method combines the general type-2 fuzzy systems (GT2 FSs) and the Sobel operator; in the third approach the me-thodology based on Sobel operator and GT2 FSs is improved to be applied on color images. In the fourth approach, we proposed a novel edge detec-tion method where, a digital image is converted a generalized type-2 fuzzy image. In this book it is also included a comparative study of type-1, inter-val type-2 and generalized type-2 fuzzy systems as tools to enhance edge detection in digital images when used in conjunction with the morphologi-cal gradient and the Sobel operator. The proposed generalized type-2 fuzzy edge detection methods were tested with benchmark images and synthetic images, in a grayscale and color format. Another contribution in this book is that the generalized type-2 fuzzy edge detector method is applied in the preproc...

  11. Leading-edge slat optimization for maximum airfoil lift

    Science.gov (United States)

    Olson, L. E.; Mcgowan, P. R.; Guest, C. J.

    1979-01-01

    A numerical procedure for determining the position (horizontal location, vertical location, and deflection) of a leading edge slat that maximizes the lift of multielement airfoils is presented. The structure of the flow field is calculated by iteratively coupling potential flow and boundary layer analysis. This aerodynamic calculation is combined with a constrained function minimization analysis to determine the position of a leading edge slat so that the suction peak on the nose of the main airfoil is minized. The slat position is constrained by the numerical procedure to ensure an attached boundary layer on the upper surface of the slat and to ensure negligible interaction between the slat wake and the boundary layer on the upper surface of the main airfoil. The highest angle attack at which this optimized slat position can maintain attached flow on the main airfoil defines the optimum slat position for maximum lift. The design method is demonstrated for an airfoil equipped with a leading-edge slat and a trailing edge, single-slotted flap. The theoretical results are compared with experimental data, obtained in the Ames 40 by 80 Foot Wind Tunnel, to verify experimentally the predicted slat position for maximum lift. The experimentally optimized slat position is in good agreement with the theoretical prediction, indicating that the theoretical procedure is a feasible design method.

  12. Power deposition on misaligned edges in COMPASS

    Directory of Open Access Journals (Sweden)

    R. Dejarnac

    2017-08-01

    Full Text Available If the decision is made not to apply a toroidal chamfer to tungsten monoblocks at ITER divertor vertical targets, exposed leading edges will arise as a result of assembly tolerances between adjacent plasma-facing components. Then, the advantage of glancing magnetic field angles for spreading plasma heat flux on top surfaces is lost at the misaligned edges with an interaction occurring at near normal incidence, which can drive melting for the expected inter-ELM heat fluxes. A dedicated experiment has been performed on the COMPASS tokamak to thoroughly study power deposition on misaligned edges using inner-wall limited discharges on a special graphite tile presenting gaps and leading edges directly viewed by a high resolution infra-red camera. The parallel power flux deducted from the unperturbed measurement far from the gap is fully consistent with the observed temperature increase at the leading edge, respecting the power balance. All the power flowing into the gap is deposited at the leading edge and no mitigation factor is required to explain the thermal response. Particle-in-cell simulations show that the ion Larmor smoothing effect is weak and that the power deposition on misaligned edges is well described by the optical approximation because of an electron dominated regime associated with non-ambipolar parallel current flow.

  13. Fluctuations and structure of amphiphilic films; Fluctuations et structure de films d`amphiphiles

    Energy Technology Data Exchange (ETDEWEB)

    Gourier, CH

    1996-07-01

    This thesis is divided in three parts.The first part exposes in a theoretical point of view, how the fluctuations spectrum of an amphiphilic film is governed by its properties and its bidimensional characteristics.The measurements of fluctuations spectra of an interface are accessible with the measurement of intensity that interface diffuses out of the specular angle, we present in the second chapter the principles of the X rays diffusion by a real interface and see how the diffuse diffusion experiments allow to determine the fluctuations spectrum of an amphiphilic film. The second part is devoted to the different experimental techniques that have allowed to realize the study of fluctuation as well as the structural study.The third part is devoted to experimental results concerning the measurements of fluctuations spectra and to the study of the structure of amphiphilic films. We show that it is possible by using an intense source of X rays (ESRF: European Synchrotron Radiation Facility) to measure the water and amphiphilic films fluctuations spectra until molecular scales. The last chapter is devoted to the structural study and film fluctuations made of di-acetylenic molecules. (N.C.)

  14. Correlation anlaysis of plasma fluctuation signals

    International Nuclear Information System (INIS)

    Wan Baonian; Wang Zhaoshen

    1987-01-01

    The application of correlation analysis to identify waves and instabilities in plasma is presented. First, the principle of correlation analysis and its application to diagnose plasma fluctuation signals are given. Then, the data acqusition system, application program and calibration method are described. Finally, experimental results from a mirror device are given

  15. Measurement of temperature fluctuations and anomalous transport ...

    Indian Academy of Sciences (India)

    (b) Displacement of plasma from the centre of the vacuum vessel; horizontal displacement ¡А ( ve means ... vacuum vessel) and the ion saturation current Б× drawn by the pair is obtained by measur- ing the voltage drop ... sheared E- xB rotation (plasma rotation) as observed in other machines [8]. The fluctuation induced ...

  16. Critical point fluctuations in supported lipid membranes.

    Science.gov (United States)

    Connell, Simon D; Heath, George; Olmsted, Peter D; Kisil, Anastasia

    2013-01-01

    In this paper, we demonstrate that it is possible to observe many aspects of critical phenomena in supported lipid bilayers using atomic force microscopy (AFM) with the aid of stable and precise temperature control. The regions of criticality were determined by accurately measuring and calculating phase diagrams for the 2 phase L(d)-L(o) region, and tracking how it moves with temperature, then increasing the sampling density around the estimated critical regions. Compositional fluctuations were observed above the critical temperature (T(c)) and characterised using a spatial correlation function. From this analysis, the phase transition was found to be most closely described by the 2D Ising model, showing it is a critical transition. Below T(c) roughening of the domain boundaries occurred due to the reduction in line tension close to the critical point. Smaller scale density fluctuations were also detected just below T(c). At T(c), we believe we have observed fluctuations on length scales greater than 10 microm. The region of critically fluctuating 10-100 nm nanodomains has been found to extend a considerable distance above T(c) to temperatures within the biological range, and seem to be an ideal candidate for the actual structure of lipid rafts in cell membranes. Although evidence for this idea has recently emerged, this is the first direct evidence for nanoscale domains in the critical region.

  17. Motion sensing using WLAN signal fluctuations

    NARCIS (Netherlands)

    Kavitha Muthukrishnan, K.; Lijding, M.E.M.; Meratnia, Nirvana; Havinga, Paul J.M.

    2006-01-01

    The ability to infer the motion of the user has previously been possible only with the usage of additional hardware. In this paper we show how motion sensing can be obtained just by observing the WLAN radio’s signal strength and its fluctuations. For the first time, we have analyzed the signal

  18. Hole pairing induced by antiferromagnetic spin fluctuations

    International Nuclear Information System (INIS)

    Su, Z.B.; Yu Lu; Dong, J.M.; Tosatti, E.

    1987-08-01

    The effective interaction induced by antiferromagnetic spin fluctuations is considered in the random phase approximation in the context of the recently discovered high T c oxide superconductors. This effective attraction favours a triplet pairing of holes. The implications of such pairing mechanism are discussed in connection with the current experimental observations. (author). 30 refs, 2 figs

  19. Relationship among phenotypic plasticity, phenotypic fluctuations ...

    Indian Academy of Sciences (India)

    Prakash

    experiments and numerical simulations of gene expression dynamics model with an evolving transcription network, we propose quantitative ... canalization and genetic assimilation, in terms of fluctuations of gene expression levels. [Kaneko K 2009 Relationship ...... involving many degrees of freedom. In our model, the.

  20. Fluctuation scaling, Taylor's law, and crime.

    Directory of Open Access Journals (Sweden)

    Quentin S Hanley

    Full Text Available Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026 while burglary exhibited a greater exponent (α = 1.292 ± 0.029 indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs to 2.094 ± 0081 (Other Crimes. Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.