WorldWideScience

Sample records for edge effects

  1. Edge effects in composites

    International Nuclear Information System (INIS)

    Guz, A.N.; Kokhanenko, Yu.V.

    1995-01-01

    In the present article we survey papers on edge effects investigated by the rigorous approach. We interpret edge effects as stressed states created in a composite as a result of zones in which the stresses exhibit a rapidly changing behavior in comparison with the slow variation of the stresses outside such zones. Here the range of the edge effect is defined as the distance from the point of its inception to the boundary of the edge zone in a given direction. The transition of the stresses to the slowly varying state is determined within prescribed error limits. The size and configuration of the edge zone depends on the tolerated error. Clearly, the main difficulty associated with the rigorous approach is finding solutions of the elasticity problems. The finite-difference approach is suggested for the approximate solution of these problems. In light of the comparative time consumption of the finite-difference approach, it is best directed at certain classes of problems rather than at particular individual problems. Not too many papers on the investigation of edge effects by the rigorous approach have been published to date. Below, following in their footsteps, we formulate edge effect problems in composites, determine classes of problems, and investigate edge effects in composite materials and structural elements using them in Cartesian (planar and three-dimensional problems) and cylindrical (axisymmetric problems) coordinate frames. We note that the division of approaches to the study of edge effects into qualitative (nonrigorous) and quantitative (rigorous) reflects the authors own point of view. Of course, other schemes of classification of the approaches to the investigation of the regions of rapidly varying states in composites are possible

  2. Edge-effect interactions in fragmented and patchy landscapes.

    Science.gov (United States)

    Porensky, Lauren M; Young, Truman P

    2013-06-01

    Ecological edges are increasingly recognized as drivers of landscape patterns and ecosystem processes. In fragmented and patchy landscapes (e.g., a fragmented forest or a savanna with scattered termite mounds), edges can become so numerous that their effects pervade the entire landscape. Results of recent studies in such landscapes show that edge effects can be altered by the presence or proximity of other nearby edges. We considered the theoretical significance of edge-effect interactions, illustrated various landscape configurations that support them and reviewed existing research on this topic. Results of studies from a variety of locations and ecosystem types show that edge-effect interactions can have significant consequences for ecosystems and conservation, including higher tree mortality rates in tropical rainforest fragments, reduced bird densities in grassland fragments, and bush encroachment and reduced wildlife densities in a tropical savanna. To clarify this underappreciated concept and synthesize existing work, we devised a conceptual framework for edge-effect interactions. We first worked to reduce terminological confusion by clarifying differences among terms such as edge intersection and edge interaction. For cases in which nearby edge effects interact, we proposed three possible forms of interaction: strengthening (presence of a second edge causes stronger edge effects), weakening (presence of a second edge causes weaker edge effects), and emergent (edge effects change completely in the presence of a second edge). By clarifying terms and concepts, this framework enables more precise descriptions of edge-effect interactions and facilitates comparisons of results among disparate study systems and response variables. A better understanding of edge-effect interactions will pave the way for more appropriate modeling, conservation, and management in complex landscapes. © 2013 Society for Conservation Biology.

  3. Edge effect on weevils and spiders

    Directory of Open Access Journals (Sweden)

    R. Horváth

    2002-05-01

    Full Text Available The edge effect on weevils and spiders was tested along oak forest – meadow transects using sweep-net samples at the Síkfökút Project in Hungary. For spiders the species richness was significantly higher in the forest edge than either in the meadow or the forest interior. For weevils the species richness of the forest edge was higher than that of the meadow, but the difference was not statistically significant whereas the species richness of the forest interior was significantly lower than that of the forest edge and the meadow. The composition of the spider assemblage of the edge was more similar to the forest, while the composition of weevils in the edge was more similar to the meadow. Our results based on two invertebrate groups operating on different trophic levels suggest that there is a significant edge effect for the studied taxa resulting in higher species richness in the edge.

  4. Development of edge effects around experimental ecosystem hotspots is affected by edge density and matrix type

    Science.gov (United States)

    Ecological edge effects are sensitive to landscape context. In particular, edge effects can be altered by matrix type and by the presence of other nearby edges. We experimentally altered patch configurations in an African savanna to determine how edge density and matrix type influence edge effect de...

  5. Forests on the edge: Microenvironmental drivers of carbon cycle response to edge effects

    Science.gov (United States)

    Reinmann, A.; Hutyra, L.; Smith, I. A.; Thompson, J.

    2017-12-01

    Twenty percent of the world's forest is within 100 m of a forest edge, but much of our understanding of forest carbon (C) cycling comes from large, intact ecosystems, which creates an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest is the most heavily fragmented forest biome in the world and its growth and carbon storage responses to forest edge effects appear to be the opposite of those in the tropical and boreal regions. We used field measurements to quantify the drivers of temperate forest C cycling response to edge effects, characterizing vegetative growth, respiration, and forest structure. We find large gradients in air and soil temperature from the forest interior to edge (up to 4 and 10° C, respectively) and the magnitude of this gradient is inversely correlated to the size of the forest edge growth enhancement. Further, leaf area index increases with proximity to the forest edge. While we also find increases in soil respiration between the forest interior and edge, this flux is small relative to aboveground growth enhancement near the edge. These findings represent an important advancement in our understanding of forest C cycle response to edge effects and will greatly improve our capacity to constrain biogenic C fluxes in fragmented and heterogeneous landscapes.

  6. Balancing the edge effects budget: bay scallop settlement and loss along a seagrass edge.

    Science.gov (United States)

    Carroll, John M; Furman, Bradley T; Tettelbach, Stephen T; Peterson, Bradley J

    2012-07-01

    Edge effects are a dominant subject in landscape ecology literature, yet they are highly variable and poorly understood. Often, the literature suggests simple models for edge effects-positive (enhancement at the edge), negative (enhancement at the interior), or no effect (neutral)--on a variety of metrics, including abundance, diversity, and mortality. In the marine realm, much of this work has focused on fragmented seagrass habitats due to their importance for a variety of commercially important species. In this study, the settlement, recruitment, and survival of bay scallops was investigated across a variety of seagrass patch treatments. By simultaneously collecting settlers (those viable larvae available to settle and metamorphose) and recruits (those settlers that survive some period of time, in this case, 6 weeks) on the same collectors, we were able to demonstrate a "balance" between positive and negative edge effects, resulting in a net neutral effect. Scallop settlement was significantly enhanced along seagrass edges, regardless of patch type while survival was elevated within patch interiors. However, recruitment (the net result of settlement and post-settlement loss) did not vary significantly from edge to center, representing a neutral effect. Further, results suggest that post-settlement loss, most likely due to predation, appears to be the dominant mechanism structuring scallop abundance, not patterns in settlement. These data illustrate the complexity of edge effects, and suggest that the metric used to investigate the effect (be it abundance, survival, or other metrics) can often influence the magnitude and direction of the perceived effect. Traditionally, high predation along a habitat edge would have indicated an "ecological trap" for the species in question; however, this study demonstrates that, at the population level, an ecological trap may not exist.

  7. Research on reducing the edge effect in magnetorheological finishing.

    Science.gov (United States)

    Hu, Hao; Dai, Yifan; Peng, Xiaoqiang; Wang, Jianmin

    2011-03-20

    The edge effect could not be avoided in most optical manufacturing methods based on the theory of computer controlled optical surfacing. The difference between the removal function at the workpiece edge and that inside it is also the primary cause for edge effect in magnetorheological finishing (MRF). The change of physical dimension and removal ratio of the removal function is investigated through experiments. The results demonstrate that the situation is different when MRF "spot" is at the leading edge or at the trailing edge. Two methods for reducing the edge effect are put into practice after analysis of the processing results. One is adopting a small removal function for dealing with the workpiece edge, and the other is utilizing the removal function compensation. The actual processing results show that these two ways are both effective on reducing the edge effect in MRF.

  8. The effect of defocus on edge contrast sensitivity

    NARCIS (Netherlands)

    Jansonius, NM; Kooijman, AC

    The effect of optical blur (defocus) on edge contrast sensitivity was studied. Edge contrast sensitivity detoriates with fairly small amounts of blur (similar to 0.5 D) and is roughly reduced by half for each dioptre of blur. The effect of blur on edge contrast sensitivity equals the effect of blur

  9. Edge states in quantum Hall effect in graphene

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Miransky, V.A.; Sharapov, S.G.; Shovkovy, I.A.

    2008-01-01

    We review recent results concerning the spectrum of edge states in the quantum Hall effect in graphene. In particular, special attention is paid to the derivation of the conditions under which gapless edge states exist in the spectrum of graphene with 'zigzag' and 'armchair' edges. It is found that in the case of a half-plane or a ribbon with zigzag edges, there are gapless edge states only when a spin gap dominates over a Dirac mass gap. In the case of a half-plane with an armchair edge, the existence of the gapless edge states depends on the specific type of Dirac mass gaps. The implications of these results for the dynamics in the quantum Hall effect in graphene are discussed

  10. Predicted solar cell edge radiation effects

    International Nuclear Information System (INIS)

    Gates, M.T.

    1993-01-01

    The Advanced Solar Cell Orbital Test (ASCOT) will test six types of solar cells in a high energy proton environment. During the design of the experiment a question was raised about the effects of proton radiation incident on the edge of the solar cells and whether edge radiation shielding was required. Historical geosynchronous data indicated that edge radiation damage is not detectable over the normal end of life solar cell degradation; however because the ASCOT radiation environment has a much higher and more energetic fluence of protons, considerably more edge damage is expected. A computer analysis of the problem was made by modeling the expected radiation damage at the cell edge and using a network model of small interconnected solar cells to predict degradation in the cell's electrical output. The model indicated that the deepest penetration of edge radiation was at the top of the cell near the junction where the protons have access to the cell through the low density cell/cover adhesive layer. The network model indicated that the cells could tolerate high fluences at their edge as long as there was high electrical resistance between the edge radiated region and the contact system on top of the cell. The predicted edge radiation related loss was less than 2% of maximum power for GaAs/Ge solar cells. As a result, no edge radiation protection was used for ASCOT

  11. Bulk Versus Edge in the Quantum Hall Effect

    OpenAIRE

    Kao, Y. -C.; Lee, D. -H.

    1996-01-01

    The manifestation of the bulk quantum Hall effect on edge is the chiral anomaly. The chiral anomaly {\\it is} the underlying principle of the ``edge approach'' of quantum Hall effect. In that approach, $\\sxy$ should not be taken as the conductance derived from the space-local current-current correlation function of the pure one-dimensional edge problem.

  12. Edge effect correction using ion beam figuring.

    Science.gov (United States)

    Yang, Bing; Xie, Xuhui; Li, Furen; Zhou, Lin

    2017-11-10

    The edge effect is regarded as one of the most difficult technical issues for fabricating large primary mirrors, as it can greatly reduce the key performance of the optical system. Ion beam figuring (IBF) has the advantage of no edge effect, so we can use it to remove high points on the edge and improve surface accuracy. The edge local correction method (ELCM) of IBF processes only the surface edge zone, and is very different from the current full caliber figuring method (FCFM). Therefore, it is necessary to study the ELCM of IBF. In this paper, the key factors of ELCM are analyzed, such as dwell time algorithm, edge data extension methods, and the outward dimension of the starting figuring point. At the same time, the distinctions between ELCM and FCFM are compared. Finally, a 142 mm diameter fused silica mirror is fabricated to verify the validity of the theoretical of ELCM. The experimental results indicate that the figuring precision and efficiency can be obviously improved by ELCM.

  13. Edge effect on weevils and spiders

    OpenAIRE

    Horváth, R.; Magura, T.; Péter, G.; Tóthmérész, B.

    2002-01-01

    The edge effect on weevils and spiders was tested along oak forest – meadow transects using sweep-net samples at the Síkfökút Project in Hungary. For spiders the species richness was significantly higher in the forest edge than either in the meadow or the forest interior. For weevils the species richness of the forest edge was higher than that of the meadow, but the difference was not statistically significant whereas the species richness of the forest...

  14. Edge effects in composites by moire interferometry

    Science.gov (United States)

    Czarnek, R.; Post, D.; Herakovich, C.

    1983-01-01

    The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.

  15. Edge effects and geometric constraints: a landscape-level empirical test.

    Science.gov (United States)

    Ribeiro, Suzy E; Prevedello, Jayme A; Delciellos, Ana Cláudia; Vieira, Marcus Vinícius

    2016-01-01

    Edge effects are pervasive in landscapes yet their causal mechanisms are still poorly understood. Traditionally, edge effects have been attributed to differences in habitat quality along the edge-interior gradient of habitat patches, under the assumption that no edge effects would occur if habitat quality was uniform. This assumption was questioned recently after the recognition that geometric constraints tend to reduce population abundances near the edges of habitat patches, the so-called geometric edge effect (GEE). Here, we present the first empirical, landscape-level evaluation of the importance of the GEE in shaping abundance patterns in fragmented landscapes. Using a data set on the distribution of small mammals across 18 forest fragments, we assessed whether the incorporation of the GEE into the analysis changes the interpretation of edge effects and the degree to which predictions based on the GEE match observed responses. Quantitative predictions were generated for each fragment using simulations that took into account home range, density and matrix use for each species. The incorporation of the GEE into the analysis changed substantially the interpretation of overall observed edge responses at the landscape scale. Observed abundances alone would lead to the conclusion that the small mammals as a group have no consistent preference for forest edges or interiors and that the black-eared opossum Didelphis aurita (a numerically dominant species in the community) has on average a preference for forest interiors. In contrast, incorporation of the GEE suggested that the small mammal community as a whole has a preference for forest edges, whereas D. aurita has no preference for forest edges or interiors. Unexplained variance in edge responses was reduced by the incorporation of GEE, but remained large, varying greatly on a fragment-by-fragment basis. This study demonstrates how to model and incorporate the GEE in analyses of edge effects and that this

  16. Edge effect modeling and experiments on active lap processing.

    Science.gov (United States)

    Liu, Haitao; Wu, Fan; Zeng, Zhige; Fan, Bin; Wan, Yongjian

    2014-05-05

    Edge effect is regarded as one of the most difficult technical issues for fabricating large primary mirrors, especially for large polishing tools. Computer controlled active lap (CCAL) uses a large size pad (e.g., 1/3 to 1/5 workpiece diameters) to grind and polish the primary mirror. Edge effect also exists in the CCAL process in our previous fabrication. In this paper the material removal rules when edge effects happen (i.e. edge tool influence functions (TIFs)) are obtained through experiments, which are carried out on a Φ1090-mm circular flat mirror with a 375-mm-diameter lap. Two methods are proposed to model the edge TIFs for CCAL. One is adopting the pressure distribution which is calculated based on the finite element analysis method. The other is building up a parametric equivalent pressure model to fit the removed material curve directly. Experimental results show that these two methods both effectively model the edge TIF of CCAL.

  17. Understanding the edge effect in wetting: a thermodynamic approach.

    Science.gov (United States)

    Fang, Guoping; Amirfazli, A

    2012-06-26

    Edge effect is known to hinder spreading of a sessile drop. However, the underlying thermodynamic mechanisms responsible for the edge effect still is not well-understood. In this study, a free energy model has been developed to investigate the energetic state of drops on a single pillar (from upright frustum to inverted frustum geometries). An analysis of drop free energy levels before and after crossing the edge allows us to understand the thermodynamic origin of the edge effect. In particular, four wetting cases for a drop on a single pillar with different edge angles have been determined by understanding the characteristics of FE plots. A wetting map describing the four wetting cases is given in terms of edge angle and intrinsic contact angle. The results show that the free energy barrier observed near the edge plays an important role in determining the drop states, i.e., (1) stable or metastable drop states at the pillar's edge, and (2) drop collapse by liquid spilling over the edge completely or staying at an intermediate sidewall position of the pillar. This thermodynamic model presents an energetic framework to describe the functioning of the so-called "re-entrant" structures. Results show good consistency with the literature and expand the current understanding of Gibbs' inequality condition.

  18. Urbanization impacts on mammals across urban-forest edges and a predictive model of edge effects.

    Science.gov (United States)

    Villaseñor, Nélida R; Driscoll, Don A; Escobar, Martín A H; Gibbons, Philip; Lindenmayer, David B

    2014-01-01

    With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will

  19. High-resolution investigations of edge effects in neutron imaging

    International Nuclear Information System (INIS)

    Strobl, M.; Kardjilov, N.; Hilger, A.; Kuehne, G.; Frei, G.; Manke, I.

    2009-01-01

    Edge enhancement is the main effect measured by the so-called inline or propagation-based neutron phase contrast imaging method. The effect has originally been explained by diffraction, and high spatial coherence has been claimed to be a necessary precondition. However, edge enhancement has also been found in conventional imaging with high resolution. In such cases the effects can produce artefacts and hinder quantification. In this letter the edge effects at cylindrical shaped samples and long straight edges have been studied in detail. The enhancement can be explained by refraction and total reflection. Using high-resolution imaging, where spatial resolutions better than 50 μm could be achieved, refraction and total reflection peaks - similar to diffraction patterns - could be separated and distinguished.

  20. Edge Effects and Ecological Traps: Effects on Shrubland Birds in Missouri

    Science.gov (United States)

    April A. Woodward; Alix D. Fink; Frank R. Thompson III

    2001-01-01

    The effect of habitat edge on avian nesting success has been the focus of considerable debate. We studied relationships between habitat edges, locations of nests, and predation. We tested the ecological trap hypothesis for 5 shrubland bird species in the Missouri Ozarks. We compared habitat selection and daily nest predation rates among 3 distance-to-edge categories....

  1. X-point effect on edge stability

    International Nuclear Information System (INIS)

    Saarelma, S; Kirk, A; Kwon, O J

    2011-01-01

    We study the effects of the X-point configuration on edge localized mode (ELM) triggering peeling and ballooning modes using fixed boundary equilibria and modifying the plasma shape to approach the limit of a true X-point. The current driven pure peeling modes are asymptotically stabilized by the X-point while the stabilizing effect on ballooning modes depends on the poloidal location of the X-point. The coupled peeling-ballooning modes experience the elimination of the peeling component as the X-point is introduced. This can significantly affect the edge stability diagrams used to analyse the ELM triggering mechanisms.

  2. Effective Hamiltonian for protected edge states in graphene

    International Nuclear Information System (INIS)

    Winkler, R.; Deshpande, H.

    2017-01-01

    Edge states in topological insulators (TIs) disperse symmetrically about one of the time-reversal invariant momenta Λ in the Brillouin zone (BZ) with protected degeneracies at Λ. Commonly TIs are distinguished from trivial insulators by the values of one or multiple topological invariants that require an analysis of the bulk band structure across the BZ. We propose an effective two-band Hamiltonian for the electronic states in graphene based on a Taylor expansion of the tight-binding Hamiltonian about the time-reversal invariant M point at the edge of the BZ. This Hamiltonian provides a faithful description of the protected edge states for both zigzag and armchair ribbons, though the concept of a BZ is not part of such an effective model. In conclusion, we show that the edge states are determined by a band inversion in both reciprocal and real space, which allows one to select Λ for the edge states without affecting the bulk spectrum.

  3. Symmetric airfoil geometry effects on leading edge noise.

    Science.gov (United States)

    Gill, James; Zhang, X; Joseph, P

    2013-10-01

    Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number.

  4. Urbanization impacts on mammals across urban-forest edges and a predictive model of edge effects.

    Directory of Open Access Journals (Sweden)

    Nélida R Villaseñor

    Full Text Available With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula. We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1 habitat quality/preference, (2 species response with the proximity to the adjacent habitat, and (3 spillover extent/sensitivity to adjacent habitat boundaries. This

  5. Inverted edge effects on carbon stocks in human-dominated landscapes

    Science.gov (United States)

    Romitelli, I.; Keller, M.; Vieira, S. A.; Metzger, J. P.; Reverberi Tambosi, L.

    2017-12-01

    Although the importance of tropical forests to regulate greenhouse gases is well documented, little is known about what factors affect the ability of these forests to store carbon in human-dominated landscapes. Among those factors, the landscape structure, particularly the amount of forest cover, the type of matrix and edge effects, can have important roles. We tested how carbon stock is influenced by a combination of factors of landscape composition (pasture and forest cover), landscape configuration (edge effect) and relief factors (slope, elevation and aspect). To test those relationships, we performed a robust carbon stock estimation with inventory and LiDAR data in human-dominated landscapes from the Brazilian Atlantic forest region. The study area showed carbon stock mean 45.49 ± 9.34 Mg ha-1. The interaction between forest cover, edge effect and slope was the best combination explanatory of carbon stock. We observed an inverted edge effect pattern where carbon stock is higher close to the edges of the studied secondary forests. This inverted edge effect observed contradicts the usual pattern reported in the literature for mature forests. We suppose this pattern is related with a positive effect that edge conditions can have stimulating forest regeneration, but the underlying processes to explain the observed pattern should still be tested. Those results suggest that Carbon stocks in human-dominated and fragmented landscapes can be highly affected by the landscape structure, and particularly that edges conditions can favor carbon sequestration in regenerating tropical forests.

  6. Edge effect modeling of small tool polishing in planetary movement

    Science.gov (United States)

    Li, Qi-xin; Ma, Zhen; Jiang, Bo; Yao, Yong-sheng

    2018-03-01

    As one of the most challenging problems in Computer Controlled Optical Surfacing (CCOS), the edge effect greatly affects the polishing accuracy and efficiency. CCOS rely on stable tool influence function (TIF), however, at the edge of the mirror surface,with the grinding head out of the mirror ,the contact area and pressure distribution changes, which resulting in a non-linear change of TIF, and leads to tilting or sagging at the edge of the mirror. In order reduce the adverse effects and improve the polishing accuracy and efficiency. In this paper, we used the finite element simulation to analyze the pressure distribution at the mirror edge and combined with the improved traditional method to establish a new model. The new method fully considered the non-uniformity of pressure distribution. After modeling the TIFs in different locations, the description and prediction of the edge effects are realized, which has a positive significance on the control and suppression of edge effects

  7. Size effect model for the edge strength of glass with cut and ground edge finishing

    NARCIS (Netherlands)

    Vandebroek, M.; Louter, C.; Caspeele, R.; Ensslen, F.; Belis, J.L.I.F.

    2014-01-01

    The edge strength of glass is influenced by the size of the surface (near the edge) which is subjected to tensile stresses. To quantify this size effect, 8 series of single layer annealed glass beam specimens (as-received glass) were subjected to in-plane four-point bending with linearly increased

  8. Edge effects on moisture reduce wood decomposition rate in a temperate forest.

    Science.gov (United States)

    Crockatt, Martha E; Bebber, Daniel P

    2015-02-01

    Forests around the world are increasingly fragmented, and edge effects on forest microclimates have the potential to affect ecosystem functions such as carbon and nutrient cycling. Edges tend to be drier and warmer due to the effects of insolation, wind, and evapotranspiration and these gradients can penetrate hundreds of metres into the forest. Litter decomposition is a key component of the carbon cycle, which is largely controlled by saprotrophic fungi that respond to variation in temperature and moisture. However, the impact of forest fragmentation on litter decay is poorly understood. Here, we investigate edge effects on the decay of wood in a temperate forest using an experimental approach, whereby mass loss in wood blocks placed along 100 m transects from the forest edge to core was monitored over 2 years. Decomposition rate increased with distance from the edge, and was correlated with increasing humidity and moisture content of the decaying wood, such that the decay constant at 100 m was nearly twice that at the edge. Mean air temperature decreased slightly with distance from the edge. The variation in decay constant due to edge effects was larger than that expected from any reasonable estimates of climatic variation, based on a published regional model. We modelled the influence of edge effects on the decay constant at the landscape scale using functions for forest area within different distances from edge across the UK. We found that taking edge effects into account would decrease the decay rate by nearly one quarter, compared with estimates that assumed no edge effect. © 2014 John Wiley & Sons Ltd.

  9. Variation in Local-Scale Edge Effects: Mechanisms and landscape Context

    Science.gov (United States)

    Therese M. Donovan; Peter W. Jones; Elizabeth M. Annand; Frank R. Thompson III

    1997-01-01

    Ecological processes near habitat edges often differ from processes away from edges. Yet, the generality of "edge effects" has been hotly debated because results vary tremendously. To understand the factors responsible for this variation, we described nest predation and cowbird distribution patterns in forest edge and forest core habitats on 36 randomly...

  10. Competition of edge effects on the electronic properties and excitonic effects in short graphene nanoribbons

    International Nuclear Information System (INIS)

    Lu, Yan; Wei, Sheng; Jin, Jing; Wang, Li; Lu, Wengang

    2016-01-01

    We explore the electronic properties and exciton effects in short graphene nanoribbons (SGNRs), which have two armchair edges and two zigzag edges. Our results show that both of these two types of edges have profound effects on the electronic properties and exciton effects. Both the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) states are alternatively changed between the bulk and the edge states as the lengths of the zigzag edges increase, due to the competition between the states of the two types of edges. The energy gaps, as a function of the lengths of the armchair edges, will then induce two kinds of trends. Furthermore, two kinds of exciton energies and exciton binding energies are found, which can be understood through the two kinds of HOMO and LUMO states in SGNRs. In addition, we find that the three triplet exciton states are not totally energy degenerate in SGNRs due to the spin-polarized states on the zigzag edges. (paper)

  11. Habitat edges have weak effects on duck nest survival at local spatial scales

    Science.gov (United States)

    Raquel, Amelia J; Ringelman, Kevin M.; Ackerman, Joshua T.; Eadie, John M.

    2015-01-01

    Edge effects on nesting success have been documented in breeding birds in a variety of contexts, but there is still uncertainty in how edge type and spatial scale determine the magnitude and detectability of edge effects. Habitat edges are often viewed as predator corridors that surround or penetrate core habitat and increase the risk of predation for nearby nests. We studied the effects of three different types of potential predator corridors (main perimeter roads, field boundaries, and ATV trails within fields) on waterfowl nest survival in California. We measured the distance from duck nests to the nearest edge of each type, and used distance as a covariate in a logistic exposure analysis of nest survival. We found only weak evidence for edge effects due to predation. The best supported model of nest survival included all three distance categories, and while all coefficient estimates were positive (indicating that survival increased with distance from edge), 85% coefficient confidence intervals approached or bounded zero indicating an overall weak effect of habitat edges on nest success. We suggest that given the configuration of edges at our site, there may be few areas far enough from hard edges to be considered ‘core’ habitat, making edge effects on nest survival particularly difficult to detect.

  12. An edge index for the quantum spin-Hall effect

    International Nuclear Information System (INIS)

    Prodan, Emil

    2009-01-01

    Quantum spin-Hall systems are topological insulators displaying dissipationless spin currents flowing at the edges of the samples. In contradistinction to the quantum Hall systems where the charge conductance of the edge modes is quantized, the spin conductance is not and it remained an open problem to find the observable whose edge current is quantized. In this paper, we define a particular observable and the edge current corresponding to this observable. We show that this current is quantized and that the quantization is given by the index of a certain Fredholm operator. This provides a new topological invariant that is shown to take the generic values 0 and 2, in line with the Z 2 topological classification of time-reversal invariant systems. The result gives an effective tool for the investigation of the edge structure in quantum spin-Hall systems. Based on a reasonable assumption, we also show that the edge conducting channels are not destroyed by a random edge. (fast track communication)

  13. Finite size effects on the helical edge states on the Lieb lattice

    International Nuclear Information System (INIS)

    Chen Rui; Zhou Bin

    2016-01-01

    For a two-dimensional Lieb lattice, that is, a line-centered square lattice, the inclusion of the intrinsic spin–orbit (ISO) coupling opens a topologically nontrivial gap, and gives rise to the quantum spin Hall (QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap. Generally, due to the finite size effect in QSH systems, the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum. In this paper, we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions, i.e., the straight, bearded and asymmetry edges. The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice. For a strip Lieb lattice with two straight edges, the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum. Moreover, it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice, and no gap is opened in the edge band. It is concluded that the finite size effect of QSH states is absent in the case with the straight edges. However, in the other two cases with the bearded and asymmetry edges, the energy gap induced by the finite size effect is still opened with decreasing the width of the strip. It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms. (paper)

  14. Edge effects on the electronic properties of phosphorene nanoribbons

    International Nuclear Information System (INIS)

    Peng, Xihong; Copple, Andrew; Wei, Qun

    2014-01-01

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs) show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p z orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.

  15. Edge effects on the electronic properties of phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xihong, E-mail: xihong.peng@asu.edu [School of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States); Copple, Andrew [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Wei, Qun [School of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States); School of Physics and Optoelectronic Engineering, Xidian University, Xi' an 710071 (China)

    2014-10-14

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs) show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p{sub z} orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.

  16. Effects of edge reconstruction on the common groups terminated zigzag phosphorene nanoribbon

    International Nuclear Information System (INIS)

    Xiao, Huaping; Guo, Sumei; Zhang, Chunxiao; He, Chaoyu; Zhong, Jianxin

    2017-01-01

    Edge configuration plays an important role in the electronic properties of nano-structures. In this work, we perform first-principles calculations to study the effects of the cooperation between neighbor groups on the edge configuration and the electronic properties of zigzag-PNRs (ZPNRs) terminated by common groups H, F, O, S and OH. We find that the cooperation has little effect on the H(F)-terminated ZPNRs, but gives rise to an edge reconstruction for the O(S)-terminated ZPNRs. The edge reconstruction derives from the repulsion between neighbor O atoms and the distortion of the P skeleton induced by the p state coupling among the edge, second edge and third edge P atoms. In comparison to the H-terminated ZPNRs, O-terminated ZPNRs are also a semiconductor and enlarge the band gap, but bring about an extra transport channel for the charge transport at the edge and decreases the effective mass of the electron and hole. OH-terminated ZPNRs also undergo a doubling of the unit cell (UC) along the periodic direction because of the different directions of the neighbor O–H bonds. In comparison with the H-terminated ZPNRs, OH-terminated ZPNRs show a similar band gap and electronic effective mass, but increase the effective mass of the hole. (paper)

  17. Piecing together the fragments: Elucidating edge effects on forest carbon dynamics

    Science.gov (United States)

    Hutyra, L.; Smith, I. A.; Reinmann, A.; Marrs, J.; Thompson, J.

    2017-12-01

    Forest fragmentation is pervasive throughout the world's forests, impacting growing conditions and carbon dynamics through edge effects that produce gradients in microclimate, biogeochemistry, and stand structure. Despite the majority of the world's forests being biome, but current forest carbon accounting methods and ecosystem models largely do not include edge effects, highlighting an important gap in our understanding of the terrestrial carbon cycle. Characterizing the role of forest fragmentation in regional and global biogeochemical cycles necessitates advancing our understanding of how shifts in microenvironment at the forest edge interact with local prevailing drivers of global change and limitations to microbial activity and forest growth. This study synthesizes the literature related to edge effects and the carbon cycle, considering how fragmentation affects the growing conditions of the world's remaining forests based on risks and opportunities for forests near the edge.

  18. Urbanization Impacts on Mammals across Urban-Forest Edges and a Predictive Model of Edge Effects

    OpenAIRE

    Villaseñor, Nélida R.; Driscoll, Don A.; Escobar, Martín A. H.; Gibbons, Philip; Lindenmayer, David B.

    2014-01-01

    With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing den...

  19. Stability of edge states and edge magnetism in graphene nanoribbons

    OpenAIRE

    Kunstmann, Jens; Özdoğan, Cem; Quandt, Alexander; Fehske, Holger

    2010-01-01

    We critically discuss the stability of edge states and edge magnetism in zigzag edge graphene nanoribbons (ZGNRs). We point out that magnetic edge states might not exist in real systems, and show that there are at least three very natural mechanisms - edge reconstruction, edge passivation, and edge closure - which dramatically reduce the effect of edge states in ZGNRs or even totally eliminate them. Even if systems with magnetic edge states could be made, the intrinsic magnetism would not be ...

  20. Dynamics of the edge excitations in the FQH effects

    International Nuclear Information System (INIS)

    Wen, X.G.

    1994-01-01

    Fractional quantum Hall effects (FQHE) discovered by Tsui, Stormer and Gossard open a new era in theory of strongly correlated system. In the first time the authors have to completely abandon the theories based on the single-body picture and use an intrinsic many-body theory proposed by Laughlin and others to describe the FQHE. Due to the repulsive interaction, the strongly correlated FQH liquid is an incompressible state despite the first Landau level is only partially filled. All the bulk excitations in the FQH states have finite energy gaps. The FQH states and insulators are similar in the sense that both states have finite energy gap and short ranged electron propagators. Because of this similarity, it is puzzling that the FQH systems apparently have very different transport properties than ordinary insulators. Halperin first point out that the integral quantum Hall (IQH) states contain gapless edge excitations. Although the electronic states in the bulk are localized, the electronic states at the edge of the sample are extended. Therefore the nontrivial transport properties of the IQH states come from the gapless edge excitations. Such an edge transport picture has been supported by many experiments. One also found that the edge excitations in the IQH states are described by a chiral 1D Fermi liquid theory. Here, the authors review the dynamical theory of the edge excitations in the FQH effects

  1. EDGE EFFECT INFLUENCE TO REFLECTED IMPEDANCE OF EDDY-CURRENT PROBE

    Directory of Open Access Journals (Sweden)

    О. Закревський

    2012-04-01

    Full Text Available This work is dedicated to solve analytically the edge effect Eddy-Current Probe (ECP problem which helpto carry out mathematical research the edge effect influence to ECP precision and sensitivity ultrasonictransducer mechanical amplitude oscillation measurement mathematical research, pointed to cylindricalconductive objects radius control possibility with superimposed ECP.

  2. Effects of Edge on-Site Potential in a Honeycomb Topological Magnon Insulator

    Science.gov (United States)

    Pantaleón, Pierre A.; Xian, Yang

    2018-06-01

    While the deviation of the edge on-site potential from the bulk values in a magnonic topological honeycomb lattice leads to the formation of edge states in a bearded boundary, this is not the case for a zigzag termination, where no edge state is found. In a semi-infinite lattice, the intrinsic on-site interactions along the boundary sites generate an effective defect and this gives rise to Tamm-like edge states. If a nontrivial gap is induced, both Tamm-like and topologically protected edge states appear in the band structure. The effective defect can be strengthened by an external on-site potential, and the dispersion relation, velocity and magnon density of the edge states all become tunable.

  3. Edge reconstruction effect in pristine and H-passivated zigzag silicon carbide nanoribbons.

    Science.gov (United States)

    Lou, Ping

    2011-10-14

    The edge reconstruction effect of the zigzag silicon carbide nanoribbons (zz SiC NRs) to a stable line of alternatively fused seven and five membered rings without and with H passivation have been studied using first principles density functional theory (DFT). The both side's edges of the pristine SiC are respectively terminated by Si and C atoms and are called the Si-edge and the C-edge, respectively. In the un-passivated systems, the C-edge reconstructed (Crc) could effectively lower the edge energy of the system, while the Si-edge reconstructed (Sirc) could raise the edge energy of the system. Thus, the Crc edge is the best edge for the edge reconstruction of the system, while the both edge reconstructed (brc) system is the metastability. Moreover, the brc system has a nonmagnetic metallic state, whereas the Crc system, as well as Sirc system, has a ferromagnetic metallic state. The edge reconstructed destroys the magnetic moment of the corresponding edge atoms. The magnetic moment arises from the unreconstructed zigzag edges. The pristine zz edge system has a ferrimagnetic metallic state. However, in the H-passivated systems, the unreconstructed zigzag edge (zz-H) is the best edge. The Crc-H system is the metastability. The Sirc-H system has only slightly higher energy than the Crc-H system, whereas the brc-H system of the pristine SiC NR has the highest edge energy. Thus, the H passivation would prevent the occurrence of edge reconstruction. Moreover, H passivation induces a metal-semiconductor transition in the zz and brc SiC NRs. Additionally, except for brc-H system which has non-magnetic semiconducting state, the zz-H, Crc-H, and Sirc-H systems have the magnetic state.

  4. The effect of edge and impurities sites properties on their localized states in semi-infinite zigzag edged 2D honeycomb graphene sheet

    OpenAIRE

    Ahmed, Maher

    2011-01-01

    In this work, the tridiagonal method is used to distinguish between edges modes and area modes to study the edge sites properties effect on edge localized states of semi-infinite zigzag 2D honeycomb graphene sheet. The results show a realistic behavior for the dependance of edge localized states of zigzag graphene on the edge sites properties which explaining the experimental results of measured local density of states at the edge of graphene, while at the same time removing the inconsistence...

  5. Edge effect of strained bilayer nanofilms for tunable multistability and actuation.

    Science.gov (United States)

    Hu, N; Han, X; Huang, S; Grover, H M; Yu, X; Zhang, L N; Trase, I; Zhang, J X J; Zhang, L; Dong, L X; Chen, Z

    2017-03-02

    We employed both theoretical and computational models supported by experiments to study the multistable behavior of an edge-effect driven Si/Cr micro-claw. Our study showed that individual micro-claws demonstrate either monostability or bistability as the magnitude of the edge effect is varied.

  6. Effects of edge magnetism on the Kohn anomalies of zigzag graphene nanoribbons

    International Nuclear Information System (INIS)

    Culchac, F J; Capaz, Rodrigo B

    2016-01-01

    The effects of edge magnetism on the Kohn anomaly (KA) of the G-band phonons of zigzag graphene nanoribbons (ZGNRs) are studied using a combination of the tight-binding and mean-field Hubbard models. We show that the opening of an energy gap, induced by magnetic ordering, significantly changes the KA effects, particularly for narrow ribbons in which the gap is larger than the phonon energy. Therefore, the G-band phonon frequency and lifetime are altered for a magnetically-ordered edge state with respect to an unpolarized edge state. The effects of temperature, ZGNR width, doping and transverse electric fields are systematically investigated. We propose using this effect to probe the magnetic order of edge states in graphene nanoribbons using Raman spectroscopy. (paper)

  7. Awareness of Central Luminance Edge is Crucial for the Craik-O'Brien-Cornsweet Effect.

    Science.gov (United States)

    Masuda, Ayako; Watanabe, Junji; Terao, Masahiko; Watanabe, Masataka; Yagi, Akihiro; Maruya, Kazushi

    2011-01-01

    The Craik-O'Brien-Cornsweet (COC) effect demonstrates that perceived lightness depends not only on the retinal input at corresponding visual areas but also on distal retinal inputs. In the COC effect, the central edge of an opposing pair of luminance gradients (COC edge) makes adjoining regions with identical luminance appear to be different. To investigate the underlying mechanisms of the effect, we examined whether the subjective awareness of the COC edge is necessary for the generation of the effect. We manipulated the visibility of the COC edge using visual backward masking and continuous flash suppression while monitoring subjective reports regarding online percepts and aftereffects of adaptation. Psychophysical results showed that the online percept of the COC effect nearly vanishes in conditions where the COC edge is rendered invisible. On the other hand, the results of adaptation experiments showed that the COC edge is still processed at the early stage even under the perceptual suppression. These results suggest that processing of the COC edge at the early stage is not sufficient for generating the COC effect, and that subjective awareness of the COC edge is necessary.

  8. Effects of Density and Impurity on Edge Localized Modes in Tokamaks

    Science.gov (United States)

    Zhu, Ping

    2017-10-01

    Plasma density and impurity concentration are believed to be two of the key elements governing the edge tokamak plasma conditions. Optimal levels of plasma density and impurity concentration in the edge region have been searched for in order to achieve the desired fusion gain and divertor heat/particle load mitigation. However, how plasma density or impurity would affect the edge pedestal stability may have not been well known. Our recent MHD theory modeling and simulations using the NIMROD code have found novel effects of density and impurity on the dynamics of edge-localized modes (ELMs) in tokamaks. First, previous MHD analyses often predict merely a weak stabilizing effect of toroidal flow on ELMs in experimentally relevant regimes. We find that the stabilizing effects on the high- n ELMs from toroidal flow can be significantly enhanced with the increased edge plasma density. Here n denotes the toroidal mode number. Second, the stabilizing effects of the enhanced edge resistivity due to lithium-conditioning on the low- n ELMs in the high confinement (H-mode) discharges in NSTX have been identified. Linear stability analysis of the experimentally constrained equilibrium suggests that the change in the equilibrium plasma density and pressure profiles alone due to lithium-conditioning may not be sufficient for a complete suppression of the low- n ELMs. The enhanced resistivity due to the increased effective electric charge number Zeff after lithium-conditioning provides additional stabilization of the low- n ELMs. These new effects revealed in our theory analyses may help further understand recent ELM experiments and suggest new control schemes for ELM suppression and mitigation in future experiments. They may also pose additional constraints on the optimal levels of plasma density and impurity concentration in the edge region for H-mode tokamak operation. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB

  9. Cerrado ground-dwelling ants (Hymenoptera: Formicidae as indicators of edge effects

    Directory of Open Access Journals (Sweden)

    Carlos Roberto F. Brandão

    2011-06-01

    Full Text Available Large-scale agricultural production in Brazil preferentially occupies plateaus reclaimed from areas originally covered by Cerrado (savanna. Depending on the region, a percentage of the pristine vegetation coverage must be preserved by law, resulting in the creation of fragmented legal Cerrado reserves. The geometry of these relatively small legal reserves creates new habitat edges and ecotones, whose effects on the invertebrate fauna are poorly understood. This study aimed to assess the effects of abrupt edges resulting from soy production on ground-dwelling ant assemblages in the Brazilian Cerrado. The study sites are located within the Amazon region, in the state of Maranhão, northern Brazil, but were covered by Cerrado on a relatively low plateau, irregularly inter-spaced with gallery forests along streams. We compared species richness and species composition of ground-dwelling ants along eight transects set 0, 50, 100, 150, 200, and 250 m into the sensu stricto Cerrado and 50 and 100 m into the soy field. The collecting periods covered the wet and dry seasons. Effects on ant species richness were non-significant, although composition of the assemblages was significantly affected by edge effects, which were, in part, found to be species specific. We hypothesize that edge effects are probably greater than estimated because of the shape and complexity of reserves. Consideration of edge effects in the Cerrado Biome should enable the design of appropriate reserve sizes and shapes to meet conservation goals.

  10. Feasibility of compensating for EUV field edge effects through OPC

    Science.gov (United States)

    Maloney, Chris; Word, James; Fenger, Germain L.; Niroomand, Ardavan; Lorusso, Gian F.; Jonckheere, Rik; Hendrickx, Eric; Smith, Bruce W.

    2014-04-01

    As EUV Lithography (EUVL) continues to evolve, it offers a possible solution to the problems of additional masks and lithography steps that drive up the cost and complexity of 193i multiple patterning. EUVL requires a non-telecentric reflective optical system for operation. This requirement causes EUV specific effects such as shadowing. The absorber physically shadows the reflective multilayer (ML) on an EUV reticle resulting in pattern fidelity degradation. To reduce this degradation, a thinner absorber may help. Yet, as the absorber thickness decreases, reflectivity increases in the `dark' region around the image field, resulting in a loss of contrast. The region around the edge of the die on the mask of unpatterned absorber material deposited on top of ML, known as the image border, is also susceptible to undesirable reflections in an ideally dark region. For EUVL to be enabled for high-volume manufacturing (HVM), reticle masking (REMA) blades are used to shield light from the image border to allow for the printing of densely spaced die. When die are printed densely, the image border of each neighboring die will overlap with the edge of a given die resulting in an increase of dose that overexposes features at the edge of the field. This effect is convolved with a fingerprint from the edge of the REMA blades. This phenomenon will be referred to as a field edge effect. One such mitigation strategy that has been investigated to reduce the field edge effect is to fully remove the ML along the image border to ensure that no actinic-EUV radiation can be reflected onto neighboring die. This has proven to suppress the effect, but residual out-of-band radiation still provides additional dose to features near the image border, especially in the corners where three neighboring fields overlap. Measurements of dense contact holes (CHs) have been made along the image border with and without a ML-etched border at IMEC in collaboration with Micron using the ASML NXE:3100. The

  11. Positive edge effects on forest-interior cryptogams in clear-cuts.

    Directory of Open Access Journals (Sweden)

    Alexandro Caruso

    Full Text Available Biological edge effects are often assessed in high quality focal habitats that are negatively influenced by human-modified low quality matrix habitats. A deeper understanding of the possibilities for positive edge effects in matrix habitats bordering focal habitats (e.g. spillover effects is, however, essential for enhancing landscape-level resilience to human alterations. We surveyed epixylic (dead wood inhabiting forest-interior cryptogams (lichens, bryophytes, and fungi associated with mature old-growth forests in 30 young managed Swedish boreal forest stands bordering a mature forest of high conservation value. In each young stand we registered species occurrences on coarse dead wood in transects 0-50 m from the border between stand types. We quantified the effect of distance from the mature forest on the occurrence of forest-interior species in the young stands, while accounting for local environment and propagule sources. For comparison we also surveyed epixylic open-habitat (associated with open forests and generalist cryptogams. Species composition of epixylic cryptogams in young stands differed with distance from the mature forest: the frequency of occurrence of forest-interior species decreased with increasing distance whereas it increased for open-habitat species. Generalists were unaffected by distance. Epixylic, boreal forest-interior cryptogams do occur in matrix habitats such as clear-cuts. In addition, they are associated with the matrix edge because of a favourable microclimate closer to the mature forest on southern matrix edges. Retention and creation of dead wood in clear-cuts along the edges to focal habitats is a feasible way to enhance the long-term persistence of epixylic habitat specialists in fragmented landscapes. The proposed management measures should be performed in the whole stand as it matures, since microclimatic edge effects diminish as the matrix habitat matures. We argue that management that aims to increase

  12. The exponential edge-gradient effect in x-ray computed tomography

    International Nuclear Information System (INIS)

    Joseph, P.M.

    1981-01-01

    The exponential edge-gradient effect must arise in any X-ray transmission CT scanner whenever long sharp edges of high contrast are encountered. The effect is non-linear and is due to the interaction of the exponential law of X-ray attenuation and the finite width of the scanning beam in the x-y plane. The error induced in the projection values is proved to be always negative. While the most common effect is lucent streaks emerging from single straight edges, it is demonstrated that dense streaks from pairs of edges are possible. It is shown that an exact correction of the error is possible only under very special (and rather unrealistic) circumstances in which an infinite number of samples per beam width are available and all thin rays making up the beam can be considered parallel. As a practical matter, nevertheless, increased sample density is highly desirable in making good approximate corrections; this is demonstrated with simulated scans. Two classes of approximate correction algorithms are described and their effectiveness evaluated on simulated CT phantom scans. One such algorithm is also shown to work well with a real scan of a physical phantom on a machine that provides approximately four samples per beam width. (author)

  13. Effect of Edge Roughness on Static Characteristics of Graphene Nanoribbon Field Effect Transistor

    Directory of Open Access Journals (Sweden)

    Yaser M. Banadaki

    2016-03-01

    Full Text Available In this paper, we present a physics-based analytical model of GNR FET, which allows for the evaluation of GNR FET performance including the effects of line-edge roughness as its practical specific non-ideality. The line-edge roughness is modeled in edge-enhanced band-to-band-tunneling and localization regimes, and then verified for various roughness amplitudes. Corresponding to these two regimes, the off-current is initially increased, then decreased; while, on the other hand, the on-current is continuously decreased by increasing the roughness amplitude.

  14. Edge effects in phase-shifting masks for 0.25-µm lithography

    Science.gov (United States)

    Wong, Alfred K. K.; Neureuther, Andrew R.

    1993-03-01

    The impact on image quality of scattering from phase-shifter edges and of interactions between phase-shifter and chrome edges is assessed using rigorous electromagnetic simulation. Effects of edge taper in phase-shift masks, spacing between phase-shifter and chrome edges, small outrigger features with a trench phase-shifter, and of the repair of phase defects by etching to 360 degree(s) are considered. Near field distributions and diffraction efficiencies are examined and images are compared with more approximate results from the commonly used Hopkins' theory of imaging.

  15. Parity effect of bipolar quantum Hall edge transport around graphene antidots.

    Science.gov (United States)

    Matsuo, Sadashige; Nakaharai, Shu; Komatsu, Katsuyoshi; Tsukagoshi, Kazuhito; Moriyama, Takahiro; Ono, Teruo; Kobayashi, Kensuke

    2015-06-30

    Parity effect, which means that even-odd property of an integer physical parameter results in an essential difference, ubiquitously appears and enables us to grasp its physical essence as the microscopic mechanism is less significant in coarse graining. Here we report a new parity effect of quantum Hall edge transport in graphene antidot devices with pn junctions (PNJs). We found and experimentally verified that the bipolar quantum Hall edge transport is drastically affected by the parity of the number of PNJs. This parity effect is universal in bipolar quantum Hall edge transport of not only graphene but also massless Dirac electron systems. These results offer a promising way to design electron interferometers in graphene.

  16. Zone edge effects with variable rate irrigation

    Science.gov (United States)

    Variable rate irrigation (VRI) systems may offer solutions to enhance water use efficiency by addressing variability within a field. However, the design of VRI systems should be considered to maximize application uniformity within sprinkler zones, while minimizing edge effects between such zones alo...

  17. Effect of random edge failure on the average path length

    Energy Technology Data Exchange (ETDEWEB)

    Guo Dongchao; Liang Mangui; Li Dandan; Jiang Zhongyuan, E-mail: mgliang58@gmail.com, E-mail: 08112070@bjtu.edu.cn [Institute of Information Science, Beijing Jiaotong University, 100044, Beijing (China)

    2011-10-14

    We study the effect of random removal of edges on the average path length (APL) in a large class of uncorrelated random networks in which vertices are characterized by hidden variables controlling the attachment of edges between pairs of vertices. A formula for approximating the APL of networks suffering random edge removal is derived first. Then, the formula is confirmed by simulations for classical ER (Erdoes and Renyi) random graphs, BA (Barabasi and Albert) networks, networks with exponential degree distributions as well as random networks with asymptotic power-law degree distributions with exponent {alpha} > 2. (paper)

  18. Edge effect on post-dispersal artificial seed predation in the southeastern Amazonia, Brazil.

    Science.gov (United States)

    Penido, G; Ribeiro, V; Fortunato, D S

    2015-05-01

    This paper evaluates the post-dispersal artificial seed predation rates in two areas of the southeastern Amazon forest-savanna boundary, central Brazil. We conducted the survey in a disturbance regime controlled research site to verify if exists an edge effect in these rates and if the disturbance (in this case annual fire and no fire) affects seed predation. We placed 800 peanuts seeds in each area at regular distance intervals from the fragment`s edge. Data were analyzed by a likelihood ratio model selection in generalized linear models (GLM). The complete model (with effects from edge distance and site and its interaction) was significative (F3=4.43; p=0.005). Seeds had a larger predation rates in fragment's interior in both areas, but in the controlled area (no disturbance) this effect was less linear. This suggests an edge effect for post-dispersal seed predation, and that disturbances might alter these effects. Even if we exclude the site effect (grouping both areas together) there is still a strong edge effect on seed predation rates (F3=32.679; p>0.001). We did not verify predator's species in this study; however, the presence of several species of ants was extremely common in the seeds. The detection of an edge effect in only a short survey time suggests that there is heterogeneity in predation rates and that this variation might affect plant recruitment in fragmented areas of the Amazon forest. Henceforth, this seed predation should be taken in consideration in reforestation projects, where the main source of plants species is from seed distribution.

  19. Edge enhancement improves disruptive camouflage by emphasising false edges and creating pictorial relief.

    Science.gov (United States)

    Egan, John; Sharman, Rebecca J; Scott-Brown, Kenneth C; Lovell, Paul George

    2016-12-06

    Disruptive colouration is a visual camouflage composed of false edges and boundaries. Many disruptively camouflaged animals feature enhanced edges; light patches are surrounded by a lighter outline and/or a dark patches are surrounded by a darker outline. This camouflage is particularly common in amphibians, reptiles and lepidopterans. We explored the role that this pattern has in creating effective camouflage. In a visual search task utilising an ultra-large display area mimicking search tasks that might be found in nature, edge enhanced disruptive camouflage increases crypsis, even on substrates that do not provide an obvious visual match. Specifically, edge enhanced camouflage is effective on backgrounds both with and without shadows; i.e. this is not solely due to background matching of the dark edge enhancement element with the shadows. Furthermore, when the dark component of the edge enhancement is omitted the camouflage still provided better crypsis than control patterns without edge enhancement. This kind of edge enhancement improved camouflage on all background types. Lastly, we show that edge enhancement can create a perception of multiple surfaces. We conclude that edge enhancement increases the effectiveness of disruptive camouflage through mechanisms that may include the improved disruption of the object outline by implying pictorial relief.

  20. Edge effects on understory epiphytic ferns and epiphyllous bryophytes in moist afromontane forests of Ethiopia

    Directory of Open Access Journals (Sweden)

    Hylander Kristoffer

    2013-12-01

    Full Text Available Most studies on edge effects in tropical forests have been conducted in landscapes with low human population density and in situations where the edges have been left unused after logging of the adjacent area. Here we studied forest margins heavily used by local farmers in a forest/agriculture mosaic landscape in Ethiopia. We compared forest structure and plant species composition across 41 forest-agriculture ecotones from 200 m out into the agricultural area to 200 m into the forest. There are strong edge effects from the edge and into the forest on canopy cover and number of stumps and apparently these forest-agricultural edges are intensively used by humans. They are penetrated by paths, beehives are found in the trees, timber of various dimensions is harvested and there is sometimes substantial cover of perennial wild (or semi-wild crops such as coffee and spices. The number of understory epiphytic fern species as well as number of epiphyllous (i.e., growing on leaves bryophyte species was lower at 20 m than at 75 m from the edge. The number of fern species was higher in newly created edges and thereafter they declined, which indicates an extinction debt. This pattern was not seen for the epiphyllous bryophytes. It is likely that different human management activities are responsible for many of the found edge effects besides wind and sun effects from the edge. Tropical forest margins provide important resources for people in many landscapes. It is important to understand how such use affects the biota of the forests. This study shows that there are substantial edge effects, but that the edge effects do not seem to become worse over time for epiphyllous bryophytes and only slightly so for ferns.

  1. Edge effects in vertically-oriented graphene based electric double-layer capacitors

    Science.gov (United States)

    Yang, Huachao; Yang, Jinyuan; Bo, Zheng; Zhang, Shuo; Yan, Jianhua; Cen, Kefa

    2016-08-01

    Vertically-oriented graphenes (VGs) have been demonstrated as a promising active material for electric double-layer capacitors (EDLCs), partially due to their edge-enriched structure. In this work, the 'edge effects', i.e., edges as the promoters of high capacitance, in VG based EDLCs are investigated with experimental research and numerical simulations. VGs with diverse heights (i.e., edge-to-basal ratios) and edge densities are prepared with varying the plasma-enabled growth time and employing different plasma sources. Electrochemical measurements show that the edges play a predominant role on the charge storage behavior of VGs. A simulation is further conducted to unveil the roles of the edges on the separation and adsorption of ions within VG channels. The initial charge distribution of a VG plane is obtained with density functional theory (DFT) calculations, which is subsequently applied to a molecular dynamics (MD) simulation system to gain the insights into the microscope EDLC structures. Compared with the basal planes, the edges present higher initial charge density (by 4.2 times), higher ion packing density (by 2.6 times), closer ion packing location (by 0.8 Å), and larger ion separation degree (by 14%). The as-obtained findings will be instructive in designing the morphology and structure of VGs for enhanced capacitive performances.

  2. Effects of suture position on left ventricular fluid mechanics under mitral valve edge-to-edge repair.

    Science.gov (United States)

    Du, Dongxing; Jiang, Song; Wang, Ze; Hu, Yingying; He, Zhaoming

    2014-01-01

    Mitral valve (MV) edge-to-edge repair (ETER) is a surgical procedure for the correction of mitral valve regurgitation by suturing the free edge of the leaflets. The leaflets are often sutured at three different positions: central, lateral and commissural portions. To study the effects of position of suture on left ventricular (LV) fluid mechanics under mitral valve ETER, a parametric model of MV-LV system during diastole was developed. The distribution and development of vortex and atrio-ventricular pressure under different suture position were investigated. Results show that the MV sutured at central and lateral in ETER creates two vortex rings around two jets, compared with single vortex ring around one jet of the MV sutured at commissure. Smaller total orifices lead to a higher pressure difference across the atrio-ventricular leaflets in diastole. The central suture generates smaller wall shear stresses than the lateral suture, while the commissural suture generated the minimum wall shear stresses in ETER.

  3. Valley-filtered edge states and quantum valley Hall effect in gated bilayer graphene.

    Science.gov (United States)

    Zhang, Xu-Long; Xu, Lei; Zhang, Jun

    2017-05-10

    Electron edge states in gated bilayer graphene in the quantum valley Hall (QVH) effect regime can carry both charge and valley currents. We show that an interlayer potential splits the zero-energy level and opens a bulk gap, yielding counter-propagating edge modes with different valleys. A rich variety of valley current states can be obtained by tuning the applied boundary potential and lead to the QVH effect, as well as to the unbalanced QVH effect. A method to individually manipulate the edge states by the boundary potentials is proposed.

  4. Effect of surface wettability on microfluidic EDGE emulsification

    NARCIS (Netherlands)

    Maan, A.A.; Sahin, S.; Mujawar, L.H.; Boom, R.M.; Schroen, C.G.P.H.

    2013-01-01

    The effect of wettability on microfluidic EDGE emulsification was investigated at dispersed phase contact angles between 90 and 160. The highest contact angle (160) produced monodispersed emulsions with droplet size 5.0 lm and coefficient of variation

  5. Understanding and tuning the quantum-confinement effect and edge magnetism in zigzag graphene nanoribbon.

    Science.gov (United States)

    Huang, Liang Feng; Zhang, Guo Ren; Zheng, Xiao Hong; Gong, Peng Lai; Cao, Teng Fei; Zeng, Zhi

    2013-02-06

    The electronic structure of zigzag graphene nanoribbon (ZGNR) is studied using density functional theory. The mechanisms underlying the quantum-confinement effect and edge magnetism in ZGNR are systematically investigated by combining the simulated results and some useful analytic models. The quantum-confinement effect and the inter-edge superexchange interaction can be tuned by varying the ribbon width, and the spin polarization and direct exchange splitting of the edge states can be tuned by varying their electronic occupations. The two edges of ZGNR can be equally or unequally tuned by charge doping or Li adsorption, respectively. The Li adatom has a site-selective adsorption on ZGNR, and it is a nondestructive and memorable approach to effectively modify the edge states in ZGNR. These systematic understanding and effective tuning of ZGNR electronics presented in this work are helpful for further investigation and application of ZGNR and other magnetic graphene systems.

  6. [Edge effect of the plant community structure on land-bridge islands in the Thousand Island Lake].

    Science.gov (United States)

    Su, Xiao-Fei; Yuan, Jin-Feng; Hu, Guang; Xu, Gao-Fu; Yu, Ming-Jian

    2014-01-01

    The research was conducted on 29 land-bridge islands in the Thousand Island Lake (TIL), where long-term monitoring plots were set up during 2009-2010. The community attributes including species richness, Shannon index, plant mean height, plant mean diameter at breast height (DBH) and plant density along the edge-interior gradient from edge to interior forest were calculated to investigate the edge effect. The results showed that the species richness and Shannon index were affected through the whole gradient (larger than 50 m), while the range of edge effect was 20-30 m on mean plant height, and 10 m on plant density and mean DBH. Community attributes differed significantly among the edge gradients. The species richness and Shannon index peaked at the intermediate edge gradient. Plant density decreased and plant mean height increased along the edge to interior gradient. All five community attributes were significantly associated with the edge gradient, also different functional groups, evergreen or deciduous species, trees or shrubs, shade tolerant or shade intolerant species, were differentially influenced by the edge effect. It was demonstrated the influence of edge effect on the fragmented forest community varied with community attributes and functional groups.

  7. Edge effect on post-dispersal artificial seed predation in the southeastern Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    G. Penido

    Full Text Available This paper evaluates the post-dispersal artificial seed predation rates in two areas of the southeastern Amazon forest-savanna boundary, central Brazil. We conducted the survey in a disturbance regime controlled research site to verify if exists an edge effect in these rates and if the disturbance (in this case annual fire and no fire affects seed predation. We placed 800 peanuts seeds in each area at regular distance intervals from the fragment`s edge. Data were analyzed by a likelihood ratio model selection in generalized linear models (GLM. The complete model (with effects from edge distance and site and its interaction was significative (F3=4.43; p=0.005. Seeds had a larger predation rates in fragment’s interior in both areas, but in the controlled area (no disturbance this effect was less linear. This suggests an edge effect for post-dispersal seed predation, and that disturbances might alter these effects. Even if we exclude the site effect (grouping both areas together there is still a strong edge effect on seed predation rates (F3=32.679; p>0.001. We did not verify predator’s species in this study; however, the presence of several species of ants was extremely common in the seeds. The detection of an edge effect in only a short survey time suggests that there is heterogeneity in predation rates and that this variation might affect plant recruitment in fragmented areas of the Amazon forest. Henceforth, this seed predation should be taken in consideration in reforestation projects, where the main source of plants species is from seed distribution.

  8. Hygrothermal effects on the tensile strength of carbon/epoxy laminates with molded edges

    Directory of Open Access Journals (Sweden)

    Cândido Geraldo Maurício

    2000-01-01

    Full Text Available The interlaminar stresses are confined to a region near the free edge. Therefore, the laminate stacking sequence and the free edge finishing are some of the factors that affect the strength of the laminate and limit its life. The use of molded edges eliminates the need for trimming and machining the laminates edges thus improving productivity. However, this fabrication technique may have a detrimental effect on the laminate strength for certain stacking sequences. This effect in the presence of moisture has not been characterized. This work presents the results of a comparative study of the resistance to delamination of laminates with machined edges and molded edges. Additionally, two environmental conditions were considered: dry laminates and laminates saturated with moisture. The tensile strength of the laminates were measured and micrographs were used to analyze the microstructure of the laminates near the free edges. It is concluded that the mechanical properties of advanced composites depend on the environmental conditions and the fabrication techniques used to produce the laminates. Therefore, it is necessary to account for these factors when experimentally determining the design allowables.

  9. Edge Effects in a Composite Weakly Reinforced with Fibers of Rectangular Cross Section

    Science.gov (United States)

    Boichuk, V. Yu.

    2001-05-01

    This paper deal with the edge effect in a composite weakly reinforced with fibers of rectangular cross section and subjected to biaxial uniform loading. The edge effects due to the difference between Poisson's ratios of the composite components are studied. Numerical results are presented

  10. On the effect of leading edge blowing on circulation control airfoil aerodynamics

    Science.gov (United States)

    Mclachlan, B. G.

    1987-01-01

    In the present context the term circulation control is used to denote a method of lift generation that utilizes tangential jet blowing over the upper surface of a rounded trailing edge airfoil to determine the location of the boundary layer separation points, thus setting an effective Kutta condition. At present little information exists on the flow structure generated by circulation control airfoils under leading edge blowing. Consequently, no theoretical methods exist to predict airfoil performance under such conditions. An experimental study of the flow field generated by a two dimensional circulation control airfoil under steady leading and trailing edge blowing was undertaken. The objective was to fundamentally understand the overall flow structure generated and its relation to airfoil performance. Flow visualization was performed to define the overall flow field structure. Measurements of the airfoil forces were also made to provide a correlation of the observed flow field structure to airfoil performance. Preliminary results are presented, specifically on the effect on the flow field structure of leading edge blowing, alone and in conjunction with trailing edge blowing.

  11. Diversity of galling insects in Styrax pohlii (Styracaceae): edge effect and use as bioindicators.

    Science.gov (United States)

    de Araújol, Walter Santos; Julião, Genimar Rebouças; Ribeiro, Bárbara Araújo; Silva, Isadora Portes Abraham; dos Santos, Benedito Baptista

    2011-12-01

    Impacts of forest fragmentation and edge effect on plant-herbivores interactions are relatively unknown, and the relationships between galling insects and their host plants are very susceptible to environmental variations. The goal of our study was to test the edge effect hypothesis for galling insects associated with Styrax pohlii (Styracaceae) host plant. Samplings were conducted at a fragment of semi-deciduous forest in Goiânia, Goiás, Brazil. Thirty host plant individuals (15 at fragment edge and 15 in its interior) were sampled in July of 2007; in each plant, 10 apical branches were collected at the top, middle and bottom crown levels. Our results supported the prediction of greater richness of gall morphotypes in the edge habitat compared with remnant interior. In a similar way, gall abundance and frequency of attacked leaves were also greater in the fragment edge. These findings consequently suggest a positive response of galling insect diversity to edge effect; in the Saint-Hilaire forest, this effect probably operates through the changes in microclimatic conditions of edge habitats, which results in an increased hygrothermal stress, a determinant factor to distribution patterns of galling insects. We also concluded that these organisms could be employed as biological indicators (i) because of their host-specificity, (ii) they are sensitive to changes in plant quality, and (iii) present dissimilar and specific responses to local variation in habitat conditions.

  12. The effective action for edge states in higher-dimensional quantum Hall systems

    International Nuclear Information System (INIS)

    Karabali, Dimitra; Nair, V.P.

    2004-01-01

    We show that the effective action for the edge excitations of a quantum Hall droplet of fermions in higher dimensions is generically given by a chiral bosonic action. We explicitly analyze the quantum Hall effect on complex projective spaces CP k , with a U(1) background magnetic field. The edge excitations are described by Abelian bosonic fields on S 2k-1 with only one spatial direction along the boundary of the droplet relevant for the dynamics. Our analysis also leads to an action for edge excitations for the case of the Zhang-Hu four-dimensional quantum Hall effect defined on S 4 with an SU(2) background magnetic field, using the fact that CP 3 is an S 2 -bundle over S 4

  13. An effective method for smoothing the staggered dose distribution of multi-leaf collimator field edge

    International Nuclear Information System (INIS)

    Hwang, I.-M.; Lin, S.-Y.; Lee, M.-S.; Wang, C.-J.; Chuang, K.-S.; Ding, H.-J.

    2002-01-01

    Purpose: To smooth the staggered dose distribution that occurs in stepped leaves defined by a multi-leaf collimator (MLC). Materials and methods: The MLC Shaper program controlled the stepped leaves, which were shifted in a traveling range, the pattern of shift was from the position of out-bound to in-bound with a one-segment (cross-bound), three-segment, and five-segment shifts. Film was placed at a depth of 1.5 cm and irradiated with the same irradiation dose used for the cerrobend block experiment. Four field edges with the MLC defining at 15 deg., 30 deg., 45 deg., 60 deg. angels relative to the jaw edge were performed, respectively, in this study. For the field edge defined by the multi-segment technique, the amplitude of the isodose lines for 50% isodose line and both the 80% and 20% isodose lines were measured. The effective penumbra widths with 90-10% and 80-20% distances for different irradiations were determined at four field edges with the MLC defining at 15 deg., 30 deg., 45 deg., 60 deg. angels relative to the jaw edge. Results: Use of the five-segment technique for multi-leaf collimation at the 60 deg. angle field edge smoothes each isodose line into an effectively straight line, similar to the pattern achieved using a cerrobend block. The separation of these lines is also important. The 80-20% effective penumbra width with five-segment techniques (8.23 mm) at 60 deg. angle relative to the jaw edge is little wider (1.9 times) than the penumbra of cerrobend block field edge (4.23 mm). We also found that the 90-10% effective penumbra width with five-segment techniques (12.68 mm) at 60 deg. angle relative to the jaw edge is little wider (1.28 times) than the penumbra of cerrobend block field edge (9.89 mm). Conclusion: The multi-segment technique is effective in smoothing the MLC staggered field edge. The effective penumbra width with more segment techniques at larger degree angles relative to the field edge is little wider than the penumbra for a

  14. Edge Effects on Community and Social Structure of Northern Temperate Deciduous Forest Ants

    Directory of Open Access Journals (Sweden)

    Valerie S. Banschbach

    2012-01-01

    Full Text Available Determining how ant communities are impacted by challenges from habitat fragmentation, such as edge effects, will help us understand how ants may be used as a bioindicator taxon. To assess the impacts of edge effects upon the ant community in a northern temperate deciduous forest, we studied edge and interior sites in Jericho, VT, USA. The edges we focused upon were created by recreational trails. We censused the ants at these sites for two consecutive growing seasons using pitfall traps and litter plot excavations. We also collected nests of the most common ant species at our study sites, Aphaenogaster rudis, for study of colony demography. Significantly greater total numbers of ants and ant nests were found in the edge sites compared to the interior sites but rarefaction analysis showed no significant difference in species richness. Aphaenogaster rudis was the numerically dominant ant in the habitats sampled but had a greater relative abundance in the interior sites than in the edge sites both in pitfall and litter plot data. Queen number of A. rudis significantly differed between the nests collected in the edge versus the interior sites. Habitat-dependent changes in social structure of ants represent another possible indicator of ecosystem health.

  15. Study of the round edge disk hole's effects on the frequency and wakefield in disc structure

    International Nuclear Information System (INIS)

    Wang Lanfa; Hou Mi; Zhang Chuang

    2001-01-01

    The effects of the round edge beam hole on the frequency and wake field are studied using variational method, which allows for rounded iris disk hole without any approximation in shape treatment. The frequencies and wake fields of accelerating mode and dipole mode are studied for different edge radius cases, including the flat edge shape that is often used to approximately represent the actual structure geometry. The edge hole shape has weak effect on the frequency, but strong effect on the wakefield. The study shows that the amounts of wake fields are not precise enough with the assumption of the flat edge beam hole as of round edge. The shape assumption brings loss factor 15% err for the most dangerous EH 16 mode

  16. Adjustment of Sentinel-2 Multi-Spectral Instrument (MSI Red-Edge Band Reflectance to Nadir BRDF Adjusted Reflectance (NBAR and Quantification of Red-Edge Band BRDF Effects

    Directory of Open Access Journals (Sweden)

    David P. Roy

    2017-12-01

    Full Text Available Optical wavelength satellite data have directional reflectance effects over non-Lambertian surfaces, described by the bidirectional reflectance distribution function (BRDF. The Sentinel-2 multi-spectral instrument (MSI acquires data over a 20.6° field of view that have been shown to have non-negligible BRDF effects in the visible, near-infrared, and short wave infrared bands. MSI red-edge BRDF effects have not been investigated. In this study, they are quantified by an examination of 6.6 million (January 2016 and 10.7 million (April 2016 pairs of forward and back scatter reflectance observations extracted over approximately 20° × 10° of southern Africa. Non-negligible MSI red-edge BRDF effects up to 0.08 (reflectance units across the 290 km wide MSI swath are documented. A recently published MODIS BRDF parameter c-factor approach to adjust MSI visible, near-infrared, and short wave infrared reflectance to nadir BRDF-adjusted reflectance (NBAR is adapted for application to the MSI red-edge bands. The red-edge band BRDF parameters needed to implement the algorithm are provided. The parameters are derived by a linear wavelength interpolation of fixed global MODIS red and NIR BRDF model parameters. The efficacy of the interpolation is investigated using POLDER red, red-edge, and NIR BRDF model parameters, and is shown to be appropriate for the c-factor NBAR generation approach. After adjustment to NBAR, red-edge MSI BRDF effects were reduced for the January data (acquired close to the solar principal where BRDF effects are maximal and the April data (acquired close to the orthogonal plane for all the MSI red-edge bands.

  17. Does the edge effect influence plant community structure in a tropical dry forest?

    Directory of Open Access Journals (Sweden)

    Diogo Gallo Oliveira

    2013-04-01

    Full Text Available Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges.

  18. Edge-on gating effect in molecular wires.

    Science.gov (United States)

    Lo, Wai-Yip; Bi, Wuguo; Li, Lianwei; Jung, In Hwan; Yu, Luping

    2015-02-11

    This work demonstrates edge-on chemical gating effect in molecular wires utilizing the pyridinoparacyclophane (PC) moiety as the gate. Different substituents with varied electronic demands are attached to the gate to simulate the effect of varying gating voltages similar to that in field-effect transistor (FET). It was observed that the orbital energy level and charge carrier's tunneling barriers can be tuned by changing the gating group from strong electron acceptors to strong electron donors. The single molecule conductance and current-voltage characteristics of this molecular system are truly similar to those expected for an actual single molecular transistor.

  19. Analyzing the edge effects in a Brazilian seasonally dry tropical forest.

    Science.gov (United States)

    Arruda, D M; Eisenlohr, P V

    2016-02-01

    Due to the deciduous nature of dry forests (widely known as seasonally dry tropical forests) they are subject to microclimatic conditions not experienced in other forest formations. Close examinations of the theory of edge effects in dry forests are still rare and a number of questions arise in terms of this topic. In light of this situation we examined a fragment of the dry forest to respond to the following questions: (I) Are there differences in canopy cover along the edge-interior gradient during the dry season? (II) How does the microclimate (air temperature, soil temperature, and relative humidity) vary along that gradient? (III) How does the microclimate influence tree species richness, evenness and abundance along that gradient? (IV) Are certain tree species more dominant closer to the forest edges? Regressions were performed to address these questions. Their coefficients did not significantly vary from zero. Apparently, the uniform openness of the forest canopy caused a homogeneous internal microclimate, without significant differentiation in habitats that would allow modifications in biotic variables tested. We conclude that the processes of edge effect commonly seen in humid forests, not was shared with the dry forest assessed.

  20. Effects of plasma shape and profiles on edge stability in DIII-D

    International Nuclear Information System (INIS)

    Lao, L.L.; Chan, V.S.; Chen, L.

    1998-12-01

    The results of recent experimental and theoretical studies concerning the effects of plasma shape and current and pressure profiles on edge instabilities in DIII-D are presented. Magnetic oscillations with toroidal mode number n ∼ 2--9 and a fast growth time γ -1 = 20--150 micros are often observed prior to the first giant type 1 ELM in discharges with moderate squareness. High n ideal ballooning second stability access encourages edge instabilities by facilitating the buildup of the edge pressure gradient and bootstrap current density which destabilize the intermediate to low n modes. Analysis suggests that discharges with large edge pressure gradient and bootstrap current density are more unstable to n > 1 modes. Calculations and experimental results show that ELM amplitude and frequency can be varied by controlling access to the second ballooning stability regime at the edge through variation of the squareness of the discharge shape. A new method is proposed to control edge instabilities by reducing access to the second ballooning stability regime at the edge using high order local perturbation of the plasma shape in the outboard bad curvature region

  1. Effects of plasma shape and profiles on edge stability in DIII-D

    International Nuclear Information System (INIS)

    Lao, L.L.; Ferron, J.R.; Miller, R.L.

    2001-01-01

    The results of recent experimental and theoretical studies concerning the effects of plasma shape and current and pressure profiles on edge instabilities in DIII-D are presented. Magnetic oscillations with toroidal mode number n∼2-9 and a fast growth time γ -1 =20-150μs are often observed prior to the first giant type I ELM in discharges with moderate squareness. High n ideal ballooning second stability access encourages edge instabilities by facilitating the buildup of the edge pressure gradient and bootstrap current density which destabilize the intermediate to low n modes. Analysis suggests that discharges with large edge pressure gradient and bootstrap current density are more unstable to n>1 modes. Calculations and experimental results show that ELM amplitude and frequency can be varied by controlling access to the second ballooning stability regime at the edge through variation of the squareness of the discharge shape. A new method is proposed to control edge instabilities by reducing access to the second ballooning stability regime at the edge using high order local perturbation of the plasma shape in the outboard bad curvature region. (author)

  2. Contextual influences in texture-segmentation: distinct effects from elements along the edge and in the texture-region.

    Science.gov (United States)

    Robol, Valentina; Grassi, Massimo; Casco, Clara

    2013-08-09

    Both neurophysiological and psychophysical evidence suggest a strong influence of context on texture-segmentation. Here we extend and further analyse this issue, with a particular focus on the underlying mechanism. Specifically, we use a texture-edge discrimination task and separately investigate the effect of elements far from and along the edge. Consistent with previous studies, we report both an iso-near contextual effect - whereby performance is better if elements along the edge are iso-oriented compared to ortho-oriented to the edge - as well as an ortho-far effect - whereby discrimination is higher when elements far from the edge are orthogonal to the edge. We found that backward mask, which is known to interrupt re-entrant processing from extrastriate areas, only interferes with the iso-near effect whereas perturbing orientation, position or contrast polarity of elements far from the edge only abolishes the ortho-far effect. This suggests that feedback processes may be involved in the iso-near effect. Instead, the ortho-far effect may be accounted for by recurrent interactions among 1st order filters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Cutting Edge Localisation in an Edge Profile Milling Head

    NARCIS (Netherlands)

    Fernandez Robles, Laura; Azzopardi, George; Alegre, Enrique; Petkov, Nicolai

    2015-01-01

    Wear evaluation of cutting tools is a key issue for prolonging their lifetime and ensuring high quality of products. In this paper, we present a method for the effective localisation of cutting edges of inserts in digital images of an edge profile milling head. We introduce a new image data set of

  4. Truncation effects in connected arrays: Analytical models to describe the edge-induced wave phenomena

    NARCIS (Netherlands)

    Neto, A.; Cavallo, D.; Gerini, G.

    2011-01-01

    This paper presents a Green's function based procedure to assess edge effects in finite wideband connected arrays. Truncation effects are more severe in broadband arrays, since the inter-element mutual coupling facilitates the propagation of edge-born waves that can become dominant over large

  5. Effect of a serrated trailing edge on sound radiation from nearby quadrupoles.

    Science.gov (United States)

    Karimi, Mahmoud; Croaker, Paul; Kinns, Roger; Kessissoglou, Nicole

    2017-05-01

    A periodic boundary element technique is implemented to study the noise reduction capability of a plate with a serrated trailing edge under quadrupole excitation. It is assumed for this purpose that the quadrupole source tensor is independent of the trailing edge configuration and that the effect of the trailing edge shape is to modify sound radiation from prescribed boundary layer sources. The flat plate is modelled as a continuous structure with a finite repetition of small spanwise segments. The matrix equation formulated by the periodic boundary element method for this 3D acoustic scattering problem is represented as a block Toeplitz matrix. The discrete Fourier transform is employed in an iterative algorithm to solve the block Toeplitz system. The noise reduction mechanism for a serrated trailing edge in the near field is investigated by comparing contour plots obtained from each component of the quadrupole for unserrated and serrated trailing edge plate models. The noise reduction due to the serrated trailing edge is also examined as a function of the source location.

  6. Properties on the edge: graphene edge energies, edge stresses, edge warping, and the Wulff shape of graphene flakes

    International Nuclear Information System (INIS)

    Branicio, Paulo S; Jhon, Mark H; Gan, Chee Kwan; Srolovitz, David J

    2011-01-01

    It has been shown that the broken bonds of an unreconstructed graphene edge generate compressive edge stresses leading to edge warping. Here, we investigate edge energies and edge stresses of graphene nanoribbons with arbitrary orientations from armchair to zigzag, considering both flat and warped edge shapes in the presence and absence of hydrogen. We use the second generation reactive empirical bond order potential to calculate the edge energies and stresses for clean and hydrogenated edges. Using these energies, we perform a Wulff construction to determine the equilibrium shapes of flat graphene flakes as a function of hydrogen chemical potential. While edge stresses for clean, flat edges are compressive, they become tensile if allowed to warp. Conversely, we find that edge energies change little (∼1%) with edge warping. Hydrogenation of the edges virtually eliminates both the edge energy and edge stresses. For warped edges an approximately linear relationship is found between amplitudes and wavelengths. The equilibrium shape of a graphene flake is determined by the value of the hydrogen chemical potential. For very small (and large) values of it the flakes have a nearly hexagonal (dodecagon) shape with zigzag oriented edges, while for intermediate values graphene flakes are found with complex shapes

  7. Effect of readout direction in the edge profile on the modulation transfer function of computed radiographic systems by use of the edge method.

    Science.gov (United States)

    Tanaka, Nobukazu; Morishita, Junji; Tsuda, Norisato; Ohki, Masafumi

    2013-07-01

    We investigated the effect of the readout direction of the edge profile obtained by the edge method on the presampled modulation transfer function (MTF) in various computed radiographic (CR) systems. There were no differences in the MTFs derived from two edge profiles in the sub-scanning direction of four CR systems used in this study. On the other hand, the MTFs measured at a readout direction from the low (edge) to the high (direct exposure) exposure region were higher than those measured at a readout direction from the high to the low exposure region in the laser-beam scanning direction for three of the four CR systems. Although this phenomenon depends on the CR system, it is important to understand and indicate both MTFs at the two edge profiles in the laser-beam scanning direction for accurate assessment of the resolution property.

  8. Role of edge effect on small mammal populations in a forest fragment

    International Nuclear Information System (INIS)

    Wike, L.D.

    2000-01-01

    In many cases, edge effect may determine the distribution and densities of small mammal populations. In 1995 and 1998, a mark and recapture study was conducted at the Savannah River Site (SRS), Aiken, SC, to evaluate the role of forest edge habitat. The area studied was an abandoned home site that had been recently isolated by a timber harvest. Harvest activities left a distinct edge of old field and planted pine contrasting with a relatively xeric, mixed hardwood stand. Trapping was conducted for 17 days in 1995 and 14 days in 1998. Three 30 m by 150 m grids were placed in the clear-cut, edge, and hardwood interior habitats. For both years the principal species captured were Peromyscus gossypinus, P. polionotus, and Neotoma floridana. The edge habitat accounted for approximately 55 percent of all captures and nearly four times as many recaptures as the interior and clear-cut habitats. In 1998, greater numbers of N. floridana were trapped than in 1995. The results indicate that the use of edge habitat can be pronounced even within simple communities. Stewards of managed or restored habitats need to carefully consider the role of edge in these systems. In managed areas such as waste sites, movement of material within the food chain could be reduced by minimizing edge habitat around the points of contamination

  9. Effect of finite edge radius on ductile fracture ahead of the cutting tool edge in micro-cutting of Al2024-T3

    International Nuclear Information System (INIS)

    Subbiah, Sathyan; Melkote, Shreyes N.

    2008-01-01

    Evidence of ductile fracture leading to material separation has been reported recently in ductile metal cutting [S. Subbiah, S.N. Melkote, ASME J. Manuf. Sci. Eng. 28(3) (2006)]. This paper investigates the effect of finite edge radius on such ductile fracture. The basic question of whether such ductile fracture occurs in the presence of a finite edge radius is explored by performing a series of experiments with inserts of different edge radii at various uncut chip thickness values ranging from 15 to 105 μm. Chip-roots are obtained in these experiments using a quick-stop device and examined in a scanning electron microscope. Clear evidence of material separation is seen at the interface zone between the chip and machined surface even when the edge radius is large compared to the uncut chip thickness. Failure is seen to occur at the upper, middle, and/or the lower edges of the interface zone. Based on these observations, a hypothesis is presented for the events leading to the occurrence of this failure when cutting with an edge radius tool. Finite element simulations are performed to study the nature of stress state ahead of the tool edge with and without edge radius. Hydrostatic stress is seen to be tensile in front of the tool and hence favors the occurrence of ductile fracture leading to material separation. The stress components are, however lower than those seen with a sharp tool

  10. Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes

    Science.gov (United States)

    Geist, Eric L.

    2018-04-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange ( φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  11. Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes

    Science.gov (United States)

    Geist, Eric L.

    2018-02-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  12. Effect of the Curved Fin Top Edge on the Electrical Characteristics of FinFETs.

    Science.gov (United States)

    Ahn, Joonsung; Kim, Tae Whan

    2018-03-01

    The effect of the curved fin top edge on the electrical characteristics of FinFETs was investigated. The curvature radius of the fin top edge for the FinFETs was changed from 0 to 5 nm in order to determine the optimum condition of the electrical characteristics for the devices. The on-current level of the FinFETs with a curvature radius of 5 nm of fin top edge was 24.45% larger than that of the FinFETs with a cuboid fin. The electron current density and the electron mobility of the fin top edge for the FinFETs were larger than those for the FinFETs with a cuboid fin. The electrical characteristics of the FinFETs with a curvature radius of 5 nm for the fin top edge showed the best performance due to the largest expansion of the effective channel region.

  13. Edge, height and visibility effects on nest predation by birds and mammals in the Brazilian cerrado

    Science.gov (United States)

    Dodonov, Pavel; Paneczko, Ingrid Toledo; Telles, Marina

    2017-08-01

    Edge influence is one of the main impacts in fragmented landscapes; yet, most of studies on edge influence have focused on high-contrast edges, and the impacts of low-contrast edges and narrow linear openings are less understood. Edge influence often affects bird nest predation, but these effects are not ubiquitous and may depend on characteristics such as nest height and visibility. We performed an experiment on nest predation in a migratory passerine, Elaenia chiriquensis (Lesser Elaenia; Passeriformes: Tyrannidae), in a savanna vegetation of the Brazilian Cerrado biome in South-Eastern Brazil. We used 89 real E. chiriquensis nests, collected during previous reproductive seasons, with two plasticine eggs in each, and randomly distributed them at two locations (edge - up to 20 m from a firebreak edge and interior - approx. 150-350 m from the edge) and two heights (low - 60-175 cm and high - 190-315 cm above ground). We also measured leaf and branch density around each nest. We performed this study on two 15-days campaigns, checking the nests every 2-3 days and removing those with predation marks. We sorted the predation marks into those made by birds, mammals, or unidentified predators, and used generalized linear models to assess the effects of location, height and leaf density on survival time and predator type. Only four nests had not been predated during the experiment; 55 nests were predated by birds, 7 by mammals, and 23 by unidentified predators. Low nests in the interior tended to have larger survival times whereas high nests at the edge tended to be more predated by birds and less predated by mammals. Thus, even a low-contrast (firebreak) edge may significantly increase nest predation, which is also affected by the nest's height, mainly due to predation by birds. These effects may be due to predator movement along the edge as well as to edge-related changes in vegetation structure. We suggest that higher-contrast edges which may also be used as movement

  14. Crop type influences edge effects on the reproduction of songbirds in sagebrush habitat near agriculture

    Directory of Open Access Journals (Sweden)

    Elly C. Knight

    2014-06-01

    Full Text Available Extensive fragmentation of the sagebrush shrubsteppe of western North America could be contributing to observed population declines of songbirds in sagebrush habitat. We examined whether habitat fragmentation impacts the reproduction of songbirds in sagebrush edge habitat near agriculture, and if potential impacts vary depending on the adjacent crop type. Specifically, we evaluated whether nest abundance and nest survival varied between orchard edge habitat, vineyard edge habitat, and interior habitat. We then examined whether the local nest predator community and vegetation could explain the differences detected. We detected fewer nests in edge than interior habitat. Nest abundance per songbird was also lower in edge than interior habitat, although only adjacent to vineyards. Nest predation was more frequent in orchard edge habitat than vineyard edge or interior habitat. Predators identified with nest cameras were primarily snakes, however, reduced nest survival in orchard edge habitat was not explained by differences in the abundance of snakes or any other predator species identified. Information theoretic analysis of daily survival rates showed that greater study plot shrub cover and lower grass height at nests were partially responsible for the lower rate of predation-specific daily nest survival rate (PDSR observed in orchard edge habitat, but additional factors are likely important. Results of this study suggest that different crop types have different edge effects on songbirds nesting in sagebrush shrubsteppe, and that these reproductive edge effects may contribute to observed declines of these species. Habitat managers should avoid the creation of new orchard-sagebrush habitat edges to avoid further impacts on already declining songbird populations.

  15. Modeling the transient aerodynamic effects during the motion of a flexible trailing edge

    International Nuclear Information System (INIS)

    Wolff, T; Seume, J R

    2016-01-01

    Wind turbine blades have been becoming longer and more slender during the last few decades. The longer lever arm results in higher stresses at the blade root. Hence, the unsteady loads induced by turbulence, gust, or wind shear increase. One promising way to control these loads is to use flexible trailing edges near the blade tip. The unsteady effects which appear during the motion of a flexible trailing edge must be considered for the load calculation during the design process because of their high influence on aeroelastic effects and hence on the fatigue loads. This is not yet possible in most of the wind turbine simulation environments. Consequently, an empirical model is developed in the present study which accounts for unsteady effects during the motion of the trailing edge. The model is based on Fourier analyses of results generated with Reynolds-Averaged Navier-Stokes (RANS) simulations of a typical thin airfoil with a deformable trailing edge. The validation showed that the model fits Computational Fluid Dynamics (CFD) results simulated with a random time series of the deflection angle. (paper)

  16. Does the edge effect impact on the measure of spatial accessibility to healthcare providers?

    Science.gov (United States)

    Gao, Fei; Kihal, Wahida; Le Meur, Nolwenn; Souris, Marc; Deguen, Séverine

    2017-12-11

    Spatial accessibility indices are increasingly applied when investigating inequalities in health. Although most studies are making mentions of potential errors caused by the edge effect, many acknowledge having neglected to consider this concern by establishing spatial analyses within a finite region, settling for hypothesizing that accessibility to facilities will be under-reported. Our study seeks to assess the effect of edge on the accuracy of defining healthcare provider access by comparing healthcare provider accessibility accounting or not for the edge effect, in a real-world application. This study was carried out in the department of Nord, France. The statistical unit we use is the French census block known as 'IRIS' (Ilot Regroupé pour l'Information Statistique), defined by the National Institute of Statistics and Economic Studies. The geographical accessibility indicator used is the "Index of Spatial Accessibility" (ISA), based on the E2SFCA algorithm. We calculated ISA for the pregnant women population by selecting three types of healthcare providers: general practitioners, gynecologists and midwives. We compared ISA variation when accounting or not edge effect in urban and rural zones. The GIS method was then employed to determine global and local autocorrelation. Lastly, we compared the relationship between socioeconomic distress index and ISA, when accounting or not for the edge effect, to fully evaluate its impact. The results revealed that on average ISA when offer and demand beyond the boundary were included is slightly below ISA when not accounting for the edge effect, and we found that the IRIS value was more likely to deteriorate than improve. Moreover, edge effect impact can vary widely by health provider type. There is greater variability within the rural IRIS group than within the urban IRIS group. We found a positive correlation between socioeconomic distress variables and composite ISA. Spatial analysis results (such as Moran's spatial

  17. An evaluation of edge effects in nutritional accessibility and availability measures: a simulation study.

    Science.gov (United States)

    Van Meter, Emily M; Lawson, Andrew B; Colabianchi, Natalie; Nichols, Michele; Hibbert, James; Porter, Dwayne E; Liese, Angela D

    2010-07-27

    This paper addresses the statistical use of accessibility and availability indices and the effect of study boundaries on these measures. The measures are evaluated via an extensive simulation based on cluster models for local outlet density. We define outlet to mean either food retail store (convenience store, supermarket, gas station) or restaurant (limited service or full service restaurants). We designed a simulation whereby a cluster outlet model is assumed in a large study window and an internal subset of that window is constructed. We performed simulations on various criteria including one scenario representing an urban area with 2000 outlets as well as a non-urban area simulated with only 300 outlets. A comparison is made between estimates obtained with the full study area and estimates using only the subset area. This allows the study of the effect of edge censoring on accessibility measures. The results suggest that considerable bias is found at the edges of study regions in particular for accessibility measures. Edge effects are smaller for availability measures (when not smoothed) and also for short range accessibility It is recommended that any study utilizing these measures should correct for edge effects. The use of edge correction via guard areas is recommended and the avoidance of large range distance-based accessibility measures is also proposed.

  18. Edge geometry effects on resonance response of electroplated cylindrical Ni/PZT/Ni magnetoelectric composites

    Science.gov (United States)

    Yakubov, Vladislav; Xu, Lirong; Volinsky, Alex A.; Qiao, Lijie; Pan, De'an

    2017-08-01

    Trilayer Ni/PZT/Ni cylindrical magnetoelectric (ME) composites were prepared by electrodeposition, a process, which creates sub-millimeter raised edges due to current concentration near sharp points. The ME response in both axial and vertical modes was measured with the edges, with only outer edges removed, and with both outer and inner edges removed. The ME voltage coefficient improved at resonance by 40% and 147% without the edges in the vertical and axial modes, respectively. The observed improvements in three different samples were only present at the ME resonance and no changes were detected outside of the ME resonance. Mechanical quality factor at resonance also improved with no effect on the resonant frequency. Experimentally demonstrated minor geometry changes resulted in substantial ME improvement at resonant frequency. This study demonstrates device performance optimization. The observed effects have been attributed to improved vibrations in terms of decreased damping coefficient and enhanced vibration amplitude at resonance.

  19. Edge geometry effects on resonance response of electroplated cylindrical Ni/PZT/Ni magnetoelectric composites

    Directory of Open Access Journals (Sweden)

    Vladislav Yakubov

    2017-08-01

    Full Text Available Trilayer Ni/PZT/Ni cylindrical magnetoelectric (ME composites were prepared by electrodeposition, a process, which creates sub-millimeter raised edges due to current concentration near sharp points. The ME response in both axial and vertical modes was measured with the edges, with only outer edges removed, and with both outer and inner edges removed. The ME voltage coefficient improved at resonance by 40% and 147% without the edges in the vertical and axial modes, respectively. The observed improvements in three different samples were only present at the ME resonance and no changes were detected outside of the ME resonance. Mechanical quality factor at resonance also improved with no effect on the resonant frequency. Experimentally demonstrated minor geometry changes resulted in substantial ME improvement at resonant frequency. This study demonstrates device performance optimization. The observed effects have been attributed to improved vibrations in terms of decreased damping coefficient and enhanced vibration amplitude at resonance.

  20. Effect of neutral atoms on tokamak edge plasmas

    International Nuclear Information System (INIS)

    Fueloep, T.; Catto, Peter J.; Helander, P.

    2001-01-01

    Neutral atoms can significantly influence the physics of tokamak edge plasmas, e.g., by affecting the radial electric field and plasma flow there, which may, in turn, be important for plasma confinement. Earlier work [Fueloep et al., Phys. Plasmas 5, 3969 (1998)], assuming short mean-free path neutrals and Pfirsch-Schlueter ions, has shown that the ion-neutral coupling through charge-exchange affects the neoclassical flow velocity significantly. However, the mean-free path of the neutrals is not always small in comparison with the radial scale length of densities and temperatures in the edge pedestal. It is therefore desirable to determine what happens in the limit when the neutral mean-free path is comparable with the scale length. In the present work a self-similar solution for the neutral distribution function allowing for strong temperature and density variation is used, following the analysis of Helander and Krasheninnikov [Phys. Plasmas 3, 226 (1995)]. The self-similar solution is possible if the ratio of the mean-free path to the temperature and density scale length is constant throughout the edge plasma. The resulting neutral distribution function is used to investigate the neutral effects on the ion flow and electrostatic potential as this ratio varies from much less than one to order unity

  1. Effect of dynamical phase on the resonant interaction among tsunami edge wave modes

    Science.gov (United States)

    Geist, Eric L.

    2018-01-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ1 + θ2 − θ3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  2. Modeling of edge effect in subaperture tool influence functions of computer controlled optical surfacing.

    Science.gov (United States)

    Wan, Songlin; Zhang, Xiangchao; He, Xiaoying; Xu, Min

    2016-12-20

    Computer controlled optical surfacing requires an accurate tool influence function (TIF) for reliable path planning and deterministic fabrication. Near the edge of the workpieces, the TIF has a nonlinear removal behavior, which will cause a severe edge-roll phenomenon. In the present paper, a new edge pressure model is developed based on the finite element analysis results. The model is represented as the product of a basic pressure function and a correcting function. The basic pressure distribution is calculated according to the surface shape of the polishing pad, and the correcting function is used to compensate the errors caused by the edge effect. Practical experimental results demonstrate that the new model can accurately predict the edge TIFs with different overhang ratios. The relative error of the new edge model can be reduced to 15%.

  3. Edge effects enhance selfing and seed harvesting efforts in the insect-pollinated Neotropical tree Copaifera langsdorffii (Fabaceae).

    Science.gov (United States)

    Tarazi, R; Sebbenn, A M; Kageyama, P Y; Vencovsky, R

    2013-06-01

    Edge effects may affect the mating system of tropical tree species and reduce the genetic diversity and variance effective size of collected seeds at the boundaries of forest fragments because of a reduction in the density of reproductive trees, neighbour size and changes in the behaviour of pollinators. Here, edge effects on the genetic diversity, mating system and pollen pool of the insect-pollinated Neotropical tree Copaifera langsdorffii were investigated using eight microsatellite loci. Open-pollinated seeds were collected from 17 seed trees within continuous savannah woodland (SW) and were compared with seeds from 11 seed trees at the edge of the savannah remnant. Seeds collected from the SW had significantly higher heterozygosity levels (Ho=0.780; He=0.831) than seeds from the edge (Ho=0.702; He=0.800). The multilocus outcrossing rate was significantly higher in the SW (tm=0.859) than in the edge (tm=0.759). Pollen pool differentiation was significant, however, it did not differ between the SW (=0.105) and the edge (=0.135). The variance effective size within the progenies was significantly higher in the SW (Ne=2.65) than at the edge (Ne=2.30). The number of seed trees to retain the reference variance effective size of 500 was 189 at the SW and 217 at the edge. Therefore, it is preferable that seed harvesting for conservation and environmental restoration strategies be conducted in the SW, where genetic diversity and variance effective size within progenies are higher.

  4. Many-body effects in the mesoscopic x-ray edge problem

    International Nuclear Information System (INIS)

    Hentschel, Martina; Roeder, Georg; Ullmo, Denis

    2007-01-01

    Many-body phenomena, a key interest in the investigation of bulk solid state systems, are studied here in the context of the x-ray edge problem for mesoscopic systems. We investigate the many-body effects associated with the sudden perturbation following the x-ray exciton of a core electron into the conduction band. For small systems with dimensions at the nanoscale we find considerable deviations from the well-understood metallic case where Anderson orthogonality catastrophe and the Mahan-Nozieres-DeDominicis response cause characteristic deviations of the photoabsorption cross section from the naive expectation. Whereas the K-edge is typically rounded in metallic systems, we find a slightly peaked K-edge in generic mesoscopic systems with chaotic-coherent electron dynamics. Thus the behavior of the photoabsorption cross section at threshold depends on the system size and is different for the metallic and the mesoscopic case. (author)

  5. Effect of the edge type and strain on the structural, electronic and magnetic properties of the BNRs.

    Science.gov (United States)

    Bhattacharyya, Swastibrata; Kawazoe, Yoshiyuki; Singhl, Abhishek K

    2012-03-01

    We present the effect of edge structures on the edge energy and stress of BN nanoribbons. Ab initio density functional calculations show that the armchair edge is lower in energy than the zigzag edge by 0.43 eV/angstrom. Both types of the edges are under the compressive stress. The zigzag edges are mechanically more stable than the armchair edges. Based on the calculated edge energies, the equilibrium shape of the BN flakes are found to be regular hexagonal, and dominated by the armchair edges. The zigzag ribbons are found to be half-metallic, whereas the armchair ribbons are semiconducting.

  6. Dynamic anthropogenic edge effects on the distribution and diversity of fungi in fragmented old-growth forests.

    Science.gov (United States)

    Ruete, Alejandro; Snäll, Tord; Jönsson, Mari

    2016-07-01

    Diversity patterns and dynamics at forest edges are not well understood. We disentangle the relative importance of edge-effect variables on spatio-temporal patterns in species richness and occupancy of deadwood-dwelling fungi in fragmented old-growth forests. We related richness and log occupancy by 10 old-growth forest indicator fungi and by two common fungi to log conditions in natural and anthropogenic edge habitats of 31 old-growth Picea abies forest stands in central Sweden. We compared edge-to-interior gradients (100 m) to the forest interior (beyond 100 m), and we analyzed stand-level changes after 10 yr. Both richness and occupancy of logs by indicator species was negatively related to adjacent young clear-cut edges, but this effect decreased with increasing clear-cut age. The occupancy of logs by indicator species also increased with increasing distance to the natural edges. In contrast, the occupancy of logs by common species was positively related or unrelated to distance to clear-cut edges regardless of the edge age, and this was partly explained by fungal specificity to substrate quality. Stand-level mean richness and mean occupancy of logs did not change for indicator or common species over a decade. By illustrating the importance of spatial and temporal dimensions of edge effects, we extend the general understanding of the distribution and diversity of substrate-confined fungi in fragmented old-growth forests. Our results highlight the importance of longer forest rotation times adjacent to small protected areas and forest set-asides, where it may take more than 50 yr for indicator species richness levels to recover to occupancy levels observed in the forest interior. Also, non-simultaneous clear-cutting of surrounding productive forests in a way that reduces the edge effect over time (i.e., dynamic buffers) may increase the effective core area of small forest set-asides and improve their performance on protecting species of special concern for

  7. The influence of anthropogenic edge effects on primate populations and their habitat in a fragmented rainforest in Costa Rica.

    Science.gov (United States)

    Bolt, Laura M; Schreier, Amy L; Voss, Kristofor A; Sheehan, Elizabeth A; Barrickman, Nancy L; Pryor, Nathaniel P; Barton, Matthew C

    2018-05-01

    When a forest is fragmented, this increases the amount of forest edge relative to the interior. Edge effects can lead to loss of animal and plant species and decreased plant biomass near forest edges. We examined the influence of an anthropogenic forest edge comprising cattle pasture, coconut plantations, and human settlement on the mantled howler (Alouatta palliata), white-faced capuchin (Cebus capucinus), Central American spider monkey (Ateles geoffroyi), and plant populations at La Suerte Biological Research Station (LSBRS), Costa Rica. We predicted that there would be lower monkey encounter rate, mean tree species richness, and diameter at breast height (DBH) in forest edge versus interior, and that monkeys would show species-specific responses to edge based on diet, body size, and canopy height preferences. Specifically, we predicted that howler monkeys would show positive or neutral edge effects due to their flexible folivorous diet, large body size, and preference for high canopy, capuchins would show positive edge effects due to their diverse diet, small body size, and preference for low to middle canopy, and spider monkeys would show negative edge effects due their reliance on ripe fruit, large body size, and preference for high upper canopy. We conducted population and vegetation surveys along edge and interior transects at LSBRS. Contrary to predictions, total monkey encounter rate did not vary between the forest edge and forest interior. Furthermore, all three species showed neutral edge effects with no significant differences in encounter rate between forest edge and interior. Interior transects had significantly higher mean tree species richness than edge transects, and interior trees had greater DBH than edge trees, although this difference was not significant. These results suggest that forest edges negatively impact plant populations at La Suerte but that the monkeys are able to withstand these differences in vegetation.

  8. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest.

    Science.gov (United States)

    Stone, Marisa J; Catterall, Carla P; Stork, Nigel E

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges ( 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10-20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity.

  9. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest

    Science.gov (United States)

    Catterall, Carla P.; Stork, Nigel E.

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges ( 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10–20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity. PMID:29494680

  10. Effect of leading-edge geometry on boundary-layer receptivity to freestream sound

    Science.gov (United States)

    Lin, Nay; Reed, Helen L.; Saric, W. S.

    1991-01-01

    The receptivity to freestream sound of the laminar boundary layer over a semi-infinite flat plate with an elliptic leading edge is simulated numerically. The incompressible flow past the flat plate is computed by solving the full Navier-Stokes equations in general curvilinear coordinates. A finite-difference method which is second-order accurate in space and time is used. Spatial and temporal developments of the Tollmien-Schlichting wave in the boundary layer, due to small-amplitude time-harmonic oscillations of the freestream velocity that closely simulate a sound wave travelling parallel to the plate, are observed. The effect of leading-edge curvature is studied by varying the aspect ratio of the ellipse. The boundary layer over the flat plate with a sharper leading edge is found to be less receptive. The relative contribution of the discontinuity in curvature at the ellipse-flat-plate juncture to receptivity is investigated by smoothing the juncture with a polynomial. Continuous curvature leads to less receptivity. A new geometry of the leading edge, a modified super ellipse, which provides continuous curvature at the juncture with the flat plate, is used to study the effect of continuous curvature and inherent pressure gradient on receptivity.

  11. An evaluation of edge effects in nutritional accessibility and availability measures: a simulation study

    Directory of Open Access Journals (Sweden)

    Porter Dwayne E

    2010-07-01

    Full Text Available Abstract Background This paper addresses the statistical use of accessibility and availability indices and the effect of study boundaries on these measures. The measures are evaluated via an extensive simulation based on cluster models for local outlet density. We define outlet to mean either food retail store (convenience store, supermarket, gas station or restaurant (limited service or full service restaurants. We designed a simulation whereby a cluster outlet model is assumed in a large study window and an internal subset of that window is constructed. We performed simulations on various criteria including one scenario representing an urban area with 2000 outlets as well as a non-urban area simulated with only 300 outlets. A comparison is made between estimates obtained with the full study area and estimates using only the subset area. This allows the study of the effect of edge censoring on accessibility measures. Results The results suggest that considerable bias is found at the edges of study regions in particular for accessibility measures. Edge effects are smaller for availability measures (when not smoothed and also for short range accessibility Conclusions It is recommended that any study utilizing these measures should correct for edge effects. The use of edge correction via guard areas is recommended and the avoidance of large range distance-based accessibility measures is also proposed.

  12. Even–odd effect on the edge states for zigzag phosphorene nanoribbons under a perpendicular electric field

    International Nuclear Information System (INIS)

    Zhou, Benliang; Zhou, Guanghui; Zhou, Benhu; Zhou, Xiaoying

    2017-01-01

    We study the variation of electronic property for zigzag-edge phosphorene nanoribbons (ZPNRs) under a perpendicular electric field (PEF). Using the tight-binding Hamiltonian combined with the surface lattice Green’s function (GF) approach, we show that the response of edge states to PEF for a N -ZPNR with even- or odd- N (number of zigzag chains) is qualitatively different. The field opens a gap between two edge bands near the Fermi energy for even- N ribbons, but for odd- N ones where the two edge bands are always nearly degenerated. This difference is originally from that the Stark-effect-induced energies at the upper and lower edges for even- and odd- N ZPNRs are different due to the peculiar lattice structure of phosphorene. In consequence, the electronic densities are more localized at the edges driven by the field for even- N ZPNRs but not for odd- N ones. This even–odd effect is also reflected in conductance, which indicates that the odd- N ZPNRs may be more suitable for the usage of field-effect transistor. (paper)

  13. Combined effect of matrix cracking and stress-free edge on delamination

    Science.gov (United States)

    Salpekar, S. A.; Obrien, T. K.

    1990-01-01

    The effect of the stress-free edge on the growth of local delaminations initiating from a matrix crack in (0 sub 2/90 sub 4) sub s and (+ or - 45.90 sub 4) sub s glass epoxy laminates is investigated using 3-D finite element analysis. The presence of high interlaminar normal stresses at the intersection (corner) of the matrix crack with the stress-free edge, suggests that a mode I delamination may initiate at the corners. The strain energy release rates (G) were calculated by modeling a uniform through-width delamination and two inclined delaminations at 10.6 deg and 45 deg to the matrix crack. All components of G have high values near the free edges. The mode I component of G is high at small delamination length and becomes zero for a delamination length of one-ply thickness. The total G values near the free edge agreed well with previously derived closed form solution. The quasi-3D solutions agreed well with the 3-D interior solutions.

  14. Edge printability: techniques used to evaluate and improve extreme wafer edge printability

    Science.gov (United States)

    Roberts, Bill; Demmert, Cort; Jekauc, Igor; Tiffany, Jason P.

    2004-05-01

    The economics of semiconductor manufacturing have forced process engineers to develop techniques to increase wafer yield. Improvements in process controls and uniformities in all areas of the fab have reduced film thickness variations at the very edge of the wafer surface. This improved uniformity has provided the opportunity to consider decreasing edge exclusions, and now the outermost extents of the wafer must be considered in the yield model and expectations. These changes have increased the requirements on lithography to improve wafer edge printability in areas that previously were not even coated. This has taxed all software and hardware components used in defining the optical focal plane at the wafer edge. We have explored techniques to determine the capabilities of extreme wafer edge printability and the components of the systems that influence this printability. We will present current capabilities and new detection techniques and the influence that the individual hardware and software components have on edge printability. We will show effects of focus sensor designs, wafer layout, utilization of dummy edge fields, the use of non-zero overlay targets and chemical/optical edge bead optimization.

  15. Finite-size effect on the dynamic and sensing performances of graphene resonators: the role of edge stress.

    Science.gov (United States)

    Kim, Chang-Wan; Dai, Mai Duc; Eom, Kilho

    2016-01-01

    We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on the edge structure of a graphene resonator plays a critical role on both its dynamic and sensing performances. We found that the resonance behavior of graphene can be tuned not only through edge stress but also through nonlinear vibration, and that the detection sensitivity of a graphene resonator can be controlled by using the edge stress. Our study sheds light on the important role of the finite-size effect in the effective design of graphene resonators for their mass sensing applications.

  16. Arthropods on plants in a fragmented Neotropical dry forest: a functional analysis of area loss and edge effects.

    Science.gov (United States)

    González, Ezequiel; Salvo, Adriana; Valladares, Graciela

    2015-02-01

    Loss and fragmentation of natural ecosystems are widely recognized as the most important threats to biodiversity conservation, with Neotropical dry forests among the most endangered ecosystems. Area and edge effects are major factors in fragmented landscapes. Here, we examine area and edge effects and their interaction, on ensembles of arthropods associated to native vegetation in a fragmented Chaco Serrano forest. We analyzed family richness and community composition of herbivores, predators, and parasitoids on three native plant species in 12 fragments of varying size and at edge/interior positions. We also looked for indicator families by using Indicator Species Analysis. Loss of family richness with the reduction of forest fragment area was observed for the three functional groups, with similar magnitude. Herbivores were richer at the edges without interaction between edge and area effects, whereas predators were not affected by edge/interior position and parasitoid richness showed an interaction between area and position, with a steeper area slope at the edges. Family composition of herbivore, predator, and parasitoid assemblages was also affected by forest area and/or edge/interior situation. We found three indicator families for large remnants and five for edges. Our results support the key role of forest area for conservation of arthropods taxonomic and functional diversity in a highly threatened region, and emphasize the need to understand the interactions between area and edge effects on such diversity. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  17. The impact of edge effect on termite community (Blattodea: Isoptera) in fragments of Brazilian Atlantic Rainforest.

    Science.gov (United States)

    Almeida, C S; Cristaldo, P F; Florencio, D F; Ribeiro, E J M; Cruz, N G; Silva, E A; Costa, D A; Araújo, A P A

    2017-01-01

    Habitat fragmentation is considered to be one of the biggest threats to tropical ecosystem functioning. In this region, termites perform an important ecological role as decomposers and ecosystem engineers. In the present study, we tested whether termite community is negatively affected by edge effects on three fragments of Brazilian Atlantic Rainforest. Termite abundance and vegetation structure were sampled in 10 transects (15 × 2 m), while termite richness, activity, and soil litter biomass were measured in 16 quadrants (5 × 2 m) at forest edge and interior of each fragment. Habitat structure (i.e. number of tree, diameter at breast height and soil litter biomass) did not differ between forest edge and interior of fragments. Termite richness, abundance and activity were not affected by edge effect. However, differences were observed in the β diversity between forest edge and interior as well as in the fragments sampled. The β diversity partitioning indicates that species turnover is the determinant process of termite community composition under edge effect. Our results suggest that conservation strategies should be based on the selection of several distinct sites instead of few rich sites (e.g. nesting).

  18. Effect of interaction strength on robustness of controlling edge dynamics in complex networks

    Science.gov (United States)

    Pang, Shao-Peng; Hao, Fei

    2018-05-01

    Robustness plays a critical role in the controllability of complex networks to withstand failures and perturbations. Recent advances in the edge controllability show that the interaction strength among edges plays a more important role than network structure. Therefore, we focus on the effect of interaction strength on the robustness of edge controllability. Using three categories of all edges to quantify the robustness, we develop a universal framework to evaluate and analyze the robustness in complex networks with arbitrary structures and interaction strengths. Applying our framework to a large number of model and real-world networks, we find that the interaction strength is a dominant factor for the robustness in undirected networks. Meanwhile, the strongest robustness and the optimal edge controllability in undirected networks can be achieved simultaneously. Different from the case of undirected networks, the robustness in directed networks is determined jointly by the interaction strength and the network's degree distribution. Moreover, a stronger robustness is usually associated with a larger number of driver nodes required to maintain full control in directed networks. This prompts us to provide an optimization method by adjusting the interaction strength to optimize the robustness of edge controllability.

  19. Atomistic study of drag, surface and inertial effects on edge dislocations in face-centered cubic metals

    International Nuclear Information System (INIS)

    Bitzek, Erik; Gumbsch, Peter

    2004-01-01

    Atomistic simulations of an accelerating edge dislocation were carried out to study the effects of drag and inertia. Using an embedded atom potential for nickel, the Peierls stress, the effective mass and the drag coefficient of an edge dislocation were determined for different temperatures and stresses in a simple slab geometry. The effect of {1 1 1} surfaces on an intersecting edge dislocation were studied by appropriately cutting the slab. A dislocation intersecting a surface step was used as a model system to demonstrate the importance of inertial effects for dynamically overcoming short range obstacles. Significant effects were found even at room temperature. A simple model based on the dislocation-obstacle interaction energies was used to describe the findings

  20. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    Science.gov (United States)

    Mani, Arjun; Benjamin, Colin

    2016-04-13

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin-orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible--the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case.

  1. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    International Nuclear Information System (INIS)

    Mani, Arjun; Benjamin, Colin

    2016-01-01

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin–orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible—the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case. (paper)

  2. Effect of ion temperature gradient driven turbulence on the edge-core connection for transient edge temperature sink

    International Nuclear Information System (INIS)

    Miyato, Naoaki

    2014-01-01

    Ion temperature gradient (ITG) driven turbulence simulation for a transient edge temperature sink localized in the poloidal plane is performed using a global Landau-fluid code in the electrostatic limit. Pressure perturbations with (m, n) = (±1, 0) are induced by the edge sink, where m and n are poloidal and toroidal mode numbers, respectively. It was found in the previous simulation that the nonlinear dynamics of these perturbations are responsible for the nonlocal plasma response/transport connecting edge and core in a toroidal plasma. Present simulation shows, however, that the ITG turbulence in the core region dissipates the large-scale (m, n) = (±1, 0) perturbations and weakens the edge-core connection observed in the previous simulation. (author)

  3. How strong is the edge effect in the adsorption of anticancer drugs on a graphene cluster?

    Science.gov (United States)

    Rungnim, Chompoonut; Chanajaree, Rungroj; Rungrotmongkol, Thanyada; Hannongbua, Supot; Kungwan, Nawee; Wolschann, Peter; Karpfen, Alfred; Parasuk, Vudhichai

    2016-04-01

    The adsorption of nucleobase-analog anticancer drugs (fluorouracil, thioguanine, and mercaptopurine) on a graphene flake (C54H18) was investigated by shifting the site at which adsorption occurs from one end of the sheet to the other end. The counterpoise-corrected M06-2X/cc-pVDZ binding energies revealed that the binding stability decreases in the sequence thioguanine > mercaptopurine > fluorouracil. We found that adsorption near the middle of the sheet is more favorable than adsorption near the edge due to the edge effect. This edge effect is stronger for the adsorption of thioguanine or mercaptopurine than for fluorouracil adsorption. However, the edge effect reduces the binding energy of the drug to the flake by only a small amount, <5 kcal/mol, depending on the adsorption site and the alignment of the drug at this site.

  4. Numerical Analysis of Edge Over Coating and Baffle Effect on Hot-Dip Galvanizing

    Science.gov (United States)

    Bao, Chengren; Kang, Yonglin; Li, Yan

    2017-06-01

    In hot-dip galvanizing process, air jet wiping control is so crucial to determine the coating thickness and uniformity of the zinc layer on the steel strip. A numerical simulation of gas-jet wiping in hot-dip galvanizing was conducted to minimize the occurrence of edge over coating (EOC). The causes of EOC were identified by contrasting and analyzing the airflow fields on the strip edge with and without a baffle. The factors influencing the airflow field on the strip edge during the change in the gap between the baffle and the strip edge were also analyzed. The effect of the distance between the air knife and the strip was evaluated. Technological parameters with on-site guidance role were obtained by combining them with the actual production to elucidate the role of the baffle in restraining the occurrence of EOC. The uniform distribution of pressure and coating thickness on the strip is achieved when the distance of the baffle from the strip edge is about 0.3 times of the jetting distance.

  5. Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons.

    Science.gov (United States)

    Liu, Qing-Bo; Wu, Dan-Dan; Fu, Hua-Hua

    2017-10-11

    By using the first-principle calculations combined with the non-equilibrium Green's function approach, we have studied spin caloritronic properties of graphene nanoribbons (GNRs) with different edge defects. The theoretical results show that the edge-defected GNRs with sawtooth shapes can exhibit spin-dependent currents with opposite flowing directions by applying temperature gradients, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). The edge defects bring about two opposite effects on the thermal spin currents: the enhancement of the symmetry of thermal spin-dependent currents, which contributes to the realization of pure thermal spin currents, and the decreasing of the spin thermoelectric conversion efficiency of the devices. It is fortunate that applying a gate voltage is an efficient route to optimize these two opposite spin thermoelectric properties towards realistic device applications. Moreover, due to the existence of spin-splitting band gaps, the edge-defected GNRs can be designed as spin-dependent Seebeck diodes and rectifiers, indicating that the edge-defected GNRs are potential candidates for room-temperature spin caloritronic devices.

  6. Plasma-surface interaction at sharp edges and corners during ion-assisted physical vapor deposition. Part I: Edge-related effects and their influence on coating morphology and composition

    International Nuclear Information System (INIS)

    Macak, E.B.; Muenz, W.-D.; Rodenburg, J.M.

    2003-01-01

    Ion-assisted physical vapor deposition (PVD) is a common industrial method for growing thin coatings of various interstitial nitride alloys. The interaction between the ions and three-dimensional nonflat samples during the deposition can, however, lead to unwanted local changes in the properties of the coating and thus its performance. We analyze the characteristics of the ion bombardment during ion-assisted PVD on sharp convex substrates and their effect on the growing coating. We show that the magnitude and the spatial extent of the edge-related changes are directly related to the characteristics of the plasma sheath around the biased edges. We examine the influence of the edge geometry and the deposition conditions. The edge-related effects are studied on the example of wedge-shaped samples coated with TiAlN/VN by closed-field unbalanced magnetron deposition process using high-flux low-energy Ar + -ion irradiation (J i /J me ∼4, E i =75-150 eV). The samples are analyzed by scanning electron microscopy and energy-dispersive x-ray spectroscopy. Significant changes in the morphology, thickness, and composition of the coatings are found in the edge region. In order to account for the changes, we apply a self-consistent model of the plasma sheath around wedge-shaped samples proposed by Watterson [J. Phys. D 22, 1300 (1989)], to our conditions. For a 30 deg. wedge coated at -150 V, the resputtering rate in the edge region is found to be increased by up to ten times as compared to flat substrate areas. The effect is due to the combined action of an increased ion flux and increased sputtering yield as a result of the nonperpendicular angle of incidence of ions in the edge region. The situation at sharp corners, where even more severe effects are observed, is analyzed and modeled in the companion article E. B. Macak et al., J. Appl. Phys. (2003) (Part II)

  7. Road-edge effects on herpetofauna in a lowland Amazonian rainforest

    Science.gov (United States)

    Ross J. Maynard; Nathalie C. Aall; Daniel Saenz; Paul S. Hamilton; Matthew A. Kwiatkowski

    2016-01-01

    The impact of roads on the flora and fauna of Neotropical rainforest is perhaps the single biggest driver of habitat modification and population declines in these ecosystems. We investigated the road-edge effect of a low-use dirt road on amphibian and reptile abundance, diversity, and...

  8. Film cooling adiabatic effectiveness measurements of pressure side trailing edge cooling configurations

    Directory of Open Access Journals (Sweden)

    R. Becchi

    2015-12-01

    Full Text Available Nowadays total inlet temperature of gas turbine is far above the permissible metal temperature; as a consequence, advanced cooling techniques must be applied to protect from thermal stresses, oxidation and corrosion the components located in the high pressure stages, such as the blade trailing edge. A suitable design of the cooling system for the trailing edge has to cope with geometric constraints and aerodynamic demands; state-of-the-art of cooling concepts often use film cooling on blade pressure side: the air taken from last compressor stages is ejected through discrete holes or slots to provide a cold layer between hot mainstream and the blade surface. With the goal of ensuring a satisfactory lifetime of blades, the design of efficient trailing edge film cooling schemes and, moreover, the possibility to check carefully their behavior, are hence necessary to guarantee an appropriate metal temperature distribution. For this purpose an experimental survey was carried out to investigate the film covering performance of different pressure side trailing edge cooling systems for turbine blades. The experimental test section consists of a scaled-up trailing edge model installed in an open loop suction type test rig. Measurements of adiabatic effectiveness distributions were carried out on three trailing edge cooling system configurations. The baseline geometry is composed by inclined slots separated by elongated pedestals; the second geometry shares the same cutback configuration, with an additional row of circular film cooling holes located upstream; the third model is equipped with three rows of in-line film cooling holes. Experiments have been performed at nearly ambient conditions imposing several blowing ratio values and using carbon dioxide as coolant in order to reproduce a density ratio close to the engine conditions (DR=1.52. To extend the validity of the survey a comparison between adiabatic effectiveness measurements and a prediction by

  9. Edge-detect interpolation for direct digital periapical images

    International Nuclear Information System (INIS)

    Song, Nam Kyu; Koh, Kwang Joon

    1998-01-01

    The purpose of this study was to aid in the use of the digital images by edge-detect interpolation for direct digital periapical images using edge-deted interpolation. This study was performed by image processing of 20 digital periapical images; pixel replication, linear non-interpolation, linear interpolation, and edge-sensitive interpolation. The obtained results were as follows ; 1. Pixel replication showed blocking artifact and serious image distortion. 2. Linear interpolation showed smoothing effect on the edge. 3. Edge-sensitive interpolation overcame the smoothing effect on the edge and showed better image.

  10. Measuring the Edge Recombination Velocity of Monolayer Semiconductors.

    Science.gov (United States)

    Zhao, Peida; Amani, Matin; Lien, Der-Hsien; Ahn, Geun Ho; Kiriya, Daisuke; Mastandrea, James P; Ager, Joel W; Yablonovitch, Eli; Chrzan, Daryl C; Javey, Ali

    2017-09-13

    Understanding edge effects and quantifying their impact on the carrier properties of two-dimensional (2D) semiconductors is an essential step toward utilizing this material for high performance electronic and optoelectronic devices. WS 2 monolayers patterned into disks of varying diameters are used to experimentally explore the influence of edges on the material's optical properties. Carrier lifetime measurements show a decrease in the effective lifetime, τ effective , as a function of decreasing diameter, suggesting that the edges are active sites for carrier recombination. Accordingly, we introduce a metric called edge recombination velocity (ERV) to characterize the impact of 2D material edges on nonradiative carrier recombination. The unpassivated WS 2 monolayer disks yield an ERV ∼ 4 × 10 4 cm/s. This work quantifies the nonradiative recombination edge effects in monolayer semiconductors, while simultaneously establishing a practical characterization approach that can be used to experimentally explore edge passivation methods for 2D materials.

  11. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  12. Effect of static charge fluctuations on the conduction along the edge of two-dimensional topological insulator

    Science.gov (United States)

    Vayrynen, Jukka; Goldstein, Moshe; Glazman, Leonid

    2013-03-01

    Static charge disorder may create electron puddles in the bulk of a material which nominally is in the insulating state. A single puddle - quantum dot - coupled to the helical edge of a two-dimensional topological insulator enhances the electron backscattering within the edge. The backscattering rate increases with the electron dwelling time in the dot. While remaining inelastic, the backscattering off a dot may be far more effective than the proposed earlier inelastic processes involving a local scatterer with no internal structure. We find the temperature dependence of the dot-induced correction to the universal conductance of the edge. In addition to the single-dot effect, we calculate the classical temperature-independent conductance correction caused by a weakly conducting bulk. We use our theory to assess the effect of static charge fluctuations in a heterostructure on the edge electron transport in a two-dimensional topological insulator. The work at Yale University is supported by NSF DMR Grant No. 1206612 and the Simons Foundation.

  13. Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect

    Science.gov (United States)

    Wu, Meng; Shi, Jun-jie; Zhang, Min; Ding, Yi-min; Wang, Hui; Cen, Yu-lang; Guo, Wen-hui; Pan, Shu-hang; Zhu, Yao-hui

    2018-05-01

    Quite recently, the two-dimensional (2D) InSe nanosheet has become a hot material with great promise for advanced functional nano-devices. In this work, for the first time, we perform first-principles calculations on the structural, electronic, magnetic and transport properties of 1D InSe nanoribbons with/without hydrogen or halogen saturation. We find that armchair ribbons, with various edges and distortions, are all nonmagnetic semiconductors, with a direct bandgap of 1.3 (1.4) eV for bare (H-saturated) ribbons, and have the same high electron mobility of about 103 cm2V‑1s‑1 as the 2D InSe nanosheet. Zigzag InSe nanoribbons exhibit metallic behavior and diverse intrinsic ferromagnetic properties, with the magnetic moment of 0.5–0.7 μ B per unit cell, especially for their single-edge spin polarization. The edge spin orientation, mainly dominated by the unpaired electrons of the edge atoms, depends sensitively on the edge chirality. Hydrogen or halogen saturation can effectively recover the structural distortion, and modulate the electronic and magnetic properties. The binding energy calculations show that the stability of InSe nanoribbons is analogous to that of graphene and better than in 2D InSe nanosheets. These InSe nanoribbons, with novel electronic and magnetic properties, are thus very promising for use in electronic, spintronic and magnetoresistive nano-devices.

  14. Investigation of non thermal effects from the Dα line wings in edge plasmas

    International Nuclear Information System (INIS)

    Marandet, Y.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R.; Capes, H.; Guirlet, R.

    2002-01-01

    The far wings of intense Dα lines measured at the edge of the Tore Supra Tokamak are found to exhibit a power-law behavior. The characteristic exponent is not far from two. Since the low density rules out thermal Stark broadening, we discuss non thermal effects which may arise from the edge plasma drift-wave turbulence. We suggest that both the Stark and the Doppler profile could be affected by the turbulence

  15. An edge pedestal model

    International Nuclear Information System (INIS)

    Stacev, W.M.

    2001-01-01

    A new model for calculation of the gradient scale lengths in the edge pedestal region and of the edge transport barrier width in H-mode tokamak plasmas will be described. Model problem calculations which demonstrate the promise of this model for predicting experimental pedestal properties will be discussed. The density and Prague gradient scale lengths (L) in the edge are calculated from the particle and ion and electron energy radial transport equations, making use of (presumed) known particle and energy fluxes flowing across the edge transport barrier from the core into the SOL and of edge transport coefficients. The average values of the particle and heat fluxes in the edge transport barrier are calculated in terms of the fluxes crossing into the SOL and the atomic physics reaction rates (ionisation, charge-exchange, elastic scattering, impurity radiation) in the edge by integrating the respective transport equations from the pedestal to the separatrix. An important implication of this model is that the pedestal gradient scale lengths depend not just on local pedestal platers properties but also on particle and energy fluxes from the core plasma and on recycling neutral fluxes that penetrate into the plasma edge, both of which in turn depend on the pedestal properties. The MHD edge pressure gradient constraint α≤ α C is used to determine the pressure width of the edge transport barrier, Δ TB = Δ TB (α c ). Three different models for the MHD edge pressure gradient constraint have been investigated: (1) nominal ideal ballooning mode theory, (2) ballooning mode theory taking into account the edge geometry and shear to access He second stability region; and pedestal β-limit theory when the ballooning modes are stabilised by diamagnetic effects. A series of calculations have been made for a DIII-D model problem. The calculated gradient scale lengths and edge transport barrier widths are of the magnitude of values observed experimentally, and certain trends

  16. The effects of habitat edges and trampling intensity on vegetation in urban forests

    OpenAIRE

    Hamberg, Leena

    2009-01-01

    Although changes in urban forest vegetation have been documented in previous Finnish studies, the reasons for these changes have not been studied explicitly. Especially, the consequences of forest fragmentation, i.e. the fact that forest edges receive more solar radiation, wind and air-borne nutrients than interiors have been ignored. In order to limit the change in urban forest vegetation we need to know why it occurs. Therefore, the effects of edges and recreational use of urban forests on ...

  17. A Field-Based Technique for Teaching about Habitat Fragmentation and Edge Effects

    Science.gov (United States)

    Resler, Lynn M.; Kolivras, Korine N.

    2009-01-01

    This article presents a field technique that exposes students to the indirect effects of habitat fragmentation on plant distributions through studying edge effects. This assignment, suited for students in an introductory biogeography or resource geography class, increases students' knowledge of basic biogeographic concepts such as environmental…

  18. Risk Reduction Effects Due to the Start Time Extension of EDGs in OPR-1000

    International Nuclear Information System (INIS)

    Lim, Ho-Gon; Yang, Joon-Eon; Hwang, Mee-Jeong

    2006-01-01

    Under the condition that the ECCS rule in Korea will be revised based on the new U.S. 10 CFR 50.46, the risk impact due to the EDG start time extension is analyzed in the present study. This paper is composed of 6 sections. In the section 2, the LOCA break size that cannot be mitigable under the condition of extended EDG start time is obtained from the thermal hydraulic analysis. The section 3 discusses the frequency of the immitigable LOCA and the probability of the LOOP given a LOCA. In the section 4, the effect of the EDG start time extension on its failure probability is discussed with a qualitative manner. Finally, the whole risk change due to the EDG start time extension is calculated in the section 5 with the conclusions given in the section 6

  19. Transcatheter Treatment of Tricuspid Regurgitation Using Edge-to-Edge Repair: Procedural Results, Clinical Implications and Predictors for Success.

    Science.gov (United States)

    Lurz, Philipp; Besler, Christian; Noack, Thilo; Forner, Anna Flo; Bevilacqua, Carmine; Seeburger, Joerg; Rommel, Karl-Philipp; Blazek, Stephan; Hartung, Philipp; Zimmer, Marion; Mohr, Friedrich; Schuler, Gerhard; Linke, Axel; Ender, Joerg; Thiele, Holger

    2018-04-10

    To analyze the feasibility, safety and effectiveness of Tricuspid valve (TV) repair using the MitraClip system in patients at high surgical risk. Forty-two elderly high-risk patients (76.8±7.3 years, EuroScore II 8.1±5.7) with isolated TR or combined TR and mitral regurgitation (MR) underwent edge-to-edge repair of the TV (n=11) or combined edge-to-edge repair of the TV and mitral valve (n=31). Procedural details, success rate, impact on TR severity and predictors for success at 30 day follow-up were analyzed. Successful edge-to-edge repair of TR was achieved in 35/42 patients (83%, 68 clips in total, 94% in the anteroseptal commissure, 6% in the posteroseptal commissure). In 5 patients, grasping of the leaflets was impossible and two patients had no decrease in TR after clipping. In those with procedural success, clipping of the TV led to a reduction in effective regurgitant orifice area by -62,5 % (from 0.8±0.4 to 0.3±0.2 cm2; pEdge-to-edge repair of the TV is feasible with promising reduction in TR, which could result in clinical improvement.

  20. Quantifying edge effect extent and its impacts on carbon stocks across a degraded landscape in the Amazon using airborne lidar.

    Science.gov (United States)

    dos-Santos, M. N.; Keller, M.; Morton, D. C.; Longo, M.; Scaranello, M. A., Sr.; Pinagé, E. R.; Correa Pabon, R.

    2017-12-01

    Ongoing tropical forest degradation and forest fragmentation increases forest edge area. Forest edges experience hotter, drier, and windier conditions and greater exposure to fires compared to interior areas, which elevate rates of tree mortality. Previous studies have suggested that forests within 100 m from the edge may lose 36% of biomass during the first two decades following fragmentation, although such estimates are based on a limited number of experimental plots. Degraded forests behave differently from intact forests and quantifying edge effect extension in a degraded forest landscape is more challenging compared to experimental studies. To overcome these limitations, we used airborne lidar data to quantify changes in forest structure near 91 edges in a heavily degraded tropical forest in Paragominas Municipality, eastern Brazilian Amazon. Paragominas was a center of timber production in the 1990s. Today, the landscape is a mosaic of different agricultural uses, degraded, secondary and unmanaged forests. A total of 3000 ha of high density (mean density of 17.9 points/m2) lidar data were acquired in August/September 2013 and June/July 2014 over 30 transects (200 x 5000m), systematically distributed over the study area, using the Optech Orion M-200 laser scanning system. We adopted lidar-measured forest heights as the edge effect criteria and found that mean extent of edge effect was highly variable across degraded forests (150 ± 354m) and secondary forest fragments (265 ± 365m). We related the extent of forest edges to the historical disturbances identified in Landsat imagery since 1984. Contrary to previous studies, we found that carbon stocks along forest edges were not significantly lower than forest core biomass when edges were defined by previously estimated range of 100 and 300m. In frontier forests, ecological edge effect may be masked by the cumulative impact of historic forest degradation - an anthropogenic edge effect that extends beyond the

  1. Wild pigs (Sus scrofa) mediate large-scale edge effects in a lowland tropical rainforest in Peninsular Malaysia.

    Science.gov (United States)

    Fujinuma, Junichi; Harrison, Rhett D

    2012-01-01

    Edge-effects greatly extend the area of tropical forests degraded through human activities. At Pasoh, Peninsular Malaysia, it has been suggested that soil disturbance by highly abundant wild pigs (Sus scrofa), which feed in adjacent Oil Palm plantations, may have mediated the invasion of Clidemia hirta (Melastomataceae) into the diverse tropical lowland rain forest. To investigate this hypothesis, we established three 1 km transects from the forest/Oil Palm plantation boundary into the forest interior. We recorded the distribution of soil disturbance by wild pigs, C. hirta abundance, and environmental variables. These data were analyzed using a hierarchical Bayesian model that incorporated spatial auto-correlation in the environmental variables. As predicted, soil disturbance by wild pigs declined with distance from forest edge and C. hirta abundance was correlated with the level of soil disturbance. Importantly there was no effect of distance on C. hirta abundance, after controlling for the effect of soil disturbance. Clidemia hirta abundance was also correlated with the presence of canopy openings, but there was no significant association between the occurrence of canopy openings and distance from the edge. Increased levels of soil disturbance and C. hirta abundance were still detectable approximately 1 km from the edge, demonstrating the potential for exceptionally large-scale animal mediated edge effects.

  2. Edge states and integer quantum Hall effect in topological insulator thin films.

    Science.gov (United States)

    Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing

    2015-08-25

    The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films.

  3. Finite Element Analysis of the Effect on Edge Distance of the Tensile Bearing Capacity of Embedded Hanging Parts

    Directory of Open Access Journals (Sweden)

    Meng Xian Hong

    2016-01-01

    Full Text Available In order to explore the trend of tensile bearing capacity of embedded hanging parts when change the edge distance. Based on the finite element analysis software ABAQUS, the four simulation model was established. The buried depth and strength of concrete remain unchanged, but the edge distance was gradient change. By the load - displacement curve of every model known, the greater the edge distance, the greater the bearing capacity. When the edge distance reaches 1.5 times buried depth, the effect of increasing edge distance for improving the bearing capacity will be impaired.

  4. A model for the neoclassical toroidal viscosity effect on Edge plasma toroidal rotation

    Energy Technology Data Exchange (ETDEWEB)

    Miron, I.G. [National Institute for Laser, Plasma and Radiation Physics, Euratom-MEdC Association, Bucharest (Romania)

    2013-11-15

    A semianalytic expression for the edge plasma angular toroidal rotation frequency that includes the neoclassical toroidal viscosity braking influence is obtained. Based on the model presented in a previous paper [I.G. Miron, Contrib. Plasma Phys. 53, 214 (2013)], the less destabilizing error field spectrum is found in order to minimize the nonlinear effect of the NTV on the toroidal rotation of the edge of the plasma. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Unconventional quantized edge transport in the presence of inter-edge coupling in intercalated graphene

    OpenAIRE

    Li, Yuanchang

    2016-01-01

    It is generally believed that the inter-edge coupling destroys the quantum spin Hall (QSH) effect along with the gap opening at the Dirac points. Using first-principles calculations, we find that the quantized edge transport persists in the presence of inter-edge coupling in Ta intercalated epitaxial graphene on SiC(0001), being a QSH insulator with the non-trivial gap of 81 meV. In this case, the band is characterized by two perfect Dirac cones with different Fermi velocities, yet only one m...

  6. On the conductance sum rule for the hierarchical edge states of the fractional quantum hall effect

    International Nuclear Information System (INIS)

    Ma Zhongshui; Chen Yixin; Su Zhaobin.

    1993-09-01

    The conductance sum rule for the hierarchical edge channel currents of a Fractional Quantum Hall Effect state is derived analytically within the Haldane-Halperin hierarchy scheme. We provide also an intuitive interpretation for the hierarchical drift velocities of the edge excitations. (author). 12 refs

  7. Impact of edge states on device performance of phosphorene heterojunction tunneling field effect transistors.

    Science.gov (United States)

    Liu, Fei; Wang, Jian; Guo, Hong

    2016-10-27

    Black phosphorus (BP) tunneling field effect transistors (TFETs) using heterojunctions (Hes) are investigated by atomistic quantum transport simulations. It is observed that edge states have a great impact on the transport characteristics of BP He-TFETs, which results in the potential pinning effect and deterioration of gate control. However, the on-state current can be effectively enhanced by using hydrogen to saturate the edge dangling bonds in BP He-TFETs, by which means edge states are quenched. By extending layered BP with a smaller band gap to the channel region and modulating the BP thickness, the device performance of BP He-TFETs can be further optimized and can fulfil the requirements of the international technology road-map for semiconductors (ITRS) 2013 for low power applications. In 15 nm 3L-1L and 4L-1L BP He-TFETs along the armchair direction the on-state currents are over two times larger than the current required by ITRS 2013 and can reach above 10 3 μA μm -1 with the fixed off-state current of 10 pA μm -1 . It is also found that the ambipolar effect can be effectively suppressed in BP He-TFETs.

  8. Modelling the cutting edge radius size effect for force prediction in micro milling

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; Jan, Slunsky

    2008-01-01

    This paper presents a theoretical model for cutting force prediction in micro milling, taking into account the cutting edge radius size effect, the tool run out and the deviation of the chip flow angle from the inclination angle. A parameterization according to the uncut chip thickness to cutting...... edge radius ratio is used for the parameters involved in the force calculation. The model was verified by means of cutting force measurements in micro milling. The results show good agreement between predicted and measured forces. It is also demonstrated that the use of the Stabler's rule...... is a reasonable approximation and that micro end mill run out is effectively compensated by the deflections induced by the cutting forces....

  9. Edge responses are different in edges under natural versus anthropogenic influence: a meta-analysis using ground beetles.

    Science.gov (United States)

    Magura, Tibor; Lövei, Gábor L; Tóthmérész, Béla

    2017-02-01

    Most edges are anthropogenic in origin, but are distinguishable by their maintaining processes (natural vs. continued anthropogenic interventions: forestry, agriculture, urbanization). We hypothesized that the dissimilar edge histories will be reflected in the diversity and assemblage composition of inhabitants. Testing this "history-based edge effect" hypothesis, we evaluated published information on a common insect group, ground beetles (Coleoptera: Carabidae) in forest edges. A meta-analysis showed that the diversity-enhancing properties of edges significantly differed according to their history. Forest edges maintained by natural processes had significantly higher species richness than their interiors, while edges with continued anthropogenic influence did not. The filter function of edges was also essentially different depending on their history. For forest specialist species, edges maintained by natural processes were penetrable, allowing these species to move right through the edges, while edges still under anthropogenic interventions were impenetrable, preventing the dispersal of forest specialists out of the forest. For species inhabiting the surrounding matrix (open-habitat and generalist species), edges created by forestry activities were penetrable, and such species also invaded the forest interior. However, natural forest edges constituted a barrier and prevented the invasion of matrix species into the forest interior. Preserving and protecting all edges maintained by natural processes, and preventing anthropogenic changes to their structure, composition, and characteristics are key factors to sustain biodiversity in forests. Moreover, the increasing presence of anthropogenic edges in a landscape is to be avoided, as they contribute to the loss of biodiversity. Simultaneously, edges under continued anthropogenic disturbance should be restored by increasing habitat heterogeneity.

  10. Effect of ICRH on the JET edge plasma with carbon and beryllium coated limiters

    International Nuclear Information System (INIS)

    Clement, S.; Erents, S.K.; Tagle, J.A.; Brinkschulte, H.; Bures, M.; De Kock, L.

    1990-01-01

    Investigation of the scrape-off Layer (SOL) at different poloidal positions has been carried out with Langmuir probes for limiter discharges with ion cyclotron resonance heating (ICRH) at JET. A comparison of the effects of ICRH on the edge is presented for operation with all carbon limiters, and for operation with a beryllium layer evaporated on the walls and limiters of JET. The behaviour of the SOL parameters is similar for both cases, although edge temperatures tend to be lower in the Be case. Measurements with probes between the belt limiters and close to the ICRH antennas show that the edge parameters in this region are strongly influenced by the vicinity of an active antenna. (orig.)

  11. Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects for Optical Amplification

    Science.gov (United States)

    2016-01-26

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0003 TR-2016-0003 EXPERIMENTAL STUDY OF ELECTRONIC QUANTUM INTERFERENCE , PHOTONIC CRYSTAL CAVITY, PHOTONIC BAND...EDGE EFFECTS FOR OPTICAL AMPLIFICATION Shawn-Yu Lin Rensselaer Polytechnic Institute 110 8th Street Troy, New York 12180 26 Jan 2016 Final Report...2014 – 11 Jan 2016 4. TITLE AND SUBTITLE Experimental Study of Electronic Quantum Interference , Photonic Crystal Cavity, Photonic Band Edge Effects

  12. Disorder effects on helical edge transport in graphene under a strong tilted magnetic field

    Science.gov (United States)

    Huang, Chunli; Cazalilla, Miguel A.

    2015-10-01

    In a recent experiment, Young et al. [Nature (London) 505, 528 (2014), 10.1038/nature12800] observed a metal to insulator transition as well as transport through helical edge states in monolayer graphene under a strong, tilted magnetic field. Under such conditions, the bulk is a magnetic insulator which can exhibit metallic conduction through helical edges. It was found that the two-terminal conductance of the helical channels deviates from the expected quantized value (=e2/h per edge, at zero temperature). Motivated by this observation, we study the effect of disorder on the conduction through the edge channels. We show that, unlike for helical edges of topological insulators in semiconducting quantum wells, a disorder Rashba spin-orbit coupling does not lead to backscattering, at least to leading order. Instead, we find that the lack of perfect antialignment of the electron spins in the helical channels to be the most likely cause for backscattering arising from scalar (i.e., spin-independent) impurities. The intrinsic spin-orbit coupling and other time-reversal symmetry-breaking and/or sublattice parity-breaking potentials also lead to (subleading) corrections to the channel conductance.

  13. Edge effects on foliar stable isotope values in a Madagascan tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Brooke E Crowley

    Full Text Available Edge effects represent an inevitable and important consequence of habitat loss and fragmentation. These effects include changes in microclimate, solar radiation, or temperature. Such abiotic effects can, in turn, impact biotic factors. They can have a substantial impact on species, communities, and ecosystems. Here we examine clinal variations in stable carbon and nitrogen isotope values for trees along an edge-interior gradient in the dry deciduous forest at Ankarafantsika National Park. We predicted that soil respiration and differences in solar irradiance would result in stratified δ¹³C values where leaves collected close to the forest floor would have lower δ¹³C values than those growing higher up in the canopy. We also anticipated that plants growing at the savannah-forest boundary would have higher δ¹³C and δ¹⁵N values than plants growing in the forest interior. As expected, we detected a small but significant canopy effect. Leaves growing below 2 m from the forest floor exhibit δ¹³C values that are, on average, 1.1‰ lower than those growing above this threshold. We did not, however, find any relationship between foliar δ¹³C and distance from the edge. Unpredictably, we detected a striking positive relationship between foliar δ¹⁵N values and increasing distance into the forest interior. Variability in physiology among species, anthropogenic influence, organic input, and rooting depth cannot adequately explain this trend. Instead, this unexpected relationship most likely reflects decreasing nutrient or water availability, or a shift in N-sources with increasing distance from the savannah. Unlike most forest communities, the trees at Ampijoroa are growing in nutrient-limited sands. In addition to being nutrient poor, these well-drained soils likely decrease the amount of soil water available to forest vegetation. Continued research on plant responses to edge effects will improve our understanding of the conservation

  14. Core-edge coupling and the effect of the edge on overall plasma performance

    International Nuclear Information System (INIS)

    Fichtmueller, M.; Corrigan, G.; Lauro-Taroni, L.

    1999-01-01

    Several attempts to model the entire plasma cross section have been reported in the last few years. Two possibilities are to either couple a core code to a scrape-off layer (SOL) code at a specified interface or to extend the computational region of an SOL-code all the way to the plasma centre. The most advanced global code is the code COCONUT which is based on the former principle and comprises the Monte-Carlo code NIMBUS, the 2D scrape-off layer code EDGE2D, the core transport code JETTO and the core impurity transport code SANCO. A main feature of COCONUT is its modular structure which ensures a high degree of flexibility and the capability to cover a large range of time-scales. The influence of the SOL on the core is illustrated with a range of global simulations carried out with COCONUT. The simulations show that the primary effect of the SOL is the control of the particle sources and sinks with a secondary effect on plasma dilution, radiation and perhaps pedestal temperatures. (author)

  15. 2.5D Simulation of basin-edge effects on the ground motion ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The effects of basin-edge and soil velocity on the ground motion characteristics have been simulated ... Figure 1. 3-D and 2.5-D radial, transverse and vertical components of the radiation for .... sedimentary basin deserve a particular attention.

  16. Finite element method calculations of GMI in thin films and sandwiched structures: Size and edge effects

    International Nuclear Information System (INIS)

    Garcia-Arribas, A.; Barandiaran, J.M.; Cos, D. de

    2008-01-01

    The impedance values of magnetic thin films and magnetic/conductor/magnetic sandwiched structures with different widths are computed using the finite element method (FEM). The giant magneto-impedance (GMI) is calculated from the difference of the impedance values obtained with high and low permeability of the magnetic material. The results depend considerably on the width of the sample, demonstrating that edge effects are decisive for the GMI performance. It is shown that, besides the usual skin effect that is responsible for GMI, an 'unexpected' increase of the current density takes place at the lateral edge of the sample. In magnetic thin films this effect is dominant when the permeability is low. In the trilayers, it is combined with the lack of shielding of the central conductor at the edge. The resulting effects on GMI are shown to be large for both kinds of samples. The conclusions of this study are of great importance for the successful design of miniaturized GMI devices

  17. Edge effects on N2O, NO and CH4 fluxes in two temperate forests.

    Science.gov (United States)

    Remy, Elyn; Gasche, Rainer; Kiese, Ralf; Wuyts, Karen; Verheyen, Kris; Boeckx, Pascal

    2017-01-01

    Forest ecosystems may act as sinks or sources of nitrogen (N) and carbon (C) compounds, such as the climate relevant trace gases nitrous oxide (N 2 O), nitric oxide (NO) and methane (CH 4 ). Forest edges, which catch more atmospheric deposition, have become important features in European landscapes and elsewhere. Here, we implemented a fully automated measuring system, comprising static and dynamic measuring chambers determining N 2 O, NO and CH 4 fluxes along an edge-to-interior transect in an oak (Q. robur) and a pine (P. nigra) forest in northern Belgium. Each forest was monitored during a 2-week measurement campaign with continuous measurements every 2h. NO emissions were 9-fold higher than N 2 O emissions. The fluxes of NO and CH 4 differed between forest edge and interior, but not for N 2 O. This edge effect was more pronounced in the oak than in the pine forest. In the oak forest, edges emitted less NO (on average 60%) and took up more CH 4 (on average 177%). This suggests that landscape structure can play a role in the atmospheric budgets of these climate relevant trace gases. Soil moisture variation between forest edge and interior was a key variable explaining the magnitude of NO and CH 4 fluxes in our measurement campaign. To better understand the environmental impact of N and C trace gas fluxes from forest edges, additional and long-term measurements in other forest edges are required. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Edge effect and phenology in Erythroxylum tortuosum (Erythroxylaceae), a typical plant of the Brazilian Cerrado.

    Science.gov (United States)

    Ishino, M N; De Sibio, P R; Rossi, M N

    2012-08-01

    The edge of a forest fragment can be considered a zone of transition between the interior of the fragment and the surrounding habitat matrix. Plants along the edge are more exposed to disturbance and microclimate variation than interior plants, resulting in the so-called edge effect. In this study, we compared leaf area, fluctuating asymmetry and chemical (water, nitrogen and tannins) leaf traits between Erythroxylum tortuosum plants inhabiting the edge with those growing in the interior of a cerrado fragment in Brazil. We also describe the temporal variation in the vegetative and reproductive phenological events of E. tortuosum plants throughout the season. Nitrogen, leaf area and fluctuating asymmetry did not differ between the two plant groups. Young leaves of the edge plants had significantly higher levels of tannins and lower levels of water than those of interior plants. We suggest that differences in leaf chemical concentrations between edge and interior plants may occur due to factors such as light intensity, wind, temperature and leaf age rather than plant stress. With respect to plant phenology, most reproductive events occurred during the spring. Leaf buds and young leaves prevailed during the rainy season. In the dry season, however, the vegetative events decreased due to leaf senescence followed by leaf abscission.

  19. Soft X-Ray Magneto-optical Faraday Effect around Ni M2,3 Edges

    International Nuclear Information System (INIS)

    Kai, Chen; Ming-Qi, Cui; Fen, Yan; Li-Juan, Sun; Lei, Zheng; Chen-Yan, Ma; Shi-Bo, Xi; Yi-Dong, Zhao; Jia, Zhao

    2008-01-01

    We present magneto-optical (MO) Faraday spectra measured around the M 2,3 edges (60–70eV) of Ni films at the Beijing Synchrotron Radiation Facility (BSRF). A polarization analysis of the final state of the transmitted radiation from the Ni film is employed to determine the Faraday rotation at the edges. The MO effect becomes resonantly enhanced at the M 2,3 edges, and accordingly large values for the rotation angle β of 1.85 ± 0.19° for this ferromagnetic Ni film with thickness of 31 nm are measured. Without the magnetic field, the azimuthal angles do not shift; with parallel and antiparallel magnetic field the rotation angles shift in the opposite way and they are symmetrical. The uncertainty of Faraday rotation angles mainly comes from the data fitting and the state change of the beamline when the angles are measured

  20. Thermal stability of the tokamak plasma edge

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1997-01-01

    The general linear, fluid, thermal instability theory for the plasma edge has been extended. An analysis of a two-dimensional fluid model of the plasma edge has identified the importance of many previously unappreciated phenomena associated with parallel and gyroviscous forces in the presence of large radial gradients, with large radial or parallel flows, with the temperature dependence of transport coefficients, and with the coupling of temperature, flow and density perturbations. The radiative condensation effect is generalized to include a further destabilizing condensation effect associated with radial heat conduction. Representative plasma edge neutral and impurity densities are found to be capable of driving thermal instabilities in the edge transport barrier and radiative mantle, respectively. (author)

  1. Longitudinal Proximity Effect Superconducting Transition-Edge Sensor

    Data.gov (United States)

    National Aeronautics and Space Administration — Superconducting Transition-Edge Sensors (TESs) hold the highest energy resolving power of any nondispersive spectrometer.   They are used for imaging spectroscopy...

  2. Linear calculations of edge current driven kink modes with BOUT++ code

    Energy Technology Data Exchange (ETDEWEB)

    Li, G. Q., E-mail: ligq@ipp.ac.cn; Xia, T. Y. [Institute of Plasma Physics, CAS, Hefei, Anhui 230031 (China); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Xu, X. Q. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Snyder, P. B.; Turnbull, A. D. [General Atomics, San Diego, California 92186 (United States); Ma, C. H.; Xi, P. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); FSC, School of Physics, Peking University, Beijing 100871 (China)

    2014-10-15

    This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linear growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density.

  3. Linear calculations of edge current driven kink modes with BOUT++ code

    International Nuclear Information System (INIS)

    Li, G. Q.; Xia, T. Y.; Xu, X. Q.; Snyder, P. B.; Turnbull, A. D.; Ma, C. H.; Xi, P. W.

    2014-01-01

    This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linear growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density

  4. Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects

    International Nuclear Information System (INIS)

    Pankin, Alexei Y.; Kritz, Arnold H.

    2011-01-01

    Topics covered are: anomalous transport and E f- B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies

  5. Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects

    Energy Technology Data Exchange (ETDEWEB)

    Pankin, Alexei Y.; Kritz, Arnold H.

    2011-07-19

    Topics covered are: anomalous transport and E x B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies.

  6. Effects of nuclear spins on the transport properties of the edge of two-dimensional topological insulators

    Science.gov (United States)

    Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel

    2018-03-01

    The electrons in the edge channels of two-dimensional topological insulators can be described as a helical Tomonaga-Luttinger liquid. They couple to nuclear spins embedded in the host materials through the hyperfine interaction, and are therefore subject to elastic spin-flip backscattering on the nuclear spins. We investigate the nuclear-spin-induced edge resistance due to such backscattering by performing a renormalization-group analysis. Remarkably, the effect of this backscattering mechanism is stronger in a helical edge than in nonhelical channels, which are believed to be present in the trivial regime of InAs/GaSb quantum wells. In a system with sufficiently long edges, the disordered nuclear spins lead to an edge resistance which grows exponentially upon lowering the temperature. On the other hand, electrons from the edge states mediate an anisotropic Ruderman-Kittel-Kasuya-Yosida nuclear spin-spin interaction, which induces a spiral nuclear spin order below the transition temperature. We discuss the features of the spiral order, as well as its experimental signatures. In the ordered phase, we identify two backscattering mechanisms, due to charge impurities and magnons. The backscattering on charge impurities is allowed by the internally generated magnetic field, and leads to an Anderson-type localization of the edge states. The magnon-mediated backscattering results in a power-law resistance, which is suppressed at zero temperature. Overall, we find that in a sufficiently long edge the nuclear spins, whether ordered or not, suppress the edge conductance to zero as the temperature approaches zero.

  7. Strength on cut edge and ground edge glass beams with the failure analysis method

    Directory of Open Access Journals (Sweden)

    Stefano Agnetti

    2013-10-01

    Full Text Available The aim of this work is the study of the effect of the finishing of the edge of glass when it has a structural function. Experimental investigations carried out for glass specimens are presented. Various series of annealed glass beam were tested, with cut edge and with ground edge. The glass specimens are tested in four-point bending performing flaw detection on the tested specimens after failure, in order to determine glass strength. As a result, bending strength values are obtained for each specimen. Determining some physical parameter as the depth of the flaw and the mirror radius of the fracture, after the failure of a glass element, it could be possible to calculate the failure strength of that.The experimental results were analyzed with the LEFM theory and the glass strength was analyzed with a statistical study using two-parameter Weibull distribution fitting quite well the failure stress data. The results obtained constitute a validation of the theoretical models and show the influence of the edge processing on the failure strength of the glass. Furthermore, series with different sizes were tested in order to evaluate the size effect.

  8. Effects of phonon broadening on x-ray near-edge spectra in molecular crystals

    Science.gov (United States)

    Vinson, John; Jach, Terrence; Elam, Tim; Denlinger, Jonathon

    2014-03-01

    Calculations of near-edge x-ray spectra are often carried out using the average atomic coordinates from x-ray or neutron scattering experiments or from density functional theory (DFT) energy minimization. This neglects disorder from thermal and zero-point vibrations. Here we look at the nitrogen K-edge of ammonium chloride and ammonium nitrate, comparing Bethe-Salpeter calculations of absorption and fluorescence to experiment. We find that intra-molecular vibrational effects lead to significant, non-uniform broadening of the spectra, and that for some features zero-point motion is the primary source of the observed shape.

  9. Integrated core-edge-divertor modeling studies

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    An integrated calculation model for simulating the interaction of physics phenomena taking place in the plasma core, in the plasma edge and in the SOL and divertor of tokamaks has been developed and applied to study such interactions. The model synthesises a combination of numerical calculations (1) the power and particle balances for the core plasma, using empirical confinement scaling laws and taking into account radiation losses (2), the particle, momentum and power balances in the SOL and divertor, taking into account the effects of radiation and recycling neutrals, (3) the transport of feeling and recycling neutrals, explicitly representing divertor and pumping geometry, and (4) edge pedestal gradient scale lengths and widths, evaluation of theoretical predictions (5) confinement degradation due to thermal instabilities in the edge pedestals, (6) detachment and divertor MARFE onset, (7) core MARFE onsets leading to a H-L transition, and (8) radiative collapse leading to a disruption and evaluation of empirical fits (9) power thresholds for the L-H and H-L transitions and (10) the width of the edge pedestals. The various components of the calculation model are coupled and must be iterated to a self-consistent convergence. The model was developed over several years for the purpose of interpreting various edge phenomena observed in DIII-D experiments and thereby, to some extent, has been benchmarked against experiment. Because the model treats the interactions of various phenomena in the core, edge and divertor, yet is computationally efficient, it lends itself to the investigation of the effects of different choices of various edge plasma operating conditions on overall divertor and core plasma performance. Studies of the effect of feeling location and rate, divertor geometry, plasma shape, pumping and over 'edge parameters' on core plasma properties (line average density, confinement, density limit, etc.) have been performed for DIII-D model problems. A

  10. Measurement of the effective atomic numbers of compounds with cerium near to the absorption edge

    International Nuclear Information System (INIS)

    Polat, Recep; Icelli, Orhan

    2010-01-01

    In order to measure atomic, molecular and electronic cross-section; the effective atomic number, density of electron and absorption jump factor, we have first measured μ t values of compounds which are determined by mixture rule using transmission method. In order to measure experimentally the effective atomic number within absorption jump factors of compounds with Ce, the X-ray source used Am-241 whose gamma rays were stopped at secondary source (Sm), thus producing Kα and Kβ X-ray emission. The most crucial finding in this study is that measurement of the effective atomic number is not appropriate near to the absorption edge and the effective atomic number is affected by near to the absorption edge. The results obtained have been compared with theoretical values.

  11. Parameters Influencing Sulfur Speciation in Environmental Samples Using Sulfur K-Edge X-Ray Absorption Near-Edge Structure

    Directory of Open Access Journals (Sweden)

    Siwatt Pongpiachan

    2012-01-01

    Full Text Available This paper aims to enhance the credibility of applying the sulfur K-edge XANES spectroscopy as an innovative “fingerprint” for characterizing environmental samples. The sensitivities of sulfur K-edge XANES spectra of ten sulfur compound standards detected by two different detectors, namely, Lytle detector (LyD and Germanium detector (GeD, were studied and compared. Further investigation on “self-absorption” effect revealed that the maximum sensitivities of sulfur K-edge XANES spectra were achieved when diluting sulfur compound standards with boron nitride (BN at the mixing ratio of 0.1%. The “particle-size” effect on sulfur K-edge XANES spectrum sensitivities was examined by comparing signal-to-noise ratios of total suspended particles (TSP and particulate matter of less than 10 millionths of a meter (PM10 collected at three major cities of Thailand. The analytical results have demonstrated that the signal-to-noise ratios of sulfur K-edge XANES spectra were positively correlated with sulfate content in aerosols and negatively connected with particle sizes. The combination of hierarchical cluster analysis (HCA and principal component analysis (PCA has proved that sulfur K-edge XANES spectrum can be used to characterize German terrestrial soils and Andaman coastal sediments. In addition, this study highlighted the capability of sulfur K-edge XANES spectra as an innovative “fingerprint” to distinguish tsunami backwash deposits (TBD from typical marine sediments (TMS.

  12. Use of Debye's series to determine the optimal edge-effect terms for computing the extinction efficiencies of spheroids.

    Science.gov (United States)

    Lin, Wushao; Bi, Lei; Liu, Dong; Zhang, Kejun

    2017-08-21

    The extinction efficiencies of atmospheric particles are essential to determining radiation attenuation and thus are fundamentally related to atmospheric radiative transfer. The extinction efficiencies can also be used to retrieve particle sizes or refractive indices through particle characterization techniques. This study first uses the Debye series to improve the accuracy of high-frequency extinction formulae for spheroids in the context of Complex angular momentum theory by determining an optimal number of edge-effect terms. We show that the optimal edge-effect terms can be accurately obtained by comparing the results from the approximate formula with their counterparts computed from the invariant imbedding Debye series and T-matrix methods. An invariant imbedding T-matrix method is employed for particles with strong absorption, in which case the extinction efficiency is equivalent to two plus the edge-effect efficiency. For weakly absorptive or non-absorptive particles, the T-matrix results contain the interference between the diffraction and higher-order transmitted rays. Therefore, the Debye series was used to compute the edge-effect efficiency by separating the interference from the transmission on the extinction efficiency. We found that the optimal number strongly depends on the refractive index and is relatively insensitive to the particle geometry and size parameter. By building a table of optimal numbers of edge-effect terms, we developed an efficient and accurate extinction simulator that has been fully tested for randomly oriented spheroids with various aspect ratios and a wide range of refractive indices.

  13. Edge-Matching Problems with Rotations

    DEFF Research Database (Denmark)

    Ebbesen, Martin; Fischer, Paul; Witt, Carsten

    2011-01-01

    Edge-matching problems, also called puzzles, are abstractions of placement problems with neighborhood conditions. Pieces with colored edges have to be placed on a board such that adjacent edges have the same color. The problem has gained interest recently with the (now terminated) Eternity II...... puzzle, and new complexity results. In this paper we consider a number of settings which differ in size of the puzzles and the manipulations allowed on the pieces. We investigate the effect of allowing rotations of the pieces on the complexity of the problem, an aspect that is only marginally treated so...

  14. Natural vegetation cover in the landscape and edge effects: differential responses of insect orders in a fragmented forest.

    Science.gov (United States)

    González, Ezequiel; Salvo, Adriana; Valladares, Graciela

    2017-10-01

    Human activities have led to global simplification of ecosystems, among which Neotropical dry forests are some of the most threatened. Habitat loss as well as edge effects may affect insect communities. Here, we analyzed insects sampled with pan traps in 9 landscapes (at 5 scales, in 100-500 m diameter circles) comprising cultivated fields and Chaco Serrano forests, at overall community and taxonomic order level. In total 7043 specimens and 456 species of hexapods were captured, with abundance and richness being directly related to forest cover at 500 m and higher at edges in comparison with forest interior. Community composition also varied with forest cover and edge/interior location. Different responses were detected among the 8 dominant orders. Collembola, Hemiptera, and Orthoptera richness and/or abundance were positively related to forest cover at the larger scale, while Thysanoptera abundance increased with forest cover only at the edge. Hymenoptera abundance and richness were negatively related to forest cover at 100 m. Coleoptera, Diptera, and Hymenoptera were more diverse and abundant at the forest edge. The generally negative influence of forest loss on insect communities could have functional consequences for both natural and cultivated systems, and highlights the relevance of forest conservation. Higher diversity at the edges could result from the simultaneous presence of forest and matrix species, although "resource mapping" might be involved for orders that were richer and more abundant at edges. Adjacent crops could benefit from forest proximity since natural enemies and pollinators are well represented in the orders showing positive edge effects. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  15. The giant Stark effect in armchair-edge phosphorene nanoribbons under a transverse electric field

    Science.gov (United States)

    Zhou, Benliang; Zhou, Benhu; Liu, Pu; Zhou, Guanghui

    2018-01-01

    We study the variation of electronic properties for armchair-edge phosphorene nanoribbons (APNRs) modulated by a transverse electric field. Within the tight-binding model Hamiltonian, and by solving the differential Schrödinger equation, we find that a band gap closure appears at the critical field due to the giant Stark effect for an APNR. The gap closure has no field polarity, and the gap varies quadratically for small fields but becomes linear for larger ones. We attribute the giant Stark effect to the broken edge degeneracy, i.e., the charge redistributions of the conduction band minimum and valence band maximum states localized at opposite edges induced by the field. By combined with the Green's function approach, it is shown that in the presence of the critical field a gap of density of states (DOS) disappears and a high value DOS turns up at the energy position of the band gap closure. Finally, as the field increases, we find the band gap decreases more rapidly and the gap closure occurs at smaller fields for wider ribbons. Both the band gap and DOS variations with the field show an insulator-metal transition induced by a transverse electric field for the APNR. Our results show that wider APNRs are more appreciable to design field-effect transistors.

  16. Edge and core dynamics in harness

    International Nuclear Information System (INIS)

    Ball, R.

    2007-01-01

    Resistive kink oscillations in tokamak plasmas are usually treated as core localized events, yet there there are several mechanisms by which they may interact with the edge dynamics. This suggests that we may regulate edge oscillatory behaviour, or ELMs, by harnessing the natural or contrived sawtooth period and amplitude. In this work I investigate core-edge oscillatory entrainment through direct propagation of heat pulses, inductive coupling, and global higher order resonance effects. In the core of auxiliary heated tokamak plasmas the ineluctable rhythm of slow buildup and rapid conversion of potential energy governs electron and heat radial transport. The growth phase of the sawtooth is accompanied by significant reconnection, then during the collapse the temperature and density in the core fall dramatically. There is evidence from experiments in reversed field pinch devices that ensuing energy fluxes can affect flow shear and confinement at the edge. The basis for this study is the dynamical (BDS) model for edge plasma behavior that was derived from electrostatic resistive MHD equations. The BDS model reflects the major qualitative features of edge dynamics that have been observed, such as L-H transitions and associated ELMs, hysteresis, and spontaneous reversal of poloidal shear flow. Under poorly dissipative conditions the transient behavior of the model can exhibit period-doubling, blue-sky, homoclinic, and other exotic bifurcations. Thus we might ask questions such as: Is it possible to mode-lock the edge dynamics to the core sawteeth? Can we induce, or prevent, a change in direction of shear flow? What about MHD effects? Is core-edge communication one way or is there some feedback? In the simplest prototype for coupled core-edge dynamics I model the sawtooth crash as a periodic power input to the edge potential energy reservoir. This is effected by coupling the BDS model to the dynamical system u = u(1 - u 2 - x 2 ) - ω s x, x = x(1-u 2 -x 2 ) + ω s u

  17. Edge effects in a small pixel CdTe for X-ray imaging

    Science.gov (United States)

    Duarte, D. D.; Bell, S. J.; Lipp, J.; Schneider, A.; Seller, P.; Veale, M. C.; Wilson, M. D.; Baker, M. A.; Sellin, P. J.; Kachkanov, V.; Sawhney, K. J. S.

    2013-10-01

    Large area detectors capable of operating with high detection efficiency at energies above 30 keV are required in many contemporary X-ray imaging applications. The properties of high Z compound semiconductors, such as CdTe, make them ideally suitable to these applications. The STFC Rutherford Appleton Laboratory has developed a small pixel CdTe detector with 80 × 80 pixels on a 250 μm pitch. Historically, these detectors have included a 200 μm wide guard band around the pixelated anode to reduce the effect of defects in the crystal edge. The latest version of the detector ASIC is capable of four-side butting that allows the tiling of N × N flat panel arrays. To limit the dead space between modules to the width of one pixel, edgeless detector geometries have been developed where the active volume of the detector extends to the physical edge of the crystal. The spectroscopic performance of an edgeless CdTe detector bump bonded to the HEXITEC ASIC was tested with sealed radiation sources and compared with a monochromatic X-ray micro-beam mapping measurements made at the Diamond Light Source, U.K. The average energy resolution at 59.54 keV of bulk and edge pixels was 1.23 keV and 1.58 keV, respectively. 87% of the edge pixels present fully spectroscopic performance demonstrating that edgeless CdTe detectors are a promising technology for the production of large panel radiation detectors for X-ray imaging.

  18. Uncovering edge states and electrical inhomogeneity in MoS2 field-effect transistors.

    Science.gov (United States)

    Wu, Di; Li, Xiao; Luan, Lan; Wu, Xiaoyu; Li, Wei; Yogeesh, Maruthi N; Ghosh, Rudresh; Chu, Zhaodong; Akinwande, Deji; Niu, Qian; Lai, Keji

    2016-08-02

    The understanding of various types of disorders in atomically thin transition metal dichalcogenides (TMDs), including dangling bonds at the edges, chalcogen deficiencies in the bulk, and charges in the substrate, is of fundamental importance for TMD applications in electronics and photonics. Because of the imperfections, electrons moving on these 2D crystals experience a spatially nonuniform Coulomb environment, whose effect on the charge transport has not been microscopically studied. Here, we report the mesoscopic conductance mapping in monolayer and few-layer MoS2 field-effect transistors by microwave impedance microscopy (MIM). The spatial evolution of the insulator-to-metal transition is clearly resolved. Interestingly, as the transistors are gradually turned on, electrical conduction emerges initially at the edges before appearing in the bulk of MoS2 flakes, which can be explained by our first-principles calculations. The results unambiguously confirm that the contribution of edge states to the channel conductance is significant under the threshold voltage but negligible once the bulk of the TMD device becomes conductive. Strong conductance inhomogeneity, which is associated with the fluctuations of disorder potential in the 2D sheets, is also observed in the MIM images, providing a guideline for future improvement of the device performance.

  19. Simulations of Turbulence in Tokamak Edge and Effects of Self-Consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress is reported on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge. This extends previous work to include self-consistent zonal flows and their effects. The previous work addressed simulation of L-mode tokamak edge turbulence using the turbulence code BOUT that solves Braginskii-based plasma fluid equations in tokamak edge domain. The calculations use realistic single-null geometry and plasma parameters of the DIII-D tokamak and produce fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  20. Influence of edge roughness on graphene nanoribbon resonant tunnelling diodes

    International Nuclear Information System (INIS)

    Liang Gengchiau; Khalid, Sharjeel Bin; Lam, Kai-Tak

    2010-01-01

    The edge roughness effects of graphene nanoribbons on their application in resonant tunnelling diodes with different geometrical shapes (S, H and W) were investigated. Sixty samples for each 5%, 10% and 15% edge roughness conditions of these differently shaped graphene nanoribbon resonant tunnelling diodes were randomly generated and studied. Firstly, it was observed that edge roughness in the barrier regions decreases the effective barrier height and thickness, which increases the broadening of the quantized states in the quantum well due to the enhanced penetration of the wave-function tail from the electrodes. Secondly, edge roughness increases the effective width of the quantum well and causes the lowering of the quantized states. Furthermore, the shape effects on carrier transport are modified by edge roughness due to different interfacial scattering. Finally, with the effects mentioned above, edge roughness has a considerable impact on the device performance in terms of varying the peak-current positions and degrading the peak-to-valley current ratio.

  1. Enhanced piezoelectric effect at the edges of stepped molybdenum disulfide nanosheets.

    Science.gov (United States)

    Song, Xiaoxue; Hui, Fei; Gilmore, Keith; Wang, Bingru; Jing, Guangyin; Fan, Zhongchao; Grustan-Gutierrez, Enric; Shi, Yuanyuan; Lombardi, Lucia; Hodge, Stephen A; Ferrari, Andrea C; Lanza, Mario

    2017-05-18

    The development of piezoelectric layered materials may be one of the key elements enabling expansion of nanotechnology, as they offer a solution for the construction of efficient transducers for a wide range of applications, including self-powered devices. Here, we investigate the piezoelectric effect in multilayer (ML) stepped MoS 2 flakes obtained by liquid-phase exfoliation, which is especially interesting because it may allow the scalable fabrication of electronic devices using large area deposition techniques (e.g. solution casting, spray coating, inkjet printing). By using a conductive atomic force microscope we map the piezoelectricity of the MoS 2 flakes at the nanoscale. Our experiments demonstrate the presence of electrical current densities above 100 A cm -2 when the flakes are strained in the absence of bias, and the current increases proportional to the bias. Simultaneously collected topographic and current maps demonstrate that the edges of stepped ML MoS 2 flakes promote the piezoelectric effect, where the largest currents are observed. Density functional theory calculations are consistent with the ring-like piezoelectric potential generated when the flakes are strained, as well as the enhanced piezoelectric effect at edges. Our results pave the way to the design of piezoelectric devices using layered materials.

  2. Transaortic Alfieri Edge-to-Edge Repair for Functional Mitral Regurgitation.

    Science.gov (United States)

    Imasaka, Ken-Ichi; Tayama, Eiki; Morita, Shigeki; Toriya, Ryohei; Tomita, Yukihiro

    2018-03-01

    There is controversy about handling functional mitral regurgitation in patients undergoing aortic valve or proximal aortic operations. We describe a transaortic Alfieri edge-to-edge repair for functional mitral regurgitation that reduces operative excessive invasion and prolonged cardiopulmonary bypass time. Between May 2013 and December 2016, 10 patients underwent transaortic Alfieri edge-to-edge mitral repair. There were no operative deaths. The severity of mitral regurgitation immediately after the operation by transesophageal echocardiography was none or trivial in all patients. A transaortic Alfieri edge-to-edge repair for functional mitral regurgitation is a simple and safe approach. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Subharmonic edge waves on a large, shallow island

    Science.gov (United States)

    Foda, Mostafa A.

    1988-08-01

    Subharmonic resonance of edge waves by incident and reflected waves has been studied thus far for the case of a plane infinite beach. The analysis will be extended here to the case of a curved coastline, with a large radius of curvature and slowly varying beach slope in the longshore direction. It will be shown that the effects of such slow beach slope changes on a propagating edge wave are similar to the familiar shoaling effects on incident waves. The case of subharmonic edge wave generation on large shallow islands will be discussed in detail. The nonlinear analysis will show that within a certain range of island sizes, the generation mechanism can produce a stable standing edge wave around the island. For larger islands the solution disintegrates into two out-of-phase envelopes of opposite-going edge waves. For still larger islands, the generated progressive edge waves become unstable to sideband modulations.

  4. The visibility of IQHE at sharp edges: experimental proposals based on interactions and edge electrostatics

    International Nuclear Information System (INIS)

    Erkarslan, U; Oylumluoglu, G; Grayson, M; Siddiki, A

    2012-01-01

    The influence of the incompressible strips on the integer quantized Hall effect (IQHE) is investigated, considering a cleaved-edge overgrown (CEO) sample as an experimentally realizable sharp edge system. We propose a set of experiments to clarify the distinction between the large-sample limit when bulk disorder defines the IQHE plateau width and the small-sample limit smaller than the disorder correlation length, when self-consistent edge electrostatics define the IQHE plateau width. The large-sample or bulk quantized Hall (QH) regime is described by the usual localization picture, whereas the small-sample or edge regime is discussed within the compressible/incompressible strips picture, known as the screening theory of QH edges. Utilizing the unusually sharp edge profiles of the CEO samples, a Hall bar design is proposed to manipulate the edge potential profile from smooth to extremely sharp. By making use of a side-gate perpendicular to the two-dimensional electron system, it is shown that the plateau widths can be changed or even eliminated altogether. Hence, the visibility of IQHE is strongly influenced when adjusting the edge potential profile and/or changing the dc current direction under high currents in the nonlinear transport regime. As a second investigation, we consider two different types of ohmic contacts, namely highly transmitting (ideal) and highly reflecting (non-ideal) contacts. We show that if the injection contacts are non-ideal, but still ohmic, it is possible to measure directly the non-quantized transport taking place at the bulk of the CEO samples. The results of the experiments we propose will clarify the influence of the edge potential profile and the quality of the contacts, under QH conditions. (paper)

  5. Experimental investigation of edge sheared flow development and configuration effects in the TJ-II stellarator

    International Nuclear Information System (INIS)

    Pedrosa, M.A.; Hidalgo, C.; Alonso, A.; Calderon, E.; Orozco, O.; Pablos, J.L. de

    2005-01-01

    Experimental results have shown that the generation of spontaneous perpendicular sheared flow (i.e. the naturally occurring shear layer) requires a minimum plasma density or gradient in the TJ-II stellarator. This finding has been observed by means of multiple plasma diagnostics, including probes, fast cameras, reflectometry and HIBP. The obtained shearing rate of the naturally occurring shear layer results in general comparable to the one observed during biasing-improved confinement regimes. It has been found that there is a coupling between the onset of sheared flow development and an increase in the level of plasma edge fluctuations pointing to turbulence as the main ingredient of the radial electric field drive; once the shear flow develops the level of turbulence tends to decrease. The link between the development of sheared flows and plasma density in TJ-II has been observed in different magnetic configurations and plasma regimes. Preliminary results show that the threshold density value depends on the iota value and on the magnetic ripple (plasma volume). Recent experiments carried out in the LHD stellarator have shown that edge sheared flows are also affected by the magnitude of edge magnetic ripple: the threshold density to trigger edge sheared flows increases with magnetic ripple . Those results have been interpreted as an evidence of the importance of neoclassical effect in the physics of ExB sheared flows. For some TJ-II magnetic configurations with higher edge iota (ι/2π≥ 1.8) there is a sharp increase in the edge density gradient simultaneous to a strong reduction of fluctuations and transport and a slight increase of the shearing rate and perpendicular rotation (≥2 km/s) as density increases above the threshold. The role of the edge ripple, the presence of edge rational surfaces and properties of turbulent transport are considered as possible ingredients to explain the spontaneous development of edge sheared flows in TJ-II. (author)

  6. Mammographic x-ray unit kilovoltage test tool based on k-edge absorption effect.

    Science.gov (United States)

    Napolitano, Mary E; Trueblood, Jon H; Hertel, Nolan E; David, George

    2002-09-01

    A simple tool to determine the peak kilovoltage (kVp) of a mammographic x-ray unit has been designed. Tool design is based on comparing the effect of k-edge discontinuity of the attenuation coefficient for a series of element filters. Compatibility with the mammography accreditation phantom (MAP) to obtain a single quality control film is a second design objective. When the attenuation of a series of sequential elements is studied simultaneously, differences in the absorption characteristics due to the k-edge discontinuities are more evident. Specifically, when the incident photon energy is higher than the k-edge energy of a number of the elements and lower than the remainder, an inflection may be seen in the resulting attenuation data. The maximum energy of the incident photon spectra may be determined based on this inflection point for a series of element filters. Monte Carlo photon transport analysis was used to estimate the photon transmission probabilities for each of the sequential k-edge filter elements. The photon transmission corresponds directly to optical density recorded on mammographic x-ray film. To observe the inflection, the element filters chosen must have k-edge energies that span a range greater than the expected range of the end point energies to be determined. For the design, incident x-ray spectra ranging from 25 to 40 kVp were assumed to be from a molybdenum target. Over this range, the k-edge energy changes by approximately 1.5 keV between sequential elements. For this design 21 elements spanning an energy range from 20 to 50 keV were chosen. Optimum filter element thicknesses were calculated to maximize attenuation differences at the k-edge while maintaining optical densities between 0.10 and 3.00. Calculated relative transmission data show that the kVp could be determined to within +/-1 kV. To obtain experimental data, a phantom was constructed containing 21 different elements placed in an acrylic holder. MAP images were used to determine

  7. Mammographic x-ray unit kilovoltage test tool based on k-edge absorption effect

    International Nuclear Information System (INIS)

    Napolitano, Mary E.; Trueblood, Jon H.; Hertel, Nolan E.; David, George

    2002-01-01

    A simple tool to determine the peak kilovoltage (kVp) of a mammographic x-ray unit has been designed. Tool design is based on comparing the effect of k-edge discontinuity of the attenuation coefficient for a series of element filters. Compatibility with the mammography accreditation phantom (MAP) to obtain a single quality control film is a second design objective. When the attenuation of a series of sequential elements is studied simultaneously, differences in the absorption characteristics due to the k-edge discontinuities are more evident. Specifically, when the incident photon energy is higher than the k-edge energy of a number of the elements and lower than the remainder, an inflection may be seen in the resulting attenuation data. The maximum energy of the incident photon spectra may be determined based on this inflection point for a series of element filters. Monte Carlo photon transport analysis was used to estimate the photon transmission probabilities for each of the sequential k-edge filter elements. The photon transmission corresponds directly to optical density recorded on mammographic x-ray film. To observe the inflection, the element filters chosen must have k-edge energies that span a range greater than the expected range of the end point energies to be determined. For the design, incident x-ray spectra ranging from 25 to 40 kVp were assumed to be from a molybdenum target. Over this range, the k-edge energy changes by approximately 1.5 keV between sequential elements. For this design 21 elements spanning an energy range from 20 to 50 keV were chosen. Optimum filter element thicknesses were calculated to maximize attenuation differences at the k-edge while maintaining optical densities between 0.10 and 3.00. Calculated relative transmission data show that the kVp could be determined to within ±1 kV. To obtain experimental data, a phantom was constructed containing 21 different elements placed in an acrylic holder. MAP images were used to determine

  8. Harvest-related edge effects on prey availability and foraging of hooded warblers in a bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    John Kilgo

    2005-04-20

    The effects of harvest-created canopy gaps in bottomland hardwood forests on arthropod abundance and, hence, the foraging ecology of birds are poorly understood. I predicted that arthropod abundance would be high near edges of group-selection harvest gaps and lower in the surrounding forest, and that male Hooded Warblers (Wilsonia citrina) foraging near gaps would find more prey per unit time than those foraging in the surrounding forest. In fact, arthropod abundance was greater >100 m from a gap edge than at 0-30 m or 30-100 m from an edge, due to their abundance on switchcane (Arundinaria gigantea); arthropods did not differ in abundance among distances from gaps on oaks (Quercus spp.) or red maple (Acer rubrum). Similarly, Hooded Warbler foraging attack rates were not higher near gap edges: when foraging for fledglings, attack rate did not differ among distances from gaps, but when foraging for themselves, attack rates actually were lower 0-30 m from gap edges than 30-100 m or >100 m from a gap edge. Foraging attack rate was positively associated with arthropod abundance. Hooded Warblers apparently encountered fewer prey and presumably foraged less efficiently where arthropods were least abundant, i.e., near gaps. That attack rates among birds foraging for fledglings were not affected by distance from gap (and hence arthropod abundance) suggests that prey availability may not be limiting at any location across the forest, despite the depressing effects of gaps on arthropod abundance.

  9. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.

    Science.gov (United States)

    Ryou, Junga; Park, Jinwoo; Kim, Gunn; Hong, Suklyun

    2017-06-21

    Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the Γ point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs.

  10. Numerical analysis of edge effects in side illuminated strip detectors for digital radiology

    CERN Document Server

    Krizaj, D

    2000-01-01

    The influence of edge defects on side illuminated X-ray strip detectors for digital radiology is investigated by numerical device modeling. By assuming positive fixed oxide charges on side and top surfaces simulations have shown strong curvature of the equipotential lines in the edge region. A fraction of the edge generated current surpasses the edge guard-ring junction and is collected by the readout strips. As a consequence, strips cannot be placed close to the edge of the structure and collection efficiency is reduced. An n-on-n instead of a p-on-n strip detector is proposed enabling collection of edge generated carriers by a very narrow guard-ring junction and placement of the readout strip close to the edge without increase of the strip leakage current.

  11. A direct heating model to overcome the edge effect in microplates.

    Science.gov (United States)

    Lau, Chun Yat; Zahidi, Alifa Afiah Ahmad; Liew, Oi Wah; Ng, Tuck Wah

    2015-01-01

    Array-based tests in a microplate format are complicated by the regional variation in results of the outer against the inner wells of the plate. Analysis of the evaporation mechanics of sessile drops showed that evaporation rate increase with temperature was due to changes in the heat of vaporization, density and diffusion coefficient. In simulations of direct bottom heating of standard microplates, considerable heat transfer via conduction from the side walls was found to be responsible for lower temperatures in the liquid in wells close to the edge. Applying a two temperature heating mode, 304 K at the side compared to 310 K at the bottom, allowed for a more uniform temperature distribution. Transparency microplates were found to inherently possess immunity to the edge effect problem due to the presence of air between the liquid and solid wall. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Edge type affects leaf-level water relations and estimated transpiration of Eucalyptus arenacea.

    Science.gov (United States)

    Wright, Thomas E; Tausz, Michael; Kasel, Sabine; Volkova, Liubov; Merchant, Andrew; Bennett, Lauren T

    2012-03-01

    While edge effects on tree water relations are well described for closed forests, they remain under-examined in more open forest types. Similarly, there has been minimal evaluation of the effects of contrasting land uses on the water relations of open forest types in highly fragmented landscapes. We examined edge effects on the water relations and gas exchange of a dominant tree (Eucalyptus arenacea Marginson & Ladiges) in an open forest type (temperate woodland) of south-eastern Australia. Edge effects in replicate woodlands adjoined by cleared agricultural land (pasture edges) were compared with those adjoined by 7- to 9-year-old eucalypt plantation with a 25m fire break (plantation edges). Consistent with studies in closed forest types, edge effects were pronounced at pasture edges where photosynthesis, transpiration and stomatal conductance were greater for edge trees than interior trees (75m into woodlands), and were related to greater light availability and significantly higher branch water potentials at woodland edges than interiors. Nonetheless, gas exchange values were only ∼50% greater for edge than interior trees, compared with ∼200% previously found in closed forest types. In contrast to woodlands adjoined by pasture, gas exchange in winter was significantly lower for edge than interior trees in woodlands adjoined by plantations, consistent with shading and buffering effects of plantations on edge microclimate. Plantation edge effects were less pronounced in summer, although higher water use efficiency of edge than interior woodland trees indicated possible competition for water between plantation trees and woodland edge trees in the drier months (an effect that might have been more pronounced were there no firebreak between the two land uses). Scaling up of leaf-level water relations to stand transpiration using a Jarvis-type phenomenological model indicated similar differences between edge types. That is, transpiration was greater at pasture than

  13. Nonneutralized charge effects on tokamak edge magnetohydrodynamic stability

    International Nuclear Information System (INIS)

    Zheng, Linjin; Horton, W.; Miura, H.; Shi, T.H.; Wang, H.Q.

    2016-01-01

    Owing to the large ion orbits, excessive electrons can accumulate at tokamak edge. We find that the nonneutralized electrons at tokamak edge can contribute an electric compressive stress in the direction parallel to magnetic field by their mutual repulsive force. By extending the Chew–Goldburger–Low theory (Chew et al., 1956 [13]), it is shown that this newly recognized compressive stress can significantly change the plasma average magnetic well, so that a stabilization of magnetohydrodynamic modes in the pedestal can result. This linear stability regime helps to explain why in certain parameter regimes the tokamak high confinement can be rather quiet as observed experimentally.

  14. Influence of Wafer Edge Geometry on Removal Rate Profile in Chemical Mechanical Polishing: Wafer Edge Roll-Off and Notch

    Science.gov (United States)

    Fukuda, Akira; Fukuda, Tetsuo; Fukunaga, Akira; Tsujimura, Manabu

    2012-05-01

    In the chemical mechanical polishing (CMP) process, uniform polishing up to near the wafer edge is essential to reduce edge exclusion and improve yield. In this study, we examine the influences of inherent wafer edge geometries, i.e., wafer edge roll-off and notch, on the CMP removal rate profile. We clarify the areas in which the removal rate profile is affected by the wafer edge roll-off and the notch, as well as the intensity of their effects on the removal rate profile. In addition, we propose the use of a small notch to reduce the influence of the wafer notch and present the results of an examination by finite element method (FEM) analysis.

  15. X-ray imaging characterization of active edge silicon pixel sensors

    International Nuclear Information System (INIS)

    Ponchut, C; Ruat, M; Kalliopuska, J

    2014-01-01

    The aim of this work was the experimental characterization of edge effects in active-edge silicon pixel sensors, in the frame of X-ray pixel detectors developments for synchrotron experiments. We produced a set of active edge pixel sensors with 300 to 500 μm thickness, edge widths ranging from 100 μm to 150 μm, and n or p pixel contact types. The sensors with 256 × 256 pixels and 55 × 55 μm 2 pixel pitch were then bump-bonded to Timepix readout chips for X-ray imaging measurements. The reduced edge widths makes the edge pixels more sensitive to the electrical field distribution at the sensor boundaries. We characterized this effect by mapping the spatial response of the sensor edges with a finely focused X-ray synchrotron beam. One of the samples showed a distortion-free response on all four edges, whereas others showed variable degrees of distortions extending at maximum to 300 micron from the sensor edge. An application of active edge pixel sensors to coherent diffraction imaging with synchrotron beams is described

  16. Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model

    International Nuclear Information System (INIS)

    Zhang, M.-X.; Kelly, P.M.; Easton, M.A.; Taylor, J.A.

    2005-01-01

    The edge-to-edge matching model for describing the interfacial crystallographic characteristics between two phases that are related by reproducible orientation relationships has been applied to the typical grain refiners in aluminum alloys. Excellent atomic matching between Al 3 Ti nucleating substrates, known to be effective nucleation sites for primary Al, and the Al matrix in both close packed directions and close packed planes containing these directions have been identified. The crystallographic features of the grain refiner and the Al matrix are very consistent with the edge-to-edge matching model. For three other typical grain refiners for Al alloys, TiC (when a = 0.4328 nm), TiB 2 and AlB 2 , the matching only occurs between the close packed directions in both phases and between the second close packed plane of the Al matrix and the second close packed plane of the refiners. According to the model, it is predicted that Al 3 Ti is a more powerful nucleating substrate for Al alloy than TiC, TiB 2 and AlB 2 . This agrees with the previous experimental results. The present work shows that the edge-to-edge matching model has the potential to be a powerful tool in discovering new and more powerful grain refiners for Al alloys

  17. Edge passivation induced single-edge ferromagnetism of zigzag MoS_2 nanoribbons

    International Nuclear Information System (INIS)

    Wang, Rui; Sun, Hui; Ma, Ben; Hu, Jingguo; Pan, Jing

    2017-01-01

    We performed density functional theory study on electronic structure, magnetic properties and stability of zigzag MoS_2 nanoribbons (ZMoS_2NRs) with and without oxygen (O) passivation. The bare ZMoS_2NRs are magnetic metal with ferromagnetic edge states, edge passivation decreases their magnetism because of the decrease of edge unsaturated electrons. Obviously, the electronic structure and magnetic properties of ZMoS_2NRs greatly depend on edge states. When both edges are passivated by O atoms, ZMoS_2NRs are nonmagnetic metals. When either edge is passivated by O atoms, the systems exhibit single-edge ferromagnetism and magnetism concentrates on the non-passivated edge. Edge passivation can not only tune the magnetism of ZMoS_2NRs, but also enhance their stability by eliminating dangling bonds. These interesting findings on ZMoS_2NRs may open the possibility of their application in nanodevices and spintronics. - Highlights: • Edge passivation for tuning magnetism of zigzag MoS_2 nanoribbons (ZMoS_2NRs) is proposed. • Edge passivation can tune ZMoS_2NRs from nonmagnetic metal to ferromagnetic metal. • When either edge is passivated, the systems exhibit single-edge ferromagnetic states. • These findings may inspire great interest in the community of ZMoS_2NRs and motivate numerous experimental researches.

  18. Effects of V-shaped edge defect and H-saturation on spin-dependent electronic transport of zigzag MoS2 nanoribbons

    International Nuclear Information System (INIS)

    Li, Xin-Mei; Long, Meng-Qiu; Cui, Li-Ling; Xiao, Jin; Zhang, Xiao-Jiao; Zhang, Dan; Xu, Hui

    2014-01-01

    Based on nonequilibrium Green's function in combination with density functional theory calculations, the spin-dependent electronic transport properties of one-dimensional zigzag molybdenum disulfide (MoS 2 ) nanoribbons with V-shaped defect and H-saturation on the edges have been studied. Our results show that the spin-polarized transport properties can be found in all the considered zigzag MoS 2 nanoribbons systems. The edge defects, especially the V-shaped defect on the Mo edge, and H-saturation on the edges can suppress the electronic transport of the systems. Also, the spin-filtering and negative differential resistance behaviors can be observed obviously. The mechanisms are proposed for these phenomena. - Highlights: • The spin-dependent electronic transport of zigzag MoS 2 nanoribbons. • The effects of V-shaped edge defect and H-saturation. • The effects of spin-filter and negative differential resistance can be observed

  19. The effect of edge interlaminar stresses on the strength of carbon/epoxy laminates of different stacking geometry

    OpenAIRE

    MOMCILO STEVANOVIC; MILAN GORDIC; DANIELA SEKULIC; ISIDOR DJORDJEVIC

    2006-01-01

    The effect of edge interlaminar stresses on strength of carbon/epoxy laminates of different stacking geometry: cross-ply, quasi-isotropic and angle-ply laminates with additional 0º and 90º ply was studied. Coupons with two widths of laminates with an inverse stacking sequence were tested in static tensile tests. The effect of edge interlaminar stresses on strength was studied, by comparing the values of the tensile strength of laminate coupons of the same width with an inverse stacking sequen...

  20. Object detection using categorised 3D edges

    DEFF Research Database (Denmark)

    Kiforenko, Lilita; Buch, Anders Glent; Bodenhagen, Leon

    2015-01-01

    is made possible by the explicit use of edge categories in the feature descriptor. We quantitatively compare our approach with the state-of-the-art template based Linemod method, which also provides an effective way of dealing with texture-less objects, tests were performed on our own object dataset. Our...... categorisation algorithm for describing objects in terms of its different edge types. Relying on edge information allow our system to deal with objects with little or no texture or surface variation. We show that edge categorisation improves matching performance due to the higher level of discrimination, which...

  1. Edge effect on palm diversity in rain forest fragments in western Ecuador

    DEFF Research Database (Denmark)

    Baez, S.; Balslev, Henrik

    2007-01-01

    to be idiosyncratic and to depend on the level of disturbance at edges. This paper explores how variation in forest structure at the edges of two old-growth forest fragments in a tropical rain forest in western Ecuador affects palms of different species, life-forms, and size classes. We investigate (1) how edge...

  2. Disorder effect on chiral edge modes and anomalous Hall conductance in Weyl semimetals

    International Nuclear Information System (INIS)

    Takane, Yositake

    2016-01-01

    Typical Weyl semimetals host chiral surface states and hence show an anomalous Hall response. Although a Weyl semimetal phase is known to be robust against weak disorder, the effect of disorder on chiral states has not been fully clarified so far. We study the behavior of such chiral states in the presence of disorder and its consequences on an anomalous Hall response, focusing on a thin slab of Weyl semimetal with chiral surface states along its edge. It is shown that weak disorder does not disrupt chiral edge states but crucially affects them owing to the renormalization of a mass parameter: the number of chiral edge states changes depending on the strength of disorder. It is also shown that the Hall conductance is quantized when the Fermi level is located near Weyl nodes within a finite-size gap. This quantization of the Hall conductance collapses once the strength of disorder exceeds a critical value, suggesting that it serves as a probe to distinguish a Weyl semimetal phase from a diffusive anomalous Hall metal phase. (author)

  3. [Edge effect on lichen's distribution and chlorophyll content, in fragments of Polylepis quadrijuga (Rosaceae) in Páramo de la Rusia (Boyacá-Colombia)].

    Science.gov (United States)

    Pulido Herrera, Karen; Ramos Montaño, Carolina

    2016-12-01

    The ecosystems fragmentation is one of the anthropic phenomena with highest impact at global level and the edge effect causes that only the fragments interior conserve their original biotic and abiotic characteristics. Lichens are organisms especially susceptible to environmental variability, what could be useful for bio-indication of edge effect. In this work, we evaluated the edge effect in two fragments of Polylepis quadrijuga in the Páramo de la Rusia (Boyacá-Colombia) to determine if there is an edge effect on distribution of lichens associated to P. quadrijuga and their chlorophyll content. We used three transects of 70 m across the matrix-edge-interior gradient in each fragment. We chose nine phorophytes per transect to measure the environmental variables: photosynthetically active radiation, relative humidity and air temperature, and the biological variables: richness and cover per species. Besides, we employed the species that were present in all the three zones of the gradient to quantify the content of chlorophylls a and b, and determine if there are changes in the ratio of chlorophylls a/b that could suggest physiological plasticity as a response to the edge effect. Our results showed that fragment 2 had a higher edge exposition because of its high relation perimeter/area, allowing to an environmental homogenization and lose of biodiversity in relation with fragment 1. Overall, we found 55 differentially distributed species in relation with the fragments and the matrix-edge-interior gradient. The interior of fragment 1 was the most conserved zone, harboring a composition different in more than 40 % to the composition of any other zone. We classified the lichens according with their habits: gelatinous, fruticose, crusty or foliose, but we did not find any relationship between the habit distribution and the edge effect. Six species of wide distribution showed changes in the chlorophyll content along the matrix-edge-interior gradient, what is an evidence

  4. A study of the effect of the position of an edge filter within a ratiometric wavelength measurement system

    International Nuclear Information System (INIS)

    Wu, Qiang; Wang, Pengfei; Semenova, Yuliya; Farrell, Gerald

    2010-01-01

    The effect of the position of an edge filter within a ratiometric wavelength measurement system was investigated based on three cases: (1) the reflected fibre Bragg grating (FBG) signal passes through both the reference arm and the edge filter arm, (2) the reflected FBG signal is connected directly to the edge filter arm and does not pass through the reference arm, (3) the edge filter sits in line with the FBG and thus the source power is filtered prior to reaching the FBG. Both numerical simulations and experimental results show that cases 1 and 2 have similar system performance whilst case 3 is the best arrangement which offers the highest wavelength resolution

  5. Study of edge effects in the breakdown process of p sup + on n-bulk silicon diodes

    CERN Document Server

    Militaru, O; Bozzi, C; Rold, M D; Dell'Orso, R; Dutta, S; Messineo, A; Mihul, A; Tonelli, G; Verdini, P G; Wheadon, R; Xie, Z

    2000-01-01

    The paper describes the role of the n sup + edge implants in the breakdown process of p sup + on n-bulk silicon diodes. Laboratory measurements and simulation studies are presented on a series of test structures aimed at an optimization of the design in the edge region. The dependence of the breakdown voltage on the geometrical parameters of the devices is discussed in detail. Design rules are extracted for the use of n sup + -layers along the scribe line to avoid surface conduction of current generated by the exposed edges. The effect of neutron irradiation has been studied up to a fluence of 1.8x10 sup 1 sup 5 cm sup - sup 2.

  6. A model for managing edge effects in harvest scheduling using spatial optimization

    Science.gov (United States)

    Kai L. Ross; Sándor F. Tóth

    2016-01-01

    Actively managed forest stands can create new forest edges. If left unchecked over time and across space, forest operations such as clear-cuts can create complex networks of forest edges. Newly created edges alter the landscape and can affect many environmental factors. These altered environmental factors have a variety of impacts on forest growth and structure and can...

  7. Iridium Coating Deposited by Double Glow Plasma Technique — Effect of Glow Plasma on Structure of Coating at Single Substrate Edge

    International Nuclear Information System (INIS)

    Wu Wangping; Chen Zhaofeng; Liu Yong

    2012-01-01

    Double glow plasma technique has a high deposition rate for preparing iridium coating. However, the glow plasma can influence the structure of the coating at the single substrate edge. In this study, the iridium coating was prepared by double glow plasma on the surface of single niobium substrate. The microstructure of iridium coating at the substrate edge was observed by scanning electron microscopy. The composition of the coating was confirmed by energy dispersive spectroscopy and X-ray diffraction. There was a boundary between the coating and the substrate edge. The covered area for the iridium coating at the substrate edge became fewer and fewer from the inner area to the outer flange-area. The bamboo sprout-like particles on the surface of the substrate edge were composed of elemental niobium. The substrate edge was composed of the Nb coating and there was a transition zone between the Ir coating and the Nb coating. The interesting phenomenon of the substrate edge could be attributed to the effects of the bias voltages and the plasma cloud in the deposition chamber. The substrate edge effect could be mitigated or eliminated by adding lots of small niobium plates around the substrate in a deposition process. (plasma technology)

  8. Six-month outcome after transcatheter edge-to-edge repair of severe tricuspid regurgitation in patients with heart failure.

    Science.gov (United States)

    Orban, Mathias; Besler, Christian; Braun, Daniel; Nabauer, Michael; Zimmer, Marion; Orban, Martin; Noack, Thilo; Mehilli, Julinda; Hagl, Christian; Seeburger, Joerg; Borger, Michael; Linke, Axel; Thiele, Holger; Massberg, Steffen; Ender, Joerg; Lurz, Philipp; Hausleiter, Jörg

    2018-06-01

    Severe tricuspid regurgitation (TR) is common in patients with right-sided heart failure (HF) and causes substantial morbidity and mortality. Treatment options beyond medical therapy are limited for high-risk patients. Transcatheter edge-to-edge tricuspid valve (TV) repair showed procedural safety and short-term efficacy. Impact on mid-term outcome is unclear. This dual-centre observational study evaluates the mid-term safety, efficacy and clinical outcome after edge-to-edge TV repair for severe TR in patients with HF. Overall, 50 patients with right-sided HF and severe TR were treated with the transcatheter edge-to-edge repair technique; 14 patients were treated for isolated TR and 36 patients for combined mitral regurgitation (MR) and TR. At 6-month follow-up (available for 98% of patients), a persistent reduction of at least one echocardiographic TR grade was achieved in 90% of patients and New York Heart Association class improved in 79% of patients. The 6-minute walk distance increased by 44% (+84 m, P edge-to-edge TV repair for severe TR is safe and effective in reducing TR. It appears to be associated with improved clinical outcome in the majority of patients. © 2018 The Authors. European Journal of Heart Failure © 2018 European Society of Cardiology.

  9. Edge effects enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests.

    Science.gov (United States)

    Reinmann, Andrew B; Hutyra, Lucy R

    2017-01-03

    Forest fragmentation is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge, but ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance. To the extent that the findings from our research represent the forest of southern New England in the United States, we provide a preliminary estimate that edge growth enhancement could increase estimates of the region's carbon uptake and storage by 13 ± 3% and 10 ± 1%, respectively. However, we also find that forest growth near the edge declines three times faster than that in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.

  10. Power spectrum weighted edge analysis for straight edge detection in images

    Science.gov (United States)

    Karvir, Hrishikesh V.; Skipper, Julie A.

    2007-04-01

    Most man-made objects provide characteristic straight line edges and, therefore, edge extraction is a commonly used target detection tool. However, noisy images often yield broken edges that lead to missed detections, and extraneous edges that may contribute to false target detections. We present a sliding-block approach for target detection using weighted power spectral analysis. In general, straight line edges appearing at a given frequency are represented as a peak in the Fourier domain at a radius corresponding to that frequency, and a direction corresponding to the orientation of the edges in the spatial domain. Knowing the edge width and spacing between the edges, a band-pass filter is designed to extract the Fourier peaks corresponding to the target edges and suppress image noise. These peaks are then detected by amplitude thresholding. The frequency band width and the subsequent spatial filter mask size are variable parameters to facilitate detection of target objects of different sizes under known imaging geometries. Many military objects, such as trucks, tanks and missile launchers, produce definite signatures with parallel lines and the algorithm proves to be ideal for detecting such objects. Moreover, shadow-casting objects generally provide sharp edges and are readily detected. The block operation procedure offers advantages of significant reduction in noise influence, improved edge detection, faster processing speed and versatility to detect diverse objects of different sizes in the image. With Scud missile launcher replicas as target objects, the method has been successfully tested on terrain board test images under different backgrounds, illumination and imaging geometries with cameras of differing spatial resolution and bit-depth.

  11. Edge turbulence effect on ultra-fast swept reflectometry core measurements in tokamak plasmas

    Science.gov (United States)

    Zadvitskiy, G. V.; Heuraux, S.; Lechte, C.; Hacquin, S.; Sabot, R.

    2018-02-01

    Ultra-fast frequency-swept reflectometry (UFSR) enables one to provide information about the turbulence radial wave-number spectrum and perturbation amplitude with good spatial and temporal resolutions. However, a data interpretation of USFR is quiet tricky. An iterative algorithm to solve this inverse problem was used in past works, Gerbaud (2006 Rev. Sci. Instrum. 77 10E928). For a direct solution, a fast 1D Helmholtz solver was used. Two-dimensional effects are strong and should be taken into account during data interpretation. As 2D full-wave codes are still too time consuming for systematic application, fast 2D approaches based on the Born approximation are of prime interest. Such methods gives good results in the case of small turbulence levels. However in tokamak plasmas, edge turbulence is usually very strong and can distort and broaden the probing beam Sysoeva et al (2015 Nucl. Fusion 55 033016). It was shown that this can change reflectometer phase response from the plasma core. Comparison between 2D full wave computation and the simplified Born approximation was done. The approximated method can provide a right spectral shape, but it is unable to describe a change of the spectral amplitude with an edge turbulence level. Computation for the O-mode wave with the linear density profile in the slab geometry and for realistic Tore-Supra density profile, based on the experimental data turbulence amplitude and spectrum, were performed to investigate the role of strong edge turbulence. It is shown that the spectral peak in the signal amplitude variation spectrum which rises with edge turbulence can be a signature of strong edge turbulence. Moreover, computations for misaligned receiving and emitting antennas were performed. It was found that the signal amplitude variation peak changes its position with a receiving antenna poloidal displacement.

  12. Strain-activated edge reconstruction of graphene nanoribbons

    KAUST Repository

    Cheng, Yingchun

    2012-02-17

    The edge structure and width of graphene nanoribbons (GNRs) are crucial factors for the electronic properties. A combination of experiment and first-principles calculations allows us to determine the mechanism of the hexagon-hexagon to pentagon-heptagon transformation. GNRs thinner than 2 nm have been fabricated by bombardment of graphene with high-energetic Au clusters. The edges of the GNRs are modified in situ by electron irradiation. Tensile strain along the edge decreases the transformation energy barrier. Antiferromagnetism and a direct band gap are found for a zigzag GNR, while a fully reconstructed GNR shows an indirect band gap. A GNR reconstructed on only one edge exhibits ferromagnetism. We propose that strain is an effective method to tune the edge and, therefore, the electronic structure of thin GNRs for graphene-based electronics.

  13. Strain-activated edge reconstruction of graphene nanoribbons

    KAUST Repository

    Cheng, Yingchun; Han, Yu; Schwingenschlö gl, Udo; Wang, H. T.; Zhang, Xixiang; Zhu, Y. H.; Zhu, Zhiyong

    2012-01-01

    The edge structure and width of graphene nanoribbons (GNRs) are crucial factors for the electronic properties. A combination of experiment and first-principles calculations allows us to determine the mechanism of the hexagon-hexagon to pentagon-heptagon transformation. GNRs thinner than 2 nm have been fabricated by bombardment of graphene with high-energetic Au clusters. The edges of the GNRs are modified in situ by electron irradiation. Tensile strain along the edge decreases the transformation energy barrier. Antiferromagnetism and a direct band gap are found for a zigzag GNR, while a fully reconstructed GNR shows an indirect band gap. A GNR reconstructed on only one edge exhibits ferromagnetism. We propose that strain is an effective method to tune the edge and, therefore, the electronic structure of thin GNRs for graphene-based electronics.

  14. Low scatter edge blackening compounds for refractive optical elements

    International Nuclear Information System (INIS)

    Lewis, I.T.; Telkamp, A.R.; Ledebuhr, A.G.

    1989-01-01

    This paper reports on low scatter edge blackening compounds for refractive optical elements. Perkin-Elmer's Applied Optics Operation recently delivered several prototype wide-field-of-view (WFOV), F/2.8, 250 mm efl, near diffraction limited, concentric lenses toLawrence Livermore National Laboratory (LLNL). In these lenses, special attention was paid to reducing stray light to allow viewing of very dim objects. Because of the very large FOV, the use of a long baffle to eliminate direct illumination of lens edges was not practical. With the existing relatively short baffle design, one-bounce stray light paths off the element edges are possible. The scattering off the inside edges thus had to be kept to an absolute minimum. While common means for blackening the edges of optical elements are easy to apply and quite cost effective for normal lens assemblies, their blackening effect is limited by the Fresnel reflection due to the index of refraction mismatch at the glass boundary. At high angles of incidence, total internal reflection (TIR) might occur ruining the effect of the blackening process. An index-match absorbing medium applied to the edges of such elements is the most effective approach for reducing the amount of undesired light reflection or scattered off these edges. The presence of such a medium provides an extended path outside the glass boundary in which an absorptive non-scattering dye can be used to eliminate light that might otherwise have propagated to the focal plane

  15. Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges

    Science.gov (United States)

    Wu, Shuang; Liu, Bing; Shen, Cheng; Li, Si; Huang, Xiaochun; Lu, Xiaobo; Chen, Peng; Wang, Guole; Wang, Duoming; Liao, Mengzhou; Zhang, Jing; Zhang, Tingting; Wang, Shuopei; Yang, Wei; Yang, Rong; Shi, Dongxia; Watanabe, Kenji; Taniguchi, Takashi; Yao, Yugui; Wang, Weihua; Zhang, Guangyu

    2018-05-01

    The determination of the electronic structure by edge geometry is unique to graphene. In theory, an evanescent nonchiral edge state is predicted at the zigzag edges of graphene. Up to now, the approach used to study zigzag-edged graphene has mostly been limited to scanning tunneling microscopy. The transport properties have not been revealed. Recent advances in hydrogen plasma-assisted "top-down" fabrication of zigzag-edged graphene nanoribbons (Z-GNRs) have allowed us to investigate edge-related transport properties. In this Letter, we report the magnetotransport properties of Z-GNRs down to ˜70 nm wide on an h -BN substrate. In the quantum Hall effect regime, a prominent conductance peak is observed at Landau ν =0 , which is absent in GNRs with nonzigzag edges. The conductance peak persists under perpendicular magnetic fields and low temperatures. At a zero magnetic field, a nonlocal voltage signal, evidenced by edge conduction, is detected. These prominent transport features are closely related to the observable density of states at the hydrogen-etched zigzag edge of graphene probed by scanning tunneling spectroscopy, which qualitatively matches the theoretically predicted electronic structure for zigzag-edged graphene. Our study gives important insights for the design of new edge-related electronic devices.

  16. Defining the effect of sweep tillage tool cutting edge geometry on tillage forces using 3D discrete element modelling

    Directory of Open Access Journals (Sweden)

    Mustafa Ucgul

    2015-09-01

    Full Text Available The energy required for tillage processes accounts for a significant proportion of total energy used in crop production. In many tillage processes decreasing the draft and upward vertical forces is often desired for reduced fuel use and improved penetration, respectively. Recent studies have proved that the discrete element modelling (DEM can effectively be used to model the soil–tool interaction. In his study, Fielke (1994 [1] examined the effect of the various tool cutting edge geometries, namely; cutting edge height, length of underside rub, angle of underside clearance, on draft and vertical forces. In this paper the experimental parameters of Fielke (1994 [1] were simulated using 3D discrete element modelling techniques. In the simulations a hysteretic spring contact model integrated with a linear cohesion model that considers the plastic deformation behaviour of the soil hence provides better vertical force prediction was employed. DEM parameters were determined by comparing the experimental and simulation results of angle of repose and penetration tests. The results of the study showed that the simulation results of the soil-various tool cutting edge geometries agreed well with the experimental results of Fielke (1994 [1]. The modelling was then used to simulate a further range of cutting edge geometries to better define the effect of sweep tool cutting edge geometry parameters on tillage forces. The extra simulations were able to show that by using a sharper cutting edge with zero vertical cutting edge height the draft and upward vertical force were further reduced indicating there is benefit from having a really sharp cutting edge. The extra simulations also confirmed that the interpolated trends for angle of underside clearance as suggested by Fielke (1994 [1] where correct with a linear reduction in draft and upward vertical force for angle of underside clearance between the ranges of −25 and −5°, and between −5 and 0°. The

  17. Elevated Levels of Herbivory in Urban Landscapes: Are Declines in Tree Health More Than an Edge Effect?

    Directory of Open Access Journals (Sweden)

    Fiona J. Christie

    2005-06-01

    Full Text Available Urbanization is one of the most extreme and rapidly growing anthropogenic pressures on the natural world. Urban development has led to substantial fragmentation of areas of natural habitat, resulting in significant impacts on biodiversity and disruptions to ecological processes. We investigated the levels of leaf damage caused by invertebrates in a dominant canopy species in urban remnants in a highly fragmented urban landscape in Sydney, Australia, by assessing the frequency and extent of chewing and surface damage of leaves in urban remnants compared to the edges and interiors of continuous areas of vegetation. Although no difference was detected in the frequency of leaves showing signs of damage at small, edge, and interior sites, small sites suffered significantly greater levels of leaf damage than did interior sites. Trees at edge sites showed intermediate levels of damage, suggesting that edge effects alone are not the cause of higher levels of herbivory. These findings are the first to demonstrate the effects of urbanization on invertebrate damage in dominant trees at coarse scales. This is consistent with hypotheses predicting that changes in species composition through urban fragmentation affect ecological interactions.

  18. Exploratory study of the effects of wing-leading-edge modifications on the stall/spin behavior of a light general aviation airplane

    Science.gov (United States)

    1979-01-01

    Configurations with full-span and segmented leading-edge flaps and full-span and segmented leading-edge droop were tested. Studies were conducted with wind-tunnel models, with an outdoor radio-controlled model, and with a full-scale airplane. Results show that wing-leading-edge modifications can produce large effects on stall/spin characteristics, particularly on spin resistance. One outboard wing-leading-edge modification tested significantly improved lateral stability at stall, spin resistance, and developed spin characteristics.

  19. Emergent properties of patch shapes affect edge permeability to animals.

    Directory of Open Access Journals (Sweden)

    Vilis O Nams

    Full Text Available Animal travel between habitat patches affects populations, communities and ecosystems. There are three levels of organization of edge properties, and each of these can affect animals. At the lowest level are the different habitats on each side of an edge, then there is the edge itself, and finally, at the highest level of organization, is the geometry or structure of the edge. This study used computer simulations to (1 find out whether effects of edge shapes on animal behavior can arise as emergent properties solely due to reactions to edges in general, without the animals reacting to the shapes of the edges, and to (2 generate predictions to allow field and experimental studies to test mechanisms of edge shape response. Individual animals were modeled traveling inside a habitat patch that had different kinds of edge shapes (convex, concave and straight. When animals responded edges of patches, this created an emergent property of responding to the shape of the edge. The response was mostly to absolute width of the shapes, and not the narrowness of them. When animals were attracted to edges, then they tended to collect in convexities and disperse from concavities, and the opposite happened when animals avoided edges. Most of the responses occurred within a distance of 40% of the perceptual range from the tip of the shapes. Predictions were produced for directionality at various locations and combinations of treatments, to be used for testing edge behavior mechanisms. These results suggest that edge shapes tend to either concentrate or disperse animals, simply because the animals are either attracted to or avoid edges, with an effect as great as 3 times the normal density. Thus edge shape could affect processes like pollination, seed predation and dispersal and predator abundance.

  20. Effects of a sheared toroidal rotation on the stability boundary of the MHD modes in the tokamak edge pedestal

    International Nuclear Information System (INIS)

    Aiba, N.; Tokuda, S.; Oyama, N.; Ozeki, T.; Furukawa, M.

    2009-01-01

    Effects of a sheared toroidal rotation are investigated numerically on the stability of the MHD modes in the tokamak edge pedestal, which relate to the type-I edge-localized mode. A linear MHD stability code MINERVA is newly developed for solving the Frieman-Rotenberg equation that is the linear ideal MHD equation with flow. Numerical stability analyses with this code reveal that the sheared toroidal rotation destabilizes edge localized MHD modes for rotation frequencies which are experimentally achievable, though the ballooning mode stability changes little by rotation. This rotation effect on the edge MHD stability becomes stronger as the toroidal mode number of the unstable MHD mode increases when the stability analysis was performed for MHD modes with toroidal mode numbers smaller than 40. The toroidal mode number of the unstable MHD mode depends on the stabilization of the current-driven mode and the ballooning mode by increasing the safety factor. This dependence of the toroidal mode number of the unstable mode on the safety factor is considered to be the reason that the destabilization by toroidal rotation is stronger for smaller edge safety factors.

  1. Improvement and implementation for Canny edge detection algorithm

    Science.gov (United States)

    Yang, Tao; Qiu, Yue-hong

    2015-07-01

    Edge detection is necessary for image segmentation and pattern recognition. In this paper, an improved Canny edge detection approach is proposed due to the defect of traditional algorithm. A modified bilateral filter with a compensation function based on pixel intensity similarity judgment was used to smooth image instead of Gaussian filter, which could preserve edge feature and remove noise effectively. In order to solve the problems of sensitivity to the noise in gradient calculating, the algorithm used 4 directions gradient templates. Finally, Otsu algorithm adaptively obtain the dual-threshold. All of the algorithm simulated with OpenCV 2.4.0 library in the environments of vs2010, and through the experimental analysis, the improved algorithm has been proved to detect edge details more effectively and with more adaptability.

  2. Diversity of galling insects in Styrax pohlii (Styracaceae: edge effect and use as bioindicators

    Directory of Open Access Journals (Sweden)

    Walter Santos de Araújo

    2011-12-01

    Full Text Available Impacts of forest fragmentation and edge effect on plant-herbivores interactions are relatively unknown, and the relationships between galling insects and their host plants are very susceptible to environmental variations. The goal of our study was to test the edge effect hypothesis for galling insects associated with Styrax pohlii (Styracaceae host plant. Samplings were conducted at a fragment of semi-deciduous forest in Goiânia, Goiás, Brazil. Thirty host plant individuals (15 at fragment edge and 15 in its interior were sampled in July of 2007; in each plant, 10 apical branches were collected at the top, middle and bottom crown levels. Our results supported the prediction of greater richness of gall morphotypes in the edge habitat compared with remnant interior. In a similar way, gall abundance and frequency of attacked leaves were also greater in the fragment edge. These findings consequently suggest a positive response of galling insect diversity to edge effect; in the Saint-Hilaire forest, this effect probably operates through the changes in microclimatic conditions of edge habitats, which results in an increased hygrothermal stress, a determinant factor to distribution patterns of galling insects. We also concluded that these organisms could be employed as biological indicators (i because of their host-specificity, (ii they are sensitive to changes in plant quality, and (iii present dissimilar and specific responses to local variation in habitat conditions. Rev. Biol. Trop. 59 (4: 1589-1597. Epub 2011 December 01.Los impactos de la fragmentación de los bosques y el efecto de borde sobre las interacciones planta-herbívoros son relativamente desconocidos, y las relaciones entre los insectos inductores de agallas y sus plantas hospederas son muy susceptibles a las variaciones ambientales. El objetivo de nuestro estudio fue probar la hipótesis de efecto de borde en los insectos inductores de agallas asociados con la planta hospedera

  3. Edge of polar cap patches

    Science.gov (United States)

    Hosokawa, K.; Taguchi, S.; Ogawa, Y.

    2016-04-01

    On the night of 4 December 2013, a sequence of polar cap patches was captured by an all-sky airglow imager (ASI) in Longyearbyen, Norway (78.1°N, 15.5°E). The 630.0 nm airglow images from the ASI of 4 second exposure time, oversampled the emission of natural lifetime (with quenching) of at least ˜30 sec, introduce no observational blurring effects. By using such high-quality ASI images, we succeeded in visualizing an asymmetry in the gradients between the leading/trailing edges of the patches in a 2-D fashion. The gradient in the leading edge was found to be 2-3 times steeper than that in the trailing edge. We also identified fingerlike structures, appearing only along the trailing edge of the patches, whose horizontal scale size ranged from 55 to 210 km. These fingers are considered to be manifestations of plasma structuring through the gradient-drift instability (GDI), which is known to occur only along the trailing edge of patches. That is, the current 2-D observations visualized, for the first time, how GDI stirs the patch plasma and such a mixing process makes the trailing edge more gradual. This result strongly implies a close connection between the GDI-driven plasma stirring and the asymmetry in the large-scale shape of patches and then suggests that the fingerlike structures can be used as markers to estimate the fine-scale structure in the plasma flow within patches.

  4. Edge and coupled core/edge transport modelling in tokamaks

    International Nuclear Information System (INIS)

    Lodestro, L.L.; Casper, T.A.; Cohen, R.H.

    1999-01-01

    Recent advances in the theory and modelling of tokamak edge, scrape-off-layer (SOL) and divertor plasmas are described. The effects of the poloidal E x B drift on inner/outer divertor-plate asymmetries within a 1D analysis are shown to be in good agreement with experimental trends; above a critical v ExB , the model predicts transitions to supersonic flow at the inboard midplane. 2D simulations show the importance of E x B flow in the private-flux region and of ∇ B-drifts. A theory of rough plasma-facing surfaces is given, predicting modifications to the SOL plasma. The parametric dependence of detached-plasma states in slab geometry has been explored; with sufficient pumping, the location of the ionization front can be controlled; otherwise only fronts near the plate or the X-point are stable. Studies with a more accurate Monte-Carlo neutrals model and a detailed non-LTE radiation-transport code indicate various effects are important for quantitative modelling. Detailed simulations of the DIII-D core and edge are presented; impurity and plasma flow are discussed and shown to be well modelled with UEDGE. (author)

  5. Edge and coupled core-edge transport modelling in tokamaks

    International Nuclear Information System (INIS)

    Lodestro, L.L.; Casper, T.A.; Cohen, R.H.

    2001-01-01

    Recent advances in the theory and modelling of tokamak edge, scrape-off-layer (SOL) and divertor plasmas are described. The effects of the poloidal ExB drift on inner/outer divertor-plate asymmetries within a 1D analysis are shown to be in good agreement with experimental trends; above a critical v ExB, the model predicts transitions to supersonic SOL flow at the inboard midplane. 2D simulations show the importance of ExB flow in the private-flux region and of ∇ B-drifts. A theory of rough plasma-facing surfaces is given, predicting modifications to the SOL plasma. The parametric dependence of detached-plasma states in slab geometry has been explored; with sufficient pumping, the location of the ionization front can be controlled; otherwise only fronts near the plate or the X-point are stable. Studies with a more accurate Monte-Carlo neutrals model and a detailed non-LTE radiation-transport code indicate various effects are important for quantitative modelling. Detailed simulations of the DIII-D core and edge are presented; impurity and plasma flow are discussed and shown to be well modelled with UEDGE. (author)

  6. Edge effect in charged-particle analyzing magnets

    NARCIS (Netherlands)

    Braams, C.M.

    The manner in which local saturation of pole pieces with sharp edges affects the fall-off of the magnetic induction in the fringing-field region is discussed and measured. Local saturation appears to set in at a field strength well below that at which over-all saturation of the pole pieces becomes

  7. Effect of Wavy Trailing Edge on 100meter Flatback Wind Turbine Blade

    International Nuclear Information System (INIS)

    Yang, SJ; Baeder, J D

    2016-01-01

    The flatback trailing edge design for modern 100meter wind turbine blade has been developed and proposed to make wind turbine blade to be slender and lighter. On the other hand, it will increase aerodynamic drag; consequently the increased drag diminishes turbine power generation. Thus, an aerodynamic drag reducing technique should be accompanied with the flatback trailing edge in order to prevent loss of turbine power generation. In this work, a drag mitigation design, span-wise wavy trailing edge blade, has been applied to a modern 100meter blade. The span-wise trailing edge acts as a vortex generator, and breaks up the strong span-wise coherent trailing edge vortex structure at the flatback airfoil trailing edge which is a major source of large drag. Three-dimensional unsteady Computational Fluid Dynamics (CFD) simulations have been performed for real scale wind turbine blade geometries. Delayed Detached Eddy Simulation (DDES) with the modified laminar-turbulent transition model has been applied to obtain accurate flow field predictions. Graphical Processor Unit (GPU)-accelerated computation has been conducted to reduce computational costs of the real scale wind turbine blade simulations. To verify the structural reliability of the wavy modification of the blade a simple Eigen buckling analysis has been performed in the current study. (paper)

  8. Effects of substrate anisotropy and edge diffusion on submonolayer growth during molecular beam epitaxy: A Kinetic Monte Carlo study

    International Nuclear Information System (INIS)

    Devkota, J.; Shrestha, S.P.

    2007-12-01

    We have performed Kinetic Monte Carlo simulation work to study the effect of diffusion anisotropy, bonding anisotropy and edge diffusion on island formation at different temperatures during the sub-monolayer film growth in Molecular Beam Epitaxy. We use simple cubic solid on solid model and event based Bortz, Kalos and Labowitch (BKL) algorithm on the Kinetic Monte Carlo method to simulate the physical phenomena. We have found that the island morphology and growth exponent are found to be influenced by substrate anisotropy as well as edge diffusion, however they do not play a significant role in island elongation. The growth exponent and island size distribution are observed to be influenced by substrate anisotropy but are negligibly influenced by edge diffusion. We have found fractal islands when edge diffusion is excluded and compact islands when edge diffusion is included. (author)

  9. Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction

    Science.gov (United States)

    Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); Moore, James B. (Inventor); Su, Ji (Inventor); Turner, Travis L. (Inventor); Lin, John C. (Inventor); Taminger, Karen M. (Inventor); Kahng, Seun K. (Inventor); Verden, Scott A. (Inventor)

    2014-01-01

    A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings.

  10. Localized Edge Vibrations and Edge Reconstruction by Joule Heating in Graphene Nanostructures

    DEFF Research Database (Denmark)

    Engelund, Mads; Fürst, Joachim Alexander; Jauho, Antti-Pekka

    2010-01-01

    Control of the edge topology of graphene nanostructures is critical to graphene-based electronics. A means of producing atomically smooth zigzag edges using electronic current has recently been demonstrated in experiments [Jia et al., Science 323, 1701 (2009)]. We develop a microscopic theory...... for current-induced edge reconstruction using density functional theory. Our calculations provide evidence for localized vibrations at edge interfaces involving unpassivated armchair edges. We demonstrate that these vibrations couple to the current, estimate their excitation by Joule heating, and argue...

  11. Effect of gender on results of percutaneous edge-to-edge mitral valve repair with MitraClip system.

    Science.gov (United States)

    Estévez-Loureiro, Rodrigo; Settergren, Magnus; Winter, Reidar; Jacobsen, Per; Dall'Ara, Gianni; Sondergaard, Lars; Cheung, Gary; Pighi, Michele; Ghione, Matteo; Ihlemann, Nikolaj; Moat, Neil E; Price, Susanna; Streit Rosenberg, Tine; Di Mario, Carlo; Franzen, Olaf

    2015-07-15

    Knowledge regarding gender-specific results of percutaneous edge-to-edge mitral valve repair is scarce. The aim of this study was to investigate gender differences in outcomes in a cohort of patients treated with MitraClip implantation. A multicenter registry of 173 patients treated with MitraClip prostheses from 2009 to 2012 at 3 experienced centers was performed. One hundred nine patients (63%) were men. Men were younger (mean age 73 ± 10 vs 79 ± 9 years, p = 0.001) and had a higher prevalence of previous coronary bypass graft surgery (34% vs 13%, p = 0.002), previous myocardial infarction (46% vs 20%, p = 0.001), and diabetes mellitus (26% vs 11%, p = 0.020). There were no differences regarding New York Heart Association (NYHA) functional class before the intervention (NYHA class III or IV in 95% of men vs 97% of women, p = 0.472) or the cause of mitral regurgitation (MR) (functional in 58% of men vs 48% of women, p = 0.233). Men exhibited significantly larger ventricles (mean indexed left ventricular end-systolic diameter 2.4 ± 0.8 vs 2.0 ± 1.6 cm/m(2), p = 0.002, and mean indexed left ventricular end-diastolic volume 92.7 ± 46.1 vs 59.9 ± 24.6 ml/m(2), p effective treatment of MR in men and women. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Cooling Strategies for Vane Leading Edges in a Syngas Environment Including Effects of Deposition and Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest [Univ. of North Dakota, Grand Forks, ND (United States); Bons, Jeffrey [Univ. of North Dakota, Grand Forks, ND (United States)

    2014-09-30

    The Department of Energy has goals to move land based gas turbine systems to alternate fuels including coal derived synthetic gas and hydrogen. Coal is the most abundant energy resource in the US and in the world and it is economically advantageous to develop power systems which can use coal. Integrated gasification combined cycles are (IGCC) expected to allow the clean use of coal derived fuels while improving the ability to capture and sequester carbon dioxide. These cycles will need to maintain or increase turbine entry temperatures to develop competitive efficiencies. The use of coal derived syngas introduces a range of potential contaminants into the hot section of the gas turbine including sulfur, iron, calcium, and various alkali metals. Depending on the effectiveness of the gas clean up processes, there exists significant likelihood that the remaining materials will become molten in the combustion process and potentially deposit on downstream turbine surfaces. Past evidence suggests that deposition will be a strong function of increasing temperature. Currently, even with the best gas cleanup processes a small level of particulate matter in the syngas is expected. Consequently, particulate deposition is expected to be an important consideration in the design of turbine components. The leading edge region of first stage vanes most often have higher deposition rates than other areas due to strong fluid acceleration and streamline curvature in the vicinity of the surface. This region remains one of the most difficult areas in a turbine nozzle to cool due to high inlet temperatures and only a small pressure ratio for cooling. The leading edge of a vane often has relatively high heat transfer coefficients and is often cooled using showerhead film cooling arrays. The throat of the first stage nozzle is another area where deposition potentially has a strongly adverse effect on turbine performance as this region meters the turbine inlet flow. Based on roughness

  13. Evaluation of edge enhancement effect of phase contrast imaging using newly-developed photostimulable phosphor plate

    International Nuclear Information System (INIS)

    Matsuo, Satoru; Morishita, Junji; Katafuchi, Tetsuro; Fujita, Hiroshi

    2012-01-01

    We investigated whether the use of a newly developed columnar-crystal-type photostimulable-phosphor plate (CP1M200, referred to as system C) helps to provide improved edge-enhanced effect in phase contrast imaging. Physical characteristics of 2 conventional particulate-crystal-type photostimulable-phosphor plates (RP-5PM, referred to as system A and RP-6M, referred to as system B) and system C were measured. Then, an acrylic plate phantom and RMI152 phantom were imaged using 3 types of plates, and the edge-enhancement effects were evaluated based on the profile curve of the acrylic plate phantom. Visual evaluation of the RMI152 phantom images was conducted. The results showed that the modulation transfer function (MTF) of system C was superior to those of the other systems. The WS of system C was superior to those of the other systems in the low frequency band region, and inferior to those of the other systems in the high frequency band region. The presence of an edge-enhanced image was not detectable in the profile curve of the acrylic plate in system A, although that was shown in systems B and C due to their excellent sharpness. In the visual image evaluation of the RMI152 phantom, image quality of system C was superior to those of the other systems. Phase contrast imaging with a digital detector of a columnar-crystal-type photostimulable-phosphor plate is considered to provide improved edge-enhancement over that of conventional plates. (author)

  14. Magnetic susceptibility in the edged topological disordered nanoscopic cylinder

    International Nuclear Information System (INIS)

    Faizabadi, Edris; Omidi, Mahboubeh

    2011-01-01

    The effects of edged topological disorder on magnetic susceptibility are investigated in a nanoscopic cylinder threaded by a magnetic flux. Persistent current versus even or odd number of electrons shows different signs in ordered and disordered cylinders and also in short or long ones. In addition, temperature-averaged susceptibility has only diamagnetic signs in strong regimes and it is associated with paramagnetic signs in ordered and weak disordered ones. Besides, in an edged topological disordered cylinder, the temperature-averaged susceptibility decreases by raising the temperature somewhat and then increasing initiates and finally at high temperature tends to zero as the ordered one. - Research highlights: → Magnetic susceptibility in one-dimensional topological disordered quantum ring. → Edged topological disorder effect on magnetic susceptibility in nanoscopic cylinder. → Edged topological disorder effect on temperature-averaged susceptibility in cylinder.

  15. The influence of the edge effect on the skyrmion generation in a magnetic nanotrack

    Directory of Open Access Journals (Sweden)

    N. Ran

    2017-02-01

    Full Text Available Magnetic skyrmions might be used for building next-generation nanomagnetic and spintronic devices, as they have several perspective properties, such as topologically protected stability, nanoscale size, and ultra-low depinning current density. Here we study the influence of the edge effect on the current-induced generation of a magnetic skyrmion in a finite-length thin-film ferromagnetic nanotrack with interface-induced Dzyaloshinskii-Moriya interaction. It shows that a stable skyrmion or a bunch of skyrmions can be successfully generated as long as the distance between the current injection region and the nanotrack terminal is larger than a certain threshold. We investigate the failed skyrmion generation caused by the edge effect, which will lead to an error writing event. We also present the phase diagrams of the skyrmion generation obtained for different material and geometric parameters. Our results could be useful for designing skyrmion-based information storage devices.

  16. Optimizing 3D Triangulations to Recapture Sharp Edges

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas

    2006-01-01

    In this report, a technique for optimizing 3D triangulations is proposed. The method seeks to minimize an energy defined as a sum of energy terms for each edge in a triangle mesh. The main contribution is a novel per edge energy which strikes a balance between penalizing dihedral angle yet allowing...... sharp edges. The energy is minimized using edge swapping, and this can be done either in a greedy fashion or using simulated annealing. The latter is more costly, but effectively avoids local minima. The method has been used on a number of models. Particularly good results have been obtained on digital...

  17. Reduction of airfoil trailing edge noise by trailing edge blowing

    International Nuclear Information System (INIS)

    Gerhard, T; Carolus, T; Erbslöh, S

    2014-01-01

    The paper deals with airfoil trailing edge noise and its reduction by trailing edge blowing. A Somers S834 airfoil section which originally was designed for small wind turbines is investigated. To mimic realistic Reynolds numbers the boundary layer is tripped on pressure and suction side. The chordwise position of the blowing slot is varied. The acoustic sources, i.e. the unsteady flow quantities in the turbulent boundary layer in the vicinity of the trailing edge, are quantified for the airfoil without and with trailing edge blowing by means of a large eddy simulation and complementary measurements. Eventually the far field airfoil noise is measured by a two-microphone filtering and correlation and a 40 microphone array technique. Both, LES-prediction and measurements showed that a suitable blowing jet on the airfoil suction side is able to reduce significantly the turbulence intensity and the induced surface pressure fluctuations in the trailing edge region. As a consequence, trailing edge noise associated with a spectral hump around 500 Hz could be reduced by 3 dB. For that a jet velocity of 50% of the free field velocity was sufficient. The most favourable slot position was at 90% chord length

  18. Edge effects at an induced forest-grassland boundary: forest birds in ...

    African Journals Online (AJOL)

    Bird species diversity and guild composition between the edge (5-10 m from the margin) of primary forest abutting grassland and the deep interior (> 500 m from the margin) in the Dngoye Forest Reserve were compared. Edge and interior sites were chosen that were homogeneous with respect to habitat physiognomy i.e. ...

  19. Edge energies and shapes of nanoprecipitates.

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, John C.

    2006-01-01

    In this report we present a model to explain the size-dependent shapes of lead nano-precipitates in aluminum. Size-dependent shape transitions, frequently observed at nanolength scales, are commonly attributed to edge energy effects. This report resolves an ambiguity in the definition and calculation of edge energies and presents an atomistic calculation of edge energies for free clusters. We also present a theory for size-dependent shapes of Pb nanoprecipitates in Al, introducing the concept of ''magic-shapes'' defined as precipitate shapes having near zero elastic strains when inserted into similarly shaped voids in the Al matrix. An algorithm for constructing a complete set of magic-shapes is presented. The experimental observations are explained by elastic strain energies and interfacial energies; edge energies play a negligible role. We replicate the experimental observations by selecting precipitates having magic-shapes and interfacial energies less than a cutoff value.

  20. Conveying Cutting-Edge Discoveries to Nonscientists: Effective Communication with Media

    Science.gov (United States)

    Gupta, Nikhil; Hamilton, Kathleen; Chamot, Joshua

    2013-07-01

    The benefits of using information and news media for disseminating cutting-edge scientific discoveries to the public are well known. Taxpayers and lawmakers need to be informed about the implications of public investments, young students' interest can be molded toward science- and technology-based careers, and public awareness of important issues can be raised by effectively using media. However, communication with news media is different from the means commonly used by scientists—journal publications and conference presentations. This article is intended to provide information on three basic aspects of media interactions—why, what, and how to communicate. The increasing importance of this mode of dissemination in this information age cannot be ignored; rather, it can be effectively utilized for educating a wider population base.

  1. The use of edge habitats by commuting and foraging bats

    NARCIS (Netherlands)

    Verboom, B.

    1998-01-01

    Travelling routes and foraging areas of many bat species are mainly along edge habitats, such as treelines, hedgerows, forest edges, and canal banks. This thesis deals with the effects of density, configuration, and structural features of edge habitats on the occurrence of bats. Four

  2. Power deposition on misaligned edges in COMPASS

    Directory of Open Access Journals (Sweden)

    R. Dejarnac

    2017-08-01

    Full Text Available If the decision is made not to apply a toroidal chamfer to tungsten monoblocks at ITER divertor vertical targets, exposed leading edges will arise as a result of assembly tolerances between adjacent plasma-facing components. Then, the advantage of glancing magnetic field angles for spreading plasma heat flux on top surfaces is lost at the misaligned edges with an interaction occurring at near normal incidence, which can drive melting for the expected inter-ELM heat fluxes. A dedicated experiment has been performed on the COMPASS tokamak to thoroughly study power deposition on misaligned edges using inner-wall limited discharges on a special graphite tile presenting gaps and leading edges directly viewed by a high resolution infra-red camera. The parallel power flux deducted from the unperturbed measurement far from the gap is fully consistent with the observed temperature increase at the leading edge, respecting the power balance. All the power flowing into the gap is deposited at the leading edge and no mitigation factor is required to explain the thermal response. Particle-in-cell simulations show that the ion Larmor smoothing effect is weak and that the power deposition on misaligned edges is well described by the optical approximation because of an electron dominated regime associated with non-ambipolar parallel current flow.

  3. Shear flows at the tokamak edge and their interaction with edge-localized modes

    International Nuclear Information System (INIS)

    Aydemir, A. Y.

    2007-01-01

    Shear flows in the scrape-off layer (SOL) and the edge pedestal region of tokamaks are shown to arise naturally out of transport processes in a magnetohydrodynamic model. In quasi-steady-state conditions, collisional resistivity coupled with a simple bootstrap current model necessarily leads to poloidal and toroidal flows, mainly localized to the edge and SOL. The role of these flows in the grad-B drift direction dependence of the power threshold for the L (low) to H (high) transition, and their effect on core rotation, are discussed. Theoretical predictions based on symmetries of the underlying equations, coupled with computational results, are found to be in agreement with observations in Alcator C-Mod [Phys. Plasmas 12, 056111 (2005)]. The effects of these self-consistent flows on linear peeling/ballooning modes and their nonlinear consequences are also examined

  4. CFD analysis of cascade effects in marine propellers with trailing edge modification

    DEFF Research Database (Denmark)

    Shin, Keun Woo; Andersen, Poul

    2015-01-01

    investigated intensively by viscous flow solvers, although RANS CFD is prevalent in marine industry nowadays. In the current work, the cascade effect of a marine propeller is analyzed by CFD simulations on a threedimensional propeller model with varying the number of blades. The influence of trailing......-edge configurations on the cascade effect is also investigated by simulating CFD with varying trailingedge thickness and slope. The reason why the trailingedge is handled rather than other parts of bladegeometry is that it can be modified without altering overall blade thrust significantly, because the loading...

  5. Silicon K-edge XANES spectra of silicate minerals

    Science.gov (United States)

    Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.

    1995-03-01

    Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.

  6. Edge Matters

    DEFF Research Database (Denmark)

    Earon, Ofri

    2013-01-01

    of this container is to separate inside from outside and to protect and provide privacy, psychological as well as physical (Venturi, 1966). But, if dwelling phenomenon takes place both inside and outside the private house – why is the urban house an enclosed box? What is the differentiation between inside...... and outside the contemporary urban house? And what is the interplay between them? The research argues for re-thinking the edge zone between inside and outside the urban house. Therefore, although, residential buildings in the city are the objects of study, the focal point here is the edge zone along...... the building. The research explores and develops the architectural characteristics of correlations between the resident, the singular unit, the building and the given location at the edge zone. It approaches the edge zone of the urban house as a platform for dynamic interactions between these behaviours...

  7. Anomalous transport in the tokamak edge

    International Nuclear Information System (INIS)

    Vayakis, G.

    1991-04-01

    The tokamak edge has been studied with arrays of Langmuir and magnetic probes on the DITE and COMPASS-C devices. Measurements of plasma parameters such as density, temperature and radial magnetic field were taken in order to elucidate the character, effect on transport and origin of edge fluctuations. The tokamak edge is a strongly-turbulent environment, with large electrostatic fluctuation levels and broad spectra. The observations, including direct correlation measurements, are consistent with a picture in which the observed magnetic field fluctuations are driven by the perturbations in electrostatic parameters. The propagation characteristics of the turbulence, investigated using digital spectral techniques, appear to be dominated by the variation of the radial electric field, both in limiter and divertor plasmas. A shear layer is formed, associated in each case with the last closed flux surface. In the shear layer, the electrostatic wavenumber spectra are significantly broader. The predictions of a drift wave model (DDGDT) and of a family of models evolving from the rippling mode (RGDT group), are compared with experimental results. RGDT, augmented by impurity radiation effects, is shown to be the most reasonable candidate to explain the nature of the edge turbulence, only failing in its estimate of the wavenumber range. (Author)

  8. Numerical investigation of rarefaction effects in the vicinity of a sharp leading edge

    Science.gov (United States)

    Pan, Shaowu; Gao, Zhenxun; Lee, Chunhian

    2014-12-01

    This paper presents a study of rarefaction effect on hypersonic flow over a sharp leading edge. Both continuum approach and kinetic method: a widely spread commercial Computational Fluid Dynamics-Navior-Stokes-Fourier (CFD-NSF) software - Fluent together with a direct simulation Monte Carlo (DSMC) code developed by the authors are employed for simulation of transition regime with Knudsen number ranging from 0.005 to 0.2. It is found that Fluent can predict the wall fluxes in the case of hypersonic argon flow over the sharp leading edge for the lowest Kn case (Kn = 0.005) in current paper while for other cases it also has a good agreement with DSMC except at the location near the sharp leading edge. Among all of the wall fluxes, it is found that coefficient of pressure is the most sensitive to rarefaction while heat transfer is the least one. A parameter based on translational nonequilibrium and a cut-off value of 0.34 is proposed for continuum breakdown in this paper. The structure of entropy and velocity profile in boundary layer is analyzed. Also, it is found that the ratio of heat transfer coefficient to skin friction coefficient remains uniform along the surface for the four cases in this paper.

  9. Breeding Guild Determines Frog Distributions in Response to Edge Effects and Habitat Conversion in the Brazil's Atlantic Forest.

    Directory of Open Access Journals (Sweden)

    Rodrigo B Ferreira

    Full Text Available Understanding the response of species with differing life-history traits to habitat edges and habitat conversion helps predict their likelihood of persistence across changing landscape. In Brazil's Atlantic Forest, we evaluated frog richness and abundance by breeding guild at four distances from the edge of a reserve: i 200 m inside the forest, ii 50 m inside the forest, iii at the forest edge, and iv 50 m inside three different converted habitats (coffee plantation, non-native Eucalyptus plantation, and abandoned pastures, hereafter matrix types. By sampling a dry and a wet season, we recorded 622 individual frogs representing 29 species, of which three were undescribed. Breeding guild (i.e. bromeliad, leaf-litter, and water-body breeders was the most important variable explaining frog distributions in relation to edge effects and matrix types. Leaf-litter and bromeliad breeders decreased in richness and abundance from the forest interior toward the matrix habitats. Water-body breeders increased in richness toward the matrix and remained relatively stable in abundance across distances. Number of large trees (i.e. DBH > 15 cm and bromeliads best explained frog richness and abundance across distances. Twenty species found in the interior of the forest were not found in any matrix habitat. Richness and abundance across breeding guilds were higher in the rainy season but frog distributions were similar across the four distances in the two seasons. Across matrix types, leaf-litter species primarily used Eucalyptus plantations, whereas water-body species primarily used coffee plantations. Bromeliad breeders were not found inside any matrix habitat. Our study highlights the importance of primary forest for bromeliad and leaf-litter breeders. We propose that water-body breeders use edge and matrix habitats to reach breeding habitats along the valleys. Including life-history characteristics, such as breeding guild, can improve predictions of frog

  10. Breeding Guild Determines Frog Distributions in Response to Edge Effects and Habitat Conversion in the Brazil's Atlantic Forest.

    Science.gov (United States)

    Ferreira, Rodrigo B; Beard, Karen H; Crump, Martha L

    2016-01-01

    Understanding the response of species with differing life-history traits to habitat edges and habitat conversion helps predict their likelihood of persistence across changing landscape. In Brazil's Atlantic Forest, we evaluated frog richness and abundance by breeding guild at four distances from the edge of a reserve: i) 200 m inside the forest, ii) 50 m inside the forest, iii) at the forest edge, and iv) 50 m inside three different converted habitats (coffee plantation, non-native Eucalyptus plantation, and abandoned pastures, hereafter matrix types). By sampling a dry and a wet season, we recorded 622 individual frogs representing 29 species, of which three were undescribed. Breeding guild (i.e. bromeliad, leaf-litter, and water-body breeders) was the most important variable explaining frog distributions in relation to edge effects and matrix types. Leaf-litter and bromeliad breeders decreased in richness and abundance from the forest interior toward the matrix habitats. Water-body breeders increased in richness toward the matrix and remained relatively stable in abundance across distances. Number of large trees (i.e. DBH > 15 cm) and bromeliads best explained frog richness and abundance across distances. Twenty species found in the interior of the forest were not found in any matrix habitat. Richness and abundance across breeding guilds were higher in the rainy season but frog distributions were similar across the four distances in the two seasons. Across matrix types, leaf-litter species primarily used Eucalyptus plantations, whereas water-body species primarily used coffee plantations. Bromeliad breeders were not found inside any matrix habitat. Our study highlights the importance of primary forest for bromeliad and leaf-litter breeders. We propose that water-body breeders use edge and matrix habitats to reach breeding habitats along the valleys. Including life-history characteristics, such as breeding guild, can improve predictions of frog distributions in

  11. Role of the pump limiter throat-ergodic divertor effect on edge plasma

    International Nuclear Information System (INIS)

    Grosman, A.; Samain, A.; Ghendrih, P.; Capes, H.; Morera, J.P.

    1988-01-01

    A large part of the Tore Supra programme is devoted to plasma edge studies. Two types of such density control apparatus have been implemented, a set of pumps limiters and the ergodic divertor. The goal of the present paper is to investigate the effect of the pump limiter throat on pumping efficiency. We present also the possibilities of the ergodic divertor device to facilitate plasma pumping and power exhaust

  12. The effect of dephasing on edge state transport through p-n junctions in HgTe/CdTe quantum wells.

    Science.gov (United States)

    Zhang, Ying-Tao; Song, Juntao; Sun, Qing-Feng

    2014-02-26

    Using the Landauer-Büttiker formula, we study the effect of dephasing on the transport properties of the HgTe/CdTe p-n junction. It is found that in the HgTe/CdTe p-n junction the topologically protected gapless helical edge states manifest a quantized 2e²/h plateau robust against dephasing, in sharp contrast to the case for the normal HgTe/CdTe quantum well. This robustness of the transport properties of the edge states against dephasing should be attributed to the special construction of the HgTe/CdTe p-n junction, which limits the gapless helical edge states to a very narrow region and thus weakens the influence of the dephasing on the gapless edge states to a large extent. Our results demonstrate that the p-n junction could be a substitute device for use in experimentally observing the robust edge states and quantized plateau. Finally, we present a feasible scheme based on current experimental methods.

  13. Gait alterations can reduce the risk of edge loading.

    Science.gov (United States)

    Wesseling, Mariska; Meyer, Christophe; De Groote, Friedl; Corten, Kristoff; Simon, Jean-Pierre; Desloovere, Kaat; Jonkers, Ilse

    2016-06-01

    Following metal-on-metal hip arthroplasty, edge loading (i.e., loading near the edge of a prosthesis cup) can increase wear and lead to early revision. The position and coverage angle of the prosthesis cup influence the risk of edge loading. This study investigates the effect of altered gait patterns, more specific hip, and pelvis kinematics, on the orientation of hip contact force and the consequent risk of antero-superior edge loading using muscle driven simulations of gait. With a cup orientation of 25° anteversion and 50° inclination and a coverage angle of 168°, many gait patterns presented risk of edge loading. Specifically at terminal double support, 189 out of 405 gait patterns indicated a risk of edge loading. At this time instant, the high hip contact forces and the proximity of the hip contact force to the edge of the cup indicated the likelihood of the occurrence of edge loading. Although the cup position contributed most to edge loading, altering kinematics considerably influenced the risk of edge loading. Increased hip abduction, resulting in decreasing hip contact force magnitude, and decreased hip extension, resulting in decreased risk on edge loading, are gait strategies that could prevent edge loading. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1069-1076, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Slim edges in double-sided silicon 3D detectors

    International Nuclear Information System (INIS)

    Povoli, M; Dalla Betta, G-F; Bagolini, A; Boscardin, M; Giacomini, G; Vianello, E; Zorzi, N

    2012-01-01

    Minimization of the insensitive edge area is one of the key requirements for silicon radiation detectors to be used in future silicon trackers. In 3D detectors this goal can be achieved with the active edge, at the expense of a high fabrication process complexity. In the framework of the ATLAS 3D sensor collaboration, we produced modified 3D silicon sensors with a double-sided technology. While this approach is not suitable to obtain active edges, because it does not use a support wafer, it allows for a new type of edge termination, the slim edge. In this paper we report on the development of the slim edge, from numerical simulations to design and testing, proving that it works effectively without increasing the fabrication complexity of silicon 3D detectors, and that it could be further optimized to reduce the insensitive edge region to less than 100 μm.

  15. Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer + hone cutting edge geometry

    International Nuclear Information System (INIS)

    Hua Jiang; Shivpuri, Rajiv; Cheng Xiaomin; Bedekar, Vikram; Matsumoto, Yoichi; Hashimoto, Fukuo; Watkins, Thomas R.

    2005-01-01

    Residual stress on the machined surface and the subsurface is known to influence the service quality of a component, such as fatigue life, tribological properties, and distortion. Therefore, it is essential to predict and control it for enhanced performance. In this paper, a newly proposed hardness based flow stress model is incorporated into an elastic-viscoplastic finite element model of hard turning to analyze process variables that affect the residual stress profile of the machined surface. The effects of cutting edge geometry and workpiece hardness as well as cutting conditions, such as feed rate and cutting speed, are investigated. Numerical analysis shows that hone edge plus chamfer cutting edge and aggressive feed rate help to increase both compressive residual stress and penetration depth. These predictions are validated by face turning experiments which were conducted using a chamfer with hone cutting edge for different material hardness and cutting parameters. The residual stresses under the machined surface are measured by X-ray diffraction/electropolishing method. A maximum circumferential residual stress of about 1700 MPa at a depth of 40 μm is reached for hardness of 62 HRc and feed rate of 0.56 mm/rev. This represents a significant increase from previously reported results in literatures. It is found from this analysis that using medium hone radius (0.02-0.05 mm) plus chamfer is good for keeping tool temperature and cutting force low, while obtaining desired residual stress profile

  16. Computational nanometrology of line-edge roughness: noise effects, cross-line correlations and the role of etch transfer

    Science.gov (United States)

    Constantoudis, Vassilios; Papavieros, George; Lorusso, Gian; Rutigliani, Vito; Van Roey, Frieda; Gogolides, Evangelos

    2018-03-01

    The aim of this paper is to investigate the role of etch transfer in two challenges of LER metrology raised by recent evolutions in lithography: the effects of SEM noise and the cross-line and edge correlations. The first comes from the ongoing scaling down of linewidths, which dictates SEM imaging with less scanning frames to reduce specimen damage and hence with more noise. During the last decade, it has been shown that image noise can be an important budget of the measured LER while systematically affects and alter the PSD curve of LER at high frequencies. A recent method for unbiased LER measurement is based on the systematic Fourier or correlation analysis to decompose the effects of noise from true LER (Fourier-Correlation filtering method). The success of the method depends on the PSD and HHCF curve. Previous experimental and model works have revealed that etch transfer affects the PSD of LER reducing its high frequency values. In this work, we estimate the noise contribution to the biased LER through PSD flat floor at high frequencies and relate it with the differences between the PSDs of lithography and etched LER. Based on this comparison, we propose an improvement of the PSD/HHCF-based method for noise-free LER measurement to include the missed high frequency real LER. The second issue is related with the increased density of lithographic patterns and the special characteristics of DSA and MP lithography patterns exhibits. In a previous work, we presented an enlarged LER characterization methodology for such patterns, which includes updated versions of the old metrics along with new metrics defined and developed to capture cross-edge and cross-line correlations. The fundamental concept has been the Line Center Roughness (LCR), the edge c-factor and the line c-factor correlation function and length quantifying the line fluctuations and the extent of cross-edge and cross-line correlations. In this work, we focus on the role of etch steps on cross-edge and

  17. Effects of higher-coordination shells in garnets detected by XAS at the Al K-edge

    International Nuclear Information System (INIS)

    Marcelli, A.; Wu, Z.; Mottana, A.; Giuli, G.; Paris, E.; Seifert, F.

    1996-03-01

    The aluminium 1 s x-ray-absorption spectra of a series of garnets, pyrope, almandine, spessartine and grossular, are compared to full multiple-scattering calculation using cluster models. An overall good agreement between experiment and calculation, extended also to the edge region,is obtained in the energy range in up to 60 e V above the threshold, provided cluster containing at least 40 atoms are used. The analysis of these garnet XAS spectra provides clear evidence on the effect of probe, XANES spectroscopy at the edge of low Z elements appears to be a perfect tool to investigate the role played by atoms located in higher-coordination shells

  18. Effects of higher-coordination shells in garnets detected by XAS at the Al K-edge

    Energy Technology Data Exchange (ETDEWEB)

    Marcelli, A. [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati; Wu, Z. [CNRS UMR 110, Laboratoire de Chimie des Solides, Nantes Cedex (France). Institut de materiaux de Nantes; Mottana, A. [Roma III Univ., Rome (Italy). Dipartimento di Scienze Geologiche; Giuli, G.; Paris, E. [Camerino Univ., Camerino (Italy).Diparimento di Scienze della Terra; Seifert, F [Univ. Bayreuth, Bayreuth (Italy). Bayerisches Geoinstitut (Germany)

    1996-03-01

    The aluminium 1 s x-ray-absorption spectra of a series of garnets, pyrope, almandine, spessartine and grossular, are compared to full multiple-scattering calculation using cluster models. An overall good agreement between experiment and calculation, extended also to the edge region,is obtained in the energy range in up to 60 e V above the threshold, provided cluster containing at least 40 atoms are used. The analysis of these garnet XAS spectra provides clear evidence on the effect of probe, XANES spectroscopy at the edge of low Z elements appears to be a perfect tool to investigate the role played by atoms located in higher-coordination shells.

  19. Effect of alpha drift and instabilities on tokamak plasma edge conditions

    International Nuclear Information System (INIS)

    Miley, G.H.; Choi, C.K.

    1983-01-01

    As suprathermal fusion products slow down in a Tokamak, their average drift is inward. The effect of this drift on the alpha heating and thermalization profiles is examined. In smaller TFTR-type devices, heating in the outer region can be cut in half. Also, the fusion-product energy-distribution near the plasma edge has a positive slope with increasing energy, representing a possible driving mechanism for micro-instabilities. Another instability that can seriously affect outer plasma conditions and shear Alfven transport of alphas is also considered

  20. Time evolution of the energy confinement time, internal inductance and effective edge safety factor on IR-T1 tokamak

    International Nuclear Information System (INIS)

    Salar Elahi, A; Ghoranneviss, M

    2010-01-01

    An attempt is made to investigate the time evolution of the energy confinement time, internal inductance and effective edge safety factor on IR-T1 tokamak. For this purpose, four magnetic pickup coils were designed, constructed and installed on the outer surface of the IR-T1 and then the Shafranov parameter (asymmetry factor) was obtained from them. On the other hand, also a diamagnetic loop was designed and installed on IR-T1 and poloidal beta was determined from it. Therefore, the internal inductance and effective edge safety factor were measured. Also, the time evolution of the energy confinement time was measured using the diamagnetic loop. Experimental results on IR-T1 show that the maximum energy confinement time (which corresponds to minimum collisions, minimum microinstabilities and minimum transport) is at low values of the effective edge safety factor (2.5 eff (a) i <0.72). The results obtained are in agreement with those obtained with the theoretical approach [1-5].

  1. Mechanism and prevention of edge over coating in continuous hot-dip galvanizing

    Energy Technology Data Exchange (ETDEWEB)

    Takeishi, Y.

    2000-11-01

    In order to clarify the mechanism of edge over coating (EOC) for continuous hot-dip galvanizing, a visualization test of the gas flow on strip and a cold model test to measure the profile of the coating thickness at the strip edge were carried out. Outward deflected gas flow was observed at the strip edge and EOC developed in the absence of gas wiping. With gas wiping, EOC developing below the wiping position is reduced by the impinging pressure of the gas wiping jet, and the film thickness becomes approximately uniform at the gas wiping position. However, upward of the gas wiping position. EOC increases again and the outward deflected gas flow on the strip edge sweeps the liquid film to the strip edge. EOC is considered to develop at the location where the dynamic pressure of the outward deflected gas flow balances with the surface tension. For the prevention of EOC, edge masking was devised and the effects which reduce EOC were measured in the cold model test and on a commercial line test. The edge mask which can be kept farther away from the strip edge is more effective for preventing EOC than the edge plates. The optimum dimension of the edge mask is 30mm in width and 75-100 mm in depth, and installing it at 4-10mm away from the strip edge is most effective. It was confirmed by the commercial line test that the edge mask can reduce EOC from 45% to less than 10%. (author)

  2. Delocalization and occupancy effects of 5f orbitals in plutonium intermetallics using L3-edge resonant X-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Booth, C. H.; Medling, S. A.; Jiang, Yu; Bauer, E. D.; Tobash, P. H.; Mitchell, J. N.; Veirs, D. K.; Wall, M. A.; Allen, P. G.; Kas, J. J.; Sokaras, D.; Nordlund, D.; Weng, T. -C.

    2014-06-24

    Although actinide (An) L3 -edge X-ray absorption near-edge structure (XANES) spectroscopy has been very effective in determining An oxidation states in insulating, ionically bonded materials, such as in certain coordination compounds and mineral systems, the technique fails in systems featuring more delocalized 5f orbitals, especially in metals. Recently, actinide L3-edge resonant X-ray emission spec- troscopy (RXES) has been shown to be an effective alternative. This technique is further demonstrated here using a parameterized partial unoccupied density of states method to quantify both occupancy and delocalization of the 5f orbital in ?-Pu, ?-Pu, PuCoGa5 , PuCoIn5 , and PuSb2. These new results, supported by FEFF calculations, highlight the effects of strong correlations on RXES spectra and the technique?s ability to differentiate between f-orbital occupation and delocalization.

  3. Effects of density gradients and fluctuations at the plasma edge on ECEI measurements at ASDEX Upgrade

    NARCIS (Netherlands)

    Vanovac, B.; Wolfrum, E.; Denk, S. S.; Mink, F.; Laggner, F. M.; Birkenmeier, G.; Willensdorfer, M.; Viezzer, E.; Hoelzl, M.; Freethy, S. J.; Dunne, M. G.; Lessig, A.; Luhmann, N. C.; ASDEX Upgrade team,; EUROfusion MST1 Team,

    2018-01-01

    Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (T-e) and its fluctuations (delta T-e). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects,

  4. Tangential 2-D Edge Imaging for GPI and Edge/Impurity Modeling

    International Nuclear Information System (INIS)

    Maqueda, Ricardo; Levinton, Fred M.

    2011-01-01

    Nova Photonics, Inc. has a collaborative effort at the National Spherical Torus Experiment (NSTX). This collaboration, based on fast imaging of visible phenomena, has provided key insights on edge turbulence, intermittency, and edge phenomena such as edge localized modes (ELMs) and multi-faceted axisymmetric radiation from the edge (MARFE). Studies have been performed in all these areas. The edge turbulence/intermittency studies make use of the Gas Puff Imaging diagnostic developed by the Principal Investigator (Ricardo Maqueda) together with colleagues from PPPL. This effort is part of the International Tokamak Physics Activity (ITPA) edge, scrape-off layer and divertor group joint activity (DSOL-15: Inter-machine comparison of blob characteristics). The edge turbulence/blob study has been extended from the current location near the midplane of the device to the lower divertor region of NSTX. The goal of this effort was to study turbulence born blobs in the vicinity of the X-point region and their circuit closure on divertor sheaths or high density regions in the divertor. In the area of ELMs and MARFEs we have studied and characterized the mode structure and evolution of the ELM types observed in NSTX, as well as the study of the observed interaction between MARFEs and ELMs. This interaction could have substantial implications for future devices where radiative divertor regions are required to maintain detachment from the divertor plasma facing components.

  5. Adjustment of Sentinel-2 Multi-Spectral Instrument (MSI) Red-Edge Band Reflectance to Nadir BRDF Adjusted Reflectance (NBAR) and Quantification of Red-Edge Band BRDF Effects

    OpenAIRE

    David P. Roy; Zhongbin Li; Hankui K. Zhang

    2017-01-01

    Optical wavelength satellite data have directional reflectance effects over non-Lambertian surfaces, described by the bidirectional reflectance distribution function (BRDF). The Sentinel-2 multi-spectral instrument (MSI) acquires data over a 20.6° field of view that have been shown to have non-negligible BRDF effects in the visible, near-infrared, and short wave infrared bands. MSI red-edge BRDF effects have not been investigated. In this study, they are quantified by an examination of 6.6 mi...

  6. Floquet edge states in germanene nanoribbons

    KAUST Repository

    Tahir, Muhammad

    2016-08-23

    We theoretically demonstrate versatile electronic properties of germanene monolayers under circularly, linearly, and elliptically polarized light. We show for the high frequency regime that the edge states can be controlled by tuning the amplitude of the light and by applying a static electric field. For circularly polarized light the band gap in one valley is reduced and in the other enhanced, enabling single valley edge states. For linearly polarized light spin-split states are found for both valleys, being connected by time reversal symmetry. The effects of elliptically polarized light are similar to those of circularly polarized light. The transport properties of zigzag nanoribbons in the presence of disorder confirm a nontrivial nature of the edge states under circularly and elliptically polarized light.

  7. Aerodynamic Analysis of Trailing Edge Enlarged Wind Turbine Airfoils

    DEFF Research Database (Denmark)

    Xu, Haoran; Shen, Wen Zhong; Zhu, Wei Jun

    2014-01-01

    characteristics of blunt trailing edge airfoils are caused by blunt body vortices at low angles of attack, and by the combined effect of separation and blunt body vortices at large angles of attack. With the increase of thickness of blunt trailing edge, the vibration amplitudes of lift and drag curves increase......The aerodynamic performance of blunt trailing edge airfoils generated from the DU- 91-W2-250, DU-97-W-300 and DU-96-W-350 airfoils by enlarging the thickness of trailing edge symmetrically from the location of maximum thickness to chord to the trailing edge were analyzed by using CFD and RFOIL...... methods at a chord Reynolds number of 3 × 106. The goal of this study is to analyze the aerodynamic performance of blunt trailing edge airfoils with different thicknesses of trailing edge and maximum thicknesses to chord. The steady results calculated by the fully turbulent k-ω SST, transitional k-ω SST...

  8. Effects of free-stream turbulence intensity and blowing ratio on film cooling of turbine blade leading edge

    International Nuclear Information System (INIS)

    Kim, S. M.; Kim, Youn J.; Cho, H. H.

    2001-01-01

    We used a cylindrical model which simulates turbine blade leading edge to investigate the effects of free-stream turbulence intensity and blowing ratio on film cooling of turbine blade leading edge. Tests are carried out in a low-speed wind tunnel on a cylindrical model with three rows of injection holes. Mainstream Reynolds number based on the cylinder diameter was 7.1x10 4 . Two types of turbulence grid are used to increase a free-stream turbulence intensity. The effect of coolant blowing ratio was studied for various blowing ratios. For each blowing ratios, wall temperatures around the surface of the test model are measured by thermocouples installed inside the model. Results show that blowing ratios have small effect on spanwise-averaged film effectiveness at high free-stream turbulence intensity. However, an increase in free-stream turbulence intensity enhances significantly spanwise-averaged film effectiveness at low blowing ratio

  9. Edge eigen-stress and eigen-displacement of armchair molybdenum disulfide nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Quan; Li, Xi [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Volinsky, Alex A., E-mail: volinsky@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620 (United States); Su, Yanjing, E-mail: yjsu@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China)

    2017-05-10

    Edge effects on mechanical properties of armchair molybdenum disulfide nanoribbons were investigated using first principles calculations. The edge eigen-stress model was applied to explain the relaxation process of forming molybdenum disulfide nanoribbon. Edge effects on surface atoms fluctuation degree were obtained from each fully relaxed nanoribbon with different width. Changes of the relaxed armchair molybdenum disulfide nanoribbons structure can be expressed using hexagonal perimeters pattern. Based on the thickness change, relaxed armchair molybdenum disulfide nanoribbons tensile/compression tests were simulated, providing intrinsic edge elastic parameters, such as eigen-stress, Young's modulus and Poisson's ratio. - Highlights: • Edge effects on mechanical properties of armchair MoS{sub 2} nanoribbons were investigated. • Structure changes of different width armchair MoS{sub 2} nanoribbons were obtained. • Tensile/compressive tests were conducted to determine elastic constants. • Mechanical properties are compared for two and three dimensional conditions.

  10. Edge modulation of electronics and transport properties of cliff-edge phosphorene nanoribbons

    Science.gov (United States)

    Guo, Caixia; Wang, Tianxing; Xia, Congxin; Liu, Yufang

    2017-12-01

    Based on the first-principles calculations, we study the electronic structures and transport properties of cliff-like edge phosphorene nanoribbons (CPNRs), considering different types of edge passivation. The band structures of bare CPNRs possess the metallic features; while hydrogen (H), fluorine (F), chlorine (Cl) and oxygen (O) atoms-passivated CPNRs are semiconductor materials, and the band gap values monotonically decrease when the ribbon width increases. Moreover, the H and F-passivated CPNRs exhibit the direct band gap characteristics, while the Cl and O-passivated cases show the features of indirect band gap. In addition, the edge passivated CPNRs are more energetically stable than bare edge case. Meanwhile, our results also show that the transport properties of the CPNRs can be obviously influenced by the different edge passivation.

  11. Spatial and temporal patterns of microclimates at an urban forest edge and their management implications.

    Science.gov (United States)

    Li, Yingnan; Kang, Wanmo; Han, Yiwen; Song, Youngkeun

    2018-01-23

    Fragmented forests generate a variety of forest edges, leading to microclimates in the edge zones that differ from those in the forest interior. Understanding microclimatic variation is an important consideration for managers because it helps when making decisions about how to restrict the extent of edge effects. Thus, our study attempted to characterize the changing microclimate features at an urban forest edge located on Mt. Gwanak, Seoul, South Korea. We examined edge effects on air temperature, relative humidity, soil temperature, soil moisture, and photosynthetically active radiation (PAR) during the hottest three consecutive days in August 2016. Results showed that each variable responded differently to the edge effects. This urban forest edge had an effect on temporal changes at a diurnal scale in all microclimate variables, except soil moisture. In addition, all variables except relative humidity were significantly influenced by the edge effect up to 15 m inward from the forest boundary. The relative humidity fluctuated the most and showed the deepest extent of the edge effect. Moreover, the edge widths calculated from the relative humidity and air temperature both peaked in the late afternoon (16:00 h). Our findings provide a reference for forest managers in designing urban forest zones and will contribute to the conservation of fragmented forests in urban areas.

  12. Smoothness in Binomial Edge Ideals

    Directory of Open Access Journals (Sweden)

    Hamid Damadi

    2016-06-01

    Full Text Available In this paper we study some geometric properties of the algebraic set associated to the binomial edge ideal of a graph. We study the singularity and smoothness of the algebraic set associated to the binomial edge ideal of a graph. Some of these algebraic sets are irreducible and some of them are reducible. If every irreducible component of the algebraic set is smooth we call the graph an edge smooth graph, otherwise it is called an edge singular graph. We show that complete graphs are edge smooth and introduce two conditions such that the graph G is edge singular if and only if it satisfies these conditions. Then, it is shown that cycles and most of trees are edge singular. In addition, it is proved that complete bipartite graphs are edge smooth.

  13. Theoretical red edge of the RR Lyrae Gap. II. Dependence of the red edge on luminosity and composition, and observational consequences

    International Nuclear Information System (INIS)

    Deupree, R.G.

    1977-01-01

    The theoretical location of the red edge of the RR Lyrae Gap is computed for two luminosities and two compositions. An increase in luminosity or an increase in helium abundance decreases the effective temperature of the red edge. A comparison of the width of the instability strip with observations indicates that Yapprox. =0.3. The effects of convection on the light curves, velocity curves, pulsation periods, and overall structure of the models are small

  14. Edge colouring by total labellings

    DEFF Research Database (Denmark)

    Brandt, Stephan; Rautenbach, D.; Stiebitz, M.

    2010-01-01

    We introduce the concept of an edge-colouring total k-labelling. This is a labelling of the vertices and the edges of a graph G with labels 1, 2, ..., k such that the weights of the edges define a proper edge colouring of G. Here the weight of an edge is the sum of its label and the labels of its...

  15. Influence of the core-hole effect on optical properties of magnesium oxide (MgO) near the Mg L-edge region.

    Science.gov (United States)

    Sinha, Mangalika; Modi, Mohammed H; Ghosh, Haranath; Yadav, P K; Gupta, R K

    2018-05-01

    The influence of the core-hole effect on optical properties of magnesium oxide (MgO) is established through experimental determination of optical constants and first-principles density functional theory studies. Optical constants (δ and β) of MgO thin film are measured in the spectral region 40-300 eV using reflectance spectroscopy techniques at the Indus-1 synchrotron radiation source. The obtained optical constants show strong core exciton features near the Mg L-edge region, causing significant mismatch with Henke's tabulated values. On comparing the experimentally obtained optical constants with Henke's tabulated values, an edge shift of ∼3.0 eV is also observed. Distinct evidence of effects of core exciton on optical constants (δ and β) in the near Mg L-edge absorption spectra are confirmed through first-principles simulations.

  16. Folded membrane dialyzer with mechanically sealed edges

    Energy Technology Data Exchange (ETDEWEB)

    Markley, F.W.

    A semipermeable membrane is folded in accordion fashion to form a stack of pleats and the edges are sealed so as to isolate the opposite surfaces of the membrane. The stack is contained within a case that provides ports for flow of blood in contact with one surface of the membrane through channels formed by the pleats and also provides ports for flow of a dialysate through channels formed by the pleats in contact with the other surface of the membrane. The serpentine side edges of the membrane are sealed by a solidified plastic material, whereas effective mechanical means are provided to seal the end edges of the folded membrane. The mechanical means include a clamping strip which biases case sealing flanges into a sealed relationship with end portions of the membrane near the end edges, which portions extend from the stack and between the sealing flanges.

  17. Non-LTE effects on the strength of the Lyman edge in quasar accretion disks

    Science.gov (United States)

    Stoerzer, H.; Hauschildt, P. H.; Allard, F.

    1994-01-01

    We have calculated UV/EUV (300 A which is less than or equal to lambda which is less than or equal to 1500 A) continuous energy distributions of accretion disks in the centers of active galactic nuclei (AGNs) for disk luminosities in the range 0.1 L(sub Edd) less than or equal to L(sub acc) less than 1.0 L(sub Edd) and central masses ranging from 10(exp 8) solar mass to 10(exp 9) solar mass. The vertical gas pressure structure of the disk and the disk height are obtained analytically; the temperature stratification and the resulting continuum radiation fields are calculated numerically. We have included non-Local Thermodynamic Equilibrium (LTE) effects of both the ionization equilibrium and the level populations of hydrogen and helium. We show that these non-LTE effects reduce the strength of the Lyman edge when comapred to the LTE case. In non-LTE we find that the edge can be weakly in emission or absorption for disks seen face-on, depending on the disk parameters.

  18. Analytical model based on cohesive energy to indicate the edge and corner effects on melting temperature of metallic nanoparticles

    International Nuclear Information System (INIS)

    Shidpour, Reza; Hamid, Delavari H.; Vossoughi, M.

    2010-01-01

    Graphical abstract: The effect of edge and corner atoms of nanoparticle (solid line) cause melting temperature drops more compared to considering them as same as only surface atoms (dash line). This reduction is significant especially when the size of nanoparticle is below 10 nm. - Abstract: An analytical model based on cohesive energy has been conducted to study the effects of edge, corner, and inward surface relaxation as varying parameters on melting temperature of nanoparticles. It is shown that taking into account the edge and corner (EC) atoms of nanoparticle, causes to drop melting temperature more, when compared to consider them the same as only surface atoms. This reduction is significant especially when the size of nanoparticle is below 10 nm. The results are supported by available experimental results of tin, lead and gold melting temperature (T m ). Finally, it is shown that inward relaxation increases melting temperature slightly.

  19. High Precision Edge Detection Algorithm for Mechanical Parts

    Science.gov (United States)

    Duan, Zhenyun; Wang, Ning; Fu, Jingshun; Zhao, Wenhui; Duan, Boqiang; Zhao, Jungui

    2018-04-01

    High precision and high efficiency measurement is becoming an imperative requirement for a lot of mechanical parts. So in this study, a subpixel-level edge detection algorithm based on the Gaussian integral model is proposed. For this purpose, the step edge normal section line Gaussian integral model of the backlight image is constructed, combined with the point spread function and the single step model. Then gray value of discrete points on the normal section line of pixel edge is calculated by surface interpolation, and the coordinate as well as gray information affected by noise is fitted in accordance with the Gaussian integral model. Therefore, a precise location of a subpixel edge was determined by searching the mean point. Finally, a gear tooth was measured by M&M3525 gear measurement center to verify the proposed algorithm. The theoretical analysis and experimental results show that the local edge fluctuation is reduced effectively by the proposed method in comparison with the existing subpixel edge detection algorithms. The subpixel edge location accuracy and computation speed are improved. And the maximum error of gear tooth profile total deviation is 1.9 μm compared with measurement result with gear measurement center. It indicates that the method has high reliability to meet the requirement of high precision measurement.

  20. Environmental induced renormalization effects in quantum Hall edge states due to 1/f noise and dissipation

    International Nuclear Information System (INIS)

    Braggio, A; Ferraro, D; Sassetti, M; Carrega, M; Magnoli, N

    2012-01-01

    We propose a general mechanism for the renormalization of the tunnelling exponents in edge states of the fractional quantum Hall effect. Mutual effects of the coupling with out-of-equilibrium 1/f noise and dissipation are considered for both the Laughlin sequence and the composite co- and counter-propagating edge states with Abelian or non-Abelian statistics. For states with counter-propagating modes, we demonstrate the robustness of the proposed mechanism in the so-called disorder-dominated phase. Prototypes of these states, such as ν = 2/3 and ν = 5/2, are discussed in detail, and the rich phenomenology induced by the presence of a noisy environment is presented. The proposed mechanism could help justify the strong renormalizations reported in many experimental observations carried out at low temperatures. We show how environmental effects could affect the relevance of the tunnelling excitations, leading to important implications, in particular for the ν = 5/2 case. (paper)

  1. EDGE EFFECT MODELING AND STUDY FOR THREE-CHIP RGB LIGHT-EMITTING DIODES

    Directory of Open Access Journals (Sweden)

    A. I. Podosinnikov

    2015-03-01

    Full Text Available Subject of study. The paper deals with light quality improvement of multi–chip RGB light-emitting diodes (LEDs and luminaries on their basis. In particular, we have studied the issues of the edge effect reducing, which is non–uniformity of color when observing the source of light under different angles as well as non-uniformity of color distribution on the illuminated surface. Methods. Experimental study of the edge effect has been performed, namely, the analysis of the halo at the periphery of the illuminated area and the non–uniformity of area at the surface of the screen illuminated with RGB LEDs with and without light concentrators. Modeling of illumination distribution at various distances from the source for the system containing four RGB LEDs with reflectors by ZEMAX software has been carried out. Assessment of the uniformity for light distribution via calculating the chromaticity coordinates has been performed. Main results. The possibility of modeling application at the stage of a luminary design is shown on the example of RGB LEDs for assessing the efficiency of light flux usage and colorimetric parameters. Suggested method simplifies significantly the design of luminaries and reduces associated costs. Practical relevance. The findings can be used in the design of luminaries based on RGB LEDs, including the ones with secondary optics elements.

  2. Blanking Clearance and Punch Velocity Effects on The Sheared Edge Characteristic in Micro-Blanking of Commercially Pure Copper Sheet

    Directory of Open Access Journals (Sweden)

    Didin Zakaria Lubis

    2017-11-01

    Full Text Available This study aims to identify the influences between clearance and punch velocity on the part edge quality of blanked parts. Experiments have been conducted using material copper, punch-die clearance and punch velocity variations. In order to determine the reachable punch-die clearance and punch velocity required for blanking. The quality of the part-edge characteristics shows that higher punch velocity and decreases clearance value can improve the part-edge quality, resulting in smaller burr height and rollover, and a larger shear zone. Furthermore, it could be observed that the part-edge quality improvement when blanking with high punch velocity is much more distinct for stele than for copper. According to blanking theory, this improvement was expected because copper have much higher heat conduction coefficients. Therefore, the heat dissipates faster and the desired stress relief effect does not take place to the same degree as for stele.

  3. Investigation of the effects on Charpy impact characteristics by shape of pendulum striking edge

    International Nuclear Information System (INIS)

    Kawai, Toshihiko; Etoh, Mikio; Hanawa, Namio; Shibaike, Masayuki; Inoue, Kazuo.

    1983-01-01

    Charpy impact test is used versatilely and practically as the method of evaluating the toughness of metals. In Japan, usually the JIS type testing machines are used, but recently, the test with ASTM type testing machines has been often demanded for steel materials for export or for nuclear use. Accordingly, the testing machines of both types must be installed, the testing works become troublesome, and the costs of initial investment, maintenance, management and so on increase. When the standards in various countries were investigated, the stipulation on the various particulars of the testing machines was almost similar except the shape of striking edges, which are 8mm radius in ASTM and 2mm radius in other standards. Recently it was clarified that there was some difference between the impact values of high toughness steel using JIS and ASTM machines. In order to clarify the cause of this difference and to unify the shape of edges, the investigation was carried out by the working group. The investigation of the effect of the difference of edge shapes on impact values, the analysis of fracture phenomena in impact test and the consideration on the results are reported. ASTM type testing machines should not be used for mild steel when absorbed energy exceeds 10kgf-m. (Kako, I.)

  4. Analyzing the effect of tool edge radius on cutting temperature in micro-milling process

    Science.gov (United States)

    Liang, Y. C.; Yang, K.; Zheng, K. N.; Bai, Q. S.; Chen, W. Q.; Sun, G. Y.

    2010-10-01

    Cutting heat is one of the important physical subjects in the cutting process. Cutting heat together with cutting temperature produced by the cutting process will directly have effects on the tool wear and the life as well as on the workpiece processing precision and surface quality. The feature size of the workpiece is usually several microns. Thus, the tiny changes of cutting temperature will affect the workpiece on the surface quality and accuracy. Therefore, cutting heat and temperature generated in micro-milling will have significantly different effect than the one in the traditional tools cutting. In this paper, a two-dimensional coupled thermal-mechanical finite element model is adopted to determine thermal fields and cutting temperature during the Micro-milling process, by using software Deform-2D. The effect of tool edge radius on effective stress, effective strain, velocity field and cutting temperature distribution in micro-milling of aluminum alloy Al2024-T6 were investigated and analyzed. Also, the transient cutting temperature distribution was simulated dynamically. The simulation results show that the cutting temperature in Micro-milling is lower than those occurring in conventional milling processes due to the small loads and low cutting velocity. With increase of tool edge radius, the maximum temperature region gradually occurs on the contact region between finished surfaced and flank face of micro-cutter, instead of the rake face or the corner of micro-cutter. And this phenomenon shows an obvious size effect.

  5. Electromagnetic radiation of protons in edge fields of synchrotron dipole magnets

    International Nuclear Information System (INIS)

    Smolyakov, N.V.

    1986-01-01

    Effect of the edge shape of magnetic field of a dipole on the short-wave part of electromagnetic radiation spectrum of a proton beam is investigated. In some cases short-wave photons are shown to be shaped in the ranges of largest edge curvature of the magnetic field. Universality of edge radiation spectrum is proved. Spectral characteristics of proton edge radiation in a superconducting magnetic dipole of the storage-accelerator complex are obtained

  6. Optically Unraveling the Edge Chirality-Dependent Band Structure and Plasmon Damping in Graphene Edges.

    Science.gov (United States)

    Duan, Jiahua; Chen, Runkun; Cheng, Yuan; Yang, Tianzhong; Zhai, Feng; Dai, Qing; Chen, Jianing

    2018-05-01

    The nontrivial topological origin and pseudospinorial character of electron wavefunctions make edge states possess unusual electronic properties. Twenty years ago, the tight-binding model calculation predicted that zigzag termination of 2D sheets of carbon atoms have peculiar edge states, which show potential application in spintronics and modern information technologies. Although scanning probe microscopy is employed to capture this phenomenon, the experimental demonstration of its optical response remains challenging. Here, the propagating graphene plasmon provides an edge-selective polaritonic probe to directly detect and control the electronic edge state at ambient condition. Compared with armchair, the edge-band structure in the bandgap gives rise to additional optical absorption and strongly absorbed rim at zigzag edge. Furthermore, the optical conductivity is reconstructed and the anisotropic plasmon damping in graphene systems is revealed. The reported approach paves the way for detecting edge-specific phenomena in other van der Waals materials and topological insulators. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Network Unfolding Map by Vertex-Edge Dynamics Modeling.

    Science.gov (United States)

    Verri, Filipe Alves Neto; Urio, Paulo Roberto; Zhao, Liang

    2018-02-01

    The emergence of collective dynamics in neural networks is a mechanism of the animal and human brain for information processing. In this paper, we develop a computational technique using distributed processing elements in a complex network, which are called particles, to solve semisupervised learning problems. Three actions govern the particles' dynamics: generation, walking, and absorption. Labeled vertices generate new particles that compete against rival particles for edge domination. Active particles randomly walk in the network until they are absorbed by either a rival vertex or an edge currently dominated by rival particles. The result from the model evolution consists of sets of edges arranged by the label dominance. Each set tends to form a connected subnetwork to represent a data class. Although the intrinsic dynamics of the model is a stochastic one, we prove that there exists a deterministic version with largely reduced computational complexity; specifically, with linear growth. Furthermore, the edge domination process corresponds to an unfolding map in such way that edges "stretch" and "shrink" according to the vertex-edge dynamics. Consequently, the unfolding effect summarizes the relevant relationships between vertices and the uncovered data classes. The proposed model captures important details of connectivity patterns over the vertex-edge dynamics evolution, in contrast to the previous approaches, which focused on only vertex or only edge dynamics. Computer simulations reveal that the new model can identify nonlinear features in both real and artificial data, including boundaries between distinct classes and overlapping structures of data.

  8. Simulation study of CD variation caused by field edge effects and out-of-band radiation in EUVL

    Science.gov (United States)

    Gao, Weimin; Niroomand, Ardavan; Lorusso, Gian F.; Boone, Robert; Lucas, Kevin; Demmerle, Wolfgang

    2013-09-01

    Although extreme ultraviolet lithography (EUVL) remains a promising candidate for semiconductor device manufacturing of the 1x nm half pitch node and beyond, many technological burdens have to be overcome. The "field edge effect" in EUVL is one of them. The image border region of an EUV mask,also known as the "black border" (BB), reflects a few percent of the incident EUV light, resulting in a leakage of light into neighboring exposure fields, especially at the corner of the field where three adjacent exposures take place. This effect significantly impacts on CD uniformity (CDU) across the exposure field. To avoid this phenomenon, a light-shielding border is introduced by etching away the entire absorber and multi-layer (ML)at the image border region of the EUV mask. In this paper, we present a method of modeling the field edge effect (also called the BB effect) by using rigorous lithography simulation with a calibrated resist model. An additional "flare level" at the field edge is introduced on top of the exposure tool flare map to account for the BB effect. The parameters in this model include the reflectivity and the width of the BB, which are mainly determining the leakage of EUV light and its influence range, respectively. Another parameter is the transition width which represents the half shadow effect of the reticle masking blades. By setting the corresponding parameters, the simulation results match well the experimental results obtained at the imec's NXE:3100 EUV exposure tool. Moreover, these results indicate that the out-of-band (OoB) radiation also contributes to the CDU. Using simulation we can also determine the OoB effect rigorouslyusing the methodology of an "effective mask blank". The study in this paper demonstrates that the impact of BB and OoB effects on CDU can be well predicted by simulations.

  9. ICRF/edge physics research on TEXTOR

    International Nuclear Information System (INIS)

    Oost, G. van; Nieuwenhove, R. van; Koch, R.; Messiaen, A.M.; Vandenplas, P.E.; Weynants, R.R.; Dippel, K.H.; Finken, K.H.; Lie, Y.T.; Pospieszczyk, A.; Samm, U.; Schweer, B.; Conn, R.W.; Corbett, W.J.; Goebel, D.M.; Moyer, R.A.; California Univ., Los Angeles

    1990-01-01

    Extensive investigations of ICRF-induced effects on the edge plasma and on plasma-wall interaction were conducted on TEXTOR under different wall- and limiter as well as plasma- and heating conditions. Several strong effects of ICRF on the edge parameters were observed on TEXTOR, such as density rise, instantaneous electron heating, modification of SOL profiles, influx of ligth and/or heavy impurities, increased heat flux to the limiters, and production of energetic ions in the SOL. The fast response time of some of the changes and the observation of a maximum in the SOL profile of electron temperature, heat flux and metal sputtering clearly demonstrated that RF power is directly absorbed in the SOL. Estimates of this power amount to several percent of the total RF power launched into the plasma. Plasma-wall interaction during ICRF was substantially reduced by an appropriate choice of the wall conditioning procedures (wall carbonization with liner at 400degC or, above all, boronization). As a result record low values of the radiated power fraction were achieved during ICRF and long pulse, high power, low impurity operation was possible. Further improvement was obtained by ICRF antenna phasing. When ICRF power is coupled to the plasma, several effects on the core and edge plasma influence the operation of the toroidal pump limiter ALT-II. Experimental and theoretical studies were performed to elucidate the mechanisms responsible for the ICRF-induced effects, including the propagation of plasma waves in the edge plasma and nonlinear phenomena such as parametric decay, important changes in the DC current between the antenna structure and the liner due to the sheath effect at the antennas, and the generation of waves at harmonics of the RF generator frequency. Radial profiles of the DC radial and poloidal electric fields as well as a localized RF electric field structure were measured in the SOL using a fast scanning probe. (orig.)

  10. Strain-Dependent Edge Structures in MoS2 Layers.

    Science.gov (United States)

    Tinoco, Miguel; Maduro, Luigi; Masaki, Mukai; Okunishi, Eiji; Conesa-Boj, Sonia

    2017-11-08

    Edge structures are low-dimensional defects unavoidable in layered materials of the transition metal dichalcogenides (TMD) family. Among the various types of such structures, the armchair (AC) and zigzag (ZZ) edge types are the most common. It has been predicted that the presence of intrinsic strain localized along these edges structures can have direct implications for the customization of their electronic properties. However, pinning down the relation between local structure and electronic properties at these edges is challenging. Here, we quantify the local strain field that arises at the edges of MoS 2 flakes by combining aberration-corrected transmission electron microscopy (TEM) with the geometrical-phase analysis (GPA) method. We also provide further insight on the possible effects of such edge strain on the resulting electronic behavior by means of electron energy loss spectroscopy (EELS) measurements. Our results reveal that the two-dominant edge structures, ZZ and AC, induce the formation of different amounts of localized strain fields. We also show that by varying the free edge curvature from concave to convex, compressive strain turns into tensile strain. These results pave the way toward the customization of edge structures in MoS 2 , which can be used to engineer the properties of layered materials and thus contribute to the optimization of the next generation of atomic-scale electronic devices built upon them.

  11. Structure of edge-state inner products in the fractional quantum Hall effect

    Science.gov (United States)

    Fern, R.; Bondesan, R.; Simon, S. H.

    2018-04-01

    We analyze the inner products of edge state wave functions in the fractional quantum Hall effect, specifically for the Laughlin and Moore-Read states. We use an effective description for these inner products given by a large-N expansion ansatz proposed in a recent work by J. Dubail, N. Read, and E. Rezayi [Phys. Rev. B 86, 245310 (2012), 10.1103/PhysRevB.86.245310]. As noted by these authors, the terms in this ansatz can be constrained using symmetry, a procedure we perform to high orders. We then check this conjecture by calculating the overlaps exactly for small system sizes and compare the numerics with our high-order expansion. We find the effective description to be very accurate.

  12. The Edge Detectors Suitable for Retinal OCT Image Segmentation

    Directory of Open Access Journals (Sweden)

    Su Luo

    2017-01-01

    Full Text Available Retinal layer thickness measurement offers important information for reliable diagnosis of retinal diseases and for the evaluation of disease development and medical treatment responses. This task critically depends on the accurate edge detection of the retinal layers in OCT images. Here, we intended to search for the most suitable edge detectors for the retinal OCT image segmentation task. The three most promising edge detection algorithms were identified in the related literature: Canny edge detector, the two-pass method, and the EdgeFlow technique. The quantitative evaluation results show that the two-pass method outperforms consistently the Canny detector and the EdgeFlow technique in delineating the retinal layer boundaries in the OCT images. In addition, the mean localization deviation metrics show that the two-pass method caused the smallest edge shifting problem. These findings suggest that the two-pass method is the best among the three algorithms for detecting retinal layer boundaries. The overall better performance of Canny and two-pass methods over EdgeFlow technique implies that the OCT images contain more intensity gradient information than texture changes along the retinal layer boundaries. The results will guide our future efforts in the quantitative analysis of retinal OCT images for the effective use of OCT technologies in the field of ophthalmology.

  13. Effect of Hardwood Sawmill Edging and Trimming Practices on Furniture Part Production

    Science.gov (United States)

    D. Earl Kline; Carmen Regalado; Eugene M. Wengert; Fred M. Lamb; Philip A. Araman

    1993-01-01

    In a recent edging and trimming study at three hardwood sawmills, it was observed that the lumber volume produced was approximately 10 percent less than would be necessary to make the most valuable lumber. Furthermore, the excess portion of wood that was removed from the edging and trimming process contained a large percentage of clear wood. In light of rising costs...

  14. Infective endocarditis following transcatheter edge-to-edge mitral valve repair: A systematic review.

    Science.gov (United States)

    Asmarats, Lluis; Rodriguez-Gabella, Tania; Chamandi, Chekrallah; Bernier, Mathieu; Beaudoin, Jonathan; O'Connor, Kim; Dumont, Eric; Dagenais, François; Paradis, Jean-Michel; Rodés-Cabau, Josep

    2018-05-10

    To assess the clinical characteristics, management, and outcomes of patients diagnosed with infective endocarditis (IE) after edge-to-edge mitral valve repair with the MitraClip device. Transcatheter edge-to-edge mitral valve repair has emerged as an alternative to surgery in high-risk patients. However, few data exist on IE following transcatheter mitral procedures. Four electronic databases (PubMed, Google Scholar, Embase, and Cochrane Library) were searched for original published studies on IE after edge-to-edge transcatheter mitral valve repair from 2003 to 2017. A total of 10 publications describing 12 patients with definitive IE (median age 76 years, 55% men) were found. The mean logistic EuroSCORE/EuroSCORE II were 41% and 45%, respectively. The IE episode occurred early (within 12 months post-procedure) in nine patients (75%; within the first month in five patients). Staphylococcus aureus was the most frequent (60%) causal microorganism, and severe mitral regurgitation was present in all cases but one. Surgical mitral valve replacement (SMVR) was performed in most (67%) patients, and the mortality associated with the IE episode was high (42%). IE following transcatheter edge-to-edge mitral valve repair is a rare but life-threatening complication, usually necessitating SMVR despite the high-risk profile of the patients. These results highlight the importance of adequate preventive measures and a prompt diagnosis and treatment of this serious complication. © 2018 Wiley Periodicals, Inc.

  15. Shadow edge lithography for nanoscale patterning and manufacturing

    International Nuclear Information System (INIS)

    Bai, John G; Chang, C-L; Chung, Jae-Hyun; Lee, Kyong-Hoon

    2007-01-01

    We demonstrate a wafer-scale nanofabrication method using the shadow effect in physical vapor deposition. An analytical model is presented to predict the formation of nanoscale gaps created by the shadow effect of a prepatterned edge on a deposition plane. The theoretical prediction agrees quantitatively with the widths of the fabricated nanogaps and nanochannels. In the diffusion experiments, both λ-DNA and fluorescein molecules were successfully introduced into the nanochannels. The proposed shadow edge lithography has potential to be a candidate for mass-producing nanostructures

  16. Nonreference Medical Image Edge Map Measure

    Directory of Open Access Journals (Sweden)

    Karen Panetta

    2014-01-01

    Full Text Available Edge detection is a key step in medical image processing. It is widely used to extract features, perform segmentation, and further assist in diagnosis. A poor quality edge map can result in false alarms and misses in cancer detection algorithms. Therefore, it is necessary to have a reliable edge measure to assist in selecting the optimal edge map. Existing reference based edge measures require a ground truth edge map to evaluate the similarity between the generated edge map and the ground truth. However, the ground truth images are not available for medical images. Therefore, a nonreference edge measure is ideal for medical image processing applications. In this paper, a nonreference reconstruction based edge map evaluation (NREM is proposed. The theoretical basis is that a good edge map keeps the structure and details of the original image thus would yield a good reconstructed image. The NREM is based on comparing the similarity between the reconstructed image with the original image using this concept. The edge measure is used for selecting the optimal edge detection algorithm and optimal parameters for the algorithm. Experimental results show that the quantitative evaluations given by the edge measure have good correlations with human visual analysis.

  17. Edge loading has a paradoxical effect on wear in metal-on-polyethylene total hip arthroplasties.

    Science.gov (United States)

    Harris, William H

    2012-11-01

    Edge wear is an adverse factor that can negatively impact certain THAs. In some metal-on-metal THAs, it can lead to adverse tissue reactions including aseptic lymphocytic vasculitis-associated lesions and even to pseudotumor formation. In some ceramic-on-ceramic THAs, it can lead to squeaking and/or stripe wear. Edge wear in metal-on-metal and ceramic-on-ceramic THAs can also be associated with accelerated wear across the articulation of these joints. I asked: Does edge wear occur in metal-on-polyethylene (MOP) articulations? And if so, does it increase joint wear? I examined the evidence in the literature for edge wear occurring in MOP THA and then assessed the evidence in the literature for data supporting the concept that edge wear in MOP hips could accelerate wear across the articulation over time. Extensive data in the literature confirm edge wear is common in MOP THA. Surprisingly, the evidence does not support that it accelerates wear across the articulation. In fact, substantial data support the concept that it does not. These observations suggest, in terms of edge wear accelerating overall wear, MOP articulation may have a privileged position compared to hard-on-hard THA articulations.

  18. High Precision Edge Detection Algorithm for Mechanical Parts

    Directory of Open Access Journals (Sweden)

    Duan Zhenyun

    2018-04-01

    Full Text Available High precision and high efficiency measurement is becoming an imperative requirement for a lot of mechanical parts. So in this study, a subpixel-level edge detection algorithm based on the Gaussian integral model is proposed. For this purpose, the step edge normal section line Gaussian integral model of the backlight image is constructed, combined with the point spread function and the single step model. Then gray value of discrete points on the normal section line of pixel edge is calculated by surface interpolation, and the coordinate as well as gray information affected by noise is fitted in accordance with the Gaussian integral model. Therefore, a precise location of a subpixel edge was determined by searching the mean point. Finally, a gear tooth was measured by M&M3525 gear measurement center to verify the proposed algorithm. The theoretical analysis and experimental results show that the local edge fluctuation is reduced effectively by the proposed method in comparison with the existing subpixel edge detection algorithms. The subpixel edge location accuracy and computation speed are improved. And the maximum error of gear tooth profile total deviation is 1.9 μm compared with measurement result with gear measurement center. It indicates that the method has high reliability to meet the requirement of high precision measurement.

  19. Flow over 50º Delta Wings with Different Leading-Edge Radii

    NARCIS (Netherlands)

    Verhaagen, N.G.

    2011-01-01

    The experimental study focuses on the effects of the leading-edge radius on the flow over 50º swept delta wing models. Three models were tested, one model has a sharp leading edge and two other have a semi-circular leading edge of different radius. The vortical flow on and off the surface of the

  20. Nanoindentation near the edge

    Science.gov (United States)

    J.E. Jakes; C.R. Frihart; J.F. Beecher; R.J. Moon; P.J. Resto; Z.H. Melgarejo; O.M. Saurez; H. Baumgart; A.A. Elmustafa; D.S. Stone

    2009-01-01

    Whenever a nanoindent is placed near an edge, such as the free edge of the specimen or heterophase interface intersecting the surface, the elastic discontinuity associated with the edge produces artifacts in the load-depth data. Unless properly handled in the data analysis, the artifacts can produce spurious results that obscure any real trends in properties as...

  1. Neutral particle and radiation effects on Pfirsch - Schlueter fluxes near the edge

    International Nuclear Information System (INIS)

    Catto, P.J.; Helander, P.; Connor, J.W.; Hazeltine, R.D.

    1998-01-01

    The edge plasma of a tokamak is affected by atomic physics processes and can have density and temperature variations along the magnetic field that strongly modify edge transport. A closed system of equations in the Pfirsch - Schlueter regime is presented that can be solved for the radial and poloidal variation of the plasma density, electron and ion temperatures, and the electrostatic potential in the presence of neutrals and a poloidally asymmetric energy radiation sink due to inelastic electron collisions. Neutrals have a large diffusivity so their viscosity and heat flux can become important even when their density is not high, in which case the neutral viscosity alters the electrostatic potential at the edge by introducing strong radial variation. The strong parallel gradient in the electron temperature that can arise in the presence of a localized radiation sink drives a convective flow of particles and heat across the field. This plasma transport mechanism can balance the neutral influx and is particularly strong if multifaceted asymmetric radiation from the edge (MARFE) occurs, since the electron temperature then varies substantially over the flux surface. copyright 1998 American Institute of Physics

  2. Effects of knife edge angle and speed on peak force and specific energy when cutting vegetables of diverse texture

    Directory of Open Access Journals (Sweden)

    Vishal Singh

    2016-04-01

    Full Text Available Cutting tool parameters such as edge-sharpness and speed of cut directly influence the shape of final samples and the required cutting force and specific energy for slicing or cutting operations. Cutting force and specific energy studies on different vegetables help to design the appropriate slicing or cutting devices. Peak cutting force and specific energy requirements for the transverse cutting of nine vegetables, differing in their textural characteristics of rind and flesh, were determined at cutting speeds of 20, 30, 40 mm min-1 and single-cut knife-edge angles of 15, 20 and 25° using a Universal Testing Machine. Low speed (20 mm min-1 cutting with a sharper knife-edge angle (15° required less peak force and specific energy than that of high-speed cutting (40 mm min-1 with a wider knife-edge angle (25°. The vegetables with the maximum and minimum variation in the average peak cutting force were aubergine, at 79.05 (for knife speed 20 mm min-1 and edge angle 150 to 285.1 N (40 mm min-1 and 250, and cucumber, at 11.61 (20 mm min-1 and 150 to 21.41 N (40 mm min-1 and 250, respectively. High speed (40 mm min-1, with a large knife-edge angle (25°, required the highest force and specific energy to cut the vegetables, however, low speed (20 mm min-1, with a small knife-edge angle (150, is preferred. Effects of cutting speed and knife-edge angle on peak force and specific energy responses were found significant (p<0.05. Linear or quadratic regressions gave a good fit of these variables. 

  3. Edge subdivision and edge multisubdivision versus some domination related parameters in generalized corona graphs

    Directory of Open Access Journals (Sweden)

    Magda Dettlaff

    2016-01-01

    Full Text Available Given a graph \\(G=(V,E\\, the subdivision of an edge \\(e=uv\\in E(G\\ means the substitution of the edge \\(e\\ by a vertex \\(x\\ and the new edges \\(ux\\ and \\(xv\\. The domination subdivision number of a graph \\(G\\ is the minimum number of edges of \\(G\\ which must be subdivided (where each edge can be subdivided at most once in order to increase the domination number. Also, the domination multisubdivision number of \\(G\\ is the minimum number of subdivisions which must be done in one edge such that the domination number increases. Moreover, the concepts of paired domination and independent domination subdivision (respectively multisubdivision numbers are defined similarly. In this paper we study the domination, paired domination and independent domination (subdivision and multisubdivision numbers of the generalized corona graphs.

  4. New approach in two-dimensional fluid modeling of edge plasma transport with high intermittency due to blobs and edge localized modes

    International Nuclear Information System (INIS)

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.

    2011-01-01

    A new approach is proposed to simulate intermittent, non-diffusive plasma transport (via blobs and filaments of edge localized modes (ELMs)) observed in the tokamak edge region within the framework of two-dimensional transport codes. This approach combines the inherently three-dimensional filamentary structures associated with an ensemble of blobs into a macro-blob in the two-dimensional poloidal cross-section and advects the macro-blob ballistically across the magnetic field, B. Intermittent transport is represented as a sequence of macro-blobs appropriately seeded in the edge plasma according to experimental statistics. In this case, the code is capable of reproducing both the long-scale temporal evolution of the background plasma and the fast spatiotemporal dynamics of blobs. We report the results from a two-dimensional edge plasma code modeling of a single macro-blob dynamics, and its interaction with initially stationary background plasma as well as with material surfaces. The mechanisms of edge plasma particle and energy losses from macro-blobs are analyzed. The effects of macro-blob sizes and advection velocity on edge plasma profiles are studied. The macro-blob impact on power loading and sputtering rates on the chamber wall and on inner and outer divertor plates is discussed. Temporal evolution of particle inventory of the edge plasma perturbed by macro-blobs is analyzed. Application of macro-blobs to ELM modeling is highlighted.

  5. Measurements of edge density profile modifications during IBW on TFTR

    International Nuclear Information System (INIS)

    Hanson, G.R.; Bush, C.E.; Wilgen, J.B.

    1997-01-01

    Ion Bernstein wave (IBW) antennas are known to have substantial localized effects on the plasma edge. To allow better understanding and measurement of these effects, the TFTR edge reflectometer has been relocated to the new IBW antenna. This move was facilitated by the incorporation of a diagnostic access tube in the IBW antenna identical to the original diagnostic tube in the fast-wave (FW) antenna. This allowed the reflectometer launcher to simply be moved from the old FW antenna to the new IBW antenna. Only a moderate extension of the waveguide transmission line was required to reconnect the reflectometer to the launcher in its new location. Edge density profile modification during IBW experiments has been observed. Results from IBW experiments will be presented and contrasted to the edge density modifications previously observed during FW heating experiments

  6. Thermal Edge-Effects Model for Automated Tape Placement of Thermoplastic Composites

    Science.gov (United States)

    Costen, Robert C.

    2000-01-01

    Two-dimensional thermal models for automated tape placement (ATP) of thermoplastic composites neglect the diffusive heat transport that occurs between the newly placed tape and the cool substrate beside it. Such lateral transport can cool the tape edges prematurely and weaken the bond. The three-dimensional, steady state, thermal transport equation is solved by the Green's function method for a tape of finite width being placed on an infinitely wide substrate. The isotherm for the glass transition temperature on the weld interface is used to determine the distance inward from the tape edge that is prematurely cooled, called the cooling incursion Delta a. For the Langley ATP robot, Delta a = 0.4 mm for a unidirectional lay-up of PEEK/carbon fiber composite, and Delta a = 1.2 mm for an isotropic lay-up. A formula for Delta a is developed and applied to a wide range of operating conditions. A surprise finding is that Delta a need not decrease as the Peclet number Pe becomes very large, where Pe is the dimensionless ratio of inertial to diffusive heat transport. Conformable rollers that increase the consolidation length would also increase Delta a, unless other changes are made, such as proportionally increasing the material speed. To compensate for premature edge cooling, the thermal input could be extended past the tape edges by the amount Delta a. This method should help achieve uniform weld strength and crystallinity across the width of the tape.

  7. Effect of cutting edge preparation on tool performance in hard-turning of DF-3 tool steel with ceramic tools

    Energy Technology Data Exchange (ETDEWEB)

    Davoudinejad, A.; Noordin, M. Y. [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2014-11-15

    This study presents an experimental investigation on turning hardened DF-3 tool steel (∼ 58HRC) with PVD-TiN coated mixed ceramic. We focused on the effect of chamfer and honed edge geometry on tool wear, tool life, cutting forces and surface finish of the machined work piece. The effects of the process parameters on performance characteristics were investigated using ANOVA. It was found that longer tool life was recorded with chamfered edge geometry at various cutting conditions. The typical damage observed as flank and crater wear for ceramic tools and abrasive wear was found as the main mechanism.The optimal cutting speed was 155 m/min, with which a tolerable tool life and volume of material removal was obtained for both edges geometry. Finer machined surface was left by chamfered tool with feeds and speeds in the range of 0.125-0.05 mm/rev and 155-210 m/min, respectively; also, cutting forces decrease with increased cutting speed. The obtained consequence of cutting forces shows that tool wear has a considerable effect on cutting forces and greater forces values recorded with honed tools.

  8. Effect of cutting edge preparation on tool performance in hard-turning of DF-3 tool steel with ceramic tools

    International Nuclear Information System (INIS)

    Davoudinejad, A.; Noordin, M. Y.

    2014-01-01

    This study presents an experimental investigation on turning hardened DF-3 tool steel (∼ 58HRC) with PVD-TiN coated mixed ceramic. We focused on the effect of chamfer and honed edge geometry on tool wear, tool life, cutting forces and surface finish of the machined work piece. The effects of the process parameters on performance characteristics were investigated using ANOVA. It was found that longer tool life was recorded with chamfered edge geometry at various cutting conditions. The typical damage observed as flank and crater wear for ceramic tools and abrasive wear was found as the main mechanism.The optimal cutting speed was 155 m/min, with which a tolerable tool life and volume of material removal was obtained for both edges geometry. Finer machined surface was left by chamfered tool with feeds and speeds in the range of 0.125-0.05 mm/rev and 155-210 m/min, respectively; also, cutting forces decrease with increased cutting speed. The obtained consequence of cutting forces shows that tool wear has a considerable effect on cutting forces and greater forces values recorded with honed tools.

  9. Theory of Magnetic Edge States in Chiral Graphene Nanoribbons

    Science.gov (United States)

    Capaz, Rodrigo; Yazyev, Oleg; Louie, Steven

    2011-03-01

    Using a model Hamiltonian approach including electron Coulomb interactions, we systematically investigate the electronic structure and magnetic properties of chiral graphene nanoribbons. We show that the presence of magnetic edge states is an intrinsic feature of any smooth graphene nanoribbons with chiral edges, and discover a number of structure-property relations. Specifically, we describe how the edge-state energy gap, zone-boundary edge-state energy splitting, and magnetic moment per edge length depend on the nanoribbon width and chiral angle. The role of environmental screening effects is also studied. Our results address a recent experimental observation of signatures of magnetic ordering at smooth edges of chiral graphene nanoribbons and provide an avenue towards tuning their properties via the structural and environmental degrees of freedom. This work was supported by National Science Foundation Grant No. DMR10-1006184, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the ONR MURI program. RBC acknowledges financial support from Brazilian agencies CNPq, FAPERJ and INCT-Nanomateriais de Carbono.

  10. The efficacy of K-edge filters in diagnostic radiology

    International Nuclear Information System (INIS)

    Williamson, B.D.P.; van Doorn, T.

    1994-01-01

    The application of K-edge filters in diagnostic has been investigated by many workers for over twenty years. These investigations have analysed the effects of such filters on image quality and radiation dose as well as the practicalities of their application. This paper presents a synopsis of the published works and concludes that K-edge filters do not perceptibly improve image quality and make only limited reductions in patient dose. K-edge filters are also costly to purchase and potentially result in a reduction in the cost effectiveness of x-ray examinations by increasing the x-ray tube loading. Equivalent contrast enhancement and dose reductions can be achieved by the assiduous choice of non-selective filters. 51 refs., 2 tab., 6 figs

  11. Wild Band Edges: The Role of Bandgap Grading and Band-Edge Fluctuations in High-Efficiency Chalcogenide Devices: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Repins, Ingrid; Mansfield, Lorelle; Kanevce, Ana; Jensen, Soren A.; Kuciauskas, Darius; Glynn, Stephen; Barnes, Teresa; Metzger, Wyatt; Burst, James; Jiang, Chun-Sheng; Dippo, Patricia; Harvey, Steve; Teeter, Glenn; Perkins, Craig; Egaas, Brian; Zakutayev, Andriy; Alsmeier, J.-H.; Lussky, T.; Korte, L.; Wilks, R. G.; Bar, M.; Yan, Y.; Lany, Stephan; Zawadzki, Pawel; Park, Ji-Sang; Wei, Suhuai

    2016-06-16

    Band-edge effects -- including grading, electrostatic fluctuations, bandgap fluctuations, and band tails -- affect chalcogenide device efficiency. These effects now require more careful consideration as efficiencies increase beyond 20%. Several aspects of the relationships between band-edge phenomena and device performance for NREL absorbers are examined. For Cu(In,Ga)Se2 devices, recent increases in diffusion length imply changes to optimum bandgap profile. The origin, impact, and modification of electrostatic and bandgap fluctuations are also discussed. The application of the same principles to devices based on CdTe, kesterites, and emerging absorbers (Cu2SnS3, CuSbS2), considering differences in materials properties and defect formation energies, is examined.

  12. Initiation of trailing edge failure in full-scale wind turbine blade test

    DEFF Research Database (Denmark)

    Haselbach, Philipp Ulrich; Branner, Kim

    2016-01-01

    non-linear buckling effect of the trailing edge under combined loading, and how it affects the ultimate strength of a blade in a trailing-edge failure dominated load direction were investigated. The study details the interaction between trailing edge buckling on damage onset and sandwich panel failure...

  13. Mortality after percutaneous edge-to-edge mitral valve repair: a contemporary review.

    Science.gov (United States)

    Kortlandt, Friso A; de Beenhouwer, Thomas; Swaans, Martin J; Post, Marco C; van der Heyden, Jan A S; Eefting, Frank D; Rensing, Benno J W M

    2016-04-01

    Percutaneous edge-to-edge mitral valve (MV) repair is a relatively new treatment option for mitral regurgitation (MR). After the feasibility and safety having been proved in low-surgical-risk patients, the use of this procedure has shifted more to the treatment of high-risk patients. With the absence of randomized controlled trials (RCT) for this particular subgroup, observational studies try to add evidence to the safety aspect of this procedure. These also provide short- and mid-term mortality figures. Several mortality predictors have been identified, which may help the optimal selection of patients who will benefit most from this technique. In this article we provide an overview of the literature about mortality and its predictors in patients treated with the percutaneous edge-to-edge device.

  14. Effects of edge contrast on redback salamander distribution in even-aged northern hardwoods

    Science.gov (United States)

    Richard M. DeGraaf; Mariko. Yamasaki

    2002-01-01

    Terrestrial salamanders are sensitive to forest disturbance associated with even-aged management. We studied the distribution of redback salamanders (Plethodon cinereus) for 4 yr at edges between even-aged northern hardwood stands along three replicate transects in each of three edge contrast types: regeneration/mature, sapling/mature, and...

  15. Adobe Edge Preview 3

    CERN Document Server

    Grover, Chris

    2011-01-01

    Want to use an Adobe tool to design animated web graphics that work on iPhone and iPad? You've come to the right book. Adobe Edge Preview 3: The Missing Manual shows you how to build HTML5 graphics using simple visual tools. No programming experience? No problem. Adobe Edge writes the underlying code for you. With this eBook, you'll be designing great-looking web elements in no time. Get to know the workspace. Learn how Adobe Edge Preview 3 performs its magic.Create and import graphics. Make drawings with Edge's tools, or use art you designed in other programs.Work with text. Build menus, lab

  16. [Edge effects of forest gap in Pinus massoniana plantations on the decomposition of leaf litter recalcitrant components of Cinnamomum camphora and Toona ciliata.

    Science.gov (United States)

    Zhang, Yan; Zhang, Dan Ju; Li, Xun; Liu, Hua; Zhang, Ming Jin; Yang, Wan Qin; Zhang, Jian

    2016-04-22

    The objective of the study was to evaluate the dynamics of recalcitrant components during foliar litter decomposition under edge effects of forest gap in Pinus massoniana plantations in the low hilly land, Sichuan basin. A field litterbag experiment was conducted in seven forest gaps with different sizes (100, 225, 400, 625, 900, 1225, 1600 m 2 ) which were generated by thinning P. massoniana plantations. The degradation rate of four recalcitrant components, i.e., condensed tannins, total phenol, lignin and cellulose in foliar litter of two native species (Cinnamomum camphora and Toona ciliata) at the gap edge and under the closed canopy were measured. The results showed that the degradation rate of recalcitrant components in T. ciliata litter except for cellulose at the gap edge were significantly higher than that under the closed canopy. For C. camphora litter, only the degradation of lignin at the gap edge was higher than that under the closed canopy. After one-year decomposition, four recalcitrant components in two types of foliar litter exhibited an increment of degradation rate, and the degradation rate of condensed tannin was the fastest, followed by total phenol and cellulose, but the lignin degradation rate was the slowest. With the increase of gap size, except for cellulose, the degradation rate ofthe other three recalcitrant components of the T. ciliata at the edge of medium sized gaps (400 and 625 m 2 ) were significantly higher than at the edge of other gaps. However, lignin in the C. camphora litter at the 625 m 2 gap edge showed the greatest degradation rate. Both temperature and litter initial content were significantly correlated with litter recalcitrant component degradation. Our results suggested that medium sized gaps (400-625 m 2 ) had a more significant edge effect on the degradation of litter recalcitrant components in the two native species in P. massoniana plantations, however, the effect also depended on species.

  17. The Effects of Vegetative Type, Edges, Fire History, Rainfall and Management in Fire-Maintained Habitat

    Science.gov (United States)

    Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.

    2018-01-01

    The combined effects of fire history, climate, and landscape features (e.g., edges) on habitat specialists need greater focus in fire ecology studies, which usually only emphasize characteristics of the most recent fire. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights, which are dynamic because of frequent fires. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells (that represented potential territories) because fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities vary between states as functions of environmental covariates. Covariates included vegetative type, edges (e.g., roads, forests), precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presence/absence of fire covariate, but also fire history covariates: time since the previous fire, the longest fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Edges reduced the effectiveness of fires in setting degraded scrub and flatwoods into earlier successional states making mechanical cutting an important tool to compliment frequent prescribed fires.

  18. Timing performances and edge effects of detectors worked from 6-in. silicon slices

    International Nuclear Information System (INIS)

    Aiello, S.; Anzalone, A.; Cardella, G.; Cavallaro, Sl.; De Filippo, E.; Di Pietro, A.; Femino, S.; Geraci, M.; Giustolisi, F.; Guazzoni, P.; Iacono Manno, M.; Lanzalone, G.; Lanzano, G.; Lo Nigro, S.; Musumarra, A.; Pagano, A.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Rizzo, F.; Sambataro, S.; Sperduto, M.L.; Sutera, C.; Zetta, L.

    1997-01-01

    Prototypes of new passivated implanted planar silicon detectors, obtained for the first time from 6 in. silicon slices, have been tested. The time and energy resolutions have been studied as a function of the type and energy of the detected particles, in order to test the performances of these detectors for time of flight measurements in the Chimera project. Some problems arising from edge effects observed in double-pad detectors have been solved by using a guard ring. (orig.)

  19. Effect of trailing edge ramp on cavity flow structures and pressure drag

    International Nuclear Information System (INIS)

    Pey, Yin Yin; Chua, Leok Poh; Siauw, Wei Long

    2014-01-01

    Highlights: • Trailing edge ramps were used to reduce unsteadiness and pressure drag of a cavity. • Proper Orthogonal Decomposition was used to educe the coherent structures. • The 30° ramp was successful in redistributing the energy content within the cavity. • The 30° ramp guides the flow smoothly out of the cavity, reducing flow impingement. • A substantial reduction of pressure drag was achieved by the 30° ramp. -- Abstract: The effects of trailing edge ramp modifications on time-averaged velocity and pressure distributions within a cavity with a length to depth ratio of 2, at a speed of 15 m/s were investigated. The ramp angles were varied at 30°, 45° and 60° and ramp heights were varied at 0.25 times and 0.5 times of cavity depth. The mean flow within the cavity differed significantly from the baseline case when ramp angle was 30° and 45° with ramp height 0.5 times of cavity depth. At these 2 configurations, moment about the center of the cavity floor was reduced significantly. These could be attributed to the more steady flow within the cavity as compared to the baseline case. Spatial correlation of velocity in the cavity of ramp angle 30° showed that internal cavity flow was less sensitive to flow changes in the shear layer as compared to the baseline case. In the same cavity, snapshot Proper Orthogonal Decomposition revealed a redistribution of energy content where energetic structures exist only in the shear layer as opposed to energetic structures in both the shear layer and internal cavity for the baseline case. A reduction of pressure drag was also observed as the gentle ramp angle of 30° guides the flow smoothly out of the cavity and reduces trailing edge impingement

  20. The effect of motion patterns on edge-loading of metal-on-metal hip resurfacing.

    Science.gov (United States)

    Mellon, S J; Kwon, Y-M; Glyn-Jones, S; Murray, D W; Gill, H S

    2011-12-01

    The occurrence of pseudotumours (soft tissue masses relating to the hip joint) following metal-on-metal hip resurfacing arthroplasty (MoMHRA) has been associated with high serum metal ion levels and consequently higher than normal bearing wear. We investigated the relationship between serum metal ion levels and contact stress on the acetabular component of MoMHRA patients for two functional activities; gait and stair descent. Four subjects with MoMHRA, who had their serum metal ion levels measured, underwent motion analysis followed by CT scanning. Their motion capture data was combined with published hip contact forces and finite element models representing 14% (peak force) and 60% (end of stance) of the gait cycle and 52% (peak force) of stair descent activity were created. The inclination angle of the acetabular component was increased by 10° in 1° intervals and the contact stresses were determined at each interval for each subject. When the inclination angle was altered in such a way as to cause the hip contact force to pass through the edge of the acetabular component edge-loading occurred. Edge-loading increased the contact stress by at least 50%; the maximum increase was 108%. Patients with low serum metal ion levels showed no increase in contact stress at peak force during gait or stair descent. Patients with high serum metal ion levels exhibited edge-loading with an increase to the inclination angle of their acetabular components. The increase in inclination angle that induced edge-loading for these subjects was less than the inter-subject variability in the angle of published hip contact forces. The results of this study suggest that high serum metal ion levels are the result of inclination angle influenced edge-loading but that edge-loading cannot be attributed to inclination angle alone and that an individual's activity patterns can reduce or even override the influence of a steep acetabular component and prevent edge-loading. Copyright © 2011 IPEM

  1. Dynamic Stall Characteristics of Drooped Leading Edge Airfoils

    Science.gov (United States)

    Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen

    2000-01-01

    Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.

  2. Generalized Multi-Edge Analysis for K-Edge Densitometry

    International Nuclear Information System (INIS)

    Collins, M.

    1998-01-01

    In K-edge densitometry (KED), a continuous-energy x-ray beam is transmitted through a liquid sample. The actinide content of the sample can be measured through analysis of the transmitted portion of the x-ray beam. Traditional methods for KED analysis allow the simultaneous calculation of, at most, two actinide concentrations. A generalized multi-edge KED analytical method is presented, allowing up to six actinide concentrations to be calculated simultaneously. Applications of this method for hybrid KED/x-ray fluorescence (HKED) systems are discussed. Current HKED systems require the operator to know the approximate actinide content of each sample, and manually select the proper analysis mode. The new multi-edge KED technique allows rapid identification of the major actinide components in a sample, independent of actinide content. The proper HKED analysis mode can be selected automatically, without requiring sample content information from the user. Automatic HKED analysis would be especially useful in an analytical laboratory setting, where samples with truly unknown characteristics are encountered. Because this technique requires no hardware modifications, several facilities that use HKED may eventually benefit from this approach

  3. A survey of problems in divertor and edge plasma theory

    International Nuclear Information System (INIS)

    Boozer, A.; Braams, B.; Weitzner, H.; Hazeltine, R.; Houlberg, W.; Oktay, E.; Sadowski, W.; Wootton, A.

    1992-01-01

    Theoretical physics problems related to divertor design are presented, organized by the region in which they occur. Some of the open questions in edge physics are presented from a theoretician's point of view. After a cursory sketch of the fluid models of the edge plasma and their numerical realization, the following topics are taken up: time-dependent problems, non-axisymmetric effects, anomalous transport in the scrape-off layer, edge kinetic theory, sheath effects and boundary conditions in divertors, electric field effects, atomic and molecular data issues, impurity transport in the divertor region, poloidally localized power dissipation (MARFEs and dense gas targets), helium ash removal, and neutral transport. The report ends with a summary of selected problems of particular significance and a brief bibliography of survey articles and related conference proceedings

  4. Investigation of the effect of tool edge geometry upon cutting variables, tool wear and burr formation using finite element simulation - A progress report

    International Nuclear Information System (INIS)

    Sartkulvanich, Partchapol; Al-Zkeri, Ibrahim; Yen Yungchang; Altan, Taylan

    2004-01-01

    This paper summarizes some of the progress made on FEM simulations of metal cutting processes conducted at the Engineering Research Center (ERC/NSM). Presented research focuses on the performance of various cutting edge geometries (hone and chamfer edges) for different tool materials and specifically on: 1) the effect of round and chamfer edge geometries on the cutting variables in machining carbon steels and 2) the effect of the edge hone size upon the flank wear and burr formation behavior in face milling of A356-T6 aluminum alloy. In the second task, an innovative design of edge preparation with varying hone size around the tool nose is also explored using FEM.In order to model three-dimensional conventional turning and face milling with two-dimensional orthogonal cutting simulations, 2D simulation cross-sections consisting of the cutting speed direction and chip flow direction are selected at different locations along the tool nose radius. Then the geometries of the hone and chamfer edges and their associated tool angles as well as uncut chip thickness are determined on these planes and employed in cutting simulations. The chip flow direction on the tool rake face are obtained by examining the wear grooves on the experimental inserts or estimated by using Oxley's approximation theory of oblique cutting. Simulation results are compared with the available experimental results (e.g. cutting forces) both qualitatively and quantitatively

  5. Effect of a Finite Trailing Edge Thickness on the Drag of Rectangular and Delta Wings at Supersonic Speeds

    National Research Council Canada - National Science Library

    Klunker, E

    1952-01-01

    The effect of a finite trailing-edge thickness on the pressure drag of rectangular and delta wings with truncated diamond-shaped airfoil sections with a given thickness ratio is studied for supersonic...

  6. Effect of an edge at cup rim on contact stress during micro-separation in ceramic-on-ceramic hip joints.

    Science.gov (United States)

    Liu, Feng; Fisher, John

    2017-09-01

    Alumina ceramic total hip joint bearings have shown superior wear properties. The joint bearing may undergo adverse conditions such as micro-separation causing head contact on the cup rim. As a transition, an edge is formed between the cup bearing and the rim. The aim of this study was to predict the effect of the edge on contact stresses in order to better understand the mechanisms of wear. A finite element contact model was developed under the conditions of the head displacements 0.5-2 mm and vertical loads 0.5-3 kN. The edge contact produced the most severe stresses capable of causing elevated wear and damage to ceramic bearings. The study shows that the bearing design should be considered in association with clinical conditions to eliminate severe stress.

  7. Experimental Study of Wake / Flap Interaction Noise and the Reduction of Flap Side Edge Noise

    Science.gov (United States)

    Hutcheson, Florence V.; Stead, Daniel J.; Plassman, Gerald E.

    2016-01-01

    The effects of the interaction of a wake with a half-span flap on radiated noise are examined. The incident wake is generated by bars of various widths and lengths or by a simplified landing gear model. Single microphone and phased array measurements are used to isolate the effects of the wake interaction on the noise radiating from the flap side edge and flap cove regions. The effects on noise of the wake generator's geometry and relative placement with respect to the flap are assessed. Placement of the wake generators upstream of the flap side edge is shown to lead to the reduction of flap side edge noise by introducing a velocity deficit and likely altering the instabilities in the flap side edge vortex system. Significant reduction in flap side edge noise is achieved with a bar positioned directly upstream of the flap side edge. The noise reduction benefit is seen to improve with increased bar width, length and proximity to the flap edge. Positioning of the landing gear model upstream of the flap side edge also leads to decreased flap side edge noise. In addition, flap cove noise levels are significantly lower than when the landing gear is positioned upstream of the flap mid-span. The impact of the local flow velocity on the noise radiating directly from the landing gear is discussed. The effects of the landing gear side-braces on flap side edge, flap cove and landing gear noise are shown.

  8. Canopy gap edge determination and the importance of gap edges for plant diversity

    Directory of Open Access Journals (Sweden)

    D. Salvador-Van Eysenrode

    2002-01-01

    Full Text Available Canopy gaps, i.e. openings in the forest cover caused by the fall of structural elements, are considered to be important for the maintenance of diversity and for the forest cycle. A gap can be considered as a young forest patch in the forest matrix, composed of interior surrounded by an edge, both enclosed by a perimeter. Much of the attention has been focused on the gap interior. However, at gap edges the spectrum of regeneration opportunities for plants may be larger than in the interior. Although definitions of gap are still discussed, any definition can describe it in an acceptable way, if justified, but defining edges is complicated and appropriate descriptors should be used. A method to determine gap interior and edge, using light as a descriptor, is presented with an example of gaps from a beech forest (Fagus sylvatica in Belgium. Also, the relevance and implications of gap edges for plant diversity and calculation of forest turnover is discussed.

  9. Mapping Forest Edge Using Aerial Lidar

    Science.gov (United States)

    MacLean, M. G.

    2014-12-01

    Slightly more than 60% of Massachusetts is covered with forest and this land cover type is invaluable for the protection and maintenance of our natural resources and is a carbon sink for the state. However, Massachusetts is currently experiencing a decline in forested lands, primarily due to the expansion of human development (Thompson et al., 2011). Of particular concern is the loss of "core areas" or the areas within forests that are not influenced by other land cover types. These areas are of significant importance to native flora and fauna, since they generally are not subject to invasion by exotic species and are more resilient to the effects of climate change (Campbell et al., 2009). However, the expansion of development has reduced the amount of this core area, but the exact amount is still unknown. Current methods of estimating core area are not particularly precise, since edge, or the area of the forest that is most influenced by other land cover types, is quite variable and situation dependent. Therefore, the purpose of this study is to devise a new method for identifying areas that could qualify as "edge" within the Harvard Forest, in Petersham MA, using new remote sensing techniques. We sampled along eight transects perpendicular to the edge of an abandoned golf course within the Harvard Forest property. Vegetation inventories as well as Photosynthetically Active Radiation (PAR) at different heights within the canopy were used to determine edge depth. These measurements were then compared with small-footprint waveform aerial LiDAR datasets and imagery to model edge depths within Harvard Forest.

  10. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  11. Anuran assemblage on forest edges in Datu Salumay, Davao City, Philippines

    Directory of Open Access Journals (Sweden)

    Christelle Mae M. Dacalus

    2017-12-01

    Full Text Available Forest fragmentation due to anthropogenic encroachment has been associated with changes in abiotic conditions known as edge effect. This condition plays a major role in the amphibian decline globally. A five-day sampling in a regenerating forest of So. Maharlika, Barangay Datu Salumay, Marilog District, Davao City, Philippines was conducted to test effect of forest edges on a local forest. Visual encounter technique was employed surveying quadrats (10 x 10 meters established along a main transect (1 km long. The first 500 meters of the main transect served as the edge while the rest constituted the forest interior. Data on canopy cover, termperature, and humidity from each site were contrasted with species endemism and diversity to determine influence of differing edge and forest interior conditions. Eight species of frogs were captured: five belongs to the Family Rhacophoridae and one species each belong to the Families Megophryidae, Microhylidae, and Dicroglossidae. No significant difference was noted of the data on canopy cover, temperature, and humidity in both forest edge and interior. Six anuran species were accounted each in the forest edge and interior, although more endemic species were recorded from the forest interior. Current results maybe suggestive of the possible impact of edges on anuran species although more data is required to validate this claim.

  12. Algorithm for image retrieval based on edge gradient orientation statistical code.

    Science.gov (United States)

    Zeng, Jiexian; Zhao, Yonggang; Li, Weiye; Fu, Xiang

    2014-01-01

    Image edge gradient direction not only contains important information of the shape, but also has a simple, lower complexity characteristic. Considering that the edge gradient direction histograms and edge direction autocorrelogram do not have the rotation invariance, we put forward the image retrieval algorithm which is based on edge gradient orientation statistical code (hereinafter referred to as EGOSC) by sharing the application of the statistics method in the edge direction of the chain code in eight neighborhoods to the statistics of the edge gradient direction. Firstly, we construct the n-direction vector and make maximal summation restriction on EGOSC to make sure this algorithm is invariable for rotation effectively. Then, we use Euclidean distance of edge gradient direction entropy to measure shape similarity, so that this method is not sensitive to scaling, color, and illumination change. The experimental results and the algorithm analysis demonstrate that the algorithm can be used for content-based image retrieval and has good retrieval results.

  13. Potential environmental effects of the leading edge hydrokinetic energy technology.

    Science.gov (United States)

    2017-05-01

    The Volpe Center evaluated potential environmental challenges and benefits of the ARPA-E funded research project, Marine Hydrokinetic Energy Harvesting Using Cyber-Physical Systems, led by Brown University. The Leading Edge research team develo...

  14. H-mode edge stability of Alcator C-mod plasmas

    International Nuclear Information System (INIS)

    Mossessian, D.A.; Hubbard, A.; Hughes, J.W.; Greenwald, M.; LaBombard, B.; Snipes, J.A.; Wolfe, S.; Snyder, P.; Wilson, H.; Xu, X.; Nevins, W.

    2003-01-01

    For steady state H-mode operation, a relaxation mechanism is required to limit build-up of the edge gradient and impurity content. C-Mod sees two such mechanisms - EDA and grassy ELMs, but not large type I ELMs. In EDA the edge relaxation is provided by an edge localized quasi coherent electromagnetic mode that exists at moderate pedestal temperature T 3.5 and does not limit the build up of the edge pressure gradient. The mode is not observed in the ideal MHD stability analysis, but is recorded in the nonlinear real geometry fluctuations modeling based on fluid equations and is thus tentatively identified as a resistive ballooning mode. At high edge pressure gradients and temperatures the mode is replaced by broadband fluctuations (f< 50 kHz) and small irregular ELMs are observed. Based on ideal MHD calculations that include the effects of edge bootstrap current, these ELMs are identified as medium n (10 < n < 50) coupled peeling/ballooning modes. The stability thresholds, its dependence on the plasma shape and the modes structure are studied experimentally and with the linear MHD stability code ELITE. (author)

  15. Theory of edge radiation

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Kocharyan, V.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2008-08-15

    We formulate a complete theory of Edge Radiation based on a novel method relying on Fourier Optics techniques. Similar types of radiation like Transition UndulatorRadiation are addressed in the framework of the same formalism. Special attention is payed in discussing the validity of approximations upon which the theory is built. Our study makes consistent use of both similarity techniques and comparisons with numerical results from simulation. We discuss both near and far zone. Physical understanding of many asymptotes is discussed. Based on the solution of the field equation with a tensor Green's function technique, we also discuss an analytical model to describe the presence of a vacuum chamber. In particular, explicit calculations for a circular vacuum chamber are reported. Finally, we consider the use of Edge Radiation as a tool for electron beam diagnostics. We discuss Coherent Edge Radiation, Extraction of Edge Radiation by a mirror, and other issues becoming important at high electron energy and long radiation wavelength. Based on this work we also study the impact of Edge Radiation on XFEL setups and we discuss recent results. (orig.)

  16. How lithium atoms affect the first hyperpolarizability of BN edge-doped graphene.

    Science.gov (United States)

    Song, Yao-Dong; Wu, Li-Ming; Chen, Qiao-Ling; Liu, Fa-Kun; Tang, Xiao-Wen

    2016-01-01

    How do lithium atoms affect the first hyperpolarizability (β0) of boron-nitrogen (BN) edge-doped graphene. In this work, using pentacene as graphene model, Lin@BN-1 edge-doped pentacene and Lin@BN-2 edge-doped pentacene (n = 1, 5) were designed to study this problem. First, two models (BN-1 edge-doped pentacene, and BN-2 edge-doped pentacene ) were formed by doping the BN into the pentacene with different order, and then Li@BN-1 edge-doped pentacene and Li@ BN-2 edge-doped pentacene were obtained by substituting the H atom in BN edge-doped pentacene with a Li atom. The results show that the first hyperpolarizabilities of BN-1 edge-doped pentacene and Li@BN-1 edge-doped pentacene were 4059 a.u. and 6249 a.u., respectively; the first hyperpolarizabilities of BN-2 edge-doped pentacene and Li@BN-2 edge-doped pentacene were 2491 a.u. and 4265 a.u., respectively. The results indicate that the effect of Li substitution is to greatly increase the β0 value. To further enhance the first hyperpolarizability, Li5@ BN-1 edge-doped pentacene and Li5@BN-2 edge-doped pentacene were designed, and were found to exhibit considerably larger first hyperpolarizabilities (β0) (12,112 a.u. and 7921a.u., respectively). This work may inspire further study of the nonlinear properties of BN edge-doped graphene.

  17. Contrast in edge vegetation structure modifies the predation risk of natural ground nests in an agricultural landscape.

    Directory of Open Access Journals (Sweden)

    Nicole A Schneider

    Full Text Available Nest predation risk generally increases nearer forest-field edges in agricultural landscapes. However, few studies test whether differences in edge contrast (i.e. hard versus soft edges based on vegetation structure and height affect edge-related predation patterns and if such patterns are related to changes in nest conspicuousness between incubation and nestling feeding. Using data on 923 nesting attempts we analyse factors influencing nest predation risk at different edge types in an agricultural landscape of a ground-cavity breeding bird species, the Northern Wheatear (Oenanthe oenanthe. As for many other bird species, nest predation is a major determinant of reproductive success in this migratory passerine. Nest predation risk was higher closer to woodland and crop field edges, but only when these were hard edges in terms of ground vegetation structure (clear contrast between tall vs short ground vegetation. No such edge effect was observed at soft edges where adjacent habitats had tall ground vegetation (crop, ungrazed grassland. This edge effect on nest predation risk was evident during the incubation stage but not the nestling feeding stage. Since wheatear nests are depredated by ground-living animals our results demonstrate: (i that edge effects depend on edge contrast, (ii that edge-related nest predation patterns vary across the breeding period probably resulting from changes in parental activity at the nest between the incubation and nestling feeding stage. Edge effects should be put in the context of the nest predator community as illustrated by the elevated nest predation risk at hard but not soft habitat edges when an edge is defined in terms of ground vegetation. These results thus can potentially explain previously observed variations in edge-related nest predation risk.

  18. Spatial-Spectral Approaches to Edge Detection in Hyperspectral Remote Sensing

    Science.gov (United States)

    Cox, Cary M.

    also explores the concept of an edge within hyperspectral space, the relative importance of spatial and spectral resolutions as they pertain to HSI edge detection and how effectively compressed HSI data improves edge detection results. The HSI edge detection experiments yielded valuable insights into the algorithms' strengths, weaknesses and optimal alignment to remote sensing applications. The gradient-based edge operator produced strong edge planes across a range of evaluation measures and applications, particularly with respect to false negatives, unbroken edges, urban mapping, vegetation mapping and oil spill mapping applications. False positives and uncompressed HSI data presented occasional challenges to the algorithm. The HySPADE edge operator produced satisfactory results with respect to localization, single-point response, oil spill mapping and trace chemical detection, and was challenged by false positives, declining spectral resolution and vegetation mapping applications. The level set edge detector produced high-quality edge planes for most tests and demonstrated strong performance with respect to false positives, single-point response, oil spill mapping and mineral mapping. False negatives were a regular challenge for the level set edge detection algorithm. Finally, HSI data optimized for spectral information compression and noise was shown to improve edge detection performance across all three algorithms, while the gradient-based algorithm and HySPADE demonstrated significant robustness to declining spectral and spatial resolutions.

  19. Frequencies of the Edge-Magnetoplasmon Excitations in Gated Quantum Hall Edges

    Science.gov (United States)

    Endo, Akira; Koike, Keita; Katsumoto, Shingo; Iye, Yasuhiro

    2018-06-01

    We have investigated microwave transmission through the edge of quantum Hall systems by employing a coplanar waveguide (CPW) fabricated on the surface of a GaAs/AlGaAs two-dimensional electron gas (2DEG) wafer. An edge is introduced to the slot region of the CPW by applying a negative bias Vg to the central electrode (CE) and depleting the 2DEG below the CE. We observe peaks attributable to the excitation of edge magnetoplasmons (EMP) at a fundamental frequency f0 and at its harmonics if0 (i = 2,3, \\ldots ). The frequency f0 increases with decreasing Vg, indicating that EMP propagates with higher velocity for more negative Vg. The dependence of f0 on Vg is interpreted in terms of the variation in the distance between the edge state and the CE, which alters the velocity by varying the capacitive coupling between them. The peaks are observed to continue, albeit with less clarity, up to the regions of Vg where 2DEG still remains below the CE.

  20. Symmetrical metallic and magnetic edge states of nanoribbon from semiconductive monolayer PtS2

    Science.gov (United States)

    Liu, Shan; Zhu, Heyu; Liu, Ziran; Zhou, Guanghui

    2018-03-01

    Transition metal dichalcogenides (TMD) MoS2 or graphene could be designed to metallic nanoribbons, which always have only one edge show metallic properties due to symmetric protection. In present work, a nanoribbon with two parallel metallic and magnetic edges was designed from a noble TMD PtS2 by employing first-principles calculations based on density functional theory (DFT). Edge energy, bonding charge density, band structure, density of states (DOS) and simulated scanning tunneling microscopy (STM) of four possible edge states of monolayer semiconductive PtS2 were systematically studied. Detailed calculations show that only Pt-terminated edge state among four edge states was relatively stable, metallic and magnetic. Those metallic and magnetic properties mainly contributed from 5d orbits of Pt atoms located at edges. What's more, two of those central symmetric edges coexist in one zigzag nanoribbon, which providing two atomic metallic wires thus may have promising application for the realization of quantum effects, such as Aharanov-Bohm effect and atomic power transmission lines in single nanoribbon.

  1. Fast Image Edge Detection based on Faber Schauder Wavelet and Otsu Threshold

    Directory of Open Access Journals (Sweden)

    Assma Azeroual

    2017-12-01

    Full Text Available Edge detection is a critical stage in many computer vision systems, such as image segmentation and object detection. As it is difficult to detect image edges with precision and with low complexity, it is appropriate to find new methods for edge detection. In this paper, we take advantage of Faber Schauder Wavelet (FSW and Otsu threshold to detect edges in a multi-scale way with low complexity, since the extrema coefficients of this wavelet are located on edge points and contain only arithmetic operations. First, the image is smoothed using bilateral filter depending on noise estimation. Second, the FSW extrema coefficients are selected based on Otsu threshold. Finally, the edge points are linked using a predictive edge linking algorithm to get the image edges. The effectiveness of the proposed method is supported by the experimental results which prove that our method is faster than many competing state-of-the-art approaches and can be used in real-time applications.

  2. [Effects of highway on the vegetation species composition along a distance gradient from road edge in southeastern margin of Tengeer Desert].

    Science.gov (United States)

    Feng, Li; Li, Xin-Rong; Guo, Qun; Zhang, Jing-Guang; Zhang, Zhi-Shan

    2011-05-01

    Aimed to examine the effects of highway on the vegetation species composition in arid desert area, forty-eight transects perpendicular to the provincial highway 201 from Shapotou to Jing-tai in the southeastern margin of Tengger Desert were installed, with the vegetation species distribution along a distance gradient from the road edge investigated. The results showed that with increasing distance from the road edge, the species number, coverage, biomass, and alpha-diversity of herbaceous plants declined, but had no significant differences with the control beyond 5 m. Within 0-6 m to the road edge, the herbaceous plant height was greater than that of the control, but their density had less change. Within 0-2 m to the road edge, the species turnover rate of herbaceous plants was lower; at 2-5m, this rate was the highest; while beyond 10 m, the species composition of herbaceous plants was similar to that of the control. The herbaceous plant community at the road edge was dominated by gramineous plants, with the disturbance-tolerant species Pennisetum centrasiaticum, Chloris virgata, and Agropyron cristatum accounting for 68.6% of the total. C. virgata beyond 1 m to the road edge had a rapid decrease in its individual number and presence frequency, P. centrasiaticum and A. cristatum beyond 2 m also showed a similar trend, while the composite plants Artemisia capillaris and A. frigida beyond 2 m from the road edge had a rapid increase in its individual number, accounting for 70% of the herbaceous plants. At the road edge, the coverage and density of shrubs were significantly lower than those of the control, but the species composition had no significant difference.

  3. Effect of flow obstacles with various leading and trailing edges on critical heat flux

    International Nuclear Information System (INIS)

    Pioro, I.L.; Groeneveld, D.C.; Groeneveld, D.C.; Cheng, S.C.; Antoshko, Y.V.

    2001-01-01

    A joint investigation has been performed by the University of Ottawa and Chalk River Laboratories that examined the effect of the shape of the leading and trailing edges of the turbulence enhancing devices ('flow obstacles') on critical heat flux (CHF). The objective of this study was to gain a better overall understanding of the limit of CHF improvement for various obstacle designs and the impact of flow conditions on the improvements. (author)

  4. Edge imaging in intense beams

    Directory of Open Access Journals (Sweden)

    S. Bernal

    2002-06-01

    Full Text Available The appearance of rings of charge observed near the edge of beams from high-perveance guns is described with a simple ray tracing technique inspired by the particle-core model. We illustrate the technique, which has no analog in light optics, with examples from experiments employing solenoid focusing of an electron beam. The rings of charge result from the combined effects of external focusing and space-charge forces acting on paraxial fringe particles with relatively large initial transverse velocities. The model is independent of the physical mechanisms responsible for the fringe particles. Furthermore, the focal length for edge imaging in a uniform focusing channel is derived using a linearized trajectory equation for the motion of fringe particles. Counterintuitively, the focal length decreases as the beam current increases.

  5. Bilayer graphene: gap tunability and edge properties

    International Nuclear Information System (INIS)

    Castro, Eduardo V; Santos, J M B Lopes dos; Peres, N M R; Guinea, F; Castro Neto, A H

    2008-01-01

    Bilayer graphene - two coupled single graphene layers stacked as in graphite - provides the only known semiconductor with a gap that can be tuned externally through electric field effect. Here we use a tight binding approach to study how the gap changes with the applied electric field. Within a parallel plate capacitor model and taking into account screening of the external field, we describe real back gated and/or chemically doped bilayer devices. We show that a gap between zero and midinfrared energies can be induced and externally tuned in these devices, making bilayer graphene very appealing from the point of view of applications. However, applications to nanotechnology require careful treatment of the effect of sample boundaries. This being particularly true in graphene, where the presence of edge states at zero energy - the Fermi level of the undoped system - has been extensively reported. Here we show that also bilayer graphene supports surface states localized at zigzag edges. The presence of two layers, however, allows for a new type of edge state which shows an enhanced penetration into the bulk and gives rise to band crossing phenomenon inside the gap of the biased bilayer system.

  6. Quantized edge modes in atomic-scale point contacts in graphene

    Science.gov (United States)

    Kinikar, Amogh; Phanindra Sai, T.; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K.; Krishnamurthy, H. R.; Jain, Manish; Shenoy, Vijay B.; Ghosh, Arindam

    2017-07-01

    The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G0 = 2e2/h. At the same time, conductance plateaux at G0/2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.

  7. Imaging of Coulomb-Driven Quantum Hall Edge States

    KAUST Repository

    Lai, Keji

    2011-10-01

    The edges of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime are divided into alternating metallic and insulating strips, with their widths determined by the energy gaps of the QHE states and the electrostatic Coulomb interaction. Local probing of these submicrometer features, however, is challenging due to the buried 2DEG structures. Using a newly developed microwave impedance microscope, we demonstrate the real-space conductivity mapping of the edge and bulk states. The sizes, positions, and field dependence of the edge strips around the sample perimeter agree quantitatively with the self-consistent electrostatic picture. The evolution of microwave images as a function of magnetic fields provides rich microscopic information around the ν=2 QHE state. © 2011 American Physical Society.

  8. New Kronig-Penney equation emphasizing the band edge conditions

    International Nuclear Information System (INIS)

    Szmulowicz, Frank

    2008-01-01

    The Kronig-Penney problem is a textbook example for discussing band dispersions and band gap formation in periodic layered media. For example, in photonic crystals, the behaviour of bands next to the band edges is important for further discussions of such effects as inhibited light emission, slow light and negative index of refraction. However, the standard Kronig-Penney equation does not explicitly state the band edge conditions. This paper derives a new solution for the Kronig-Penney problem that explicitly displays the band edge conditions as well as contains all other essential physics of band formation. Therefore, the present exposition should show the student that the band edge conditions are not simply special cases of the familiar Kronig-Penney equation but, instead, are an integral part of the band theory. For the computationally minded student, the new equation is particularly convenient for calculating the positions of closely spaced band edges. The present results can be taught alongside the Kronig-Penney equation in advanced undergraduate or beginning graduate quantum mechanics, solid state theory and photonics courses dealing with wave propagation through periodic layered media

  9. Fabrication of ultra-fine nanostructures using edge transfer printing.

    Science.gov (United States)

    Xue, Mianqi; Li, Fengwang; Cao, Tingbing

    2012-03-21

    The exploration of new methods and techniques for application in diverse fields, such as photonics, microfluidics, biotechnology and flexible electronics is of increasing scientific and technical interest for multiple uses over distance of 10-100 nm. This article discusses edge transfer printing--a series of unconventional methods derived from soft lithography for nanofabrication. It possesses the advantages of easy fabrication, low-cost and great serviceability. In this paper, we show how to produce exposed edges and use various materials for edge transfer printing, while nanoskiving, nanotransfer edge printing and tunable cracking for nanogaps are introduced. Besides this, different functional materials, such as metals, inorganic semiconductors and polymers, as well as localised heating and charge patterning, are described here as unconventional "inks" for printing. Edge transfer printing, which can effectively produce sub-100 nm scale ultra-fine structures, has broad applications, including metallic nanowires as nanoelectrodes, semiconductor nanowires for chemical sensors, heterostructures of organic semiconductors, plasmonic devices and so forth. This journal is © The Royal Society of Chemistry 2012

  10. Edge plasma control using an LID configuration on CHS

    Energy Technology Data Exchange (ETDEWEB)

    Masuzaki, S.; Komori, A.; Morisaki, T. [National Inst. for Fusion Science, Oroshi, Toki (Japan)] [and others

    1997-07-01

    A Local Island Divertor (LID) has been proposed to enhance energy confinement through neutral particle control. For the case of the Large Helical Device (LHD), the separatrix of an m/n = 1/1 magnetic island, formed at the edge region, will be utilized as a divertor configuration. The divertor head is inserted in the island, and the island separatrix provides connection between the edge plasma region surrounding the core plasma and the back plate of the divertor head through the field lines. The particle flux and associated heat flux from the core plasma strike the back plate of the divertor head, and thus particle recycling is localized in this region. A pumping duct covers the divertor head to form a closed divertor system for efficient particle exhaust. The advantages of the LID are ease of hydrogen pumping because of the localized particle recycling and avoidance of the high heat load that would be localized on the leading edge of the divertor head. With efficient pumping, the neutral pressure in the edge plasma region will be reduced, and hence the edge plasma temperature will be higher, hopefully leading to a better core confinement region. A LID configuration experiment was done on the Compact Helical System (CHS) to confirm the effect of the LID. The typical effects of the LID configuration on the core plasma are reduction of the line averaged density to a half, and small or no reduction of the stored energy. In this contribution, the experimental results which were obtained in edge plasma control experiments with the LID configuration in the CHS are presented.

  11. Effects of Cutting Edge Microgeometry on Residual Stress in Orthogonal Cutting of Inconel 718 by FEM.

    Science.gov (United States)

    Shen, Qi; Liu, Zhanqiang; Hua, Yang; Zhao, Jinfu; Lv, Woyun; Mohsan, Aziz Ul Hassan

    2018-06-14

    Service performance of components such as fatigue life are dramatically influenced by the machined surface and subsurface residual stresses. This paper aims at achieving a better understanding of the influence of cutting edge microgeometry on machined surface residual stresses during orthogonal dry cutting of Inconel 718. Numerical and experimental investigations have been conducted in this research. The cutting edge microgeometry factors of average cutting edge radius S¯, form-factor K , and chamfer were investigated. An increasing trend for the magnitudes of both tensile and compressive residual stresses was observed by using larger S¯ or introducing a chamfer on the cutting edges. The ploughing depth has been predicted based on the stagnation zone. The increase of ploughing depth means that more material was ironed on the workpiece subsurface, which resulted in an increase in the compressive residual stress. The thermal loads were leading factors that affected the surface tensile residual stress. For the unsymmetrical honed cutting edge with K = 2, the friction between tool and workpiece and tensile residual stress tended to be high, while for the unsymmetrical honed cutting edge with K = 0.5, the high ploughing depth led to a higher compressive residual stress. This paper provides guidance for regulating machine-induced residual stress by edge preparation.

  12. The effect of seated pelvic tilt on posterior edge-loading in total hip arthroplasty: A finite element investigation.

    Science.gov (United States)

    Pierrepont, Jim; Yang, Long; Arulampalam, Jevan; Stambouzou, Catherine; Miles, Brad; Li, Qing

    2018-03-01

    Edge-loading of a ceramic-on-ceramic total hip replacement can lead to reproducible squeaking and revision. A patient's functional acetabular cup orientation, driven by their pelvic tilt, has been shown to be a significant factor in squeaking during hip flexion. The aim of this study was to investigate the effect of seated pelvic tilt on the contact mechanics at the ceramic bearing surface. A finite element model of a ceramic-on-ceramic total hip replacement was created. The cup was orientated at 40° inclination and 15° anteversion relative to the anterior pelvic plane. The stem was flexed 90° to replicate sitting in a chair. The model was loaded using data from in vivo measurements taken during a sit-to-stand activity. The pelvis was modelled in seven different sagittal positions, ranging from -30° to 30° of pelvic tilt, where a positive value denotes anterior pelvic tilt. Three different head sizes were investigated: 32, 36 and 40 mm. The maximum contact pressure and contact patch to rim distance were determined for each of the 21 simulations. Edge-loading (contact patch to rim distance Edge-loading initiated at seated pelvic tilts of 7°, 9° and 5° for the 32, 36 and 40 mm heads, respectively. Patients with anterior pelvic tilts in the seated position are susceptible to posterior edge-loading. As the position of the pelvis when seated is patient specific, cup orientation should be adjusted on an individual basis to minimise edge-loading.

  13. Optimization of edge state velocity in the integer quantum Hall regime

    Science.gov (United States)

    Sahasrabudhe, H.; Novakovic, B.; Nakamura, J.; Fallahi, S.; Povolotskyi, M.; Klimeck, G.; Rahman, R.; Manfra, M. J.

    2018-02-01

    Observation of interference in the quantum Hall regime may be hampered by a small edge state velocity due to finite phase coherence time. Therefore designing two quantum point contact (QPCs) interferometers having a high edge state velocity is desirable. Here we present a new simulation method for designing heterostructures with high edge state velocity by realistically modeling edge states near QPCs in the integer quantum Hall effect (IQHE) regime. Using this simulation method, we also predict the filling factor at the center of QPCs and their conductance at different gate voltages. The 3D Schrödinger equation is split into 1D and 2D parts. Quasi-1D Schrödinger and Poisson equations are solved self-consistently in the IQHE regime to obtain the potential profile, and quantum transport is used to solve for the edge state wave functions. The velocity of edge states is found to be /B , where is the expectation value of the electric field for the edge state. Anisotropically etched trench gated heterostructures with double-sided delta doping have the highest edge state velocity among the structures considered.

  14. Functional and Biomechanical Effects of the Edge-to-Edge Repair in the Setting of Mitral Regurgitation: Consolidated Knowledge and Novel Tools to Gain Insight into Its Percutaneous Implementation.

    Science.gov (United States)

    Sturla, Francesco; Redaelli, Alberto; Puppini, Giovanni; Onorati, Francesco; Faggian, Giuseppe; Votta, Emiliano

    2015-06-01

    Mitral regurgitation is the most prevalent heart valve disease in the western population. When severe, it requires surgical treatment, repair being the preferred option. The edge-to-edge repair technique treats mitral regurgitation by suturing the leaflets together and creating a double-orifice valve. Due to its relative simplicity and versatility, it has become progressively more widespread. Recently, its percutaneous version has become feasible, and has raised interest thanks to the positive results of the Mitraclip(®) device. Edge-to-edge features and evolution have stimulated debate and multidisciplinary research by both clinicians and engineers. After providing an overview of representative studies in the field, here we propose a novel computational approach to the most recent percutaneous evolution of the edge-to-edge technique. Image-based structural finite element models of three mitral valves affected by posterior prolapse were derived from cine-cardiac magnetic resonance imaging. The models accounted for the patient-specific 3D geometry of the valve, including leaflet compound curvature pattern, patient-specific motion of annulus and papillary muscles, and hyperelastic and anisotropic mechanical properties of tissues. The biomechanics of the three valves throughout the entire cardiac cycle was simulated before and after Mitraclip(®) implantation, assessing the biomechanical impact of the procedure. For all three simulated MVs, Mitraclip(®) implantation significantly improved systolic leaflets coaptation, without inducing major alterations in systolic peak stresses. Diastolic orifice area was decreased, by up to 58.9%, and leaflets diastolic stresses became comparable, although lower, to systolic ones. Despite established knowledge on the edge-to-edge surgical repair, latest technological advances make its percutanoues implementation a challenging field of research. The modeling approach herein proposed may be expanded to analyze clinical scenarios that

  15. Effects of Rotation at Different Channel Orientations on the Flow Field inside a Trailing Edge Internal Cooling Channel

    Directory of Open Access Journals (Sweden)

    Matteo Pascotto

    2013-01-01

    Full Text Available The flow field inside a cooling channel for the trailing edge of gas turbine blades has been numerically investigated with the aim to highlight the effects of channel rotation and orientation. A commercial 3D RANS solver including a SST turbulence model has been used to compute the isothermal steady air flow inside both static and rotating passages. Simulations were performed at a Reynolds number equal to 20000, a rotation number (Ro of 0, 0.23, and 0.46, and channel orientations of γ=0∘, 22.5°, and 45°, extending previous results towards new engine-like working conditions. The numerical results have been carefully validated against experimental data obtained by the same authors for conditions γ=0∘ and Ro = 0, 0.23. Rotation effects are shown to alter significantly the flow field inside both inlet and trailing edge regions. These effects are attenuated by an increase of the channel orientation from γ=0∘ to 45°.

  16. Investigation of the Effect of Tool Edge Geometry upon Cutting Variables, Tool Wear and Burr Formation Using Finite Element Simulation — A Progress Report

    Science.gov (United States)

    Sartkulvanich, Partchapol; Al-Zkeri, Ibrahim; Yen, Yung-Chang; Altan, Taylan

    2004-06-01

    This paper summarizes some of the progress made on FEM simulations of metal cutting processes conducted at the Engineering Research Center (ERC/NSM). Presented research focuses on the performance of various cutting edge geometries (hone and chamfer edges) for different tool materials and specifically on: 1) the effect of round and chamfer edge geometries on the cutting variables in machining carbon steels and 2) the effect of the edge hone size upon the flank wear and burr formation behavior in face milling of A356-T6 aluminum alloy. In the second task, an innovative design of edge preparation with varying hone size around the tool nose is also explored using FEM. In order to model three-dimensional conventional turning and face milling with two-dimensional orthogonal cutting simulations, 2D simulation cross-sections consisting of the cutting speed direction and chip flow direction are selected at different locations along the tool nose radius. Then the geometries of the hone and chamfer edges and their associated tool angles as well as uncut chip thickness are determined on these planes and employed in cutting simulations. The chip flow direction on the tool rake face are obtained by examining the wear grooves on the experimental inserts or estimated by using Oxley's approximation theory of oblique cutting. Simulation results are compared with the available experimental results (e.g. cutting forces) both qualitatively and quantitatively.

  17. The effect of microstructure on the sheared edge quality and hole expansion ratio of hot-rolled 700 MPa steel

    Science.gov (United States)

    Kaijalainen, A.; Kesti, V.; Vierelä, R.; Ylitolva, M.; Porter, D.; Kömi, J.

    2017-09-01

    The effects of microstructure on the cutting and hole expansion properties of three thermomechanically rolled steels have been investigated. The yield strength of the studied 3 mm thick strip steels was approximately 700 MPa. Detailed microstructural studies using laser scanning confocal microscopy (LCSM), FESEM and FESEM-EBSD revealed that the three investigated materials consist of 1) single-phase polygonal ferrite, 2) polygonal ferrite with precipitates and 3) granular bainite. The quality of mechanically sheared edges were evaluated using visual inspection and LSCM, while hole expansion properties were characterised according to the methods described in ISO 16630. Roughness values (Ra and Rz) of the sheet edge with different cutting clearances varied between 12 µm to 21 µm and 133 µm to 225 µm, respectively. Mean hole expansion ratios varied from 28.4% to 40.5%. It was shown that granular bainite produced the finest cutting edge, but the hole expansion ratio remained at the same level as in the steel comprising single-phase ferrite. This indicates that a single-phase ferritic matrix enhances hole expansion properties even with low quality edges. A brief discussion of the microstructural features controlling the cutting quality and hole expansion properties is given.

  18. Helical edge states and fractional quantum Hall effect in a graphene electron-hole bilayer.

    Science.gov (United States)

    Sanchez-Yamagishi, Javier D; Luo, Jason Y; Young, Andrea F; Hunt, Benjamin M; Watanabe, Kenji; Taniguchi, Takashi; Ashoori, Raymond C; Jarillo-Herrero, Pablo

    2017-02-01

    Helical 1D electronic systems are a promising route towards realizing circuits of topological quantum states that exhibit non-Abelian statistics. Here, we demonstrate a versatile platform to realize 1D systems made by combining quantum Hall (QH) edge states of opposite chiralities in a graphene electron-hole bilayer at moderate magnetic fields. Using this approach, we engineer helical 1D edge conductors where the counterpropagating modes are localized in separate electron and hole layers by a tunable electric field. These helical conductors exhibit strong non-local transport signals and suppressed backscattering due to the opposite spin polarizations of the counterpropagating modes. Unlike other approaches used for realizing helical states, the graphene electron-hole bilayer can be used to build new 1D systems incorporating fractional edge states. Indeed, we are able to tune the bilayer devices into a regime hosting fractional and integer edge states of opposite chiralities, paving the way towards 1D helical conductors with fractional quantum statistics.

  19. Edge-entanglement spectrum correspondence in a nonchiral topological phase and Kramers-Wannier duality

    Science.gov (United States)

    Ho, Wen Wei; Cincio, Lukasz; Moradi, Heidar; Gaiotto, Davide; Vidal, Guifre

    2015-03-01

    In a system with chiral topological order, there is a remarkable correspondence between the edge and entanglement spectra: the low-energy spectrum of the system in the presence of a physical edge coincides with the lowest part of the entanglement spectrum (ES) across a virtual cut of the system into two parts, up to rescaling and shifting. This correspondence is believed to be due to the existence of protected gapless edge modes. In this paper, we explore whether the edge-entanglement spectrum correspondence extends to nonchiral topological phases, where there are no protected gapless edge modes. Specifically, we consider the Wen-plaquette model, which is equivalent to the Kitaev toric code model and has Z2 topological order (quantum double of Z2) . The unperturbed Wen-plaquette model displays an exact correspondence: both the edge and entanglement spectra within each topological sector a (a =1 ,⋯,4 ) are flat and equally degenerate. Here, we show, through a detailed microscopic calculation, that in the presence of generic local perturbations: (i) the effective degrees of freedom for both the physical edge and the entanglement cut consist of a (spin-1 /2 ) spin chain, with effective Hamiltonians Hedgea and Henta, respectively, both of which have a Z2 symmetry enforced by the bulk topological order; (ii) there is in general no match between the low-energy spectra of Hedgea and Henta, that is, there is no edge-ES correspondence. However, if supplement the Z2 topological order with a global symmetry (translational invariance along the edge/entanglement cut), i.e., by considering the Wen-plaquette model as a symmetry-enriched topological phase (SET), then there is a finite domain in Hamiltonian space in which both Hedgea and Henta realize the critical Ising model, whose low-energy effective theory is the c =1 /2 Ising CFT. This is achieved because the presence of the global symmetry implies that the effective degrees of freedom of both the edge and entanglement

  20. Influence of edge effects on single event upset susceptibility of SOI SRAMs

    International Nuclear Information System (INIS)

    Gu, Song; Liu, Jie; Zhao, Fazhan; Zhang, Zhangang; Bi, Jinshun; Geng, Chao; Hou, Mingdong; Liu, Gang; Liu, Tianqi; Xi, Kai

    2015-01-01

    An experimental investigation of the single event upset (SEU) susceptibility for heavy ions at tilted incidence was performed. The differences of SEU cross-sections between tilted incidence and normal incidence at equivalent effective linear energy transfer were 21% and 57% for the silicon-on-insulator (SOI) static random access memories (SRAMs) of 0.5 μm and 0.18 μm feature size, respectively. The difference of SEU cross-section raised dramatically with increasing tilt angle for SOI SRAM of deep-submicron technology. The result of CRÈME-MC simulation for tilted irradiation of the sensitive volume indicates that the energy deposition spectrum has a substantial tail extending into the low energy region. The experimental results show that the influence of edge effects on SEU susceptibility cannot be ignored in particular with device scaling down

  1. Edge compression techniques for visualization of dense directed graphs.

    Science.gov (United States)

    Dwyer, Tim; Henry Riche, Nathalie; Marriott, Kim; Mears, Christopher

    2013-12-01

    We explore the effectiveness of visualizing dense directed graphs by replacing individual edges with edges connected to 'modules'-or groups of nodes-such that the new edges imply aggregate connectivity. We only consider techniques that offer a lossless compression: that is, where the entire graph can still be read from the compressed version. The techniques considered are: a simple grouping of nodes with identical neighbor sets; Modular Decomposition which permits internal structure in modules and allows them to be nested; and Power Graph Analysis which further allows edges to cross module boundaries. These techniques all have the same goal--to compress the set of edges that need to be rendered to fully convey connectivity--but each successive relaxation of the module definition permits fewer edges to be drawn in the rendered graph. Each successive technique also, we hypothesize, requires a higher degree of mental effort to interpret. We test this hypothetical trade-off with two studies involving human participants. For Power Graph Analysis we propose a novel optimal technique based on constraint programming. This enables us to explore the parameter space for the technique more precisely than could be achieved with a heuristic. Although applicable to many domains, we are motivated by--and discuss in particular--the application to software dependency analysis.

  2. Effect of laminate edge conditions on the formation of microvoids in composite laminates

    Science.gov (United States)

    Anderson, J. P.; Altan, M. C.

    2015-05-01

    Manufacturing defects such as microvoids are common in thermoset composite components and are known to negatively affect their strength. The resin pressure developed in and the resin flow out from the laminates during cure have been reported to be the primary factors influencing the final void content of a composite component. In this work, the effect of laminate edge conditions during the cure process on the formation of microvoids was experimentally investigated. This was achieved by fabricating eight-ply laminates from TenCate® BT250/7781 prepreg in a hot-press at a constant cure pressure of 170 kPa while limiting the laminate perimeter available for resin flow by 0%, 25%, 50%, 75%, and 100%. The individual plies of these five laminates were conditioned at 99% relative humidity before curing to maximize the moisture present in the lay-up before fabrication. The presence of moisture in the lay-ups was expected to promote void formation and allow the effect of restricting flow at the edges of a laminate to be better identified. The restriction of resin outflow was found to cause the average characteristic void diameter to decrease by 17% and void content to rise by 33%. This phenomenon was identified to be a result of the outflow restriction increasing the number of voids trapped within the laminate and indicates that for laminates cured at low pressures resin outflow is the dominant mechanism for void reduction.

  3. Increased Back-Bonding Explains Step-Edge Reactivity and Particle Size Effect for CO Activation on Ru Nanoparticles.

    Science.gov (United States)

    Foppa, Lucas; Copéret, Christophe; Comas-Vives, Aleix

    2016-12-28

    Carbon monoxide is a ubiquitous molecule, a key feedstock and intermediate in chemical processes. Its adsorption and activation, typically carried out on metallic nanoparticles (NPs), are strongly dependent on the particle size. In particular, small NPs, which in principle contain more corner and step-edge atoms, are surprisingly less reactive than larger ones. Hereby, first-principles calculations on explicit Ru NP models (1-2 nm) show that both small and large NPs can present step-edge sites (e.g., B 5 and B 6 sites). However, such sites display strong particle-size-dependent reactivity because of very subtle differences in local chemical bonding. State-of-the-art crystal orbital Hamilton population analysis allows a detailed molecular orbital picture of adsorbed CO on step-edges, which can be classified as flat (η 1 coordination) and concave (η 2 coordination) sites. Our analysis shows that the CO π-metal d π hybrid band responsible for the electron back-donation is better represented by an oxygen lone pair on flat sites, whereas it is delocalized on both C and O atoms on concave sites, increasing the back-bonding on these sites compared to flat step-edges or low-index surface sites. The bonding analysis also rationalizes why CO cleavage is easier on step-edge sites of large NPs compared to small ones irrespective of the site geometry. The lower reactivity of small NPs is due to the smaller extent of the Ru-O interaction in the η 2 adsorption mode, which destabilizes the η 2 transition-state structure for CO direct cleavage. Our findings provide a molecular understanding of the reactivity of CO on NPs, which is consistent with the observed particle size effect.

  4. Edge control in CNC polishing, paper 2: simulation and validation of tool influence functions on edges.

    Science.gov (United States)

    Li, Hongyu; Walker, David; Yu, Guoyu; Sayle, Andrew; Messelink, Wilhelmus; Evans, Rob; Beaucamp, Anthony

    2013-01-14

    Edge mis-figure is regarded as one of the most difficult technical issues for manufacturing the segments of extremely large telescopes, which can dominate key aspects of performance. A novel edge-control technique has been developed, based on 'Precessions' polishing technique and for which accurate and stable edge tool influence functions (TIFs) are crucial. In the first paper in this series [D. Walker Opt. Express 20, 19787-19798 (2012)], multiple parameters were experimentally optimized using an extended set of experiments. The first purpose of this new work is to 'short circuit' this procedure through modeling. This also gives the prospect of optimizing local (as distinct from global) polishing for edge mis-figure, now under separate development. This paper presents a model that can predict edge TIFs based on surface-speed profiles and pressure distributions over the polishing spot at the edge of the part, the latter calculated by finite element analysis and verified by direct force measurement. This paper also presents a hybrid-measurement method for edge TIFs to verify the simulation results. Experimental and simulation results show good agreement.

  5. Acyclicity in edge-colored graphs

    DEFF Research Database (Denmark)

    Gutin, Gregory; Jones, Mark; Sheng, Bin

    2017-01-01

    A walk W in edge-colored graphs is called properly colored (PC) if every pair of consecutive edges in W is of different color. We introduce and study five types of PC acyclicity in edge-colored graphs such that graphs of PC acyclicity of type i is a proper superset of graphs of acyclicity of type...

  6. Aerodynamic Analysis of Trailing Edge Enlarged Wind Turbine Airfoils

    International Nuclear Information System (INIS)

    Xu, Haoran; Yang, Hua; Liu, Chao; Shen, Wenzhong; Zhu, Weijun

    2014-01-01

    The aerodynamic performance of blunt trailing edge airfoils generated from the DU- 91-W2-250, DU-97-W-300 and DU-96-W-350 airfoils by enlarging the thickness of trailing edge symmetrically from the location of maximum thickness to chord to the trailing edge were analyzed by using CFD and RFOIL methods at a chord Reynolds number of 3 × 10 6 . The goal of this study is to analyze the aerodynamic performance of blunt trailing edge airfoils with different thicknesses of trailing edge and maximum thicknesses to chord. The steady results calculated by the fully turbulent k-ω SST, transitional k-ω SST model and RFOIL all show that with the increase of thickness of trailing edge, the linear region of lift is extended and the maximum lift also increases, the increase rate and amount of lift become limited gradually at low angles of attack, while the drag increases dramatically. For thicker airfoils with larger maximum thickness to chord length, the increment of lift is larger than that of relatively thinner airfoils when the thickness of blunt trailing edge is increased from 5% to 10% chord length. But too large lift can cause abrupt stall which is profitless for power output. The transient characteristics of blunt trailing edge airfoils are caused by blunt body vortices at low angles of attack, and by the combined effect of separation and blunt body vortices at large angles of attack. With the increase of thickness of blunt trailing edge, the vibration amplitudes of lift and drag curves increase. The transient calculations over-predict the lift at large angles of attack and drag at all angles of attack than the steady calculations which is likely to be caused by the artificial restriction of the flow in two dimensions

  7. Edge effect of low-traffic forest roads on bird communities in secondary production forests in central Europe

    Czech Academy of Sciences Publication Activity Database

    Šálek, M.; Svobodová, Jana; Zasadil, P.

    2010-01-01

    Roč. 25, č. 7 (2010), s. 1113-1124 ISSN 0921-2973 Institutional research plan: CEZ:AV0Z60930519 Keywords : Biodiversity * Bird assemblages * Czech Republic * Edge effect * Habitat fragmentation * Landscape structure * Point count method Subject RIV: EH - Ecology, Behaviour Impact factor: 3.200, year: 2010

  8. Non-linear effects in transition edge sensors for X-ray detection

    International Nuclear Information System (INIS)

    Bandler, S.R.; Figueroa-Feliciano, E.; Iyomoto, N.; Kelley, R.L.; Kilbourne, C.A.; Murphy, K.D.; Porter, F.S.; Saab, T.; Sadleir, J.

    2006-01-01

    In a microcalorimeter that uses a transition-edge sensor to detect energy depositions, the small signal energy resolution improves with decreasing heat capacity. This improvement remains true up to the point where non-linear and saturation effects become significant. This happens when the energy deposition causes a significant change in the sensor resistance. Not only does the signal size become a non-linear function of the energy deposited, but also the noise becomes non-stationary over the duration of the pulse. Algorithms have been developed that can calculate the optimal performance given this non-linear behavior that typically requires significant processing and calibration work-both of which are impractical for space missions. We have investigated the relative importance of the various non-linear effects, with the hope that a computationally simple transformation can overcome the largest of the non-linear and non-stationary effects, producing a highly linear 'gain' for pulse-height versus energy, and close to the best energy resolution at all energies when using a Wiener filter

  9. Edge localized modes and edge pedestal in NBI and ICRF heated H, D and T-plasmas in JET

    International Nuclear Information System (INIS)

    Bhatnagar, V.; Lingertat, J.; Barnsley, R.

    1998-12-01

    Based on experiments carried out in JET in D:T mixtures varying from 100:0 to 5:95 and those carried out in hydrogen plasmas, the isotopic mass dependence of ELM parameters and the edge pedestal pressure in neutral beam (NBI) and ion cyclotron resonance (ICRF) heated H-mode plasmas is presented. The ELM frequency is found to decrease with the atomic mass number both in ICRH and NBI discharges. However, the frequency in the case of ICRH is about 8 - 10 times higher than in the NBI case. Assuming that ELMs occur at a critical edge pressure gradient, limited by the ballooning instability, the scaling of the maximum edge pressure is most consistent with the assumption that the width of the transport barrier scales as the ion poloidal Larmor radius governed by the average energy of fast ions at the edge. The critical edge pressure in NBI heated discharges increases with the isotopic mass which. is consistent with the higher deduced width of the edge transport, barrier in tritium than in deuterium and hydrogen. The critical edge pressure in ICRH discharges is smaller, presumably, due to the smaller fast-ion contribution to the edge region. As a consequence of the edge pressure scaling with isotopic mass, the edge operational space in the n e - T e diagram increases with operation in tritium. If the evidence that the edge pedestal width is governed by the average energy of fast ions in the edge prevails, the pedestal in ITER would be controlled by the slowing down energy spectrum of α-particles in the edge. (author)

  10. The edge complex: implicit memory for figure assignment in shape perception.

    Science.gov (United States)

    Peterson, Mary A; Enns, James T

    2005-05-01

    Viewing a stepped edge is likely to prompt the perceptual assignment of one side of the edge as figure. This study demonstrates that even a single brief glance at a novel edge gives rise to an implicit memory regarding which side was seen as figure; this edge complex enters into the figure assignment process the next time the edge is encountered, both speeding same-different judgments when the figural side is repeated and slowing these judgments when the new figural side is identical to the former ground side (Experiments 1A and 1B). These results were obtained even when the facing direction of the repeated edge was mirror reversed (Experiment 2). This study shows that implicit measures can reveal the effects of past experience on figure assignment, following a single prior exposure to a novel shape, and supports a competitive model of figure assignment in which past experience serves as one of many figural cues.

  11. The ship edge feature detection based on high and low threshold for remote sensing image

    Science.gov (United States)

    Li, Xuan; Li, Shengyang

    2018-05-01

    In this paper, a method based on high and low threshold is proposed to detect the ship edge feature due to the low accuracy rate caused by the noise. Analyze the relationship between human vision system and the target features, and to determine the ship target by detecting the edge feature. Firstly, using the second-order differential method to enhance the quality of image; Secondly, to improvement the edge operator, we introduction of high and low threshold contrast to enhancement image edge and non-edge points, and the edge as the foreground image, non-edge as a background image using image segmentation to achieve edge detection, and remove the false edges; Finally, the edge features are described based on the result of edge features detection, and determine the ship target. The experimental results show that the proposed method can effectively reduce the number of false edges in edge detection, and has the high accuracy of remote sensing ship edge detection.

  12. Oscillations of a Turbulent Jet Incident Upon an Edge

    Energy Technology Data Exchange (ETDEWEB)

    J.C. Lin; D. Rockwell

    2000-09-19

    For the case of a jet originating from a fully turbulent channel flow and impinging upon a sharp edge, the possible onset and nature of coherent oscillations has remained unexplored. In this investigation, high-image-density particle image velocimetry and surface pressure measurements are employed to determine the instantaneous, whole-field characteristics of the turbulent jet-edge interaction in relation to the loading of the edge. It is demonstrated that even in absence of acoustic resonant or fluid-elastic effects, highly coherent, self-sustained oscillations rapidly emerge above the turbulent background. Two clearly identifiable modes of instability are evident. These modes involve large-scale vortices that are phase-locked to the gross undulations of the jet and its interaction with the edge, and small-scale vortices, which are not phase-locked. Time-resolved imaging of instantaneous vorticity and velocity reveals the form, orientation, and strength of the large-scale concentrations of vorticity approaching the edge in relation to rapid agglomeration of small-scale vorticity concentrations. Such vorticity field-edge interactions exhibit rich complexity, relative to the simplified pattern of vortex-edge interaction traditionally employed for the quasi-laminar edgetone. Furthermore, these interactions yield highly nonlinear surface pressure signatures. The origin of this nonlinearity, involving coexistence of multiple frequency components, is interpreted in terms of large- and small-scale vortices embedded in distributed vorticity layers at the edge. Eruption of the surface boundary layer on the edge due to passage of the large-scale vortex does not occur; rather apparent secondary vorticity concentrations are simply due to distension of the oppositely-signed vorticity layer at the tip of the edge. The ensemble-averaged turbulent statistics of the jet quickly take on an identity that is distinct from the statistics of the turbulent boundary layer in the channel

  13. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil.

    Science.gov (United States)

    Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping

    Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10-7 and 10-6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain unchanged. In

  14. Cue competition affects temporal dynamics of edge-assignment in human visual cortex.

    Science.gov (United States)

    Brooks, Joseph L; Palmer, Stephen E

    2011-03-01

    Edge-assignment determines the perception of relative depth across an edge and the shape of the closer side. Many cues determine edge-assignment, but relatively little is known about the neural mechanisms involved in combining these cues. Here, we manipulated extremal edge and attention cues to bias edge-assignment such that these two cues either cooperated or competed. To index their neural representations, we flickered figure and ground regions at different frequencies and measured the corresponding steady-state visual-evoked potentials (SSVEPs). Figural regions had stronger SSVEP responses than ground regions, independent of whether they were attended or unattended. In addition, competition and cooperation between the two edge-assignment cues significantly affected the temporal dynamics of edge-assignment processes. The figural SSVEP response peaked earlier when the cues causing it cooperated than when they competed, but sustained edge-assignment effects were equivalent for cooperating and competing cues, consistent with a winner-take-all outcome. These results provide physiological evidence that figure-ground organization involves competitive processes that can affect the latency of figural assignment.

  15. Half metallicity in bare BC{sub 2}N nanoribbons with zigzag edges

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong, E-mail: lihong@ncut.edu.cn [College of Mechanical and Material Engineering, North China University of Technology, Beijing 100144 (China); Xiao, Xiang; Tie, Jun [College of Mechanical and Material Engineering, North China University of Technology, Beijing 100144 (China); Lu, Jing [State Key Laboratory of Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China)

    2017-06-09

    We study the electronic and magnetic properties of bare zigzag BC{sub 2}N nanoribbons (ZBC{sub 2}NNRs) by using first principles calculations. The ZBC{sub 2}NNRs which we studied are assigned to four edge types, and we carefully examine the size effect and edge magnetic coupling orders. We find that the N edge and the C edge adjacent to N atoms have a ferromagnetic coupling, while the B edge and the C edge adjacent to B atoms have an anti-ferromagnetic coupling. These novel properties arise from the unsaturated edge with specific edge determined magnetic moment distribution. All the investigated ribbons exhibit magnetic ground states with room-temperature accessible half-metallic character, irrespective of the ribbon width. Our results suggest that ZBC{sub 2}NNRs can have potential applications in spintronics. - Highlights: • DFT study on bare zigzag BC{sub 2}N nanoribbons (ZBC{sub 2}NNRs). • All the studied bare ZBC{sub 2}NNRs are half-metals at room temperature. • The half-metal characters come from specific spin couplings on the edge atoms. • We predict bare ZBC{sub 2}NNRs as practical candidate for spintronics.

  16. Effect of guide wall on jet impingement cooling in blade leading edge channel

    International Nuclear Information System (INIS)

    Zhao, Qing-Yang; Chung, Heeyoon; Choi, Seok Min; Cho, Hyung Hee

    2016-01-01

    The characteristics of fluid flow and heat transfer, which are affected by the guide wall in a jet impinged leading edge channel, have been investigated numerically using three-dimensional Reynolds-averaged Navier-Stokes analysis via the shear stress transport turbulence model and gamma theta transitional turbulence model. A constant wall heat flux condition has been applied to the leading edge surface. The jet-to-surface distance is constant, which is three times that of the jet diameter. The arrangement of the guide wall near the jet hole is set as a variable. Results presented in this study include the Nusselt number contour, velocity vector, streamline with velocity, and local Nusselt number distribution along the central line on the leading edge surface. The average Nusselt number and average pressure loss between jet nozzle and channel exit are calculated to assess the thermal performance. The application of the guide wall is aimed at improving heat transfer uniformity on the leading edge surface. Results indicated that the streamwise guide wall ensures the vertical jet impingement flow intensity and prevents the flow after impingement to reflux into jet flow. Thus, a combined rectangular guide wall benefits the average heat transfer, thermal performance and heat transfer distribution uniformity

  17. Insectivorous Birds and Environmental Factors Across an Edge-Interior Gradient in Tropical Rainforest of Malaysia

    OpenAIRE

    Abdullah B. Mohd; Mohamed Zakaria; Hossein Varasteh Moradi; Ebil Yusof

    2009-01-01

    The study objectives were to test: (1) the effects of the edge-interior gradient on understorey insectivorous bird abundance, density and diversity; (2) effects of environmental variables along an edge-interior gradient at population level (i.e., on each sub-guilds and species abundance); (3) possible effects of environmental structure along an edge-interior gradient at community level (i.e., species richness, diversity and total abundance). Fifteen hundred and four birds belonging to ...

  18. Development of Advanced High Lift Leading Edge Technology for Laminar Flow Wings

    Science.gov (United States)

    Bright, Michelle M.; Korntheuer, Andrea; Komadina, Steve; Lin, John C.

    2013-01-01

    This paper describes the Advanced High Lift Leading Edge (AHLLE) task performed by Northrop Grumman Systems Corporation, Aerospace Systems (NGAS) for the NASA Subsonic Fixed Wing project in an effort to develop enabling high-lift technology for laminar flow wings. Based on a known laminar cruise airfoil that incorporated an NGAS-developed integrated slot design, this effort involved using Computational Fluid Dynamics (CFD) analysis and quality function deployment (QFD) analysis on several leading edge concepts, and subsequently down-selected to two blown leading-edge concepts for testing. A 7-foot-span AHLLE airfoil model was designed and fabricated at NGAS and then tested at the NGAS 7 x 10 Low Speed Wind Tunnel in Hawthorne, CA. The model configurations tested included: baseline, deflected trailing edge, blown deflected trailing edge, blown leading edge, morphed leading edge, and blown/morphed leading edge. A successful demonstration of high lift leading edge technology was achieved, and the target goals for improved lift were exceeded by 30% with a maximum section lift coefficient (Cl) of 5.2. Maximum incremental section lift coefficients ( Cl) of 3.5 and 3.1 were achieved for a blown drooped (morphed) leading edge concept and a non-drooped leading edge blowing concept, respectively. The most effective AHLLE design yielded an estimated 94% lift improvement over the conventional high lift Krueger flap configurations while providing laminar flow capability on the cruise configuration.

  19. INVESTIGATION OF THE EFFECTS OF DIFFERENT EDGE JOINT ELEMENTS ON DIAGONAL TENSILE STRENGTH IN FURNITURE EDGE JOINTS

    Directory of Open Access Journals (Sweden)

    Arif GÜRAY

    2002-01-01

    Full Text Available In this work, the diagonal tensile strength of furniture edge joints such as wooden dowel, minifix, and alyan screw was investigated in panel-constructed boards for Suntalam and MDF Lam. For this purpose, a diagonal tensile strength test was applied to the 72 samples. According to the results, the maximum diagonal tensile strength was found to be in MDF Lam boards that jointed with alyan screw.

  20. Magnetohydrodynamic stability of tokamak edge plasmas

    International Nuclear Information System (INIS)

    Connor, J.W.; Hastie, R.J.; Wilson, H.R.; Miller, R.L.

    1998-01-01

    A new formalism for analyzing the magnetohydrodynamic stability of a limiter tokamak edge plasma is developed. Two radially localized, high toroidal mode number n instabilities are studied in detail: a peeling mode and an edge ballooning mode. The peeling mode, driven by edge current density and stabilized by edge pressure gradient, has features which are consistent with several properties of tokamak behavior in the high confinement open-quotes Hclose quotes-mode of operation, and edge localized modes (or ELMs) in particular. The edge ballooning mode, driven by the pressure gradient, is identified; this penetrates ∼n 1/3 rational surfaces into the plasma (rather than ∼n 1/2 , expected from conventional ballooning mode theory). Furthermore, there exists a coupling between these two modes and this coupling provides a picture of the ELM cycle

  1. Low speed wind tunnel test of ground proximity and deck edge effects on a lift cruise fan V/STOL configuration, volume 1

    Science.gov (United States)

    Stewart, V. R.

    1979-01-01

    The characteristics were determined of a lift cruise fan V/STOL multi-mission configuration in the near proximity to the edge of a small flat surface representation of a ship deck. Tests were conducted at both static and forward speed test conditions. The model (0.12 scale) tested was a four fan configuration with modifications to represent a three fan configuration. Analysis of data showed that the deck edge effects were in general less critical in terms of differences from free air than a full deck (in ground effect) configuration. The one exception to this was when the aft edge of the deck was located under the center of gravity. This condition, representative of an approach from the rear, showed a significant lift loss. Induced moments were generally small compared to the single axis control power requirements, but will likely add to the pilot work load.

  2. Assessing Anthropogenic Influence and Edge Effect Influence on Forested Riparian Buffer Spatial Configuration and Structure: An Example Using Lidar Remote Sensing Methods

    Science.gov (United States)

    Wasser, L. A.; Chasmer, L. E.

    2012-12-01

    Forested riparian buffers (FRB) perform numerous critical ecosystem services. However, globally, FRB spatial configuration and structure have been modified by anthropogenic development resulting in widespread ecological degradation as seen in the Gulf of Mexico and the Chesapeake Bay. Riparian corridors within developed areas are particularly vulnerable to disturbance given two edges - the naturally occurring stream edge and the matrix edge. Increased edge length predisposes riparian vegetation to "edge effects", characterized by modified physical and environmental conditions at the interface between the forested buffer and the adjacent landuse, or matrix and forest fragment degradation. The magnitude and distance of edge influence may be further influenced by adjacent landuse type and the width of the buffer corridor at any given location. There is a need to quantify riparian buffer spatial configuration and structure over broad geographic extents and within multiple riparian systems in support of ecologically sound management and landuse decisions. This study thus assesses the influence of varying landuse types (agriculture, suburban development and undeveloped) on forested riparian buffer 3-dimensional structure and spatial configuration using high resolution Light Detection and Ranging (LiDAR) data collected within a headwater watershed. Few studies have assessed riparian buffer structure and width contiguously for an entire watershed, an integral component of watershed planning and restoration efforts such as those conducted throughout the Chesapeake Bay. The objectives of the study are to 1) quantify differences in vegetation structure at the stream and matrix influenced riparian buffer edges, compared to the forested interior and 2) assess continuous patterns of changes in vegetation structure throughout the buffer corridor beginning at the matrix edge and ending at the stream within buffers a) of varying width and b) that are adjacent to varying landuse

  3. Edge instabilities of topological superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Johannes S. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Assaad, Fakher F. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Schnyder, Andreas P. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2016-07-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground state degeneracy and a diverging density of states. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry broken phases, which lift the ground-state degeneracy. Here, we employ Monte Carlo simulations combined with mean-field considerations to examine the instabilities of the flat-band edge states of d{sub xy}-wave superconductors. We find that attractive interactions induce a complex s-wave pairing instability together with a density wave instability. Repulsive interactions, on the other hand, lead to ferromagnetism mixed with spin-triplet pairing at the edge. We discuss the implications of our findings for experiments on cuprate high-temperature superconductors.

  4. High and distinct range-edge genetic diversity despite local bottlenecks.

    Directory of Open Access Journals (Sweden)

    Jorge Assis

    Full Text Available The genetic consequences of living on the edge of distributional ranges have been the subject of a largely unresolved debate. Populations occurring along persistent low latitude ranges (rear-edge are expected to retain high and unique genetic diversity. In contrast, currently less favourable environmental conditions limiting population size at such range-edges may have caused genetic erosion that prevails over past historical effects, with potential consequences on reducing future adaptive capacity. The present study provides an empirical test of whether population declines towards a peripheral range might be reflected on decreasing diversity and increasing population isolation and differentiation. We compare population genetic differentiation and diversity with trends in abundance along a latitudinal gradient towards the peripheral distribution range of Saccorhiza polyschides, a large brown seaweed that is the main structural species of kelp forests in SW Europe. Signatures of recent bottleneck events were also evaluated to determine whether the recently recorded distributional shifts had a negative influence on effective population size. Our findings show decreasing population density and increasing spatial fragmentation and local extinctions towards the southern edge. Genetic data revealed two well supported groups with a central contact zone. As predicted, higher differentiation and signs of bottlenecks were found at the southern edge region. However, a decrease in genetic diversity associated with this pattern was not verified. Surprisingly, genetic diversity increased towards the edge despite bottlenecks and much lower densities, suggesting that extinctions and recolonizations have not strongly reduced diversity or that diversity might have been even higher there in the past, a process of shifting genetic baselines.

  5. Adobe Edge Quickstart Guide

    CERN Document Server

    Labrecque, Joseph

    2012-01-01

    Adobe Edge Quickstart Guide is a practical guide on creating engaging content for the Web with Adobe's newest HTML5 tool. By taking a chapter-by-chapter look at each major aspect of Adobe Edge, the book lets you digest the available features in small, easily understandable chunks, allowing you to start using Adobe Edge for your web design needs immediately. If you are interested in creating engaging motion and interactive compositions using web standards with professional tooling, then this book is for you. Those with a background in Flash Professional wanting to get started quickly with Adobe

  6. Graphene nanoribbons on gold: understanding superlubricity and edge effects

    Science.gov (United States)

    Gigli, L.; Manini, N.; Benassi, A.; Tosatti, E.; Vanossi, A.; Guerra, R.

    2017-12-01

    We address the atomistic nature of the longitudinal static friction against sliding of graphene nanoribbons (GNRs) deposited on gold, a system whose structural and mechanical properties have been recently the subject of intense experimental investigation. By means of numerical simulations and modeling we show that the GNR interior is structurally lubric (‘superlubric’) so that the static friction is dominated by the front/tail regions of the GNR, where the residual uncompensated lateral forces arising from the interaction with the underneath gold surface opposes the free sliding. As a result of this edge pinning the static friction does not grow with the GNR length, but oscillates around a fairly constant mean value. These friction oscillations are explained in terms of the GNR-Au(111) lattice mismatch: at certain GNR lengths close to an integer number of the beat (or moiré) length there is good force compensation and superlubric sliding; whereas close to half odd-integer periods there is significant pinning of the edge with larger friction. These results make qualitative contact with recent state-of-the-art atomic force microscopy experiment, as well as with the sliding of other different incommensurate systems.

  7. Relative biological effectiveness (RBE) and distal edge effects of proton radiation on early damage in vivo

    DEFF Research Database (Denmark)

    Sørensen, Brita Singers; Bassler, Niels; Nielsen, Steffen

    2017-01-01

    of the SOBP to behind the distal dose fall-off. Irradiations were performed with the same dose plan at all positions, corresponding to a dose of 31.25 Gy in the middle of the SOBP. Endpoint of the study was early skin damage of the foot, assessed by a mouse foot skin scoring system. RESULTS: The MDD50 values......, where LETd,z =1 was 3.3 keV/μm. CONCLUSIONS: Although there is a need to expand the current study to be able to calculate an exact enhancement ratio, an enhanced biological effect in vivo for early skin damage in the distal edge was demonstrated....

  8. The End-to-end Demonstrator for improved decision making in the water sector in Europe (EDgE)

    Science.gov (United States)

    Wood, Eric; Wanders, Niko; Pan, Ming; Sheffield, Justin; Samaniego, Luis; Thober, Stephan; Kumar, Rohinni; Prudhomme, Christel; Houghton-Carr, Helen

    2017-04-01

    High-resolution simulations of water resources from hydrological models are vital to supporting important climate services. Apart from a high level of detail, both spatially and temporally, it is important to provide simulations that consistently cover a range of timescales, from historical reanalysis to seasonal forecast and future projections. In the new EDgE project commissioned by the ECMWF (C3S) we try to fulfill these requirements. EDgE is a proof-of-concept project which combines climate data and state-of-the-art hydrological modelling to demonstrate a water-oriented information system implemented through a web application. EDgE is working with key European stakeholders representative of private and public sectors to jointly develop and tailor approaches and techniques. With these tools, stakeholders are assisted in using improved climate information in decision-making, and supported in the development of climate change adaptation and mitigation policies. Here, we present the first results of the EDgE modelling chain, which is divided into three main processes: 1) pre-processing and downscaling; 2) hydrological modelling; 3) post-processing. Consistent downscaling and bias corrections for historical simulations, seasonal forecasts and climate projections ensure that the results across scales are robust. The daily temporal resolution and 5km spatial resolution ensure locally relevant simulations. With the use of four hydrological models (PCR-GLOBWB, VIC, mHM, Noah-MP), uncertainty between models is properly addressed, while consistency is guaranteed by using identical input data for static land surface parameterizations. The forecast results are communicated to stakeholders via Sectoral Climate Impact Indicators (SCIIs) that have been created in collaboration with the end-user community of the EDgE project. The final product of this project is composed of 15 years of seasonal forecast and 10 climate change projections, all combined with four hydrological

  9. Ex vivo hydrodynamics after central and paracommissural edge-to-edge technique: A further step toward transcatheter tricuspid repair?

    Science.gov (United States)

    Stock, Sina; Bohm, Heidemarie; Scharfschwerdt, Michael; Richardt, Doreen; Meyer-Saraei, Roza; Tsvelodub, Stanislav; Sievers, Hans-Hinrich

    2018-03-01

    Transcatheter approaches in heart valve disease became tremendously important and are currently established in the aortic position, but transcatheter tricuspid repair is still in its beginning and remains challenging. Replicating the surgical edge-to-edge technique, for example, with the MitraClip System (Abbott Vascular, Santa Clara, Calif), represents a promising option and has been reported successfully in small numbers of cases. However, up to now, few data considering the edge-to-edge technique as a transcatheter approach are available. This study aims to determine the ex vivo hydrodynamics after the central and paracommissural edge-to-edge technique in different pathologies. Because of basal or apical dislocation of papillary muscles, leaflet prolapse or tethering was simulated in porcine tricuspid valves mounted on a flexible holding device. Central and paracommissural edge-to-edge techniques were evaluated successively in these pathologies. Regurgitant volume and mean transvalvular gradient were determined in a pulse duplicator. In this ex vivo model, the isolated edge-to-edge technique reduced tricuspid regurgitation. In the prolapse model, regurgitant volume decreased significantly after central edge-to-edge technique (from 49.4 ± 13.6 mL/stroke to 39.3 ± 14.1 mL/stroke). In the tethering model, both the central and the paracommissural edge-to-edge techniques led to a significant decrease (from 48.7 ± 13.9 to 43.6 ± 15.6 and to 41.1 ± 13.8 mL/stroke). In all cases, the reduction of regurgitant volume was achieved at the cost of significantly increased mean transvalvular gradient. This study provides a reduction of tricuspid regurgitation after the edge-to-edge technique in the specific experimental setup. Whether this reduction is sufficient to treat tricuspid regurgitation successfully in clinical practice remains to be established. Transcatheter approaches need to be evaluated further, probably with regard to concomitant annuloplasty

  10. Edge Simulation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, Sergei I. [Univ. of California, San Diego, CA (United States); Angus, Justin [Univ. of California, San Diego, CA (United States); Lee, Wonjae [Univ. of California, San Diego, CA (United States)

    2018-01-05

    The goal of the Edge Simulation Laboratory (ESL) multi-institutional project is to advance scientific understanding of the edge plasma region of magnetic fusion devices via a coordinated effort utilizing modern computing resources, advanced algorithms, and ongoing theoretical development. The UCSD team was involved in the development of the COGENT code for kinetic studies across a magnetic separatrix. This work included a kinetic treatment of electrons and multiple ion species (impurities) and accurate collision operators.

  11. Understanding the edge crack phenomenon in ceramic laminates

    Directory of Open Access Journals (Sweden)

    O. Ševeček

    2015-10-01

    Full Text Available Layered ceramic materials (also referred to as “ceramic laminates” are becoming one of the most promising areas of materials technology aiming to improve the brittle behavior of bulk ceramics. The utilization of tailored compressive residual stresses acting as physical barriers to crack propagation has already succeeded in many ceramic systems. Relatively thick compressive layers located below the surface have proven very effective to enhance the fracture resistance and provide a minimum strength for the material. However, internal compressive stresses result in out-of plane stresses at the free surfaces, what can cause cracking of the compressive layer, forming the so-called edge cracks. Experimental observations have shown that edge cracking may be associated with the magnitude of the compressive stresses and with the thickness of the compressive layer. However, an understanding of the parameters related to the onset and extension of such edge cracks in the compressive layers is still lacking. In this work, a 2D parametric finite element model has been developed to predict the onset and propagation of an edge crack in ceramic laminates using a coupled stress-energy criterion. This approach states that a crack is originated when both stress and energy criteria are fulfilled simultaneously. Several designs with different residual stresses and a given thickness in the compressive layers have been computed. The results predict the existence of a lower bound, below no edge crack will be observed, and an upper bound, beyond which the onset of an edge crack would lead to the complete fracture of the layer

  12. AliEn - EDG Interoperability in ALICE

    CERN Document Server

    Bagnasco, S; Buncic, P; Carminati, F; Cerello, P G; Saiz, P

    2003-01-01

    AliEn (ALICE Environment) is a GRID-like system for large scale job submission and distributed data management developed and used in the context of ALICE, the CERN LHC heavy-ion experiment. With the aim of exploiting upcoming Grid resources to run AliEn-managed jobs and store the produced data, the problem of AliEn-EDG interoperability was addressed and an in-terface was designed. One or more EDG (European Data Grid) User Interface machines run the AliEn software suite (Cluster Monitor, Storage Element and Computing Element), and act as interface nodes between the systems. An EDG Resource Broker is seen by the AliEn server as a single Computing Element, while the EDG storage is seen by AliEn as a single, large Storage Element; files produced in EDG sites are registered in both the EDG Replica Catalogue and in the AliEn Data Catalogue, thus ensuring accessibility from both worlds. In fact, both registrations are required: the AliEn one is used for the data management, the EDG one to guarantee the integrity and...

  13. Energetics of edge oxidization of graphene nanoribbons

    Science.gov (United States)

    Yasuma, Airi; Yamanaka, Ayaka; Okada, Susumu

    2018-06-01

    On the basis of the density functional theory, we studied the geometries and energetics of O atoms adsorbed on graphene edges for simulating the initial stage of the edge oxidization of graphene. Our calculations showed that oxygen atoms are preferentially adsorbed onto the graphene edges with the zigzag portion, resulting in a large adsorption energy of about 5 eV. On the other hand, the edges with armchair shape are rarely oxidized, or the oxidization causes substantial structural reconstructions, because of the stable covalent bond at the armchair edge with the triple bond nature. Furthermore, the energetics sensitively depends on the edge angles owing to the inhomogeneity of the charge density at the edge atomic sites.

  14. Edge field emission of large-area single layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kleshch, Victor I., E-mail: klesch@polly.phys.msu.ru [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Bandurin, Denis A. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Orekhov, Anton S. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); A.V. Shubnikov Institute of Crystallography, RAS, Moscow 119333 (Russian Federation); Purcell, Stephen T. [ILM, Université Claude Bernard Lyon 1 et CNRS, UMR 5586, 69622 Villeurbanne (France); Obraztsov, Alexander N. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Department of Physics and Mathematics, University of Eastern Finland, Joensuu 80101 (Finland)

    2015-12-01

    Graphical abstract: - Highlights: • Stable field emission was observed from the edge of large-area graphene on quartz. • A strong hysteresis in current–voltage characteristics was observed. • The hysteresis was explained by mechanical peeling of graphene edge from substrate. • Reversible peeling of graphene edge may be used in microelectromechanical systems. - Abstract: Field electron emission from the edges of large-area (∼1 cm × 1 cm) graphene films deposited onto quartz wafers was studied. The graphene was previously grown by chemical vapour deposition on copper. An extreme enhancement of electrostatic field at the edge of the films with macroscopically large lateral dimensions and with single atom thickness was achieved. This resulted in the creation of a blade type electron emitter, providing stable field emission at low-voltage with linear current density up to 0.5 mA/cm. A strong hysteresis in current–voltage characteristics and a step-like increase of the emission current during voltage ramp up were observed. These effects were explained by the local mechanical peeling of the graphene edge from the quartz substrate by the ponderomotive force during the field emission process. Specific field emission phenomena exhibited in the experimental study are explained by a unique combination of structural, electronic and mechanical properties of graphene. Various potential applications ranging from linear electron beam sources to microelectromechanical systems are discussed.

  15. Acyclicity in edge-colored graphs

    DEFF Research Database (Denmark)

    Gutin, Gregory; Jones, Mark; Sheng, Bin

    2017-01-01

    A walk W in edge-colored graphs is called properly colored (PC) if every pair of consecutive edges in W is of different color. We introduce and study five types of PC acyclicity in edge-colored graphs such that graphs of PC acyclicity of type i is a proper superset of graphs of acyclicity of type i......+1, i=1,2,3,4. The first three types are equivalent to the absence of PC cycles, PC closed trails, and PC closed walks, respectively. While graphs of types 1, 2 and 3 can be recognized in polynomial time, the problem of recognizing graphs of type 4 is, somewhat surprisingly, NP-hard even for 2-edge-colored...... graphs (i.e., when only two colors are used). The same problem with respect to type 5 is polynomial-time solvable for all edge-colored graphs. Using the five types, we investigate the border between intractability and tractability for the problems of finding the maximum number of internally vertex...

  16. Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals.

    Science.gov (United States)

    Livache, Clément; Goubet, Nicolas; Martinez, Bertille; Jagtap, Amardeep; Qu, Junling; Ithurria, Sandrine; Silly, Mathieu G; Dubertret, Benoit; Lhuillier, Emmanuel

    2018-04-11

    Mercury chalcogenide nanocrystals and especially HgTe appear as an interesting platform for the design of low cost mid-infrared (mid-IR) detectors. Nevertheless, their electronic structure and transport properties remain poorly understood, and some critical aspects such as the carrier relaxation dynamics at the band edge have been pushed under the rug. Some of the previous reports on dynamics are setup-limited, and all of them have been obtained using photon energy far above the band edge. These observations raise two main questions: (i) what are the carrier dynamics at the band edge and (ii) should we expect some additional effect (multiexciton generation (MEG)) as such narrow band gap materials are excited far above the band edge? To answer these questions, we developed a high-bandwidth setup that allows us to understand and compare the carrier dynamics resonantly pumped at the band edge in the mid-IR and far above the band edge. We demonstrate that fast (>50 MHz) photoresponse can be obtained even in the mid-IR and that MEG is occurring in HgTe nanocrystal arrays with a threshold around 3 times the band edge energy. Furthermore, the photoresponse can be effectively tuned in magnitude and sign using a phototransistor configuration.

  17. On the dynamics of flame edges in diffusion-flame/vortex interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hermanns, Miguel; Linan, Amable [Departamento de Motopropulsion y Termofluidodinamica, Universidad Politecnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid (Spain); Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2007-04-15

    We analyze the local flame extinction and reignition of a counterflow diffusion flame perturbed by a laminar vortex ring. Local flame extinction leads to the appearance of flame edges separating the burning and extinguished regions of the distorted mixing layer. The dynamics of these edges is modeled based on previous numerical results, with heat release effects fully taken into account, which provide the propagation velocity of triple and edge flames in terms of the upstream unperturbed value of the scalar dissipation. The temporal evolution of the mixing layer is determined using the classical mixture fraction approach, with both unsteady and curvature effects taken into account. Although variable density effects play an important role in exothermic reacting mixing layers, in this paper the description of the mixing layer is carried out using the constant density approximation, leading to a simplified analytical description of the flow field. The mathematical model reveals the relevant nondimensional parameters governing diffusion-flame/vortex interactions and provides the parameter range for the more relevant regime of local flame extinction followed by reignition via flame edges. Despite the simplicity of the model, the results show very good agreement with previously published experimental results. (author)

  18. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper.Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10-7 and 10-6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0.It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain

  19. Assessment of stent edge dissections by fractional flow reserve.

    Science.gov (United States)

    Chung, Ju-Hyun; Ann, Soe Hee; Koo, Bon-Kwon; Nam, Chang-Wook; Doh, Joon-Hyung; Singh, Gillian Balbir; Kim, Hyung Il; Shin, Eun-Seok

    2015-04-15

    Edge dissections after intervention have been studied with imaging techniques, however, functional assessment has not been studied yet. We investigated the relationship between fractional flow reserve (FFR) and the angiographic type of stent edge dissections and tried to assess the use of FFR-guided management for edge dissection. 51 edge dissections assessed by FFR were included in this prospective observational study. FFR was measured for each type of edge dissection and compared with quantitative coronary angiographic findings. Clinical outcomes were evaluated based on FFR measurements. Edge dissections were classified as type A (47.1%; 24/51), type B (41.2%; 21/51), type C (2.0%; 1/51) and type D (9.8%; 5/51). Mean FFR in type A dissection was 0.87 ± 0.09, in type B 0.86 ± 0.07, in type C 0.72 and in type D 0.57 ± 0.08. All type C and D dissections (6/51) had FFR ≤ 0.8 and were treated with additional stents. Among the 45 type A and B dissections, 8 had a FFR ≤ 0.8 (17.8%), and 50% received additional stenting. All dissections with FFR >0.8 were left untreated except one long dissection case. There was no death, myocardial infarction or target lesion revascularization during hospitalization or the follow-up period (median 152 days; IQR 42-352 days). FFR correlates well with an angiographic type of edge dissection. Angiographic findings are sufficient for deciding the treatment of severe dissections such as types C and D, while FFR-guided management may be safe and effective for mild edge dissections such as types A and B. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. [Road Extraction in Remote Sensing Images Based on Spectral and Edge Analysis].

    Science.gov (United States)

    Zhao, Wen-zhi; Luo, Li-qun; Guo, Zhou; Yue, Jun; Yu, Xue-ying; Liu, Hui; Wei, Jing

    2015-10-01

    Roads are typically man-made objects in urban areas. Road extraction from high-resolution images has important applications for urban planning and transportation development. However, due to the confusion of spectral characteristic, it is difficult to distinguish roads from other objects by merely using traditional classification methods that mainly depend on spectral information. Edge is an important feature for the identification of linear objects (e. g. , roads). The distribution patterns of edges vary greatly among different objects. It is crucial to merge edge statistical information into spectral ones. In this study, a new method that combines spectral information and edge statistical features has been proposed. First, edge detection is conducted by using self-adaptive mean-shift algorithm on the panchromatic band, which can greatly reduce pseudo-edges and noise effects. Then, edge statistical features are obtained from the edge statistical model, which measures the length and angle distribution of edges. Finally, by integrating the spectral and edge statistical features, SVM algorithm is used to classify the image and roads are ultimately extracted. A series of experiments are conducted and the results show that the overall accuracy of proposed method is 93% comparing with only 78% overall accuracy of the traditional. The results demonstrate that the proposed method is efficient and valuable for road extraction, especially on high-resolution images.

  1. Magnetism of Nanographene-Based Microporous Carbon and Its Applications: Interplay of Edge Geometry and Chemistry Details in the Edge State

    Science.gov (United States)

    Enoki, Toshiaki; Kiguchi, Manabu

    2018-03-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. Nanographenes have important edge geometry dependence in their electronic structures. In armchair edges, electron wave interference works to contribute to energetic stability. Meanwhile, zigzag edges possess an edge-localized and spin-polarized nonbonding edge state, which causes electronic, magnetic, and chemical activities. In addition to the geometry dependence, the electronic structures are seriously affected by edge chemistry details. The edge chemistry dependence together with edge geometries on the electronic structures are discussed with samples of randomly networked nanographenes (microporous activated carbon fibers) in pristine state and under high-temperature annealing. In the pristine sample with the edges oxidized in ambient atmospheric conditions, the edge state, which is otherwise unstable, can be stabilized because of the charge transfer from nanographene to terminating oxygen. Nanographene, whose edges consist of a combination of magnetic zigzag edges and nonmagnetic armchair edges, is found to be ferrimagnetic with a nonzero net magnetic moment created under the interplay between a strong intrazigzag-edge ferromagnetic interaction and intermediate-strength interzigzag-edge antiferromagnetic-ferromagnetic interaction. At heat-treatment temperatures just below the fusion start (approximately 1500 K), the edge-terminating structure is changed from oxygen-containing groups to hydrogen in the nanographene network. Additionally, hydrogen-terminated zigzag edges, which are present as the majority and chemically unstable, play a triggering role in fusion above 1500 K. The fusion start brings about an insulator-to-metal transition at TI -M˜1500 K . Local fusions taking place percolatively between nanographenes work to expand the π -bond network, eventually resulting in the development of antiferromagnetic short-range order toward spin glass in the

  2. Harvest-related edge effects on prey availability and foraging of hooded warblers in a bottomland hardwood forest

    Science.gov (United States)

    John C. Kilgo

    2005-01-01

    The effects of harvest-created canopy gaps in bottomland hardwood forests on arthropod abundance and, hence, the foraging ecology of birds are poorly understood. I predicted that arthropod abundance would be high near edges of group-selection harvest gaps and lower in the surrounding forest, and that male Hooded Warblers (Wilsonia citrina) foraging...

  3. Investigation of CeO2 Buffer Layer Effects on the Voltage Response of YBCO Transition-Edge Bolometers

    DEFF Research Database (Denmark)

    Mohajeri, Roya; Nazifi, Rana; Wulff, Anders Christian

    2016-01-01

    The effect on the thermal parameters of superconducting transition-edge bolometers produced on a single crystalline SrTiO3 (STO) substrate with and without a CeO2 buffer layer was investigated. Metal-organic deposition was used to deposit the 20-nm CeO2 buffer layer, whereas RF magnetron sputtering...

  4. Improving color constancy by photometric edge weighting

    NARCIS (Netherlands)

    Gijsenij, A.; Gevers, T.; van de Weijer, J.

    2012-01-01

    Edge-based color constancy methods make use of image derivatives to estimate the illuminant. However, different edge types exist in real-world images, such as material, shadow, and highlight edges. These different edge types may have a distinctive influence on the performance of the illuminant

  5. Nonlinear simulations of particle source effects on edge localized mode

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.; Tang, C. J. [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Chen, S. Y., E-mail: sychen531@163.com [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Wang, Z. H. [Southwestern Institute of Physics, Chengdu 610041 (China)

    2015-12-15

    The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadening of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom.

  6. Tunable Acoustic Valley-Hall Edge States in Reconfigurable Phononic Elastic Waveguides

    Science.gov (United States)

    Liu, Ting-Wei; Semperlotti, Fabio

    2018-01-01

    We investigate the occurrence of acoustic topological edge states in a 2D phononic elastic waveguide due to a phenomenon that is the acoustic analog of the quantum valley Hall effect. We show that a topological transition takes place between two lattices having broken space-inversion symmetry due to the application of a tunable strain field. This condition leads to the formation of gapless edge states at the domain walls, as further illustrated by the analysis of the bulk-edge correspondence and of the associated topological invariants. Interestingly, topological edge states can also be triggered at the boundary of a single domain, when boundary conditions are properly selected. We also show that the static modulation of the strain field allows us to tune the response of the material between the different supported edge states. Although time-reversal symmetry is still intact in this material system, the edge states are topologically protected when intervalley mixing is either weak or negligible. This characteristic enables selective valley injection, which is achieved via synchronized source strategy.

  7. Edge-assignment and figure-ground segmentation in short-term visual matching.

    Science.gov (United States)

    Driver, J; Baylis, G C

    1996-12-01

    Eight experiments examined the role of edge-assignment in a contour matching task. Subjects judged whether the jagged vertical edge of a probe shape matched the jagged edge that divided two adjoining shapes in an immediately preceding figure-ground display. Segmentation factors biased assignment of this dividing edge toward a figural shape on just one of its sides. Subjects were faster and more accurate at matching when the probe edge had a corresponding assignment. The rapid emergence of this effect provides an on-line analog of the long-term memory advantage for figures over grounds which Rubin (1915/1958) reported. The present on-line advantage was found when figures were defined by relative contrast and size, or by symmetry, and could not be explained solely by the automatic drawing of attention toward the location of the figural region. However, deliberate attention to one region of an otherwise ambiguous figure-ground display did produce the advantage. We propose that one-sided assignment of dividing edges may be obligatory in vision.

  8. Density functional theory calculations of energy-loss carbon near-edge spectra of small diameter armchair and zigzag nanotubes: Core-hole, curvature, and momentum-transfer orientation effects

    International Nuclear Information System (INIS)

    Titantah, J.T.; Lamoen, D.; Jorissen, K.

    2004-01-01

    We perform density functional theory calculations on a series of armchair and zigzag nanotubes of diameters less than 1 nm using the all-electron full-potential(-linearized)-augmented-plane-wave method. Emphasis is laid on the effects of curvature, the electron-beam orientation, and the inclusion of the core hole on the carbon electron-energy-loss K edge. The electron-energy-loss near-edge spectra of all the studied tubes show strong curvature effects compared to that of flat graphene. The curvature-induced π-σ hybridization is shown to have a more drastic effect on the electronic properties of zigzag tubes than on those of armchair tubes. We show that the core-hole effect must be accounted for in order to correctly reproduce electron-energy-loss measurements. We also find that the energy-loss near-edge spectra of these carbon systems are dominantly dipole selected and that they can be expressed simply as a proportionality with the local momentum projected density of states, thus portraying the weak energy dependence of the transition matrix elements. Compared to graphite, we report a reduction in the anisotropy as seen on the energy-loss near-edge spectra of carbon nanotubes

  9. Habitat edge, land management, and rates of brood parasitism in tallgrass prairie.

    Science.gov (United States)

    Patten, Michael A; Shochat, Eyal; Reinking, Dan L; Wolfe, Donald H; Sherrod, Steve K

    2006-04-01

    Bird populations in North America's grasslands have declined sharply in recent decades. These declines are traceable, in large part, to habitat loss, but management of tallgrass prairie also has an impact. An indirect source of decline potentially associated with management is brood parasitism by the Brown-headed Cowbird (Molothrus ater), which has had substantial negative impacts on many passerine hosts. Using a novel application of regression trees, we analyzed an extensive five-year set of nest data to test how management of tallgrass prairie affected rates of brood parasitism. We examined seven landscape features that may have been associated with parasitism: presence of edge, burning, or grazing, and distance of the nest from woody vegetation, water, roads, or fences. All five grassland passerines that we included in the analyses exhibited evidence of an edge effect: the Grasshopper Sparrow (Ammodramus savannarum), Henslow's Sparrow (A. henslowii), Dickcissel (Spiza americana), Red-winged Blackbird (Agelaius phoeniceus), and Eastern Meadowlark (Sturnella magna). The edge was represented by narrow strips of woody vegetation occurring along roadsides cut through tallgrass prairie. The sparrows avoided nesting along these woody edges, whereas the other three species experienced significantly higher (1.9-5.3x) rates of parasitism along edges than in prairie. The edge effect could be related directly to increase in parasitism rate with decreased distance from woody vegetation. After accounting for edge effect in these three species, we found evidence for significantly higher (2.5-10.5x) rates of parasitism in grazed plots, particularly those burned in spring to increase forage, than in undisturbed prairie. Regression tree analysis proved to be an important tool for hierarchically parsing various landscape features that affect parasitism rates. We conclude that, on the Great Plains, rates of brood parasitism are strongly associated with relatively recent road cuts

  10. Edge detection of optical subaperture image based on improved differential box-counting method

    Science.gov (United States)

    Li, Yi; Hui, Mei; Liu, Ming; Dong, Liquan; Kong, Lingqin; Zhao, Yuejin

    2018-01-01

    Optical synthetic aperture imaging technology is an effective approach to improve imaging resolution. Compared with monolithic mirror system, the image of optical synthetic aperture system is often more complex at the edge, and as a result of the existence of gap between segments, which makes stitching becomes a difficult problem. So it is necessary to extract the edge of subaperture image for achieving effective stitching. Fractal dimension as a measure feature can describe image surface texture characteristics, which provides a new approach for edge detection. In our research, an improved differential box-counting method is used to calculate fractal dimension of image, then the obtained fractal dimension is mapped to grayscale image to detect edges. Compared with original differential box-counting method, this method has two improvements as follows: by modifying the box-counting mechanism, a box with a fixed height is replaced by a box with adaptive height, which solves the problem of over-counting the number of boxes covering image intensity surface; an image reconstruction method based on super-resolution convolutional neural network is used to enlarge small size image, which can solve the problem that fractal dimension can't be calculated accurately under the small size image, and this method may well maintain scale invariability of fractal dimension. The experimental results show that the proposed algorithm can effectively eliminate noise and has a lower false detection rate compared with the traditional edge detection algorithms. In addition, this algorithm can maintain the integrity and continuity of image edge in the case of retaining important edge information.

  11. The double-edged effects of annealing MgO underlayers on the efficient synthesis of single-wall carbon nanotube forests.

    Science.gov (United States)

    Tsuji, Takashi; Hata, Kenji; Futaba, Don N; Sakurai, Shunsuke

    2017-11-16

    Recently, the millimetre-scale, highly efficient synthesis of single-wall carbon nanotube (SWCNT) forests from Fe catalysts has been reported through the annealing of the magnesia (MgO) underlayer. Here, we report the double-edged effects of underlayer annealing on the efficiency and structure of the SWCNT forest synthesis through a temperature-dependent examination. Our results showed that the efficiency of the SWCNT forests sharply increased with increased underlayer annealing temperatures from 600 °C up to 900 °C due to a temperature-dependent structural modification, characterized by increased grain size and reduced defects, of the MgO underlayer. Beyond this temperature, the SWCNT fraction also decreased as a result of further structural modification of the MgO underlayer. This exemplifies the double-edged effects of annealing. Specifically, for underlayer annealing below 600 °C, the catalyst subsurface diffusion was found to limit the growth efficiency, and for excessively high underlayer annealing temperatures (>900 °C), catalyst coalescence/ripening led to the formation of double-wall carbon nanotubes. As a result, three distinct regions of synthesis were observed: (i) a "low yield" region below a threshold temperature (∼600 °C); (ii) an "increased yield" region from 600 to 900 °C, and (iii) a "saturation" region above 900 °C. The efficient SWCNT forest synthesis could only occur within a specific annealing temperature window as a result of this double-edged effects of underlayer annealing.

  12. How Forest Inhomogeneities Affect the Edge Flow

    DEFF Research Database (Denmark)

    Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas

    2016-01-01

    Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities (>1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark...... is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between...... the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge...

  13. Gate-Controlled Transmission of Quantum Hall Edge States in Bilayer Graphene.

    Science.gov (United States)

    Li, Jing; Wen, Hua; Watanabe, Kenji; Taniguchi, Takashi; Zhu, Jun

    2018-02-02

    The edge states of the quantum Hall and fractional quantum Hall effect of a two-dimensional electron gas carry key information of the bulk excitations. Here we demonstrate gate-controlled transmission of edge states in bilayer graphene through a potential barrier with tunable height. The backscattering rate is continuously varied from 0 to close to 1, with fractional quantized values corresponding to the sequential complete backscattering of individual modes. Our experiments demonstrate the feasibility to controllably manipulate edge states in bilayer graphene, thus opening the door to more complex experiments.

  14. Gate-Controlled Transmission of Quantum Hall Edge States in Bilayer Graphene

    Science.gov (United States)

    Li, Jing; Wen, Hua; Watanabe, Kenji; Taniguchi, Takashi; Zhu, Jun

    2018-02-01

    The edge states of the quantum Hall and fractional quantum Hall effect of a two-dimensional electron gas carry key information of the bulk excitations. Here we demonstrate gate-controlled transmission of edge states in bilayer graphene through a potential barrier with tunable height. The backscattering rate is continuously varied from 0 to close to 1, with fractional quantized values corresponding to the sequential complete backscattering of individual modes. Our experiments demonstrate the feasibility to controllably manipulate edge states in bilayer graphene, thus opening the door to more complex experiments.

  15. Edge Cut Domination, Irredundance, and Independence in Graphs

    OpenAIRE

    Fenstermacher, Todd; Hedetniemi, Stephen; Laskar, Renu

    2016-01-01

    An edge dominating set $F$ of a graph $G=(V,E)$ is an \\textit{edge cut dominating set} if the subgraph $\\langle V,G-F \\rangle$ is disconnected. The \\textit{edge cut domination number} $\\gamma_{ct}(G)$ of $G$ is the minimum cardinality of an edge cut dominating set of $G.$ In this paper we study the edge cut domination number and investigate its relationships with other parameters of graphs. We also introduce the properties edge cut irredundance and edge cut independence.

  16. DAVs: Red Edge and Outbursts

    Science.gov (United States)

    Luan, Jing

    2018-04-01

    As established by ground based surveys, white dwarfs with hydrogen atmospheres pulsate as they cool across the temperature range, 12500Kred edge is a two-decade old puzzle. Recently, Kepler discovered a number of cool DAVs exhibiting sporadic outbursts separated by days, each lasting several hours, and releasing \\sim 10^{33}-10^{34} {erg}. We provide quantitative explanations for both the red edge and the outbursts. The minimal frequency for overstable modes rises abruptly near the red edge. Although high frequency overstable modes exist below the red edge, their photometric amplitudes are generally too small to be detected by ground based observations. Nevertheless, these overstable parent modes can manifest themselves through nonlinear mode couplings to damped daughter modes which generate limit cycles giving rise to photometric outbursts.

  17. Edge-Induced Shear Banding in Entangled Polymeric Fluids.

    Science.gov (United States)

    Hemingway, Ewan J; Fielding, Suzanne M

    2018-03-30

    Despite decades of research, the question of whether solutions and melts of highly entangled polymers exhibit shear banding as their steady state response to a steadily imposed shear flow remains controversial. From a theoretical viewpoint, an important unanswered question is whether the underlying constitutive curve of shear stress σ as a function of shear rate γ[over ˙] (for states of homogeneous shear) is monotonic, or has a region of negative slope, dσ/dγ[over ˙]<0, which would trigger banding. Attempts to settle the question experimentally via velocimetry of the flow field inside the fluid are often confounded by an instability of the free surface where the sample meets the outside air, known as "edge fracture." Here we show by numerical simulation that in fact even only very modest edge disturbances-which are the precursor of full edge fracture but might well, in themselves, go unnoticed experimentally-can cause strong secondary flows in the form of shear bands that invade deep into the fluid bulk. Crucially, this is true even when the underlying constitutive curve is monotonically increasing, precluding true bulk shear banding in the absence of edge effects.

  18. Propagation of superconducting coherence via chiral quantum-Hall edge channels.

    Science.gov (United States)

    Park, Geon-Hyoung; Kim, Minsoo; Watanabe, Kenji; Taniguchi, Takashi; Lee, Hu-Jong

    2017-09-08

    Recently, there has been significant interest in superconducting coherence via chiral quantum-Hall (QH) edge channels at an interface between a two-dimensional normal conductor and a superconductor (N-S) in a strong transverse magnetic field. In the field range where the superconductivity and the QH state coexist, the coherent confinement of electron- and hole-like quasiparticles by the interplay of Andreev reflection and the QH effect leads to the formation of Andreev edge states (AES) along the N-S interface. Here, we report the electrical conductance characteristics via the AES formed in graphene-superconductor hybrid systems in a three-terminal configuration. This measurement configuration, involving the QH edge states outside a graphene-S interface, allows the detection of the longitudinal and QH conductance separately, excluding the bulk contribution. Convincing evidence for the superconducting coherence and its propagation via the chiral QH edge channels is provided by the conductance enhancement on both the upstream and the downstream sides of the superconducting electrode as well as in bias spectroscopy results below the superconducting critical temperature. Propagation of superconducting coherence via QH edge states was more evident as more edge channels participate in the Andreev process for high filling factors with reduced valley-mixing scattering.

  19. Effects of microhabitat on leaf traits in Digitalis grandiflora L. (Veronicaceae growing at forest edge and interior

    Directory of Open Access Journals (Sweden)

    Kołodziejek J.

    2014-01-01

    Full Text Available The morphological, anatomical and biochemical traits of the leaves of yellow foxglove (Digitalis grandiflora Mill. from two microhabitats, forest interior (full shade under oak canopy and forest edge (half shade near shrubs, were studied. The microhabitats differed in the mean levels of available light, but did not differ in soil moisture. The mean level of light in the forest edge microhabitat was significantly higher than in the forest interior. Multivariate ANOVA was used to test the effects of microhabitat. Comparison of the available light with soil moisture revealed that both factors significantly influenced the morphological and anatomical variables of D. grandiflora. Leaf area, mass, leaf mass per area (LMA, surface area per unit dry mass (SLA, density and thickness varied greatly between leaves exposed to different light regimes. Leaves that developed in the shade were larger and thinner and had a greater SLA than those that developed in the half shade. In contrast, at higher light irradiances, at the forest edge, leaves tended to be thicker, with higher LMA and density. Stomatal density was higher in the half-shade leaves than in the full-shade ones. LMA was correlated with leaf area and mass and to a lesser extent with thickness and density in the forest edge microsite. The considerable variations in leaf density and thickness recorded here confirm the very high variation in cell size and amounts of structural tissue within species. The leaf plasticity index (PI was the highest for the morphological leaf traits as compared to the anatomical and biochemical ones. The nitrogen content was higher in the “half-shade leaves” than in the “shade leaves”. Denser leaves corresponded to lower nitrogen (N contents. The leaves of plants from the forest edge had more potassium (K than leaves of plants from the forest interior on an area basis but not on a dry mass basis; the reverse was true for phosphorus.

  20. Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

    Science.gov (United States)

    Santos, Bráulio A; Arroyo-Rodríguez, Víctor; Moreno, Claudia E; Tabarelli, Marcelo

    2010-09-08

    Deforestation and forest fragmentation are known major causes of nonrandom extinction, but there is no information about their impact on the phylogenetic diversity of the remaining species assemblages. Using a large vegetation dataset from an old hyper-fragmented landscape in the Brazilian Atlantic rainforest we assess whether the local extirpation of tree species and functional impoverishment of tree assemblages reduce the phylogenetic diversity of the remaining tree assemblages. We detected a significant loss of tree phylogenetic diversity in forest edges, but not in core areas of small (phylogenetic distance between any two randomly chosen individuals from forest edges; an increase of 17% in the average phylogenetic distance to closest non-conspecific relative for each individual in forest edges; and to the potential manifestation of late edge effects in the core areas of small forest remnants. We found no evidence supporting fragmentation-induced phylogenetic clustering or evenness. This could be explained by the low phylogenetic conservatism of key life-history traits corresponding to vulnerable species. Edge effects must be reduced to effectively protect tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

  1. Measurement of the modulation transfer function of a charge-coupled device array by the combination of the self-imaging effect and slanted edge method.

    Science.gov (United States)

    Najafi, Sedigheh; Madanipour, Khosro

    2013-07-01

    In this paper, by a combination of the self-imaging effect for Ronchi gratings and the standard slanted edge modulation transfer function (MTF) measurement method for CCD cameras, the MTF of the CCD array without optics is measured. For this purpose, a Ronchi-type grating is illuminated by an expanded He-Ne laser. A self-image of the grating appears without optics on the CCD array that is located on the Talbot distance. The lines of the self-image of the grating are used as a slanted edge array. This method has all the advantages of the slanted edge method, and also since the array of the edge is ready, the total area of the CCD can be tested. The measured MTF is related to the CCD array without optics.

  2. Salient issues of edge physics pertaining to loss of confinement: A resistive MHD analysis

    International Nuclear Information System (INIS)

    Thayer, D.R.

    1991-01-01

    The progress that has been made during this fiscal year is significant in the area of tokamak edge plasma transport. The drift-rippling mode model of edge turbulent transport was extended. In particular, the research areas on which were concentrated include the following topics: (1) The theoretical investigation of the radiatively enhanced transport due to the effects of impurity driven radiation instabilities has been expanded to include a situation with multiple impurities (such as carbon, C 4+ , and oxygen, O 6+ ); (2) In order to validate the use of the impurity radiation input from the tokamak bolometer experiments in the theoretical edge turbulent transport calculations, the analysis that is utilized to transform impurity brightness data to radiated power profiles has been checked for state population and Abel inversion correctness; (3) The drift-rippling model of edge turbulent transport has been extended to include ionization particle sources in addition to the impurity driven thermal instability drive; and (4) The detailed limiter and realistic edge geometric effects on the edge turbulent transport has been included in the drift-rippling model

  3. Impurity and neutral effects on the dissipative drift wave in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1991-05-01

    Possible destabilizing mechanisms for the liner electrostatic dissipative drift waves (in tokamak edge plasmas) are investigated in slab geometry. The effects of processes such as ionization, charge exchange, radiation, and rippling are examined. In particular, the impurity condensation associated with radiation cooling is evaluated appropriately for the drift wave ordering, which is found to be an important driving mechanism in contrast to the results of earlier studies. It also shown that the role of ionization is quite complicated, and depends strongly on the manner in which the equilibrium is achieved. The linear eigenmode equation is studied both analytically and numerically. For the range of parameters relevant to TEXT tokamak, both the charge exchange of the rippling effect are found to be unimportant for instability. 25 refs., 6 figs

  4. Probes for edge plasma studies of TFTR (invited)

    International Nuclear Information System (INIS)

    Manos, D.M.; Budny, R.V.; Kilpatrick, S.; Stangeby, P.; Zweben, S.

    1986-01-01

    Tokamak fusion test reactor (TFTR) probes are designed to study the interaction of the plasma with material surfaces such as the wall and limiters, and to study the transport of particles and energy between the core and edge. Present probe heads have evolved from prototypes in Princeton large torus (PLT), poloidal divertor experiment (PDX) [Princeton BETA experiment (PBX)], and the initial phase of TFTR operation. The newest heads are capable of making several simultaneous measurements and include Langmuir probes, heat flux probes, magnetic coils, rotating calorimeter fast ion probes, and sample exposure specimens. This paper describes these probe heads and presents some of the data they and their prototypes have acquired. The paper emphasizes measurement of transient plasma effects such as fast ion loss during auxiliary heating, the evolution of the edge plasma during heating, compression, and free expansion, and fluctuations in the edge plasma

  5. Energetics of highly kinked step edges

    NARCIS (Netherlands)

    Zandvliet, Henricus J.W.

    2010-01-01

    We have determined the step edge free energy, the step edge stiffness and dimensionless inverse step edge stiffness of the highly kinked < 010> oriented step on a (001) surface of a simple square lattice within the framework of a solid-on-solid model. We have found an exact expression for the step

  6. Edge Fracture in Complex Fluids.

    Science.gov (United States)

    Hemingway, Ewan J; Kusumaatmaja, Halim; Fielding, Suzanne M

    2017-07-14

    We study theoretically the edge fracture instability in sheared complex fluids, by means of linear stability analysis and direct nonlinear simulations. We derive an exact analytical expression for the onset of edge fracture in terms of the shear-rate derivative of the fluid's second normal stress difference, the shear-rate derivative of the shear stress, the jump in shear stress across the interface between the fluid and the outside medium (usually air), the surface tension of that interface, and the rheometer gap size. We provide a full mechanistic understanding of the edge fracture instability, carefully validated against our simulations. These findings, which are robust with respect to choice of rheological constitutive model, also suggest a possible route to mitigating edge fracture, potentially allowing experimentalists to achieve and accurately measure flows stronger than hitherto possible.

  7. First-Principles Fe L 2,3 -Edge and O K-Edge XANES and XMCD Spectra for Iron Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Sassi, Michel [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Pearce, Carolyn I. [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Bagus, Paul S. [Department; Arenholz, Elke [Advanced; Rosso, Kevin M. [Pacific Northwest National Laboratory, Richland, Washington 99352, United States

    2017-10-02

    X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectroscopies are tools in widespread use for providing detailed local atomic structure, oxidation state, and magnetic structure information for materials and organometallic complexes. The analysis of these spectra for transition-metal L-edges is routinely performed on the basis of ligand-field multiplet theory because one- and two-particle mean-field ab initio methods typically cannot describe the multiplet structure. Here we show that multireference configuration interaction (MRCI) calculations can satisfactorily reproduce measured XANES spectra for a range of complex iron oxide materials including hematite and magnetite. MRCI Fe L2,3-edge XANES and XMCD spectra of Fe(II)O6, Fe(III)O6, and Fe(III)O4 in magnetite are found to be in very good qualitative agreement with experiment and multiplet calculations. Point-charge embedding and small distortions of the first-shell oxygen ligands have only small effects. Oxygen K-edge XANES/XMCD spectra for magnetite investigated by a real-space Green’s function approach complete the very good qualitative agreement with experiment. Material-specific differences in local coordination and site symmetry are well reproduced, making the approach useful for assigning spectral features to specific oxidation states and coordination environments.

  8. Magnetic X-points, edge localized modes, and stochasticity

    International Nuclear Information System (INIS)

    Sugiyama, L. E.; Strauss, H. R.

    2010-01-01

    Edge localized modes (ELMs) near the boundary of a high temperature, magnetically confined toroidal plasma represent a new type of nonlinear magnetohydrodynamic (MHD) plasma instability that grows through a coherent plasma interaction with part of a chaotic magnetic field. Under perturbation, the freely moving magnetic boundary surface with an X-point splits into two different limiting asymptotic surfaces (manifolds), similar to the behavior of a hyperbolic saddle point in Hamiltonian dynamics. Numerical simulation using the extended MHD code M3D shows that field-aligned plasma instabilities, such as ballooning modes, can couple to the ''unstable'' manifold that forms helical, field-following lobes around the original surface. Large type I ELMs proceed in stages. Initially, a rapidly growing ballooning outburst involves the entire outboard side. Large plasma fingers grow well off the midplane, while low density regions penetrate deeply into the plasma. The magnetic field becomes superficially stochastic. A secondary inboard edge instability causes inboard plasma loss. The plasma gradually relaxes back toward axisymmetry, with diminishing cycles of edge instability. Poloidal rotation of the interior and edge plasma may be driven. The magnetic tangle constrains the early nonlinear ballooning, but may encourage the later inward penetration. Equilibrium toroidal rotation and two-fluid diamagnetic drifts have relatively small effects on a strong MHD instability. Intrinsic magnetic stochasticity may help explain the wide range of experimentally observed ELMs and ELM-free behavior in fusion plasmas, as well as properties of the H-mode and plasma edge.

  9. Edge Modeling by Two Blur Parameters in Varying Contrasts.

    Science.gov (United States)

    Seo, Suyoung

    2018-06-01

    This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.

  10. Solute effects on edge dislocation pinning in complex alpha-Fe alloys

    Science.gov (United States)

    Pascuet, M. I.; Martínez, E.; Monnet, G.; Malerba, L.

    2017-10-01

    Reactor pressure vessel steels are well-known to harden and embrittle under neutron irradiation, mainly because of the formation of obstacles to the motion of dislocations, in particular, precipitates and clusters composed of Cu, Ni, Mn, Si and P. In this paper, we employ two complementary atomistic modelling techniques to study the heterogeneous precipitation and segregation of these elements and their effects on the edge dislocations in BCC iron. We use a special and highly computationally efficient Monte Carlo algorithm in a constrained semi-grand canonical ensemble to compute the equilibrium configurations for solute clusters around the dislocation core. Next, we use standard molecular dynamics to predict and analyze the effect of this segregation on the dislocation mobility. Consistently with expectations our results confirm that the required stress for dislocation unpinning from the precipitates formed on top of it is quite large. The identification of the precipitate resistance allows a quantitative treatment of atomistic results, enabling scale transition towards larger scale simulations, such as dislocation dynamics or phase field.

  11. On the study of wavy leading-edge vanes to achieve low fan interaction noise

    Science.gov (United States)

    Tong, Fan; Qiao, Weiyang; Xu, Kunbo; Wang, Liangfeng; Chen, Weijie; Wang, Xunnian

    2018-04-01

    The application of wavy leading-edge vanes to reduce a single-stage axial fan noise is numerically studied. The aerodynamic and acoustic performance of the fan is numerically investigated using a hybrid unsteady Reynolds averaged Navier-Stokes (URANS)/acoustic analogy method (Goldstein equations). First, the hybrid URANS/Goldstein method is developed and successfully validated against experiment results. Next, numerical simulations are performed to investigate the noise reduction effects of the wavy leading-edge vanes. The aerodynamic and acoustic performance is assessed for a fan with vanes equipped with two different wavy leading-edge profiles and compared with the performance of conventional straight leading-edge vanes. Results indicate that a fan with wavy leading-edge vanes produces lower interaction noise than the baseline fan without a significant loss in aerodynamic performance. In fact, it is demonstrated that wavy leading-edge vanes have the potential to lead to both aerodynamic and acoustic improvements. The two different wavy leading-edge profiles are shown to successfully reduce the fan tone sound power level by 1.2 dB and 4.3 dB, respectively. Fan efficiency is also improved by about 1% with one of the tested wavy leading-edge profiles. Large eddy simulation (LES) is also performed for a simplified fan stage model to assess the effects of wavy leading-edge vanes on the broadband fan noise. Results indicate that the overall sound power level of a fan can be reduced by about 4 dB with the larger wavy leading-edge profile. Finally, the noise reduction mechanisms are investigated and analysed. It is found that the wavy leading-edge profiles can induce significant streamwise vorticity around the leading-edge protuberances and reduce pressure fluctuations (especially at locations of wavy leading-edge hills) and unsteady forces on the stator vanes. The underlying mechanism of the reduced pressure fluctuations is also discussed by examining the magnitude

  12. Edge effects resulting from forest fragmentation enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests

    Science.gov (United States)

    Reinmann, A.; Hutyra, L.

    2016-12-01

    Forest fragmentation resulting from land use and land cover change is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. However, our understanding of forest carbon dynamics and their response to climate largely comes from unfragmented forest systems, which presents an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink, but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge. These ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance, but across southern New England, USA it increases carbon uptake and storage by 12.5 ± 2.9% and 9.6 ± 1.4%, respectively. However, we also find that forest growth near the edge declines three times faster than in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.

  13. Effects of the edge shape and the width on the structural and electronic properties of silicene nanoribbons

    International Nuclear Information System (INIS)

    Song Yuling; Zhang Yan; Zhang Jianmin; Lu Daobang

    2010-01-01

    Under the generalized gradient approximation (GGA), the structural and electronic properties are studied for H-terminated silicene nanoribbons (SiNRs) with either zigzag edge (ZSiNRs) or armchair edge (ASiNRs) by using the first-principles projector-augmented wave potential within the density function theory (DFT) framework. The results show that the length of the Si-H bond is always 1.50 A, but the edge Si-Si bonds are shorter than the inner ones with identical orientation, implying a contraction relaxation of edge Si atoms. An edge state appears at the Fermi level E F in broader ZSiNRs, but does not appear in all ASiNRs due to their dimer Si-Si bond at edge. With increasing width of ASiNRs, the direct band gaps exhibit not only an oscillation behavior, but also a periodic feature of Δ 3n > Δ 3n+1 > Δ 3n+2 for a certain integer n. The charge density contours analysis shows that the Si-H bond is an ionic bond due to a relative larger electronegativity of H atom. However, all kinds of the Si-Si bonds display a typical covalent bonding feature, although their strength depends on not only the bond orientation but also the bond position. That is, the larger deviation of the Si-Si bond orientation from the nanoribbon axis as well as the closer of the Si-Si bond to the nanoribbon edge, the stronger strength of the Si-Si bond. Besides the contraction of the nanoribbon is mainly in its width direction especially near edge, the addition contribution from the terminated H atoms may be the other reason.

  14. On the physics of the pressure and temperature gradients in the edge of tokamak plasmas

    Science.gov (United States)

    Stacey, Weston M.

    2018-04-01

    An extended plasma fluid theory including atomic physics, radiation, electromagnetic and themodynamic forces, external sources of particles, momentum and energy, and kinetic ion orbit loss is employed to derive theoretical expressions that display the role of the various factors involved in the determination of the pressure and temperature gradients in the edge of tokamak plasmas. Calculations for current experiments are presented to illustrate the magnitudes of various effects including strong radiative and atomic physics edge cooling effects and strong reduction in ion particle and energy fluxes due to ion orbit loss in the plasma edge. An important new insight is the strong relation between rotation and the edge pressure gradient.

  15. All-graphene edge contacts

    DEFF Research Database (Denmark)

    Jacobsen, Kåre Wedel; Falkenberg, Jesper Toft; Papior, Nick Rübner

    2016-01-01

    Using ab-initio methods we investigate the possibility of three-terminalgraphene "T-junction" devices and show that these all-graphene edge contactsare energetically feasible when the 1D interface itself is free from foreignatoms. We examine the energetics of various junction structures as a func......Using ab-initio methods we investigate the possibility of three-terminalgraphene "T-junction" devices and show that these all-graphene edge contactsare energetically feasible when the 1D interface itself is free from foreignatoms. We examine the energetics of various junction structures...... to be in therange of 1-10 kΩμm which is comparable to the best contact resistance reportedfor edge-contacted graphene-metal contacts. We conclude that conductingall-carbon T-junctions should be feasible....

  16. A new edge detection algorithm based on Canny idea

    Science.gov (United States)

    Feng, Yingke; Zhang, Jinmin; Wang, Siming

    2017-10-01

    The traditional Canny algorithm has poor self-adaptability threshold, and it is more sensitive to noise. In order to overcome these drawbacks, this paper proposed a new edge detection method based on Canny algorithm. Firstly, the media filtering and filtering based on the method of Euclidean distance are adopted to process it; secondly using the Frei-chen algorithm to calculate gradient amplitude; finally, using the Otsu algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value, and the half of the high threshold value is low threshold value. Experiment results show that this new method can effectively suppress noise disturbance, keep the edge information, and also improve the edge detection accuracy.

  17. 3D edge energy transport in stellarator configurations

    International Nuclear Information System (INIS)

    McTaggart, N.; Zagorski, R.; Bonnin, X.; Runov, A.; Schneider, R.; Kaiser, T.; Rognlien, T.; Umansky, M.

    2005-01-01

    The finite difference discretization method is used to solve the electron energy transport equation in complex 3D edge geometries using an unstructured grid. This grid is generated by field-line tracing to separate the radial and parallel fluxes and minimize the numerical diffusion connected with the strong anisotropy of the system. The influence of ergodicity on the edge plasma transport in the W7-X stellarator is investigated in this paper. Results show that the combined effect of ergodicity and the radial plasma diffusion leads to the efficient smoothing of the temperature profiles in the finite-β case

  18. [Application of individual light-curing resin tray as edge plastic material in complete denture modulo].

    Science.gov (United States)

    Chai, Mei; Tang, Xuyan; Liang, Guangku

    2015-12-01

    To investigate clinical effect of individual light-curing resin tray as edge plastic material in complete denture modulo.
 A total of 30 patients with poor condition for alveolar ridge of mandible were chosen individual tray with individual light-curing resin tray for material edge shaping or traditional individual impression tray for edge shaping cream to produce complete denture. The operability, questionnaire about denture retention, comfort, mucosal cases and chewing function in the process of shaping the edge were investigated three months later after wearing dentures.
 There was no significant difference in retention, comfort, mucosa and the chewing function between the two mandibular denture impression methods. However, the patients with individual light-curing resin tray as edge shaping material felt better in the process than that in the patients with die-cream as the edge shaping material (P<0.05). Furthermore, the manipulation with individual light-curing resin tray as edge shaping material is easy for doctor.
 Although the clinical effect of Individual light-curing resin tray material as the edge shaping material is equal to that of impression cream, it saves time and human resource. Moreover, it is more acceptable for the patients and thus it can be spread in clinics.

  19. Effect of the X-point on the stability of the edge-current-driven MHD mode in Tokamaks

    International Nuclear Information System (INIS)

    Kwon, Ohjin

    2010-01-01

    Quasi-periodic bursts of edge magnetohydrodynamic (MHD) activities, called edge localized modes (ELMs), have been observed in many tokamaks during the H-mode. The high level of heat and particle transport associated with ELMs may cause serious damage to divertors or plasma facing components. It is therefore important to understand the underlying physics of ELMs. We have numerically investigated the effect of the X-point on the stability of the peeling mode, which is thought to be one of the MHD instabilities responsible for small ELMs. Equilibria with pressure and current profiles, which are unstable to the pure peeling mode for moderately elongated plasma, have been used. The X-point in a diverted plasma has been simulated by introducing of a hump in the plasma boundary. The position, depth and width of the X-point have been varied, and their effect on the stability of the peeling mode has been investigated. We have shown that the peeling mode growth rate decreases as the depth increases. This effect is greater for smaller widths for all positions of the X-point considered. Therefore, a sharper X-point is more efficient in stabilizing the peeling mode. Increasing the depth acts to increase the magnetic shear, the stabilizing effect of which has been shown to have very little dependence on the position or the width of the X-point.

  20. An influence of extremal edges on boundary extension.

    Science.gov (United States)

    Hale, Ralph G; Brown, James M; McDunn, Benjamin A; Siddiqui, Aisha P

    2015-08-01

    Studies have shown that people consistently remember seeing more of a studied scene than was physically present (e.g., Intraub & Richardson Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 179-187, 1989). This scene memory error, known as boundary extension, has been suggested to occur due to an observer's failure to differentiate between the contributing sources of information, including the sensory input, amodal continuation beyond the view boundaries, and contextual associations with the main objects and depicted scene locations (Intraub, 2010). Here, "scenes" made of abstract shapes on random-dot backgrounds, previously shown to elicit boundary extension (McDunn, Siddiqui, & Brown Psychonomic Bulletin & Review, 21, 370-375, 2014), were compared with versions made with extremal edges (Palmer & Ghose Psychological Science, 19, 77-84, 2008) added to their borders, in order to examine how boundary extension is influenced when amodal continuation at the borders' view boundaries is manipulated in this way. Extremal edges were expected to reduce boundary extension as compared to the same scenes without them, because extremal edge boundaries explicitly indicate an image's end (i.e., they do not continue past the view boundary). A large and a small difference (16 % and 40 %) between the close and wide-angle views shown during the experiment were tested to examine the effects of both boundary extension and normalization with and without extremal edges. Images without extremal edges elicited typical boundary extension for the 16 % size change condition, whereas the 40 % condition showed signs of normalization. With extremal edges, a reduced amount of boundary extension occurred for the 16 % condition, and only normalization was found for the 40 % condition. Our findings support and highlight the importance of amodal continuation at the view boundaries as a component of boundary extension.

  1. Magnetism of zigzag edge phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhili, E-mail: zlzhu@zzu.edu.cn, E-mail: jiayu@zzu.edu.cn; Li, Chong; Yu, Weiyang; Chang, Dahu; Sun, Qiang; Jia, Yu, E-mail: zlzhu@zzu.edu.cn, E-mail: jiayu@zzu.edu.cn [International Joint Research Laboratory for Quantum Functional Materials of Henan, and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2014-09-15

    We have investigated, by means of ab initio calculations, the electronic and magnetic structures of zigzag edge phosphorene nanoribbons (ZPNRs) with various widths. The stable magnetic state was found in pristine ZPNRs by allowing the systems to be spin-polarized. The ground state of pristine ZPNRs prefers ferromagnetic order in the same edge but antiferromagnetic order between two opposite edges. The magnetism arises from the dangling bond states as well as edge localized π-orbital states. The presence of a dangling bond is crucial to the formation of the magnetism of ZPNRs. The hydrogenated ZPNRs get nonmagnetic semiconductors with a direct band gap. While, the O-saturated ZPNRs show magnetic ground states due to the weak P-O bond in the ribbon plane between the p{sub z}-orbitals of the edge O and P atoms.

  2. Active probing of plasma edge turbulence and feedback studies on the Texas Experimental Tokamak (TEXT)

    International Nuclear Information System (INIS)

    Uckan, T.; Carreras, B.A.; Richards, B.; Bengtson, R.D.; Crockett, D.B.; Gentle, K.W.; Li, G.X.; Hurwitz, P.D.; Rowan, W.L.; Tsui, H.Y.W.; Wootton, A.J.

    1993-01-01

    The edge fluctuations play a critical role in the overall tokamak confinement. Experiments on TEXT show that electrostatic fluctuations in the edge plasma are the dominant mechanism for energy and particle transport. The basic mechanisms responsible for the edge turbulence are the subject of ongoing research in fusion devices. To understand the driving forces responsible for edge fluctuations, a novel experiment is underway on TEXT to actively modify the turbulence at the plasma edge by launching waves using electrostatic probes in the shadow of the limiter. This technique permits active probing of the spectral properties of the edge turbulence. This new approach to the study of edge fluctuations can provide more insight into the basic dynamics of the turbulence and may, in turn, enable detailed comparison with the theory. These experiments, which rely on the use of oscillating electric fields at the plasma edge, complement edge fluctuation control studies that are presently limited to the use of applied dc biasing to influence the edge electric field profile. These experiments have been extended to control of the edge plasma fluctuation level, using feedback to explore its effects on the edge turbulence characteristics as well as on confinement

  3. MODEL OF THE TOKAMAK EDGE DENSITY PEDESTAL INCLUDING DIFFUSIVE NEUTRALS

    International Nuclear Information System (INIS)

    BURRELL, K.H.

    2003-01-01

    OAK-B135 Several previous analytic models of the tokamak edge density pedestal have been based on diffusive transport of plasma plus free-streaming of neutrals. This latter neutral model includes only the effect of ionization and neglects charge exchange. The present work models the edge density pedestal using diffusive transport for both the plasma and the neutrals. In contrast to the free-streaming model, a diffusion model for the neutrals includes the effect of both charge exchange and ionization and is valid when charge exchange is the dominant interaction. Surprisingly, the functional forms for the electron and neutral density profiles from the present calculation are identical to the results of the previous analytic models. There are some differences in the detailed definition of various parameters in the solution. For experimentally relevant cases where ionization and charge exchange rate are comparable, both models predict approximately the same width for the edge density pedestal

  4. The effect of spin-orbit coupling in band structure and edge states of bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sahdan, Muhammad Fauzi; Darma, Yudi, E-mail: yudi@fi.itb.ac.id [Department of Physics, InstitutTeknologi Bandung, Jalan Ganesa 10, Bandung 40132 (Indonesia)

    2015-04-16

    Topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of bilayer grapheme and also its edge states by using this model with analytical approach. The results of our calculation show that the gap opening occurs at K and K’ point in bilayer graphene.In addition, a pair of gapless edge modes occurs both in the zigzag and arm-chair configurations are no longer exist. There are gap created at the edge even though thery are very small.

  5. Further results for crack-edge mappings by ray methods

    International Nuclear Information System (INIS)

    Norris, A.N.; Achenbach, J.D.; Ahlberg, L.; Tittman, B.R.

    1984-01-01

    This chapter discusses further extensions of the local edge mapping method to the pulse-echo case and to configurations of water-immersed specimens and transducers. Crack edges are mapped by the use of arrival times of edge-diffracted signals. Topics considered include local edge mapping in a homogeneous medium, local edge mapping algorithms, local edge mapping through an interface, and edge mapping through an interface using synthetic data. Local edge mapping is iterative, with two or three iterations required for convergence

  6. Evidence for Topological Edge States in a Large Energy Gap near the Step Edges on the Surface of ZrTe_{5}

    Directory of Open Access Journals (Sweden)

    R. Wu

    2016-05-01

    Full Text Available Two-dimensional topological insulators with a large bulk band gap are promising for experimental studies of quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-gap two-dimensional topological insulator candidates, none of them have been experimentally demonstrated to have a full gap, which is crucial for quantum spin Hall effect. Here, by combining scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, we reveal that ZrTe_{5} crystal hosts a large full gap of ∼100  meV on the surface and a nearly constant density of states within the entire gap at the monolayer step edge. These features are well reproduced by our first-principles calculations, which point to the topologically nontrivial nature of the edge states.

  7. Direct observation of current in type-I edge-localized-mode filaments on the ASDEX upgrade tokamak

    DEFF Research Database (Denmark)

    Vianello, N.; Zuin, M.; Cavazzana, R.

    2011-01-01

    Magnetically confined plasmas in the high confinement regime are regularly subjected to relaxation oscillations, termed edge localized modes (ELMs), leading to large transport events. Present ELM theories rely on a combined effect of edge current and the edge pressure gradients which result...

  8. Bird community responses to the edge between suburbs and reserves.

    Science.gov (United States)

    Ikin, Karen; Barton, Philip S; Knight, Emma; Lindenmayer, David B; Fischer, Joern; Manning, Adrian D

    2014-02-01

    New insights into community-level responses at the urban fringe, and the mechanisms underlying them, are needed. In our study, we investigated the compositional distinctiveness and variability of a breeding bird community at both sides of established edges between suburban residential areas and woodland reserves in Canberra, Australia. Our goals were to determine if: (1) community-level responses were direct (differed with distance from the edge, independent of vegetation) or indirect (differed in response to edge-related changes in vegetation), and (2) if guild-level responses provided the mechanism underpinning community-level responses. We found that suburbs and reserves supported significantly distinct bird communities. The suburban bird community, characterised by urban-adapted native and exotic species, had a weak direct edge response, with decreasing compositional variability with distance from the edge. In comparison, the reserve bird community, characterised by woodland-dependent species, was related to local tree and shrub cover. This was not an indirect response, however, as tree and shrub cover was not related to edge distance. We found that the relative richness of nesting, foraging and body size guilds also displayed similar edge responses, indicating that they underpinned the observed community-level responses. Our study illustrates how community-level responses provide valuable insights into how communities respond to differences in resources between two contrasting habitats. Further, the effects of the suburban matrix penetrate into reserves for greater distances than previously thought. Suburbs and adjacent reserves, however, provided important habitat resources for many native species and the conservation of these areas should not be discounted from continued management strategies.

  9. Exponential Increase in Relative Biological Effectiveness Along Distal Edge of a Proton Bragg Peak as Measured by Deoxyribonucleic Acid Double-Strand Breaks

    Energy Technology Data Exchange (ETDEWEB)

    Cuaron, John J., E-mail: cuaronj@mskcc.org [Memorial Sloan Kettering Cancer Center, New York, New York (United States); Chang, Chang [Texas Center for Proton Therapy, Irving, Texas (United States); Lovelock, Michael; Higginson, Daniel S. [Memorial Sloan Kettering Cancer Center, New York, New York (United States); Mah, Dennis [Procure Proton Therapy Center, Somerset, New Jersey (United States); Cahlon, Oren; Powell, Simon [Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2016-05-01

    Purpose: To quantify the relative biological effectiveness (RBE) of the distal edge of the proton Bragg peak, using an in vitro assay of DNA double-strand breaks (DSBs). Methods and Materials: U2OS cells were irradiated within the plateau of a spread-out Bragg peak and at each millimeter position along the distal edge using a custom slide holder, allowing for simultaneous measurement of physical dose. A reference radiation signal was generated using photons. The DNA DSBs at 3 hours (to assess for early damage) and at 24 hours (to assess for residual damage and repair) after irradiation were measured using the γH2AX assay and quantified via flow cytometry. Results were confirmed with clonogenic survival assays. A detailed map of the RBE as a function of depth along the Bragg peak was generated using γH2AX measurements as a biological endpoint. Results: At 3 hours after irradiation, DNA DSBs were higher with protons at every point along the distal edge compared with samples irradiated with photons to similar doses. This effect was even more pronounced after 24 hours, indicating that the impact of DNA repair is less after proton irradiation relative to photons. The RBE demonstrated an exponential increase as a function of depth and was measured to be as high as 4.0 after 3 hours and as high as 6.0 after 24 hours. When the RBE-corrected dose was plotted as a function of depth, the peak effective dose was extended 2-3 mm beyond what would be expected with physical measurement. Conclusions: We generated a highly comprehensive map of the RBE of the distal edge of the Bragg peak, using a direct assay of DNA DSBs in vitro. Our data show that the RBE of the distal edge increases with depth and is significantly higher than previously reported estimates.

  10. Comparison of Edge and Internal Transport Barriers in Drift Wave Predictive Simulations

    DEFF Research Database (Denmark)

    Weiland, J.; Crombe, K.; Mantica, P.

    2011-01-01

    We have simulated the formation of an internal transport barrier on JET including a self-consistent treatment of ion and electron temperatures and poloidal and toroidal momentum. Similar simulations of edge transport barriers, including the L-H transition have also been made. However, here only p...... for the internal barrier. For the edge barrier the edge density was varied and it turned out that a lower edge density gave a stronger barrier. Electromagnetic and nonlocal effects were important for both types of barriers. [ABSTRACT FROM AUTHOR]......We have simulated the formation of an internal transport barrier on JET including a self-consistent treatment of ion and electron temperatures and poloidal and toroidal momentum. Similar simulations of edge transport barriers, including the L-H transition have also been made. However, here only...... polodal momentum and the temperatures were simulated. The internal barrier included an anomalous spinup of poloidal momentum similar to that in the experiment. Also the edge barrier was accompanied by a spinup of poloidal momentum. The experimental density (with no barrier) was used and kept fixed...

  11. Magic Clusters of MoS2 by Edge S2 Interdimer Spacing Modulation.

    Science.gov (United States)

    Ryou, Junga; Kim, Yong-Sung

    2018-05-17

    Edge atomic and electronic structures of S-saturated Mo-edge triangular MoS 2 nanoclusters are investigated using density functional theory calculations. The edge electrons described by the S 2 -p x p x π* (S 2 -Π x ) and Mo-d xy orbitals are found to interplay to pin the S 2 -Π x Fermi wavenumber at k F = 2/5 as the nanocluster size increases, and correspondingly, the ×5 Peierls edge S 2 interdimer spacing modulation is induced. For the particular sizes of N = 5 n - 2 and 5 n, where N is the number of Mo atoms at one edge representing the nanocluster size and n is a positive integer, the effective ×5 interdimer spacing modulation stabilizes the nanoclusters, which are identified here to be the magic S-saturated Mo-edge triangular MoS 2 nanoclusters. With the S 2 -Π x Peierls gap, the MoS 2 nanoclusters become far-edge S 2 -Π x semiconducting and subedge Mo-d xy metallic as N → ∞.

  12. Penetration depth and nonlocal manipulation of quantum spin hall edge states in chiral honeycomb nanoribbons.

    Science.gov (United States)

    Xu, Yong; Uddin, Salah; Wang, Jun; Wu, Jiansheng; Liu, Jun-Feng

    2017-08-08

    We have studied numerically the penetration depth of quantum spin hall edge states in chiral honeycomb nanoribbons based on the Green's function method. The changing of edge orientation from armchair to zigzag direction decreases the penetration depth drastically. The penetration depth is used to estimate the gap opened for the finite-size effect. Beside this, we also proposed a nonlocal transistor based on the zigzag-like chiral ribbons in which the current is carried at one edge and the manipulation is by the edge magnetization at the other edge. The difficulty that the edge magnetization is unstable in the presence of a ballistic current can be removed by this nonlocal manipulation.

  13. Effect of stand edge on the natural regeneration of spruce, beech and Douglas-fir

    Directory of Open Access Journals (Sweden)

    Lumír Dobrovolný

    2012-01-01

    Full Text Available Our work aimed at studying the strategy of woody plants regeneration during the regeneration of a spruce stand with the admixture of beech and Douglas-fir by border cutting (NW-SE aspect on acidic sites of higher elevations in the Bohemian-Moravian Upland. Spruce is better adapted to bear shade than Douglas-fir. Nevertheless, in optimal light conditions up to a distance of ca. 35 m (about 16% DIFFSF from the stand edge, the Douglas-fir can put the spruce into danger as to height growth. By contrast to beech, the density of spruce is significantly higher within the distance of 45 m (about 15% DIFFSF from the stand edge but further on the situation would change to the benefit of beech. The density of Douglas-fir significantly dominates over beech within a distance of 35 m from the stand edge; from 55 m (less than 15% DIFFSF, the situation changes in favour of beech. Beech can survive in full shade deep in the stand core waiting for its opportunity to come. As compared to spruce and Douglas-fir, the height growth of beech was at all times significantly greater at a distance of 25 m from the stand edge. Converted to practical conditions, spruce and Douglas-fir with individually admixed beech seedlings showed good prosperity approximately up to a distance of one stand height from the edge. A mixture of spruce and beech did well at a greater distance but good prosperity at a distance of 2–3 stand heights was shown only by beech. Thus, border regeneration eliminates disadvantages of the climatic extremes of clear-cutting and specifics of shelterwood felling during which one – usually shade-tolerant tree species dominates in the natural regeneration (e.g. beech.

  14. IMAGE ANALYSIS BASED ON EDGE DETECTION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K-means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model,gray level l, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.

  15. Contour adaptation reduces the spreading of edge induced colors.

    Science.gov (United States)

    Coia, Andrew J; Crognale, Michael A

    2017-04-25

    Brief exposure to flickering achromatic outlines of an area causes a reduction in the brightness contrast of the surface inside the area. This contour adaptation to achromatic contours does not reduce surface contrast when the surface is chromatic (the saturation or colorimetric purity of the surface is maintained). In addition to reducing the brightness of physical luminance contrast, contour adaptation also reduces (or even reverses) the illusory brightness contrast seen in the Craik-O'Brien-Cornsweet illusion, in which two physically identical grey areas appear different brightness because of a sharp luminance edge separating them. Chromatic color spreading illusions also occur with chromatic inducing edges, and an unanswered question is whether contour adaptation can reduce the perceived contrast of illusory color spreading from edges, even though it cannot reduce the perceived contrast of physical surface color. The current studies use a color spreading illusion known as the watercolor effect in order to test whether illusory color spreading is affected by contour adaptation. The general findings of physical achromatic contrast being reduced and chromatic contrast being robust to contour adaptation were replicated. However, both illusory brightness and color were reduced by contour adaptation, even when the illusion edges only differed in chromatic contrast with each other and the background. Additional studies adapting to chromatic contours showed opposite effects on illusory color contrast than achromatic adaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Edge Detection Based On the Characteristic of Primary Visual Cortex Cells

    Science.gov (United States)

    Zhu, M. M.; Xu, Y. L.; Ma, H. Q.

    2018-01-01

    Aiming at the problem that it is difficult to balance the accuracy of edge detection and anti-noise performance, and referring to the dynamic and static perceptions of the primary visual cortex (V1) cells, a V1 cell model is established to perform edge detection. A spatiotemporal filter is adopted to simulate the receptive field of V1 simple cells, the model V1 cell is obtained after integrating the responses of simple cells by half-wave rectification and normalization, Then the natural image edge is detected by using static perception of V1 cells. The simulation results show that, the V1 model can basically fit the biological data and has the universality of biology. What’s more, compared with other edge detection operators, the proposed model is more effective and has better robustness

  17. Image Edge Tracking via Ant Colony Optimization

    Science.gov (United States)

    Li, Ruowei; Wu, Hongkun; Liu, Shilong; Rahman, M. A.; Liu, Sanchi; Kwok, Ngai Ming

    2018-04-01

    A good edge plot should use continuous thin lines to describe the complete contour of the captured object. However, the detection of weak edges is a challenging task because of the associated low pixel intensities. Ant Colony Optimization (ACO) has been employed by many researchers to address this problem. The algorithm is a meta-heuristic method developed by mimicking the natural behaviour of ants. It uses iterative searches to find the optimal solution that cannot be found via traditional optimization approaches. In this work, ACO is employed to track and repair broken edges obtained via conventional Sobel edge detector to produced a result with more connected edges.

  18. Gyrosheath near the tokamak edge

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Xiao, H.; Valanju, P.M.

    1993-03-01

    A new model for the structure of the radial electric field profile in the edge during the H-mode is proposed. Charge separation caused by the difference between electron and ion gyromotion, or more importantly in a tokamak, the banana motion (halo effect) can self-consistently produce an electric dipole moment that causes the sheared radial electric field. The calculated results based on the model are consistent with D-III D and TEXTOR experimental results

  19. Extracting weights from edge directions to find communities in directed networks

    International Nuclear Information System (INIS)

    Lai, Darong; Lu, Hongtao; Nardini, Christine

    2010-01-01

    Community structures are found to exist ubiquitously in real-world complex networks. We address here the problem of community detection in directed networks. Most of the previous literature ignores edge directions and applies methods designed for community detection in undirected networks, which discards valuable information and often fails when different communities are defined on the basis of incoming and outgoing edges. We suggest extracting information about edge directions using a PageRank random walk and translating such information into edge weights. After extraction we obtain a new weighted directed network in which edge directions can then be safely ignored. We thus transform community detection in directed networks into community detection in reweighted undirected networks. Such an approach can benefit directly from the large volume of algorithms for the detection of communities in undirected networks already developed, since it is not obvious how to extend these algorithms to account for directed networks and the procedure is often difficult. Validations on synthetic and real-world networks demonstrate that the proposed framework can effectively detect communities in directed networks

  20. Edge and line detection of complicated and blurred objects

    OpenAIRE

    Haugsdal, Kari

    2010-01-01

    This report deals with edge and line detection in pictures with complicated and/or blurred objects. It explores the alternatives available, in edge detection, edge linking and object recognition. Choice of methods are the Canny edge detection and Local edge search processing combined with regional edge search processing in the form of polygon approximation.

  1. The edge of space time

    International Nuclear Information System (INIS)

    Hawking, S.

    1993-01-01

    What happened at the beginning of the expansion of the universe. Did space time have an edge at the Big Bang. The answer is that, if the boundary conditions of the universe are that it has no boundary, time ceases to be well-defined in the very early universe as the direction ''north'' ceases to be well defined at the North Pole of the Earth. The quantity that we measure as time has a beginning but that does not mean spacetime has an edge, just as the surface of the Earth does not have an edge at the North Pole. 8 figs

  2. Theoretical insights into the effect of terrace width and step edge coverage on CO adsorption and dissociation over stepped Ni surfaces.

    Science.gov (United States)

    Yang, Kuiwei; Zhang, Minhua; Yu, Yingzhe

    2017-07-21

    Vicinal surfaces of Ni are model catalysts of general interest and great importance in computational catalysis. Here we report a comprehensive study conducted with density functional theory on Ni[n(111) × (100)] (n = 2, 3 and 4) surfaces to explore the effect of terrace width and step edge coverage on CO adsorption and dissociation, a probe reaction relevant to many industrial processes. The coordination numbers (CN), the generalized coordination numbers and the d band partial density of states (d-PDOS) of Ni are identified as descriptors to faithfully reflect the difference of the step edge region for Ni[n(111) × (100)]. Based on analysis of the energy diagrams for CO activation and dissociation as well as the structural features of the Ni(311), Ni(211) and Ni(533) surfaces, Ni(211) (n = 3) is proposed as a model of adequate representativeness for Ni[n(111) × (100)] (n≥ 3) surface groups in investigating small molecule activation over such stepped structures. Further, a series of Ni(211) surfaces with the step edge coverage ranging from 1/4 to 1 monolayer (ML) were utilized to assess their effect on CO activation. The results show that CO adsorption is not sensitive to the step edge coverage, which could readily approach 1 ML under a CO-rich atmosphere. In contrast, CO dissociation manifests strong coverage dependence when the coverage exceeds 1/2 ML, indicating that significant adsorbate-adsorbate interactions emerge. These results are conducive to theoretical studies of metal-catalyzed surface processes where the defects play a vital role.

  3. Protected Edge Modes without Symmetry

    Directory of Open Access Journals (Sweden)

    Michael Levin

    2013-05-01

    Full Text Available We discuss the question of when a gapped two-dimensional electron system without any symmetry has a protected gapless edge mode. While it is well known that systems with a nonzero thermal Hall conductance, K_{H}≠0, support such modes, here we show that robust modes can also occur when K_{H}=0—if the system has quasiparticles with fractional statistics. We show that some types of fractional statistics are compatible with a gapped edge, while others are fundamentally incompatible. More generally, we give a criterion for when an electron system with Abelian statistics and K_{H}=0 can support a gapped edge: We show that a gapped edge is possible if and only if there exists a subset of quasiparticle types M such that (1 all the quasiparticles in M have trivial mutual statistics, and (2 every quasiparticle that is not in M has nontrivial mutual statistics with at least one quasiparticle in M. We derive this criterion using three different approaches: a microscopic analysis of the edge, a general argument based on braiding statistics, and finally a conformal field theory approach that uses constraints from modular invariance. We also discuss the analogous result for two-dimensional boson systems.

  4. Physics-based edge evaluation for improved color constancy

    NARCIS (Netherlands)

    Gijsenij, A.; Gevers, T.; van de Weijer, J.

    2009-01-01

    Edge-based color constancy makes use of image derivatives to estimate the illuminant. However, different edge types exist in real-world images such as shadow, geometry, material and highlight edges. These different edge types may have a distinctive influence on the performance of the illuminant

  5. Effect of annealing ambient on anisotropic retraction of film edges during solid-state dewetting of thin single crystal films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye Hyun; Thompson, Carl V., E-mail: cthomp@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States); Ma, Wen [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States); Yildiz, Bilge [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States)

    2016-08-21

    During solid-state dewetting of thin single crystal films, film edges retract at a rate that is strongly dependent on their crystallographic orientations. Edges with kinetically stable in-plane orientations remain straight as they retract, while those with other in-plane orientations develop in-plane facets as they retract. Kinetically stable edges have retraction rates that are lower than edges with other orientations and thus determine the shape of the natural holes that form during solid-state dewetting. In this paper, measurements of the retraction rates of kinetically stable edges for single crystal (110) and (100) Ni films on MgO are presented. Relative retraction rates of kinetically stable edges with different crystallographic orientations are observed to change under different annealing conditions, and this accordingly changes the initial shapes of growing holes. The surfaces of (110) and (100) films were also characterized using low energy electron diffraction, and different surface reconstructions were observed under different ambient conditions. The observed surface structures were found to correlate with the observed changes in the relative retraction rates of the kinetically stable edges.

  6. An Elongated Leading Edge Facilitates Rotation Flap Closure: In Vivo Demonstration.

    Science.gov (United States)

    Lichon, Vanessa; Barbosa, Naiara; Gomez, Doug; Goldman, Glenn

    2016-01-01

    Variation in the design of a rotation flap may affect wound closure tension. Lengthening the leading edge of a rotation flap has been a method of reducing the tension of closure in the primary motion. An in vitro study negating this tenant has been published. The authors set out to design an in vivo experiment to determine if lengthening the leading edge of a rotation flap has the effect of reducing closure tension in the primary motion of the repair. An animal study approved by Institutional Animal Care and Use Committee was undertaken in a pig model. A tension-measuring apparatus was designed using Teflon-coated wires and digital tensiometers. Rotation flaps of a standard design and with elongated leading edges were incised on the flanks of pigs under general anesthesia. Flap closure tensions were measured at points along the leading edge of the flap and in the secondary motion. Elongating the leading edge of a flap led to a statistically significant reduction in closure tension in the primary motion of the flap and at the flap tip. The secondary motion closure tensions were essentially unaffected. The authors confirm that elongating the leading edge of a standard rotation flap will reduce closure tension in the primary flap motion.

  7. Active probing of plasma edge turbulence and feedback studies on the Texas Experimental Tokamak (TEXT)

    International Nuclear Information System (INIS)

    Uckan, T.; Richards, B.; Bengtson, R.D.

    1993-01-01

    The edge fluctuations play a critical role in the overall tokamak confinement. Experiments on TEXT show that electrostatic fluctuations in the edge plasma are the dominant mechanism for energy and particle transport. The basic mechanisms responsible for the edge turbulence are the subject of ongoing research in fusion devices. To understand the driving forces responsible for edge fluctuations, a novel experiment is underway on TEXT to actively modify the turbulence at the plasma edge by launching waves using electrostatic probes in the shadow of the limiter. This technique permits active probing of the spectral properties of the edge turbulence. This new approach to the study of edge fluctuations can provide more insight into the basic dynamics of the turbulence and may, in turn, enable detailed comparison with the theory. These experiments, which rely on the use of oscillating electric fields at the plasma edge, complement edge fluctuation control studies that are presently limited to the use of applied dc biasing to influence the edge electric field profile. These experiments have been extended to control of the edge plasma fluctuation level, using feedback to explore its effects on the edge turbulence characteristics as well as on confinement. (author) 8 refs., 7 figs

  8. HIGHER ORDER SPECIATION EFFECTS ON PLUTONIUM L3 X-RAY ABSORPTION NEAR EDGE SPECTRA.

    Energy Technology Data Exchange (ETDEWEB)

    Conradson, Steven D.; Abney, Kent D.; Begg, Bruce D.; Brady, Erik D.; Clark, David L.; den Auwer, Christophe; Ding, Mei; Dorhout, Peter K.; Espinosa-Faller, Francisco J.; Gordon, Pamela L.; Hess, Nancy J.; Hess, Ryan F.; Keogh, D. Webster; Lander, Gerard H.; Lupinetti, Anthony J.; Neu, Mary P.; Palmer, Phillip D.; Paviet-Hartmann, Patricia; Reilly, Sean D.; Runde, Wolfgang H.; Tait, C. Drew; Veirs, D. Kirk

    2003-06-09

    Pu L{sub 3} X-ray Near Edge Absorption Spectra for Pu(0-VII) are reported for more than 50 chalcogenides, chlorides, hydrates, hydroxides, nitrates, carbonates, oxy-hydroxides, and other compounds both as solids and in solution, and substituted in zirconlite, perovksite, and borosilicate glass. This large data base extends the known correlations between the energy and shape of these spectra from the usual association of the XANES with valence and site symmetry to higher order chemical effects. Because of the large number of compounds of these different types a number of novel and unexpected behaviors are observed.

  9. Transaortic edge-to-edge mitral valve repair for moderate secondary/functional mitral regurgitation in patients undergoing aortic root/valve intervention.

    Science.gov (United States)

    Choudhary, Shiv Kumar; Abraham, Atul; Bhoje, Amol; Gharde, Parag; Sahu, Manoj; Talwar, Sachin; Airan, Balram

    2017-11-01

    The present study evaluates the feasibility, safety, and efficacy of edge-to-edge repair for moderate secondary/functional mitral regurgitation in patients undergoing aortic valve/root interventions. Sixteen patients underwent transaortic edge-to-edge mitral valve repair. Mitral regurgitation was 2+ in 8 patients and 3+ in 6 patients. Two patients in whom cardiac arrest developed preoperatively had severe (4+) mitral regurgitation. Patients underwent operation for severe aortic regurgitation ± aortic root lesions. The mean left ventricular systolic and diastolic diameters were 51.5 ± 12.8 mm and 70.7 ± 10.7 mm, respectively. Left ventricular ejection fraction ranged from 20% to 60%. Primary surgical procedure included Bentall's ± hemiarch replacement in 10 patients, aortic valve replacement in 5 patients, and noncoronary sinus replacement with aortic valve repair in 1 patient. Severity of mitral regurgitation decreased to trivial or zero in 13 patients, 1+ in 2 patients, and 2+ in 1 patient. There were no gradients across the mitral valve in 9 patients, less than 5 mm Hg in 6 patients, and 9 mm Hg in 1 patient. There was no operative mortality. Follow-up ranged from 2 weeks to 54 months. Echocardiography showed trivial or no mitral regurgitation in 12 patients, 1+ in 2 patients, and 2+ in 2 patients. None of the patients had significant mitral stenosis. The mean left ventricular systolic and diastolic diameters decreased to 40.5 ± 10.3 mm and 58.7 ± 11.6 mm, respectively. Ejection fraction also improved slightly (22%-65%). Transaortic edge-to-edge mitral valve repair is a safe and effective technique to abolish secondary/functional mitral regurgitation. However, its impact on overall survival needs to be studied. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  10. Edge states of a three-dimensional topological insulator

    International Nuclear Information System (INIS)

    Deb, Oindrila; Sen, Diptiman; Soori, Abhiram

    2014-01-01

    We use the bulk Hamiltonian for a three-dimensional topological insulator such as Bi 2 Se 3 to study the states which appear on its various surfaces and along the edge between two surfaces. We use both analytical methods based on the surface Hamiltonians (which are derived from the bulk Hamiltonian) and numerical methods based on a lattice discretization of the bulk Hamiltonian. We find that the application of a potential barrier along an edge can give rise to states localized at that edge. These states have an unusual energy-momentum dispersion which can be controlled by applying a potential along the edge; in particular, the velocity of these states can be tuned to zero. The scattering and conductance across the edge is studied as a function of the edge potential. We show that a magnetic field in a particular direction can also give rise to zero energy states on certain edges. We point out possible experimental ways of looking for the various edge states. (paper)

  11. Edge effects in four-point direct current potential drop measurements on metal plates

    International Nuclear Information System (INIS)

    Lu, Y; Bowler, N; Bowler, J R; Huang, Y

    2009-01-01

    Four-point direct current potential drop (DCPD) measurements are commonly used to measure the conductivity (or resistivity) of semiconductors and ferrous or non-ferrous metals. The measured electrical potential difference is often interpreted in terms of analytic expressions developed for large plates that are either 'thin' or 'thick' relative to the probe length. It is well known that the presence of the back surface of a plate leads to a solution expressed in terms of an infinite series representing the current source and its images. This approach can be generalized to account for multiple surfaces in order to obtain a solution for a finite plate, but convergence of the series is poor when the plate dimensions are similar to or smaller than the separation of the current injection and extraction points. Here, Fourier series representations of the infinite sums are obtained. It is shown that the Fourier series converge with many fewer terms than the series obtained from image theory, for plates with dimensions similar to or smaller than the separation of the current injection and extraction points. Comparing calculated results for the potential drop obtained by a four-point probe centred on finite plates of varying dimension, with those for a probe in contact with a large (laterally infinite) plate, estimates are given of the uncertainty due to edge effects in measurements on small plates interpreted using analytic formulae developed for large plates. It is also shown that these uncertainties due to edge effects are reduced, for a given plate size, if the probe pick-up points are moved closer to the current injection points, rather than adopting the common arrangement in which the four probe points are equally spaced. Calculated values of DCPD are compared with experimental data taken on aluminium and spring-steel plates of various sizes and excellent agreement is obtained.

  12. Edge effects in four-point direct current potential drop measurements on metal plates

    Science.gov (United States)

    Lu, Y.; Bowler, N.; Bowler, J. R.; Huang, Y.

    2009-07-01

    Four-point direct current potential drop (DCPD) measurements are commonly used to measure the conductivity (or resistivity) of semiconductors and ferrous or non-ferrous metals. The measured electrical potential difference is often interpreted in terms of analytic expressions developed for large plates that are either 'thin' or 'thick' relative to the probe length. It is well known that the presence of the back surface of a plate leads to a solution expressed in terms of an infinite series representing the current source and its images. This approach can be generalized to account for multiple surfaces in order to obtain a solution for a finite plate, but convergence of the series is poor when the plate dimensions are similar to or smaller than the separation of the current injection and extraction points. Here, Fourier series representations of the infinite sums are obtained. It is shown that the Fourier series converge with many fewer terms than the series obtained from image theory, for plates with dimensions similar to or smaller than the separation of the current injection and extraction points. Comparing calculated results for the potential drop obtained by a four-point probe centred on finite plates of varying dimension, with those for a probe in contact with a large (laterally infinite) plate, estimates are given of the uncertainty due to edge effects in measurements on small plates interpreted using analytic formulae developed for large plates. It is also shown that these uncertainties due to edge effects are reduced, for a given plate size, if the probe pick-up points are moved closer to the current injection points, rather than adopting the common arrangement in which the four probe points are equally spaced. Calculated values of DCPD are compared with experimental data taken on aluminium and spring-steel plates of various sizes and excellent agreement is obtained.

  13. Method of Preparation AZP4330 PR Pattern with Edge Slope 40°

    Science.gov (United States)

    Wu, Jie; Zhao, Hongyuan; Yu, Yuanwei; Zhu, Jian

    2018-03-01

    When the edge which is under the multi-film is more steep or angular, the stress in the multilayer film near the edge is concentrated, this situation will greatly reduce the reliability of electronic components. And sometimes, we need some special structure such as a slope with a specific angle in the MEMS, so that the metal line can take the signal to the output pad through the slope instead of deep step. To cover these problems, the lithography method of preparing the structure with edge slope is studied. In this paper, based on the Kirchhoff scalar diffraction theory we try to change the contact exposure gap and the post-baking time at the specific temperature to find out the effect about the edge angle of the photoresist. After test by SEM, the results were presented by using AZP4330 photoresist, we can get the PR Pattern with edge slope 40° of the process and the specific process parameters.

  14. How edge-reinforced random walk arises naturally

    NARCIS (Netherlands)

    Rolles, S.W.W.

    2003-01-01

    We give a characterization of a modified edge-reinforced random walk in terms of certain partially exchangeable sequences. In particular, we obtain a characterization of an edge-reinforced random walk (introduced by Coppersmith and Diaconis) on a 2-edge-connected graph. Modifying the notion of

  15. EMC3-Eirene simulations of gas puff effects on edge density and ICRF coupling in ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Noterdaeme, Jean-Marie [Max Planck Institute for Plasma Physics, Garching (Germany); University of Ghent, Ghent (Belgium); Coster, David; Lunt, Tilmann; Bobkov, Volodymyr; Feng, Yuehe [Max Planck Institute for Plasma Physics, Garching (Germany); Collaboration: ASDEX Upgrade team

    2015-05-01

    Ion cyclotron range of frequency (ICRF) heating relies on the Fast Wave (FW) to transport the power from the edge (the antenna) to the plasma center. Since the FW is evanescent below a critical density (typically in the 10{sup 18} m{sup -3} range), the wave does not propagate in the region where the density is below this value in the very edge of the plasma. The coupling depends strongly on the width of this region. The distance between the ICRF antenna and the FW cut-off layer can be made smaller by increasing the edge density in front of the ICRF antenna. Previous experiments in many tokamaks and preliminary simulation results for AUG and JET with EDGE2D-EIRENE show that the edge density could indeed be increased with gas puffing at the top of the vessel or in the midplane. But the 2D code cannot quantitatively reproduce the experimental results, mainly due to the assumptions of toroidal axisymmetry. EMC3-EIRENE is a 3D Edge Monte Carlo plasma fluid transport code. By including the toroidal nonaxisymmetric plasma facing components and 3D positions of gas valves in the code, the simulations can be made more realistic. We will show first simulation results of the code and a comparison to experiments.

  16. Analyses of Effects of Cutting Parameters on Cutting Edge Temperature Using Inverse Heat Conduction Technique

    Directory of Open Access Journals (Sweden)

    Marcelo Ribeiro dos Santos

    2014-01-01

    Full Text Available During machining energy is transformed into heat due to plastic deformation of the workpiece surface and friction between tool and workpiece. High temperatures are generated in the region of the cutting edge, which have a very important influence on wear rate of the cutting tool and on tool life. This work proposes the estimation of heat flux at the chip-tool interface using inverse techniques. Factors which influence the temperature distribution at the AISI M32C high speed steel tool rake face during machining of a ABNT 12L14 steel workpiece were also investigated. The temperature distribution was predicted using finite volume elements. A transient 3D numerical code using irregular and nonstaggered mesh was developed to solve the nonlinear heat diffusion equation. To validate the software, experimental tests were made. The inverse problem was solved using the function specification method. Heat fluxes at the tool-workpiece interface were estimated using inverse problems techniques and experimental temperatures. Tests were performed to study the effect of cutting parameters on cutting edge temperature. The results were compared with those of the tool-work thermocouple technique and a fair agreement was obtained.

  17. Visible imaging of edge turbulence in NSTX

    International Nuclear Information System (INIS)

    Zweben, S.; Maqueda, R.; Hill, K.; Johnson, D.

    2000-01-01

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radical heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of gas puff imaging to locally illuminate the edge density turbulence

  18. Visible imaging of edge turbulence in NSTX

    International Nuclear Information System (INIS)

    S. Zweben; R. Maqueda; K. Hill; D. Johnson; S. Kaye; H. Kugel; F. Levinton; R. Maingi; L. Roquemore; S. Sabbagh; G. Wurden

    2000-01-01

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radial heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of ''gas puff imaging'' to locally illuminate the edge density turbulence

  19. Conduction band edge effective mass of La-doped BaSnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    James Allen, S., E-mail: allen@itst.ucsb.edu; Law, Ka-Ming [Physics Department, University of California, Santa Barbara, California 93106-5100 (United States); Raghavan, Santosh; Schumann, Timo; Stemmer, Susanne [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States)

    2016-06-20

    BaSnO{sub 3} has attracted attention as a promising material for applications requiring wide band gap, high electron mobility semiconductors, and moreover possesses the same perovskite crystal structure as many functional oxides. A key parameter for these applications and for the interpretation of its properties is the conduction band effective mass. We measure the plasma frequency of La-doped BaSnO{sub 3} thin films by glancing incidence, parallel-polarized resonant reflectivity. Using the known optical dielectric constant and measured electron density, the resonant frequency determines the band edge electron mass to be 0.19 ± 0.01. The results allow for testing band structure calculations and transport models.

  20. Imaging of Coulomb-Driven Quantum Hall Edge States

    KAUST Repository

    Lai, Keji; Kundhikanjana, Worasom; Kelly, Michael A.; Shen, Zhi-Xun; Shabani, Javad; Shayegan, Mansour

    2011-01-01

    The edges of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime are divided into alternating metallic and insulating strips, with their widths determined by the energy gaps of the QHE states and the electrostatic Coulomb

  1. Investigation of waste glass pouring behavior over a knife edge

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The development of vitrification technology for converting radioactive waste into a glass solid began in the early 1960s. Some problems encountered in the vitrification process are still waiting for a solution. One of them is wicking. During pouring, the glass stream flows down the wall of the pour spout until it reaches an angled cut in the wall. At this point, the stream is supposed to break cleanly away from the wall of the pour spout and fall freely into the canister. However, the glass stream is often pulled toward the wall and does not always fall into the canister, a phenomenon known as wicking. Phase 1 involves the assembly, construction, and testing of a melter capable of supplying molten glass at operational flow rates over a break-off point knife edge. Phase 2 will evaluate the effects of glass and pour spout temperatures as well as glass flow rates on the glass flow behavior over the knife edge. Phase 3 will identify the effects on wicking resulting from varying the knife edge diameter and height as well as changing the back-cut angle of the knife edge. The following tasks were completed in FY97: Design the experimental system for glass melting and pouring; Acquire and assemble the melter system; and Perform initial research work

  2. CFAR Edge Detector for Polarimetric SAR Images

    DEFF Research Database (Denmark)

    Schou, Jesper; Skriver, Henning; Nielsen, Allan Aasbjerg

    2003-01-01

    Finding the edges between different regions in an image is one of the fundamental steps of image analysis, and several edge detectors suitable for the special statistics of synthetic aperture radar (SAR) intensity images have previously been developed. In this paper, a new edge detector for polar...

  3. What's happening at the edge of tokamaks

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1987-01-01

    Handling the power deposition at the walls of a plasma fusion device and controlling the particle fueling of the plasma originated the interest in the edge of the plasma by magnetic fusion scientists. Recently this interest has intensified because of clear evidence that the quality of the central plasma confinement depends in unexpected ways on details of how the edge plasma is managed. Significant efforts are being pursued to understand and exploit the improved plasma confinement observed in the 'H-mode' obtained with divertors and in the 'super-shots' obtained with low neutral particle flux from the edge of TFTR limiter plasmas. The controls, that determine whether or not these well-confined plasmas are obtained, are applied in the edge plasma where a wealth of atomic and molecular processes occur. A qualitative overview of current research related to plasma edge and desirable features is presented to guide thoughts about atomic processes to be included in modeling and interpreting the plasma edge of tokamaks. (orig.)

  4. First-principles study of graphene edge properties and flake shapes

    OpenAIRE

    Gan, Chee Kwan; Srolovitz, David J.

    2009-01-01

    We use density functional theory to determine the equilibrium shape of graphene flakes, through the calculation of the edge orientation dependence of the edge energy and edge stress of graphene nanoribbons. The edge energy is a nearly linear function of edge orientation angle; increasing from the armchair orientation to the zigzag orientation. Reconstruction of the zigzag edge lowers its energy to less than that of the armchair edge. The edge stress for all edge orientations is compressive, h...

  5. Computer simulation of the L/sub III/-edge densitometer

    International Nuclear Information System (INIS)

    Langner, D.

    1987-11-01

    Since the L/sub III/-edge densitometer was first fielded in 1977, it has displayed a 1 to 1.5% nonlinear deviation from its theoretical linear calibration response. In an effort to explain this nonlinear deviation, this study used a simple, closed-form computer simulation to examine the effects of several variables on the densitometer's measurement of uranium and plutonium in solution. The results of this simulation suggest that the variables that contribute to this nonlinearity include the effects of small-angle scattering and the detection system resolution function. The simulation also examined the effects of matrix contaminants, the shape of the incoming beam, the uranium-to-plutonium ratio for mixed solutions, and the data-reduction technique. All of these variables were found to have some effect on the assay results, although these were generally small. The calculations demonstrate that using a new edge-extrapolation data-reduction technique reduces the instrument's sensitivity to many of these variables

  6. Haptic Edge Detection Through Shear

    Science.gov (United States)

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-03-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.

  7. Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

    Directory of Open Access Journals (Sweden)

    Bráulio A Santos

    Full Text Available Deforestation and forest fragmentation are known major causes of nonrandom extinction, but there is no information about their impact on the phylogenetic diversity of the remaining species assemblages. Using a large vegetation dataset from an old hyper-fragmented landscape in the Brazilian Atlantic rainforest we assess whether the local extirpation of tree species and functional impoverishment of tree assemblages reduce the phylogenetic diversity of the remaining tree assemblages. We detected a significant loss of tree phylogenetic diversity in forest edges, but not in core areas of small (<80 ha forest fragments. This was attributed to a reduction of 11% in the average phylogenetic distance between any two randomly chosen individuals from forest edges; an increase of 17% in the average phylogenetic distance to closest non-conspecific relative for each individual in forest edges; and to the potential manifestation of late edge effects in the core areas of small forest remnants. We found no evidence supporting fragmentation-induced phylogenetic clustering or evenness. This could be explained by the low phylogenetic conservatism of key life-history traits corresponding to vulnerable species. Edge effects must be reduced to effectively protect tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

  8. Edge transport and fluctuation induced turbulence characteristics in early SST-1 plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kakati, B., E-mail: bharat.kakati@ipr.res.in; Pradhan, S., E-mail: pradhan@ipr.res.in; Dhongde, J.; Semwal, P.; Yohan, K.; Banaudha, M.

    2017-02-15

    Highlights: • Anomalous particle transport during the high MHD activity at SST-1. • Electrostatic turbulence is modulated by MHD activity at SST-1 tokamak. • Edge floating potential fluctuations shows poloidal long-range cross correlation. - Abstract: Plasma edge transport characteristics are known to be heavily influenced by the edge fluctuation induced turbulences. These characteristics play a critical role towards the confinement of plasma column in a Tokamak. The edge magnetic fluctuations and its subsequent effect on electrostatic fluctuations have been experimentally investigated for the first time at the edge of the SST-1 plasma column. This paper reports the correlations that exist and is experimentally been observed between the edge densities and floating potential fluctuations with the magnetic fluctuations. The edge density and floating potential fluctuations have been measured with the help of poloidally separated Langmuir probes, whereas the magnetic fluctuations have been measured with poloidally spaced Mirnov coils. Increase in magnetic fluctuations associated with enhanced MHD activities has been found to increase the floating potential and ion saturation current. These observations indicate electrostatic turbulence getting influenced with the MHD activities and reveal the edge anomalous particle transport during SST-1 tokamak discharge. Large-scale coherent structures have been observed in the floating potential fluctuations, indicating long-distance cross correlation in the poloidal directions. From bispectral analysis, a strong nonlinear coupling among the floating potential fluctuations is observed in the low-frequency range about 0–15 kHz.

  9. EFFECTS OF EDGE COVERING ON TENSILE STRENGTH OF MDF

    Directory of Open Access Journals (Sweden)

    Yalçın ÖRS

    1999-03-01

    Full Text Available Dowels, 6, 8 and 10 mm ? diameters were bonded with PVAc adhesive on Medium Density Fiberboard (MDF. Edges were covered with 5, 8 and 12 mm beech wood materials, drilled 25 mm depth. Tensile strength measurments were made on the samples. The highest tensile strength value was given as 6 mm ? dowel and MDF covered with 8 mm thickness beech wood material (2.294 N/mm2, the lowest value was obtained with 10 mm ? dowel and with unprocessed MDF (1.314 N/mm2.

  10. Tape edge study in a linear tape drive with single-flanged guides

    International Nuclear Information System (INIS)

    Goldade, A.V.; Bhushan, Bharat

    2004-01-01

    Improved tape guiding and tape dimensional stability are essential for magnetic tape linear recoding formats to take advantage of vastly increased track density and thereby achieve higher storage capacities. Tape guiding is dependent on numerous parameters, such as type of the guides and tape path geometry, quality of virgin tape edge, drive operating parameters (e.g., tape speed and tape tension), mechanical properties of the tape, and tape geometry (e.g., cupping and curvature). The objective of the present study is to evaluate guiding and tribological performance of single-flanged guides with porous air bearings in a linear tape drive. A comparison of guiding performance of the dual flanged stationary guides and single-flanged guides with porous air bearings is performed. The effect of tape path geometry, drive operating conditions (speed and tension) and tape edge quality of factory-slit tapes on tape guiding are evaluated during short-term tests. A lateral force measurement technique is used to measure the force exerted by the tape edge on the guide flange. A technique for the lateral tape motion measurement is used to study the effect of continuous sliding on tape guiding. Wear tests up to 5000 cycles are conducted and coefficient of friction and lateral tape motion are monitored to study the effect of drive operating conditions (speed and tension), edge quality of factory-slit tapes and tape thickness on tape guiding. Optical microscopy, atomic force microscopy and scanning electron microscopy are employed to study and quantify the quality of tape edge

  11. Environmental Dataset Gateway (EDG) REST Interface

    Data.gov (United States)

    U.S. Environmental Protection Agency — Use the Environmental Dataset Gateway (EDG) to find and access EPA's environmental resources. Many options are available for easily reusing EDG content in other...

  12. Edge-injective and edge-surjective vertex labellings

    DEFF Research Database (Denmark)

    Brandt, Stephan; Rautenbach, D.; Regen, F.

    2010-01-01

    For a graph G = (V, E) we consider vertex-k-labellings f : V → {1,2, ,k} for which the induced edge weighting w : E → {2, 3,., 2k} with w(uv) = f(u) + f(v) is injective or surjective or both. We study the relation between these labellings and the number theoretic notions of an additive basis and ...

  13. Living edge

    DEFF Research Database (Denmark)

    Earon, Ofri

    2014-01-01

    was originally introduced to enhance indoor qualities including light and view. Throughout the paper, it is argued that these ecological motives have grown to architectural and urban dimensions. The paper analyzes the characteristics and potentials of these dimensions and their interconnections. The paper...... on the ground level, but there is a lack of recognition in the significance of communicative characters as well at the higher part of the edge. The city’s planning approach is “Consider urban life before urban space. Consider urban space before buildings” This urban strategy neglects the possible architectural...... contribution to the street atmosphere and its effect on urban life. Bay balcony has been a common architectural element in Copenhagen’s residential buildings, since the end of the twenties. It is a domestic border with an architectural thickness combining window, door, windowsill and balcony. The bay balcony...

  14. X-ray absorption near edge spectroscopy at the Mn K-edge in highly homogeneous GaMnN diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sancho-Juan, O.; Cantarero, A.; Garro, N.; Cros, A. [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Martinez-Criado, G.; Salome, M.; Susini, J. [ESRF, Polygone Scientifique Louis Neel, 6 rue Jules Horowitz, 38000 Grenoble (France); Olguin, D. [Dept. de Fisica, CINVESTAV-IPN, 07300 Mexico D.F. (Mexico); Dhar, S.; Ploog, K. [Paul Drude Institute, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2006-06-15

    We have studied by X-ray absorption spectroscopy the local environment of Mn in highly homogeneous Ga{sub 1-x}Mn{sub x}N (0.06edges. In this report, we focus our attention to the X-ray absorption near edge spectroscopy (XANES) results. The comparison of the XANES spectra corresponding to the Ga and Mn edges indicates that Mn is substitutional to Ga in all samples studied. The XANES spectra measured at the Mn absorption edge shows in the near-edge region a double peak and a shoulder below the absorption edge and the main absorption peak after the edge, separated around 15 eV above the pre-edge structure. We have compared the position of the edge with that of MnO (Mn{sup 2+}) and Mn{sub 2}O{sub 3} (Mn{sup 3+}). All samples studied present the same Mn oxidation state, 2{sup +}. In order to interprete the near-edge structure, we have performed ab initio calculations with a 2 x 2 x 1supercell ({proportional_to}6% Mn) using the full potential linear augmented plane wave method as implemented in the Wien2k code. The calculations show the appearance of Mn anti-bonding t{sub 2g} bands, which are responsible for the pre-edge absorption. The shoulder and main absorption peaks are due to transitions from the valence band 1s-states of Mn to the p-contributions of the conduction bands. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Curvature and temperature gradient driven instabilities in tokomak edge plasmas with SOL

    International Nuclear Information System (INIS)

    Novakovskii, S.V.; Guzdar, P.N.; Drake, J.F.; Liu, C.S.

    1996-01-01

    Curvature driven resistive ballooning modes (RBM) as well as the electron temperature gradient (ETG) modes have been investigated in the tokomak edge region and the SOL, with the help of the numerical code open-quotes 2D-BALLOONclose quotes. This is an initial value code, which determines the stability properties and estimates the quasi-linear transport for given density, temperature, the magnetic and electric field profiles, taking into account the SOL geometry as well as a closed flux region. The results related to the following issues will be presented: (1) Comparative analysis of the ETG and the RBM instabilities in the SOL and their influence on the transport in the edge region (inside the Last Closed Magnetic Surface). (2) The influence of the effective Debye sheath current. (3) Different poloidal positions of the toroidal limiter and their effect on the instabilities. Other aspects of the edge plasma turbulence, such as finite β effects, flow-shear of the poloidal rotation etc. will also be discussed

  16. Analysis of elastic-plastic problems using edge-based smoothed finite element method

    International Nuclear Information System (INIS)

    Cui, X.Y.; Liu, G.R.; Li, G.Y.; Zhang, G.Y.; Sun, G.Y.

    2009-01-01

    In this paper, an edge-based smoothed finite element method (ES-FEM) is formulated for stress field determination of elastic-plastic problems using triangular meshes, in which smoothing domains associated with the edges of the triangles are used for smoothing operations to improve the accuracy and the convergence rate of the method. The smoothed Galerkin weak form is adopted to obtain the discretized system equations, and the numerical integration becomes a simple summation over the edge-based smoothing domains. The pseudo-elastic method is employed for the determination of stress field and Hencky's total deformation theory is used to define effective elastic material parameters, which are treated as field variables and considered as functions of the final state of stress fields. The effective elastic material parameters are then obtained in an iterative manner based on the strain controlled projection method from the uniaxial material curve. Some numerical examples are investigated and excellent results have been obtained demonstrating the effectivity of the present method.

  17. Field demonstration of a portable, X-ray, K-edge heavy-metal detector

    International Nuclear Information System (INIS)

    Jensen, T.; Aljundi, T.; Whitmore, C.; Zhong, H.; Gray, J.N.

    1997-01-01

    Under the Characterization, Monitoring, and Sensor Technology Crosscutting Program, the authors have designed and built a K-edge heavy metal detector that measures the level of heavy metal contamination inside closed containers in a nondestructive, non-invasive way. The device employs a volumetric technique that takes advantage of the X-ray absorption characteristics of heavy elements, and is most suitable for characterization of contamination inside pipes, processing equipment, closed containers, and soil samples. The K-edge detector is a fast, efficient, and cost-effective in situ characterization tool. More importantly, this device will enhance personnel safety while characterizing radioactive and toxic waste. The prototype K-edge system was operated at the Materials and Chemistry Laboratory User Facility at the Oak Ridge K-25 Site during February 1997. Uranium contaminated pipes and valves from a UF 6 feed facility were inspected using the K-edge technique as well as a baseline nondestructive assay method. Operation of the K-edge detector was demonstrated for uranium contamination ranging from 10 to 6,000 mg/cm 2 and results from the K-edge measurements were found to agree very well with nondestructive assay measurements

  18. Radiated sound and turbulent motions in a blunt trailing edge flow field

    International Nuclear Information System (INIS)

    Shannon, Daniel W.; Morris, Scott C.; Mueller, Thomas J.

    2006-01-01

    The dipole sound produced by edge scattering of pressure fluctuations at a trailing edge is most often an undesirable effect in turbomachinery and control surface flows. The ability to model the flow mechanisms associated with the production of trailing edge acoustics is important for the quiet design of such devices. The objective of the present research was to experimentally measure flow field and acoustic variables in order to develop an understanding of the mechanisms that generate trailing edge noise. The results of these experiments have provided insight into the causal relationships between the turbulent flow field, unsteady surface pressure, and radiated far field acoustics. Experimental methods used in this paper include particle image velocimetry (PIV), unsteady surface pressures, and far field acoustic pressures. The model investigated had an asymmetric 45 o beveled trailing edge. Reynolds numbers based on chord ranged from 1.2 x 10 6 to 1.9 x 10 6 . It was found that the small-scale turbulent motions in the vicinity of the trailing edge were modulated by a large scale von Karman wake instability. The broadband sound produced by these motions was also found to be dependant on the 'phase' of the wake instability

  19. Edge separation using diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Ravel, B.; Bouldin, C.E.; Renevier, H.; Hodeau, J.L.; Berar, J.F.

    1999-01-01

    We exploit the crystallographic sensitivity of the Diffraction Anomalous Fine-Structure (DAFS) measurement to separate the fine structure contributions of different atomic species with closely spaced resonant energies. In BaTiO 3 the Ti K edge and Ba Lm edges are separated by 281 eV, or about 8.2 Angstrom -1 ), thus severely limiting the information content of the Ti K edge signal. Using the site selectivity of DAFS we can separate the two fine structure spectra using an iterative Kramers-Kronig method, thus extending the range of the Ti K edge spectrum. This technique has application to many rare earth/transition metal compounds, including many magnetic materials of technological significance for which K and L edges overlap in energy. (au)

  20. Edge strength of CAD/CAM materials.

    Science.gov (United States)

    Pfeilschifter, Maria; Preis, Verena; Behr, Michael; Rosentritt, Martin

    2018-05-16

    To investigate the edge force of CAD/CAM materials as a function of (a) material, (b) thickness, and (c) distance from the margin. Materials intended for processing with CAD/CAM were investigated: eight resin composites, one resin-infiltrated ceramic, and a clinically proven lithiumdisilicate ceramic (reference). To measure edge force (that is, load to failure/crack), plates (d = 1 mm) were fixed and loaded with a Vickers diamond indenter (1 mm/min, Zwick 1446) at a distance of 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 mm from the edge. Edge force was defined as a loading force at a distance of 0.5 mm. The type of failure was determined. To investigate the influence of the thickness, all data were determined on 1-mm and 2-mm plates. To test the influence of bonding and an underlying dentin, individual 1-mm plates were bonded to a 1-mm-thick dentin-like (concerning modulus of elasticity) resin composite. For the 1-mm plates, edge force varied between 64.4 ± 24.2 N (Shofu Block HC) and 183.2 ± 63.3 N (ceramic reference), with significant (p ≤ 0.001) differences between the materials. For the 2-mm plates, values between 129.2 ± 32.5 N (Lava Ultimate) and 230.3 ± 67.5 N (Cerasmart) were found. Statistical comparison revealed no significant differences (p > 0.109) between the materials. Brilliant Crios (p = 0.023), Enamic (p = 0.000), Shofu Blocks HC (p = 0.009), and Grandio Bloc (p = 0.002) showed significantly different edge force between the 1-mm- and 2-mm-thick plates. The failure pattern was either cracking, (severe) chipping, or fracture. Material, material thickness, and distance from the edge impact the edge force of CAD/CAM materials. CAD/CAM materials should be carefully selected on the basis of their individual edge force and performance during milling. Copyright © 2018 Elsevier Ltd. All rights reserved.