WorldWideScience

Sample records for edge density gradient

  1. The impact of edge gradients in the pressure, density, ion temperature, and electron temperature on edge-localized modes

    International Nuclear Information System (INIS)

    Kleva, Robert G.; Guzdar, Parvez N.

    2011-01-01

    The magnitude of the energy and particle fluxes in simulations of edge-localized modes (ELMs) is determined by the edge gradients in the pressure, density, ion temperature, and electron temperature. The total edge pressure gradient is the dominant influence on ELMs by far. An increase (decrease) of merely 2% in the pressure gradient results in an increase (decrease) of more than a factor of ten in the size of the ELM bursts. At a fixed pressure gradient, the size of the ELM bursts decreases as the density gradient increases, while the size of the bursts increases as the electron temperature gradient or, especially, the ion temperature gradient increases.

  2. The disparate impact of the ion temperature gradient and the density gradient on edge transport and the low-high transition in tokamaks

    International Nuclear Information System (INIS)

    Kleva, Robert G.; Guzdar, Parvez N.

    2009-01-01

    Steepening of the ion temperature gradient in nonlinear fluid simulations of the edge region of a tokamak plasma causes a rapid degradation in confinement. As the density gradient steepens, there is a continuous improvement in confinement analogous to the low (L) to high (H) transition observed in tokamaks. In contrast, as the ion temperature gradient steepens, there is a rapid increase in the particle and energy fluxes and no L-H transition. For a given pressure gradient, confinement always improves when more of the pressure gradient arises from the density gradient, and less of the pressure gradient arises from the ion temperature gradient.

  3. Effects of density gradients and fluctuations at the plasma edge on ECEI measurements at ASDEX Upgrade

    Science.gov (United States)

    Vanovac, B.; Wolfrum, E.; Denk, S. S.; Mink, F.; Laggner, F. M.; Birkenmeier, G.; Willensdorfer, M.; Viezzer, E.; Hoelzl, M.; Freethy, S. J.; Dunne, M. G.; Lessig, A.; Luhmann, N. C., Jr.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2018-04-01

    Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (T e ) and its fluctuations (δT e ). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects, the scrape-off layer region is not accessible to the ECEI measurements in steady state conditions and that the signal is dominated by the shine-through emission. Transient effects, such as filaments, can change the radiation transport locally, but cannot be distinguished from the shine-through. Local density measurements are essential for the correct interpretation of the electron cyclotron emission, since the density fluctuations influence the temperature measurements at the plasma edge. As an example, a low frequency 8 kHz mode, which causes 10%-15% fluctuations in the signal level of the ECEI, is analysed. The same mode has been measured with the lithium beam emission spectroscopy density diagnostic, and is very well correlated in time with high frequency magnetic fluctuations. With radiation transport modelling of the electron cyclotron radiation in the ECEI geometry, it is shown that the density contributes significantly to the radiation temperature (T rad) and the experimental observations have shown the amplitude modulation in both density and temperature measurements. The poloidal velocity of the low frequency mode measured by the ECEI is 3 km s-1. The calculated velocity of the high frequency mode measured with the magnetic pick-up coils is about 25 km s-1. Velocities are compared with the E × B background flow velocity and possible explanations for the origin of the low frequency mode are discussed.

  4. Effects of density gradients and fluctuations at the plasma edge on ECEI measurements at ASDEX Upgrade

    NARCIS (Netherlands)

    Vanovac, B.; Wolfrum, E.; Denk, S. S.; Mink, F.; Laggner, F. M.; Birkenmeier, G.; Willensdorfer, M.; Viezzer, E.; Hoelzl, M.; Freethy, S. J.; Dunne, M. G.; Lessig, A.; Luhmann, N. C.; ASDEX Upgrade team,; EUROfusion MST1 Team,

    2018-01-01

    Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (T-e) and its fluctuations (delta T-e). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects,

  5. A novel technique for real-time estimation of edge pedestal density gradients via reflectometer time delay data

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, L., E-mail: zeng@fusion.gat.com; Doyle, E. J.; Rhodes, T. L.; Wang, G.; Sung, C.; Peebles, W. A. [Physics and Astronomy Department, University of California, Los Angeles, California 90095 (United States); Bobrek, M. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6006 (United States)

    2016-11-15

    A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layer density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.

  6. Comments on ''theory of dissipative density-gradient-driven turbulence in the tokamak edge'' [Phys. Fluids 28, 1419 (1985)

    International Nuclear Information System (INIS)

    Krommes, J.A.

    1985-11-01

    The author critiques the model of tokamak edge turbulence by P.W. Terry and P.H. Diamond (Phys. Fluids 28, 1419, 1985). The critique includes a discussion of the physical basis, consistency and quantitative accuracy of the Terry-Diamond model. 19 refs

  7. Insectivorous Birds and Environmental Factors Across an Edge-Interior Gradient in Tropical Rainforest of Malaysia

    OpenAIRE

    Abdullah B. Mohd; Mohamed Zakaria; Hossein Varasteh Moradi; Ebil Yusof

    2009-01-01

    The study objectives were to test: (1) the effects of the edge-interior gradient on understorey insectivorous bird abundance, density and diversity; (2) effects of environmental variables along an edge-interior gradient at population level (i.e., on each sub-guilds and species abundance); (3) possible effects of environmental structure along an edge-interior gradient at community level (i.e., species richness, diversity and total abundance). Fifteen hundred and four birds belonging to ...

  8. Explanation of L→H mode transition based on gradient stabilization of edge thermal fluctuations

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1996-01-01

    A linear analysis of thermal fluctuations, using a fluid model which treats the large radial gradient related phenomena in the plasma edge, leads to a constraint on the temperature and density gradients for stabilization of edge temperature fluctuations. A temperature gradient, or conductive edge heat flux, threshold is identified. It is proposed that the L→H transition takes place when the conductive heat flux to the edge produces a sufficiently large edge temperature gradient to stabilize the edge thermal fluctuations. The consequences following from this mechanism for the L→H transition are in accord with observed phenomena associated with the L→H transition and with the observed parameter dependences of the power threshold. First, a constraint is established on the edge temperature and density gradients that are sufficient for the stability of edge temperature fluctuations. A slab approximation for the thin plasma edge and a fluid model connected to account for the large radial gradients present in the plasma edge are used. Equilibrium solutions are characterized by the value of the density and of its gradient L n -1 double-bond - n -1 , etc. Temperature fluctuations expanded about the equilibrium value are then used in the energy balance equation summed over plasma ions, electrons and impurities to obtain, after linearization, an expression for the growth rate ω of edge localized thermal fluctuations. Thermal stability of the equilibrium solution requires ω ≤ 0, which establishes a constraint that must be satisfied by L n -1 and L T -1 . The limiting value of the constraint (ω = 0) leads to an expression for the minimum value of that is sufficient for thermal stability, for a given value of L T -1. It is found that there is a minimum value of the temperature gradient, (L T -1 ) min that is necessary for a stable solution to exist for any value of L n -1

  9. Combining Step Gradients and Linear Gradients in Density.

    Science.gov (United States)

    Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M

    2015-06-16

    Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.

  10. Microinstabilities in weak density gradient tokamak systems

    International Nuclear Information System (INIS)

    Tang, W.M.; Rewoldt, G.; Chen, L.

    1986-04-01

    A prominent characteristic of auxiliary-heated tokamak discharges which exhibit improved (''H-mode type'') confinement properties is that their density profiles tend to be much flatter over most of the plasma radius. Depsite this favorable trend, it is emphasized here that, even in the limit of zero density gradient, low-frequency microinstabilities can persist due to the nonzero temperature gradient

  11. Edge gradient and safety factor effects on electrostatic turbulent transport in tokamaks

    International Nuclear Information System (INIS)

    Tan, Ing Hwie.

    1992-05-01

    Electrostatic turbulence and transport measurements are performed on the Tokapole-II tokamak at the University of Wisconsin-Madison, as the safety-factor and the edge equilibrium gradients and varied substantially. Tokapole-II is a poloidal divertor tokamak capable of operating at a wide range of safety factors due to its unique magnetic limiter configuration. It also has retractable material limiters in a large scrape-off region, which permits the study of edge boundary conditions like density and temperature gradients. The turbulence is independent of safety factor, but strongly sensitive to the local density gradient, which itself depends upon the limiter configuration. When a material limiter is inserted in a high discharge, the density gradient is increased locally together with a local increase of the turbulence. On the other hand, limiter insertion in low discharges did not increase the density gradient as much and the turbulence properties are unchanged with respect to the magnetic limiter case. It is conducted then, that electrostatic turbulence is caused by the density gradient. Although the electrostatic fluctuation driven transport is enhanced in the large density gradient case, it is in all cases to small to explain the observed energy confinement times. To explore instabilities with small wavelengths, a 0.5 mm diameter shperical Langmuir probe was constructed, and its power compared with the power measured by larger cylindrical probes

  12. The effect of density gradients on hydrometers

    Science.gov (United States)

    Heinonen, Martti; Sillanpää, Sampo

    2003-05-01

    Hydrometers are simple but effective instruments for measuring the density of liquids. In this work, we studied the effect of non-uniform density of liquid on a hydrometer reading. The effect induced by vertical temperature gradients was investigated theoretically and experimentally. A method for compensating for the effect mathematically was developed and tested with experimental data obtained with the MIKES hydrometer calibration system. In the tests, the method was found reliable. However, the reliability depends on the available information on the hydrometer dimensions and density gradients.

  13. Development of edge effects around experimental ecosystem hotspots is affected by edge density and matrix type

    Science.gov (United States)

    Ecological edge effects are sensitive to landscape context. In particular, edge effects can be altered by matrix type and by the presence of other nearby edges. We experimentally altered patch configurations in an African savanna to determine how edge density and matrix type influence edge effect de...

  14. Role of impurity dynamics in resistivity-gradient-driven turbulence and tokamak edge plasma phenomena

    International Nuclear Information System (INIS)

    Hahm, T.S.; Diamond, P.H.; Terry, P.W.; Garcia, L.; Carreras, B.A.

    1986-03-01

    The role of impurity dynamics in resistivity gradient driven turbulence is investigated in the context of modeling tokamak edge plasma phenomena. The effects of impurity concentration fluctuations and gradients on the linear behavior of rippling instabilities and on the nonlinear evolution and saturation of resistivity gradient driven turbulence are studied both analytically and computationally. At saturation, fluctuation levels and particle and thermal diffusivities are calculated. In particular, the mean-square turbulent radial velocity is given by 2 > = (E 0 L/sub s/B/sub z/) 2 (L/sub/eta/ -1 + L/sub z -1 ) 2 . Thus, edged peaked impurity concentrations tend to enhance the turbulence, while axially peaked concentrations tend to quench it. The theoretical predictions are in semi-quantitative agreement with experimental results from the TEXT, Caltech, and Tosca tokamaks. Finally, a theory of the density clamp observed during CO-NBI on the ISX-B tokamak is proposed

  15. ADAPTIVE ANT COLONY OPTIMIZATION BASED GRADIENT FOR EDGE DETECTION

    Directory of Open Access Journals (Sweden)

    Febri Liantoni

    2014-08-01

    Full Text Available Ant Colony Optimization (ACO is a nature-inspired optimization algorithm which is motivated by ants foraging behavior. Due to its favorable advantages, ACO has been widely used to solve several NP-hard problems, including edge detection. Since ACO initially distributes ants at random, it may cause imbalance ant distribution which later affects path discovery process. In this paper an adaptive ACO is proposed to optimize edge detection by adaptively distributing ant according to gradient analysis. Ants are adaptively distributed according to gradient ratio of each image regions. Region which has bigger gradient ratio, will have bigger number of ant distribution. Experiments are conducted using images from various datasets. Precision and recall are used to quantitatively evaluate performance of the proposed algorithm. Precision and recall of adaptive ACO reaches 76.98 % and 96.8 %. Whereas highest precision and recall for standard ACO are 69.74 % and 74.85 %. Experimental results show that the adaptive ACO outperforms standard ACO which randomly distributes ants.

  16. Plasma-edge gradients in L-mode and ELM-free H-mode JET plasmas

    International Nuclear Information System (INIS)

    Breger, P.; Zastrow, K.-D.; Davies, S.J.; K ig, R.W.T.; Summers, D.D.R.; Hellermann, M.G. von; Flewin, C.; Hawkes, N.C.; Pietrzyk, Z.A.; Porte, L.

    1998-01-01

    Experimental plasma-edge gradients in JET during the edge-localized-mode (ELM) free H-mode are examined for evidence of the presence and location of the transport barrier region inside the magnetic separatrix. High spatial resolution data in electron density is available in- and outside the separatrix from an Li-beam diagnostic, and in electron temperature inside the separatrix from an ECE diagnostic, while outside the separatrix, a reciprocating probe provides electron density and temperature data in the scrape-off layer. Ion temperatures and densities are measured using an edge charge-exchange diagnostic. A comparison of observed widths and gradients of this edge region with each other and with theoretical expectations is made. Measurements show that ions and electrons form different barrier regions. Furthermore, the electron temperature barrier width (3-4 cm) is about twice that of electron density, in conflict with existing scaling laws. Suitable parametrization of the edge data enables an electron pressure gradient to be deduced for the first time at JET. It rises during the ELM-free phase to reach only about half the marginal pressure gradient expected from ballooning stability before the first ELM. Subsequent type I ELMs occur on a pressure gradient contour roughly consistent with both a constant barrier width model and a ballooning mode envelope model. (author)

  17. Density gradient effect on waveguide launching of lower hybrid waves

    International Nuclear Information System (INIS)

    Fichet, M.; Fidone, I.

    1981-01-01

    An extensive numerical investigation of the waveguide-plasma coupling, in the lower hybrid range of frequencies, is presented. The role of a sharp density gradient at the plasma edge is investigated. It is found that, in the case of a very sharp gradient, the accessibility condition |nsub(parallel)|>nsub(c)=(1-ω 2 /ωsub(i)ωsub(e))sup(-1/2) is violated and an appreciable fraction of the total energy is launched in the range |nsub(parallel)|< nsub(c). The case of one, two and four waveguides is considered, and it is found that the general pattern of the energy spectrum is very similar for the three antennas. (author)

  18. Sensitivity of ITER MHD global stability to edge pressure gradients

    International Nuclear Information System (INIS)

    Hogan, J.T.; Martynov, A.

    1994-01-01

    In view of the preliminary nature of boundary models for reactor tokamaks, the sensitivity to edge gradients of the global mode MHD stability of the ITER EDA configuration has been examined. The POLAR-2D equilibrium and TORUS stability codes developed by the Keldysh Institute have been used. Transport-related profiles from the PRETOR transport code (developed by the ITER Joint Central Team) and axisymmetric equilibria for these profiles from the TEQ code (L.D. Pearlstein, LLNL) were taken as a starting point for the study. These baseline profiles are found to have quite high global stability limits, in the range g(Troyon) = 4-5. The major focus of this study is to examine global mode stability assuming small variations about the baseline profiles, changing the pressure gradients near the boundary. Such changes can be expected with an improved boundary model. Reduced stability limits are found in such cases, and unstable cases with g = 2-3 are found. Thus, the assumption of ITER stability limits higher than g = 2 must be treated with caution

  19. Algorithm for image retrieval based on edge gradient orientation statistical code.

    Science.gov (United States)

    Zeng, Jiexian; Zhao, Yonggang; Li, Weiye; Fu, Xiang

    2014-01-01

    Image edge gradient direction not only contains important information of the shape, but also has a simple, lower complexity characteristic. Considering that the edge gradient direction histograms and edge direction autocorrelogram do not have the rotation invariance, we put forward the image retrieval algorithm which is based on edge gradient orientation statistical code (hereinafter referred to as EGOSC) by sharing the application of the statistics method in the edge direction of the chain code in eight neighborhoods to the statistics of the edge gradient direction. Firstly, we construct the n-direction vector and make maximal summation restriction on EGOSC to make sure this algorithm is invariable for rotation effectively. Then, we use Euclidean distance of edge gradient direction entropy to measure shape similarity, so that this method is not sensitive to scaling, color, and illumination change. The experimental results and the algorithm analysis demonstrate that the algorithm can be used for content-based image retrieval and has good retrieval results.

  20. Inter-ELM evolution of the edge current density profile on the ASDEX Upgrade tokamak

    International Nuclear Information System (INIS)

    Dunne, Michael G.

    2014-01-01

    The sudden decrease of plasma stored energy and subsequent power deposition on the first wall of a tokamak device due to edge localised modes (ELMs) is potentially detrimental to the success of a future fusion reactor. Understanding and control of ELMs is critical for the longevity of these devices and also to maximise their performance. The commonly accepted picture of ELMs posits a critical pressure gradient and current density in the plasma edge, above which coupled magnetohydrodynamic (MHD) peeling-ballooning modes are driven unstable. Much analysis has been presented in recent years on the spatial and temporal evolution of the edge pressure gradient. However, the edge current density has typically been overlooked due to the difficulties in measuring this quantity. In this thesis, a novel method of current density recovery is presented, using the equilibrium solver CLISTE to reconstruct a high resolution equilibrium utilising both external magnetic and internal edge kinetic data measured on the ASDEX Upgrade (AUG) tokamak. The evolution of the edge current density relative to an ELM crash is presented, showing that a resistive delay in the buildup of the current density is unlikely. An uncertainty analysis shows that the edge current density can be determined with an accuracy consistent with that of the kinetic data used. A comparison with neoclassical theory demonstrates excellent agreement between the current density determined by CLISTE and the calculated profiles. Three ELM mitigation regimes are investigated: Type-II ELMs, ELMs suppressed by external magnetic perturbations (MPs), and Nitrogen seeded ELMs. In the first two cases, the current density is found to decrease as mitigation onsets, indicating a more ballooning-like plasma behaviour. In the latter case, the flux surface averaged current density can decrease while the local current density increases, thus providing a mechanism to suppress both the peeling and ballooning modes.

  1. Inter-ELM evolution of the edge current density profile on the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, Michael G.

    2014-02-15

    The sudden decrease of plasma stored energy and subsequent power deposition on the first wall of a tokamak device due to edge localised modes (ELMs) is potentially detrimental to the success of a future fusion reactor. Understanding and control of ELMs is critical for the longevity of these devices and also to maximise their performance. The commonly accepted picture of ELMs posits a critical pressure gradient and current density in the plasma edge, above which coupled magnetohydrodynamic (MHD) peeling-ballooning modes are driven unstable. Much analysis has been presented in recent years on the spatial and temporal evolution of the edge pressure gradient. However, the edge current density has typically been overlooked due to the difficulties in measuring this quantity. In this thesis, a novel method of current density recovery is presented, using the equilibrium solver CLISTE to reconstruct a high resolution equilibrium utilising both external magnetic and internal edge kinetic data measured on the ASDEX Upgrade (AUG) tokamak. The evolution of the edge current density relative to an ELM crash is presented, showing that a resistive delay in the buildup of the current density is unlikely. An uncertainty analysis shows that the edge current density can be determined with an accuracy consistent with that of the kinetic data used. A comparison with neoclassical theory demonstrates excellent agreement between the current density determined by CLISTE and the calculated profiles. Three ELM mitigation regimes are investigated: Type-II ELMs, ELMs suppressed by external magnetic perturbations (MPs), and Nitrogen seeded ELMs. In the first two cases, the current density is found to decrease as mitigation onsets, indicating a more ballooning-like plasma behaviour. In the latter case, the flux surface averaged current density can decrease while the local current density increases, thus providing a mechanism to suppress both the peeling and ballooning modes.

  2. Density Gradient Stabilization of Electron Temperature Gradient Driven Turbulence in a Spherical Tokamak

    International Nuclear Information System (INIS)

    Ren, Y.; Kaye, S.M.; Mazzucato, E.; Guttenfelder, W.; Bell, R.E.; Domier, C.W.; LeBlanc, B.P.; Lee, K.C.; Luhmann, N.C. Jr.; Smith, D.R.; Yuh, H.

    2011-01-01

    In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k (perpendicular) ρ s ∼< 10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.

  3. The exponential edge-gradient effect in x-ray computed tomography

    International Nuclear Information System (INIS)

    Joseph, P.M.

    1981-01-01

    The exponential edge-gradient effect must arise in any X-ray transmission CT scanner whenever long sharp edges of high contrast are encountered. The effect is non-linear and is due to the interaction of the exponential law of X-ray attenuation and the finite width of the scanning beam in the x-y plane. The error induced in the projection values is proved to be always negative. While the most common effect is lucent streaks emerging from single straight edges, it is demonstrated that dense streaks from pairs of edges are possible. It is shown that an exact correction of the error is possible only under very special (and rather unrealistic) circumstances in which an infinite number of samples per beam width are available and all thin rays making up the beam can be considered parallel. As a practical matter, nevertheless, increased sample density is highly desirable in making good approximate corrections; this is demonstrated with simulated scans. Two classes of approximate correction algorithms are described and their effectiveness evaluated on simulated CT phantom scans. One such algorithm is also shown to work well with a real scan of a physical phantom on a machine that provides approximately four samples per beam width. (author)

  4. A density gradient theory based method for surface tension calculations

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2016-01-01

    The density gradient theory has been becoming a widely used framework for calculating surface tension, within which the same equation of state is used for the interface and bulk phases, because it is a theoretically sound, consistent and computationally affordable approach. Based on the observation...... that the optimal density path from the geometric mean density gradient theory passes the saddle point of the tangent plane distance to the bulk phases, we propose to estimate surface tension with an approximate density path profile that goes through this saddle point. The linear density gradient theory, which...... assumes linearly distributed densities between the two bulk phases, has also been investigated. Numerical problems do not occur with these density path profiles. These two approximation methods together with the full density gradient theory have been used to calculate the surface tension of various...

  5. Hydraulic properties and fine root mass of Larix sibirica along forest edge-interior gradients

    Science.gov (United States)

    Chenlemuge, Tselmeg; Dulamsuren, Choimaa; Hertel, Dietrich; Schuldt, Bernhard; Leuschner, Christoph; Hauck, Markus

    2015-02-01

    At its southernmost distribution limit in Inner Asia, the boreal forest disintegrates into forest fragments on moist sites (e.g. north-facing slopes), which are embedded in grasslands. This landscape mosaic is characterized by a much higher forest edge-to-interior ratio than in closed boreal forests. Earlier work in the forest-steppe ecotone of Mongolia has shown that Larix sibirica trees at forest edges grow faster than in the forest interior, as the more xeric environment at the edge promotes self-thinning and edges are preferentially targeted by selective logging and livestock grazing. Lowered stand density reduces competition for water in these semi-arid forests, where productivity is usually limited by summer drought. We studied how branch and coarse root hydraulic architecture and xylem conductivity, fine root biomass and necromass, and fine root morphology of L. sibirica respond to sites differing in water availability. Studying forest edge-interior gradients in two regions of western Mongolia, we found a significant reduction of branch theoretical (Kp) and empirical conductivity (Ks) in the putatively more drought-affected forest interior in the Mongolian Altai (mean precipitation: 120 mm yr-1), while no branch xylem modification occurred in the moister Khangai Mountains (215 mm yr-1). Kp and Ks were several times larger in roots than in branches, but root hydraulics were not influenced by stand density or mean annual precipitation. Very low fine root biomass: necromass ratios at all sites, and in the forest interior in particular, suggest that L. sibirica seeks to maintain a relatively high root conductivity by producing large conduits, which results in high root mortality due to embolism during drought. Our results suggest that L. sibirica is adapted to the semi-arid climate at its southernmost distribution limit by considerable plasticity of the branch hydraulic system and a small but apparently dynamic fine root system.

  6. On the physics of the pressure and temperature gradients in the edge of tokamak plasmas

    Science.gov (United States)

    Stacey, Weston M.

    2018-04-01

    An extended plasma fluid theory including atomic physics, radiation, electromagnetic and themodynamic forces, external sources of particles, momentum and energy, and kinetic ion orbit loss is employed to derive theoretical expressions that display the role of the various factors involved in the determination of the pressure and temperature gradients in the edge of tokamak plasmas. Calculations for current experiments are presented to illustrate the magnitudes of various effects including strong radiative and atomic physics edge cooling effects and strong reduction in ion particle and energy fluxes due to ion orbit loss in the plasma edge. An important new insight is the strong relation between rotation and the edge pressure gradient.

  7. Fueling with edge recycling to high-density in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, A.W., E-mail: leonard@fusion.gat.com [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Elder, J.D. [University of Toronto Institute of Aerospace Studies, Toronto, Canada M3H 5T6 (Canada); Canik, J.M. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Groebner, R.J.; Osborne, T.H. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)

    2013-07-15

    Pedestal fueling through edge recycling is examined with the interpretive OEDGE code for high-density discharges in DIII-D. A high current, high-density discharge is found to have a similar radial ion flux profile through the pedestal to a lower current, lower density discharge. The higher density discharge, however, has a greater density gradient indicating a pedestal particle diffusion coefficient that scales near linear with 1/I{sub p}. The time dependence of density profile is taken into account in the analysis of a discharge with low frequency ELMs. The time-dependent analysis indicates that the inferred neutral ionization source is inadequate to account for the increase in the density profile between ELMs, implying an inward density convection, or density pinch, near the top of the pedestal.

  8. MODEL OF THE TOKAMAK EDGE DENSITY PEDESTAL INCLUDING DIFFUSIVE NEUTRALS

    International Nuclear Information System (INIS)

    BURRELL, K.H.

    2003-01-01

    OAK-B135 Several previous analytic models of the tokamak edge density pedestal have been based on diffusive transport of plasma plus free-streaming of neutrals. This latter neutral model includes only the effect of ionization and neglects charge exchange. The present work models the edge density pedestal using diffusive transport for both the plasma and the neutrals. In contrast to the free-streaming model, a diffusion model for the neutrals includes the effect of both charge exchange and ionization and is valid when charge exchange is the dominant interaction. Surprisingly, the functional forms for the electron and neutral density profiles from the present calculation are identical to the results of the previous analytic models. There are some differences in the detailed definition of various parameters in the solution. For experimentally relevant cases where ionization and charge exchange rate are comparable, both models predict approximately the same width for the edge density pedestal

  9. Curvature and temperature gradient driven instabilities in tokomak edge plasmas with SOL

    International Nuclear Information System (INIS)

    Novakovskii, S.V.; Guzdar, P.N.; Drake, J.F.; Liu, C.S.

    1996-01-01

    Curvature driven resistive ballooning modes (RBM) as well as the electron temperature gradient (ETG) modes have been investigated in the tokomak edge region and the SOL, with the help of the numerical code open-quotes 2D-BALLOONclose quotes. This is an initial value code, which determines the stability properties and estimates the quasi-linear transport for given density, temperature, the magnetic and electric field profiles, taking into account the SOL geometry as well as a closed flux region. The results related to the following issues will be presented: (1) Comparative analysis of the ETG and the RBM instabilities in the SOL and their influence on the transport in the edge region (inside the Last Closed Magnetic Surface). (2) The influence of the effective Debye sheath current. (3) Different poloidal positions of the toroidal limiter and their effect on the instabilities. Other aspects of the edge plasma turbulence, such as finite β effects, flow-shear of the poloidal rotation etc. will also be discussed

  10. Measurements of edge density profile modifications during IBW on TFTR

    International Nuclear Information System (INIS)

    Hanson, G.R.; Bush, C.E.; Wilgen, J.B.

    1997-01-01

    Ion Bernstein wave (IBW) antennas are known to have substantial localized effects on the plasma edge. To allow better understanding and measurement of these effects, the TFTR edge reflectometer has been relocated to the new IBW antenna. This move was facilitated by the incorporation of a diagnostic access tube in the IBW antenna identical to the original diagnostic tube in the fast-wave (FW) antenna. This allowed the reflectometer launcher to simply be moved from the old FW antenna to the new IBW antenna. Only a moderate extension of the waveguide transmission line was required to reconnect the reflectometer to the launcher in its new location. Edge density profile modification during IBW experiments has been observed. Results from IBW experiments will be presented and contrasted to the edge density modifications previously observed during FW heating experiments

  11. Spectral edge: gradient-preserving spectral mapping for image fusion.

    Science.gov (United States)

    Connah, David; Drew, Mark S; Finlayson, Graham D

    2015-12-01

    This paper describes a novel approach to image fusion for color display. Our goal is to generate an output image whose gradient matches that of the input as closely as possible. We achieve this using a constrained contrast mapping paradigm in the gradient domain, where the structure tensor of a high-dimensional gradient representation is mapped exactly to that of a low-dimensional gradient field which is then reintegrated to form an output. Constraints on output colors are provided by an initial RGB rendering. Initially, we motivate our solution with a simple "ansatz" (educated guess) for projecting higher-D contrast onto color gradients, which we expand to a more rigorous theorem to incorporate color constraints. The solution to these constrained optimizations is closed-form, allowing for simple and hence fast and efficient algorithms. The approach can map any N-D image data to any M-D output and can be used in a variety of applications using the same basic algorithm. In this paper, we focus on the problem of mapping N-D inputs to 3D color outputs. We present results in five applications: hyperspectral remote sensing, fusion of color and near-infrared or clear-filter images, multilighting imaging, dark flash, and color visualization of magnetic resonance imaging diffusion-tensor imaging.

  12. Measurement of neoclassically predicted edge current density at ASDEX Upgrade

    Science.gov (United States)

    Dunne, M. G.; McCarthy, P. J.; Wolfrum, E.; Fischer, R.; Giannone, L.; Burckhart, A.; the ASDEX Upgrade Team

    2012-12-01

    Experimental confirmation of neoclassically predicted edge current density in an ELMy H-mode plasma is presented. Current density analysis using the CLISTE equilibrium code is outlined and the rationale for accuracy of the reconstructions is explained. Sample profiles and time traces from analysis of data at ASDEX Upgrade are presented. A high time resolution is possible due to the use of an ELM-synchronization technique. Additionally, the flux-surface-averaged current density is calculated using a neoclassical approach. Results from these two separate methods are then compared and are found to validate the theoretical formula. Finally, several discharges are compared as part of a fuelling study, showing that the size and width of the edge current density peak at the low-field side can be explained by the electron density and temperature drives and their respective collisionality modifications.

  13. Measurement of neoclassically predicted edge current density at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Dunne, M.G.; McCarthy, P.J.; Wolfrum, E.; Fischer, R.; Giannone, L.; Burckhart, A.

    2012-01-01

    Experimental confirmation of neoclassically predicted edge current density in an ELMy H-mode plasma is presented. Current density analysis using the CLISTE equilibrium code is outlined and the rationale for accuracy of the reconstructions is explained. Sample profiles and time traces from analysis of data at ASDEX Upgrade are presented. A high time resolution is possible due to the use of an ELM-synchronization technique. Additionally, the flux-surface-averaged current density is calculated using a neoclassical approach. Results from these two separate methods are then compared and are found to validate the theoretical formula. Finally, several discharges are compared as part of a fuelling study, showing that the size and width of the edge current density peak at the low-field side can be explained by the electron density and temperature drives and their respective collisionality modifications. (paper)

  14. Destabilization of drift waves due to nonuniform density gradient

    International Nuclear Information System (INIS)

    Hirose, A.; Ishihara, O.

    1985-01-01

    It is shown that the conventional mode differential equation for low frequency electrostatic waves in a tokamak does not contain full ion dynamics. Both electrons and ions contribute to the ballooning term, which is subject to finite ion Larmor radius effects. Also, both fluid ion approximation and kinetic ion model yield the same correction. Reexamined are the density gradient universal mode and ion temperature gradient instability employing the lowest order Pearlstein-Berk type radial eigenfunctions. No unstable, bounded, energy outgoing eigenfunctions have been found. In particular, a large ion temperature gradient (eta/sub i/) tends to further stabilize the temperature gradient driven mode

  15. Effect of ion temperature gradient driven turbulence on the edge-core connection for transient edge temperature sink

    International Nuclear Information System (INIS)

    Miyato, Naoaki

    2014-01-01

    Ion temperature gradient (ITG) driven turbulence simulation for a transient edge temperature sink localized in the poloidal plane is performed using a global Landau-fluid code in the electrostatic limit. Pressure perturbations with (m, n) = (±1, 0) are induced by the edge sink, where m and n are poloidal and toroidal mode numbers, respectively. It was found in the previous simulation that the nonlinear dynamics of these perturbations are responsible for the nonlocal plasma response/transport connecting edge and core in a toroidal plasma. Present simulation shows, however, that the ITG turbulence in the core region dissipates the large-scale (m, n) = (±1, 0) perturbations and weakens the edge-core connection observed in the previous simulation. (author)

  16. Density gradients in ceramic pellets measured by computed tomography

    International Nuclear Information System (INIS)

    Sawicka, B.D.; Palmer, B.J.F.

    1986-07-01

    Density gradients are of fundamental importance in ceramic processing and computed tomography (CT) can provide accurate measurements of density profiles in sintered and unsintered ceramic parts. As a demonstration of this potential, the density gradients in an unsintered pellet pressed from an alumina powder were measured by CT scanning. To detect such small density gradients, the CT images must have good density resolution and be free from beam-hardening effects. This was achieved by measuring high-contrast (low-noise) images with the use of an Ir-192 isotopic source. A beam-hardening correction was applied. The resulting images are discussed relative to the transmission of forces through the powder mass during the pelletizing process

  17. The text neutral lithium beam edge density diagnostic

    International Nuclear Information System (INIS)

    Howald, A.M.; McChesney, J.M.; West, W.P.

    1994-07-01

    A fast neutral lithium beam has been installed on the TEXT tokamak for Beam Emission Spectroscopy (BES) studies of the edge plasma electron density profile. The diagnostic was recently upgraded from ten to twenty spatial channels, each of which has two detectors, one to measure lithium beam signal and one to monitor plasma background light. The spatial resolution is 6 mm, and the temporal resolution is designed to be as high as 10 ms for studies of transient events including plasma density fluctuations. Initial results are presented from the ten-channel system: Edge electron densities unfolded from the LiI(2 s 2 S - 2 p 2 P) 670.8 nm emission profile have the same general time dependence as the line-averaged density measured by microwave interferometry

  18. Edge plasma density convection during ICRH on Tore Supra

    International Nuclear Information System (INIS)

    Becoulet, M.; Colas, L.; Gunn, J.; Ghendrih, Ph.; Becoulet, A.; Pecoul, S.; Heuraux, S.

    2001-11-01

    The 2D edge plasma density distribution around ion cyclotron resonance heating (ICRH) antennae is studied experimentally and numerically in the tokamak Tore Supra (TS). A local density decrease in front of the loaded ICRH antenna ('pump-out' effect) is demonstrated by Langmuir probe measurements in a low recycling regime. An up-down asymmetry in the heat-flux and in the antenna erosion is also observed, and is associated with poloidal variations of the local density. These density redistributions are ascribed to an ExB convection process linked with RF-sheaths. To assess this interpretation, the 2D transport code CELLS was developed for modeling the density distribution near an antenna. The code takes into account perpendicular diffusion, parallel transport and convection in RF-sheath-driven potentials given by the 3D-antenna code ICANT. The strong density differences obtained in simulations reproduce up-down asymmetries of the heat fluxes. (authors)

  19. Edge plasma density convection during ICRH on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Becoulet, M.; Colas, L.; Gunn, J.; Ghendrih, Ph.; Becoulet, A. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Pecoul, S.; Heuraux, S. [Nancy-1 Univ., 54 (France). Lab. de Physique des Milieux Ionises

    2001-11-01

    The 2D edge plasma density distribution around ion cyclotron resonance heating (ICRH) antennae is studied experimentally and numerically in the tokamak Tore Supra (TS). A local density decrease in front of the loaded ICRH antenna ('pump-out' effect) is demonstrated by Langmuir probe measurements in a low recycling regime. An up-down asymmetry in the heat-flux and in the antenna erosion is also observed, and is associated with poloidal variations of the local density. These density redistributions are ascribed to an ExB convection process linked with RF-sheaths. To assess this interpretation, the 2D transport code CELLS was developed for modeling the density distribution near an antenna. The code takes into account perpendicular diffusion, parallel transport and convection in RF-sheath-driven potentials given by the 3D-antenna code ICANT. The strong density differences obtained in simulations reproduce up-down asymmetries of the heat fluxes. (authors)

  20. Simultaneous realization of high density edge transport barrier and improved L-mode on CHS

    International Nuclear Information System (INIS)

    Minami, Takashi; Okamura, Shoichi; Suzuki, Chihiro

    2008-10-01

    An edge transport barrier (ETB) formation and an improved L-mode (IL mode) have been simultaneously realized in high density region (n-bar e - 1.2x10 20 m -3 ) on Compact Helical System (CHS). When the ETB is formed during the IL mode, the density reduction in the edge region is suppressed by the barrier formation. As a result of the continuous increasing of the temperature by the IL mode, the stored energy during the combined mode increased up to the maximum stored energy (W p - 9.4 kJ) recorded in CHS experiments. The plasma pressure in the peripheral region increases up to three times larger than that of the L-mode, and the large edge plasma pressure gradient is formed accompanying the pedestal structure. That is caused by the anomalous transport reduction that is confirmed from the sharp drop of the density fluctuation in the edge region. The neutral particle reduction in the peripheral region and the metallic impurity accumulation in the core plasma are simultaneously observed during the high density ETB formation. (author)

  1. External kink mode stability of tokamaks with finite edge current density in plasma outside separatrix

    International Nuclear Information System (INIS)

    Degtyarev, L.; Martynov, A.; Medvedev, S.; Troyon, F.; Villard, L.

    1996-01-01

    Large pressure gradients and current density at the plasma edge and accompanying edge-localized MHD instabilities are typical for H-mode discharges. Low-n external kink modes are a possible cause of the instabilities. The paper mostly deals with external kink modes driven by a finite current density at the plasma boundary (so called peeling modes). It was shown earlier that for a single axis plasma embedded into vacuum the peeling modes are stabilized when separatrix is approaching the plasma boundary. For doublet configurations a finite current density at the internal separatrix does not necessarily lead to external kink instability when the current density vanishes at the boundary. However, a finite current density at the plasma boundary outside the separatrix can drive outer peeling modes. The stability properties and structure of these modes depend on the plasma equilibrium outside the separatrix. The influence of plasma shear and pressure gradient at the boundary on the stability of the outer peeling modes in doublets is studied. The stability of kink modes in divertor configurations with plasma outside the separatrix is very sensitive to the boundary conditions set at open field lines. The choice of the boundary conditions and kink mode stability calculations for the divertor configurations are discussed. (author) 4 figs., 5 refs

  2. Scattering of ECRF waves by edge density fluctuations and blobs

    Directory of Open Access Journals (Sweden)

    Ram Abhay K.

    2015-01-01

    Full Text Available The scattering of electron cyclotron waves by density blobs embedded in the edge region of a fusion plasma is studied using a full-wave model. The full-wave theory is a generalization of the usual approach of geometric optics ray scattering by blobs. While the latter allows for only refraction of waves, the former, more general formulation, includes refraction, reflection, and diffraction of waves. Furthermore, the geometric optics, ray tracing, model is limited to blob densities that are slightly different from the background plasma density. Observations in tokamak experiments show that the fluctuating density differs from the background plasma density by 20% or more. Thus, the geometric optics model is not a physically realistic model of scattering of electron cyclotron waves by plasma blobs. The differences between the ray tracing approach and the full-wave approach to scattering are illustrated in this paper.

  3. Structure of density fluctuations in the edge plasma of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Rudyj, A; Carlson, A; Endler, M; Giannone, L.; Niedermeyer, H; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1990-01-01

    It is now generally believed that the anomalous particle and energy transport in tokamaks is caused by turbulent fluctuations. The physical nature of these fluctuations (mode type, the driving mechanism) have still to be identified experimentally before a self consistent transport theory can be developed. In contrast to the confinement region the plasma edge can be well diagnosed. H{sub {alpha}}-light, which is emitted at the edge, reacts to density and to some extend to temperature fluctuations. It delivers information about radially integrated spectra and correlations. Langmuir probes measure density and potential fluctuations with good spatial resolution. The edge transport governs the physics in the scrape-off layer and in the divertor which is extremely important for a reactor and therefore deserves a major experimental effort. In this paper we report on an attempt to gain detailed information about the spatial and temporal structure of the edge turbulence hoping to reduce the degrees of freedom for theoretical models to a manageable number. (author) 3 refs., 3 figs.

  4. Structure of density fluctuations in the edge plasma of ASDEX

    International Nuclear Information System (INIS)

    Rudyj, A.; Carlson, A.; Endler, M.; Giannone, L.; Niedermeyer, H.; Theimer, G.

    1990-01-01

    It is now generally believed that the anomalous particle and energy transport in tokamaks is caused by turbulent fluctuations. The physical nature of these fluctuations (mode type, the driving mechanism) have still to be identified experimentally before a self consistent transport theory can be developed. In contrast to the confinement region the plasma edge can be well diagnosed. H α -light, which is emitted at the edge, reacts to density and to some extend to temperature fluctuations. It delivers information about radially integrated spectra and correlations. Langmuir probes measure density and potential fluctuations with good spatial resolution. The edge transport governs the physics in the scrape-off layer and in the divertor which is extremely important for a reactor and therefore deserves a major experimental effort. In this paper we report on an attempt to gain detailed information about the spatial and temporal structure of the edge turbulence hoping to reduce the degrees of freedom for theoretical models to a manageable number. (author) 3 refs., 3 figs

  5. Magnetic fluctuations associated with density fluctuations in the tokamak edge

    International Nuclear Information System (INIS)

    Kim, Y.J.; Gentle, K.W.; Ritz, C.P.; Rhodes, T.L.; Bengtson, R.D.

    1989-01-01

    Electrostatic density and potential fluctuations occurring with high amplitude near the edge of a tokamak are correlated with components of the fluctuating magnetic field measured outside the limiter radius. It has been established that this turbulence is associated with fluctuations in current as well as density and potential. The correlation extends for substantial toroidal distances, but only if the probes are displaced approximately along field lines, consistent with the short coherence lengths poloidally but long coherence lengths parallel to the field which are characteristic for this turbulence. Furthermore, the correlation can be found only with density fluctuations measured inside the limiter radius; density fluctuations behind the limiter have no detectable magnetic concomitant for the toroidally spaced probes used here. (author). Letter-to-the-editor. 12 refs, 3 figs

  6. Edge plasma density reconstruction for fast monoenergetic lithium beam probing

    International Nuclear Information System (INIS)

    Sasaki, S.; Takamura, S.; Ueda, M.; Iguchi, H.; Fujita, J.; Kadota, K.

    1993-01-01

    Two different electron density reconstruction methods for 8-keV neutral lithium beam probing have been developed for the Compact Helical System (CHS). Density dependences on emission and ionization processes are included by using effective rate coefficients obtained from the collisional radiative model. Since the two methods differ in the way the local beam density in the plasma is determined, the methods have different applicable electron densities. The beam attenuation is calculated by iteration from the electron density profile in method I. In method II, the beam remainder at the observation point z is determined by integrating the Li I emission intensity from z toward the position of emission tail-off. At the emission tail-off, the fast lithium beam is completely attenuated. Selecting an appropriate method enables us to obtain edge electron density profile well inside the last closed flux surface for various ranges of plasma densities (10 12 --5x10 13 cm -3 ). The electron density profiles reconstructed by these two different methods are in good agreement with each other and are consistent with results from ruby laser Thomson scattering

  7. Graph approach to the gradient expansion of density functionals

    International Nuclear Information System (INIS)

    Kozlowski, P.M.; Nalewajski, R.F.

    1986-01-01

    A graph representation of terms in the gradient expansion of the kinetic energy density functional is presented. They briefly discuss the implications of the virial theorem for the graph structure and relations between possible graphs at a given order of expansion

  8. Effect of Crustal Density Structures on GOCE Gravity Gradient Observables

    Directory of Open Access Journals (Sweden)

    Robert Tenzer Pavel Novák

    2013-01-01

    Full Text Available We investigate the gravity gradient components corrected for major known anomalous density structures within the Earth¡¦s crust. Heterogeneous mantle density structures are disregarded. The gravimetric forward modeling technique is utilized to compute the gravity gradients based on methods for a spherical harmonic analysis and synthesis of a gravity field. The Earth¡¦s gravity gradient components are generated using the global geopotential model GOCO-03s. The topographic and stripping gravity corrections due to the density contrasts of the ocean and ice are computed from the global topographic/bathymetric model DTM2006.0 (which also includes the ice-thickness dataset. The discrete data of sediments and crust layers taken from the CRUST2.0 global crustal model are then used to apply the additional stripping corrections for sediments and remaining anomalous crustal density structures. All computations are realized globally on a one arc-deg geographical grid at a mean satellite elevation of 255 km. The global map of the consolidated crust-stripped gravity gradients reveals distinctive features which are attributed to global tectonics, lithospheric plate configuration, lithosphere structure and mantle dynamics (e.g., glacial isostatic adjustment, mantle convection. The Moho signature, which is the most pronounced signal in these refined gravity gradients, is superimposed over a weaker gravity signal of the lithospheric mantle. An interpretational quality of the computed (refined gravity gradient components is mainly limited by a low accuracy and resolution of the CRUST2.0 sediment and crustal layer data and unmodeled mantle structures.

  9. Critical gradients and plasma flows in the edge plasma of Alcator C-Moda)

    Science.gov (United States)

    Labombard, B.; Hughes, J. W.; Smick, N.; Graf, A.; Marr, K.; McDermott, R.; Reinke, M.; Greenwald, M.; Lipschultz, B.; Terry, J. L.; Whyte, D. G.; Zweben, S. J.; Alcator C-Mod Team

    2008-05-01

    Recent experiments have led to a fundamental shift in our view of edge transport physics; transport near the last-closed flux surface may be more appropriately described in terms of a critical gradient phenomenon rather than a diffusive and/or convective paradigm. Edge pressure gradients, normalized by the square of the poloidal magnetic field strength, appear invariant in plasmas with the same normalized collisionality, despite vastly different currents and magnetic fields—a behavior that connects with first-principles electromagnetic plasma turbulence simulations. Near-sonic scrape-off layer (SOL) flows impose a cocurrent rotation boundary condition on the confined plasma when B ×∇B points toward the active x-point, suggesting a link to the concomitant reduction in input power needed to attain high-confinement modes. Indeed, low-confinement mode plasmas are found to attain higher edge pressure gradients in this configuration, independent of the direction of B, evidence that SOL flows may affect transport and "critical gradient" values in the edge plasma.

  10. Gradient cuts and extremal edges in relative depth and figure-ground perception.

    Science.gov (United States)

    Ghose, Tandra; Palmer, Stephen E

    2016-02-01

    Extremal edges (EEs) are borders consisting of luminance gradients along the projected edge of a partly self-occluding curved surface (e.g., a cylinder), with equiluminant contours (ELCs) that run approximately parallel to that edge. Gradient cuts (GCs) are similar luminance gradients with ELCs that intersect (are "cut" by) an edge that could be due to occlusion. EEs are strongly biased toward being seen as closer/figural surfaces (Palmer & Ghose, Psychological Science, 19(1), 77-83, 2008). Do GCs produce a complementary bias toward being seen as ground? Experiment 1 shows that, with EEs on the opposite side, GCs produce a ground bias that increases with increasing ELC angles between ELCs and the shared edge. Experiment 2 shows that, with flat surfaces on the opposite side, GCs do not produce a ground bias, suggesting that more than one factor may be operating. We suggest that two partially dissociable factors may operate for curved surfaces-ELC angle and 3-D surface convexity-that reinforce each other in the figural cues of EEs but compete with each other in GCs. Moreover, this figural bias is modulated by the presence of EEs and GCs, as specified by the ELC angle between ELCs and the shared contour.

  11. Is the temperature gradient or the derivative of the density gradient responsible for drift solitons?

    International Nuclear Information System (INIS)

    Salat, A.

    1990-01-01

    In conventional drift wave theory the density gradient κ n =d lnn/dχ determines the linear phase velocity, and the (electron) temperature gradient κ T =d lnT/dχ gives rise to a nonlinear term which leads to the existence of soliton-type solutions and solitary waves. LAKHIN, MIKHAILOVSKI and ONISHCHENKO, Phys. Lett. A 119, 348 (1987) and Plasma Phys. and Contr. Fus. 30, 457 (1988), recently claimed that it is not κ T but essentially the derivative of the density gradient, dκ n /dχ, that is relevant. This claim is refuted by means of an expansion scheme in ε=eΦ/T≤1, where Φ is the drift wave potential. (orig.)

  12. Edge density profiles in high-performance JET plasmas

    International Nuclear Information System (INIS)

    Summers, D.D.R.; Viaccoz, B.; Vince, J.

    1997-01-01

    Detailed electron density profiles of the scrape-off layer in high-performance JET plasmas (plasma current, I p nbi ∝17 MW) have been measured by means of a lithium beam diagnostic system featuring high spatial resolution [Kadota (1978)[. Measurements were taken over a period of several seconds, allowing examination of the evolution of the edge profile at a location upstream from the divertor target. The data clearly show the effects of the H-mode transition - an increase in density near the plasma separatrix and a reduction in density scrape-off length. The profiles obtained under various plasma conditions are compared firstly with data from other diagnostics, located elsewhere in the vessel, and also with the predictions of an 'onion-skin' model (DIVIMP), which used, as initial parameters, data from an array of probes located in the divertor target. (orig.)

  13. Direct evidence of stationary zonal flows and critical gradient behavior for Er during formation of the edge pedestal in JET

    Science.gov (United States)

    Hillesheim, Jon

    2015-11-01

    High spatial resolution measurements with Doppler backscattering in JET have provided new insights into the development of the edge radial electric field during pedestal formation. The characteristics of Er have been studied as a function of density at 2.5 MA plasma current and 3 T toroidal magnetic field. We observe fine-scale spatial structure in the edge Er well prior to the LH transition, consistent with stationary zonal flows. Zonal flows are a fundamental mechanism for the saturation of turbulence and this is the first direct evidence of stationary zonal flows in a tokamak. The radial wavelength of the zonal flows systematically decreases with density. The zonal flows are clearest in Ohmic conditions, weaker in L-mode, and absent in H-mode. Measurements also show that after neutral beam heating is applied, the edge Er builds up at a constant gradient into the core during L-mode, at radii where Er is mainly due to toroidal velocity. The local stability of velocity shear driven turbulence, such as the parallel velocity gradient mode, will be assessed with gyrokinetic simulations. This critical Er shear persists across the LH transition into H-mode. Surprisingly, a reduction in the apparent magnitude of the Er well depth is observed directly following the LH transition at high densities. Establishing the physics basis for the LH transition is important for projecting scalings to ITER and these observations challenge existing models based on increased Er shear or strong zonal flows as the trigger for the transition. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

  14. Gradient-based stochastic estimation of the density matrix

    Science.gov (United States)

    Wang, Zhentao; Chern, Gia-Wei; Batista, Cristian D.; Barros, Kipton

    2018-03-01

    Fast estimation of the single-particle density matrix is key to many applications in quantum chemistry and condensed matter physics. The best numerical methods leverage the fact that the density matrix elements f(H)ij decay rapidly with distance rij between orbitals. This decay is usually exponential. However, for the special case of metals at zero temperature, algebraic decay of the density matrix appears and poses a significant numerical challenge. We introduce a gradient-based probing method to estimate all local density matrix elements at a computational cost that scales linearly with system size. For zero-temperature metals, the stochastic error scales like S-(d+2)/2d, where d is the dimension and S is a prefactor to the computational cost. The convergence becomes exponential if the system is at finite temperature or is insulating.

  15. Interacting Eigenmodes of a plasma diode with a density gradient

    International Nuclear Information System (INIS)

    Loefgren, T.; Gunell, H.

    1997-08-01

    The formation of narrow high frequency electric field spikes in plasma density gradients is investigated using one-dimensional particle in cell simulations. It is found that the shape of the plasma density gradient is very important for the spike formation. The spike appears also in simulations with immobile ions showing that a coupling to the ion motion, as for example in wave interactions, is not necessary for the formation of HF spikes. However, the HF spike influences the ion motion, and ion waves are seen in the simulations. It has been found, in experiments and simulations, that the electron velocity distribution function deviates from the Maxwellian distribution. Dispersion relations are calculated using realistic distribution functions. The spike can be seen as a coupled system of two Eigenmodes of a plasma diode fed by the beam-plasma interaction. Based on a simplified fluid description of such Eigenmodes, explanations for the localization of the spike, spatially and in frequency, are given. The density amplitude is comparable with the DC density level close to the cathode. Space charge limits of waves in this region seem to determine the amplitude of the spike through the Poisson's equation

  16. Density limit and cross-field edge transport scaling in Alcator C-Mod

    International Nuclear Information System (INIS)

    LaBombard, B.

    2002-01-01

    Experiments in Alcator C-Mod have uncovered a direct link between the character and scaling of edge transport and the empirical Greenwald density limit (n G ). In low to moderate density discharges, the scrape-off layer (SOL) exhibits a two-layer structure: a near SOL (∼5 mm zone) with steep density and temperature gradients and a far SOL with flatter profiles. In the far SOL, the transport fluxes exhibit large transport events ('bursts' which carry particles to main-chamber structures. In the near SOL, transport fluxes appear to be less 'bursty' particle diffusivities in this region is found to increase strongly with local plasma collisionality. As n/n G (or collisionality) is raised, cross-field heat convection begins to compete with parallel conduction to the divertor. At N/n G ∼0.5, T E at the separatrix is reduced. As n/n G approaches ∼1, regions inside the separatrix exhibit flatter profiles with 'bursty' transport behavior; cross-field heat convection to main-chamber structures becomes comparable to the radiated power. Thus as n/n G is increased, cross-field edge transport physics progressively changes, ultimately impacting the power balance of the discharge near N/n G ∼1. (author)

  17. Density gradients in the solar plasma observed by interplanetary scintillation

    International Nuclear Information System (INIS)

    Gapper, G.R.; Hewish, A.

    1981-01-01

    A new technique is described which overcomes the limitation set by Fresnel filtering in previous IPS studies of the small-scale density irregularities in the solar plasma. Phase gradients introduced by irregularities larger than the Fresnel limit cause transverse displacements of the small-scale scintillation pattern. In the presence of the solar wind, such refraction effects may be revealed by simultaneous measurements of intensity scintillation at two radio frequencies. Observations show that the structure corresponding to temporal frequencies approximately 0.02 Hz is in agreement with an extrapolation of the Kolmogorov spectrum derived from spacecraft data at lower frequencies. (author)

  18. Mineral density volume gradients in normal and diseased human tissues.

    Directory of Open Access Journals (Sweden)

    Sabra I Djomehri

    Full Text Available Clinical computed tomography provides a single mineral density (MD value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca to phosphorus (P and Ca to zinc (Zn elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males contained significant mineral density variations (enamel: 2820-3095 mg/cc, bone: 570-1415 mg/cc, cementum: 1240-1340 mg/cc, dentin: 1480-1590 mg/cc, cementum affected by periodontitis: 1100-1220 mg/cc, hypomineralized carious dentin: 345-1450 mg/cc, hypermineralized carious dentin: 1815-2740 mg/cc, and dental calculus: 1290-1770 mg/cc. A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49, hypomineralized dentin (0.32-0.46, cementum (1.51, and bone (1.68 were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765 and in cementum (595-990, highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.

  19. Mineral Density Volume Gradients in Normal and Diseased Human Tissues

    Science.gov (United States)

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.

    2015-01-01

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations. PMID:25856386

  20. Probability density function method for variable-density pressure-gradient-driven turbulence and mixing

    International Nuclear Information System (INIS)

    Bakosi, Jozsef; Ristorcelli, Raymond J.

    2010-01-01

    Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.

  1. Magnetic edge states in MoS2 characterized using density-functional theory

    DEFF Research Database (Denmark)

    Vojvodic, Aleksandra; Hinnemann, B.; Nørskov, Jens Kehlet

    2009-01-01

    It is known that the edges of a two-dimensional slab of insulating MoS2 exhibit one-dimensional metallic edge states, the so-called "brim states." Here, we find from density-functional theory calculations that several edge structures, which are relevant for the hydrodesulfurization process......, are magnetic. The magnetism is an edge phenomenon associated with certain metallic edge states. Interestingly, we find that among the two low-index edges, only the S edge displays magnetism under hydrodesulfurization conditions. In addition, the implications of this on the catalytic activity are investigated...

  2. Moho Density Contrast in Central Eurasia from GOCE Gravity Gradients

    Directory of Open Access Journals (Sweden)

    Mehdi Eshagh

    2016-05-01

    Full Text Available Seismic data are primarily used in studies of the Earth’s inner structure. Since large parts of the world are not yet sufficiently covered by seismic surveys, products from the Earth’s satellite observation systems have more often been used for this purpose in recent years. In this study we use the gravity-gradient data derived from the Gravity field and steady-state Ocean Circulation Explorer (GOCE, the elevation data from the Shuttle Radar Topography Mission (SRTM and other global datasets to determine the Moho density contrast at the study area which comprises most of the Eurasian plate (including parts of surrounding continental and oceanic tectonic plates. A regional Moho recovery is realized by solving the Vening Meinesz-Moritz’s (VMM inverse problem of isostasy and a seismic crustal model is applied to constrain the gravimetric solution. Our results reveal that the Moho density contrast reaches minima along the mid-oceanic rift zones and maxima under the continental crust. This spatial pattern closely agrees with that seen in the CRUST1.0 seismic crustal model as well as in the KTH1.0 gravimetric-seismic Moho model. However, these results differ considerably from some previously published gravimetric studies. In particular, we demonstrate that there is no significant spatial correlation between the Moho density contrast and Moho deepening under major orogens of Himalaya and Tibet. In fact, the Moho density contrast under most of the continental crustal structure is typically much more uniform.

  3. Spatiotemporal response of plasma edge density and temperature to non-axisymmetric magnetic perturbations at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Fischer, R; Fuchs, J C; McDermott, R; Rathgeber, S K; Suttrop, W; Wolfrum, E; Willensdorfer, M

    2012-01-01

    Non-axisymmetric magnetic perturbations (MPs) were successfully applied at ASDEX Upgrade to substantially reduce the plasma energy loss and peak divertor power load that occur concomitant with type-I edge localized modes (ELMs). The response of electron density edge profiles and temperature and pressure pedestal-top values to MPs are reported. ELM mitigation is observed above an edge density threshold and independent of the MPs being resonant or non-resonant with the edge safety factor. The edge electron collisionality appears not to be appropriate to separate mitigated from non-mitigated discharges for the present high-collisionality plasmas. No significant change in the position or gradient of the edge density profile could be observed for the transition into the ELM-mitigated phase, except from the effect of the three-dimensional MP field which leads to an apparent profile shift. An increase in the density and decrease in the temperature at the pedestal-top balance such that the pressure saturates at the value of the pre-mitigated phase. The plasma stored energy, the normalized plasma pressure, and the H-mode quality factor follow closely the evolution of the pedestal-top pressure and thus remain almost unaffected. The temporal evolution of the ion effective charge shows that the impurity content does not increase although flushing through type-I ELMs is missing. The type-I ELMs are replaced in the mitigated phase by small-scale and high-frequency edge perturbations. The effect of the small bursts on the density profile, which is correlated with a transient increase of the divertor thermoelectric current, is small compared with the effect of the type-I ELMs. The residual scatter of the profiles in the mitigated phase is small directly after the transition into the ELM-mitigated phase and increases again when the pressure saturates at the value of the pre-mitigated phase. (paper)

  4. Impact of Te and ne on edge current density profiles in ELM mitigated regimes on ASDEX Upgrade

    Science.gov (United States)

    Dunne, M. G.; Rathgeber, S.; Burckhart, A.; Fischer, R.; Giannone, L.; McCarthy, P. J.; Schneider, P. A.; Wolfrum, E.; the ASDEX Upgrade Team

    2015-01-01

    ELM resolved edge current density profiles are reconstructed using the CLISTE equilibrium code. As input, highly spatially and temporally resolved edge electron temperature and density profiles are used in addition to data from the extensive set of external poloidal field measurements available at ASDEX Upgrade, flux loop difference measurements, and current measurements in the scrape-off layer. Both the local and flux surface averaged current density profiles are analysed for several ELM mitigation regimes. The focus throughout is on the impact of altered temperature and density profiles on the current density. In particular, many ELM mitigation regimes rely on operation at high density. Two reference plasmas with type-I ELMs are analysed, one with a deuterium gas puff and one without, in order to provide a reference for the behaviour in type-II ELMy regimes and high density ELM mitigation with external magnetic perturbations at ASDEX Upgrade. For type-II ELMs it is found that while a similar pedestal top pressure is sustained at the higher density, the temperature gradient decreases in the pedestal. This results in lower local and flux surface averaged current densities in these phases, which reduces the drive for the peeling mode. No significant differences between the current density measured in the type-I phase and ELM mitigated phase is seen when external perturbations are applied, though the pedestal top density was increased. Finally, ELMs during the nitrogen seeded phase of a high performance discharge are analysed and compared to ELMs in the reference phase. An increased pedestal pressure gradient, which is the source of confinement improvement in impurity seeded discharges, causes a local current density increase. However, the increased Zeff in the pedestal acts to reduce the flux surface averaged current density. This dichotomy, which is not observed in other mitigation regimes, could act to stabilize both the ballooning mode and the peeling mode at the

  5. Lower hybrid current drive for edge current density modification in DIII-D: Final status report

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Porkolab, M.

    1993-01-01

    Application of Lower Hybrid (LH) Current Drive (CD) in the DIII-D tokamak has been studied at LLNL, off and on, for several years. The latest effort began in February 1992 in response to a letter from ASDEX indicating that the 2.45 GHz, 3 MW system there was available to be used on another device. An initial assessment of the possible uses for such a system on DIII-D was made and documented in September 1992. Multiple meetings with GA personnel and members of the LH community nationwide have occurred since that time. The work continued through the submission of the 1995 Field Work Proposals in March 1993 and was then put on hold due to budget limitations. The purpose of this document is to record the status of the work in such a way that it could fairly easily be restarted at a future date. This document will take the form of a collection of Appendices giving both background and the latest results from the FY 1993 work, connected by brief descriptive text. Section 2 will describe the final workshop on LHCD in DIII-D held at GA in February 1993. This was an open meeting with attendees from GA, LLNL, MIT and PPPL. Summary documents from the meeting and subsequent papers describing the results will be included in Appendices. Section 3 will describe the status of work on the use of low frequency (2.45 GHZ) LH power and Parametric Decay Instabilities (PDI) for the special case of high dielectric in the edge regions of the DIII-D plasma. This was one of the critical issues identified at the workshop. Other potential issues for LHCD in the DIII-D scenarios are: (1) damping of the waves on fast ions from neutral beam injection, (2) runaway electrons in the low density edge plasma, (3) the validity of the WKB approximation used in the ray-tracing models in the steep edge density gradients

  6. [Effects of highway on the vegetation species composition along a distance gradient from road edge in southeastern margin of Tengeer Desert].

    Science.gov (United States)

    Feng, Li; Li, Xin-Rong; Guo, Qun; Zhang, Jing-Guang; Zhang, Zhi-Shan

    2011-05-01

    Aimed to examine the effects of highway on the vegetation species composition in arid desert area, forty-eight transects perpendicular to the provincial highway 201 from Shapotou to Jing-tai in the southeastern margin of Tengger Desert were installed, with the vegetation species distribution along a distance gradient from the road edge investigated. The results showed that with increasing distance from the road edge, the species number, coverage, biomass, and alpha-diversity of herbaceous plants declined, but had no significant differences with the control beyond 5 m. Within 0-6 m to the road edge, the herbaceous plant height was greater than that of the control, but their density had less change. Within 0-2 m to the road edge, the species turnover rate of herbaceous plants was lower; at 2-5m, this rate was the highest; while beyond 10 m, the species composition of herbaceous plants was similar to that of the control. The herbaceous plant community at the road edge was dominated by gramineous plants, with the disturbance-tolerant species Pennisetum centrasiaticum, Chloris virgata, and Agropyron cristatum accounting for 68.6% of the total. C. virgata beyond 1 m to the road edge had a rapid decrease in its individual number and presence frequency, P. centrasiaticum and A. cristatum beyond 2 m also showed a similar trend, while the composite plants Artemisia capillaris and A. frigida beyond 2 m from the road edge had a rapid increase in its individual number, accounting for 70% of the herbaceous plants. At the road edge, the coverage and density of shrubs were significantly lower than those of the control, but the species composition had no significant difference.

  7. Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation

    KAUST Repository

    Peng, Wei

    2013-01-01

    Size is a defining characteristic of nanoparticles; it influences their optical and electronic properties as well as their interactions with molecules and macromolecules. Producing nanoparticles with narrow size distributions remains one of the main challenges to their utilization. At this time, the number of practical approaches to optimize the size distribution of nanoparticles in many interesting materials systems, including diamond nanocrystals, remains limited. Diamond nanocrystals synthesized by detonation protocols-so-called detonation nanodiamonds (DNDs)-are promising systems for drug delivery, photonics, and composites. DNDs are composed of primary particles with diameters mainly <10 nm and their aggregates (ca. 10-500 nm). Here, we introduce a large-scale approach to rate-zonal density gradient ultracentrifugation to obtain monodispersed fractions of nanoparticles in high yields. We use this method to fractionate a highly concentrated and stable aqueous solution of DNDs and to investigate the size distribution of various fractions by dynamic light scattering, analytical ultracentrifugation, transmission electron microscopy and powder X-ray diffraction. This fractionation method enabled us to separate gram-scale amounts of DNDs into several size ranges within a relatively short period of time. In addition, the high product yields obtained for each fraction allowed us to apply the fractionation method iteratively to a particular size range of particles and to collect various fractions of highly monodispersed primary particles. Our method paves the way for in-depth studies of the physical and optical properties, growth, and aggregation mechanism of DNDs. Applications requiring DNDs with specific particle or aggregate sizes are now within reach. © 2013 The Royal Society of Chemistry.

  8. Modelling CO2-Brine Interfacial Tension using Density Gradient Theory

    KAUST Repository

    Ruslan, Mohd Fuad Anwari Che

    2018-03-01

    Knowledge regarding carbon dioxide (CO2)-brine interfacial tension (IFT) is important for petroleum industry and Carbon Capture and Storage (CCS) strategies. In petroleum industry, CO2-brine IFT is especially importance for CO2 – based enhanced oil recovery strategy as it affects phase behavior and fluid transport in porous media. CCS which involves storing CO2 in geological storage sites also requires understanding regarding CO2-brine IFT as this parameter affects CO2 quantity that could be securely stored in the storage site. Several methods have been used to compute CO2-brine interfacial tension. One of the methods employed is by using Density Gradient Theory (DGT) approach. In DGT model, IFT is computed based on the component density distribution across the interface. However, current model is only applicable for modelling low to medium ionic strength solution. This limitation is due to the model only considers the increase of IFT due to the changes of bulk phases properties and does not account for ion distribution at interface. In this study, a new modelling strategy to compute CO2-brine IFT based on DGT was proposed. In the proposed model, ion distribution across interface was accounted for by separating the interface to two sections. The saddle point of tangent plane distance where ( ) was defined as the boundary separating the two sections of the interface. Electrolyte is assumed to be present only in the second section which is connected to the bulk liquid phase side. Numerical simulations were performed using the proposed approach for single and mixed salt solutions for three salts (NaCl, KCl, and CaCl2), for temperature (298 K to 443 K), pressure (2 MPa to 70 MPa), and ionic strength (0.085 mol·kg-1 to 15 mol·kg-1). The simulation result shows that the tuned model was able to predict with good accuracy CO2-brine IFT for all studied cases. Comparison with current DGT model showed that the proposed approach yields better match with the experiment data

  9. The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks

    DEFF Research Database (Denmark)

    Bertelli, N.; Balakin, A.A.; Westerhof, E.

    2010-01-01

    are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi......A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation...

  10. General approach for solving the density gradient theory in the interfacial tension calculations

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Michelsen, Michael Locht

    2017-01-01

    Within the framework of the density gradient theory, the interfacial tension can be calculated by finding the density profiles that minimize an integral of two terms over the system of infinite width. It is found that the two integrands exhibit a constant difference along the interface for a finite...... property evaluations compared to other methods. The performance of the algorithm with recommended parameters is analyzed for various systems, and the efficiency is further compared with the geometric-mean density gradient theory, which only needs to solve nonlinear algebraic equations. The results show...... that the algorithm is only 5-10 times less efficient than solving the geometric-mean density gradient theory....

  11. Stabilization of electron-scale turbulence by electron density gradient in national spherical torus experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Ruiz, J.; White, A. E. [MIT-Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lee, K. C. [National Fusion Research Institute, Daejeon (Korea, Republic of); Domier, C. W. [University of California at Davis, Davis, California 95616 (United States); Smith, D. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)

    2015-12-15

    Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which is shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.

  12. The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks

    International Nuclear Information System (INIS)

    Bertelli, N; Balakin, A A; Westerhof, E; Garcia, O E; Nielsen, A H; Naulin, V

    2010-01-01

    A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi-optical calculations are shown by using edge density fluctuations as calculated by two-dimensional interchange turbulence simulations and validated with the experimental data [O. E. Garcia et al, Nucl. Fusion 47 (2007) 667].

  13. The causal relation between turbulent particle flux and density gradient

    Energy Technology Data Exchange (ETDEWEB)

    Milligen, B. Ph. van; Martín de Aguilera, A.; Hidalgo, C. [CIEMAT - Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); Carreras, B. A. [BACV Solutions, 110 Mohawk Road, Oak Ridge, Tennessee 37830 (United States); García, L.; Nicolau, J. H. [Universidad Carlos III, 28911 Leganés, Madrid (Spain)

    2016-07-15

    A technique for detecting the causal relationship between fluctuating signals is used to investigate the relation between flux and gradient in fusion plasmas. Both a resistive pressure gradient driven turbulence model and experimental Langmuir probe data from the TJ-II stellarator are studied. It is found that the maximum influence occurs at a finite time lag (non-instantaneous response) and that quasi-periodicities exist. Furthermore, the model results show very long range radial influences, extending over most of the investigated regions, possibly related to coupling effects associated with plasma self-organization. These results clearly show that transport in fusion plasmas is not local and instantaneous, as is sometimes assumed.

  14. BMP4 density gradient in disk-shaped confinement

    Science.gov (United States)

    Bozorgui, Behnaz; Teimouri, Hamid; Kolomeisky, Anatoly B.

    We present a quantitative model that explains the scaling of BMP4 gradients during gastrulation and the recent experimental observation that geometric confinement of human embryonic stem cells is sufficient to recapitulate much of germ layer patterning. Based on a assumption that BMP4 diffusion rate is much smaller than the diffusion rate of it's inhibitor molecules, our results confirm that the length-scale which defines germ layer territories does not depend on system size.

  15. Depth perception: cuttlefish (Sepia officinalis) respond to visual texture density gradients.

    Science.gov (United States)

    Josef, Noam; Mann, Ofri; Sykes, António V; Fiorito, Graziano; Reis, João; Maccusker, Steven; Shashar, Nadav

    2014-11-01

    Studies concerning the perceptual processes of animals are not only interesting, but are fundamental to the understanding of other developments in information processing among non-humans. Carefully used visual illusions have been proven to be an informative tool for understanding visual perception. In this behavioral study, we demonstrate that cuttlefish are responsive to visual cues involving texture gradients. Specifically, 12 out of 14 animals avoided swimming over a solid surface with a gradient picture that to humans resembles an illusionary crevasse, while only 5 out of 14 avoided a non-illusionary texture. Since texture gradients are well-known cues for depth perception in vertebrates, we suggest that these cephalopods were responding to the depth illusion created by the texture density gradient. Density gradients and relative densities are key features in distance perception in vertebrates. Our results suggest that they are fundamental features of vision in general, appearing also in cephalopods.

  16. Semiautomated system for the production and analysis of sucrose density gradients

    International Nuclear Information System (INIS)

    Lange, C.S.; Liberman, D.F.

    1974-01-01

    A semiautomated system in DNA damage studies permitting considerable accuracy, speed, and reproducibility in the making and fractionation of sucrose density gradients is described. The system consists of a modified Beckman gradient forming device that makes six gradients simultaneously and delivers them into six 12.5 ml polyallomer centrifuge tubes in such a manner that new material is continuously added to the meniscus of the gradient. The gradients are fractionated three at a time and up to 100 fractions per gradient can be collected automatically directly into scintillation vials with a choice of drop counting or time mode with rinse and automatic addition of scintillation fluid to each vial. The system can process up to six gradients per hour but centrifugation time is usually the limiting factor. With neutral sucrose gradients, sharp, reproducible, monodisperse peaks containing up to 100 percent of the gradient radioactivity are usually obtained but a smaller monodisperse peak containing as little as 3.5 percent of the gradient radioactivity can be detected under conditions where some pairs of molecules might tangle or dimerize. The resolution and reproducibility of this system when used with neutral sucrose gradients is at least the equal if not superior to that commonly claimed for alkaline sucrose gradients. (U.S.)

  17. Noninvasive prenatal diagnosis. Use of density gradient centrifugation, magnetically activated cell sorting and in situ hybridization

    DEFF Research Database (Denmark)

    Campagnoli, C; Multhaupt, H A; Ludomirski, A

    1997-01-01

    OBJECTIVE: To develop a noninvasive method suitable for clinical prenatal diagnosis. STUDY DESIGN: Fetal nucleated erythrocytes were separated from peripheral blood of 17 healthy pregnant women using small magnetically activated cell sorting columns (MiniMACS) following density gradient centrifug...

  18. An edge pedestal model

    International Nuclear Information System (INIS)

    Stacev, W.M.

    2001-01-01

    A new model for calculation of the gradient scale lengths in the edge pedestal region and of the edge transport barrier width in H-mode tokamak plasmas will be described. Model problem calculations which demonstrate the promise of this model for predicting experimental pedestal properties will be discussed. The density and Prague gradient scale lengths (L) in the edge are calculated from the particle and ion and electron energy radial transport equations, making use of (presumed) known particle and energy fluxes flowing across the edge transport barrier from the core into the SOL and of edge transport coefficients. The average values of the particle and heat fluxes in the edge transport barrier are calculated in terms of the fluxes crossing into the SOL and the atomic physics reaction rates (ionisation, charge-exchange, elastic scattering, impurity radiation) in the edge by integrating the respective transport equations from the pedestal to the separatrix. An important implication of this model is that the pedestal gradient scale lengths depend not just on local pedestal platers properties but also on particle and energy fluxes from the core plasma and on recycling neutral fluxes that penetrate into the plasma edge, both of which in turn depend on the pedestal properties. The MHD edge pressure gradient constraint α≤ α C is used to determine the pressure width of the edge transport barrier, Δ TB = Δ TB (α c ). Three different models for the MHD edge pressure gradient constraint have been investigated: (1) nominal ideal ballooning mode theory, (2) ballooning mode theory taking into account the edge geometry and shear to access He second stability region; and pedestal β-limit theory when the ballooning modes are stabilised by diamagnetic effects. A series of calculations have been made for a DIII-D model problem. The calculated gradient scale lengths and edge transport barrier widths are of the magnitude of values observed experimentally, and certain trends

  19. Analytic solutions for Rayleigh-Taylor growth rates in smooth density gradients

    International Nuclear Information System (INIS)

    Munro, D.H.

    1988-01-01

    The growth rate of perturbations on the shell of a laser fusion target can be estimated as √gk , where g is the shell acceleration and k is the transverse wave number of the perturbation. This formula overestimates the growth rate, and should be modified for the effects of density gradients and/or ablation of the unstable interface. The density-gradient effect is explored here analytically. With the use of variational calculus to explore all possible density profiles, the growth rate is shown to exceed √gk/(1+kL) , where L is a typical density-gradient scale length. Density profiles actually exhibiting this minimum growth rate are found

  20. Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density

    Science.gov (United States)

    Seino, Junji; Kageyama, Ryo; Fujinami, Mikito; Ikabata, Yasuhiro; Nakai, Hiromi

    2018-06-01

    A semi-local kinetic energy density functional (KEDF) was constructed based on machine learning (ML). The present scheme adopts electron densities and their gradients up to third-order as the explanatory variables for ML and the Kohn-Sham (KS) kinetic energy density as the response variable in atoms and molecules. Numerical assessments of the present scheme were performed in atomic and molecular systems, including first- and second-period elements. The results of 37 conventional KEDFs with explicit formulae were also compared with those of the ML KEDF with an implicit formula. The inclusion of the higher order gradients reduces the deviation of the total kinetic energies from the KS calculations in a stepwise manner. Furthermore, our scheme with the third-order gradient resulted in the closest kinetic energies to the KS calculations out of the presented functionals.

  1. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient.

    Science.gov (United States)

    Ren, Xiang; Wang, Fuyou; Chen, Cheng; Gong, Xiaoyuan; Yin, Li; Yang, Liu

    2016-07-20

    Cartilage tissue engineering is a promising approach for repairing and regenerating cartilage tissue. To date, attempts have been made to construct zonal cartilage that mimics the cartilaginous matrix in different zones. However, little attention has been paid to the chondrocyte density gradient within the articular cartilage. We hypothesized that the chondrocyte density gradient plays an important role in forming the zonal distribution of extracellular matrix (ECM). In this study, collagen type II hydrogel/chondrocyte constructs were fabricated using a bioprinter. Three groups were created according to the total cell seeding density in collagen type II pre-gel: Group A, 2 × 10(7) cells/mL; Group B, 1 × 10(7) cells/mL; and Group C, 0.5 × 10(7) cells/mL. Each group included two types of construct: one with a biomimetic chondrocyte density gradient and the other with a single cell density. The constructs were cultured in vitro and harvested at 0, 1, 2, and 3 weeks for cell viability testing, reverse-transcription quantitative PCR (RT-qPCR), biochemical assays, and histological analysis. We found that total ECM production was positively correlated with the total cell density in the early culture stage, that the cell density gradient distribution resulted in a gradient distribution of ECM, and that the chondrocytes' biosynthetic ability was affected by both the total cell density and the cell distribution pattern. Our results suggested that zonal engineered cartilage could be fabricated by bioprinting collagen type II hydrogel constructs with a biomimetic cell density gradient. Both the total cell density and the cell distribution pattern should be optimized to achieve synergistic biological effects.

  2. Virus purification by CsCl density gradient using general centrifugation.

    Science.gov (United States)

    Nasukawa, Tadahiro; Uchiyama, Jumpei; Taharaguchi, Satoshi; Ota, Sumire; Ujihara, Takako; Matsuzaki, Shigenobu; Murakami, Hironobu; Mizukami, Keijirou; Sakaguchi, Masahiro

    2017-11-01

    Virus purification by cesium chloride (CsCl) density gradient, which generally requires an expensive ultracentrifuge, is an essential technique in virology. Here, we optimized virus purification by CsCl density gradient using general centrifugation (40,000 × g, 2 h, 4 °C), which showed almost the same purification ability as conventional CsCl density gradient ultracentrifugation (100,000 × g, 1 h, 4 °C) using phages S13' and φEF24C. Moreover, adenovirus strain JM1/1 was also successfully purified by this method. We suggest that general centrifugation can become a less costly alternative to ultracentrifugation for virus purification by CsCl densiy gradient and will thus encourage research in virology.

  3. Space charge profiles in low density polyethylene samples containing a permittivity/conductivity gradient

    DEFF Research Database (Denmark)

    Bambery, K.R.; Fleming, R.J.; Holbøll, Joachim

    2001-01-01

    .5×107 V m-1. Current density was also measured as a function of temperature and field. Space charge due exclusively to the temperature gradient was detected, with density of order 0.01 C m-3. The activation energy associated with the transport of electrons through the bulk was calculated as 0.09 e...

  4. Spectroscopic measurements of the density and electronic temperature at the plasma edge in Tore Supra

    International Nuclear Information System (INIS)

    Lediankine, A.

    1996-01-01

    The profiles of temperature and electronic density at the plasma edge are important to study the wall-plasma interaction and the radiative layers in the Tokamak plasmas. The laser ablation technique of the lithium allows to measure the profile of electronic density. To measure the profile of temperature, it has been used for the first time, the injection of a fluorine neutral atoms beam. The experiments, the results are described in this work. (N.C.)

  5. Effects of Density and Impurity on Edge Localized Modes in Tokamaks

    Science.gov (United States)

    Zhu, Ping

    2017-10-01

    Plasma density and impurity concentration are believed to be two of the key elements governing the edge tokamak plasma conditions. Optimal levels of plasma density and impurity concentration in the edge region have been searched for in order to achieve the desired fusion gain and divertor heat/particle load mitigation. However, how plasma density or impurity would affect the edge pedestal stability may have not been well known. Our recent MHD theory modeling and simulations using the NIMROD code have found novel effects of density and impurity on the dynamics of edge-localized modes (ELMs) in tokamaks. First, previous MHD analyses often predict merely a weak stabilizing effect of toroidal flow on ELMs in experimentally relevant regimes. We find that the stabilizing effects on the high- n ELMs from toroidal flow can be significantly enhanced with the increased edge plasma density. Here n denotes the toroidal mode number. Second, the stabilizing effects of the enhanced edge resistivity due to lithium-conditioning on the low- n ELMs in the high confinement (H-mode) discharges in NSTX have been identified. Linear stability analysis of the experimentally constrained equilibrium suggests that the change in the equilibrium plasma density and pressure profiles alone due to lithium-conditioning may not be sufficient for a complete suppression of the low- n ELMs. The enhanced resistivity due to the increased effective electric charge number Zeff after lithium-conditioning provides additional stabilization of the low- n ELMs. These new effects revealed in our theory analyses may help further understand recent ELM experiments and suggest new control schemes for ELM suppression and mitigation in future experiments. They may also pose additional constraints on the optimal levels of plasma density and impurity concentration in the edge region for H-mode tokamak operation. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB

  6. Responses of Euglossine Bees (Hymenoptera, Apidae, Euglossina) to an Edge-Forest Gradient in a Large Tabuleiro Forest Remnant in Eastern Brazil.

    Science.gov (United States)

    Coswosk, J A; Ferreira, R A; Soares, E D G; Faria, L R R

    2018-08-01

    Euglossine fauna of a large remnant of Brazilian Atlantic forest in eastern Brazil (Reserva Natural Vale) was assessed along an edge-forest gradient towards the interior of the fragment. To test the hypotheses that the structure of assemblages of orchid bees varies along this gradient, the following predictions were evaluated: (i) species richness is positively related to distance from the forest edge, (ii) species diversity is positively related to distance from the edge, (iii) the relative abundance of species associated with forest edge and/or open areas is inversely related to the distance from edge, and (iv) relative abundance of forest-related species is positively related to distance from the edge. A total of 2264 bees of 25 species was assessed at five distances from the edge: 0 m (the edge itself), 100 m, 500 m, 1000 m and 1500 m. Data suggested the existence of an edge-interior gradient for euglossine bees regarding species diversity and composition (considering the relative abundance of edge and forest-related species as a proxy for species composition) but not species richness.

  7. Reflection and absorption of ion-acoustic waves in a plasma density gradient

    International Nuclear Information System (INIS)

    Ishihara, O.

    1977-01-01

    Plasma is characterized by electrical quasineutrality and the collective behavior. There exists a longitudinal low-frequency wave called an ion-acoustic wave in a plasma. One problem in the experimental study of ion-acoustic waves has been that sometimes they are observed to be reflected from discharge tube walls, and sometimes to be absorbed. Theoretical computation reveals that a velocity gradient produced by a density gradient plays a significant role in the reflection. The velocity gradient produces the subsonic-supersonic transition and long wavelength waves are reflected before reaching the transition while short wavelength waves penetrate over the transition and are absorbed in the supersonic flow plasma

  8. OptiPrep? Density Gradient Solutions for Macromolecules and Macromolecular Complexes

    Directory of Open Access Journals (Sweden)

    John Graham

    2002-01-01

    Full Text Available Any density gradient for the isolation of mammalian cells should ideally only expose the sedimenting particles to an increasing concentration of the gradient solute. Thus they will experience only an increasing density and viscosity, other parameters such as osmolality, pH, ionic strength and the concentration of important additives (such as EDTA or divalent cations should remain as close to constant as possible. This Protocol Article describes the strategies for the dilution of OptiPrep™ in order to prepare such solutions for mammalian cells.

  9. Spectroscopic analysis of the density and temperature gradients in the laser-heated gas jet

    International Nuclear Information System (INIS)

    Matthews, D.L.; Lee, R.W.; Auerbach, J.M.

    1981-01-01

    We have performed an analysis of the x-ray spectra produced by a 1.0TW, lambda/sub L/-0.53μm laser-irradiated gas jet. Plasmas produced by ionization of neon, argon and N 2 + SF 6 gases were included in those measurements. Plasma electron density and temperature gradients were obtained by comparison of measured spectra with those produced by computer modeling. Density gradients were also obtained using laser interferometry. The limitations of this technique for plasma diagnosis will be discussed

  10. Novel analysis technique for measuring edge density fluctuation profiles with reflectometry in the Large Helical Device

    Science.gov (United States)

    Creely, A. J.; Ida, K.; Yoshinuma, M.; Tokuzawa, T.; Tsujimura, T.; Akiyama, T.; Sakamoto, R.; Emoto, M.; Tanaka, K.; Michael, C. A.

    2017-07-01

    A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.

  11. In-vitro studies of change in edge detection with changes in bone density

    International Nuclear Information System (INIS)

    Pocock, N.; Noakes, K.; Griffiths, M.

    1999-01-01

    Full text: Dual energy X-ray absorptiometry (DXA) requires edge detection software to identify the skeletal regions for quantitation of bone mineral density (BMD) and bone mineral content (BMC). As bone mass decreases, the detection of bone edges becomes more difficult and this potentially could cause errors in DXA estimations of areal BMD or BMC. To address this issue, we have used an in-vitro model to study the effects of 'bone loss' on calculated bone area, BMD and BMC. Multiple vertebral phantoms, of equal cross-sectional area but incrementally decreased areal BMD, were constructed using calcium sulphate hemihydrate. The weight of each phantom vertebra, measured accurately using an electronic balance, was used as an index of its true 'bone mass equivalent' (BME). The phantoms were scanned and analysed in the lumbar spine mode using a Lunar DPX-L (L) and Hologic QDR-1000 (H). The changes in BME were compared to changes in measured area, BMC and areal BMD. The results demonstrate that, in an in-vitro model, as bone mass decreases, measured bone area and consequently BMC will decrease as the edge detection algorithms have greater difficulty in detecting the true edges. In conclusion, in an in-vitro model, the DXA edge detection algorithms will underestimate bone area as bone mass decreases. This has potential implications for monitoring changes in bone mass in vivo

  12. Numerical Study on Density Gradient Carbon-Carbon Composite for Vertical Launching System

    Science.gov (United States)

    Yoon, Jin-Young; Kim, Chun-Gon; Lim, Juhwan

    2018-04-01

    This study presents new carbon-carbon (C/C) composite that has a density gradient within single material, and estimates its heat conduction performance by a numerical method. To address the high heat conduction of a high-density C/C, which can cause adhesion separation in the steel structures of vertical launching systems, density gradient carbon-carbon (DGCC) composite is proposed due to its exhibiting low thermal conductivity as well as excellent ablative resistance. DGCC is manufactured by hybridizing two different carbonization processes into a single carbon preform. One part exhibits a low density using phenolic resin carbonization to reduce heat conduction, and the other exhibits a high density using thermal gradient-chemical vapor infiltration for excellent ablative resistance. Numerical analysis for DGCC is performed with a heat conduction problem, and internal temperature distributions are estimated by the forward finite difference method. Material properties of the transition density layer, which is inevitably formed during DGCC manufacturing, are assumed to a combination of two density layers for numerical analysis. By comparing numerical results with experimental data, we validate that DGCC exhibits a low thermal conductivity, and it can serve as highly effective ablative material for vertical launching systems.

  13. Density limit and cross-field edge transport scaling in Alcator C-Mod

    International Nuclear Information System (INIS)

    LaBombard, B.; Greenwald, M.; Hughes, J.W.; Lipschultz, B.; Mossessian, D.; Terry, J.L.; Boivin, R.L.; Carreras, B.A.; Pitcher, C.S.; Zweben, S.J.

    2003-01-01

    Recent experiments in Alcator C-Mod have uncovered a direct link between the character and scaling of cross-field particle transport in the edge plasma and the density limit, n G . As n-bar e /n G is increased from low values to values approaching ∼1, an ordered progression in the cross-field edge transport physics occurs: first benign cross-field heat convection, then cross-field heat convection impacting the scrape-off layer (SOL) power loss channels and reducing the separatrix electron temperature, and finally 'bursty' transport (normally associated with the far SOL) invading into closed flux surface regions and carrying a convective power loss that impacts the power balance of the discharge. These observations suggest that SOL transport and its scaling with plasma conditions plays a key role in setting the empirically observed density limit scaling law. (author)

  14. Electron-cyclotron wave scattering by edge density fluctuations in ITER

    Science.gov (United States)

    Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Strintzi, Dafni; Chatziantonaki, Ioanna; Vlahos, Loukas

    2009-11-01

    The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.

  15. Correcting the error in neutron moisture probe measurements caused by a water density gradient

    International Nuclear Information System (INIS)

    Wilson, D.J.

    1988-01-01

    If a neutron probe lies in or near a water density gradient, the probe may register a water density different to that at the measuring point. The effect of a thin stratum of soil containing an excess or depletion of water at various distances from a probe in an otherwise homogeneous system has been calculated, producing an 'importance' curve. The effect of these strata can be integrated over the soil region in close proximity to the probe resulting in the net effect of the presence of a water density gradient. In practice, the probe is scanned through the point of interest and the count rate at that point is corrected for the influence of the water density on each side of it. An example shows that the technique can reduce an error of 10 per cent to about 2 per cent

  16. Preparation of synaptic plasma membrane and postsynaptic density proteins using a discontinuous sucrose gradient.

    Science.gov (United States)

    Bermejo, Marie Kristel; Milenkovic, Marija; Salahpour, Ali; Ramsey, Amy J

    2014-09-03

    Neuronal subcellular fractionation techniques allow the quantification of proteins that are trafficked to and from the synapse. As originally described in the late 1960's, proteins associated with the synaptic plasma membrane can be isolated by ultracentrifugation on a sucrose density gradient. Once synaptic membranes are isolated, the macromolecular complex known as the post-synaptic density can be subsequently isolated due to its detergent insolubility. The techniques used to isolate synaptic plasma membranes and post-synaptic density proteins remain essentially the same after 40 years, and are widely used in current neuroscience research. This article details the fractionation of proteins associated with the synaptic plasma membrane and post-synaptic density using a discontinuous sucrose gradient. Resulting protein preparations are suitable for western blotting or 2D DIGE analysis.

  17. Density gradient in SiO 2 films on silicon as revealed by positron annihilation spectroscopy

    Science.gov (United States)

    Revesz, A. G.; Anwand, W.; Brauer, G.; Hughes, H. L.; Skorupa, W.

    2002-06-01

    Positron annihilation spectroscopy of thermally grown and deposited SiO 2 films on silicon shows in a non-destructive manner that these films have a gradient in their density. The gradient is most pronounced for the oxide grown in dry oxygen. Oxidation in water-containing ambient results in an oxide with reduced gradient, similarly to the gradient in the deposited oxide. These observations are in accordance with earlier optical and other studies using stepwise etching or a set of samples of varying thickness. The effective oxygen charge, which is very likely one of the reasons for the difference in the W parameters of silica glass and quartz crystal, could be even higher at some localized configurations in the SiO 2 films resulting in increased positron trapping.

  18. Bayesian modeling of JET Li-BES for edge electron density profiles using Gaussian processes

    Science.gov (United States)

    Kwak, Sehyun; Svensson, Jakob; Brix, Mathias; Ghim, Young-Chul; JET Contributors Collaboration

    2015-11-01

    A Bayesian model for the JET lithium beam emission spectroscopy (Li-BES) system has been developed to infer edge electron density profiles. The 26 spatial channels measure emission profiles with ~15 ms temporal resolution and ~1 cm spatial resolution. The lithium I (2p-2s) line radiation in an emission spectrum is calculated using a multi-state model, which expresses collisions between the neutral lithium beam atoms and the plasma particles as a set of differential equations. The emission spectrum is described in the model including photon and electronic noise, spectral line shapes, interference filter curves, and relative calibrations. This spectral modeling gets rid of the need of separate background measurements for calculating the intensity of the line radiation. Gaussian processes are applied to model both emission spectrum and edge electron density profile, and the electron temperature to calculate all the rate coefficients is obtained from the JET high resolution Thomson scattering (HRTS) system. The posterior distributions of the edge electron density profile are explored via the numerical technique and the Markov chain Monte Carlo (MCMC) samplings. See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia.

  19. Vertical density gradient in the eastern North Atlantic during the last 30,000 years

    Energy Technology Data Exchange (ETDEWEB)

    Rogerson, M.; Ramirez, J. [University of Hull, Geography Department, Hull (United Kingdom); Bigg, G.R. [University of Sheffield, Department of Geography, Sheffield (United Kingdom); Rohling, E.J. [University of Southampton, National Oceanography Centre, School of Ocean and Earth Science, Southampton (United Kingdom)

    2012-08-15

    Past changes in the density and momentum structure of oceanic circulation are an important aspect of changes in the Atlantic Meridional Overturning Circulation and consequently climate. However, very little is known about past changes in the vertical density structure of the ocean, even very extensively studied systems such as the North Atlantic. Here we exploit the physical controls on the settling depth of the dense Mediterranean water plume derived from the Strait of Gibraltar to obtain the first robust, observations-based, probabilistic reconstruction of the vertical density gradient in the eastern North Atlantic during the last 30,000 years. We find that this gradient was weakened by more than 50%, relative to the present, during the last Glacial Maximum, and that changes in general are associated with reductions in AMOC intensity. However, we find only a small change during Heinrich Event 1 relative to the Last Glacial Maximum, despite strong evidence that overturning was substantially altered. This implies that millennial-scale changes may not be reflected in vertical density structure of the ocean, which may be limited to responses on an ocean-overturning timescale or longer. Regardless, our novel reconstruction of Atlantic density structure can be used as the basis for a dynamical measure for validation of model-based AMOC reconstructions. In addition, our general approach is transferrable to other marginal sea outflow plumes, to provide estimates of oceanic vertical density gradients in other locations. (orig.)

  20. Pitfalls of using the geometric-mean combining rule in the density gradient theory

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2016-01-01

    It is popular and attractive to model the interfacial tension using the density gradient theory with the geometric-mean combining rule, in which the same equation of state is used for the interface and bulk phases. The computational efficiency is the most important advantage of this theory. In th...

  1. Critical temperature gradient and critical current density in thin films of a type I superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Heubener, R P

    1968-12-16

    Measurements of the critical temperature gradient and the critical current density in superconducting lead films in a transverse magnetic field indicate that the critical current flows predominantly along the surface of the films and that the critical surface currents contribute only very little to the Lorentz force on a fluxoid.

  2. Modified method for labeling human platelets with indium-111 oxine using albumin density-gradient separation

    International Nuclear Information System (INIS)

    Bunting, R.W.; Callahan, R.J.; Finkelstein, S.; Lees, R.S.; Strauss, H.W.

    1982-01-01

    When labeling platelets with indium-111 oxine, albumin density-gradient separation minimizes the time spent to resuspend those platelets that have been centrifuged against a hard surface. Labeling efficiency or platelet viability, as measured by platelet survival or aggregation with adenosine diphosphate, are not adversely affected

  3. Enrichment of unlabeled human Langerhans cells from epidermal cell suspensions by discontinuous density gradient centrifugation

    NARCIS (Netherlands)

    Teunissen, M. B.; Wormmeester, J.; Kapsenberg, M. L.; Bos, J. D.

    1988-01-01

    In this report we introduce an alternative procedure for enrichment of human epidermal Langerhans cells (LC) from epidermal cell suspensions of normal skin. By means of discontinuous Ficoll-Metrizoate density gradient centrifugation, a fraction containing high numbers of viable, more than 80% pure

  4. Microfluidic Adaptation of Density-Gradient Centrifugation for Isolation of Particles and Cells

    Directory of Open Access Journals (Sweden)

    Yuxi Sun

    2017-08-01

    Full Text Available Density-gradient centrifugation is a label-free approach that has been extensively used for cell separations. Though elegant, this process is time-consuming (>30 min, subjects cells to high levels of stress (>350 g and relies on user skill to enable fractionation of cells that layer as a narrow band between the density-gradient medium and platelet-rich plasma. We hypothesized that microfluidic adaptation of this technique could transform this process into a rapid fractionation approach where samples are separated in a continuous fashion while being exposed to lower levels of stress (<100 g for shorter durations of time (<3 min. To demonstrate proof-of-concept, we designed a microfluidic density-gradient centrifugation device and constructed a setup to introduce samples and medium like Ficoll in a continuous, pump-less fashion where cells and particles can be exposed to centrifugal force and separated via different outlets. Proof-of-concept studies using binary mixtures of low-density polystyrene beads (1.02 g/cm3 and high-density silicon dioxide beads (2.2 g/cm3 with Ficoll–Paque (1.06 g/cm3 show that separation is indeed feasible with >99% separation efficiency suggesting that this approach can be further adapted for separation of cells.

  5. Properties of ion temperature gradient and trapped electron modes in tokamak plasmas with inverted density profiles

    Science.gov (United States)

    Du, Huarong; Jhang, Hogun; Hahm, T. S.; Dong, J. Q.; Wang, Z. X.

    2017-12-01

    We perform a numerical study of linear stability of the ion temperature gradient (ITG) mode and the trapped electron mode (TEM) in tokamak plasmas with inverted density profiles. A local gyrokinetic integral equation is applied for this study. From comprehensive parametric scans, we obtain stability diagrams for ITG modes and TEMs in terms of density and temperature gradient scale lengths. The results show that, for the inverted density profile, there exists a normalized threshold temperature gradient above which the ITG mode and the TEM are either separately or simultaneously unstable. The instability threshold of the TEM for the inverted density profile is substantially different from that for normal and flat density profiles. In addition, deviations are found on the ITG threshold from an early analytic theory in sheared slab geometry with the adiabatic electron response [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. A possible implication of this work on particle transport in pellet fueled tokamak plasmas is discussed.

  6. Effect of low density H-mode operation on edge and divertor plasma parameters

    International Nuclear Information System (INIS)

    Maingi, R.; Mioduszewski, P.K.; Cuthbertson, J.W.

    1994-07-01

    We present a study of the impact of H-mode operation at low density on divertor plasma parameters on the DIII-D tokamak. The line-average density in H-mode was scanned by variation of the particle exhaust rate, using the recently installed divertor cryo-condensation pump. The maximum decrease (50%) in line-average electron density was accompanied by a factor of 2 increase in the edge electron temperature, and 10% and 20% reductions in the measured core and divertor radiated power, respectively. The measured total power to the inboard divertor target increased by a factor of 3, with the major contribution coming from a factor of 5 increase in the peak heat flux very close to the inner strike point. The measured increase in power at the inboard divertor target was approximately equal to the measured decrease in core and divertor radiation

  7. Lower-hybrid counter current drive for edge current density modification in DIII-D

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Nevins, W.M.; Porkolab, M.; Bonoli, P.T.; Harvey, R.W.

    1994-01-01

    Each of the Advanced Tokamak operating modes in DIII-D is thought to have a distinctive current density profile. So far these modes have only been achieved transiently through experiments which ramp the plasma current and shape. Extension of these modes to steady state requires non-inductive current profile control, e.g., with lower hybrid current drive (LHCD). Calculations of LHCD have been done for DIII-D using the ACCOME and CQL3D codes, showing that counter driven current at the plasma edge can cancel some of the undesirable edge bootstrap current and potentially extend the VH-mode. Results will be presented for scenarios using 2.45 GHz LH waves launched from both the midplane and off-axis ports. The sensitivity of the results to injected power, n e and T e , and launched wave spectrum will also be shown

  8. Edge density fluctuation diagnostic for DIII-D using lithium beams: 1992 annual report

    International Nuclear Information System (INIS)

    Thomas, D.M.

    1994-01-01

    During the past several months the Lithium beam diagnostic was commissioned of DIII-D and began yielding useful information. The author developed the remote control and monitoring of the ion source operation and beam formation and focussing, and integrated the control system and data acquisition into the DIII-D operating system. Several detector types were fabricated, and fluorescence data were collected using several differing detector arrangements. Beam-gas measurements were conducted to analyze the intrinsic beam fluctuations and stability. Fluorescence data was then obtained on a number of Tokamak discharges under varying discharge conditions. Analysis of this initial data is proceeding but has already yielded some interesting features. These include changes in the edge plasma density behavior during the l- to h-transition, disruptions, and edge localized modes (ELMs). Based on the quality of data obtained the author proceeded with the design and construction of the full 16-channel detection system which will be completed and tested shortly

  9. Relaxation of potential, flows, and density in the edge plasma of Castor tokamak

    International Nuclear Information System (INIS)

    Hron, M.; Weinzettl, V.; Dufkova, E.; Duran, I.; Stoeckel, J.; Hidalgo, C.

    2004-01-01

    Decay times of plasma flows and plasma profiles have been measured after a sudden biasing switch-off in experiments on the Castor tokamak. A biased electrode has been used to polarize the edge plasma. The edge plasma potential and flows have been characterized by means of Langmuir and Mach probes, the radiation was measured using an array of bolometers. Potential profiles and poloidal flows can be well fitted by an exponential decay time in the range of 10 - 30 μs when the electrode biasing is turned off in the Castor tokamak. The radiation shows a slower time scale (about 1 ms), which is linked to the evolution in the plasma density and particle confinement. (authors)

  10. High frequency electric field spikes formed by electron beam-plasma interaction in plasma density gradients

    International Nuclear Information System (INIS)

    Gunell, H.; Loefgren, T.

    1997-02-01

    In the electron beam-plasma interaction at an electric double layer the beam density is much higher than in the classical beam-plasma experiments. The wave propagation takes place along the density gradient, that is present at the high potential side of the double layer. Such a case is studied experimentally by injecting the electron beam from a plane cathode, without any grids suppressing the gradient, and by particle simulations. The high frequency field concentrates in a sharp 'spike' with a half width of the order of one wavelength. The spike is found to be a standing wave surrounded by regions dominated by propagating waves. It forms at a position where its frequency is close to the local plasma frequency. The spike forms also when the electric field is well below the threshold for modulational instability, and long before a density cavity is formed in the simulations. Particle simulations reveal that, at the spike, there is a backward travelling wave that, when it is strongly damped, accelerates electrons back towards the cathode. In a simulation of a homogeneous plasma without the density gradient no spike is seen, and the wave is purely travelling instead of standing. 9 refs

  11. Electric field spikes formed by electron beam endash plasma interaction in plasma density gradients

    International Nuclear Information System (INIS)

    Gunell, H.; Loefgren, T.

    1997-01-01

    In the electron beam endash plasma interaction at an electric double layer the beam density is much higher than in the classical beam endash plasma experiments. The wave propagation takes place along the density gradient that is present at the high potential side of the double layer. Such a case is studied experimentally by injecting the electron beam from a plane cathode, without any grids suppressing the gradient, and by particle simulations. The high frequency field concentrates in a sharp open-quotes spikeclose quotes with a half width of the order of one wavelength. The spike is found to be a standing wave surrounded by regions dominated by propagating waves. It forms at a position where its frequency is close to the local plasma frequency. The spike forms also when the electric field is well below the threshold for modulational instability, and long before a density cavity is formed in the simulations. Particle simulations reveal that, at the spike, there is a backward traveling wave that, when it is strongly damped, accelerates electrons back towards the cathode. In a simulation of a homogeneous plasma without the density gradient no spike is seen, and the wave is purely travelling instead of standing. copyright 1997 American Institute of Physics

  12. Edge density profile measurements by X-mode reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Bottereau, C.; Chareau, J.M.; Paume, M.; Sabot, R.

    2000-10-01

    A broadband reflectometer operating in the frequency range 50-75 GHz has been developed on Tore Supra to measure electron density profiles at the edge. The system uses extraordinary mode polarization and performs routine measurements in 20 μs with a heterodyne detection to ensure a high dynamic range sensitivity. It allows separate phase and amplitude information of the signal. The density profiles are fully automatically calculated from the raw phase. The initialization is done with an automatic detection of the first cut-off from the amplitude of the reflected signal with accuracy up to ±0.5 cm. The profiles are now part of the public database of Tore Supra (TS) and can provide details of density structures better than the centimeter range. High reliability of the measurements for various plasma conditions make this diagnostic an ideal tool to study specific edge plasma physics with given examples on detached plasma behaviour and RF antenna-plasma coupling processes. It also is shown how the presence of suprathermal electrons may perturb the measurements. (authors)

  13. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles.

    Science.gov (United States)

    Kim, Yong Jung; Yang, Cheol-Min; Park, Ki Chul; Kaneko, Katsumi; Kim, Yoong Ahm; Noguchi, Minoru; Fujino, Takeshi; Oyama, Shigeki; Endo, Morinobu

    2012-03-12

    Supercapacitors can store and deliver energy by a simple charge separation, and thus they could be an attractive option to meet transient high energy density in operating fuel cells and in electric and hybrid electric vehicles. To achieve such requirements, intensive studies have been carried out to improve the volumetric capacitance in supercapacitors using various types and forms of carbons including carbon nanotubes and graphenes. However, conventional porous carbons are not suitable for use as electrode material in supercapacitors for such high energy density applications. Here, we show that edge-enriched porous carbons are the best electrode material for high energy density supercapacitors to be used in vehicles as an auxiliary powertrain. Molten potassium hydroxide penetrates well-aligned graphene layers vertically and consequently generates both suitable pores that are easily accessible to the electrolyte and a large fraction of electrochemically active edge sites. We expect that our findings will motivate further research related to energy storage devices and also environmentally friendly electric vehicles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Edge operational space for high density/high confinement ELMY H-modes in JET

    International Nuclear Information System (INIS)

    Sartori, R.; Saibene, G.; Loarte, A.

    2002-01-01

    This paper discusses how the proximity to the L-H threshold affects the confinement of ELMy H-modes at high density. The largest reduction in confinement at high density is observed at the transition from the Type I to the Type III ELMy regime. At medium plasma triangularity, δ≅0.3 (where δ is the average triangularity at the separatrix), JET experiments show that by increasing the margin above the L-H threshold power and maintaining the edge temperature above the critical temperature for the transition to Type III ELMs, it is possible to avoid the degradation of the pedestal pressure with density, normally observed at lower power. As a result, the range of achievable densities (both in the core and in the pedestal) is increased. At high power above the L-H threshold power the core density was equal to the Greenwald limit with H97≅0.9. There is evidence that a mixed regime of Type I and Type II ELMs has been obtained at this intermediate triangularity, possibly as a result of this increase in density. At higher triangularity, δ≅0.5, the power required to achieve similar results is lower. (author)

  15. Adjacent habitat influence on stink bug (Hemiptera: Pentatomidae) densities and the associated damage at field corn and soybean edges.

    Science.gov (United States)

    Venugopal, P Dilip; Coffey, Peter L; Dively, Galen P; Lamp, William O

    2014-01-01

    The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stål 1855), contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields.

  16. Adjacent habitat influence on stink bug (Hemiptera: Pentatomidae densities and the associated damage at field corn and soybean edges.

    Directory of Open Access Journals (Sweden)

    P Dilip Venugopal

    Full Text Available The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stål 1855, contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields.

  17. Analytic calculations of hyper-Raman spectra from density functional theory hyperpolarizability gradients

    Energy Technology Data Exchange (ETDEWEB)

    Ringholm, Magnus; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm (Sweden); PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Oggioni, Luca [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Department of Physics G. Occhialini, University of Milano Bicocca, Piazza della scienza 3, 20126 Milan (Italy); Ekström, Ulf [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo (Norway)

    2014-10-07

    We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.

  18. Effects of bunch density gradient in high-gain free-electron lasers

    International Nuclear Information System (INIS)

    Huang, Z.; Kim, K.-J.

    1999-01-01

    The authors investigate effects of the bunch density gradient in self-amplified spontaneous emission (SASE), including the role of coherent spontaneous emission (CSE) in the evolution of the free-electron laser (FEL) process. In the exponential gain regime, the authors solve the coupled Maxwell-Vlasov equations and extend the linear theory to a bunched beam with energy spread. A time-dependent, nonlinear simulation algorithm is used to study the CSE effect and the nonlinear evolution of the radiation pulse

  19. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations

    Directory of Open Access Journals (Sweden)

    Kazuya Iwai

    2016-05-01

    Full Text Available Diagnostic methods that focus on the extracellular vesicles (EVs present in saliva have been attracting great attention because of their non-invasiveness. EVs contain biomolecules such as proteins, messenger RNA (mRNA and microRNA (miRNA, which originate from cells that release EVs, making them an ideal source for liquid biopsy. Although there have been many reports on density-based fractionation of EVs from blood and urine, the number of reports on EVs from saliva has been limited, most probably because of the difficulties in separating EVs from viscous saliva using density gradient centrifugation. This article establishes a protocol for the isolation of EVs from human saliva using density gradient centrifugation. The fractionated salivary EVs were characterized by atomic force microscopy, western blot and reverse transcription polymerase chain reaction. The results indicate that salivary EVs have a smaller diameter (47.8±12.3 nm and higher density (1.11 g/ml than EVs isolated from conditioned cell media (74.0±23.5 nm and 1.06 g/ml, respectively. Additionally, to improve the throughput of density-based fractionation of EVs, the original protocol was further modified by using a fixed angle rotor instead of a swinging rotor. It was also confirmed that several miRNAs were expressed strongly in the EV-marker-expressing fractions.

  20. Subsystem density functional theory with meta-generalized gradient approximation exchange-correlation functionals.

    Science.gov (United States)

    Śmiga, Szymon; Fabiano, Eduardo; Laricchia, Savio; Constantin, Lucian A; Della Sala, Fabio

    2015-04-21

    We analyze the methodology and the performance of subsystem density functional theory (DFT) with meta-generalized gradient approximation (meta-GGA) exchange-correlation functionals for non-bonded molecular systems. Meta-GGA functionals depend on the Kohn-Sham kinetic energy density (KED), which is not known as an explicit functional of the density. Therefore, they cannot be directly applied in subsystem DFT calculations. We propose a Laplacian-level approximation to the KED which overcomes this limitation and provides a simple and accurate way to apply meta-GGA exchange-correlation functionals in subsystem DFT calculations. The so obtained density and energy errors, with respect to the corresponding supermolecular calculations, are comparable with conventional approaches, depending almost exclusively on the approximations in the non-additive kinetic embedding term. An embedding energy error decomposition explains the accuracy of our method.

  1. Travelling waves of density for a fourth-gradient model of fluids

    Science.gov (United States)

    Gouin, Henri; Saccomandi, Giuseppe

    2016-09-01

    In mean-field theory, the non-local state of fluid molecules can be taken into account using a statistical method. The molecular model combined with a density expansion in Taylor series of the fourth order yields an internal energy value relevant to the fourth-gradient model, and the equation of isothermal motions takes then density's spatial derivatives into account for waves travelling in both liquid and vapour phases. At equilibrium, the equation of the density profile across interfaces is more precise than the Cahn and Hilliard equation, and near the fluid's critical point, the density profile verifies an Extended Fisher-Kolmogorov equation, allowing kinks, which converges towards the Cahn-Hillard equation when approaching the critical point. Nonetheless, we also get pulse waves oscillating and generating critical opalescence.

  2. Impact of rotating resonant magnetic perturbation fields on plasma edge electron density and temperature

    International Nuclear Information System (INIS)

    Stoschus, H.; Schmitz, O.; Frerichs, H.; Reiser, D.; Unterberg, B.; Lehnen, M.; Reiter, D.; Samm, U.; Jakubowski, M.W.

    2012-01-01

    Rotating resonant magnetic perturbation (RMP) fields impose a characteristic modulation to the edge electron density n e (r, t) and temperature T e (r, t) fields, which depends on the relative rotation f rel between external RMP field and plasma fluid. The n e (r, t) and T e (r, t) fields measured in the edge (r/a = 0.9–1.05) of TEXTOR L-mode plasmas are in close correlation with the local magnetic vacuum topology for low relative rotation f rel = −0.2 kHz. In comparison with the 3D neutral and plasma transport code EMC3-Eirene, this provides substantial experimental evidence that for low relative rotation level and high resonant field amplitudes (normalized radial field strength B r 4/1 /B t =2×10 -3 ), a stochastic edge with a remnant island chain dominated by diffusive transport exists. Radially outside a helical scrape-off layer, the so-called laminar zone embedded into a stochastic domain is found to exist. In contrast for high relative rotation of f rel = 1.8 kHz, the measured modulation of n e is shifted by π/2 toroidally with respect to the modelled vacuum topology. A pronounced flattening in T e (r) and a reduction in n e (r) is measured at the resonant flux surface and represents a clear signature for a magnetic island, which is phase shifted with respect to the vacuum island position. A correlated shift of the laminar zone radially outwards at the very plasma edge is observed suggesting that the actual near-field structure at the perturbation source is determined by the plasma response as well. (paper)

  3. Edge reconstruction in armchair phosphorene nanoribbons revealed by discontinuous Galerkin density functional theory.

    Science.gov (United States)

    Hu, Wei; Lin, Lin; Yang, Chao

    2015-12-21

    With the help of our recently developed massively parallel DGDFT (Discontinuous Galerkin Density Functional Theory) methodology, we perform large-scale Kohn-Sham density functional theory calculations on phosphorene nanoribbons with armchair edges (ACPNRs) containing a few thousands to ten thousand atoms. The use of DGDFT allows us to systematically achieve a conventional plane wave basis set type of accuracy, but with a much smaller number (about 15) of adaptive local basis (ALB) functions per atom for this system. The relatively small number of degrees of freedom required to represent the Kohn-Sham Hamiltonian, together with the use of the pole expansion the selected inversion (PEXSI) technique that circumvents the need to diagonalize the Hamiltonian, results in a highly efficient and scalable computational scheme for analyzing the electronic structures of ACPNRs as well as their dynamics. The total wall clock time for calculating the electronic structures of large-scale ACPNRs containing 1080-10,800 atoms is only 10-25 s per self-consistent field (SCF) iteration, with accuracy fully comparable to that obtained from conventional planewave DFT calculations. For the ACPNR system, we observe that the DGDFT methodology can scale to 5000-50,000 processors. We use DGDFT based ab initio molecular dynamics (AIMD) calculations to study the thermodynamic stability of ACPNRs. Our calculations reveal that a 2 × 1 edge reconstruction appears in ACPNRs at room temperature.

  4. Density fluctuation measurement at edge and internal transport barriers in JT-60U

    International Nuclear Information System (INIS)

    Oyama, N; Bruskin, L G; Takenaga, H; Shinohara, K; Isayama, A; Ide, S; Sakamoto, Y; Suzuki, T; Fujita, T; Kamada, Y; Miura, Y

    2004-01-01

    A new analytical method using a combination of the O-mode reflectometer and a time-dependent two-dimensional full-wave simulation code has been developed for the quantitative evaluation of density fluctuations in JT-60U. Two statistical parameters of the reflectometer signals, fluctuation index (F) and elongation factor (χ), are introduced as measures of the fluctuation amplitude (γ) and the width of the poloidal wave number spectrum (k θ0 ). This method is applied to the edge transport barrier (ETB) and internal transport barrier (ITB). At the transition to the ELM free H-mode phase, analysis suggests that the density fluctuation level reduced from 1.9-3.2% to 0.29-0.44%, while the value of k θ0 changed from 1.6-2.0 to 0.77-0.81 cm -1 in the ETB region. On the other hand, the amplitude of the density fluctuation was evaluated as 1.0-2.0% at the ITB region, even after the formation of the box type ITB. Instead, when a pellet was injected into the plasma with a box type ITB as an external perturbation, a remarkable change in the frequency spectrum was observed. Analysis suggests a reduction in the density fluctuation level to 0.4-0.6% after the pellet injection

  5. Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.

    Science.gov (United States)

    Furness, James W; Verbeke, Joachim; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M

    2015-09-08

    We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.

  6. Medicinal Plants Density Along an Altitudinal Gradient in and Around Ayubia National Park

    International Nuclear Information System (INIS)

    Tariq, A.; Adnan, M.; Begum, S.

    2016-01-01

    Medicinal plants are an essential source of livelihood for many rural populations and are currently facing several threats of extinction in temperate Himalaya, such as excessive grazing and collection along altitudinal gradients. The present study was designed to investigate the species density of medicinal plants at different mid-altitude levels (2200, 2300, 2400, and 2500 m above the sea level (a.s.l.) between two forest-use types and to examine the possible association between medicinal plant densities and forest-stand structural variables along the altitudinal gradient. Factorial design analysis of variance showed that the densities of all medicinal plants differed significantly between the forest-use types (p<0.00) and elevation (p<0.00). Moreover, a significant interaction (p<0.04) was also observed between the forest-use types and elevation. In the old-growth forest, density of medicinal plants was 290/40 m/sup 2/ at the higher altitude (2500 m a.s.l.), approximately 1.5-fold less than the 475/40 m/sup 2/ density observed at lower altitude (2200 m a.s.l.). However, in derived woodland, density of medicinal plants at higher altitude was approximately 4-fold less than that at the lower altitude. At these altitudinal levels, medicinal plants densities, such as Valeriana jatamansi, were significantly higher under old-growth forest compared to derived woodland, where they were almost nonexistent. A rapid vulnerability assessment has also shown that Valeriana jatamansi and Viola canescens were highly vulnerable species. Litter cover was the influential variable that was most likely related to medicinal plant density. In conclusion, abundance of medicinal plants decreased along mid-altitude levels in both of the forest-use types. However, this decrease was extremely marked in the derived woodland, and this decline may be due to human activity. Hence, these factors must be considered in future studies to suggest protective measures that can be applied along

  7. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D.

    Science.gov (United States)

    Haskey, S R; Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Kaplan, D H; Pablant, N A; Stagner, L

    2016-11-01

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.

  8. Plasma membrane temperature gradients and multiple cell permeabilization induced by low peak power density femtosecond lasers

    Directory of Open Access Journals (Sweden)

    Allen L. Garner

    2016-03-01

    Full Text Available Calculations indicate that selectively heating the extracellular media induces membrane temperature gradients that combine with electric fields and a temperature-induced reduction in the electropermeabilization threshold to potentially facilitate exogenous molecular delivery. Experiments by a wide-field, pulsed femtosecond laser with peak power density far below typical single cell optical delivery systems confirmed this hypothesis. Operating this laser in continuous wave mode at the same average power permeabilized many fewer cells, suggesting that bulk heating alone is insufficient and temperature gradients are crucial for permeabilization. This work suggests promising opportunities for a high throughput, low cost, contactless method for laser mediated exogenous molecule delivery without the complex optics of typical single cell optoinjection, for potential integration into microscope imaging and microfluidic systems.

  9. Nonlinear theory of trapped electron temperature gradient driven turbulence in flat density H-mode plasmas

    International Nuclear Information System (INIS)

    Hahm, T.S.

    1990-12-01

    Ion temperature gradient turbulence based transport models have difficulties reconciling the recent DIII-D H-mode results where the density profile is flat, but χ e > χ i in the core region. In this work, a nonlinear theory is developed for recently discovered ion temperature gradient trapped electron modes propagating in the electron diamagnetic direction. This instability is predicted to be linearly unstable for L Ti /R approx-lt κ θ ρ s approx-lt (L Ti /R) 1/4 . They are also found to be strongly dispersive even at these long wavelengths, thereby suggesting the importance of the wave-particle-wave interactions in the nonlinear saturation phase. The fluctuation spectrum and anomalous fluxes are calculated. In accordance with the trends observed in DIII-D, the predicted electron thermal diffusivity can be larger than the ion thermal diffusivity. 17 refs., 3 figs

  10. EMC3-Eirene simulations of gas puff effects on edge density and ICRF coupling in ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Noterdaeme, Jean-Marie [Max Planck Institute for Plasma Physics, Garching (Germany); University of Ghent, Ghent (Belgium); Coster, David; Lunt, Tilmann; Bobkov, Volodymyr; Feng, Yuehe [Max Planck Institute for Plasma Physics, Garching (Germany); Collaboration: ASDEX Upgrade team

    2015-05-01

    Ion cyclotron range of frequency (ICRF) heating relies on the Fast Wave (FW) to transport the power from the edge (the antenna) to the plasma center. Since the FW is evanescent below a critical density (typically in the 10{sup 18} m{sup -3} range), the wave does not propagate in the region where the density is below this value in the very edge of the plasma. The coupling depends strongly on the width of this region. The distance between the ICRF antenna and the FW cut-off layer can be made smaller by increasing the edge density in front of the ICRF antenna. Previous experiments in many tokamaks and preliminary simulation results for AUG and JET with EDGE2D-EIRENE show that the edge density could indeed be increased with gas puffing at the top of the vessel or in the midplane. But the 2D code cannot quantitatively reproduce the experimental results, mainly due to the assumptions of toroidal axisymmetry. EMC3-EIRENE is a 3D Edge Monte Carlo plasma fluid transport code. By including the toroidal nonaxisymmetric plasma facing components and 3D positions of gas valves in the code, the simulations can be made more realistic. We will show first simulation results of the code and a comparison to experiments.

  11. Chemical bond as a test of density-gradient expansions for kinetic and exchange energies

    International Nuclear Information System (INIS)

    Perdew, J.P.; Levy, M.; Painter, G.S.; Wei, S.; Lagowski, J.B.

    1988-01-01

    Errors in kinetic and exchange contributions to the molecular bonding energy are assessed for approximate density functionals by reference to near-exact Hartree-Fock values. From the molecular calculations of Allan et al. and of Lee and Ghosh, it is demonstrated that the density-gradient expansion does not accurately describe the noninteracting kinetic contribution to the bonding energy, even when this expansion is carried to fourth order and applied in its spin-density-functional form to accurate Hartree-Fock densities. In a related study, it is demonstrated that the overbinding of molecules such as N 2 and F 2 , which occurs in the local-spin-density (LSD) approximation for the exchange-correlation energy, is not attributable to errors in the self-consistent LSD densities. Contrary to expectations based upon the Gunnarsson-Jones nodality argument, it is found that the LSD approximation for the exchange energy can seriously overbind a molecule even when bonding does not create additional nodes in the occupied valence orbitals. LSD and exact values for the exchange contribution to the bonding energy are displayed and discussed for several molecules

  12. X mode reflectometry for edge density profile measurements on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Bottereau, C.; Chareau, J.M.; Paume, M.; Sabot, R.

    1999-01-01

    X mode heterodyne reflectometry associated with fast sweep capabilities demonstrates very precise measurement on Tore Supra and a high sensitivity (∼10 17 m -3 ) to density variations. Very good agreement with Thomson scattering measurement is observed. Fluctuations of the radial positions of the profile are no more than ± 0.5 cm. However, edge magnetic field ripple can be a concern since it is not easy to stand precisely for the wave trajectory into the plasma and for the toroidal position of the cutoff layer; nevertheless if the error can be estimated to be less than than 3 cm in the position of the whole profile, addition work is needed combining 3-D ray tracing and different antenna systems. Additional LH heating generates an ECE noise in the same frequency range of the reflectometer and is detected. This emission throughout the plasma is fortunately stopped by the upper X mode cutoff and is also reabsorbed by the electron cyclotron resonance. But at the very edge, due to a misalignment of the antenna to the plasma magnetic field and the low optical thickness of the plasma, the first cutoff frequency, i.e. the profile initialization, may be determined less precisely. (authors)

  13. Isolating peripheral lymphocytes by density gradient centrifugation and magnetic cell sorting.

    Science.gov (United States)

    Brosseron, Frederic; Marcus, Katrin; May, Caroline

    2015-01-01

    Combining density gradient centrifugation with magnetic cell sorting provides a powerful tool to isolate blood cells with high reproducibility, yield, and purity. It also allows for subsequent separation of multiple cell types, resulting in the possibility to analyze different purified fractions from one donor's sample. The centrifugation step divides whole blood into peripheral blood mononuclear cells (PBMC), erythrocytes, and platelet-rich plasma. In the following, lymphocyte subtypes can be consecutively isolated from the PBMC fraction. This chapter describes enrichment of erythrocytes, CD14-positive monocytes and CD3-positive T lymphocytes. Alternatively, other cell types can be targeted by using magnetic beads specific for the desired subpopulation.

  14. Method and means for a spatial and temporal probe for laser-generated plumes based on density gradients

    Science.gov (United States)

    Yeung, E.S.; Chen, G.

    1990-05-01

    A method and means are disclosed for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived. 15 figs.

  15. Conjugate-gradient optimization method for orbital-free density functional calculations.

    Science.gov (United States)

    Jiang, Hong; Yang, Weitao

    2004-08-01

    Orbital-free density functional theory as an extension of traditional Thomas-Fermi theory has attracted a lot of interest in the past decade because of developments in both more accurate kinetic energy functionals and highly efficient numerical methodology. In this paper, we developed a conjugate-gradient method for the numerical solution of spin-dependent extended Thomas-Fermi equation by incorporating techniques previously used in Kohn-Sham calculations. The key ingredient of the method is an approximate line-search scheme and a collective treatment of two spin densities in the case of spin-dependent extended Thomas-Fermi problem. Test calculations for a quartic two-dimensional quantum dot system and a three-dimensional sodium cluster Na216 with a local pseudopotential demonstrate that the method is accurate and efficient. (c) 2004 American Institute of Physics.

  16. Effects of population density and chemical environment on the behavior of Escherichia coli in shallow temperature gradients

    International Nuclear Information System (INIS)

    Demir, Mahmut; Yoney, Anna; Salman, Hanna; Douarche, Carine; Libchaber, Albert

    2011-01-01

    In shallow temperature gradients, changes in temperature that bacteria experience occur over long time scales. Therefore, slow processes such as adaptation, metabolism, chemical secretion and even gene expression become important. Since these are cellular processes, the cell density is an important parameter that affects the bacteria's response. We find that there are four density regimes with distinct behaviors. At low cell density, bacteria do not cause changes in their chemical environment; however, their response to the temperature gradient is strongly influenced by it. In the intermediate cell-density regime, the consumption of nutrients becomes significant and induces a gradient of nutrients opposing the temperature gradient due to higher consumption rate at the high temperature. This causes the bacteria to drift toward low temperature. In the high cell-density regime, interactions among bacteria due to secretion of an attractant lead to a strong local accumulation of bacteria. This together with the gradient of nutrients, resulted from the differential consumption rate, creates a fast propagating pulse of bacterial density. These observations are a result of classical nonlinear population dynamics. At extremely high cell density, a change in the physiological state of the bacteria is observed. The bacteria, at the individual level, become cold seeking. This appears initially as a result of a change in the methylation level of the two most abundant sensing receptors, Tsr and Tar. It is further enforced at an even higher cell density by a change in the expression level of these receptors. (perspective)

  17. Probing neutral density at the plasma edge of Tore Supra with CX excited impurity ions

    International Nuclear Information System (INIS)

    Hess, W.R.; Mattioli, M.; Guirlet, R.

    1993-01-01

    In Tokamak plasma physics renewed interest in visible spectroscopy has grown for two reasons. The use of fiber optics allows observation of local sources of both impurities and of hydrogen by observing radiation of low ionization states. Moreover, charge exchange spectroscopy (CXS) with either auxiliary or heating neutral beams is a standard technique to determine the ion temperature and impurity density profiles. After a short description of the experimental setup and the ergodic divertor of Tore Supra (TS), two discharges in which space-resolved observations of the CVI (8-7) line clearly show the presence of CX-related effects. A well isolated spectral line at 5304.6 A is discussed. Tentative identification as CIII (1s 2 2s, 7-5) is suggested. The conclusion shows the usefulness of the reported results for probing neutral density at the plasma edge by detecting CX excited impurity ions and that highly ionized C 6+ ions exist in the MARFE regions. To the best of our knowledge, only very low ionization C and O ions (such as CIII or OIV) have been previously reported in these regions

  18. Processing of semen by density gradient centrifugation selects spermatozoa with longer telomeres for assisted reproduction techniques.

    Science.gov (United States)

    Yang, Qingling; Zhang, Nan; Zhao, Feifei; Zhao, Wanli; Dai, Shanjun; Liu, Jinhao; Bukhari, Ihtisham; Xin, Hang; Niu, Wenbing; Sun, Yingpu

    2015-07-01

    The ends of eukaryotic chromosomes contain specialized chromatin structures called telomeres, the length of which plays a key role in early human embryonic development. Although the effect of sperm preparation techniques on major sperm characteristics, such as concentration, motility and morphology have been previously documented, the possible status of telomere length and its relation with sperm preparation techniques is not well-known for humans. The aim of this study was to investigate the role of density gradient centrifugation in the selection of spermatozoa with longer telomeres for use in assisted reproduction techniques in 105 samples before and after sperm processing. After density gradient centrifugation, the average telomere length of the sperm was significantly longer (6.51 ± 2.54 versus 5.16 ± 2.29, P average motile sperm rate was significantly higher (77.9 ± 11.8 versus 44.6 ± 11.2, P average DNA fragmentation rate was significantly lower (11.1 ± 5.9 versus 25.9 ± 12.9, P sperm count (rs = 0.58; P sperm with longer telomeres. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  19. Linking Soil Physical Parameters Along a Density Gradient in a Loess-Soil Long-Term Experiment

    DEFF Research Database (Denmark)

    Eden, Marie; Møldrup, Per; Schjønning, Per

    2012-01-01

    It is important to understand the impact of texture and organic carbon (OC) on soil structure development. Only few studies investigated this for silt-dominated soils. In this study, soil physical properties were determined on samples from a controlled experiment (Static Fertilization Experiment...... hydraulic conductivity. The management resulted in a distinct gradient in OC. A bulk density gradient developed from differences in amount of clay not complexed with OC. This gradient in bulk density mainly affected content of pores larger than 3 [mu]m. The air-connected porosity measured by a pycnometer...

  20. Study of Streamers in Gradient Density Air: Table Top Modeling of Red Sprites

    Science.gov (United States)

    Opaits, D. F.; Shneider, M. N.; Howard, P. J.; Miles, R. B.; Milikh, G. M.

    2009-12-01

    Sprites and blue jets develop in the upper atmosphere where ambient density changes drastically over their lengths. Theoretical analysis of Red Sprites [1] and Blue Jets [2,3] are based on the streamer tip parameters’ functional dependence on a local gas density N(h). At the moment there is a lack of experimental data for streamer propagation in a non-uniform ambient gas density. Small scale experiments in controllable conditions are important for validation of analytical models as well as numerical simulations, which can be used for the investigation of real scale plasma phenomena that develop above thunderclouds. Controllable, non-uniform gas density can be achieved in laboratory conditions in super sonic nozzles, fast centrifuges or gas filled tubes with a non-uniform temperature distribution along the axis. The latter approach was used in the present work. A quartz tube, approximately one foot in length, was filled with air at different pressures. A density gradient was created by heating up the top of the tube while keeping the bottom at room temperature. The discharge was initiated by applying a high voltage pulse to a pin electrode at the top of the tube while a flat electrode was grounded at the bottom. Similar to Red Sprites, the streamer propagates downwards into a region of higher density and stops before reaching the lower electrode while the top electrode remains under high potential. This work will present results of streamer propagation at different pressures and voltages. Measurements of current-voltage characteristics as well as integral images will be presented. 1. Y. P.Raizer, G. M. Milikh, M. N. Shneider, and S. V. Novakovski (1998), J. Phys. D: Appl. Phys. 31, 3255-3264. 2. Y. P.Raizer, G. M. Milikh, and M. N. Shneider (2006), Geophys. Res. Lett., 33, L23801 3. Y .P.Raizer, G. M. Milikh, and M. N. Shneider (2007), J. Atmos. & Solat-Terr. Phys, 69, 925-938

  1. Sea surface density gradients in the Nordic Seas during the Holocene as revealed by paired microfossil and isotope proxies

    DEFF Research Database (Denmark)

    Van Nieuwenhove, Nicolas; Hillaire-Marcel, Claude; Bauch, Henning A.

    2016-01-01

    We attempt to assess the Holocene surface-subsurface seawater density gradient on millennial time-scale based on the reconstruction of potential density (σθ) by combining data from dinoflagellate cyst assemblages and planktic foraminiferal (Neogloboquadrina pachyderma (s)) stable oxygen isotopes (δ...

  2. Effect of stable-density stratification on counter gradient flux of a homogeneous shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Lida, Oaki; Nagano, Yasutaka [Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan). Department of Mechanical Engineering

    2007-01-15

    We performed direct numerical simulations of homogeneous shear flow under stable-density stratification to study the buoyancy effects on the heat and momentum transfer. These numerical data were compared with those of a turbulent channel flow to investigate the similarity between the near-wall turbulence and the homogeneous shear flow. We also investigated the generation mechanism of the persistent CGFs (counter gradient fluxes) appearing at the higher wavenumbers of the cospectrum, and lasting over a long time without oscillation. Spatially, the persistent CGFs are associated with the longitudinal vortical structure, which is elongated in the streamwise direction and typically observed in both homogeneous shear flow and near-wall turbulence. The CGFs appear at both the top and bottom of this longitudinal vortical structure, and expand horizontally with an increase in the Richardson number. It was found that the production and turbulent-diffusion terms are responsible for the distribution of the Reynolds shear stress including the persistent CGFs. The buoyancy term, combined with the swirling motion of the vortex, contributes to expand the persistent CGF regions and decrease the down gradient fluxes. (author)

  3. Edge electron density profiles and fluctuations measured by two-dimensional beam emission spectroscopy in the KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Y. U., E-mail: yunam@nfri.re.kr; Wi, H. M. [National Fusion Research Institute, Daejeon (Korea, Republic of); Zoletnik, S.; Lampert, M. [Wigner RCP Institute for Particle and Nuclear Physics, Budapest (Hungary); Kovácsik, Ákos [Institute of Nuclear Techniques, Budapest Technical University, Budapest (Hungary)

    2014-11-15

    Beam emission spectroscopy (BES) system in Korea Superconducting Tokamak Advanced Research (KSTAR) has recently been upgraded. The background intensity was reduced from 30% to 2% by suppressing the stray lights. This allows acquisition of the relative electron density profiles on the plasma edge without background subtraction from the beam power modulation signals. The KSTAR BES system has its spatial resolution of 1 cm, the temporal resolution of 2 MHz, and a total 32 channel (8 radial × 4 poloidal) avalanche photo diode array. Most measurements were done on the plasma edge, r/a ∼ 0.9, with 8 cm radial measurement width that covers the pedestal range. High speed density profile measurements reveal temporal behaviors of fast transient events, such as the precursors of edge localized modes and the transitions between confinement modes. Low background level also allows analysis of the edge density fluctuation patterns with reduced background fluctuations. Propagation of the density structures can be investigated by comparing the phase delays between the spatially distributed channels.

  4. Purification of Sarcocystis neurona sporocysts from opossum (Didelphis virginiana) using potassium bromide discontinuous density gradient centrifugation.

    Science.gov (United States)

    Elsheikha, Hany M; Murphy, Alice J; Fitzgerald, Scott D; Mansfield, Linda S; Massey, Jeffrey P; Saeed, Mahdi A

    2003-06-01

    This report describes a new, inexpensive procedure for the rapid and efficient purification of Sarcocystis neurona sporocysts from opossum small intestine. S. neurona sporocysts were purified using a discontinuous potassium bromide density gradient. The procedure provides a source of sporocyst wall and sporozoites required for reliable biochemical characterization and for immunological studies directed at characterizing antigens responsible for immunological responses by the host. The examined isolates were identified as S. neurona using random amplified polymorphic DNA primers and restriction endonuclease digestion assays. This method allows the collection of large numbers of highly purified S. neurona sporocysts without loss of sporocyst viability as indicated by propidium iodide permeability and cell culture infectivity assays. In addition, this technique might also be used for sporocyst purification of other Sarcocystis spp.

  5. Resistance scaling for composite fermions in the presence of a density gradient

    International Nuclear Information System (INIS)

    Stormer, H. L.; Tsui, Daniel Chee; Pan, Wei; West, Ken W.; Baldwin, K. W.; Pfeiffer, Loren N.

    2006-01-01

    The magnetoresistance, R xx , at even-denominator fractional fillings, of an ultra high quality two-dimensional electron system at T ∼ 35 mK is observed to be strictly linear in magnetic field, B. While at 35 mK R xx is dominated by the integer and fractional quantum Hall states, at T ≅ 1.2 K an almost perfect linear relationship between R xx and B emerges over the whole magnetic field range except for spikes at the integer quantum Hall states. This linear R xx cannot be understood within the Composite Fermion model, but can be explained through the existence of a density gradient in our sample

  6. On the density of nearly regular graphs with a good edge-labelling

    OpenAIRE

    Mehrabian, Abbas

    2011-01-01

    A good edge-labelling of a simple graph is a labelling of its edges with real numbers such that, for any ordered pair of vertices (u,v), there is at most one nondecreasing path from u to v. Say a graph is good if it admits a good edge-labelling, and is bad otherwise. Our main result is that any good n-vertex graph whose maximum degree is within a constant factor of its average degree (in particular, any good regular graph) has at most n^{1+o(1)} edges. As a corollary, we show that there are b...

  7. Role of Density Gradient Driven Trapped Electron Modes in the H-Mode Inner Core with Electron Heating

    Science.gov (United States)

    Ernst, D.

    2015-11-01

    We present new experiments and nonlinear gyrokinetic simulations showing that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron heating. Thus α-heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking. These DIII-D low torque quiescent H-mode experiments were designed to study DGTEM turbulence. Gyrokinetic simulations using GYRO (and GENE) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra, with and without ECH. Adding 3.4 MW ECH doubles Te /Ti from 0.5 to 1.0, which halves the linear TEM critical density gradient, locally flattening the density profile. Density fluctuations from Doppler backscattering (DBS) intensify near ρ = 0.3 during ECH, displaying a band of coherent fluctuations with adjacent toroidal mode numbers. GYRO closely reproduces the DBS spectrum and its change in shape and intensity with ECH, identifying these as coherent TEMs. Prior to ECH, parallel flow shear lowers the effective nonlinear DGTEM critical density gradient 50%, but is negligible during ECH, when transport displays extreme stiffness in the density gradient. GS2 predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q0 >qmin > 1 . A related experiment in the same regime varied the electron temperature gradient in the outer half-radius (ρ ~ 0 . 65) using ECH, revealing spatially coherent 2D mode structures in the Te fluctuations measured by ECE imaging. Fourier analysis with modulated ECH finds a threshold in Te profile stiffness. Supported by the US DOE under DE-FC02-08ER54966 and DE-FC02-04ER54698.

  8. Analytic energy gradients for the coupled-cluster singles and doubles method with the density-fitting approximation

    International Nuclear Information System (INIS)

    Bozkaya, Uğur; Sherrill, C. David

    2016-01-01

    An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the “gradient terms”: computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbital (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C 10 H 22 ), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies.

  9. Interpretation of the U L3-edge EXAFS in uranium dioxide using molecular dynamics and density functional theory simulations

    International Nuclear Information System (INIS)

    Bocharov, Dmitry; Chollet, Melanie; Krack, Matthias; Bertsch, Johannes; Grolimund, Daniel; Martin, Matthias; Kuzmin, Alexei; Purans, Juris; Kotomin, Eugene

    2016-01-01

    X-ray absorption spectroscopy is employed to study the local structure of pure and Cr-doped UO 2 at 300 K. The U L 3 -edge EXAFS spectrum is interpreted within the multiplescattering (MS) theory using the results of the classical and ab initio molecular dynamics simulations, allowing us to validate the accuracy of theoretical models. The Cr K-edge XANES is simulated within the full-multiple-scattering formalism considering a substitutional model (Cr at U site). It is shown that both unrelaxed and relaxed structures, produced by ab initio density functional theory (DFT) calculations, fail to describe the experiment. (paper)

  10. Interferometric density measurements in the divertor and edge plasma regions for the additionally heated JT-60 plasmas

    International Nuclear Information System (INIS)

    Fukuda, T.; Yoshida, H.; Nagashima, A.; Ishida, S.; Kikuchi, M.; Yokomizo, H.

    1989-01-01

    The first divertor plasma density measurement and the interferometric edge plasma density measurement with boundary condition preserving millimeter waveguides were demonstrated to elucidate the mutual correlation among the divertor plasma, scrape-off layer plasma and the bulk plasma properties in the additionally heated JT-60 plasmas. The electron density in the divertor region exhibited a nonlinear dependence on the bulk plasma density for the joule-heated plasmas. When neutral beam heating is applied on the plasmas with the electron density above 2x10 19 /m 3 , however, the bulk plasma density is scraped off from the outer region to lead to density clamping, and the electron density in the divertor region rapidly increases over 1x10 20 /m 3 , from which we can deduce that the particle flow along the magnetic field is dominant, resulting in the apparent degradation of the particle confinement time. As for the case when neutral beam injection is applied to low-density plasmas, the bulk plasma electron density profile becomes flattened to yield a smaller density increase in the divertor region and no density clamping of the bulk plasma was observed. Simulation analysis which correlates the transport of the divertor plasma and the scrape-off layer plasma was also carried out to find the consistency with the experimental results. (orig.)

  11. Assessment of plasma impedance probe for measuring electron density and collision frequency in a plasma with spatial and temporal gradients

    International Nuclear Information System (INIS)

    Hopkins, Mark A.; King, Lyon B.

    2014-01-01

    Numerical simulations and experimental measurements were combined to determine the ability of a plasma impedance probe (PIP) to measure plasma density and electron collision frequency in a plasma containing spatial gradients as well as time-varying oscillations in the plasma density. A PIP is sensitive to collision frequency through the width of the parallel resonance in the Re[Z]-vs.-frequency characteristic, while also being sensitive to electron density through the zero-crossing of the Im[Z]-vs.-frequency characteristic at parallel resonance. Simulations of the probe characteristic in a linear plasma gradient indicated that the broadening of Re[Z] due to the spatial gradient obscured the broadening due to electron collision frequency, preventing a quantitative measurement of the absolute collision frequency for gradients considered in this study. Simulation results also showed that the PIP is sensitive to relative changes in electron collision frequency in a spatial density gradient, but a second broadening effect due to time-varying oscillations made collision frequency measurements impossible. The time-varying oscillations had the effect of causing multiple zero-crossings in Im[Z] at parallel resonance. Results of experiments and simulations indicated that the lowest-frequency zero-crossing represented the lowest plasma density in the oscillations and the highest-frequency zero-crossing represented the highest plasma density in the oscillations, thus the PIP probe was found to be an effective tool to measure both the average plasma density as well as the maximum and minimum densities due to temporal oscillations

  12. An edge density fluctuation diagnostic for DIII-D using lithium beams

    International Nuclear Information System (INIS)

    Thomas, D.M.

    1991-12-01

    This report covers the research conducted under DOE grant FG03- 90ER54081 during the period August 15, 1990 through November 15, 1991. Progress during the period March 15, 1990 through August 15, 1990 was covered in a previous report. Highlights during this period include the development of a compact neutral lithium accelerator capable of producing several mA at up to 30 kV, measurements of intrinsic beam fluctuation levels, and the design and partial completion of the diagnostic installation on the D3-D tokamak. We also had one journal article describing the system published in Reviews of Scientific Instruments, presented a poster on our recent progress at the APS Plasma Physics conference, and submitted an abstract to the 9th Topical Conference on Plasma Diagnostics. The overall objective of this project is to provide detailed information about the behavior of the electron density in the edge region of D3-D, and in particular to examine the local character of the associated degradation in confinement properties. Measurements should provide important data for testing theories of the L-H transition in tokamaks and should help in assessing the role of various instabilities in anomalous transport. The work on this project may be naturally organized according to the following six subareas: Ion source/beam system, neutralizer system, optical system, data acquisition, data analysis, and machine (D3-D) interface. Progress in each of these areas will be discussed briefly. We also briefly discuss our plans for future work on this program

  13. An Experiment Using Sucrose Density Gradients in the Undergraduate Biochemistry Laboratory.

    Science.gov (United States)

    Turchi, Sandra L.; Weiss, Monica

    1988-01-01

    Describes an experiment to be performed in an undergraduate biochemistry laboratory that is based on a gradient centrifugation system employing a simple bench top centrifuge, a freezer, and frozen surcose gradient solution to separate macromolecules and subcellular components. (CW)

  14. Urbanization Effects on the Vertical Distribution of Soil Microbial Communities and Soil C Storage across Edge-to-Interior Urban Forest Gradients

    Science.gov (United States)

    Rosier, C. L.; Van Stan, J. T., II; Trammell, T. L.

    2017-12-01

    Urbanization alters environmental conditions such as temperature, moisture, carbon (C) and nitrogen (N) deposition affecting critical soil processes (e.g., C storage). Urban soils experience elevated N deposition (e.g., transportation, industry) and decreased soil moisture via urban heat island that can subsequently alter soil microbial community structure and activity. However, there is a critical gap in understanding how increased temperatures and pollutant deposition influences soil microbial community structure and soil C/N cycling in urban forests. Furthermore, canopy structural differences between individual tree species is a potentially important mechanism facilitating the deposition of pollutants to the soil. The overarching goal of this study is to investigate the influence of urbanization and tree species structural differences on the bacterial and fungal community and C and N content of soils experiencing a gradient of urbanization pressures (i.e., forest edge to interior; 150-m). Soil cores (1-m depth) were collected near the stem (urban pressure (i.e., forest edge). We further expect trees located on the edge of forest fragments will maintain greater surface soil (urbanization alters soil microbial community composition via reduced soil moisture and carbon storage potential via deposition gradients. Further analyses will answer important questions regarding how individual tree species alters urban soil C storage, N retention, and microbial dynamics.

  15. The emergence densities of annual cicadas (Hemiptera: Cicadidae) increase with sapling density and are greater near edges in a bottomland hardwood forest.

    Science.gov (United States)

    Chiavacci, Scott J; Bednarz, James C; McKay, Tanja

    2014-08-01

    The emergence densities of cicadas tend to be patchy at multiple spatial scales. While studies have identified habitat conditions related to these patchy distributions, their interpretation has been based primarily on periodical cicada species; habitat factors associated with densities of nonperiodical (i.e., annual) cicadas have remained under studied. This is despite their widespread distribution, diversity, and role as an important trophic resource for many other organisms, particularly within riparian areas. We studied habitat factors associated with the emergence densities of Tibicen spp. in a bottomland hardwood forest in east-central Arkansas. We found emergence densities were greatest in areas of high sapling densities and increased toward forest edges, although sapling density was a much stronger predictor of emergence density. Emergence densities also differed among sample areas within our study system. The habitat features predicting nymph densities were likely driven by a combination of factors affecting female selection of oviposition sites and the effects of habitat conditions on nymph survival. The differences in nymph densities between areas of our system were likely a result of the differential effects of flooding in these areas. Interestingly, our findings were similar to observations of periodical species, suggesting that both types of cicadas select similar habitat characteristics for ovipositing or are under comparable selective pressures during development. Our findings also imply that changes in habitat characteristics because of anthropogenically altered disturbance regimes (e.g., flooding) have the potential to negatively impact both periodical and annual species, which could have dramatic consequences for organisms at numerous trophic levels.

  16. Radar observations of density gradients, electric fields, and plasma irregularities near polar cap patches in the context of the gradient-drift instability

    Science.gov (United States)

    Lamarche, Leslie J.; Makarevich, Roman A.

    2017-03-01

    We present observations of plasma density gradients, electric fields, and small-scale plasma irregularities near a polar cap patch made by the Super Dual Auroral Radar Network radar at Rankin Inlet (RKN) and the northern face of Resolute Bay Incoherent Scatter Radar (RISR-N). RKN echo power and occurrence are analyzed in the context of gradient-drift instability (GDI) theory, with a particular focus on the previously uninvestigated 2-D dependencies on wave propagation, electric field, and gradient vectors, with the latter two quantities evaluated directly from RISR-N measurements. It is shown that higher gradient and electric field components along the wave vector generally lead to the higher observed echo occurrence, which is consistent with the expected higher GDI growth rate, but the relationship with echo power is far less straightforward. The RKN echo power increases monotonically as the predicted linear growth rate approaches zero from negative values but does not continue this trend into positive growth rate values, in contrast with GDI predictions. The observed greater consistency of echo occurrence with GDI predictions suggests that GDI operating in the linear regime can control basic plasma structuring, but measured echo strength may be affected by other processes and factors, such as multistep or nonlinear processes or a shear-driven instability.

  17. Physics of increased edge electron temperature and density turbulence during ELM-free QH-mode operation on DIII-D

    Science.gov (United States)

    Sung, C.; Rhodes, T. L.; Staebler, G. M.; Yan, Z.; McKee, G. R.; Smith, S. P.; Osborne, T. H.; Peebles, W. A.

    2018-05-01

    For the first time, we report increased edge electron temperature and density turbulence levels ( T˜ e and n˜ e) in Edge Localized Mode free Quiescent H-mode (ELM-free QH-mode) plasmas as compared to the ELMing time period. ELMs can severely damage plasma facing components in fusion plasma devices due to their large transient energy transport, making ELM-free operation a highly sought after goal. The QH-mode is a candidate for this goal as it is ELM-free for times limited only by hardware constraints. It is found that the driving gradients decrease during the QH-mode compared to the ELMing phase, however, a significant decrease in the ExB shearing rate is also observed that taken together is consistent with the increased turbulence. These results are significant as the prediction and control of ELM-free H-mode regimes are crucial for the operation of future fusion devices such as ITER. The changes in the linear growth rates calculated by CGYRO [Candy et al., J. Comput. Phys. 324, 73 (2016)] and the measured ExB shearing rate between ELMing and QH-mode phases are qualitatively consistent with these turbulence changes. Comparison with ELMing and 3D fields ELM suppressed H-mode finds a similar increase in T˜ e and n˜ e, however, with distinctly different origins, the increased driving gradients rather than the changes in the ExB shearing rate in 3D fields ELM suppressed the H-mode. However, linear gyrokinetic calculation results are generally consistent with the increased turbulence in both ELM-controlled discharges.

  18. EUROMECH colloquium 377. Stability and control of shear flows with strong temperature or density gradients. Book of abstracts

    International Nuclear Information System (INIS)

    1998-10-01

    The topics discussed comprise the onset of instability in heated free jets and jets with density gradients, flow past heated/cooled boundaries, atmospheric shear flow, and mathematical modeling of laminar-turbulent transition phenomena. Three contributions have been input to INIS. (P.A.)

  19. Changes in home range sizes and population densities of carnivore species along the natural to urban habitat gradient

    Czech Academy of Sciences Publication Activity Database

    Šálek, Martin; Drahníková, L.; Tkadlec, Emil

    2015-01-01

    Roč. 45, č. 1 (2015), s. 1-14 ISSN 0305-1838 Institutional support: RVO:68081766 Keywords : Carnivores * home range size * natural–urban gradient * population density * review Subject RIV: EG - Zoology Impact factor: 4.116, year: 2015

  20. The effect of shear flow and the density gradient on the Weibel instability growth rate in the dense plasma

    Science.gov (United States)

    Amininasab, S.; Sadighi-Bonabi, R.; Khodadadi Azadboni, F.

    2018-02-01

    Shear stress effect has been often neglected in calculation of the Weibel instability growth rate in laser-plasma interactions. In the present work, the role of the shear stress in the Weibel instability growth rate in the dense plasma with density gradient is explored. By increasing the density gradient, the shear stress threshold is increasing and the range of the propagation angles of growing modes is limited. Therefore, by increasing steps of the density gradient plasma near the relativistic electron beam-emitting region, the Weibel instability occurs at a higher stress flow. Calculations show that the minimum value of the stress rate threshold for linear polarization is greater than that of circular polarization. The Wiebel instability growth rate for linear polarization is 18.3 times circular polarization. One sees that for increasing stress and density gradient effects, there are smaller maximal growth rates for the range of the propagation angles of growing modes /π 2 propagation angles of growing modes /π 2 < θ m i n < π and /3 π 2 < θ m i n < 2 π in circular polarized plasma.

  1. A comparison of density functional theory and coupled cluster methods for the calculation of electric dipole polarizability gradients of methane

    DEFF Research Database (Denmark)

    Paidarová, Ivana; Sauer, Stephan P. A.

    2012-01-01

    We have compared the performance of density functional theory (DFT) using five different exchange-correlation functionals with four coupled cluster theory based wave function methods in the calculation of geometrical derivatives of the polarizability tensor of methane. The polarizability gradient...

  2. Nekton density patterns and hurricane recovery in submerged aquatic vegetation, and along non-vegetated natural and created edge habitats

    Science.gov (United States)

    La Peyre, M.K.; Gordon, J.

    2012-01-01

    We compared nekton habitat value of submerged aquatic vegetation, flooded non-vegetated natural and man-made edge habitats in mesohaline interior marsh areas in southwest Louisiana using a 1-m 2 throw trap and 3-mm bag seine. When present, SAV habitats supported close to 4 times greater densities and higher species richness of nekton as compared to either natural or man-made edge habitats, which supported similar densities to one another. Three species of concern (bayou killifish, diamond killifish, chain pipefish) were targeted in the analysis, and two of the three were collected almost entirely in SAV habitat. During the course of the study, Hurricanes Ike and Gustav passed directly over the study sites in September 2008. Subsequent analyses indicated significant reductions in resident nekton density 1-mo post hurricanes, and only limited recovery 13-mo post-hurricane. Possible alteration of environmental characteristics such as scouring of SAV habitat, deposition of sediment over SAV, edge erosion and marsh loss, and extended high salinities may explain these lasting impacts. ?? 2011.

  3. Comparison of collisional radiative models for edge electron density reconstruction from Li I (2s-2p) emission profiles

    Energy Technology Data Exchange (ETDEWEB)

    Stoschus, H.; Hudson, B.; Munoz Burgos, J. M. [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831-0117 (United States); Thomas, D. M. [General Atomics, San Diego, California 92186-5608 (United States); Schweinzer, J. [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, 85748 Garching (Germany)

    2012-10-15

    Four collisional radiative models (CRMs) for reconstruction of the edge electron density profile from the measured Li I (2s-2p) emission profile of an accelerated lithium beam are compared using experimental data from DIII-D. It is shown for both L- and H-mode plasmas that edge density profiles reconstructed with the CRMs DDD2, ABSOLUT, [Sasaki et al. Rev. Sci. Instrum. 64, 1699 (1993)] and a new model developed at DIII-D agree in a density scan from n{sub e}{sup ped}= (2.0-6.5) Multiplication-Sign 10{sup 19} m{sup -3} within 20%, 20%, <5%, and 40%, respectively, of the pedestal density measured with Thomson scattering. Profile shape and absolute density vary in a scan of the effective ion charge Z{sub eff}= 1-6 up to a factor of two but agree with Thomson data for Z{sub eff}= 1-2 within the error bars.

  4. Magnetohydrodynamic stability of tokamak edge plasmas

    International Nuclear Information System (INIS)

    Connor, J.W.; Hastie, R.J.; Wilson, H.R.; Miller, R.L.

    1998-01-01

    A new formalism for analyzing the magnetohydrodynamic stability of a limiter tokamak edge plasma is developed. Two radially localized, high toroidal mode number n instabilities are studied in detail: a peeling mode and an edge ballooning mode. The peeling mode, driven by edge current density and stabilized by edge pressure gradient, has features which are consistent with several properties of tokamak behavior in the high confinement open-quotes Hclose quotes-mode of operation, and edge localized modes (or ELMs) in particular. The edge ballooning mode, driven by the pressure gradient, is identified; this penetrates ∼n 1/3 rational surfaces into the plasma (rather than ∼n 1/2 , expected from conventional ballooning mode theory). Furthermore, there exists a coupling between these two modes and this coupling provides a picture of the ELM cycle

  5. Improving Rydberg Excitations within Time-Dependent Density Functional Theory with Generalized Gradient Approximations: The Exchange-Enhancement-for-Large-Gradient Scheme.

    Science.gov (United States)

    Li, Shaohong L; Truhlar, Donald G

    2015-07-14

    Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations and atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.

  6. Nekton use of intertidal creek edges in low salinity salt marshes of the Yangtze River estuary along a stream-order gradient

    Science.gov (United States)

    Jin, Binsong; Qin, Haiming; Xu, Wang; Wu, Jihua; Zhong, Junsheng; Lei, Guangchun; Chen, Jiakuan; Fu, Cuizhang

    2010-07-01

    Non-vegetated creek edges were investigated to explore spatial nekton use patterns in a low salinity intertidal salt marsh creek network of the Yangtze River estuary along a stream-order gradient with four creek orders. Non-vegetated creek edges were arbitrarily defined as the approximately 3 m extending from the creek bank (the marsh-creek interface) into open water. Nekton was sampled using seine nets during daytime high slack water during spring tides for two or three days each in May through July 2008. Twenty-three nekton species (16 fishes and 7 crustaceans) were caught during the study. Fishes were dominated by gobies ( Mugilogobius abei, Periophthalmus magnuspinnatus, Periophthalmus modestus, Synechogobius ommaturus), mullets ( Chelon haematocheilus, Liza affinis) and Chinese sea bass ( Lateolabrax maculatus). Crustaceans were dominated by mud crab ( Helice tientsinensis) and white prawn ( Exopalaemon carinicauda). Rank abundance curves revealed higher evenness of nekton assemblages in lower-order creeks compared to higher-order creeks. Fish abundance tended to increase with increasing creek order. Crustacean abundance was higher in the first-third order creeks than in the fourth-order creek. Dominant nekton species displayed various trends in abundance and length-frequency distributions along the stream-order gradient. The spatial separation of nekton assemblages between the first-third order creeks and the fourth-order creek could be attributed to geomorphological factors (distance to mouth and cross-sectional area). These findings indicate that both lower- and higher-order creek edges play important yet different roles for nekton species and life history stages in salt marshes.

  7. Do prey densities determine preferences of mammalian predators for habitat edges in an agricultural landscape?

    Czech Academy of Sciences Publication Activity Database

    Šálek, Martin; Kreisinger, Jakub; Sedláček, František; Albrecht, Tomáš

    2010-01-01

    Roč. 98, č. 2 (2010), s. 86-91 ISSN 0169-2046 R&D Projects: GA MŠk LC06073; GA MŠk 1P05OC078 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z60930519 Keywords : mammalian predators * fragmentation * small mammals * edge effect * predator–prey * distribution * Mustelids Subject RIV: EH - Ecology, Behaviour Impact factor: 2.004, year: 2010

  8. Prospects for Edge Current Density Determination Using LIBEAM on DIII-D

    International Nuclear Information System (INIS)

    D.M. Thomas; A.S. Bozek; T.N. Carlstrom; D.K. Finkenthal; R. Jayakumar; M.A. Makowski; D.G. Nilson; T.H. Osborne; B.W. Rice; R.T. Snider

    2000-01-01

    The specific size and structure of the edge current profile has important effects on the MHD stability and ultimate performance of many advanced tokamak (AT) operating modes. This is true for both bootstrap and externally driven currents that may be used to tailor the edge shear. Absent a direct local measurement of j(r), the best alternative is a determination of the poloidal field. Measurements of the precision (0.1-0.01 o in magnetic pitch angle and 1-10 ms) necessary to address issues of stability and control and provide constraints for EFIT are difficult to do in the region of interest (ρ = 0.9-1.1). Using Zeeman polarization spectroscopy of the 2S-2P lithium resonance line emission from the DIII-D LIBEAM, measurements of the various field components may be made to the necessary precision in exactly the region of interest to these studies. Because of the negligible Stark mixing of the relevant atomic levels, this method of determining j(r) is insensitive to the large local electric fields typically found in enhanced confinement (H-mode) edges, and thus avoids an ambiguity common to Motional Stark Effect (MSE) measurements of B. Key issues for utilizing this technique include good beam quality, an optimum viewing geometry, and a suitable optical pre-filter to isolate the polarized emission line. A prospective diagnostic system for the DIII-D AT program will be described

  9. Lithosphere density structure beneath the eastern margin of the Tibetan Plateau and its surrounding areas derived from GOCE gradients data

    Directory of Open Access Journals (Sweden)

    Honglei Li

    2017-05-01

    Full Text Available A three-dimensional density model of the crust and uppermost mantle is determined by the inversion of a set of GOCE gravity and gradients residual anomalies beneath the eastern margin of the Tibetan Plateau and its surrounding areas. In our work, we choose five independent gravity gradients (Txx, Tzz, Txy, Txz, Tyz to perform density inversion. Objective function is given based on Tikhonov regularization theory. Seismic S-wave velocities play the role of initial constraint for the inversion based on a relationship between density and S-wave velocity. Damped Least Square method is used during the inversion. The final density results offer some insights into understanding the underlying geodynamic processes: (1 Low densities in the margin of the Tibet, along with low wave velocity and resistivity results, yield conversions from soft and weak Tibet to the hard and rigid cratons. (2The lowest densities are found in the boundary of the plateau, instead of the whole Tibet indicates that the effects of extrusion stress environment in the margin affect the changes of the substance there. The substances and environments conditioning for the earthquake preparations and strong deformation in this transitional zone. (3 Evident low-D anomaly in the upper and middle crust in the Lasha terrane and Songpan-Ganzi terrane illustrated the eastward sub-ducted of southeastern Tibet, which could be accounts for the frequent volcano and earthquakes there.

  10. Impact of the pedestal plasma density on dynamics of edge localized mode crashes and energy loss scaling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X. Q., E-mail: xxu@llnl.gov [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Ma, J. F. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Institute for Fusion Studies, University of Texas, Austin, Texas 78712 (United States); Li, G. Q. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2014-12-15

    The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode (ELM) crashes and the consistent collisionality scaling of ELM energy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELM energy losses vs collisionality via a density scan. Linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1 < n < 5), therefore the width of the growth rate spectrum γ(n) becomes narrower and the peak growth shifts to lower n. Nonlinear BOUT++ simulations show a two-stage process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii) inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing collisionality after a series of micro-bursts. The pedestal plasma density plays a major role in determining the ELM energy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. The critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality.

  11. Vitality of oligozoospermic semen samples is improved by both swim-up and density gradient centrifugation before cryopreservation.

    Science.gov (United States)

    Counsel, Madeleine; Bellinge, Rhys; Burton, Peter

    2004-05-01

    To ascertain whether washing sperm from oligozoospermic and normozoospermic samples before cryopreservation improves post-thaw vitality. Normozoospermic (n = 18) and oligozoospermic (n = 16) samples were divided into three aliquots. The first aliquot remained untreated and the second and third aliquots were subjected to the swim-up and discontinuous density gradient sperm washing techniques respectively. Vitality staining was performed, samples mixed with cryopreservation media and frozen. Spermatozoa were thawed, stained, and vitality quantified and expressed as the percentage of live spermatozoa present. Post-thaw vitality in untreated aliquots from normozoospermic samples (24.9% +/- 2.3; mean +/- SEM) was significantly higher (unpaired t-tests; P vitality was significantly higher after swim-up in normozoospermic samples (35.6% +/- 2.1; P vitality in oligozoospermic (22.4% +/- 1.0; P vitality in cryopreserved oligozoospermic samples was improved by both the swim-up and density gradient centrifugation washing techniques prior to freezing.

  12. Density gradient effects in weakly nonlinear ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Wang, L. F.; Ye, W. H.; He, X. T.

    2012-01-01

    In this research, density gradient effects (i.e., finite thickness of ablation front effects) in ablative Rayleigh-Taylor instability (ARTI), in the presence of preheating within the weakly nonlinear regime, are investigated numerically. We analyze the weak, medium, and strong ablation surfaces which have different isodensity contours, respectively, to study the influences of finite thickness of ablation front on the weakly nonlinear behaviors of ARTI. Linear growth rates, generation coefficients of the second and the third harmonics, and coefficients of the third-order feedback to the fundamental mode are obtained. It is found that the linear growth rate which has a remarkable maximum, is reduced, especially when the perturbation wavelength λ is short and a cut-off perturbation wavelength λ c appears when the perturbation wavelength λ is sufficiently short, where no higher harmonics exists when λ c . The phenomenon of third-order positive feedback to the fundamental mode near the λ c [J. Sanz et al., Phys. Rev. Lett. 89, 195002 (2002); J. Garnier et al., Phys. Rev. Lett. 90, 185003 (2003); J. Garnier and L. Masse, Phys. Plasmas 12, 062707 (2005)] is confirmed in numerical simulations, and the physical mechanism of the third-order positive feedback is qualitatively discussed. Moreover, it is found that generations and growths of the second and the third harmonics are stabilized (suppressed and reduced) by the ablation effect. Meanwhile, the third-order negative feedback to the fundamental mode is also reduced by the ablation effect, and hence, the linear saturation amplitude (typically ∼0.2λ in our simulations) is increased significantly and therefore exceeds the classical prediction 0.1λ, especially for the strong ablation surface with a small perturbation wavelength. Overall, the ablation effect stabilizes the ARTI in the weakly nonlinear regime. Numerical results obtained are in general agreement with the recent weakly nonlinear theories and simulations

  13. Monotonous and oscillation instability of mechanical equilibrium of isothermal three-components mixture with zero-gradient density

    International Nuclear Information System (INIS)

    Zhavrin, Yu.I.; Kosov, V.N.; Kul'zhanov, D.U.; Karataev, K.K.

    2000-01-01

    Presence of two types of instabilities of mechanical equilibrium of a mixture experimentally is shown at an isothermal diffusion of multicomponent system with zero gradient of density/ Theoretically is proved, that partial Rayleigh numbers R 1 , R 2 having different signs, there are two areas with monotonous (R 1 2 < by 0) instability. The experimental data confirm presence of these areas and satisfactory are described by the represented theory. (author)

  14. Field programmable gate array based hardware implementation of a gradient filter for edge detection in colour images with subpixel precision

    International Nuclear Information System (INIS)

    Schellhorn, M; Rosenberger, M; Correns, M; Blau, M; Goepfert, A; Rueckwardt, M; Linss, G

    2010-01-01

    Within the field of industrial image processing the use of colour cameras becomes ever more common. Increasingly the established black and white cameras are replaced by economical single-chip colour cameras with Bayer pattern. The use of the additional colour information is particularly important for recognition or inspection. Become interesting however also for the geometric metrology, if measuring tasks can be solved more robust or more exactly. However only few suitable algorithms are available, in order to detect edges with the necessary precision. All attempts require however additional computation expenditure. On the basis of a new filter for edge detection in colour images with subpixel precision, the implementation on a pre-processing hardware platform is presented. Hardware implemented filters offer the advantage that they can be used easily with existing measuring software, since after the filtering a single channel image is present, which unites the information of all colour channels. Advanced field programmable gate arrays represent an ideal platform for the parallel processing of multiple channels. The effective implementation presupposes however a high programming expenditure. On the example of the colour filter implementation, arising problems are analyzed and the chosen solution method is presented.

  15. Application of GelGreen™ in Cesium Chloride Density Gradients for DNA-Stable Isotope Probing Experiments.

    Directory of Open Access Journals (Sweden)

    Jingfeng Gao

    Full Text Available In this study, GelGreen™ was investigated as a replacement for SYBR® Safe to stain DNA in cesium chloride (CsCl density gradients for DNA-stable isotope probing (SIP experiments. Using environmental DNA, the usage of GelGreen™ was optimized for sensitivity compared to SYBR® Safe, its optimal concentration, detection limit for environmental DNA and its application in environmental DNA-SIP assay. Results showed that GelGreen™ was more sensitive than SYBR® Safe, while the optimal dosage (15X concentration needed was approximately one-third of SYBR® Safe, suggesting that its sensitivity was three times more superior than SYBR® Safe. At these optimal parameters, the detection limit of GelGreen™-stained environmental DNA was as low as 0.2 μg, but the usage of 0.5 μg environmental DNA was recommended to produce a more consistent DNA band. In addition, a modified needle extraction procedure was developed to withdraw DNA effectively by fractionating CsCl density gradients into four or five fractions. The successful application of GelGreen™ staining with 13C-labeled DNA from enriched activated sludge suggests that this stain was an excellent alternative of SYBR® Safe in CsCl density gradients for DNA-SIP assays.

  16. High-resolution molybdenum K-edge X-ray absorption spectroscopy analyzed with time-dependent density functional theory.

    Science.gov (United States)

    Lima, Frederico A; Bjornsson, Ragnar; Weyhermüller, Thomas; Chandrasekaran, Perumalreddy; Glatzel, Pieter; Neese, Frank; DeBeer, Serena

    2013-12-28

    X-ray absorption spectroscopy (XAS) is a widely used experimental technique capable of selectively probing the local structure around an absorbing atomic species in molecules and materials. When applied to heavy elements, however, the quantitative interpretation can be challenging due to the intrinsic spectral broadening arising from the decrease in the core-hole lifetime. In this work we have used high-energy resolution fluorescence detected XAS (HERFD-XAS) to investigate a series of molybdenum complexes. The sharper spectral features obtained by HERFD-XAS measurements enable a clear assignment of the features present in the pre-edge region. Time-dependent density functional theory (TDDFT) has been previously shown to predict K-pre-edge XAS spectra of first row transition metal compounds with a reasonable degree of accuracy. Here we extend this approach to molybdenum K-edge HERFD-XAS and present the necessary calibration. Modern pure and hybrid functionals are utilized and relativistic effects are accounted for using either the Zeroth Order Regular Approximation (ZORA) or the second order Douglas-Kroll-Hess (DKH2) scalar relativistic approximations. We have found that both the predicted energies and intensities are in excellent agreement with experiment, independent of the functional used. The model chosen to account for relativistic effects also has little impact on the calculated spectra. This study provides an important calibration set for future applications of molybdenum HERFD-XAS to complex catalytic systems.

  17. Density effects on tokamak edge turbulence and transport with magnetic X-points

    International Nuclear Information System (INIS)

    Xu, X.Q.; Cohen, R.H.; Nevins, W.M.; Rognlien, T.D.; Ryutov, D.D.; Umansky, M.V.; Pearlstein, L.D.; Bulmer, R.H.; Russell, D.A.; Myra, J.R.; D'Ippolito, D.A.; Greenwald, M.; Snyder, P.B.; Mahdavi, M.A.

    2005-01-01

    Results are presented from the 3D electromagnetic turbulence code BOUT, the 2D transport code UEDGE, and theoretical analysis of boundary turbulence and transport in a real divertor-plasma geometry and its relationship to the density limit. Key results include: (1) a transition of the boundary turbulence from resistive X-point to resistive-ballooning as a critical plasma density is exceeded; (2) formation of an X-point MARFE in 2D UEDGE transport simulations for increasing outboard radial transport as found by BOUT for increasing density; (3) identification of convective transport by localized plasma 'blobs' in the SOL at high density during neutral fueling, and decorrelation of turbulence between the midplane and the divertor leg due to strong X-point magnetic shear; (4) a new divertor-leg instability driven at high plasma beta by a radial tilt of the divertor plate. (author)

  18. Radial electric field at the plasma edge on the FT-2 Tokamak in regimes with large gradients

    International Nuclear Information System (INIS)

    Lashkul, S.; Popov, A.

    2001-01-01

    The transport barrier formation is widely believed to be the fundamental element of transition into improved confinement regimes (H-mode). Experiments on many tokamaks demonstrate that transport barrier formation is connected with the suppression of turbulent transport by shear of E x B drift. Therefore, the calculation of radial electric field is of great importance. Our work is devoted to progress the neoclassical theory by taking into account electron viscosity and non-linear effects (ion inertia), presented results being valuable for interpretation transition into H-mode at the plasma edge in small tokamaks. Calculations of the electric field profile for FT-2 tokamak (a=8cm, R 0 =55cm, Ioffe Institute, Russia) according found expressions are in the good agreement with experimental results obtained. (orig.)

  19. Classification of facial-emotion expression in the application of psychotherapy using Viola-Jones and Edge-Histogram of Oriented Gradient.

    Science.gov (United States)

    Candra, Henry; Yuwono, Mitchell; Rifai Chai; Nguyen, Hung T; Su, Steven

    2016-08-01

    Psychotherapy requires appropriate recognition of patient's facial-emotion expression to provide proper treatment in psychotherapy session. To address the needs this paper proposed a facial emotion recognition system using Combination of Viola-Jones detector together with a feature descriptor we term Edge-Histogram of Oriented Gradients (E-HOG). The performance of the proposed method is compared with various feature sources including the face, the eyes, the mouth, as well as both the eyes and the mouth. Seven classes of basic emotions have been successfully identified with 96.4% accuracy using Multi-class Support Vector Machine (SVM). The proposed descriptor E-HOG is much leaner to compute compared to traditional HOG as shown by a significant improvement in processing time as high as 1833.33% (p-value = 2.43E-17) with a slight reduction in accuracy of only 1.17% (p-value = 0.0016).

  20. Development of gradient-corrected exchange-correlation functionals in the density functional theory; Developpement de fonctionnelles corrigees du gradient en theorie de la fonctionnelle de la densite

    Energy Technology Data Exchange (ETDEWEB)

    Lembarki, A.

    1994-12-01

    In this work, we have developed some gradient-corrected exchange-correlation functionals. This study is in keeping with the density functional theory (DFT) formalism. In the first part of this memory, a description of Hartree-Fock (HF), post-HF and density functional theories is given. The second part is devoted the study the different approximations of DFT exchange-correlation functionals which have been proposed in the last years. In particular, we have underlined the approximations used for the construction of these functionals. The third part of this memory consists in the development of new gradient-corrected functionals. In this study, we have established a new relation between exchange energy, correlation energy and kinetic energy. We have deduced two new possible forms of exchange or correlation functionals, respectively. In the fourth part, we have studied the exchange potential, for which the actual formulation does not satisfy some theoretical conditions, such as the asymptotic behavior -1/r. Our contribution lies in the development of an exchange potential with a correct asymptotic -1/r behavior for large values of r. In this chapter, we have proposed a model which permits the obtention of the exchange energy from the exchange potential, using the virial theorem. The fifth part of this memory is devoted the application of these different functionals to simple systems (H{sub 2}O, CO, N{sub 2}O, H{sub 3}{sup +} and H{sub 5}{sup +}) in order to characterize the performance of DFT calculations in regards to those obtained with post-HF methods. (author). 215 refs., 8 figs., 28 tabs.

  1. A modified gradient approach for the growth of low-density InAs quantum dot molecules by molecular beam epitaxy

    Science.gov (United States)

    Sharma, Nandlal; Reuter, Dirk

    2017-11-01

    Two vertically stacked quantum dots that are electronically coupled, so called quantum dot molecules, are of great interest for the realization of solid state building blocks for quantum communication networks. We present a modified gradient approach to realize InAs quantum dot molecules with a low areal density so that single quantum dot molecules can be optically addressed. The individual quantum dot layers were prepared by solid source molecular beam epitaxy depositing InAs on GaAs(100). The bottom quantum dot layer has been grown without substrate rotation resulting in an In-gradient across the surface, which translated into a density gradient with low quantum dot density in a certain region of the wafer. For the top quantum dot layer, separated from the bottom quantum dot layer by a 6 nm thick GaAs barrier, various InAs amounts were deposited without an In-gradient. In spite of the absence of an In-gradient, a pronounced density gradient is observed for the top quantum dots. Even for an In-amount slightly below the critical thickness for a single dot layer, a density gradient in the top quantum dot layer, which seems to reproduce the density gradient in the bottom layer, is observed. For more or less In, respectively, deviations from this behavior occur. We suggest that the obvious influence of the bottom quantum dot layer on the growth of the top quantum dots is due to the strain field induced by the buried dots.

  2. Crust-mantle density distribution in the eastern Qinghai-Tibet Plateau revealed by satellite-derived gravity gradients

    Science.gov (United States)

    LI, Honglei; Fang, Jian; Braitenberg, Carla; Wang, Xinsheng

    2015-04-01

    As the highest, largest and most active plateau on Earth, the Qinghai-Tibet Plateau has a complex crust-mantle structure, especially in its eastern part. In response to the subduction of the lithospheric mantle of the Indian plate, large-scale crustal motion occurs in this area. Despite the many previous studies, geodynamic processes at depth remain unclear. Knowledge of crust and upper mantle density distribution allows a better definition of the deeper geological structure and thus provides critically needed information for understanding of the underlying geodynamic processes. With an unprecedented precision of 1-2 mGal and a spatial resolution better than 100 km, GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission products can be used to constrain the crust-mantle density distribution. Here we used GOCE gravitational gradients at an altitude of 10km after reducing the effects of terrain, sediment thickness variations, and Moho undulations to image the density structures of eastern Tibet up to 200 km depths. We inverted the residual satellite gravitational gradients using a least square approach. The initial density model for the inversion is based on seismic velocities from the tomography. The model is composed of rectangular blocks, having a uniform density, with widths of about 100 km and variable thickness and depths. The thickness of the rectangular cells changes from10 to 60km in accordance with the seismic model. Our results reveal some large-scale, structurally controlled density variations at depths. The lithospheric root defined by higher-density contrast features from southwest to northeast, with shallowing in the central part: base of lithosphere reaches a depth of180 km, less than 100km, and 200 km underneath the Lhasa, Songpan-Ganzi, and Ordos crustal blocks, respectively. However, these depth values only represent a first-order parameterization because they depend on model discretization inherited from the original seismic

  3. Modeling the effects of the vertical temperature gradient in the furnace in an edge-defined film-fed growth technique

    International Nuclear Information System (INIS)

    Epure, S.; Braescu, L.; Balint, St.

    2006-01-01

    In this paper, the mathematical model for the growth of cylindrical bars described elsewhere is considered. Using MathCAD 11 Enterprise Edition and mathematical tools, the asymptotically stable steady-states (r*, h*) of the nonlinear system of differential equations which governs the evolution of the bar radius r=r(t) and the meniscus height h=h(t), for different values of the pulling rate v, the melt temperature T 0 at the meniscus basis and the vertical temperature gradient k in the furnace, respectively, are found. For a given k, the range of the stable growth regions in the (v, T 0 ) plane (i.e. those couples (v, T 0 ) for which (r*, h*) has physical sense) are determined. The effects of the changes of the vertical temperature gradient k are investigated and it is shown that if v and T 0 are constant, and k increases, then the bar radius r increases and the meniscus height h decreases. Numerical results are given for the silicon bar grown in an edge-defined film-fed growth (E.F.G.) system with a die radius r 0e =20(cmx10 -2 )

  4. Edge density X-mode reflectometry of RF-heated plasmas on ASDEX

    International Nuclear Information System (INIS)

    Schubert, R.

    1991-09-01

    In the present work microwave reflectometry is extended to the outermost part of tokamak plasmas (n e ≅ 10 11 to 1.5x10 13 cm -3 ), which is subject to strong electron density fluctuations. The perturbations of electron density profile measurements by these fluctuations, which lead to strong modulations in intensity and phase of the reflected signal is analysed in detail. By increasing the frequency of the interference fringes to values between 800 kHz and 2.4 MHz it is possible to make reliable profile measurements even in the region of very strong fluctuations. Measurements in the low density region are only possible with reasonable errors in the X-mode (Eperpendicular toB), as only the cut-off frequency of this mode, in contrast to that of the O-mode (EparallelB), takes a finite value (f ce ) for n e ->O. Taking advantage of this property, a method is presented to calibrate the measurements on the first reflection, which occurs directly in front of the microwave antennas (1-4 mm from the opening) thus giving a high precision even in the outermost part of the plasma close to the microwave antennas. For the calculation of the electron density profile a new and numerically stable algorithm has been developed. Measurements in connection with Lower Hybrid have been made with a set of 2 reflectometer antennas installed in ASDEX. (orig./AH)

  5. Density gradient localization of vanadate- and NO-3-sensitive ATPase from sterile cultures of Spirodela polyrrhiza (L. Schleiden

    Directory of Open Access Journals (Sweden)

    Józef Buczek

    2014-01-01

    Full Text Available The present work deals with the separation and some characteristics of ATPase activities bound with plant membanes prepared from sterile cultures of Spirodela polyrrhiza. The membrane-bound ATPases were separated on sucrose gradients and distinguished by membrane density and sensitivity to several inhibitors. The results showed that N0-3-sensitive ATPase activity associated with the tonoplast was localized at a sucrose density between 1.095-1.117 g•cm-3. The vanadate-sensitive ATPase activity bound with the plasma membrane showed a density between 1.127-1.151 g•cm-3. Both ATPases were insensitive to azide and oligomycin and were separable from markers for mitochondria.

  6. Sulfur K-edge X-ray absorption spectroscopy and time-dependent density functional theory of arsenic dithiocarbamates.

    Science.gov (United States)

    Donahue, Courtney M; Pacheco, Juan S Lezama; Keith, Jason M; Daly, Scott R

    2014-06-28

    S K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT) calculations were performed on a series of As[S2CNR2]3 complexes, where R2 = Et2, (CH2)5 and Ph2, to determine how dithiocarbamate substituents attached to N affect As[S2CNR2]3 electronic structure. Complimentary [PPh4][S2CNR2] salts were also studied to compare dithiocarbamate bonding in the absence of As. The XAS results indicate that changing the orientation of the alkyl substituents from trans to cis (R2 = Et2vs. (CH2)5) yields subtle variations whereas differences associated with a change from alkyl to aryl are much more pronounced. For example, despite the differences in As 4p mixing, the first features in the S K-edge XAS spectra of [PPh4][S2CNPh2] and As[S2CNPh2]3 were both shifted by 0.3 eV compared to their alkyl-substituted derivatives. DFT calculations revealed that the unique shift observed for [PPh4][S2CNPh2] is due to phenyl-induced splitting of the π* orbitals delocalized over N, C and S. A similar phenomenon accounts for the shift observed for As[S2CNPh2]3, but the presence of two unique S environments (As-S and As···S) prevented reliable analysis of As-S covalency from the XAS data. In the absence of experimental values, DFT calculations revealed a decrease in As-S orbital mixing in As[S2CNPh2]3 that stems from a redistribution of electron density to S atoms participating in weaker As···S interactions. Simulated spectra obtained from TDDFT calculations reproduce the experimental differences in the S K-edge XAS data, which suggests that the theory is accurately modeling the experimental differences in As-S orbital mixing. The results highlight how S K-edge XAS and DFT can be used cooperatively to understand the electronic structure of low symmetry coordination complexes containing S atoms in different chemical environments.

  7. Estimation of Neutral Density in Edge Plasma with Double Null Configuration in EAST

    International Nuclear Information System (INIS)

    Zhang Ling; Xu Guosheng; Ding Siye; Gao Wei; Wu Zhenwei; Chen Yingjie; Huang Juan; Liu Xiaoju; Zang Qing; Chang Jiafeng; Zhang Wei; Li Yingying; Qian Jinping

    2011-01-01

    In this work, population coefficients of hydrogen's n = 3 excited state from the hydrogen collisional-radiative (CR) model, from the data file of DEGAS 2, are used to calculate the photon emissivity coefficients (PECs) of hydrogen Balmer-α (n = 3 → n = 2) (H α ). The results are compared with the PECs from Atomic Data and Analysis Structure (ADAS) database, and a good agreement is found. A magnetic surface-averaged neutral density profile of typical double-null (DN) plasma in EAST is obtained by using FRANTIC, the 1.5-D fluid transport code. It is found that the sum of integral D α and H α emission intensity calculated via the neutral density agrees with the measured results obtained by using the absolutely calibrated multi-channel poloidal photodiode array systems viewing the lower divertor at the last closed flux surface (LCFS). It is revealed that the typical magnetic surface-averaged neutral density at LCFS is about 3.5 x 10 16 m -3 . (magnetically confined plasma)

  8. Temporal evolutions of electron temperature and density with edge localized mode in the JT-60U divertor plasma

    International Nuclear Information System (INIS)

    Nakano, T; Kubo, H; Asakura, N

    2010-01-01

    From the intensity ratios of the three He I lines measured at 20 kHz, the temporal evolutions of the electron temperature and density during and after the power and the particle flow into the divertor plasma caused by edge localized modes are determined. The electron temperature increases from 70 eV to 80 eV with increasing D α intensity. Then, at the peak of D α intensity, the electron temperature starts decreasing down to 60 eV. The electron density increases from 0.1 x 10 19 m -3 to 0.3 x 10 19 m -3 with increasing D α intensity, and then starts to decrease more gradually compared with the electron temperature after the peak of D α intensity. It is interpreted that the increase of the electron temperature is ascribed to the power and the particle flow into the divertor plasma, and that the decrease of the electron temperature and the increase of the electron density are ascribed to the ionization of the recycled neutrals, which consumes the electron energy and produces electrons.

  9. Scanning tunnelling microscope imaging of nanoscale electron density gradients on the surface of GaAs

    International Nuclear Information System (INIS)

    Hamilton, B; Jacobs, J; Missous, M

    2003-01-01

    This paper is concerned with the scanning tunnelling microscope tunnelling conditions needed to produce constant current images dominated either by surface topology or by electronic effects. A model experimental structure was produced by cleaving a GaAs multiδ-doped layer in UHV and so projecting a spatially varying electron gas density onto the (110) surface. This cross sectional electron density varies on a nanometre scale in the [100] growth direction. The electronic structure and tunnelling properties of this system were modelled, and the tunnelling conditions favouring sensitivity to the surface electron gas density determined

  10. CONTROL SYSTEM FOR THE LITHIUM BEAM EDGE PLASMA CURRENT DENSITY DIAGNOSTIC ON THE DIII-D TOKAMAK

    International Nuclear Information System (INIS)

    PEAVY, J.J.; CARY, W.P; THOMAS, D.M; KELLMAN, D.H.; HOYT, D.M; DELAWARE, S.W.; PRONKO, S.G.E.; HARRIS, T.E.

    2004-03-01

    OAK-B135 An edge plasma current density diagnostic employing a neutralized lithium ion beam system has been installed on the DIII-D tokamak. The lithium beam control system is designed around a GE Fanuc 90-30 series PLC and Cimplicity(reg s ign) HMI (Human Machine Interface) software. The control system operates and supervises a collection of commercial and in-house designed high voltage power supplies for beam acceleration and focusing, filament and bias power supplies for ion creation, neutralization, vacuum, triggering, and safety interlocks. This paper provides an overview of the control system, while highlighting innovative aspects including its remote operation, pulsed source heating and pulsed neutralizer heating, optimizing beam regulation, and beam ramping, ending with a discussion of its performance

  11. Improvement of mobility edge model by using new density of states with exponential tail for organic diode

    International Nuclear Information System (INIS)

    Muhammad Ammar Khan; Sun Jiu-Xun

    2015-01-01

    The mobility edge (ME) model with single Gaussian density of states (DOS) is simplified based on the recent experimental results about the Einstein relationship. The free holes are treated as being non-degenerate, and the trapped holes are dealt with as being degenerate. This enables the integral for the trapped holes to be easily realized in a program. The J–V curves are obtained through solving drift-diffusion equations. When this model is applied to four organic diodes, an obvious deviation between theoretical curves and experimental data is observed. In order to solve this problem, a new DOS with exponential tail is proposed. The results show that the consistence between J–V curves and experimental data based on a new DOS is far better than that based on the Gaussian DOS. The variation of extracted mobility with temperature can be well described by the Arrhenius relationship. (paper)

  12. Reservoir longitudinal gradient promotes ordered losses on diversity and density of Ephemeroptera community

    Directory of Open Access Journals (Sweden)

    S. M. Melo

    2018-02-01

    Full Text Available Abstract Reservoir operations alter, eliminate or restrain the natural hydrologic cycles. Biotic community has become subject to these non-cyclic events, responding by reducing the species diversity. Ephemeroptera species present distinct responses to environmental deterioration such that poses this assemblage between the most useful groups in biomonitoring programs. We hypothesized an alteration in beta diversity at the longitudinal species gradient, which will be influenced mainly by species losses between zones. Changes in temporal beta diversity is also expected, but the main drivers of such alterations will be the species turnover between the sampling period. Ephemeroptera community was monitored in nine sampling points from Itaipu Reservoir, where were installed three sets of substrates composed by a float and 2 wooden substrates. We took biological samples in triplicates monthly, from June-01 to August-02. Our initial hypothesis was partially supported and with significant variations only for spatial approach, between the Reservoir zones. The generated ordering from Non-Metric Dimensional Scale – NMDS - corroborated with spatial analyzes, with the formation of two groups along the gradient zonation of the reservoir. The temporal ordination showed no clear pattern. As expected, the contribution to beta diversity was different for our two approaches, such that the loss of species was more important along the spatial gradient and despite of no significant result, the species replacement was more important among months. The spatial results lead us to infer that differences in limnological characteristics between zones are important for determining differences in Ephemeroptera composition and can reflect the dependency degree of the species in relation to the lentic and sometimes-lotic conditions, mainly in the riverine zone of reservoirs. On the other hand, the absence of a temporal pattern can be result of chaotic variations in the

  13. Fast-electron self-collimation in a plasma density gradient

    International Nuclear Information System (INIS)

    Yang, X. H.; Borghesi, M.; Robinson, A. P. L.

    2012-01-01

    A theoretical and numerical study of fast electron transport in solid and compressed fast ignition relevant targets is presented. The principal aim of the study is to assess how localized increases in the target density (e.g., by engineering of the density profile) can enhance magnetic field generation and thus pinching of the fast electron beam through reducing the rate of temperature rise. The extent to which this might benefit fast ignition is discussed.

  14. Droplet and bubble nucleation modeled by density gradient theory – cubic equation of state versus saft model

    Directory of Open Access Journals (Sweden)

    Hrubý Jan

    2012-04-01

    Full Text Available The study presents some preliminary results of the density gradient theory (GT combined with two different equations of state (EoS: the classical cubic equation by van der Waals and a recent approach based on the statistical associating fluid theory (SAFT, namely its perturbed-chain (PC modification. The results showed that the cubic EoS predicted for a given surface tension the density profile with a noticeable defect. Bulk densities predicted by the cubic EoS differed as much as by 100 % from the reference data. On the other hand, the PC-SAFT EoS provided accurate results for density profile and both bulk densities in the large range of temperatures. It has been shown that PC-SAFT is a promising tool for accurate modeling of nucleation using the GT. Besides the basic case of a planar phase interface, the spherical interface was analyzed to model a critical cluster occurring either for nucleation of droplets (condensation or bubbles (boiling, cavitation. However, the general solution for the spherical interface will require some more attention due to its numerical difficulty.

  15. Threatened species richness along a Himalayan elevational gradient: quantifying the influences of human population density, range size, and geometric constraints.

    Science.gov (United States)

    Paudel, Prakash Kumar; Sipos, Jan; Brodie, Jedediah F

    2018-02-07

    A crucial step in conserving biodiversity is to identify the distributions of threatened species and the factors associated with species threat status. In the biodiversity hotspot of the Himalaya, very little is known about which locations harbour the highest diversity of threatened species and whether diversity of such species is related to area, mid-domain effects (MDE), range size, or human density. In this study, we assessed the drivers of variation in richness of threatened birds, mammals, reptiles, actinopterygii, and amphibians along an elevational gradient in Nepal Himalaya. Although geometric constraints (MDE), species range size, and human population density were significantly related to threatened species richness, the interaction between range size and human population density was of greater importance. Threatened species richness was positively associated with human population density and negatively associated with range size. In areas with high richness of threatened species, species ranges tend to be small. The preponderance of species at risk of extinction at low elevations in the subtropical biodiversity hotspot could be due to the double impact of smaller range sizes and higher human density.

  16. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.

    Science.gov (United States)

    Yip, Ngai Yin; Vermaas, David A; Nijmeijer, Kitty; Elimelech, Menachem

    2014-05-06

    Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we present a reversible thermodynamic model for RED and verify that the theoretical maximum extractable work in a reversible RED process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible process with maximized power density using a constant-resistance load is then examined to assess the energy conversion efficiency and power density. With equal volumes of seawater and river water, energy conversion efficiency of ∼ 33-44% can be obtained in RED, while the rest is lost through dissipation in the internal resistance of the ion-exchange membrane stack. We show that imperfections in the selectivity of typical ion exchange membranes (namely, co-ion transport, osmosis, and electro-osmosis) can detrimentally lower efficiency by up to 26%, with co-ion leakage being the dominant effect. Further inspection of the power density profile during RED revealed inherent ineffectiveness toward the end of the process. By judicious early discontinuation of the controlled mixing process, the overall power density performance can be considerably enhanced by up to 7-fold, without significant compromise to the energy efficiency. Additionally, membrane resistance was found to be an important factor in determining the power densities attainable. Lastly, the performance of an RED stack was examined for different membrane conductivities and intermembrane distances simulating high performance membranes and stack design. By thoughtful selection of the operating parameters, an efficiency of ∼ 37% and an overall gross power density of 3.5 W/m(2) represent the maximum performance that can potentially be achieved in a seawater-river water RED system with low

  17. [Edge effect of the plant community structure on land-bridge islands in the Thousand Island Lake].

    Science.gov (United States)

    Su, Xiao-Fei; Yuan, Jin-Feng; Hu, Guang; Xu, Gao-Fu; Yu, Ming-Jian

    2014-01-01

    The research was conducted on 29 land-bridge islands in the Thousand Island Lake (TIL), where long-term monitoring plots were set up during 2009-2010. The community attributes including species richness, Shannon index, plant mean height, plant mean diameter at breast height (DBH) and plant density along the edge-interior gradient from edge to interior forest were calculated to investigate the edge effect. The results showed that the species richness and Shannon index were affected through the whole gradient (larger than 50 m), while the range of edge effect was 20-30 m on mean plant height, and 10 m on plant density and mean DBH. Community attributes differed significantly among the edge gradients. The species richness and Shannon index peaked at the intermediate edge gradient. Plant density decreased and plant mean height increased along the edge to interior gradient. All five community attributes were significantly associated with the edge gradient, also different functional groups, evergreen or deciduous species, trees or shrubs, shade tolerant or shade intolerant species, were differentially influenced by the edge effect. It was demonstrated the influence of edge effect on the fragmented forest community varied with community attributes and functional groups.

  18. Relaxation of a steep density gradient in a simple fluid: Comparison between atomistic and continuum modeling

    International Nuclear Information System (INIS)

    Pourali, Meisam; Maghari, Ali; Meloni, Simone; Magaletti, Francesco; Casciola, Carlo Massimo; Ciccotti, Giovanni

    2014-01-01

    We compare dynamical nonequilibrium molecular dynamics and continuum simulations of the dynamics of relaxation of a fluid system characterized by a non-uniform density profile. Results match quite well as long as the lengthscale of density nonuniformities are greater than the molecular scale (∼10 times the molecular size). In presence of molecular scale features some of the continuum fields (e.g., density and momentum) are in good agreement with atomistic counterparts, but are smoother. On the contrary, other fields, such as the temperature field, present very large difference with respect to reference (atomistic) ones. This is due to the limited accuracy of some of the empirical relations used in continuum models, the equation of state of the fluid in the present example

  19. Evaluation of the impact of density gradient centrifugation on fetal cell loss during enrichment from maternal peripheral blood.

    Science.gov (United States)

    Emad, Ahmed; Drouin, Régen

    2014-09-01

    Physical separation by density gradient centrifugation (DGC) is usually used as an initial step of multistep enrichment protocols for purification of fetal cells (FCs) from maternal blood. Many protocols were designed but no single approach was efficient enough to provide noninvasive prenatal diagnosis. Procedures and methods were difficult to compare because of the nonuniformity of protocols among different groups. Recovery of FCs is jeopardized by their loss during the process of enrichment. Any loss of FCs must be minimized because of the multiplicative effect of each step of the enrichment process. The main objective of this study was to evaluate FC loss caused by DGC. Fetal cells were quantified in peripheral blood samples obtained from both euploid and aneuploid pregnancies before and after enrichment by buoyant DGC using Histopaque 1.119 g/mL. Density gradient centrifugation results in major loss of 60% to 80% of rare FCs, which may further complicate subsequent enrichment procedures. Eliminating aggressive manipulations can significantly minimize FC loss. Data obtained raise questions about the appropriateness of the DGC step for the enrichment of rare FCs and argues for the use of the alternative nonaggressive version of the procedure presented here or prioritizing other methods of enrichments. © 2014 John Wiley & Sons, Ltd.

  20. Density gradient instabilities in a neutron inhomogeneous guiding-centre plasma

    International Nuclear Information System (INIS)

    Shoucri, M.M.; Gagne, R.R.J.

    1977-01-01

    The guiding-centre equations for a plasma of cold ions and thermal electrons admit neutral and non-neutral inhomogeneous equilibrium solutions, and the linear stability of these solutions has been recently investigated numerically by Shoucri and Knorr (1975). With arbitrary density profiles, numerical techniques appear to be the only practical way to study the linear stability of the inhomogeneous equilibrium solutions for the guiding centre plasma. However, analytical methods can be applied to some simple types of density profiles. The purpose of the present note is to present some analytical results on the linear instabilities of an inhomogeneous neutral guiding centre plasma. (U.K.)

  1. Nonlinear neoclassical theory for toroidal edge plasmas

    International Nuclear Information System (INIS)

    Fueloep, T.; Helander, P.

    2001-01-01

    Edge plasma processes play a critical role for the global confinement of the plasma. In the edge region, where impurity ions are abundant and the temperature and density gradients are large, the assumptions of the standard neoclassical theory break down. We have extended the theory of neoclassical transport in an impure plasma with arbitrary cross section and aspect ratio to allow for steeper pressure and temperature gradients than are usually considered in the conventional theory. The gradients are allowed to be so large that the friction force between the bulk ions and heavy impurities is comparable to the parallel impurity pressure gradient. In this case the impurity ions are found to undergo a spontaneous rearrangement on each flux surface. This reduces their parallel friction with the bulk ions and causes the neoclassical ion flux to become a non-monotonic function of the gradients for plasma parameters typical of the tokamak edge. Thus, the neoclassical confinement is improved in regions where the gradients are large, such as in the edge pedestal. The theoretical predictions are compared with experimental data from several tokamaks. (orig.)

  2. Damping-Growth Transition for Ion-Acoustic Waves in a Density Gradient

    DEFF Research Database (Denmark)

    D'Angelo, N.; Michelsen, Poul; Pécseli, Hans

    1975-01-01

    A damping-growth transition for ion-acoustic waves propagating in a nonuniform plasma (e-folding length for the density ln) is observed at a wavelength λ∼2πln. This result supports calculations performed in connection with the problem of heating of the solar corona by ion-acoustic waves generated...

  3. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients

    NARCIS (Netherlands)

    Yip, N.Y.; Vermaas, D.A.; Nijmeijer, K.; Elimelech, M.

    2014-01-01

    Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we

  4. Numerical Studies of Electron Acceleration Behind Self-Modulating Proton Beam in Plasma with a Density Gradient

    CERN Document Server

    Petrenko, A.; Sosedkin, A.

    2016-01-01

    Presently available high-energy proton beams in circular accelerators carry enough momentum to accelerate high-intensity electron and positron beams to the TeV energy scale over several hundred meters of the plasma with a density of about 1e15 1/cm^3. However, the plasma wavelength at this density is 100-1000 times shorter than the typical longitudinal size of the high-energy proton beam. Therefore the self-modulation instability (SMI) of a long (~10 cm) proton beam in the plasma should be used to create the train of micro-bunches which would then drive the plasma wake resonantly. Changing the plasma density profile offers a simple way to control the development of the SMI and the acceleration of particles during this process. We present simulations of the possible use of a plasma density gradient as a way to control the acceleration of the electron beam during the development of the SMI of a 400 GeV proton beam in a 10 m long plasma. This work is done in the context of the AWAKE project --- the proof-of-prin...

  5. Species-specific gradients of juvenile fish density and size in pelagic areas of temperate reservoirs

    Czech Academy of Sciences Publication Activity Database

    Jůza, Tomáš; Ricard, Daniel; Blabolil, Petr; Čech, Martin; Draštík, Vladislav; Frouzová, Jaroslava; Muška, Milan; Peterka, Jiří; Prchalová, Marie; Říha, Milan; Sajdlová, Zuzana; Šmejkal, Marek; Tušer, Michal; Vašek, Mojmír; Vejřík, Lukáš; Kubečka, Jan

    2015-01-01

    Roč. 762, č. 1 (2015), s. 169-181 ISSN 0018-8158 R&D Projects: GA MŠk(CZ) EE2.3.20.0204; GA MŠk(CZ) EE2.3.30.0032; GA MŠk(CZ) 7F14316 Institutional support: RVO:60077344 Keywords : trawling * juvenile density * horizontal distribution * vertical distribution * tributary area Subject RIV: EH - Ecology, Behaviour Impact factor: 2.051, year: 2015

  6. Autoradiography and density gradient separation of technetium-99m-Exametazime (HMPAO) labelled leucocytes reveals selectivity for eosinophils

    Energy Technology Data Exchange (ETDEWEB)

    Puncher, M.R.B. [Biological Lab., Univ. of Kent, Canterbury (United Kingdom); Blower, P.J. [Nuclear Medicine Dept., Kent and Canterbury Hospital (United Kingdom)

    1994-11-01

    Technetium-99m-Exametazime (HMPAO) is widely used for radiolabelling leucocytes for localization of infection. The subcellular distribution of radionuclide in the labelled cells and the distribution of radioactivity among the leucocyte population are incompletely understood. Frozen section autoradiography was used to determine quantitatively the distribution of {sup 99m}Tc in leucocytes labelled with {sup 99m}Tc-Exametazime. Sections of rapidly frozen suspensions of labelled leucocytes in plasma were autoradiographed on Ilford K2 emulsion and stained with haematoxylin and eosin. Neutrophils, eosinophils and mononuclear cells were separated by Percoll density gradient centrifugation. Cell nuclei were isolated by a rapid cell-breakage and fractionation method. In a typical experiment mean grain densities [grains/100 {mu}m{sup 2} (ESD)] over cells were: eosinophils 31.2 (18.4), neutrophils 3.5 (3.5), mononuclear cells 4.2 (5.1). Mean grain numbers per cell (ESD) were: eosinophils 13 (6.8), neutrophils 1.3 (1.3), mononuclear cells 1.1 (1.3). These findings were confirmed by separation of labelled leucocytes on discontinuous density gradients. In four separation experiments, the mean activity-per-cell ratio for eosinophils to neutrophils was 10.1 (4.8):1, and for eosinophils to mononuclear cells, 14.1 (6.7):1. The subcellular distribution of the label was investigated using image analysis of autoradiographs and cell fractionation. This revealed no selectivity for nuclear or extranuclear compartments. It may be concluded that {sup 99m}Tc-Exametazime has strong selectivity for eosinophils over other leucocytes but no selectivity for nuclear/cytoplasmic compartments. (orig.)

  7. Weak turbulence theory of ion temperature gradient modes for inverted density plasmas

    International Nuclear Information System (INIS)

    Hahm, T.S.; Tang, W.M.

    1989-09-01

    Typical profiles measured in H-mode (''high confinement'') discharges from tokamaks such as JET and DIII-D suggest that the ion temperature gradient instability threshold parameter η i (≡dlnT i /dlnn i ) could be negative in many cases. Previous linear theoretical calculations have established the onset conditions for these negative η i -modes and the fact that their growth rate is much smaller than their real frequency over a wide range of negative η i values. This has motivated the present nonlinear weak turbulence analysis to assess the relevance of such instabilities for confinement in H-mode plasmas. The nonlinear eigenmode equation indicates that the 3-wave coupling to shorter wavelength modes is the dominant nonlinear saturation mechanism. It is found that both the saturation level for these fluctuations and the magnitude of the associated ion thermal diffusivity are considerably smaller than the strong turbulence mixing length type estimates for the more conventional positive-η i -instabilities. 19 refs., 3 figs

  8. Ion temperature gradient driven transport in a density modification experiment on the TFTR tokamak

    International Nuclear Information System (INIS)

    Horton, W.; Lindberg, D.; Kim, J.Y.; Dong, J.Q.; Hammett, G.W.; Scott, S.D.; Zarnstorff, M.C.; Hamaguchi, S.

    1991-07-01

    TFTR profiles from a supershot density-modification experiment are analyzed for their local and ballooning stability to toroidal η i -modes in order to understand the initially puzzling results showing no increase in X i when a pellet is used to produce an abrupt and large increase in the η i parameter. The local stability analysis assumes that k parallel = 1/qR and ignores the effects of shear, but makes no assumption on the magnitude of k parallel v ti /ω. The ballooning stability analysis determines a self-consistent linear spectrum of k parallel's including the effect of shear and toroidicity, but it expands in k parallel v ti /ω ≤ 1, which is a marginal assumption for this experiment. Nevertheless, the two approaches agree well and show that the mixing length estimate of the transport rate does not change appreciably during the density-modification and has a value close to or less than the observed X i , in contrast to most previous theories which predicted X i 's which were over an order-of-magnitude too large. However, we are still unable to explain the observed increase X i (r) with minor radius by adding the effects of the finite beta drift - MHD mode coupling, the slab-like mode, or the trapped electron response. The experimental tracking 0.2 e /X i i and trapped-electron driving mechanisms are operating. 4 refs., 5 figs., 5 tabs

  9. High Confinement and High Density with Stationary Plasma Energy and Strong Edge Radiation Cooling in Textor-94

    Science.gov (United States)

    Messiaen, A. M.

    1996-11-01

    A new discharge regime has been observed on the pumped limiter tokamak TEXTOR-94 in the presence of strong radiation cooling and for different scenarii of additional hearing. The radiated power fraction (up to 90%) is feedback controlled by the amount of Ne seeded in the edge. This regime meets many of the necessary conditions for a future fusion reactor. Energy confinement increases with increasing densities (reminiscent of the Z-mode obtained at ISX-B) and as good as ELM-free H-mode confinement (enhancement factor verus ITERH93-P up to 1.2) is obtained at high densities (up to 1.2 times the Greenwald limit) with peaked density profiles showing a peaking factor of about 2 and central density values around 10^14cm-3. In experiments where the energy content of the discharges is kept constant with an energy feedback loop acting on the amount of ICRH power, stable and stationary discharges are obtained for intervals of more than 5s, i.e. 100 times the energy confinement time or about equal to the skin resistive time, even with the cylindrical q_α as low as 2.8 β-values up to the β-limits of TEXTOR-94 are achieved (i.e. β n ≈ 2 of and β p ≈ 1.5) and the figure of merit for ignition margin f_Hqa in these discharges can be as high as 0.7. No detrimental effects of the seeded impurity on the reactivity of the plasma are observed. He removal in these discharges has also been investigated. [1] Laboratoire de Physique des Plasmas-Laboratorium voor Plasmafysica, Association "EURATOM-Belgian State", Ecole Royale Militaire-Koninklijke Militaire School, Brussels, Belgium [2] Institut für Plasmaphysik, Forschungszentrum Jülich, GmbH, Association "EURATOM-KFA", Jülich, Germany [3] Fusion Energy Research Program, Mechanical Engineering Division, University of California at San Diego, La Jolla, USA [4] FOM Institüt voor Plasmafysica Rijnhuizen, Associatie "FOM-EURATOM", Nieuwegein, The Netherlands [*] Researcher at NFSR, Belgium itemize

  10. Multi-Dimensional Quantum Effect Simulation Using a Density-Gradient Model and Script-Level Programming Techniques

    Science.gov (United States)

    Rafferty, Connor S.; Biegel, Bryan A.; Yu, Zhi-Ping; Ancona, Mario G.; Bude, J.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A density-gradient (DG) model is used to calculate quantum-mechanical corrections to classical carrier transport in MOS (Metal Oxide Semiconductor) inversion/accumulation layers. The model is compared to measured data and to a fully self-consistent coupled Schrodinger and Poisson equation (SCSP) solver. Good agreement is demonstrated for MOS capacitors with gate oxide as thin as 21 A. It is then applied to study carrier distribution in ultra short MOSFETs (Metal Oxide Semiconductor Field Effect Transistor) with surface roughness. This work represents the first implementation of the DG formulation on multidimensional unstructured meshes. It was enabled by a powerful scripting approach which provides an easy-to-use and flexible framework for solving the fourth-order PDEs (Partial Differential Equation) of the DG model.

  11. Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI

    DEFF Research Database (Denmark)

    Nunes, Daniel; Cruz, Tomás L; Jespersen, Sune N

    2017-01-01

    available in the clinic, or extremely long acquisition schemes to extract information from parameter-intensive models. In this study, we suggest that simple and time-efficient multi-gradient-echo (MGE) MRI can be used to extract the axon density from susceptibility-driven non-monotonic decay in the time...... the quantitative results are compared against ground-truth histology, they seem to reflect the axonal fraction (though with a bias, as evident from Bland-Altman analysis). As well, the extra-axonal fraction can be estimated. The results suggest that our model is oversimplified, yet at the same time evidencing......-dependent signal. We show, both theoretically and with simulations, that a non-monotonic signal decay will occur for multi-compartmental microstructures – such as axons and extra-axonal spaces, which we here used in a simple model for the microstructure – and that, for axons parallel to the main magnetic field...

  12. Impact of Ficoll density gradient centrifugation on major and trace element concentrations in erythrocytes and blood plasma.

    Science.gov (United States)

    Lu, Ying; Ahmed, Sultan; Harari, Florencia; Vahter, Marie

    2015-01-01

    Ficoll density gradient centrifugation is widely used to separate cellular components of human blood. We evaluated the suitability to use erythrocytes and blood plasma obtained from Ficoll centrifugation for assessment of elemental concentrations. We determined 22 elements (from Li to U) in erythrocytes and blood plasma separated by direct or Ficoll density gradient centrifugation, using inductively coupled plasma mass spectrometry. Compared with erythrocytes and blood plasma separated by direct centrifugation, those separated by Ficoll had highly elevated iodine and Ba concentration, due to the contamination from the Ficoll-Paque medium, and about twice as high concentrations of Sr and Mo in erythrocytes. On the other hand, the concentrations of Ca in erythrocytes and plasma were markedly reduced by the Ficoll separation, to some extent also Li, Co, Cu, and U. The reduced concentrations were probably due to EDTA, a chelator present in the Ficoll medium. Arsenic concentrations seemed to be lowered by Ficoll, probably in a species-specific manner. The concentrations of Mg, P, S, K, Fe, Zn, Se, Rb, and Cs were not affected in the erythrocytes, but decreased in plasma. Concentrations of Mn, Cd, and Pb were not affected in erythrocytes, but in plasma affected by EDTA and/or pre-analytical contamination. Ficoll separation changed the concentrations of Li, Ca, Co, Cu, As, Mo, I, Ba, and U in erythrocytes and blood plasma, Sr in erythrocytes, and Mg, P, S, K, Fe, Zn, Se, Rb and Cs in blood plasma, to an extent that will invalidate evaluation of deficiencies or excess intakes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Stabilization of the Rayleigh-Taylor instability by convection and thermal conduction in smooth density gradient: WKB analysis

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Liberman, M.A.; Bondarenko, E.A.

    1992-01-01

    Since development of the RT modes in the ablatively accelerated plasma of laser targets imposes crucial limitations on symmetry of spherical implosions and hence on energy cumulation, it has been the subject of intensive numerical and analytical analysis in the recent years, particularly in the context of inertial confinement fusion. Recent thin-foil ablative-acceleration experiments as well as the results of 2D numerical simulations demonstrated substantial reduction of the instability growth rates compared with the classical theory predictions up to the total stabilization in the short-wavelength limit. The numerical results indicated that the main stabilization mechanism is convection. To derive the scaling laws for the RT growth rates and cut-off wavenumbers in the wide range of flow parameters, analytical solutions attract special interest. The analytical approach based on the discontinuity model was developed to analyze the reduction of the RT growth rates by the plasma convective flow and the thermal conductivity effects. The following major problem arises in the discontinuity approximation, which leaves the solution undetermined: the number of the boundary conditions on the perturbed ablation surface is not sufficient to derive the dispersion equation. One needs additional boundary conditions not associated with the conservation laws on the discontinuity surface to close the system of linearized equations for small perturbations. The stabilization effect of highly structured hydrodynamic profiles was studied by Mikaelian and Munro for a stationary plasma. Nevertheless, no reasonable analytical model was constructed taking into account the combined convective, thermal conductivity and density gradient reduction of the RT growth rates. In this report we develop the analytical approach based on the WKB approximation to analyze the stabilization of the RT modes in plasma with smooth density and velocity gradients. (author) 9 refs., 1 fig

  14. Thermal stability of the tokamak plasma edge

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1997-01-01

    The general linear, fluid, thermal instability theory for the plasma edge has been extended. An analysis of a two-dimensional fluid model of the plasma edge has identified the importance of many previously unappreciated phenomena associated with parallel and gyroviscous forces in the presence of large radial gradients, with large radial or parallel flows, with the temperature dependence of transport coefficients, and with the coupling of temperature, flow and density perturbations. The radiative condensation effect is generalized to include a further destabilizing condensation effect associated with radial heat conduction. Representative plasma edge neutral and impurity densities are found to be capable of driving thermal instabilities in the edge transport barrier and radiative mantle, respectively. (author)

  15. Nonlinear neoclassical transport in toroidal edge plasmas

    International Nuclear Information System (INIS)

    Fueloep, T.

    2002-01-01

    Edge plasma processes play a critical role for the global confinement of the plasma in a tokamak. In the edge region, where impurity ions are abundant and the temperature and density gradients are large, the assumptions of standard neoclassical theory break down. This paper reviews recent extensions of neoclassical theory to treat this problem, in particular our own work, which focuses on the nonlinear aspects of transport in a plasma with heavy impurity ions. In this theory, the pressure and temperature gradients are allowed to be steeper than in conventional theory neoclassical theory, so that the friction force between the bulk ions and heavy impurities is comparable to the parallel impurity pressure gradient. The impurity ions are then found to undergo a spontaneous rearrangement on each flux surface. This reduces their parallel friction with the bulk ions and causes the neoclassical ion flux to become a non-monotonic function of the gradients for plasma parameters typical of the tokamak edge. Thus, the neoclassical confinement is improved in regions where the gradients are large, such as in the edge pedestal. (orig.)

  16. Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system

    Science.gov (United States)

    Rashidnia, N.; Balasubramaniam, R.

    1991-01-01

    An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).

  17. Costs of coexistence along a gradient of competitor densities: an experiment with arvicoline rodents.

    Science.gov (United States)

    Eccard, Jana A; Ylönen, Hannu

    2007-01-01

    1. Costs of coexistence for species with indirect resource competition usually increase monotonically with competitor numbers. Very little is known though about the shape of the cost function for species with direct interference competition. 2. Here we report the results of an experiment with two vole species in artificial coexistence in large enclosures, where density of the dominant competitor species (Microtus agrestis) was manipulated. Experimental populations of the subordinate vole species (Clethrionomys glareolus) were composed of same aged individuals to study distribution of costs of coexistence with a dominant species within an age-cohort. 3. Survival and space use decreased gradually with increasing field vole numbers. Thus, responses to interference competition in our system appeared to be similar as expected from resource competition. The total number of breeders was stable. Reproductive characteristics such as the timing of breeding, and the litter size were not affected. In the single species enclosures a proportion of surviving individuals were not able to establish a breeding territory against stronger conspecifics. Under competition with heterospecifics such nonbreeders suffered high mortality, whereas the breeders survived. 4. Combined interference of dominant conspecifics and heterospecifics probably increased the frequency of aggressive interactions, social stress and mortality for the weaker individuals within a homogeneous age cohort of the subordinate competitor population. 5. Our results suggest, that in open systems where bank voles are outcompeted over the breeding season by faster reproducing field voles, animals able to establish a territory may be able to withstand competitor pressure, while nonbreeding bank vole individuals are forced to emigrate to suboptimal forest habitats.

  18. Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature.

    Science.gov (United States)

    Álvarez-Dávila, Esteban; Cayuela, Luis; González-Caro, Sebastián; Aldana, Ana M; Stevenson, Pablo R; Phillips, Oliver; Cogollo, Álvaro; Peñuela, Maria C; von Hildebrand, Patricio; Jiménez, Eliana; Melo, Omar; Londoño-Vega, Ana Catalina; Mendoza, Irina; Velásquez, Oswaldo; Fernández, Fernando; Serna, Marcela; Velázquez-Rua, Cesar; Benítez, Doris; Rey-Benayas, José M

    2017-01-01

    Understanding and predicting the likely response of ecosystems to climate change are crucial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to correlate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at elevations ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot-level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by determining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage.

  19. Bone marrow-derived cells for cardiovascular cell therapy: an optimized GMP method based on low-density gradient improves cell purity and function.

    Science.gov (United States)

    Radrizzani, Marina; Lo Cicero, Viviana; Soncin, Sabrina; Bolis, Sara; Sürder, Daniel; Torre, Tiziano; Siclari, Francesco; Moccetti, Tiziano; Vassalli, Giuseppe; Turchetto, Lucia

    2014-09-27

    Cardiovascular cell therapy represents a promising field, with several approaches currently being tested. The advanced therapy medicinal product (ATMP) for the ongoing METHOD clinical study ("Bone marrow derived cell therapy in the stable phase of chronic ischemic heart disease") consists of fresh mononuclear cells (MNC) isolated from autologous bone marrow (BM) through density gradient centrifugation on standard Ficoll-Paque. Cells are tested for safety (sterility, endotoxin), identity/potency (cell count, CD45/CD34/CD133, viability) and purity (contaminant granulocytes and platelets). BM-MNC were isolated by density gradient centrifugation on Ficoll-Paque. The following process parameters were optimized throughout the study: gradient medium density; gradient centrifugation speed and duration; washing conditions. A new manufacturing method was set up, based on gradient centrifugation on low density Ficoll-Paque, followed by 2 washing steps, of which the second one at low speed. It led to significantly higher removal of contaminant granulocytes and platelets, improving product purity; the frequencies of CD34+ cells, CD133+ cells and functional hematopoietic and mesenchymal precursors were significantly increased. The methodological optimization described here resulted in a significant improvement of ATMP quality, a crucial issue to clinical applications in cardiovascular cell therapy.

  20. Reliability of AlGaN/GaN high electron mobility transistors on low dislocation density bulk GaN substrate: Implications of surface step edges

    Energy Technology Data Exchange (ETDEWEB)

    Killat, N., E-mail: Nicole.Killat@bristol.ac.uk, E-mail: Martin.Kuball@bristol.ac.uk; Montes Bajo, M.; Kuball, M., E-mail: Nicole.Killat@bristol.ac.uk, E-mail: Martin.Kuball@bristol.ac.uk [Center for Device Thermography and Reliability (CDTR), H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Paskova, T. [Kyma Technologies, Inc., Raleigh, North Carolina 27617 (United States); Materials Science and Engineering Department, North Carolina State University, Raleigh, North Carolina 27695 (United States); Evans, K. R. [Kyma Technologies, Inc., Raleigh, North Carolina 27617 (United States); Leach, J. [Kyma Technologies, Inc., Raleigh, North Carolina 27617 (United States); Electrical and Computer Engineering Department, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Li, X.; Özgür, Ü.; Morkoç, H. [Electrical and Computer Engineering Department, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Chabak, K. D.; Crespo, A.; Gillespie, J. K.; Fitch, R.; Kossler, M.; Walker, D. E.; Trejo, M.; Via, G. D.; Blevins, J. D. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States)

    2013-11-04

    To enable gaining insight into degradation mechanisms of AlGaN/GaN high electron mobility transistors, devices grown on a low-dislocation-density bulk-GaN substrate were studied. Gate leakage current and electroluminescence (EL) monitoring revealed a progressive appearance of EL spots during off-state stress which signify the generation of gate current leakage paths. Atomic force microscopy evidenced the formation of semiconductor surface pits at the failure location, which corresponds to the interaction region of the gate contact edge and the edges of surface steps.

  1. Simulating Ru L3-edge X-ray absorption spectroscopy with time-dependent density functional theory: model complexes and electron localization in mixed-valence metal dimers.

    Science.gov (United States)

    Van Kuiken, Benjamin E; Valiev, Marat; Daifuku, Stephanie L; Bannan, Caitlin; Strader, Matthew L; Cho, Hana; Huse, Nils; Schoenlein, Robert W; Govind, Niranjan; Khalil, Munira

    2013-05-30

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of Ru(II) and Ru(III) complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6](4-) and Ru(II) polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5M(II)-CN-Ru(III)(NH3)5](-) (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  2. Edge transport barrier formation and ELM phenomenology in the W7-AS stellarator

    International Nuclear Information System (INIS)

    Grigull, P.; Hirsch, M.; Baldzuhn, J.; Ehmler, H.; Gadelmeier, F.; Giannone, L.; Hartfuss, H.-J.; Hildebrandt, D.; Jaenicke, R.; Kisslinger, J.; Koenig, R.; McCormick, K.; Wagner, F.; Weller, A.; Wendland, Ch.

    2001-01-01

    In NBI discharges with density ramps in W7-AS, the quiescent H-mode is restricted to the same ranges of the edge rotational transform as in ECRH discharges and occurs above threshold densities ≥10 20 m -3 which increase with heating power. Higher power needs higher density for stabilization. The approach to the quiescent H-mode often occurs, with increasing density and decreasing power flow through the edge, from grassy through dithering states to bursts of ELMs and, in a few cases, quasi-periodic ELMs. This goes parallel with increasing radial gradients of the plasma pressure and E-field at the edge. Higher heating power reduces in particular the T i gradients and hence the E-field gradients, which effect can be compensated by higher density. The correlations found are fairly consistent when an ExB flow shear decorrelation of the turbulent transport is assumed

  3. Modification of strain and 2DEG density induced by wafer bending of AlGaN/GaN heterostructure: Influence of edges caused by processing

    Directory of Open Access Journals (Sweden)

    Ashu Wang

    2018-03-01

    Full Text Available Due to the piezoelectricity, the density of 2DEG (NS formed in the AlGaN/GaN heterostructure can be altered when it is deformed externally, which may be exploited to develop pressure sensors and to enhance the performance of power devices by stress engineering based on the heterostructure. In this paper, a 3D electro-mechanical simulation is presented to study how the induced strains and NS for the AlGaN/GaN wafer under bending exerted uniaxial stress are influenced by the edges caused by processing: the fabrication of the mesa used for isolation, the ohmic contact metal, the gate metal, and the passivation. Results show that the influences are dependent on distance between the edges, depth of the edges, and direction of the exerted uniaxial stress.

  4. Assessment of swim-up and discontinuous density gradient in sperm sex preselection for bovine embryo production

    Directory of Open Access Journals (Sweden)

    A.C Lucio

    2012-06-01

    Full Text Available The purpose of this work was to associate the modified swim-up method with centrifugation in density gradient for the separation of X-bearing spermatozoa. Sperm viability and integrity were evaluated through the Trypan Blue/Giemsa staining method. Quality control of centrifuged spermatozoa was performed in in vitro produced embryos. The results were validated by the sex ratio of in vitro produced embryos using PCR by Y- specific sequences present in bovine male genomic DNA. After determining genetic sex of in vitro produced embryos, the results showed difference (P<0.05 in deviation of sex ratio when comparing the control group (45.2% females with the other spermatozoa selection procedures (60.6% females (P<0.05. The sperm selection methods are capable of selecting X-bearing spermatozoa without compromising the spermatozoa fertility (cleavage and blastocyst rates, 70% and 26%, respectively and were considered relevant methods to be introduced in bovine in vitro produced embryo programs.

  5. Space Electron Density Gradient Studies using a 3D Embedded Reconfigurable Sounder and ESA/NASA CLUSTER Mission

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper provides a direct comparison between data captured by a new embedded reconfigurable digital sounder, different ground-based ionospheric sounders spread around Europe and the ESA/NASA CLUSTER mission. The CLUSTER mission consists of four identical space probes flying in a formation that allows measurements of the electron density gradient in the local magnetic field. Both the ground-based and the spacecraft instrumentations assist in studying the motion, geometry and boundaries of the plasmasphere. The comparison results are in accordance to each other. Some slight deviations among the captured data were expected from the beginning of this investigation. These small discrepancies are reasonable and seriatim analyzed. The results of this research are significant, since the level of the plasma's ionization, which is related to the solar activity, dominates the propagation of electromagnetic waves through it. Similarly, unusually high solar activity presents serious hazards to orbiting satellites, spaceborne instrumentation, satellite communications and infrastructure located on the Earth's surface. Long-term collaborative study of the data is required to continue, in order to identify and determine the enhanced risk in advance. This would allow scientists to propose an immediate cure.

  6. A density gradient of VAPG peptides on a cell-resisting surface achieves selective adhesion and directional migration of smooth muscle cells over fibroblasts.

    Science.gov (United States)

    Yu, Shan; Zuo, Xingang; Shen, Tao; Duan, Yiyuan; Mao, Zhengwei; Gao, Changyou

    2018-05-01

    Selective adhesion and migration of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. In this study, a uniform cell-resisting layer of poly(ethylene glycol) (PEG) with a density gradient of azide groups was generated on a substrate by immobilizing two kinds of PEG molecules in a gradient manner. A density gradient of alkynyl-functionalized Val-Ala-Pro-Gly (VAPG) peptides was then prepared on the PEG layer via click chemistry. The VAPG density gradient was characterized by fluorescence imaging, revealing the gradual enhancement of the fluorescent intensity along the substrate direction. The adhesion and mobility of SMCs were selectively enhanced on the VAPG density gradient, leading to directional migration toward the higher peptide density (up to 84%). In contrast, the adhesion and mobility of FIBs were significantly weakened. The net displacement of SMCs also significantly increased compared with that on tissue culture polystyrene (TCPS) and that of FIBs on the gradient. The mitogen-activated protein kinase (MAPK) signaling pathways related to cell migration were studied, showing higher expressions of functional proteins from SMCs on the VAPG-modified surface in a density-dependent manner. For the first time the selective adhesion and directional migration of SMCs over FIBs was achieved by an elaborative design of a gradient surface, leading to a new insight in design of novel vascular regenerative materials. Selective cell adhesion and migration guided by regenerative biomaterials are extremely important for the regeneration of targeted tissues, which can avoid the drawbacks of incorrect and uncontrolled responses of tissue cells to implants. For example, selectivity of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. Herein we prepare a uniform cell-repelling layer, on which SMCs-selective Val-Ala-Pro-Gly (VAPG) peptides

  7. Thermal instabilities in the edge region of reversed-field pinches

    International Nuclear Information System (INIS)

    Goedert, J.; Mondt, J.P.

    1984-04-01

    Thermal stability of the edge region of reversed-field pinch configurations is analyzed within the context of a two-fluid model. Two major sources of instability are identified in combination with a parallel electric field: either an electron temperature gradient and/or a density gradient that leads to rapid growth (of several to many ohmic heating rates) over a region of several millimeters around the mode-rational surfaces in the edge region. The basic signature of both instabilities is electrostatic. In the case of the density gradient mode, the signature relies on the effects of electron compressibility, whereas the temperature gradient mode can be identified as the current-convective instability by taking the limit of zero diamagnetic drift, density gradient, thermal force, drift heat flux, and electron compressibility

  8. Characterization and interpretation of the Edge Snake in between type-I edge localized modes at ASDEX Upgrade

    NARCIS (Netherlands)

    Sommer, F.; Günter, S.; Kallenbach, A.; Maraschek, M.; Boom, J.E.; Fischer, R.; Hicks, N.; Luhmann, N.C.; Park, H.K.; Reiter, B.; Wenninger, R.; Wolfrum, E.

    2011-01-01

    A new magnetohydrodynamic instability called the 'Edge Snake', which was found in 2006 at the tokamak ASDEX Upgrade during type-I ELMy H-modes, is investigated. It is located within the separatrix in the region of high temperature and density gradients and has a toroidal mode number of n = 1. The

  9. Nonlinear neoclassical transport in toroidal edge plasmas

    International Nuclear Information System (INIS)

    Fueloep, T.; Helander, P.

    2001-01-01

    In conventional neoclassical theory, the density and temperature gradients are not allowed to be as steep as frequently observed in the tokamak edge. In this paper the theory of neoclassical transport in a collisional, impure plasma is extended to allow for steeper profiles than normally assumed. The dynamics of highly charged impurity ions then becomes nonlinear, which affects the transport of all species. As earlier found in the banana regime, when the bulk plasma gradients are large the impurity ions undergo a poloidal redistribution, which reduces their parallel friction with the bulk ions and suppresses the neoclassical ion particle flux. The neoclassical confinement is thus improved in regions with large radial gradients. When the plasma is collisional and the gradients are large, the impurities accumulate on the inboard side of the torus

  10. Modeling L2,3-Edge X-ray Absorption Spectroscopy with Real-Time Exact Two-Component Relativistic Time-Dependent Density Functional Theory.

    Science.gov (United States)

    Kasper, Joseph M; Lestrange, Patrick J; Stetina, Torin F; Li, Xiaosong

    2018-04-10

    X-ray absorption spectroscopy is a powerful technique to probe local electronic and nuclear structure. There has been extensive theoretical work modeling K-edge spectra from first principles. However, modeling L-edge spectra directly with density functional theory poses a unique challenge requiring further study. Spin-orbit coupling must be included in the model, and a noncollinear density functional theory is required. Using the real-time exact two-component method, we are able to variationally include one-electron spin-orbit coupling terms when calculating the absorption spectrum. The abilities of different basis sets and density functionals to model spectra for both closed- and open-shell systems are investigated using SiCl 4 and three transition metal complexes, TiCl 4 , CrO 2 Cl 2 , and [FeCl 6 ] 3- . Although we are working in the real-time framework, individual molecular orbital transitions can still be recovered by projecting the density onto the ground state molecular orbital space and separating contributions to the time evolving dipole moment.

  11. EFFECTIVENESS OF DOUBLE WASH SWIM-UP VERSUS DOUBLE DENSITY GRADIENT SWIM-UP TECHNIQUE OF SPERM PREPARATION IN IN VITRO FERTILISATION

    Directory of Open Access Journals (Sweden)

    Srinivas Sangisapu

    2017-10-01

    Full Text Available BACKGROUND Recovery of optimum number of good quality of spermatozoa is an important component of In Vitro Fertilisation (IVF. This is achieved by sperm preparation methods involving separation and recovery of capacitated sperms. Double Wash Swim-up (DWSU and Double Density Gradient Swim-up (DDGSU are two most accepted methods. Cochrane systematic review (2007 finds no clear benefit of one method over the other in Intrauterine Insemination (IUI. Systematic review on effectiveness of these preparations in IVF is lacking. Effectiveness is generally assessed in terms recovery rates of the sperms. Capability of successful fertilisation of good quality oocytes should ideally be the functional endpoint for evaluating effectiveness of sperm preparation methods. The aim of the study is to1. Compare the successful fertilisation rates of oocytes inseminated by semen preparation of Double Wash Swim-up (DWSU vis-a-vis by Double Density Gradient Swim-up (DDGSU method. 2. Evaluate the effectiveness of fertilisation of oocytes by Double Wash Swim-up method (DWSU vis-a-vis Double Density Gradient Swim-up (DDGSU method. MATERIALS AND METHODS A retrospective cohort study was conducted on infertile couples undergoing IVF from June 2014 to June 2017 at an ART Centre of a tertiary care hospital. The male partners were normozoospermic and female partners were normoresponsive to controlled ovarian stimulation and oocyte retrieval. RESULTS 70 male partners were subjected to double wash swim-up and 64 underwent double density gradient swim-up preparation. 1296 good quality oocytes were retrieved in their respective female partners. 452 (61% out of 742 oocytes were successfully fertilised after insemination by semen prepared by DWSU method. 378 (68% oocytes out of 554 were fertilised by insemination with semen prepared by DDGSU method. There seems to be strong association (RR=1.12 of fertilisation success with oocytes exposed to semen prepared by Double Density Gradient

  12. An analysis of the gradient-induced electric fields and current densities in human models when situated in a hybrid MRI-LINAC system

    International Nuclear Information System (INIS)

    Liu, Limei; Trakic, Adnan; Sanchez-Lopez, Hector; Liu, Feng; Crozier, Stuart

    2014-01-01

    MRI-LINAC is a new image-guided radiotherapy treatment system that combines magnetic resonance imaging (MRI) with a linear accelerator (LINAC) in a single unit. One drawback is that the pulsing of the split gradient coils of the system induces an electric field and currents in the patient which need to be predicted and evaluated for patient safety. In this novel numerical study the in situ electric fields and associated current densities were evaluated inside tissue-accurate male and female human voxel models when a number of different split-geometry gradient coils were operated. The body models were located in the MRI-LINAC system along the axial and radial directions in three different body positions. Each model had a region of interest (ROI) suitable for image-guided radiotherapy. The simulation results show that the amplitudes and distributions of the field and current density induced by different split x-gradient coils were similar with one another in the ROI of the body model, but varied outside of the region. The fields and current densities induced by a split classic coil with the surface unconnected showed the largest deviation from those given by the conventional non-split coils. Another finding indicated that the distributions of the peak current densities varied when the body position, orientation or gender changed, while the peak electric fields mainly occurred in the skin and fat tissues. (paper)

  13. Effect of ion orbit loss on the structure in the H-mode tokamak edge pedestal profiles of rotation velocity, radial electric field, density, and temperature

    International Nuclear Information System (INIS)

    Stacey, Weston M.

    2013-01-01

    An investigation of the effect of ion orbit loss of thermal ions and the compensating return ion current directly on the radial ion flux flowing in the plasma, and thereby indirectly on the toroidal and poloidal rotation velocity profiles, the radial electric field, density, and temperature profiles, and the interpretation of diffusive and non-diffusive transport coefficients in the plasma edge, is described. Illustrative calculations for a high-confinement H-mode DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] plasma are presented and compared with experimental results. Taking into account, ion orbit loss of thermal ions and the compensating return ion current is found to have a significant effect on the structure of the radial profiles of these quantities in the edge plasma, indicating the necessity of taking ion orbit loss effects into account in interpreting or predicting these quantities

  14. Measurement of impurity ion densities and energies in the divertor and edge regions of Alcator C-Mod tokamak

    International Nuclear Information System (INIS)

    Griem, H.R.; Moreno, J.; Welch, B.L.

    1992-01-01

    A study to investigate impurity production and transport in the divertor and edge regions of the Alcator C-Mod tokamak through spectroscopic techniques is described. A 0.75-meter Czerny-Turner spectrometer with a 1200-g/mm grating and a 35-meter quartz optic bundle transmission line were tested. A high-resolution 2-meter spectrometer will be ordered. Data acquisition considerations are being addressed

  15. EFFECTIVENESS OF DOUBLE WASH SWIM-UP VERSUS DOUBLE DENSITY GRADIENT SWIM-UP TECHNIQUE OF SPERM PREPARATION IN IN VITRO FERTILISATION

    OpenAIRE

    Srinivas Sangisapu; Sandeep Karunakaran; Ashok Kumar Pillai

    2017-01-01

    BACKGROUND Recovery of optimum number of good quality of spermatozoa is an important component of In Vitro Fertilisation (IVF). This is achieved by sperm preparation methods involving separation and recovery of capacitated sperms. Double Wash Swim-up (DWSU) and Double Density Gradient Swim-up (DDGSU) are two most accepted methods. Cochrane systematic review (2007) finds no clear benefit of one method over the other in Intrauterine Insemination (IUI). Systematic review on effective...

  16. Influence of velocity gradient on optimisation of the aggregation process and physical properties of formed aggregates. Part 1. Inline high density suspension (IHDS) aggregation process

    Czech Academy of Sciences Publication Activity Database

    Polášek, Pavel

    2011-01-01

    Roč. 59, č. 2 (2011), s. 107-117 ISSN 0042-790X R&D Projects: GA ČR GA103/07/1016 Institutional research plan: CEZ:AV0Z20600510 Keywords : flocculation optimum * inline high density suspension (IHDS) formation process * properties of aggregates * intensity of agitation * velocity gradient G Subject RIV: BK - Fluid Dynamics Impact factor: 0.340, year: 2011

  17. A Breast Cell Atlas: Organelle analysis of the MDA-MB-231 cell line by density-gradient fractionation using isotopic marking and label-free analysis

    Directory of Open Access Journals (Sweden)

    Marianne Sandin

    2015-09-01

    Full Text Available Protein translocation between organelles in the cell is an important process that regulates many cellular functions. However, organelles can rarely be isolated to purity so several methods have been developed to analyse the fractions obtained by density gradient centrifugation. We present an analysis of the distribution of proteins amongst organelles in the human breast cell line, MDA-MB-231 using two approaches: an isotopic labelling and a label-free approach.

  18. Characterization and interpretation of the Edge Snake in between type-I edge localized modes at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, F; Guenter, S; Kallenbach, A; Maraschek, M; Boom, J; Fischer, R; Hicks, N; Reiter, B; Wolfrum, E [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching, EURATOM Association (Germany); Luhmann, N C Jr [University of California at Davis, Davis, CA 95616 (United States); Park, H K [POSTECH, Pahang, Gyeongbuk 790-784 (Korea, Republic of); Wenninger, R, E-mail: fabian.sommer@ipp.mpg.de [Universitaetssternwarte der Ludwig-Maximilians-Universitaet, D-81679 Muenchen (Germany)

    2011-08-15

    A new magnetohydrodynamic instability called the 'Edge Snake', which was found in 2006 at the tokamak ASDEX Upgrade during type-I ELMy H-modes, is investigated. It is located within the separatrix in the region of high temperature and density gradients and has a toroidal mode number of n = 1. The Edge Snake consists of a radially and poloidally strongly localized current wire, in which the temperature and density profiles flatten. This significant reduction in pressure gradient leads to a reduction in the neoclassical Bootstrap current and can plausibly explain the drive of the instability. The experimental observations point towards a magnetic island with a defect current inside the O-point of the island. The Edge Snake is compared with similar instabilities at JET, DIII-D and ASDEX Upgrade.

  19. Derivation of the threshold condition for the ion temperature gradient mode with an inverted density profile from a simple physics picture

    Science.gov (United States)

    Jhang, Hogun

    2018-05-01

    We show that the threshold condition for the toroidal ion temperature gradient (ITG) mode with an inverted density profile can be derived from a simple physics argument. The key in this picture is that the density inversion reduces the ion compression due to the ITG mode and the electron drift motion mitigates the poloidal potential build-up. This condition reproduces the same result that has been reported from a linear gyrokinetic calculation [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. The destabilizing role of trapped electrons in toroidal geometry is easily captured in this picture.

  20. Analytic energy gradients for orbital-optimized MP3 and MP2.5 with the density-fitting approximation: An efficient implementation.

    Science.gov (United States)

    Bozkaya, Uğur

    2018-03-15

    Efficient implementations of analytic gradients for the orbital-optimized MP3 and MP2.5 and their standard versions with the density-fitting approximation, which are denoted as DF-MP3, DF-MP2.5, DF-OMP3, and DF-OMP2.5, are presented. The DF-MP3, DF-MP2.5, DF-OMP3, and DF-OMP2.5 methods are applied to a set of alkanes and noncovalent interaction complexes to compare the computational cost with the conventional MP3, MP2.5, OMP3, and OMP2.5. Our results demonstrate that density-fitted perturbation theory (DF-MP) methods considered substantially reduce the computational cost compared to conventional MP methods. The efficiency of our DF-MP methods arise from the reduced input/output (I/O) time and the acceleration of gradient related terms, such as computations of particle density and generalized Fock matrices (PDMs and GFM), solution of the Z-vector equation, back-transformations of PDMs and GFM, and evaluation of analytic gradients in the atomic orbital basis. Further, application results show that errors introduced by the DF approach are negligible. Mean absolute errors for bond lengths of a molecular set, with the cc-pCVQZ basis set, is 0.0001-0.0002 Å. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Edge transport and its interconnection with main chamber recycling in ASDEX upgrade

    International Nuclear Information System (INIS)

    Kallenbach, A.; Dux, R.; Gafert, J.

    2003-01-01

    Edge profiles of electron temperature and density are measured in ASDEX Upgrade with high spatial resolution of 2-3 mm with Thomson scattering. In the region of the edge transport barrier in ELMy H-mode, the gradient lengths of T e and n e are found closely coupled, with the temperature profile twice as steep as the density profile corresponding to η e ∼ 2. The edge density in the region of the barrier foot is closely coupled to the main chamber recycling, with no strong dependence on other parameters. In contrast the density rise from the outer barrier foot to the pedestal exhibits pronounced dependence on plasma current and shaping, indicating quite different mechanisms determining the absolute density and its gradient. (author)

  2. Majorana zero modes and long range edge correlation in interacting Kitaev chains: analytic solutions and density-matrix-renormalization-group study.

    Science.gov (United States)

    Miao, Jian-Jian; Jin, Hui-Ke; Zhang, Fu-Chun; Zhou, Yi

    2018-01-11

    We study Kitaev model in one-dimension with open boundary condition by using exact analytic methods for non-interacting system at zero chemical potential as well as in the symmetric case of Δ = t, and by using density-matrix-renormalization-group method for interacting system with nearest neighbor repulsion interaction. We suggest and examine an edge correlation function of Majorana fermions to characterize the long range order in the topological superconducting states and study the phase diagram of the interating Kitaev chain.

  3. Nekton densities along Spartina alterniflora marsh-edge and adjacent shallow non-vegetated bottom in Carancahua Cove, Texas from 1982-03-03 to 1993-06-24 (NCEI Accession 0161172)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains nekton counts used to quantify and compare densities along Spartina alterniflora marsh-edge and adjacent shallow non-vegetated bottom in...

  4. Edge transport barrier formation in compact helical system

    International Nuclear Information System (INIS)

    Okamura, S; Minami, T; Oishi, T; Suzuki, C; Ida, K; Isobe, M; Yoshimura, Y; Nagaoka, K; Toi, K; Fujisawa, A; Akiyama, T; Iguchi, H; Ikeda, R; Kado, S; Matsuoka, K; Matsushita, H; Nakamura, K; Nakano, H; Nishimura, S; Nishiura, M; Ohshima, S; Shimizu, A; Takagi, S; Takahashi, C; Takeuchi, M; Yoshinuma, M

    2004-01-01

    The edge transport barrier (ETB) for particle transport is formed in the neutral beam (NB) heated hydrogen discharges in compact helical system (CHS). The transition to the ETB formation and the back transition are controlled by the heating power. The existence of the heating power threshold is confirmed and it is roughly proportional to the density. The Hα emission signal shows a clear drop at the transition (the timescale of signal decrease is ∼1 ms for the high heating power case). The ETB formation continues for the full duration of NB injection (100 ms) with a moderate level of radiation power loss. Local density profile measurement shows increase of the edge density and the movement of the density gradient region towards the edge

  5. Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory.

    Science.gov (United States)

    Langenbach, K; Heilig, M; Horsch, M; Hasse, H

    2018-03-28

    A new method for predicting homogeneous bubble nucleation rates of pure compounds from vapor-liquid equilibrium (VLE) data is presented. It combines molecular dynamics simulation on the one side with density gradient theory using an equation of state (EOS) on the other. The new method is applied here to predict bubble nucleation rates in metastable liquid carbon dioxide (CO 2 ). The molecular model of CO 2 is taken from previous work of our group. PC-SAFT is used as an EOS. The consistency between the molecular model and the EOS is achieved by adjusting the PC-SAFT parameters to VLE data obtained from the molecular model. The influence parameter of density gradient theory is fitted to the surface tension of the molecular model. Massively parallel molecular dynamics simulations are performed close to the spinodal to compute bubble nucleation rates. From these simulations, the kinetic prefactor of the hybrid nucleation theory is estimated, whereas the nucleation barrier is calculated from density gradient theory. This enables the extrapolation of molecular simulation data to the whole metastable range including technically relevant densities. The results are tested against available experimental data and found to be in good agreement. The new method does not suffer from typical deficiencies of classical nucleation theory concerning the thermodynamic barrier at the spinodal and the bubble size dependence of surface tension, which is typically neglected in classical nucleation theory. In addition, the density in the center of critical bubbles and their surface tension is determined as a function of their radius. The usual linear Tolman correction to the capillarity approximation is found to be invalid.

  6. Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory

    Science.gov (United States)

    Langenbach, K.; Heilig, M.; Horsch, M.; Hasse, H.

    2018-03-01

    A new method for predicting homogeneous bubble nucleation rates of pure compounds from vapor-liquid equilibrium (VLE) data is presented. It combines molecular dynamics simulation on the one side with density gradient theory using an equation of state (EOS) on the other. The new method is applied here to predict bubble nucleation rates in metastable liquid carbon dioxide (CO2). The molecular model of CO2 is taken from previous work of our group. PC-SAFT is used as an EOS. The consistency between the molecular model and the EOS is achieved by adjusting the PC-SAFT parameters to VLE data obtained from the molecular model. The influence parameter of density gradient theory is fitted to the surface tension of the molecular model. Massively parallel molecular dynamics simulations are performed close to the spinodal to compute bubble nucleation rates. From these simulations, the kinetic prefactor of the hybrid nucleation theory is estimated, whereas the nucleation barrier is calculated from density gradient theory. This enables the extrapolation of molecular simulation data to the whole metastable range including technically relevant densities. The results are tested against available experimental data and found to be in good agreement. The new method does not suffer from typical deficiencies of classical nucleation theory concerning the thermodynamic barrier at the spinodal and the bubble size dependence of surface tension, which is typically neglected in classical nucleation theory. In addition, the density in the center of critical bubbles and their surface tension is determined as a function of their radius. The usual linear Tolman correction to the capillarity approximation is found to be invalid.

  7. Task-Related Edge Density (TED)-A New Method for Revealing Dynamic Network Formation in fMRI Data of the Human Brain.

    Science.gov (United States)

    Lohmann, Gabriele; Stelzer, Johannes; Zuber, Verena; Buschmann, Tilo; Margulies, Daniel; Bartels, Andreas; Scheffler, Klaus

    2016-01-01

    The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach "Task-related Edge Density" (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function.

  8. Task-Related Edge Density (TED-A New Method for Revealing Dynamic Network Formation in fMRI Data of the Human Brain.

    Directory of Open Access Journals (Sweden)

    Gabriele Lohmann

    Full Text Available The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach "Task-related Edge Density" (TED. TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function.

  9. High density of tree-cavities and snags in tropical dry forest of western Mexico raises questions for a latitudinal gradient.

    Directory of Open Access Journals (Sweden)

    Leopoldo Vázquez

    Full Text Available It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha, though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters.

  10. High density of tree-cavities and snags in tropical dry forest of western Mexico raises questions for a latitudinal gradient.

    Science.gov (United States)

    Vázquez, Leopoldo; Renton, Katherine

    2015-01-01

    It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha), though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters.

  11. Pancreatin-EDTA treatment affects buoyancy of cells in Cohn fraction V protein density gradients without residual effect on cell size.

    Science.gov (United States)

    Sheridan, J W; Simmons, R J

    1983-12-01

    The buoyancy of suspension-grown Mastocytoma P815 X-2 cells in albumin-rich Cohn fraction V protein (CFVP) density gradients was found to be affected by prior incubation of the cells in pancreatin-EDTA salt solution. Whereas in pH 5.2 CFVP, pancreatin-EDTA treated cells behaved as if of reduced density when compared with the control 'undigested' group, in pH 7.3 CFVP they behaved as if of increased density. By contrast, pancreatin-EDTA treatment had no effect on the buoyancy of mastocytoma cells in polyvinylpyrrolidone-coated colloidal silica (PVP-CS, Percoll T.M.) density gradients of either pH 5.2 or pH 7.3. As cell size determinations failed to reveal alterations in cell size either as a direct result of pancreatin-EDTA treatment or as a combined consequence of such treatment and exposure to CFVP either with or without centrifugation, a mechanism involving a change in cell density other than during the centrifugation process itself seems unlikely. Binding studies employing 125I-CFVP, although indicating that CFVP bound to cells at 4 degrees, failed to reveal a pancreatin-EDTA treatment-related difference in the avidity of this binding. Although the mechanism of the pancreatin-EDTA-induced buoyancy shift in CFVP remains obscure, the absence of such an effect in PVP-CS suggests that the latter cell separation solution may more accurately be used to determine cell density.

  12. Physics constraints on tokamak edge operational space and extrapolation to ITER

    International Nuclear Information System (INIS)

    Igitkhanov, Yu.; Janeschitz, G.; Sugihara, M.; Pacher, H.D.; Post, D.E.; Pacher, G.W.; Pogutse, O.P.

    1998-01-01

    This paper emphasises the theoretical understanding of the physical processes in the edge tokamak plasma and their attendant uncertainties and constraints. The various operational boundaries are represented in the edge operational space (EOS) diagram, the space of edge density and temperature, defined at the top of the H-mode transport barrier. The EOS is governed by four boundaries representing physical constraints for the edge plasma parameters. The first boundary represents the onset of type I ELM instabilities in terms of a critical pressure gradient for MHD stability at the edge which defines the maximum pedestal temperature for a given density once the width of the H-mode transport barrier at the edge (pedestal width) is known. The ideal ballooning mode is a candidate for this instability. The second boundary defines the boundary between type III ELM's, which are probably resistive MHD modes, and the ELM-free region. (orig.)

  13. Integrated core-edge-divertor modeling studies

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    An integrated calculation model for simulating the interaction of physics phenomena taking place in the plasma core, in the plasma edge and in the SOL and divertor of tokamaks has been developed and applied to study such interactions. The model synthesises a combination of numerical calculations (1) the power and particle balances for the core plasma, using empirical confinement scaling laws and taking into account radiation losses (2), the particle, momentum and power balances in the SOL and divertor, taking into account the effects of radiation and recycling neutrals, (3) the transport of feeling and recycling neutrals, explicitly representing divertor and pumping geometry, and (4) edge pedestal gradient scale lengths and widths, evaluation of theoretical predictions (5) confinement degradation due to thermal instabilities in the edge pedestals, (6) detachment and divertor MARFE onset, (7) core MARFE onsets leading to a H-L transition, and (8) radiative collapse leading to a disruption and evaluation of empirical fits (9) power thresholds for the L-H and H-L transitions and (10) the width of the edge pedestals. The various components of the calculation model are coupled and must be iterated to a self-consistent convergence. The model was developed over several years for the purpose of interpreting various edge phenomena observed in DIII-D experiments and thereby, to some extent, has been benchmarked against experiment. Because the model treats the interactions of various phenomena in the core, edge and divertor, yet is computationally efficient, it lends itself to the investigation of the effects of different choices of various edge plasma operating conditions on overall divertor and core plasma performance. Studies of the effect of feeling location and rate, divertor geometry, plasma shape, pumping and over 'edge parameters' on core plasma properties (line average density, confinement, density limit, etc.) have been performed for DIII-D model problems. A

  14. A temporally and spatially resolved electron density diagnostic method for the edge plasma based on Stark broadening

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, A., E-mail: zafara@ornl.gov [Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Martin, E. H.; Isler, R. C.; Caughman, J. B. O. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Shannon, S. C. [Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-11-15

    An electron density diagnostic (≥10{sup 10} cm{sup −3}) capable of high temporal (ms) and spatial (mm) resolution is currently under development at Oak Ridge National Laboratory. The diagnostic is based on measuring the Stark broadened, Doppler-free spectral line profile of the n = 6–2 hydrogen Balmer series transition. The profile is then fit to a fully quantum mechanical model including the appropriate electric and magnetic field operators. The quasi-static approach used to calculate the Doppler-free spectral line profile is outlined here and the results from the model are presented for H-δ spectra for electron densities of 10{sup 10}–10{sup 13} cm{sup −3}. The profile shows complex behavior due to the interaction between the magnetic substates of the atom.

  15. Reduced density gradient as a novel approach for estimating QSAR descriptors, and its application to 1, 4-dihydropyridine derivatives with potential antihypertensive effects.

    Science.gov (United States)

    Jardínez, Christiaan; Vela, Alberto; Cruz-Borbolla, Julián; Alvarez-Mendez, Rodrigo J; Alvarado-Rodríguez, José G

    2016-12-01

    The relationship between the chemical structure and biological activity (log IC 50 ) of 40 derivatives of 1,4-dihydropyridines (DHPs) was studied using density functional theory (DFT) and multiple linear regression analysis methods. With the aim of improving the quantitative structure-activity relationship (QSAR) model, the reduced density gradient s( r) of the optimized equilibrium geometries was used as a descriptor to include weak non-covalent interactions. The QSAR model highlights the correlation between the log IC 50 with highest molecular orbital energy (E HOMO ), molecular volume (V), partition coefficient (log P), non-covalent interactions NCI(H4-G) and the dual descriptor [Δf(r)]. The model yielded values of R 2 =79.57 and Q 2 =69.67 that were validated with the next four internal analytical validations DK=0.076, DQ=-0.006, R P =0.056, and R N =0.000, and the external validation Q 2 boot =64.26. The QSAR model found can be used to estimate biological activity with high reliability in new compounds based on a DHP series. Graphical abstract The good correlation between the log IC 50 with the NCI (H4-G) estimated by the reduced density gradient approach of the DHP derivatives.

  16. Derivation of general analytic gradient expressions for density-fitted post-Hartree-Fock methods: An efficient implementation for the density-fitted second-order Møller–Plesset perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Bozkaya, Uğur, E-mail: ugur.bozkaya@atauni.edu.tr [Department of Chemistry, Atatürk University, Erzurum 25240, Turkey and Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)

    2014-09-28

    General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller–Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997); R. A. Distasio, R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.

  17. Convergent sum of gradient expansion of the kinetic-energy density functional up to the sixth order term using Padé approximant

    Science.gov (United States)

    Sergeev, A.; Alharbi, F. H.; Jovanovic, R.; Kais, S.

    2016-04-01

    The gradient expansion of the kinetic energy density functional, when applied to atoms or finite systems, usually grossly overestimates the energy in the fourth order and generally diverges in the sixth order. We avoid the divergence of the integral by replacing the asymptotic series including the sixth order term in the integrand by a rational function. Padé approximants show moderate improvements in accuracy in comparison with partial sums of the series. The results are discussed for atoms and Hooke’s law model for two-electron atoms.

  18. Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations

    Science.gov (United States)

    Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.

    1998-01-01

    We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.

  19. Predicting Near Edge X-ray Absorption Spectra with the Spin-Free Exact-Two-Component Hamiltonian and Orthogonality Constrained Density Functional Theory.

    Science.gov (United States)

    Verma, Prakash; Derricotte, Wallace D; Evangelista, Francesco A

    2016-01-12

    Orthogonality constrained density functional theory (OCDFT) provides near-edge X-ray absorption (NEXAS) spectra of first-row elements within one electronvolt from experimental values. However, with increasing atomic number, scalar relativistic effects become the dominant source of error in a nonrelativistic OCDFT treatment of core-valence excitations. In this work we report a novel implementation of the spin-free exact-two-component (X2C) one-electron treatment of scalar relativistic effects and its combination with a recently developed OCDFT approach to compute a manifold of core-valence excited states. The inclusion of scalar relativistic effects in OCDFT reduces the mean absolute error of second-row elements core-valence excitations from 10.3 to 2.3 eV. For all the excitations considered, the results from X2C calculations are also found to be in excellent agreement with those from low-order spin-free Douglas-Kroll-Hess relativistic Hamiltonians. The X2C-OCDFT NEXAS spectra of three organotitanium complexes (TiCl4, TiCpCl3, TiCp2Cl2) are in very good agreement with unshifted experimental results and show a maximum absolute error of 5-6 eV. In addition, a decomposition of the total transition dipole moment into partial atomic contributions is proposed and applied to analyze the nature of the Ti pre-edge transitions in the three organotitanium complexes.

  20. An oscillating extracellular voltage gradient reduces the density and influences the orientation of astrocytes in injured mammalian spinal cord.

    Science.gov (United States)

    Moriarty, L J; Borgens, R B

    2001-01-01

    We have studied the cellular basis for recovery from acute spinal cord injury induced by applied electric fields. We have emphasized this recovery is due to the regeneration of spinal axons around and through the lesion, and have begun to evaluate the contribution of other cells to the recovery process. We have imposed a voltage gradient of about 320 microV/mm across puncture wounds to the adult rat spinal cord in order to study the accumulation and orientation of GFAP+ astrocytes within and adjacent to the lesion. This electric field was imposed by a miniaturized electronic implant designed to alternate the polarity of the field every 15 minutes. Astrocytes are known to undergo hyperplastic transformation within injured mammalian cords forming a major component of the scar that forms in response to injury. We have made three observations using a new computer based morphometry technique: First, we note a slight shift in the orientation of astrocytes parallel to the long axis of the spinal cord towards an imaginary reference perpendicular to this axis by approximately 10 degrees--but only in undamaged white matter near the lesion. Second, the relative number of astrocytes was markedly, and statistically significantly, reduced within electrically--treated spinal cords, particularly in the lesion. Third, the imposed voltage gradient statistically reduced the numbers of astrocytes possessing oriented cell processes within the injury site compared to adjacent undamaged regions of spinal cord.

  1. A one-step separation of human serum high density lipoproteins 2 and 3 by rate-zonal density gradient ultracentrifugation in a swinging bucket rotor

    NARCIS (Netherlands)

    Groot, P.H.E.; Scheek, L.M.; Havekes, L.; Noort, W.L. van; Hooft, F.M. van 't

    1982-01-01

    A method was developed for the separation of the high density lipoprotein subclasses HDL2 and HDL3 from human serum. Six serum samples are fractionated in a single-step ultracentrifugal procedure using the Beckman (SW-40) swinging bucket rotor. The method is based on a difference in flotation rate

  2. Comparative validation using quantitative real-time PCR (qPCR and conventional PCR of bovine semen centrifuged in continuous density gradient

    Directory of Open Access Journals (Sweden)

    M.V. Resende

    2011-06-01

    Full Text Available The objective of the present study was to determine the sperm enrichment with X-bearing spermatozoa, after one centrifugation in a Percoll or OptiPrep continuous density gradient, using quantitative real-time polymerase chain reaction (qPCR of sperm DNA and resultant in vitro-produced bovine embryos by PCR. Frozen/thawed sperm was layered on density gradients and the tubes were centrifuged. Supernatants were gently aspirated and the sperm recovered from the bottom of the tubes. Cleavage and blastocyst rates were determined through in vitro production of embryos and PCR was performed to identify the embryos' genetic sex. A difference in blastocyst rate was found in the Percoll treatment compared to OptiPrep (P<0.05. The percentage of female embryos in the Percoll and OptiPrep groups was 62.0% and 47.1%, respectively. These results were confirmed by qPCR of spermatozoa DNA and underestimation was seen only in the Percoll group. It was possible to sexing sperm using simple approach.

  3. $L_{0}$ Gradient Projection.

    Science.gov (United States)

    Ono, Shunsuke

    2017-04-01

    Minimizing L 0 gradient, the number of the non-zero gradients of an image, together with a quadratic data-fidelity to an input image has been recognized as a powerful edge-preserving filtering method. However, the L 0 gradient minimization has an inherent difficulty: a user-given parameter controlling the degree of flatness does not have a physical meaning since the parameter just balances the relative importance of the L 0 gradient term to the quadratic data-fidelity term. As a result, the setting of the parameter is a troublesome work in the L 0 gradient minimization. To circumvent the difficulty, we propose a new edge-preserving filtering method with a novel use of the L 0 gradient. Our method is formulated as the minimization of the quadratic data-fidelity subject to the hard constraint that the L 0 gradient is less than a user-given parameter α . This strategy is much more intuitive than the L 0 gradient minimization because the parameter α has a clear meaning: the L 0 gradient value of the output image itself, so that one can directly impose a desired degree of flatness by α . We also provide an efficient algorithm based on the so-called alternating direction method of multipliers for computing an approximate solution of the nonconvex problem, where we decompose it into two subproblems and derive closed-form solutions to them. The advantages of our method are demonstrated through extensive experiments.

  4. Different elution modes and field programming in gravitational field-flow fractionation: Field programming using density and viscosity gradients

    Czech Academy of Sciences Publication Activity Database

    Plocková, Jana; Chmelík, Josef

    2006-01-01

    Roč. 1118, č. 2 (2006), s. 253-260 ISSN 0021-9673 R&D Projects: GA MZe QD1005 Institutional research plan: CEZ:AV0Z40310501 Keywords : gravitational field flow fractionation * focusing elution mode * carrier liquid density Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.554, year: 2006

  5. Density gradient multilayered polymerization (DGMP): a novel technique for creating multi-compartment, customizable scaffolds for tissue engineering.

    Science.gov (United States)

    Joshi-Barr, Shivanjali; Karpiak, Jerome V; Ner, Yogesh; Wen, Jessica H; Engler, Adam J; Almutairi, Adah

    2013-02-12

    Complex tissue culture matrices, in which types and concentrations of biological stimuli (e.g. growth factors, inhibitors, or small molecules) or matrix structure (e.g. composition, concentration, or stiffness of the matrix) vary over space, would enable a wide range of investigations concerning how these variables affect cell differentiation, migration, and other phenomena. The major challenge in creating layered matrices is maintaining the structural integrity of layer interfaces without diffusion of individual components from each layer. Current methodologies to achieve this include photopatterning, lithography, sequential functionalization5, freeze drying, microfluidics, or centrifugation, many of which require sophisticated instrumentation and technical skills. Others rely on sequential attachment of individual layers, which may lead to delamination of layers. DGMP overcomes these issues by using an inert density modifier such as iodixanol to create layers of varying densities. Since the density modifier can be mixed with any prepolymer or bioactive molecule, DGMP allows each scaffold layer to be customized. Simply varying the concentration of the density modifier prevents mixing of adjacent layers while they remain aqueous. Subsequent single step polymerization gives rise to a structurally continuous multilayered scaffold, in which each layer has distinct chemical and mechanical properties. The density modifier can be easily removed with sufficient rinsing without perturbation of the individual layers or their components. This technique is therefore well suited for creating hydrogels of various sizes, shapes, and materials. A protocol for fabricating a 2D-polyethylene glycol (PEG) gel, in which alternating layers incorporate RGDS-350, is outlined below. We use PEG because it is biocompatible and inert. RGDS, a cell adhesion peptide, is used to demonstrate spatial restriction of a biological cue, and the conjugation of a fluorophore (Alexa Fluor 350) enables

  6. Distribution of PCBs and PBDEs in soils along the altitudinal gradients of Balang Mountain, the east edge of the Tibetan Plateau

    International Nuclear Information System (INIS)

    Zheng Xiaoyan; Liu Xiande; Jiang Guibin; Wang Yawei; Zhang Qinghua; Cai Yaqi; Cong Zhiyuan

    2012-01-01

    Surface soils were collected in Balang Mountain to explore the environmental process of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) during air transport. The average concentrations of ∑ 25 PCBs and ∑ 13 PBDEs in soils were 163 pg/g and 26 pg/g, respectively. The significant correlations between the concentrations of pollutants and total organic carbon (TOC) indicated the importance of TOC in accumulation potential of POPs. The slopes from fitted curves of PCBs were highly related with logK oa , demonstrating that TOC dominates the soil-air exchange of PCBs. The TOC-normalized concentrations of contaminants in samples from below-treeline were higher than those from alpine meadow, probably due to the forest filter effect. The increasing trends of the concentrations with altitude from the alpine meadow samples, could be attributed to the mountain cold-trapping effect. And the weak cold-trapping effect of POPs might be due to the less precipitation in 2008 when comparing with those in 2006. - Highlights: ► Total organic carbon plays an important role in accumulation potential of POPs. ► Forest filter effect might enhance the chemical levels for below-treeline soils. ► Precipitation was the key factor of mountain cold-trapping effect in this area. ► The reduction of precipitation might lead to a weak cold-trapping effect of POPs. ► Higher level of BDE-153 at Site 7 probably resulted from the human disturbance. - The concentrations of POPs in soils in the east edge of the Tibetan Plateau were mainly influenced by forest filter effect and mountain cold-trapping.

  7. Tracing salmon-derived nutrients and contaminants in freshwater food webs across a pronounced spawner density gradient.

    Science.gov (United States)

    Gregory-Eaves, Irene; Demers, J Marc J; Kimpe, Lynda; Krümmel, Eva M; Macdonald, Robie W; Finney, Bruce P; Blais, Jules M

    2007-06-01

    Many have demonstrated that anadromous Pacific salmon are significant vectors of nutrients from the ocean to freshwaters. Recently. however, it has been recognized that salmon spawners also input significant quantities of contaminants. The objectives of this paper are to delineate the extent to which salmon-derived nutrients are integrated into the freshwater food web using delta(15)N and delta(13)C and to assess the influence of the salmon pathway in the accumulation of contaminants in rainbow trout (Oncorhynchus mykiss). We found that the delta(15)N and delta(13)C of food web components were related positively and significantly to sockeye salmon (Oncorhynchus nerka) spawner density. Contaminant concentrations in rainbow trout also positively and significantly were related to sockeye salmon spawner density. These data suggest that the anadromous salmon nutrient and contaminant pathways are related and significantly impact the contaminant burden of resident fish.

  8. Correlations Between the Gradient of Contrast Density, Evaluated by Cardio CT, and Functional Significance of Coronary Artery Stenosis

    Directory of Open Access Journals (Sweden)

    Orzan Marius

    2016-06-01

    Full Text Available Background: Assessment of the hemodynamic significance of a coronary artery stenosis is a challenging task, being extremely important for the establishment of indication for revascularization in atherosclerotic coronary artery stenosis. The aim of this study was to evaluate the role of a new marker reflecting the functional significance of a coronary artery stenosis, represented by the attenuation degree of contrast density along the stenosis by Coronary CT.

  9. Analysis of neoclassical edge plasma transport with gyroviscosity and inertia

    International Nuclear Information System (INIS)

    Rogister, A.; Antonov, N.

    1996-01-01

    It is shown that the ambipolarity constraint which results from neoclassical transport theory with gyroviscosity and inertia sets lower limits on the edge density and/or temperature and/or Z eff gradients. Toroidal momentum co, respectively counter, -injection reduces, respectively increases these lower bounds. Generally speaking, co, respectively counter, -injection increases, respectively reduces, the rotation velocities. The theory has so far been developed for the high collisionality regime only. (orig.)

  10. Experimental investigation of edge sheared flow development and configuration effects in the TJ-II stellarator

    International Nuclear Information System (INIS)

    Pedrosa, M.A.; Hidalgo, C.; Alonso, A.; Calderon, E.; Orozco, O.; Pablos, J.L. de

    2005-01-01

    Experimental results have shown that the generation of spontaneous perpendicular sheared flow (i.e. the naturally occurring shear layer) requires a minimum plasma density or gradient in the TJ-II stellarator. This finding has been observed by means of multiple plasma diagnostics, including probes, fast cameras, reflectometry and HIBP. The obtained shearing rate of the naturally occurring shear layer results in general comparable to the one observed during biasing-improved confinement regimes. It has been found that there is a coupling between the onset of sheared flow development and an increase in the level of plasma edge fluctuations pointing to turbulence as the main ingredient of the radial electric field drive; once the shear flow develops the level of turbulence tends to decrease. The link between the development of sheared flows and plasma density in TJ-II has been observed in different magnetic configurations and plasma regimes. Preliminary results show that the threshold density value depends on the iota value and on the magnetic ripple (plasma volume). Recent experiments carried out in the LHD stellarator have shown that edge sheared flows are also affected by the magnitude of edge magnetic ripple: the threshold density to trigger edge sheared flows increases with magnetic ripple . Those results have been interpreted as an evidence of the importance of neoclassical effect in the physics of ExB sheared flows. For some TJ-II magnetic configurations with higher edge iota (ι/2π≥ 1.8) there is a sharp increase in the edge density gradient simultaneous to a strong reduction of fluctuations and transport and a slight increase of the shearing rate and perpendicular rotation (≥2 km/s) as density increases above the threshold. The role of the edge ripple, the presence of edge rational surfaces and properties of turbulent transport are considered as possible ingredients to explain the spontaneous development of edge sheared flows in TJ-II. (author)

  11. Edge and internal transport barrier formations in CHS

    International Nuclear Information System (INIS)

    Okamura, S.; Minami, T.; Akiyama, T.; Fujisawa, A.; Ida, K.; Iguchi, H.; Isobe, M.; Nagaoka, K.; Nakamura, K.; Nishimura, S.; Matsuoka, K.; Matsushita, H.; Nakano, H.; Nishiura, M.; Ohshima, S.; Shimizu, A.; Suzuki, C.; Takahashi, C.; Toi, K.; Yoshimura, Y.; Yoshinuma, M.; Oishi, T.; Kado, S.

    2005-01-01

    Edge transport barrier (ETB) formation was observed in CHS. Sharp decrease of Hα emission indicates the quick transition of edge particle transport. Increase of the density gradient at the edge was measured by various profile diagnostics and the improvement of the global energy confinement was confirmed based on the stellarator confinement scaling. The heating power threshold exists. The transition and back transition is controlled by the heating power. The local density measurement by the beam emission spectroscopy shows intermittent burst of the low frequency fluctuations during the ETB formation phase. The ETB formation together with the electron temperature increase (electron ITB) in the core region were observed for the NBI discharges without ECH. (author)

  12. Study of early laser-induced plasma dynamics: Transient electron density gradients via Thomson scattering and Stark Broadening, and the implications on laser-induced breakdown spectroscopy measurements

    International Nuclear Information System (INIS)

    Diwakar, P.K.; Hahn, D.W.

    2008-01-01

    To further develop laser-induced breakdown spectroscopy (LIBS) as an analytical technique, it is necessary to better understand the fundamental processes and mechanisms taking place during the plasma evolution. This paper addresses the very early plasma dynamics (first 100 ns) using direct plasma imaging, light scattering, and transmission measurements from a synchronized 532-nm probe laser pulse. During the first 50 ns following breakdown, significant Thomson scattering was observed while the probe laser interacted with the laser-induced plasma. The Thomson scattering was observed to peak 15-25 ns following plasma initiation and then decay rapidly, thereby revealing the highly transient nature of the free electron density and plasma equilibrium immediately following breakdown. Such an intense free electron density gradient is suggestive of a non-equilibrium, free electron wave generated by the initial breakdown and growth processes. Additional probe beam transmission measurements and electron density measurements via Stark broadening of the 500.1-nm nitrogen ion line corroborate the Thomson scattering observations. In concert, the data support the finding of a highly transient plasma that deviates from local thermodynamic equilibrium (LTE) conditions during the first tens of nanoseconds of plasma lifetime. The implications of this early plasma transient behavior are discussed in the context of plasma-analyte interactions and the role on LIBS measurements

  13. Rapid and automated processing of bone marrow grafts without Ficoll density gradient for transplantation of cryopreserved autologous or ABO-incompatible allogeneic bone marrow.

    Science.gov (United States)

    Schanz, U; Gmür, J

    1992-12-01

    The growing number of BMTs has increased interest in safe and standardized in vitro bone marrow processing techniques. We describe our experience with a rapid automated method for the isolation of mononuclear cells (MNC) from large volumes of bone marrow using a Fenwal CS-3000 cell separator without employing density gradient materials. Forty bone marrow harvests with a mean volume of 1650 +/- 307 ml were processed. A mean of 75 +/- 34% (50 percentile range 54-94%) of the original MNCs were recovered in a volume of 200 ml with only 4 +/- 2% of the starting red blood cells (RBC). Removal of granulocytes, immature myeloid precursors and platelets proved to be sufficient to permit safe cryopreservation and successful autologous BMT (n = 25). Allogeneic BMT (n = 14, including three major ABO-incompatible) could be performed without additional manipulation. In both groups of patients timely and stable engraftment comparable to historical controls receiving Ficoll gradient processed autologous (n = 17) or unprocessed allogeneic BMT (n = 54) was observed. Moreover, 70 +/- 14% of the RBC could be recovered from the grafts. They were used for autologous RBC support of donors, rendering unnecessary autologous blood pre-donations.

  14. A Centrifugal Microfluidic Platform That Separates Whole Blood Samples into Multiple Removable Fractions Due to Several Discrete but Continuous Density Gradient Sections

    Science.gov (United States)

    Moen, Scott T.; Hatcher, Christopher L.; Singh, Anup K.

    2016-01-01

    We present a miniaturized centrifugal platform that uses density centrifugation for separation and analysis of biological components in small volume samples (~5 μL). We demonstrate the ability to enrich leukocytes for on-disk visualization via microscopy, as well as recovery of viable cells from each of the gradient partitions. In addition, we simplified the traditional Modified Wright-Giemsa staining by decreasing the time, volume, and expertise involved in the procedure. From a whole blood sample, we were able to extract 95.15% of leukocytes while excluding 99.8% of red blood cells. This platform has great potential in both medical diagnostics and research applications as it offers a simpler, automated, and inexpensive method for biological sample separation, analysis, and downstream culturing. PMID:27054764

  15. Forward calculation of gravity and its gradient using polyhedral representation of density interfaces: an application of spherical or ellipsoidal topographic gravity effect

    Science.gov (United States)

    Zhang, Yi; Chen, Chao

    2018-02-01

    A density interface modeling method using polyhedral representation is proposed to construct 3-D models of spherical or ellipsoidal interfaces such as the terrain surface of the Earth and applied to forward calculating gravity effect of topography and bathymetry for regional or global applications. The method utilizes triangular facets to fit undulation of the target interface. The model maintains almost equal accuracy and resolution at different locations of the globe. Meanwhile, the exterior gravitational field of the model, including its gravity and gravity gradients, is obtained simultaneously using analytic solutions. Additionally, considering the effect of distant relief, an adaptive computation process is introduced to reduce the computational burden. Then features and errors of the method are analyzed. Subsequently, the method is applied to an area for the ellipsoidal Bouguer shell correction as an example and the result is compared to existing methods, which shows our method provides high accuracy and great computational efficiency. Suggestions for further developments and conclusions are drawn at last.

  16. Density-Gradient Mediated Band Extraction of Leukocytes from Whole Blood Using Centrifugo-Pneumatic Siphon Valving on Centrifugal Microfluidic Discs

    Science.gov (United States)

    Kearney, Sinéad M.; Kilcawley, Niamh A.; Early, Philip L.; Glynn, Macdara T.; Ducrée, Jens

    2016-01-01

    Here we present retrieval of Peripheral Blood Mononuclear Cells by density-gradient medium based centrifugation for subsequent analysis of the leukocytes on an integrated microfluidic “Lab-on-a-Disc” cartridge. Isolation of white blood cells constitutes a critical sample preparation step for many bioassays. Centrifugo-pneumatic siphon valves are particularly suited for blood processing as they function without need of surface treatment and are ‘low-pass’, i.e., holding at high centrifugation speeds and opening upon reduction of the spin rate. Both ‘hydrostatically’ and ‘hydrodynamically’ triggered centrifugo-pneumatic siphon valving schemes are presented. Firstly, the geometry of the pneumatic chamber of hydrostatically primed centrifugo-pneumatic siphon valves is optimised to enable smooth and uniform layering of blood on top of the density-gradient medium; this feature proves to be key for efficient Peripheral Blood Mononuclear Cell extraction. A theoretical analysis of hydrostatically primed valves is also presented which determines the optimum priming pressure for the individual valves. Next, ‘dual siphon’ configurations for both hydrostatically and hydrodynamically primed centrifugo-pneumatic siphon valves are introduced; here plasma and Peripheral Blood Mononuclear Cells are extracted through a distinct siphon valve. This work represents a first step towards enabling on disc multi-parameter analysis. Finally, the efficiency of Peripheral Blood Mononuclear Cells extraction in these structures is characterised using a simplified design. A microfluidic mechanism, which we termed phase switching, is identified which affects the efficiency of Peripheral Blood Mononuclear Cell extraction. PMID:27167376

  17. Efficient enrichment of hepatic cancer stem-like cells from a primary rat HCC model via a density gradient centrifugation-centered method.

    Directory of Open Access Journals (Sweden)

    Wei-hui Liu

    Full Text Available BACKGROUND: Because few definitive markers are available for hepatic cancer stem cells (HCSCs, based on physical rather than immunochemical properties, we applied a novel method to enrich HCSCs. METHODOLOGY: After hepatic tumor cells (HTCs were first isolated from diethylinitrosamine-induced F344 rat HCC model using percoll discontinuous gradient centrifugation (PDGC and purified via differential trypsinization and differential attachment (DTDA, they were separated into four fractions using percoll continuous gradient centrifugation (PCGC and sequentially designated as fractions I-IV (FI-IV. Morphological characteristics, mRNA and protein levels of stem cell markers, proliferative abilities, induced differentiation, in vitro migratory capacities, in vitro chemo-resistant capacities, and in vivo malignant capacities were determined for the cells of each fraction. FINDINGS: As the density of cells increased, 22.18%, 11.62%, 4.73% and 61.47% of primary cultured HTCs were segregated in FI-FIV, respectively. The cells from FIII (density between 1.041 and 1.062 g/ml displayed a higher nuclear-cytoplasmic ratio and fewer organelles and expressed higher levels of stem cell markers (AFP, EpCAM and CD133 than cells from other fractions (P<0.01. Additionally, in vitro, the cells from FIII showed a greater capacity to self-renew, differentiate into mature HTCs, transit across membranes, close scratches, and carry resistance to chemotherapy than did cells from any other fraction; in vivo, injection of only 1×10(4 cells from FIII could generate tumors not only in subcutaneous tissue but also in the livers of nude mice. CONCLUSIONS: Through our novel method, HCSC-like cells were successfully enriched in FIII. This study will greatly contribute to two important areas of biological interest: CSC isolation and HCC therapy.

  18. Reply to comments of J.A. Krommes on ''Theory of dissipative density-gradient driven turbulence in the tokamak edge''

    International Nuclear Information System (INIS)

    Terry, P.W.; Diamond, P.H.

    1986-01-01

    We appreciate the interest of Krommes in our recent paper and welcome the opportunity to discuss his comments and other related issues. In our opinion, most of the objections hea has raised follow from a misunderstanding of the physics treated by clump and hole theory. In particular, throughout his critique Krommes attempts to extrapolate results and intuition of homogeneous Navier-Stokes turbulence (HN-ST) to the more complicated case of dissipative drift-wave turbulence (DD-WT). Since these two cases are so dissimilar with regard to their fundamental constituents, drive, characteristic scales and interaction mechanisms, extrapolations from one case to the other are unwarranted and misleading. Moreover, the hypotheses and results of clump and hole theories have fared well in several tests using laboratory and simulation data which is relevant to the theoretical models analyzed. 7 refs

  19. Direct detection of albedo neutron decay electrons at the inner edge of the radiation belt and experimental determination of neutron density in near-Earth space

    Science.gov (United States)

    Li, X.; Selesnick, R.; Schiller, Q. A.; Zhang, K.; Zhao, H.; Baker, D. N.; Temerin, M. A.

    2017-12-01

    The galaxy is filled with cosmic ray particles, mostly protons with kinetic energy above hundreds of mega-electron volts (MeV). Soon after the discovery of Earth's Van Allen radiation belts almost six decades ago, it was recognized that the main source of inner belt protons, with kinetic energies of tens to hundreds of MeV, is Cosmic Ray Albedo Neutron Decay (CRAND). In this process, cosmic rays reaching the upper atmosphere from throughout the galaxy interact with neutral atoms to produce albedo neutrons which, being unstable to 𝛽 decay, are a potential source of geomagnetically trapped protons and electrons. Protons retain most of the neutrons' kinetic energy while the electrons have lower energies, mostly below 1 MeV. The viability of the electron source was, however, uncertain because measurements showed that electron intensity can vary greatly while the neutron decay rate should be almost constant. Recent measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) onboard the Colorado Student Space Weather Experiment (CSSWE) CubeSat now show that CRAND is the main electron source for the radiation belt near its inner edge, and also contributes to the inner belt elsewhere. Furthermore, measurement of the CRAND electron intensity provides the first experimental determination of the neutron density in near-Earth space, 2x10-9/cm3, confirming earlier theoretical estimates.

  20. Assignment of near-edge x-ray absorption fine structure spectra of metalloporphyrins by means of time-dependent density-functional calculations

    International Nuclear Information System (INIS)

    Schmidt, Norman; Fink, Rainer; Hieringer, Wolfgang

    2010-01-01

    The C 1s and N 1s near-edge x-ray absorption fine structure (NEXAFS) spectra of three prototype tetraphenyl porphyrin (TPP) molecules are discussed in the framework of a combined experimental and theoretical study. We employ time-dependent density-functional theory (TDDFT) to compute the NEXAFS spectra of the open- and closed-shell metalloporphyrins CoTPP and ZnTPP as well as the free-base 2HTPP in realistic nonplanar conformations. Using Becke's well-known half-and-half hybrid functional, the computed core excitation spectra are mostly in good agreement with the experimental data in the low-energy region below the appropriate ionization threshold. To make these calculations feasible, we apply a new, simple scheme based on TDDFT using a modified single-particle input spectrum. This scheme is very easy to implement in standard codes and allows one to compute core excitation spectra at a similar cost as ordinary UV/vis spectra even for larger molecules. We employ these calculations for a detailed assignment of the NEXAFS spectra including subtle shifts in certain peaks of the N 1s spectra, which depend on the central coordination of the TPP ligand. We furthermore assign the observed NEXAFS resonances to the individual molecular subunits of the investigated TPP molecules.

  1. Edge remap for solids

    Energy Technology Data Exchange (ETDEWEB)

    Kamm, James R.; Love, Edward; Robinson, Allen C; Young, Joseph G.; Ridzal, Denis

    2013-12-01

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approach is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.

  2. Nonlinear electronic excitations in crystalline solids using meta-generalized gradient approximation and hybrid functional in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shunsuke A. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Taniguchi, Yasutaka [Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan); Department of Medical and General Sciences, Nihon Institute of Medical Science, 1276 Shimogawara, Moroyama-Machi, Iruma-Gun, Saitama 350-0435 (Japan); Shinohara, Yasushi [Max Planck Institute of Microstructure Physics, 06120 Halle (Germany); Yabana, Kazuhiro [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan)

    2015-12-14

    We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functional which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.

  3. Carbon K-edge X-ray absorption spectroscopy and time-dependent density functional theory examination of metal-carbon bonding in metallocene dichlorides.

    Science.gov (United States)

    Minasian, Stefan G; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Kozimor, Stosh A; Martin, Richard L; Shuh, David K; Tyliszczak, Tolek; Vernon, Louis J

    2013-10-02

    Metal-carbon covalence in (C5H5)2MCl2 (M = Ti, Zr, Hf) has been evaluated using carbon K-edge X-ray absorption spectroscopy (XAS) as well as ground-state and time-dependent hybrid density functional theory (DFT and TDDFT). Differences in orbital mixing were determined experimentally using transmission XAS of thin crystalline material with a scanning transmission X-ray microscope (STXM). Moving down the periodic table (Ti to Hf) has a marked effect on the experimental transition intensities associated with the low-lying antibonding 1a1* and 1b2* orbitals. The peak intensities, which are directly related to the M-(C5H5) orbital mixing coefficients, increase from 0.08(1) and 0.26(3) for (C5H5)2TiCl2 to 0.31(3) and 0.75(8) for (C5H5)2ZrCl2, and finally to 0.54(5) and 0.83(8) for (C5H5)2HfCl2. The experimental trend toward increased peak intensity for transitions associated with 1a1* and 1b2* orbitals agrees with the calculated TDDFT oscillator strengths [0.10 and 0.21, (C5H5)2TiCl2; 0.21 and 0.73, (C5H5)2ZrCl2; 0.35 and 0.69, (C5H5)2HfCl2] and with the amount of C 2p character obtained from the Mulliken populations for the antibonding 1a1* and 1b2* orbitals [8.2 and 23.4%, (C5H5)2TiCl2; 15.3 and 39.7%, (C5H5)2ZrCl2; 20.1 and 50.9%, (C5H5)2HfCl2]. The excellent agreement between experiment, theory, and recent Cl K-edge XAS and DFT measurements shows that C 2p orbital mixing is enhanced for the diffuse Hf (5d) and Zr (4d) atomic orbitals in relation to the more localized Ti (3d) orbitals. These results provide insight into how changes in M-Cl orbital mixing within the metallocene wedge are correlated with periodic trends in covalent bonding between the metal and the cyclopentadienide ancillary ligands.

  4. H-mode edge rotation in W7-AS

    International Nuclear Information System (INIS)

    Hirsch, M.; Baldzuhn, J.; Ehmler, H.; Grigull, P.; Maassberg, H.; McCormick, K.; Wagner, F.; Wobig, H.

    2005-01-01

    In W7-AS three regimes of improved confinement exist which base on negative radial electric fields at the plasma edge resulting there from ion-root conditions of the ambipolar radial fluxes. Experimental control besides the magnetic configuration is given via the edge density profile i.e. the recycling and fuelling conditions. However, the ordering element seems to be the radial electric field profile (respectively its shear) and its interplay with the gradients of ion temperature and density. At low to medium densities the so called optimum confinement regime occurs with maximum density gradients located well inside the plasma boundary and large negative values of E r extending deep in the bulk plasma. For a large inner fraction of the bulk the ion temperature can be sufficiently high that ion transport conditions already can be explained by neoclassics. This regime delivers maximum values of T i , τ e and n τ e T i . Density gradients located right inside the plasma boundary result in the classical H-mode phenomena reminiscent to other toroidal devices with the capability of an edge layer with nearly complete suppression of turbulence either quasi stationary (in a quiescent H-mode) or intermittently (in between ELMs). At even higher densities and highly collisional plasmas with the maximum of ∇n shifted to or even out of the plasma boundary the High Density H-mode (HDH) opens access to steady state conditions with no measurable impurity accumulation. These improved confinement regimes are accessed and left via significant transitions of the transport properties albeit these transitions occur on rather different timescales. A comprehensive picture of improved edge confinement regimes in W7-AS is drawn based on the assumption that a weak edge bounded transport barrier resulting from the ion root conditions (thus E r <0) is the ground state of the (turbulent) edge plasma and already behaves as a barrier for anomalous transport. On top of that the classical H

  5. Changes in density fluctuations associated with confinement transitions close to a rational edge rotational transform in the W7-AS stellarator

    DEFF Research Database (Denmark)

    Zoletnik, S,; Basse, Nils Plesner; Saffman, Mark

    2002-01-01

    At certain values of the edge rotational transform t(a), the confinement quality of plasmas in the Wendelstein 7-AS (W7-AS) stellarator is found to react very sensitively to small modifications of the edge rotational transform t(a). As t(a) can be reproducibly changed, either by external fields o...

  6. Effects of plasma shape and profiles on edge stability in DIII-D

    International Nuclear Information System (INIS)

    Lao, L.L.; Chan, V.S.; Chen, L.

    1998-12-01

    The results of recent experimental and theoretical studies concerning the effects of plasma shape and current and pressure profiles on edge instabilities in DIII-D are presented. Magnetic oscillations with toroidal mode number n ∼ 2--9 and a fast growth time γ -1 = 20--150 micros are often observed prior to the first giant type 1 ELM in discharges with moderate squareness. High n ideal ballooning second stability access encourages edge instabilities by facilitating the buildup of the edge pressure gradient and bootstrap current density which destabilize the intermediate to low n modes. Analysis suggests that discharges with large edge pressure gradient and bootstrap current density are more unstable to n > 1 modes. Calculations and experimental results show that ELM amplitude and frequency can be varied by controlling access to the second ballooning stability regime at the edge through variation of the squareness of the discharge shape. A new method is proposed to control edge instabilities by reducing access to the second ballooning stability regime at the edge using high order local perturbation of the plasma shape in the outboard bad curvature region

  7. Effects of plasma shape and profiles on edge stability in DIII-D

    International Nuclear Information System (INIS)

    Lao, L.L.; Ferron, J.R.; Miller, R.L.

    2001-01-01

    The results of recent experimental and theoretical studies concerning the effects of plasma shape and current and pressure profiles on edge instabilities in DIII-D are presented. Magnetic oscillations with toroidal mode number n∼2-9 and a fast growth time γ -1 =20-150μs are often observed prior to the first giant type I ELM in discharges with moderate squareness. High n ideal ballooning second stability access encourages edge instabilities by facilitating the buildup of the edge pressure gradient and bootstrap current density which destabilize the intermediate to low n modes. Analysis suggests that discharges with large edge pressure gradient and bootstrap current density are more unstable to n>1 modes. Calculations and experimental results show that ELM amplitude and frequency can be varied by controlling access to the second ballooning stability regime at the edge through variation of the squareness of the discharge shape. A new method is proposed to control edge instabilities by reducing access to the second ballooning stability regime at the edge using high order local perturbation of the plasma shape in the outboard bad curvature region. (author)

  8. Simulating Ru L 3 -Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    Energy Technology Data Exchange (ETDEWEB)

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, Nils; Schoenlein, Robert W.; Govind, Niranjan; Khalil, Munira

    2013-05-30

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  9. Experimental study of particle transport and density fluctuation in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Morita, S.; Sanin, A.; Michael, C.; Kawahata, K.; Yamada, H.; Miyazawa, J.; Tokuzawa, T.; Akiyama, T.; Goto, M.; Ida, K.; Yoshinuma, M.; Narihara, K.; Yamada, I.; Yokoyama, M.; Masuzaki, S.; Morisaki, T.; Sakamoto, R.; Funaba, H.; Komori, A.; Vyacheslavov, L.N.; Murakami, S.; Wakasa, A.

    2005-01-01

    A variety of electron density (n e ) profiles have been observed in Large Helical Device (LHD). The density profiles change dramatically with heating power and toroidal magnetic field (B t ) under the same line averaged density. The particle transport coefficients, i.e., diffusion coefficient (D) and convection velocity (V) are experimentally obtained from density modulation experiments in the standard configuration. The values of D and V are estimated separately at the core and edge. The diffusion coefficients are strong function of electron temperature (T e ) and are proportional to T e 1.7±0.9 in core and T e 1.1±0.14 in edge. And edge diffusion coefficients are proportional to B t -2.08 . It is found that the scaling of D in edge is close to gyro-Bohm-like in nature. The existence of non-zero V is observed. It is observed that the electron temperature (T e ) gradient can drive particle convection. This is particularly clear in the core region. The convection velocity in the core region reverses direction from inward to outward as the T e gradient increases. In the edge, the convection is inward directed in the most of the case of the present data set. And it shows modest tendency, whose value is proportional to T e gradient keeping inward direction. However, the toroidal magnetic field also significantly affects value and direction of V. The spectrum of density fluctuation changes at different heating power suggesting that it has an influence on particle transport. The peak wavenumber is around 0.1 times the inversed ion Larmor radius, as is expected from gyro-Bohm diffusion. The peaks of fluctuation intensity are localized at the plasma edge, where density gradient becomes negative and diffusion contributes most to the particle flux. These results suggest a qualitative correlation of fluctuations with particle diffusion. (author)

  10. Ballooning mode stability for self-consistent pressure and current profiles at the H-mode edge

    International Nuclear Information System (INIS)

    Miller, R.L.; Lin-Liu, Y.R.; Osborne, T.H.; Taylor, T.S.

    1997-11-01

    The edge pressure gradient (H-mode pedestal) for computed equilibria in which the current density profile is consistent with the bootstrap current may not be limited by the first regime ballooning limit. The transition to second stability is easier for: higher elongation, intermediate triangularity, larger ratio, pedestal at larger radius, narrower pedestal width, higher q 95 , and lower collisionality

  11. Calorific value of Prosopis africana and Balanites aegyptiaca wood: Relationships with tree growth, wood density and rainfall gradients in the West African Sahel

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Carmen Sotelo; Weber, John C. [World Agroforestry Centre (ICRAF), Sahel Office, B.P. E 5118 Bamako (Mali); Silva, Dimas Agostinho da; Bolzon de Muniz, Graciela Ines [Universidade Federal do Parana (UFPR), Av. Lothario Meissner, 900, CEP.: 80270-170-Curitiba (Brazil); Garcia, Rosilei A. [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Instituto de Florestas, Departamento de Produtos Florestais, BR 465, km 07, 23890-000, Seropedica, Rio de Janeiro (Brazil)

    2011-01-15

    Prosopis africana and Balanites aegyptiaca are native tree species in the West African Sahel and provide wood for fuel, construction and other essential products. A provenance/progeny test of each species was established at one relatively dry site in Niger, and evaluated at 13 years. Gross calorific value of the wood was determined for a random sample of trees in each test: gross CV and CVm{sup 3} = gross calorific value in MJ kg{sup -1} and MJ m{sup -3}, respectively. The major objectives were to determine if gross CV was positively correlated with wood density and tree growth, and if gross CV and/or CVm{sup 3} varied with rainfall gradients in the sample region. Provenances were grouped into a drier and more humid zone, and correlations were computed among all trees and separately in each zone. Results indicated that gross CV was not significantly correlated with density in either species. Gross CV was positively correlated with growth of P. africana (but not B. aegyptiaca) only in the drier zone. Gross CVm{sup 3} was positively correlated with growth of both species, and the correlations were stronger in the drier zone. Multiple regressions with provenance latitude, longitude and elevation indicated that provenance means for gross CV increased, in general, from the drier to the more humid zones. Regressions with gross CVm{sup 3} were not significant. Results are compared with earlier research reports from the provenance/progeny tests and with other tropical hardwood species; and practical implications are presented for tree improvement and conservation programs in the region. (author)

  12. ELM suppression in low edge collisionality H-mode discharges using n = 3 magnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Evans, T E [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Doyle, E J [University of California, Los Angeles, California (United States); Fenstermacher, M E [Lawrence Livermore National Laboratory, Livermore, California (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Leonard, A W [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Moyer, R A [University of California, San Diego, California (United States); Osborne, T H; Schaffer, M J; Snyder, P B [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Thomas, P R [CEA Cadarache EURATOM Association, Cadarache (France); West, W P [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Boedo, J A [University of California, San Diego, California (United States); Garofalo, A M [Columbia University, New York, New York (United States); Gohil, P; Jackson, G L; La Haye, R J [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Lasnier, C J [Lawrence Livermore National Laboratory, Livermore, California (United States); Reimerdes, H [Columbia University, New York, New York (United States); Rhodes, T L [University of California, Los Angeles, California (United States); Scoville, J T [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Solomon, W M [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Thomas, D M [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Wang, G [University of California, Los Angeles, California (United States); Watkins, J G [Sandia National Laboratories, Albuquerque, New Mexico (United States); Zeng, L [University of California, Los Angeles, California (United States)

    2005-12-15

    Using resonant magnetic perturbations with toroidal mode number n = 3, we have produced H-mode discharges without edge localized modes (ELMs) which run with constant density and radiated power for periods up to about 2550 ms (17 energy confinement times). These ELM suppression results are achieved at pedestal collisionalities close to those desired for next step burning plasma experiments such as ITER and provide a means of eliminating the rapid erosion of divertor components in such machines which could be caused by giant ELMs. The ELM suppression is due to an enhancement in the edge particle transport which reduces pedestal current density and maximum edge pressure gradient below the threshold for peeling-ballooning modes. These n = 3 magnetic perturbations provide a means of active control of edge plasma transport.

  13. ELM suppression in low edge collisionality H-mode discharges using n = 3 magnetic perturbations

    International Nuclear Information System (INIS)

    Burrell, K H; Evans, T E; Doyle, E J; Fenstermacher, M E; Groebner, R J; Leonard, A W; Moyer, R A; Osborne, T H; Schaffer, M J; Snyder, P B; Thomas, P R; West, W P; Boedo, J A; Garofalo, A M; Gohil, P; Jackson, G L; La Haye, R J; Lasnier, C J; Reimerdes, H; Rhodes, T L; Scoville, J T; Solomon, W M; Thomas, D M; Wang, G; Watkins, J G; Zeng, L

    2005-01-01

    Using resonant magnetic perturbations with toroidal mode number n = 3, we have produced H-mode discharges without edge localized modes (ELMs) which run with constant density and radiated power for periods up to about 2550 ms (17 energy confinement times). These ELM suppression results are achieved at pedestal collisionalities close to those desired for next step burning plasma experiments such as ITER and provide a means of eliminating the rapid erosion of divertor components in such machines which could be caused by giant ELMs. The ELM suppression is due to an enhancement in the edge particle transport which reduces pedestal current density and maximum edge pressure gradient below the threshold for peeling-ballooning modes. These n = 3 magnetic perturbations provide a means of active control of edge plasma transport

  14. [A thermodynamic study on bovine spermatozoa by microcalorimetry after Percoll density-gradient centrifugation - experimental probe of its utility in andrology].

    Science.gov (United States)

    Fischer, C; Scherfer-Brähler, V; Müller-Schlösser, F; Schröder-Printzen, I; Weidner, W

    2007-05-01

    Microcalorimetric measurements can be used for recording exothermic or endothermic summation effects of a great variety of biological processes. The aim of the present study was to examine the usefullness of the microcalorimetry method to characterise the biological activity of spermatozoa. The heat flow of bovine fresh sperm as well as cryosperm samples were measured after Percoll density-gradient centrifugation in a 4-channel microcalorimeter. Various calibration times, volumes of samples and sperm concentrations were tested and analysed. Sperm concentration was recorded by a computer-assisted, computer-aided software system method (CASA). Using a calibration time of 15 minutes, the heat signal of the fresh and cryosperm samples showed a characteristic peak after 39.5 min and 38.1 min (mean), respectively, with a significant correlation to sample volume and sperm concentration (p < 0.05). For obtaining the best results, a sample volume of 1 ml and a sperm concentration of more than 50 x 10 (6)/mL was used. With microcalorimetric measurements the biological activity of spermatozoa could be recorded for reproducible results, thus opening the way to an automatised ejaculate analysis in the future. More investigations are necessary to correlate microcalorimetric parameters with semen function.

  15. Clinical efficacy of a combination of Percoll continuous density gradient and swim-up techniques for semen processing in HIV-1 serodiscordant couples

    Directory of Open Access Journals (Sweden)

    Osamu Inoue

    2017-01-01

    Full Text Available To evaluate the clinical efficacy of a procedure comprising a combination of Percoll continuous density gradient and modified swim-up techniques for the removal of human immunodeficiency virus type 1 (HIV-1 from the semen of HIV-1 infected males, a total of 129 couples with an HIV-1 positive male partner and an HIV-1 negative female partner (serodiscordant couples who were treated at Keio University Hospital between January 2002 and April 2012 were examined. A total of 183 ejaculates from 129 HIV-1 infected males were processed. After swim-up, we successfully collected motile sperms at a recovery rate as high as 100.0% in cases of normozoospermia (126/126 ejaculates, oligozoospermia (6/6, and asthenozoospermia (36/36. The recovery rate of oligoasthenozoospermia was 86.7% (13/15. In processed semen only four ejaculates (4/181:2.2% showed viral nucleotide sequences consistent with those in the blood of the infected males. After using these sperms, no horizontal infections of the female patients and no vertical infections of the newborns were observed. Furthermore, no obvious adverse effects were observed in the offspring. This protocol allowed us to collect HIV-1 negative motile sperms at a high rate, even in male factor cases. We concluded that our protocol is clinically effective both for decreasing HIV-1 infections and for yielding a healthy child.

  16. Density functional theory calculations of energy-loss carbon near-edge spectra of small diameter armchair and zigzag nanotubes: Core-hole, curvature, and momentum-transfer orientation effects

    International Nuclear Information System (INIS)

    Titantah, J.T.; Lamoen, D.; Jorissen, K.

    2004-01-01

    We perform density functional theory calculations on a series of armchair and zigzag nanotubes of diameters less than 1 nm using the all-electron full-potential(-linearized)-augmented-plane-wave method. Emphasis is laid on the effects of curvature, the electron-beam orientation, and the inclusion of the core hole on the carbon electron-energy-loss K edge. The electron-energy-loss near-edge spectra of all the studied tubes show strong curvature effects compared to that of flat graphene. The curvature-induced π-σ hybridization is shown to have a more drastic effect on the electronic properties of zigzag tubes than on those of armchair tubes. We show that the core-hole effect must be accounted for in order to correctly reproduce electron-energy-loss measurements. We also find that the energy-loss near-edge spectra of these carbon systems are dominantly dipole selected and that they can be expressed simply as a proportionality with the local momentum projected density of states, thus portraying the weak energy dependence of the transition matrix elements. Compared to graphite, we report a reduction in the anisotropy as seen on the energy-loss near-edge spectra of carbon nanotubes

  17. Experimental study of particle transport and density fluctuation in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Sanin, A.

    2005-01-01

    A variety of electron density (n e ) profiles have been observed in Large Helical Device (LHD). The density profiles change dramatically with heating power and toroidal magnetic field (B t ) under the same line averaged density. The particle transport coefficients, i.e., diffusion coefficient (D) and convection velocity (V) are experimentally obtained in the standard configuration from density modulation experiments. The values of D and V are estimated separately in the core and edge. The diffusion coefficients are found to be a strong function of electron temperature (T e ) and are proportional to T e 1.7±0.9 in the core and T e 1.1±0.14 in the edge. Edge diffusion coefficients are proportional to B t -2.08 . It is found that the scaling of D in the edge is close to gyro-Bohm-like in nature. Non-zero V is observed and it is found that the electron temperature gradient can drive particle convection, particularly in the core region. The convection velocity in the core reverses direction from inward to outward as the T e gradient increases. In the edge, convection is inward directed in most cases of the present data set. It shows a modest tendency, being proportional to T e gradient and remaining inward directed. However, the toroidal magnetic field also significantly affects the value and direction of V. The density fluctuation spectrum varies with heating power suggesting that it has an influence on particle transport. The value of K sub(perpendicular) ρ i is around 0.1, as expected for gyro-Bohm diffusion. Fluctuations are localized in both positive and negative density gradient regions of the hollow density profiles. The fluctuation power in each region is clearly distinguished having different phase velocity profiles. (author)

  18. Theory of neoclassical resistivity-gradient-driven turbulence

    International Nuclear Information System (INIS)

    Kwon, O.J.; Diamond, P.H.; Hahm, T.S.

    1988-12-01

    It is shown that rippling instabilities can tap the density gradient expansion free energy source through the density dependence of the neoclassical resistivity. Linear analyses show that the region where neoclassical rippling modes are significantly excited extends from the edge of the plasma to the region where ν/sub *e/ ≤ 1. Since these modes are non-dispersive, diamagnetic effects are negligible in comparison to the nonlinear decorrelation rate at saturation. Thus, the relevant regime is the 'strong turbulence' regime. The turbulent radial diffusivities of the temperature and the density are obtained as eigenvalues of the renormalized eigenmode equations at steady state. The density gradient acts to enhance the level of turbulence, compared to that driven by the temperature gradient alone. The saturated turbulent state is characterized by: current decoupling, the breakdown of Boltzmann relation, a radial mode scale of density fluctuations exceeding that of temperature fluctuations, implying that density diffusivity exceeds temperature diffusivity, and that density fluctuation levels exceed temperature fluctuation levels. Magnetic fluctuation levels are negligible. 29 refs., 1 fig

  19. Recent experimental studies of edge and internal transport barriers in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Gohil, P; Baylor, L R; Burrell, K H; Casper, T A; Doyle, E J; Greenfield, C M; Jernigan, T C; Kinsey, J E; Lasnier, C J; Moyer, R A; Murakami, M; Rhodes, T L; Rudakov, D L; Staebler, G M; Wang, G; Watkins, J G; West, W P; Zeng, L

    2003-01-01

    Results from recent experiments on the DIII-D tokamak have revealed many important details on transport barriers at the plasma edge and in the plasma core. These experiments include: (a) the formation of the H-mode edge barrier directly by pellet injection; (b) the formation of a quiescent H-mode edge barrier (QH-mode) which is free from edge localized modes, but which still exhibits good density and radiative power control; (c) the formation of multiple transport barriers, such as the quiescent double barrier (QDB) which combines an internal transport barrier with the quiescent H-mode edge barrier. Results from the pellet-induced H-mode experiments indicate that: (a) the edge temperature (electron or ion) does not need to attain a critical value for the formation of the H-mode barrier, (b) pellet injection leads to an increased gradient in the radial electric field, E r , at the plasma edge; (c) the experimentally determined edge parameters at barrier transition are well below the predictions of several theories on the formation of the H-mode barrier, (d) pellet injection can lower the threshold power required to form the H-mode barrier. The quiescent H-mode barrier exhibits good density control as the result of continuous magnetohydrodynamic activity at the plasma edge called the edge harmonic oscillation (EHO). The EHO enhances the edge particle transport whilst maintaining a good energy transport barrier. The ability to produce multiple barriers in the QDB regime has led to long duration, high-performance plasmas with β N H 89 values of 7 for up to 10 times the confinement time. Density profile control in the plasma core of QDB plasmas has been demonstrated using on-axis electron cyclotron heating

  20. Edge of polar cap patches

    Science.gov (United States)

    Hosokawa, K.; Taguchi, S.; Ogawa, Y.

    2016-04-01

    On the night of 4 December 2013, a sequence of polar cap patches was captured by an all-sky airglow imager (ASI) in Longyearbyen, Norway (78.1°N, 15.5°E). The 630.0 nm airglow images from the ASI of 4 second exposure time, oversampled the emission of natural lifetime (with quenching) of at least ˜30 sec, introduce no observational blurring effects. By using such high-quality ASI images, we succeeded in visualizing an asymmetry in the gradients between the leading/trailing edges of the patches in a 2-D fashion. The gradient in the leading edge was found to be 2-3 times steeper than that in the trailing edge. We also identified fingerlike structures, appearing only along the trailing edge of the patches, whose horizontal scale size ranged from 55 to 210 km. These fingers are considered to be manifestations of plasma structuring through the gradient-drift instability (GDI), which is known to occur only along the trailing edge of patches. That is, the current 2-D observations visualized, for the first time, how GDI stirs the patch plasma and such a mixing process makes the trailing edge more gradual. This result strongly implies a close connection between the GDI-driven plasma stirring and the asymmetry in the large-scale shape of patches and then suggests that the fingerlike structures can be used as markers to estimate the fine-scale structure in the plasma flow within patches.

  1. Sperm quality after swim up and density gradient centrifugation sperm preparation with supplementation of alpha lipoic acid (ALA): A preliminary study

    Science.gov (United States)

    Lestari, Silvia W.; Lestari, Sarah H.; Pujianto, Dwi A.

    2018-02-01

    Intra uterine insemination (IUI) as one of the treatment for infertility, persists low success rate. A factor that contributes to the unsuccessful of IUI is sperm preparation, performed through Swim-up (SU) and Density Gradient Centrifugation (DGC) methods. Furthermore, studies have shown that Alpha Lipoic Acid (ALA) is a potent antioxidant that could enhance the sperm motility and protect the DNA integrity of the sperm [1]. This study is aimed to re-evaluate the efficiency of the DGC and SU methods in selecting sperm before being transferred for IUI by the supplementation of ALA based on the sperm DNA integrity. Semen samples were obtained from 13 men from partners of women who are infertile (normozoospermia) and underwent IUI. Semen analysis based on the guideline of World Health Organization (WHO) 2010 was performed to measure the sperm motility and velocity, before and after sperm preparation. Then, samples were incubated with Alpha Lipoic Acid (ALA) in 0.625 mg (ALA 1), 1.25 mg (ALA 2) and 2.5 mg (ALA 3). The Sperm Chromatin Dispersion (SCD) test was performed to evaluate the sperm DNA Fragmentation Index (DFI). The percentage of motile sperm was higher in prepared sperm (post-DGC and post-SU) than in whole semen. Furthermore, the percentage of motile sperm was higher in post-DGC compared to post-SU. The level of DFI after the supplementation of ALA was decreased in prepared sperm compared to the whole semen. ALA was proved capable to select the better sperm quality with decreased sperm DNA fragmentation of prepared sperm in the all of DFI category.

  2. Effects of gradient encoding and number of signal averages on fractional anisotropy and fiber density index in vivo at 1.5 tesla.

    Science.gov (United States)

    Widjaja, E; Mahmoodabadi, S Z; Rea, D; Moineddin, R; Vidarsson, L; Nilsson, D

    2009-01-01

    Tensor estimation can be improved by increasing the number of gradient directions (NGD) or increasing the number of signal averages (NSA), but at a cost of increased scan time. To evaluate the effects of NGD and NSA on fractional anisotropy (FA) and fiber density index (FDI) in vivo. Ten healthy adults were scanned on a 1.5T system using nine different diffusion tensor sequences. Combinations of 7 NGD, 15 NGD, and 25 NGD with 1 NSA, 2 NSA, and 3 NSA were used, with scan times varying from 2 to 18 min. Regions of interest (ROIs) were placed in the internal capsules, middle cerebellar peduncles, and splenium of the corpus callosum, and FA and FDI were calculated. Analysis of variance was used to assess whether there was a difference in FA and FDI of different combinations of NGD and NSA. There was no significant difference in FA of different combinations of NGD and NSA of the ROIs (P>0.005). There was a significant difference in FDI between 7 NGD/1 NSA and 25 NGD/3 NSA in all three ROIs (PNSA, 25 NGD/1 NSA, and 25 NGD/2 NSA and 25 NGD/3 NSA in all ROIs (P>0.005). We have not found any significant difference in FA with varying NGD and NSA in vivo in areas with relatively high anisotropy. However, lower NGD resulted in reduced FDI in vivo. With larger NGD, NSA has less influence on FDI. The optimal sequence among the nine sequences tested with the shortest scan time was 25 NGD/1 NSA.

  3. Edge Matters

    DEFF Research Database (Denmark)

    Earon, Ofri

    2013-01-01

    of this container is to separate inside from outside and to protect and provide privacy, psychological as well as physical (Venturi, 1966). But, if dwelling phenomenon takes place both inside and outside the private house – why is the urban house an enclosed box? What is the differentiation between inside...... and outside the contemporary urban house? And what is the interplay between them? The research argues for re-thinking the edge zone between inside and outside the urban house. Therefore, although, residential buildings in the city are the objects of study, the focal point here is the edge zone along...... the building. The research explores and develops the architectural characteristics of correlations between the resident, the singular unit, the building and the given location at the edge zone. It approaches the edge zone of the urban house as a platform for dynamic interactions between these behaviours...

  4. The effect of plasma collisionality on pedestal current density formation in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D M; Leonard, A W; Osborne, T H; Groebner, R J; West, W P; Burrell, K H [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States)

    2006-05-15

    The evolution and performance limits for the pedestal in H-mode are dependent on the two main drive terms for instability: namely the edge pressure gradient and the edge current density. These terms are naturally coupled though neoclassical (Pfirsch-Schluter and bootstrap) effects. On DIII-D, local measurements of the edge current density are made using an injected lithium beam in conjunction with Zeeman polarimetry and compared with pressure profile measurements made with other diagnostics. These measurements have confirmed the close spatial and temporal correlation that exists between the measured current density and the edge pressure in H- and QH-mode pedestals, where substantial pressure gradients exist. In the present work we examine the changes in the measured edge current for DIII-D pedestals which have a range of values for the ion and electron collisionalities {l_brace}{upsilon}{sub i}*,{upsilon}{sub e}*{r_brace} due to fuelling effects. Such changes in the collisionality in the edge are expected to significantly alter the level of the bootstrap current from the value predicted from the collisionless limit and therefore should correspondingly alter the pedestal stability limits. We find a clear decrease in measured current as {nu} increases, even for discharges having similar edge pressure gradients.

  5. Cultivo de células mesenquimais do sangue de cordão umbilical com e sem uso do gradiente de densidade Ficoll-Paque Blood mesenchymal stem cell culture from the umbilical cord with and without Ficoll-Paque density gradient method

    Directory of Open Access Journals (Sweden)

    Rosa Sayoko Kawasaki-Oyama

    2008-03-01

    Ficoll-Paque gradient density method (d=1.077g/ml. METHODS: Ten samples of the umbilical cord blood obtained from full-term deliveries were submitted to two different procedures of mesenchymal stem cell culture: a Method without the Ficoll-Paque density gradient, which concentrates all nucleated cells; b Method with the Ficoll-Paque density gradient, which selects only low-density mononuclear cells. Cells were initially plated into 25 cm² cultures flasks at a density of 1x10(7 nucleated cells/cm² and 1x10(6 mononuclear cells/cm². RESULTS: It was obtained 2-13x10(7 (median = 2.35x10(7 nucleated cells/cm² by the method without the Ficoll-Paque gradient density, and 3.7-15.7x10(6 (median = 7.2x10(6 mononuclear cells/cm² by the method with the Ficoll-Paque gradient density. In all cultures adherent cells were observed 24 hours after being cultured. Cells presented fibroblastoid and epithelioid morphology. In most of the cultures, cell proliferation occurred in the first week, but after the second week only some cultures - derived from the method without the Ficoll-Paque gradient density - maintained the growth rate reaching confluence. Those cultures were submitted to trypsinization with 0.25% trypsin/EDTA solution and cultured for two to three months. CONCLUSION: In the samples analyzed, cell separation and mesenchymal stem cell culture techniques from human umbilical cord blood by the method without the Ficoll-Paque density gradient was more efficient than the method with the Ficoll-Paque density gradient.

  6. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M. W. [DESY (Deutsches Elektronen-Synchrotron), FS-PEX, Notkestrasse 85, 22607 Hamburg (Germany); Yiu, Y. M., E-mail: yyiu@uwo.ca; Sham, T. K. [Department of Chemistry, University of Western Ontario, London, ON N6A5B7 (Canada); Ward, M. J. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Liu, L. [Institute of Functional Nano and Soft Materials (FUNSOM) and Soochow University-Western University Center for Synchrotron Radiation Research, Soochow University, Suzhou, Jiangsu, 215123 (China); Hu, Y. [Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N2V3 (Canada); Zapien, J. A. [Center Of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Liu, Yingkai [Institute of Physics and Electronic Information, Yunnan Normal University, Kunming, Yunnan, 650500 (China)

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  7. Edge harmonic oscillations at the density pedestal in the H-mode discharges in CHS Heliotron measured using beam emission spectroscopy and magnetic probe

    Energy Technology Data Exchange (ETDEWEB)

    Kado, S. [High Temperature Plasma Center, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8568 (Japan)]. E-mail: kado@q.t.u-tokyo.ac.jp; Oishi, T. [School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yoshinuma, M. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Ida, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Takeuchi, M. [Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8603 (Japan); Toi, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Akiyama, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Minami, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Nagaoka, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Shimizu, A. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Okamura, S. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Tanaka, S. [School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2007-06-15

    Edge harmonic oscillations (EHO) offer the potential to relax the H-mode pedestal in a tokamak, thus avoiding edge localised modes (ELM). The mode structure of the EHO in CHS was investigated using a poloidal array of beam emission spectroscopy (BES) and a magnetic probe array. The EHO exhibited a peculiar characteristic in which the first, second and third harmonics show the same wavenumber, suggesting that the propagation velocities are different. Change in the phase of higher harmonics at the time when that of the first harmonic is zero can be described as a variation along the (m, n) = (-2, 1) mode structure, though the EHO lies on the {iota} = 1 surface. This behavior leads to an oscillation that exhibits periodic dependence of shape on spatial position.

  8. Sperm Na+, K+-ATPase and Ca2+-ATPase activity: A preliminary study of comparison of swim up and density gradient centrifugation methods for sperm preparation

    Science.gov (United States)

    Lestari, Silvia W.; Larasati, Manggiasih D.; Asmarinah, Mansur, Indra G.

    2018-02-01

    As one of the treatment for infertility, the success rate of Intrauterine Insemination (IUI) is still relatively low. Several sperm preparation methods, swim-up (SU) and the density-gradient centrifugation (DGC) are frequently used to select for better sperm quality which also contribute to IUI failure. Sperm selection methods mainly separate the motile from the immotile sperm, eliminating the seminal plasma. The sperm motility involves the structure and function of sperm membrane in maintaining the balance of ion transport system which is regulated by the Na+, K+-ATPase, and Ca2+-ATPase enzymes. This study aims to re-evaluate the efficiency of these methods in selecting for sperm before being used for IUI and based the evaluation on sperm Na+,K+-ATPase and Ca2+-ATPase activities. Fourteen infertile men from couples who underwent IUI were involved in this study. The SU and DGC methods were used for the sperm preparation. Semen analysis was performed based on the reference value of World Health Organization (WHO) 2010. After isolating the membrane fraction of sperms, the Na+, K+-ATPase activity was defined as the difference in the released inorganic phosphate (Pi) with and without the existence of 10 mM ouabain in the reaction, while the Ca2+-ATPase was determined as the difference in Pi contents with and without the existence of 55 µm CaCl2. The prepared sperm demonstrated a higher percentage of motile sperm compared to sperm from the whole semen. Additionally, the percentage of motile sperm of post-DGC showed higher result than the sperm from post-SU. The velocity of sperm showed similar pattern with the percentage of motile sperm, in which the velocity of prepared sperm was higher than the sperm from whole semen. Furthermore, the sperm velocity of post-DGC was higher compared to the sperm from post-SU. The Na+, K+-ATPase activity of prepared sperm was higher compared to whole semen, whereas Na+, K+-ATPase activity in the post DGC was higher than post SU. The Ca2

  9. Task-Related Edge Density (TED)—A New Method for Revealing Dynamic Network Formation in fMRI Data of the Human Brain

    Science.gov (United States)

    Lohmann, Gabriele; Stelzer, Johannes; Zuber, Verena; Buschmann, Tilo; Margulies, Daniel; Bartels, Andreas; Scheffler, Klaus

    2016-01-01

    The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach “Task-related Edge Density” (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function. PMID:27341204

  10. Two methods for isolating the lung area of a CT scan for density information

    International Nuclear Information System (INIS)

    Hedlund, L.W.; Anderson, R.F.; Goulding, P.L.; Beck, J.W.; Effmann, E.L.; Putman, C.E.

    1982-01-01

    Extracting density information from irregularly shaped tissue areas of CT scans requires automated methods when many scans are involved. We describe two computer methods that automatically isolate the lung area of a CT scan. Each starts from a single, operator specified point in the lung. The first method follows the steep density gradient boundary between lung and adjacent tissues; this tracking method is useful for estimating the overall density and total area of lung in a scan because all pixels within the lung area are available for statistical sampling. The second method finds all contiguous pixels of lung that are within the CT number range of air to water and are not a part of strong density gradient edges; this method is useful for estimating density and area of the lung parenchyma. Structures within the lung area that are surrounded by strong density gradient edges, such as large blood vessels, airways and nodules, are excluded from the lung sample while lung areas with diffuse borders, such as an area of mild or moderate edema, are retained. Both methods were tested on scans from an animal model of pulmonary edema and were found to be effective in isolating normal and diseased lungs. These methods are also suitable for isolating other organ areas of CT scans that are bounded by density gradient edges

  11. Impurity and trace tritium transport in tokamak edge turbulence

    DEFF Research Database (Denmark)

    Naulin, V.

    2005-01-01

    The turbulent transport of impurity or minority species, as for example tritium, is investigated in drift-Alfven edge turbulence. The full effects of perpendicular and parallel convection are kept for the impurity species. The impurity density develops a granular structure with steep gradients...... and locally exceeds its initial values due to the compressibility of the flow. An approximate decomposition of the impurity flux into a diffusive part and an effective convective part (characterized by a pinch velocity) is performed and a net inward pinch effect is recovered. The pinch velocity is explained...

  12. Collisional drift waves in the H-mode edge

    International Nuclear Information System (INIS)

    Sen, S.

    1994-01-01

    The stability of the collisional drift wave in a sheared slab geometry is found to be severely restricted at the H-mode edge plasma due to the very steep density gradient. However, a radially varying transverse velocity field is found to play the key role in stability. Velocity profiles usually found in the H-mode plasma stabilize drift waves. On the other hand, velocity profiles corresponding to the L-mode render collisional drift waves unstable even though the magnetic shear continues to play its stabilizing role. (author). 24 refs

  13. Edge instabilities of topological superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Johannes S. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Assaad, Fakher F. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Schnyder, Andreas P. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2016-07-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground state degeneracy and a diverging density of states. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry broken phases, which lift the ground-state degeneracy. Here, we employ Monte Carlo simulations combined with mean-field considerations to examine the instabilities of the flat-band edge states of d{sub xy}-wave superconductors. We find that attractive interactions induce a complex s-wave pairing instability together with a density wave instability. Repulsive interactions, on the other hand, lead to ferromagnetism mixed with spin-triplet pairing at the edge. We discuss the implications of our findings for experiments on cuprate high-temperature superconductors.

  14. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory.

    Science.gov (United States)

    Fransson, Thomas; Burdakova, Daria; Norman, Patrick

    2016-05-21

    X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems.

  15. Investigations on the edge kinetic data in regimes with type-I and mitigated ELMs at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Rathgeber, S.K.; Barrera, L.; Birkenmeier, G.; Fischer, R.; Suttrop, W.

    2014-01-01

    The behaviour of profiles and gradients of electron density, temperature and pressure at the edge of ASDEX Upgrade was studied in regimes with type-I and small edge localized modes (ELMs) of discharges with and without applied magnetic perturbations (MPs). Estimation of the edge kinetic parameters was performed by means of integrated data analysis for joint reconstruction of electron density and temperature profiles via combination of data from different diagnostics. The MP fields for ELM mitigation were produced by 16 in-vessel coils allowing to execute this survey with large variations in poloidal spectrum and resonant component of the error field. With several dedicated discharges the effect of MPs on the edge kinetic data and ELMs was determined in dependence of heating power, gas puff and MP-coil configuration. Small ELMs are dominant—with and without MPs—in regimes with reduced pedestal top electron temperatures and flattened edge electron pressure gradients compared to type-I ELM phases. Furthermore, application of MPs opens an additional small ELM regime in the high temperature range at reduced electron pressure gradient. (paper)

  16. Two-dimensional imaging of edge plasma electron density and temperature by the passive helium emission ratio technique in TJ-II

    International Nuclear Information System (INIS)

    De la Cal, E; Guasp, J

    2011-01-01

    An intensified visible camera looks tangentially at a poloidal limiter where helium recycles, acting as a wide neutral source, and the atomic line emission due to plasma excitation becomes strongly localized there. It includes a bifurcated coherent bundle, each end with a different interference filter to select helium atomic lines, so that two simultaneous filtered images are captured in one single frame. The object of the proposed technique is to apply the well-known helium-beam line-ratio technique to obtain from selected filtered images the two-dimensional (2D) edge plasma n e and T e . The code EIRENE was used to demonstrate that the helium emission from recycling neutrals dominates the emission for the lines of view passing close above the limiter. Since these chords are nearly parallel to magnetic field lines in the emission region, the images can be approximated to poloidal cuts of the plasma emission within the tolerances discussed in the paper. The absolute radial profiles of T e and n e obtained with the method presented here were checked in the TJ-II stellarator to be in relatively good agreement with other diagnostics within a wide range of plasma parameters for both ECRH and NBI plasmas. The method is finally used to get 2D images of edge plasma T e and n e .

  17. Using solution- and solid-state S K-edge X-ray absorption spectroscopy with density functional theory to evaluate M-S bonding for MS4(2-) (M = Cr, Mo, W) dianions.

    Science.gov (United States)

    Olson, Angela C; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Daly, Scott R; Kozimor, Stosh A; MacInnes, Molly M; Martin, Richard L; Scott, Brian L

    2014-12-14

    Herein, we have evaluated relative changes in M-S electronic structure and orbital mixing in Group 6 MS4(2-) dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as (1)A1 → (1)T2 transitions. For MoS4(2-), both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS4(2-), solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO4(2-) dianions, which allowed M-S and M-O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M-E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M-S bonds, but increased appreciably for M-O interactions. For the t orbitals (σ* + π*), mixing decreased slightly for M-S bonding and increased only slightly for the M-O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME4(2-) (E = O, S) dianions.

  18. Differences in below-ground bud bank density and composition along a climatic gradient in the temperate steppe of northern China

    Czech Academy of Sciences Publication Activity Database

    Qian, J.; Wang, Z.; Klimešová, Jitka; Lü, X.; Kuang, W.; Liu, Z.; Han, X.

    2017-01-01

    Roč. 120, č. 5 (2017), s. 755-764 ISSN 0305-7364 R&D Projects: GA ČR GB14-36079G Institutional support: RVO:67985939 Keywords : Bud Bank * Precipitation gradient * Stepic vegetation Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 4.041, year: 2016

  19. Effects of Temperature on the Density of Water Based Drilling Mud ...

    African Journals Online (AJOL)

    ADOWIE PERE

    geothermal wells and for drilling deep wells. A systematic examination of rheological properties. (viscosity, Fluid loss, mud density, gel strength, pH, and yield ... gradient at the edge of the rider nearest to the fulcrum was read. The instrument is then clean and replaced. This process was repeated for a maximum temperature ...

  20. Frontal dynamics at the edge of the Columbia River plume

    Science.gov (United States)

    Akan, Çiğdem; McWilliams, James C.; Moghimi, Saeed; Özkan-Haller, H. Tuba

    2018-02-01

    In the tidal ebb-cycle at the Mouth of the Columbia River, strong density and velocity fronts sometimes form perpendicular to the coast at the edges of the freshwater plume. They are distinct from previously analyzed fronts at the offshore western edge of the plume that evolve as a gravity-wave bore. We present simulation results to demonstrate their occurrence and investigate the mechanisms behind their frontogenesis and evolution. Tidal velocities on average ranged between 1.5 m s-1 in flood and 2.5 m s-1 in ebb during the brief hindcast period. The tidal fronts exhibit strong horizontal velocity and buoyancy gradients on a scale ∼ 100 m in width with normalized relative vorticity (ζz/f) values reaching up to 50. We specifically focus on the front on the northern edge of the plume and examine the evolution in plume characteristics such as its water mass gradients, horizontal and vertical velocity structure, vertical velocity, turbulent vertical mixing, horizontal propagation, cross-front momentum balance, and Lagrangian frontogenetic tendencies in both buoyancy and velocity gradients. Advective frontogenesis leads to a very sharp front where lateral mixing near the grid-resolution limit arrests its further contraction. The negative vorticity within the front is initiated by the positive bottom drag curl on the north side of the Columbia estuary and against the north jetty. Because of the large negative vorticity and horizontal vorticity gradient, centrifugal and lateral shear instability begins to develop along the front, but frontal fragmentation and decay set in only after the turn of the tide because of the briefness of the ebb interval.

  1. Differentiation between grade 3 and grade 4 articular cartilage defects of the knee: Fat-suppressed proton density-weighted versus fat-suppressed three-dimensional gradient-echo MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Yeon; Jee, Won-Hee; Kim, Sun Ki (Dept. of Radiology, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea)), e-mail: whjee@catholic.ac.kr; Koh, In-Jun (Dept. of Joint Reconstruction Center, Seoul National Univ. Bundang Hospital, Seoul (Korea)); Kim, Jung-Man (Dept. of Orthopedic Surgery, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea))

    2010-05-15

    Background: Fat-suppressed (FS) proton density (PD)-weighted magnetic resonance imaging (MRI) and FS three-dimensional (3D) gradient-echo imaging such as spoiled gradient-recalled (SPGR) sequence have been established as accurate methods for detecting articular cartilage defects. Purpose: To retrospectively compare the diagnostic efficacy between FS PD-weighted and FS 3D gradient-echo MRI for differentiating between grade 3 and grade 4 cartilage defects of the knee with arthroscopy as the standard of reference. Material and Methods: Twenty-one patients who had grade 3 or 4 cartilage defects in medial femoral condyle at arthroscopy and knee MRI were included in this study: grade 3, >50% cartilage defects; grade 4, full thickness cartilage defects exposed to the bone. Sagittal FS PD-weighted MR images and FS 3D gradient-echo images with 1.5 T MR images were independently graded for the cartilage abnormalities of medial femoral condyle by two musculoskeletal radiologists. Statistical analysis was performed by Fisher's exact test. Inter-observer agreement in grading of cartilage was assessed using ? coefficients. Results: Arthroscopy revealed grade 3 defects in 17 patients and grade 4 defects in 4 patients in medial femoral condyles. For FS 3D gradient-echo images grade 3 defects were graded as grade 3 (n=15) and grade 4 (n=2), and all grade 4 defects (n=4) were correctly graded. However, for FS PD-weighted MR images all grade 3 defects were misinterpreted as grade 1 (n=1) and grade 4 (n=16), whereas all grade 4 defects (n=4) were correctly graded. FS 3D gradient-echo MRI could differentiate grade 3 from grade 4 defects (P=0.003), whereas FS PD-weighted imaging could not (P=1.0). Inter-observer agreement was substantial (?=0.70) for grading of cartilage using FS PD-weighted imaging, whereas it was moderate (?=0.46) using FS 3D gradient-echo imaging. Conclusion: FS 3D gradient-echo MRI is more helpful for differentiating between grade 3 and grade 4 cartilage

  2. Evolution of edge pedestal transport between edge-localized modes in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Floyd, J.-P.; Stacey, W. M.; Mellard, S. C. [Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Groebner, R. J. [General Atomics, San Diego, California 92186 (United States)

    2015-02-15

    Evolution of measured profiles of densities, temperatures, and velocities in the edge pedestal region between successive ELM (edge-localized mode) events are analyzed and interpreted in terms of the constraints imposed by particle, momentum and energy balance in order to gain insights regarding the underlying evolution of transport processes in the edge pedestal between ELMs in a series of DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] discharges. The data from successive inter-ELM periods during an otherwise steady-state phase of the discharges were combined into a composite inter-ELM period for the purpose of increasing the number of data points in the analysis. Variation of diffusive and non-diffusive (pinch) particle, momentum, and energy transport over the inter-ELM period are interpreted using the GTEDGE code for discharges with plasma currents from 0.5 to 1.5 MA and inter-ELM periods from 50 to 220 ms. Diffusive transport is dominant for ρ < 0.925, while non-diffusive and diffusive transport are very large and nearly balancing in the sharp gradient region 0.925 < ρ < 1.0. During the inter-ELM period, diffusive transport increases slightly more than non-diffusive transport, increasing total outward transport. Both diffusive and non-diffusive transport have a strong inverse correlation with plasma current.

  3. Classical convective energy transport in large gradient regions

    International Nuclear Information System (INIS)

    Hinton, F.L.

    1996-01-01

    Large gradients in density and temperature occur near the edge in H-mode plasmas and in the core of tokamak plasmas with negative central shear. Transport in these regions may be comparable to neoclassical. Standard neoclassical theory does not apply when the gradient lengths are comparable to an ion orbit excursion, or banana width. A basic question for neoclassical transport in large gradient regions is: do ion-ion collisions drive particle transport? Near the plasma edge in H-mode, where ion orbit loss requires that the ion energy transport be convective, neoclassical particle transport due to ion-ion collisions may play an important role. In negative central shear plasmas, where transport is inferred to be near neoclassical, it is important to have accurate predictions for the neoclassical rate of energy and particle transport. A simple 2-D slab model has been used, with a momentum-conserving collision operator, to show that ion-ion collisions do drive particle transport. When the gradients are large, the open-quotes field particleclose quotes contribution to the particle flux is non-local, and does not cancel the open-quotes test particleclose quotes contribution, which is local. Solutions of the kinetic equation are found which show that the steepness of the density profile, for increasing particle flux, is limited by orbit averaging. The gradient length is limited by the thermal gyroradius, and the convective energy flux is independent of ion temperature. This will allow an ion thermal runaway to occur, if there are no other ion energy loss mechanisms

  4. Global simulation of edge pedestal micro-instabilities

    Science.gov (United States)

    Wan, Weigang; Parker, Scott; Chen, Yang

    2011-10-01

    We study micro turbulence of the tokamak edge pedestal with global gyrokinetic particle simulations. The simulation code GEM is an electromagnetic δf code. Two sets of DIII-D experimental profiles, shot #131997 and shot #136051 are used. The dominant instabilities appear to be two kinds of modes both propagating in the electron diamagnetic direction, with comparable linear growth rates. The low n mode is at the Alfven frequency range and driven by density and ion temperature gradients. The high n mode is driven by electron temperature gradient and has a low real frequency. A β scan shows that the low n mode is electromagnetic. Frequency analysis shows that the high n mode is sometimes mixed with an ion instability. Experimental radial electric field is applied and its effects studied. We will also show some preliminary nonlinear results. We thank R. Groebner, P. Snyder and Y. Zheng for providing experimental profiles and helpful discussions.

  5. Wood formation from the base to the crown in Pinus radiata: gradients of tracheid wall thickness, wood density, radial growth rate and gene expression

    Science.gov (United States)

    Sheree Cato; Lisa McMillan; Lloyd Donaldson; Thomas Richardson; Craig Echt; Richard Gardner

    2006-01-01

    Wood formation was investigated at five heights along the bole for two unrelated trees of Pinus radiataBoth trees showed clear gradients in wood properties from the base to the crown. Cambial cells at the base of the tree were dividing 3.3-fold slower than those at the crown, while the average thickness of cell walls in wood was highest at the base....

  6. Edge Detection,

    Science.gov (United States)

    1985-09-01

    PROJECT. T ASK0 Artificial Inteligence Laboratory AREA It WORK UNIT NUMBERS V 545 Technology Square ( Cambridge, HA 02139 I I* CONTOOL1LIN@4OFFICE NAME...ARD-A1t62 62 EDGE DETECTION(U) NASSACNUSETTS INST OF TECH CAMBRIDGE 1/1 ARTIFICIAL INTELLIGENCE LAB E C HILDRETH SEP 85 AI-M-8 N99SI4-8S-C-6595...used to carry out this analysis. cce~iO a N) ’.~" D LI’BL. P p ------------ Sj. t i MASSACHUSETTS INSTITUTE OF TECHNOLOGY i ARTIFICIAL INTELLIGENCE

  7. Dynamics of the pedestal structure in the edge transport barrier in CHS

    International Nuclear Information System (INIS)

    Kado, S.; Oishi, T.; Tanaka, S.

    2006-10-01

    The dynamic behavior of the edge pedestal in the edge transport barrier (ETB) formation discharge (H-mode) in the compact helical system (CHS) is investigated. Edge Harmonic Oscillations (EHOs) having a fundamental frequency of 2-4.5 kHz, depending on the magnetic configuration, and their second harmonic are observed when the density gradient of the pedestal reaches a certain threshold. There are two groups of so-called EHOs in the CHS. One is located in the edge region where the ι=1 surface exists, and the other is in the core region (although we also call it EHO in this paper) around the half radius where the ι=0.5 surface exists. The magnetic probe signal is revealed to reflect the latter mode, showing the poloidal mode number of 2, while that for the edge BES channel is 1. The density build-up saturates simultaneously with the increase of EHOs in the edge BES channel, which suggests that to a considerable extend the mode increases the particle transport. (author)

  8. Electron temperature and pressure at the edge of ASDEX Upgrade plasmas. Estimation via electron cyclotron radiation and investigations on the effect of magnetic perturbations

    International Nuclear Information System (INIS)

    Rathgeber, Sylvia K.

    2013-01-01

    Understanding and control of the plasma edge behaviour are essential for the success of ITER and future fusion plants. This requires the availability of suitable methods for assessing the edge parameters and reliable techniques to handle edge phenomena, e.g. to mitigate 'Edge Localized Modes' (ELMs) - a potentially harmful plasma edge instability. This thesis introduces a new method for the estimation of accurate edge electron temperature profiles by forward modelling of the electron cyclotron radiation transport and demonstrates its successful application to investigate the impact of Magnetic Perturbation (MP) fields used for ELM mitigation on the edge kinetic data. While for ASDEX Upgrade bulk plasmas, straightforward analysis of the measured electron cyclotron intensity spectrum based on the optically thick plasma approximation is usually justified, reasonable analysis of the steep and optically thin edge region relies on full treatment of the radiation transport considering broadened emission and absorption profiles. This is realized in the framework of integrated data analysis which applies Bayesian probability theory for joint analysis of the electron density and temperature with data of different independent and complementary diagnostics. The method reveals that in regimes with improved confinement ('High-confinement modes' (H-modes)) the edge gradient of the electron temperature can be several times higher than that of the radiation temperature. Furthermore, the model is able to reproduce the 'shine-through' peak - the observation of increased radiation temperatures at frequencies with cold resonance outside the confined plasma region. This phenomenon is caused by strongly down-shifted radiation of Maxwellian tail electrons located in the H-mode edge region and, therefore, contains valuable information about the electron temperature edge gradient. The accurate knowledge about the edge profiles and gradients of the electron temperature and - including the

  9. First-principles study of graphene edge properties and flake shapes

    OpenAIRE

    Gan, Chee Kwan; Srolovitz, David J.

    2009-01-01

    We use density functional theory to determine the equilibrium shape of graphene flakes, through the calculation of the edge orientation dependence of the edge energy and edge stress of graphene nanoribbons. The edge energy is a nearly linear function of edge orientation angle; increasing from the armchair orientation to the zigzag orientation. Reconstruction of the zigzag edge lowers its energy to less than that of the armchair edge. The edge stress for all edge orientations is compressive, h...

  10. Surface Tension of Binary Mixtures Including Polar Components Modeled by the Density Gradient Theory Combined with the PC-SAFT Equation of State

    Czech Academy of Sciences Publication Activity Database

    Vinš, Václav; Planková, Barbora; Hrubý, Jan

    2013-01-01

    Roč. 34, č. 5 (2013), s. 792-812 ISSN 0195-928X R&D Projects: GA AV ČR IAA200760905; GA ČR(CZ) GPP101/11/P046; GA ČR GA101/09/1633 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : chemical polarity * gradient theory * surface tension Subject RIV: BJ - Thermodynamics Impact factor: 0.623, year: 2013 http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10765-012-1207-z

  11. Edge effects and geometric constraints: a landscape-level empirical test.

    Science.gov (United States)

    Ribeiro, Suzy E; Prevedello, Jayme A; Delciellos, Ana Cláudia; Vieira, Marcus Vinícius

    2016-01-01

    Edge effects are pervasive in landscapes yet their causal mechanisms are still poorly understood. Traditionally, edge effects have been attributed to differences in habitat quality along the edge-interior gradient of habitat patches, under the assumption that no edge effects would occur if habitat quality was uniform. This assumption was questioned recently after the recognition that geometric constraints tend to reduce population abundances near the edges of habitat patches, the so-called geometric edge effect (GEE). Here, we present the first empirical, landscape-level evaluation of the importance of the GEE in shaping abundance patterns in fragmented landscapes. Using a data set on the distribution of small mammals across 18 forest fragments, we assessed whether the incorporation of the GEE into the analysis changes the interpretation of edge effects and the degree to which predictions based on the GEE match observed responses. Quantitative predictions were generated for each fragment using simulations that took into account home range, density and matrix use for each species. The incorporation of the GEE into the analysis changed substantially the interpretation of overall observed edge responses at the landscape scale. Observed abundances alone would lead to the conclusion that the small mammals as a group have no consistent preference for forest edges or interiors and that the black-eared opossum Didelphis aurita (a numerically dominant species in the community) has on average a preference for forest interiors. In contrast, incorporation of the GEE suggested that the small mammal community as a whole has a preference for forest edges, whereas D. aurita has no preference for forest edges or interiors. Unexplained variance in edge responses was reduced by the incorporation of GEE, but remained large, varying greatly on a fragment-by-fragment basis. This study demonstrates how to model and incorporate the GEE in analyses of edge effects and that this

  12. Living edge

    DEFF Research Database (Denmark)

    Earon, Ofri

    2014-01-01

    was originally introduced to enhance indoor qualities including light and view. Throughout the paper, it is argued that these ecological motives have grown to architectural and urban dimensions. The paper analyzes the characteristics and potentials of these dimensions and their interconnections. The paper...... on the ground level, but there is a lack of recognition in the significance of communicative characters as well at the higher part of the edge. The city’s planning approach is “Consider urban life before urban space. Consider urban space before buildings” This urban strategy neglects the possible architectural...... contribution to the street atmosphere and its effect on urban life. Bay balcony has been a common architectural element in Copenhagen’s residential buildings, since the end of the twenties. It is a domestic border with an architectural thickness combining window, door, windowsill and balcony. The bay balcony...

  13. Energetics of edge oxidization of graphene nanoribbons

    Science.gov (United States)

    Yasuma, Airi; Yamanaka, Ayaka; Okada, Susumu

    2018-06-01

    On the basis of the density functional theory, we studied the geometries and energetics of O atoms adsorbed on graphene edges for simulating the initial stage of the edge oxidization of graphene. Our calculations showed that oxygen atoms are preferentially adsorbed onto the graphene edges with the zigzag portion, resulting in a large adsorption energy of about 5 eV. On the other hand, the edges with armchair shape are rarely oxidized, or the oxidization causes substantial structural reconstructions, because of the stable covalent bond at the armchair edge with the triple bond nature. Furthermore, the energetics sensitively depends on the edge angles owing to the inhomogeneity of the charge density at the edge atomic sites.

  14. Transition from Connected to Fragmented Vegetation across an Environmental Gradient: Scaling Laws in Ecotone Geometry.

    Science.gov (United States)

    Gastner, Michael T; Oborny, Beata; Zimmermann, D K; Pruessner, Gunnar

    2009-07-01

    A change in the environmental conditions across space-for example, altitude or latitude-can cause significant changes in the density of a vegetation type and, consequently, in spatial connectivity. We use spatially explicit simulations to study the transition from connected to fragmented vegetation. A static (gradient percolation) model is compared to dynamic (gradient contact process) models. Connectivity is characterized from the perspective of various species that use this vegetation type for habitat and differ in dispersal or migration range, that is, "step length" across the landscape. The boundary of connected vegetation delineated by a particular step length is termed the " hull edge." We found that for every step length and for every gradient, the hull edge is a fractal with dimension 7/4. The result is the same for different spatial models, suggesting that there are universal laws in ecotone geometry. To demonstrate that the model is applicable to real data, a hull edge of fractal dimension 7/4 is shown on a satellite image of a piñon-juniper woodland on a hillside. We propose to use the hull edge to define the boundary of a vegetation type unambiguously. This offers a new tool for detecting a shift of the boundary due to a climate change.

  15. Determination of electron temperature and density at plasma edge in the Large Helical Device with opacity-incorporated helium collisional-radiative model

    International Nuclear Information System (INIS)

    Goto, M.; Sawada, K.

    2014-01-01

    Spectra of neutral helium in the visible wavelength range are measured for a discharge in the Large Helical Device (LHD). The electron temperature (T e ) and density (n e ) are derived from the intensity distribution of helium emission lines. For that purpose, a collisional-radiative model developed by Sawada et al. [Plasma and Fusion Res. 2010;5:001] which takes the reabsorption effect into account is used. It is found that incorporation of the reabsorption effect is necessary to obtain a set of T e and n e giving consistent line intensity distribution with the measurement, and that those parameters obtained vary as the line-averaged n e changes in the course of time. The position where the helium line emission dominantly takes place is located with the help of T e and n e profiles measured by the Thomson scattering system. The result indicates that the emission position is almost fixed at the place where the connection length of the magnetic field lines to the divertor plate leaps beyond 10 m. Because intense neutral atom line emission suggests the vigorous ionization of neutral atoms, the helium line emission location determined here can be regarded as the effective boundary of the plasma. - Highlights: • The reabsorption effect is included in the helium collisional-radiative model. • Electron temperature and density are derived for the Large Helical Device (LHD). • Line emission location is found to be little changed during the discharge. • This measurement method can be used to determine the position of effective plasma boundary

  16. Capitalizing Resolving Power of Density Gradient Ultracentrifugation by Freezing and Precisely Slicing Centrifuged Solution: Enabling Identification of Complex Proteins from Mitochondria by Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Haiqing Yu

    2016-01-01

    Full Text Available Density gradient centrifugation is widely utilized for various high purity sample preparations, and density gradient ultracentrifugation (DGU is often used for more resolution-demanding purification of organelles and protein complexes. Accurately locating different isopycnic layers and precisely extracting solutions from these layers play a critical role in achieving high-resolution DGU separations. In this technique note, we develop a DGU procedure by freezing the solution rapidly (but gently after centrifugation to fix the resolved layers and by slicing the frozen solution to fractionate the sample. Because the thickness of each slice can be controlled to be as thin as 10 micrometers, we retain virtually all the resolution produced by DGU. To demonstrate the effectiveness of this method, we fractionate complex V from HeLa mitochondria using a conventional technique and this freezing-slicing (F-S method. The comparison indicates that our F-S method can reduce complex V layer thicknesses by ~40%. After fractionation, we analyze complex V proteins directly on a matrix assisted laser desorption/ionization, time-of-flight mass spectrometer. Twelve out of fifteen subunits of complex V are positively identified. Our method provides a practical protocol to identify proteins from complexes, which is useful to investigate biomolecular complexes and pathways in various conditions and cell types.

  17. Desvio da proporção de sexo e da integridade do DNA dos espermatozóides bovinos centrifugados em gradientes de densidade contínuos Alteration of sex ratio and DNA integrity of bovine sperm centrifuged in continuous density gradients

    Directory of Open Access Journals (Sweden)

    Alberto Lopes Gusmão

    2010-03-01

    Full Text Available O objetivo, neste trabalho, foi verificar o desvio da proporção de sexo e a presença de fragmentação do DNA, pela técnica de TUNEL (“In situ terminal deoxinucleotidyl transferase mediated dUTP nick end labeling assay”, em espermatozoides bovinos centrifugados em gradientes de densidade de Percoll ou OptiPrep durante a separação espermática. Doses de sêmen de touros foram descongeladas, e cerca de 40 milhões de espermatozoides foram depositados sobre cada gradiente de densidade compostos por Percoll ou OptiPrep com três camadas entre 1.110g/mL e 1.123g/mL, em tubos de 15mL, em que permaneceram por 24h a 4°C antes da deposição dos espermatozoides. Os tubos foram centrifugados a 500xg por 15min a 22°C. Os sobrenadantes foram aspirados, e os sedimentos, recuperados para verificação da fragmentação do DNA pela técnica de TUNEL. Obteve-se um desvio dos embriões produzidos in vitro para fêmeas no gradiente de Percoll (62% de fêmeas, em relação aos grupos OptiPrep e Controle (47,1 e 48,7% de fêmeas, respectivamente. Não foi detectada fragmentação do DNA dos espermatozoides nas amostras centrifugadas, tanto no gradiente de Percoll quanto de OptiPrep. Dessa forma, foi possível realizar a sexagem espermática, com uma maior porcentagem de espermatozoides X do que o grupo controle, por meio de metodologia mais simples e sem provocar danos ao DNA dos espermatozoides.The objective of the present study was to verify the sex ratio and presence of DNA fragmentation by TUNEL technique (In situ terminal deoxinucleotidyl transferase mediated dUTP nick end labeling assay in bovine spermatozoa centrifuged in density gradients of Percoll or OptiPrep during the sperm separation. Approximately 40 million of frozen/thawed bovine spermatozoa were deposited on each density gradient composed of Percoll or OptiPrep with three layers ranging from 1.110g/mL to 1.123g/mL in polystyrene tubes of 15mL. The tubes were kept at 4°C for 24h before

  18. Thermally driven convective cells and tokamak edge turbulence

    International Nuclear Information System (INIS)

    Thayer, D.R.; Diamond, P.H.

    1987-07-01

    A unified theory for the dynamics of thermally driven convective cell turbulence is presented. The cells are excited by the combined effects of radiative cooling and resistivity gradient drive. The model also includes impurity dynamics. Parallel thermal and impurity flows enhanced by turbulent radial duffusion regulate and saturate overlapping cells, even in regimes dominated by thermal instability. Transport coefficients and fluctuation levels characteristic of the saturated turbulence are calculated. It is found that the impurity radiation increases transport coefficients for high density plasmas, while the parallel conduction damping, elevated by radial diffusion, in turn quenches the thermal instability. The enhancement due to radiative cooling provides a resolution to the dilemma of explaining the experimental observation that potential fluctuations exceed density fluctuations in the edge plasma (e PHI/T/sub e/ > n/n 0 )

  19. Estimation of edge electron temperature profiles via forward modelling of the electron cyclotron radiation transport at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Rathgeber, S K; Barrera, L; Eich, T; Fischer, R; Suttrop, W; Wolfrum, E; Nold, B; Willensdorfer, M

    2013-01-01

    We present a method to obtain reliable edge profiles of the electron temperature by forward modelling of the electron cyclotron radiation transport. While for the core of ASDEX Upgrade plasmas, straightforward analysis of electron cyclotron intensity measurements based on the optically thick plasma approximation is usually justified, reasonable analysis of the steep and optically thin plasma edge needs to consider broadened emission and absorption profiles and radiation transport processes. This is carried out in the framework of integrated data analysis which applies Bayesian probability theory for joint analysis of the electron density and temperature with data of different interdependent and complementary diagnostics. By this means, electron cyclotron radiation intensity delivers highly spatially resolved electron temperature data for the plasma edge. In H-mode, the edge gradient of the electron temperature can be several times higher than the one of the radiation temperature. Furthermore, we are able to reproduce the ‘shine-through’ peak—the observation of increased radiation temperatures at frequencies resonant in the optically thin scrape-off layer. This phenomenon is caused by strongly down-shifted radiation of Maxwellian tail electrons located in the H-mode edge region and, therefore, contains valuable information about the electron temperature edge gradient. (paper)

  20. Correlations between quasi-coherent fluctuations and the pedestal evolution during the inter-edge localized modes phase on DIII-D

    International Nuclear Information System (INIS)

    Diallo, A.; Battaglia, D. J.; Guttenfelder, W.; Groebner, R. J.; Osborne, T. H.; Snyder, P. B.; Rhodes, T. L.; Smith, D. R.; Canik, J. M.

    2015-01-01

    Direct measurements of the pedestal recovery during an edge-localized mode cycle provide evidence that quasi-coherent fluctuations (QCFs) play a role in the inter-ELM pedestal dynamics. Using fast Thomson scattering measurements, the pedestal density and temperature evolutions are probed on sub-millisecond time scales to show a fast recovery of the density gradient compared to the temperature gradient. The temperature gradient appears to provide a drive for the onset of quasi-coherent fluctuations (as measured with the magnetic probe and the density diagnostics) localized in the pedestal. The amplitude evolution of these QCFs tracks the temperature gradient evolution including its saturation. Such correlation suggests that these QCFs play a key role in limiting the pedestal temperature gradient. The saturation of the QCFs coincides with the pressure gradient reaching the kinetic-ballooning mode (KBM) critical gradient as predicted by EPED1. Furthermore, linear microinstability analysis using GS2 indicates that the steep gradient is near the KBM threshold. Thus, the modeling and the observations together suggest that QCFs are consistent with dominant KBMs, although microtearing cannot be excluded as subdominant

  1. Correlations between quasi-coherent fluctuations and the pedestal evolution during the inter-edge localized modes phase on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, A.; Battaglia, D. J.; Guttenfelder, W. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Groebner, R. J.; Osborne, T. H.; Snyder, P. B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Rhodes, T. L. [Physics and Astronomy Department, P.O. Box 957099, Los Angeles, California 90095-7099 (United States); Smith, D. R. [Department of Engineering Physics, 1500 Engineering Dr., Madison, Wisconsin 53706 (United States); Canik, J. M. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States)

    2015-05-15

    Direct measurements of the pedestal recovery during an edge-localized mode cycle provide evidence that quasi-coherent fluctuations (QCFs) play a role in the inter-ELM pedestal dynamics. Using fast Thomson scattering measurements, the pedestal density and temperature evolutions are probed on sub-millisecond time scales to show a fast recovery of the density gradient compared to the temperature gradient. The temperature gradient appears to provide a drive for the onset of quasi-coherent fluctuations (as measured with the magnetic probe and the density diagnostics) localized in the pedestal. The amplitude evolution of these QCFs tracks the temperature gradient evolution including its saturation. Such correlation suggests that these QCFs play a key role in limiting the pedestal temperature gradient. The saturation of the QCFs coincides with the pressure gradient reaching the kinetic-ballooning mode (KBM) critical gradient as predicted by EPED1. Furthermore, linear microinstability analysis using GS2 indicates that the steep gradient is near the KBM threshold. Thus, the modeling and the observations together suggest that QCFs are consistent with dominant KBMs, although microtearing cannot be excluded as subdominant.

  2. Visible imaging of edge turbulence in NSTX

    International Nuclear Information System (INIS)

    Zweben, S.; Maqueda, R.; Hill, K.; Johnson, D.

    2000-01-01

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radical heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of gas puff imaging to locally illuminate the edge density turbulence

  3. Visible imaging of edge turbulence in NSTX

    International Nuclear Information System (INIS)

    S. Zweben; R. Maqueda; K. Hill; D. Johnson; S. Kaye; H. Kugel; F. Levinton; R. Maingi; L. Roquemore; S. Sabbagh; G. Wurden

    2000-01-01

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radial heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of ''gas puff imaging'' to locally illuminate the edge density turbulence

  4. Functional traits variation explains the distribution of Aextoxicon punctatum (Aextoxicaceae in pronounced moisture gradients within fog-dependent forest fragments

    Directory of Open Access Journals (Sweden)

    Beatriz eSalgado-Negret

    2015-07-01

    Full Text Available Climate change and fragmentation are major threats to world forests. Understanding how functional traits related to drought tolerance change across small-scale, pronounced moisture gradients in fragmented forests is important to predict species’ responses to these threats. In the case of Aextoxicon punctatum, a dominant canopy tree in fog-dependent rain forest patches in semiarid Chile, we explored how the magnitude, variability and correlation patterns of leaf and xylem vessel traits and hydraulic conductivity varied across soil moisture gradients established within and among forest patches of different size, which are associated with differences in tree establishment and mortality patterns. Leaf traits varied across soil-moisture gradients produced by fog interception. Trees growing at drier leeward edges showed higher LMA (leaf mass per area, trichome and stomatal density than trees from the wetter core and windward zones. In contrast, xylem vessel traits (vessels diameter and density did not vary producing loss of hydraulic conductivity at drier leeward edges. We also detected higher levels of phenotypic integration and variability at leeward edges. The ability of A. punctatum to modify leaf traits in response to differences in soil moisture availability established over short distances (<500 m facilitates its persistence in contrasting microhabitats within forest patches. However, xylem anatomy showed limited plasticity, which increases cavitation risk at leeward edges. Greater patch fragmentation, together with fluctuations in irradiance and soil moisture in small patches, could result in higher risk of drought-related tree mortality, with profound impacts on hydrological balances at the ecosystem scale.

  5. Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance

    International Nuclear Information System (INIS)

    Martinez, Jessica S.; Schlenoff, Joseph B.; Keller, Thomas C.S.

    2016-01-01

    Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion and migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as ‘leader’ cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as ‘follower’ cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all

  6. Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jessica S. [Department of Biological Science, Florida State University, Tallahassee, FL 32306 (United States); Schlenoff, Joseph B. [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States); Keller, Thomas C.S., E-mail: tkeller@bio.fsu.edu [Department of Biological Science, Florida State University, Tallahassee, FL 32306 (United States)

    2016-08-01

    Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion and migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as ‘leader’ cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as ‘follower’ cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all

  7. Influence of soil pathogens on early regeneration success of tropical trees varies between forest edge and interior.

    Science.gov (United States)

    Krishnadas, Meghna; Comita, Liza S

    2018-01-01

    Soil fungi are key mediators of negative density-dependent mortality in seeds and seedlings, and the ability to withstand pathogens in the shaded understory of closed-canopy forests could reinforce light gradient partitioning by tree species. For four species of tropical rainforest trees-two shade-tolerant and two shade-intolerant-we conducted a field experiment to examine the interactive effects of fungal pathogens, light, and seed density on germination and early seedling establishment. In a fully factorial design, seeds were sown into 1 m 2 plots containing soil collected from underneath conspecific adult trees, with plots assigned to forest edge (high light) or shaded understory, high or low density, and fungicide or no fungicide application. We monitored total seed germination and final seedling survival over 15 weeks. Shade-intolerant species were strongly constrained by light; their seedlings survived only at the edge. Fungicide application significantly improved seedling emergence and/or survival for three of the four focal species. There were no significant interactions between fungicide and seed density, suggesting that pathogen spread with increased aggregation of seeds and seedlings did not contribute to pathogen-mediated mortality. Two species experienced significant edge-fungicide interactions, but fungicide effects in edge vs. interior forest varied with species and recruitment stage. Our results suggest that changes to plant-pathogen interactions could affect plant recruitment in human-impacted forests subject to fragmentation and edge-effects.

  8. Internal barrier discharges in JET and their sensitivity to edge conditions

    International Nuclear Information System (INIS)

    Sips, A.C.C.

    2001-01-01

    Experiments in JET have concentrated on steady state discharges with internal transport barriers. The internal transport barriers are formed during the current rise phase of the discharge with low magnetic shear in the centre and with high additional heating power. In order to achieve stability against disruptions at high pressure peaking, typical for ITB discharges, the pressure profile can be broadened with a H-mode transport barrier at the edge of the plasma. However, the strong increase in edge pressure during an ELM free H-mode weakens the internal transport barrier due to a reduction of the rotational shear and pressure gradient at the ITB location. In addition, type I ELM activity, associated with a high edge pedestal pressure, leads to a collapse of the ITB with the input powers available in JET. The best ITB discharges are obtained with input power control to reduce to core pressure, and with the edge of the plasma controlled by argon gas dosing. These discharges achieve steady conditions for several energy confinement times with H97 confinement enhancement factors of 1.2-1.6 at line average densities around 30%-40% of the Greenwald density. This is at much lower density (typically factor 2 to 3) compared to standard H-mode discharges in JET. Increasing the density, using additional deuterium gas dosing or shallow pellet fueling has not been successful so far. A possible route to higher densities should maintain the type III ELM's towards high edge density, giving scope for future experiments in JET. (author)

  9. Gravity Gradient Tensor of Arbitrary 3D Polyhedral Bodies with up to Third-Order Polynomial Horizontal and Vertical Mass Contrasts

    Science.gov (United States)

    Ren, Zhengyong; Zhong, Yiyuan; Chen, Chaojian; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi; Li, Yang

    2018-03-01

    During the last 20 years, geophysicists have developed great interest in using gravity gradient tensor signals to study bodies of anomalous density in the Earth. Deriving exact solutions of the gravity gradient tensor signals has become a dominating task in exploration geophysics or geodetic fields. In this study, we developed a compact and simple framework to derive exact solutions of gravity gradient tensor measurements for polyhedral bodies, in which the density contrast is represented by a general polynomial function. The polynomial mass contrast can continuously vary in both horizontal and vertical directions. In our framework, the original three-dimensional volume integral of gravity gradient tensor signals is transformed into a set of one-dimensional line integrals along edges of the polyhedral body by sequentially invoking the volume and surface gradient (divergence) theorems. In terms of an orthogonal local coordinate system defined on these edges, exact solutions are derived for these line integrals. We successfully derived a set of unified exact solutions of gravity gradient tensors for constant, linear, quadratic and cubic polynomial orders. The exact solutions for constant and linear cases cover all previously published vertex-type exact solutions of the gravity gradient tensor for a polygonal body, though the associated algorithms may differ in numerical stability. In addition, to our best knowledge, it is the first time that exact solutions of gravity gradient tensor signals are derived for a polyhedral body with a polynomial mass contrast of order higher than one (that is quadratic and cubic orders). Three synthetic models (a prismatic body with depth-dependent density contrasts, an irregular polyhedron with linear density contrast and a tetrahedral body with horizontally and vertically varying density contrasts) are used to verify the correctness and the efficiency of our newly developed closed-form solutions. Excellent agreements are obtained

  10. Is the bulk mode conversion important in high density helicon plasma?

    Energy Technology Data Exchange (ETDEWEB)

    Isayama, Shogo; Hada, Tohru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Kohen, Kasuga, Fukuoka 816-8580 (Japan); Shinohara, Shunjiro [Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588 (Japan); Tanikawa, Takao [Research Institute of Science and Technology, Tokai University 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2016-06-15

    In a high-density helicon plasma production process, a contribution of Trivelpiece-Gould (TG) wave for surface power deposition is widely accepted. The TG wave can be excited either due to an abrupt density gradient near the plasma edge (surface conversion) or due to linear mode conversion from the helicon wave in a density gradient in the bulk region (bulk mode conversion). By numerically solving the boundary value problem of linear coupling between the helicon and the TG waves in a background with density gradient, we show that the efficiency of the bulk mode conversion strongly depends on the dissipation included in the plasma, and the bulk mode conversion is important when the dissipation is small. Also, by performing FDTD simulation, we show the time evolution of energy flux associated with the helicon and the TG waves.

  11. Influence of the plasma edge on tokamak performance

    International Nuclear Information System (INIS)

    Wilson, H.R.; Connor, J.W.; Field, A.R.; Fielding, S.J.; Hastie, R.J.; Taylor, J.B.; Miller, R.L.

    2000-01-01

    A number of edge plasma physics phenomena are considered to determine tokamak performance: transport barrier, edge MHD instabilities and plasma flow. These phenomena are thought to be causally related: a spontaneous increase in the plasma flow (actually, its radial variation) suppresses heat and particle fluxes at the plasma edge to form a transport barrier; the edge pressure gradient steepens until limited by MHD instabilities, resulting in a temperature pedestal at the top of the steep gradient region; a number of core transport models predict enhanced confinement for higher values of the temperature pedestal. The article examines these phenomena and their interaction. (author)

  12. Influence of the plasma edge on tokamak performance

    International Nuclear Information System (INIS)

    Wilson, H.R.; Connor, J.W.; Field, A.R.; Fielding, S.J.; Hastie, R.J.; Taylor, J.B.; Miller, R.L.

    1999-01-01

    A number of edge plasma physics phenomena are considered to determine tokamak performance: transport barrier, edge magneto-hydrodynamic (MHD) instabilities, plasma flow. These phenomena are thought to be causally related: a spontaneous increase in the plasma flow (actually, its radial variation) suppresses heat and particle fluxes at the plasma edge, to form a transport barrier; the edge pressure gradient steepens until limited by MHD instabilities, resulting in a temperature pedestal at the top of the steep gradient region; a number of core transport models predict enhanced confinement for higher values of the temperature pedestal. This paper examines these phenomena and their interaction. (author)

  13. Influence of the plasma edge on tokamak performance

    International Nuclear Information System (INIS)

    Wilson, H.R.; Connor, J.W.; Field, A.R.; Fielding, S.J.; Hastie, R.J.; Taylor, J.B.; Miller, R.L.

    2001-01-01

    A number of edge plasma physics phenomena are considered to determine tokamak performance: transport barrier, edge magneto-hydrodynamic (MHD) instabilities, plasma flow. These phenomena are thought to be causally related: a spontaneous increase in the plasma flow (actually, its radial variation) suppresses heat and particle fluxes at the plasma edge, to form a transport barrier; the edge pressure gradient steepens until limited by MHD instabilities, resulting in a temperature pedestal at the top of the steep gradient region; a number of core transport models predict enhanced confinement for higher values of the temperature pedestal. This paper examines these phenomena and their interaction. (author)

  14. Experimental evidence of EDGE turbulence driven by multiple mechanisms in ATF

    International Nuclear Information System (INIS)

    Hidalgo, C.

    1993-01-01

    The scaling properties of edge fluctuations have been investigated using Langmuir probes in the edge region of the Advance Toroidal Facility (ATF). Fluctuations in the ion saturation current (ls/ls) and transport inferred from the fluctuations increase with increasing density gradient, while keeping unchanged local electron temperature. The modification of the electron temperature in the range (10-50) eV, Keeping constant the density profile, does not have any significant influence on ls/ ls. In regions were Er/B =0, the poloidal phase velocity of the fluctuations is given by vph 2Te/LnB. More then one of any so far proposed mechanisms must be invoked to explain all the experimental observations. (Author) 14 refs

  15. Experimental Evidence of Edge turbulence driven by multiple mechanisms in ATF

    International Nuclear Information System (INIS)

    Hidalgo, C.; Harris, J.M.; Uckran, T.; Manson, G.R.; Bell, J.D.

    1993-01-01

    The scaling properties of edge fluctuations have been investigated using Langmuir probes in the edge region of the Advance Toroidal Facility (ATF). Fluctuations in the ion saturation current (I s /I s ) and transport inferred from the fluctuations increase with increasing density gradient, while keeping unchanged local electron temperature. The modification of the electron temperature in the range (10-50) eV, Keeping constant the density profile, does not have any significant influence on I s /I s . In regions were E r /B∼0, the poloidal phase velocity of the fluctuations is given by V p h∼ 2T e L n B. More then one of any so far proposed mechanisms must be invoked to explain all the experimental observations.(Author)

  16. Application of gradient-corrected density functional theory to the structures and thermochemistries of ScF3, TiF4, VF5, and CrF6

    International Nuclear Information System (INIS)

    Russo, T.V.; Martin, R.L.; Jeffrey Hay, P.

    1995-01-01

    Density functional theory (DFT) and Hartree--Fock (HF) calculations are reported for the family of transition metal fluorides ScF 3 , TiF 4 , VF 5 , and CrF 6 . Both HF and the local-density approximation (LDA) yield excellent agreement with experimental bond lengths, while the B-LYP gradient-corrected density functional gives bond lengths 0.04-0.05 A too long. An investigation of various combinations of exchange and correlation functionals shows that, for this series, the origin of this behavior lies in the Becke exchange functional. Much improved bond distances are found using the hybrid HF/DFT functional advocated by Becke. This approximation also leads to much improved thermochemistries. The LDA overestimates average bond energies in this series by 30-40 kcal/mol, whereas the B-LYP functional overbinds by only ∼8-12 kcal/mol, and the hybrid HF/DFT method overbinds by only ∼2 kcal/mol. The hybrid method predicts the octahedral isomer of CrF 6 to be more stable than the trigonal prismatic form by 14 kcal/mol. Comparison of theoretical vibrational frequencies with experiment supports the assignment of an octahedral geometry

  17. Neutral particle and radiation effects on Pfirsch - Schlueter fluxes near the edge

    International Nuclear Information System (INIS)

    Catto, P.J.; Helander, P.; Connor, J.W.; Hazeltine, R.D.

    1998-01-01

    The edge plasma of a tokamak is affected by atomic physics processes and can have density and temperature variations along the magnetic field that strongly modify edge transport. A closed system of equations in the Pfirsch - Schlueter regime is presented that can be solved for the radial and poloidal variation of the plasma density, electron and ion temperatures, and the electrostatic potential in the presence of neutrals and a poloidally asymmetric energy radiation sink due to inelastic electron collisions. Neutrals have a large diffusivity so their viscosity and heat flux can become important even when their density is not high, in which case the neutral viscosity alters the electrostatic potential at the edge by introducing strong radial variation. The strong parallel gradient in the electron temperature that can arise in the presence of a localized radiation sink drives a convective flow of particles and heat across the field. This plasma transport mechanism can balance the neutral influx and is particularly strong if multifaceted asymmetric radiation from the edge (MARFE) occurs, since the electron temperature then varies substantially over the flux surface. copyright 1998 American Institute of Physics

  18. Variations of the ionospheric parameters and vertical electron density distribution at the northern edge of the EIA from 2010 to 2015 along 95°E and comparison with the IRI-2012

    Science.gov (United States)

    Kalita, Bitap Raj; Bhuyan, Pradip Kumar

    2017-07-01

    The vertical electron density profiles over Dibrugarh (27.5°N, 95°E, 43° dip) a low mid latitude station normally located at the northern edge of the EIA for the period of July 2010 till October 2015 are constructed from the measured bottom side profiles and ionosonde-GPS TEC assisted Topside Sounder Model (TSM) topside profiles. The bottom side density profiles are obtained by using POLAN on the manually scaled ionograms. The topside is constructed by the modified ionosonde assisted TSM model (TaP-TSM assisted by POLAN) which is integrated with POLAN for the first time. The reconstructed vertical profile is compared with the IRI predicted density profile and the electron density profile obtained from the COSMIC/FORMOSAT radio occultation measurements over Dibrugarh. The bottom side density profiles are fitted to the IRI bottom side function to obtain best-fit bottom side thickness parameter B0 and shape parameter B1. The temporal and solar activity variation of the B-parameters over Dibrugarh are investigated and compared to those predicted by IRI-2012 model with ABT-2009 option. The bottom side thickness parameter B0 predicted by the IRI model is found to be similar to the B0 measured over Dibrugarh in the night time and the forenoon hours. Differences are observed in the early morning and the afternoon period. The IRI doesn't reproduce the morning collapse of B0 and overestimates the B0 over Dibrugarh in the afternoon period, particularly in summer and equinox. The IRI model predictions are closest to the measured B0 in the winter of low solar activity. The B0 over Dibrugarh is found to increase by about 15% with solar activity during the period of study encompassing almost the first half of solar cycle 24 but solar activity effect was not observed in the B1 parameter. The topside profile obtained from TaP profiler is thicker than the IRI topside in equinox from afternoon to sunrise period but is similar to the IRI in summer daytime. The differences in the

  19. Forests on the edge: Microenvironmental drivers of carbon cycle response to edge effects

    Science.gov (United States)

    Reinmann, A.; Hutyra, L.; Smith, I. A.; Thompson, J.

    2017-12-01

    Twenty percent of the world's forest is within 100 m of a forest edge, but much of our understanding of forest carbon (C) cycling comes from large, intact ecosystems, which creates an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest is the most heavily fragmented forest biome in the world and its growth and carbon storage responses to forest edge effects appear to be the opposite of those in the tropical and boreal regions. We used field measurements to quantify the drivers of temperate forest C cycling response to edge effects, characterizing vegetative growth, respiration, and forest structure. We find large gradients in air and soil temperature from the forest interior to edge (up to 4 and 10° C, respectively) and the magnitude of this gradient is inversely correlated to the size of the forest edge growth enhancement. Further, leaf area index increases with proximity to the forest edge. While we also find increases in soil respiration between the forest interior and edge, this flux is small relative to aboveground growth enhancement near the edge. These findings represent an important advancement in our understanding of forest C cycle response to edge effects and will greatly improve our capacity to constrain biogenic C fluxes in fragmented and heterogeneous landscapes.

  20. Irradiance gradients

    International Nuclear Information System (INIS)

    Ward, G.J.; Heckbert, P.S.; Technische Hogeschool Delft

    1992-04-01

    A new method for improving the accuracy of a diffuse interreflection calculation is introduced in a ray tracing context. The information from a hemispherical sampling of the luminous environment is interpreted in a new way to predict the change in irradiance as a function of position and surface orientation. The additional computation involved is modest and the benefit is substantial. An improved interpolation of irradiance resulting from the gradient calculation produces smoother, more accurate renderings. This result is achieved through better utilization of ray samples rather than additional samples or alternate sampling strategies. Thus, the technique is applicable to a variety of global illumination algorithms that use hemicubes or Monte Carlo sampling techniques

  1. IMAGE ANALYSIS BASED ON EDGE DETECTION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K-means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model,gray level l, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.

  2. Global gyrokinetic simulations of the H-mode tokamak edge pedestal

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Weigang; Parker, Scott E.; Chen, Yang [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Groebner, Richard J. [General Atomics, Post Office Box 85068, San Diego, California 92186 (United States); Yan, Zheng [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Pankin, Alexei Y.; Kruger, Scott E. [Tech-X Corporation, 5621 Arapahoe Ave., Boulder, Colorado 80305 (United States)

    2013-05-15

    Global gyrokinetic simulations of DIII-D H-mode edge pedestal show two types of instabilities may exist approaching the onset of edge localized modes: an intermediate-n, high frequency mode which we identify as the “kinetic peeling ballooning mode (KPBM),” and a high-n, low frequency mode. Our previous study [W. Wan et al., Phys. Rev. Lett. 109, 185004 (2012)] has shown that when the safety factor profile is flattened around the steep pressure gradient region, the high-n mode is clearly kinetic ballooning mode and becomes the dominant instability. Otherwise, the KPBM dominates. Here, the properties of the two instabilities are studied by varying the density and temperature profiles. It is found that the KPBM is destabilized by density and ion temperature gradient, and the high-n mode is mostly destabilized by electron temperature gradient. Nonlinear simulations with the KPBM saturate at high levels. The equilibrium radial electric field (E{sub r}) reduces the transport. The effect of the parallel equilibrium current is found to be weak.

  3. Localized Edge Vibrations and Edge Reconstruction by Joule Heating in Graphene Nanostructures

    DEFF Research Database (Denmark)

    Engelund, Mads; Fürst, Joachim Alexander; Jauho, Antti-Pekka

    2010-01-01

    Control of the edge topology of graphene nanostructures is critical to graphene-based electronics. A means of producing atomically smooth zigzag edges using electronic current has recently been demonstrated in experiments [Jia et al., Science 323, 1701 (2009)]. We develop a microscopic theory...... for current-induced edge reconstruction using density functional theory. Our calculations provide evidence for localized vibrations at edge interfaces involving unpassivated armchair edges. We demonstrate that these vibrations couple to the current, estimate their excitation by Joule heating, and argue...

  4. Formation of large-scale structures with sharp density gradient through Rayleigh-Taylor growth in a two-dimensional slab under the two-fluid and finite Larmor radius effects

    International Nuclear Information System (INIS)

    Goto, R.; Hatori, T.; Miura, H.; Ito, A.; Sato, M.

    2015-01-01

    Two-fluid and the finite Larmor effects on linear and nonlinear growth of the Rayleigh-Taylor instability in a two-dimensional slab are studied numerically with special attention to high-wave-number dynamics and nonlinear structure formation at a low β-value. The two effects stabilize the unstable high wave number modes for a certain range of the β-value. In nonlinear simulations, the absence of the high wave number modes in the linear stage leads to the formation of the density field structure much larger than that in the single-fluid magnetohydrodynamic simulation, together with a sharp density gradient as well as a large velocity difference. The formation of the sharp velocity difference leads to a subsequent Kelvin-Helmholtz-type instability only when both the two-fluid and finite Larmor radius terms are incorporated, whereas it is not observed otherwise. It is shown that the emergence of the secondary instability can modify the outline of the turbulent structures associated with the primary Rayleigh-Taylor instability

  5. Edge passivation induced single-edge ferromagnetism of zigzag MoS_2 nanoribbons

    International Nuclear Information System (INIS)

    Wang, Rui; Sun, Hui; Ma, Ben; Hu, Jingguo; Pan, Jing

    2017-01-01

    We performed density functional theory study on electronic structure, magnetic properties and stability of zigzag MoS_2 nanoribbons (ZMoS_2NRs) with and without oxygen (O) passivation. The bare ZMoS_2NRs are magnetic metal with ferromagnetic edge states, edge passivation decreases their magnetism because of the decrease of edge unsaturated electrons. Obviously, the electronic structure and magnetic properties of ZMoS_2NRs greatly depend on edge states. When both edges are passivated by O atoms, ZMoS_2NRs are nonmagnetic metals. When either edge is passivated by O atoms, the systems exhibit single-edge ferromagnetism and magnetism concentrates on the non-passivated edge. Edge passivation can not only tune the magnetism of ZMoS_2NRs, but also enhance their stability by eliminating dangling bonds. These interesting findings on ZMoS_2NRs may open the possibility of their application in nanodevices and spintronics. - Highlights: • Edge passivation for tuning magnetism of zigzag MoS_2 nanoribbons (ZMoS_2NRs) is proposed. • Edge passivation can tune ZMoS_2NRs from nonmagnetic metal to ferromagnetic metal. • When either edge is passivated, the systems exhibit single-edge ferromagnetic states. • These findings may inspire great interest in the community of ZMoS_2NRs and motivate numerous experimental researches.

  6. Edge effects in composites by moire interferometry

    Science.gov (United States)

    Czarnek, R.; Post, D.; Herakovich, C.

    1983-01-01

    The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.

  7. Theoretic base of Edge Local Mode triggering by vertical displacements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z. T. [Southwestern Institute of Physics, Chengdu 610041 (China); College of Physics Science and Technology, Sichuan University, Chengdu 610065 (China); He, Z. X.; Wang, Z. H. [Southwestern Institute of Physics, Chengdu 610041 (China); Wu, N.; Tang, C. J. [College of Physics Science and Technology, Sichuan University, Chengdu 610065 (China)

    2015-05-15

    Vertical instability is studied with R-dependent displacement. For Solovev's configuration, the stability boundary of the vertical instability is calculated. The pressure gradient is a destabilizing factor which is contrary to Rebhan's result. Equilibrium parallel current density, j{sub //}, at plasma boundary is a drive of the vertical instability similar to Peeling-ballooning modes; however, the vertical instability cannot be stabilized by the magnetic shear which tends towards infinity near the separatrix. The induced current observed in the Edge Local Mode (ELM) triggering experiment by vertical modulation is derived. The theory provides some theoretic explanation for the mitigation of type-I ELMS on ASDEX Upgrade. The principle could be also used for ITER.

  8. Edge Thomson scattering on RFX-mod

    International Nuclear Information System (INIS)

    Alfier, A.; Pasqualotto, R.

    2006-01-01

    Electron temperature and density profiles of the RFX-mod experiment are characterized by edge gradients typically steeper than the flatter central region. The main Thomson scattering (TS) diagnostic which measures 84-point profiles along a diameter is mainly devoted to cover the core region. A second TS system has been developed to measure 12-point profiles in the external region 0.8< r/a<1, with a spatial resolution of 1 cm. It uses a single shot ruby laser. Input and collection optics share the same vacuum port and they are mounted on one optical bench, which allows offline aligning the system before connecting it to the vessel. The scattered signal is collected by a row of 12 fibers, while 4 fibers on the sides are used to check the alignment and measure the plasma light. The fibers, arranged in a 4x4 pattern, are fed into a four channel filter spectrometer and the spectrum is detected by a GaAs intensified charge-coupled device camera. The filters are arranged in a zigzag geometry, such that only one detector is needed

  9. Characterisation of the ELM synchronized H-mode edge pedestal in ASDEX upgrade and DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Philip A.; Wolfrum, Elisabeth; Guenter, Sibylle; Kurzan, Bernd; Zohm, Hartmut [Max Planck Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Groebner, Rich; Osborne, Tom H.; Ferron, John; Snyder, Philip B. [General Atomics, San Diego, CA (United States); Dunne, Mike G. [Department of Physics, University College Cork, Association Euratom-DCU, Cork (Ireland); Collaboration: ASDEX Upgrade Team; DIII-D Team

    2011-07-01

    The results of a large database of edge pedestal data from type-I ELMy H-mode discharges from ASDEX Upgrade and DIII-D are presented. The data from high resolution edge diagnostics of both devices is analysed with the same analysis code in order to avoid systematic differences. Furthermore, sophisticated equilibrium reconstructions are used to asses uncertainties which arise during mapping from 2D real space coordinates to 1D flux coordinates. ELM synchronization allows the study of the pedestal structure at the ELM stability boundary. The pedestal is characterized by its top value, the gradient and the width. A large parameter range is covered by the two devices. Over this parameter range the profile shape of edge electron density differs from that of the temperature, irrespective of the device. However, the resulting electron pressure profile shape remains similar for all analysed H-Mode discharges.

  10. Predicted solar cell edge radiation effects

    International Nuclear Information System (INIS)

    Gates, M.T.

    1993-01-01

    The Advanced Solar Cell Orbital Test (ASCOT) will test six types of solar cells in a high energy proton environment. During the design of the experiment a question was raised about the effects of proton radiation incident on the edge of the solar cells and whether edge radiation shielding was required. Historical geosynchronous data indicated that edge radiation damage is not detectable over the normal end of life solar cell degradation; however because the ASCOT radiation environment has a much higher and more energetic fluence of protons, considerably more edge damage is expected. A computer analysis of the problem was made by modeling the expected radiation damage at the cell edge and using a network model of small interconnected solar cells to predict degradation in the cell's electrical output. The model indicated that the deepest penetration of edge radiation was at the top of the cell near the junction where the protons have access to the cell through the low density cell/cover adhesive layer. The network model indicated that the cells could tolerate high fluences at their edge as long as there was high electrical resistance between the edge radiated region and the contact system on top of the cell. The predicted edge radiation related loss was less than 2% of maximum power for GaAs/Ge solar cells. As a result, no edge radiation protection was used for ASCOT

  11. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.

    Science.gov (United States)

    Ryou, Junga; Park, Jinwoo; Kim, Gunn; Hong, Suklyun

    2017-06-21

    Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the Γ point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs.

  12. Effects of the edge shape and the width on the structural and electronic properties of silicene nanoribbons

    International Nuclear Information System (INIS)

    Song Yuling; Zhang Yan; Zhang Jianmin; Lu Daobang

    2010-01-01

    Under the generalized gradient approximation (GGA), the structural and electronic properties are studied for H-terminated silicene nanoribbons (SiNRs) with either zigzag edge (ZSiNRs) or armchair edge (ASiNRs) by using the first-principles projector-augmented wave potential within the density function theory (DFT) framework. The results show that the length of the Si-H bond is always 1.50 A, but the edge Si-Si bonds are shorter than the inner ones with identical orientation, implying a contraction relaxation of edge Si atoms. An edge state appears at the Fermi level E F in broader ZSiNRs, but does not appear in all ASiNRs due to their dimer Si-Si bond at edge. With increasing width of ASiNRs, the direct band gaps exhibit not only an oscillation behavior, but also a periodic feature of Δ 3n > Δ 3n+1 > Δ 3n+2 for a certain integer n. The charge density contours analysis shows that the Si-H bond is an ionic bond due to a relative larger electronegativity of H atom. However, all kinds of the Si-Si bonds display a typical covalent bonding feature, although their strength depends on not only the bond orientation but also the bond position. That is, the larger deviation of the Si-Si bond orientation from the nanoribbon axis as well as the closer of the Si-Si bond to the nanoribbon edge, the stronger strength of the Si-Si bond. Besides the contraction of the nanoribbon is mainly in its width direction especially near edge, the addition contribution from the terminated H atoms may be the other reason.

  13. Development and validation of a critical gradient energetic particle driven Alfven eigenmode transport model for DIII-D tilted neutral beam experiments

    Science.gov (United States)

    Waltz, R. E.; Bass, E. M.; Heidbrink, W. W.; VanZeeland, M. A.

    2015-11-01

    Recent experiments with the DIII-D tilted neutral beam injection (NBI) varying the beam energetic particle (EP) source profiles have provided strong evidence that unstable Alfven eigenmodes (AE) drive stiff EP transport at a critical EP density gradient [Heidbrink et al 2013 Nucl. Fusion 53 093006]. Here the critical gradient is identified by the local AE growth rate being equal to the local ITG/TEM growth rate at the same low toroidal mode number. The growth rates are taken from the gyrokinetic code GYRO. Simulation show that the slowing down beam-like EP distribution has a slightly lower critical gradient than the Maxwellian. The ALPHA EP density transport code [Waltz and Bass 2014 Nucl. Fusion 54 104006], used to validate the model, combines the low-n stiff EP critical density gradient AE mid-core transport with the Angioni et al (2009 Nucl. Fusion 49 055013) energy independent high-n ITG/TEM density transport model controling the central core EP density profile. For the on-axis NBI heated DIII-D shot 146102, while the net loss to the edge is small, about half the birth fast ions are transported from the central core r/a  <  0.5 and the central density is about half the slowing down density. These results are in good agreement with experimental fast ion pressure profiles inferred from MSE constrained EFIT equilibria.

  14. Gyrokinetic Studies of Turbulence in Steep Gradient Region: Role of Turbulence Spreading and E x B Shear

    Energy Technology Data Exchange (ETDEWEB)

    T.S. Hahm; Z. Lin; P.H. Diamond; G. Rewoldt; W.X. Wang; S. Ethier; O. Gurcan; W.W. Lee; W.M. Tang

    2004-12-21

    An integrated program of gyrokinetic particle simulation and theory has been developed to investigate several outstanding issues in both turbulence and neoclassical physics. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the GTC code and its related dynamical model have been extended to the case with radially increasing ion temperature gradient, to study the inward spreading of edge turbulence toward the core. Due to turbulence spreading from the edge, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only. Even when the core gradient is within the Dimits shift regime (i.e., self-generated zonal flows reduce the transport to a negligible value), a significant level of turbulence and transport is observed in the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from our nonlinear diffusion model than one based on linear toroidal coupling. A calculation of ion poloidal rotation in the presence of sharp density and toroidal angular rotation frequency gradients from the GTC-Neo particle simulation code shows that the results are significantly different from the conventional neoclassical theory predictions. An energy conserving set of a fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to edge turbulence, is being derived via the phase-space action variational Lie perturbation method. Our generalized ordering takes the ion poloidal gyroradius to be on the order of the radial electric field gradient length.

  15. Gyrokinetic studies of turbulence in steep gradient region: Role of turbulence spreading and E x B shear

    International Nuclear Information System (INIS)

    Hahm, T.S.; Lin, Z.; Diamond, P.H.; Gurcan, O.; Rewoldt, G.; Wang, W.X.; Ethier, S.; Lee, W.W.; Lewandowski, J.L.V.; Tang, W.M.

    2005-01-01

    An integrated program of gyrokinetic particle simulation and theory has been developed to investigate several outstanding issues in both turbulence and neoclassical physics. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the GTC code and its related dynamical model have been extended to the case with radially increasing ion temperature gradient, to study the inward spreading of edge turbulence toward the core. Due to turbulence spreading from the edge, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only. Even when the core gradient is within the Dimits shift regime (i.e., self-generated zonal flows reduce the transport to a negligible value), a significant level of turbulence and transport is observed in the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from our nonlinear diffusion model than one based on linear toroidal coupling. A calculation of ion poloidal rotation in the presence of sharp density and toroidal angular rotation frequency gradients from the GTC-Neo particle simulation code shows that the results are significantly different from the conventional neoclassical theory predictions. An energy conserving set of a fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to edge turbulence, is being derived via the phase-space action variational Lie perturbation method. Our generalized ordering takes the ion poloidal gyroradius to be on the order of the radial electric field gradient length. (author)

  16. The use of edge habitats by commuting and foraging bats

    NARCIS (Netherlands)

    Verboom, B.

    1998-01-01

    Travelling routes and foraging areas of many bat species are mainly along edge habitats, such as treelines, hedgerows, forest edges, and canal banks. This thesis deals with the effects of density, configuration, and structural features of edge habitats on the occurrence of bats. Four

  17. Stability of boundary layer flow based on energy gradient theory

    Science.gov (United States)

    Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong

    2018-05-01

    The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.

  18. The influence of collisional and anomalous radial diffusion on parallel ion transport in edge plasmas

    International Nuclear Information System (INIS)

    Helander, P.; Hazeltine, R.D.; Catto, P.J.

    1996-01-01

    The orderings in the kinetic equations commonly used to study the plasma core of a tokamak do not allow a balance between parallel ion streaming and radial diffusion, and are, therefore, inappropriate in the plasma edge. Different orderings are required in the edge region where radial transport across the steep gradients associated with the scrape-off layer is large enough to balance the rapid parallel flow caused by conditions close to collecting surfaces (such as the Bohm sheath condition). In the present work, we derive and solve novel kinetic equations, allowing for such a balance, and construct distinctive transport laws for impure, collisional, edge plasmas in which the perpendicular transport is (i) due to Coulomb collisions of ions with heavy impurities, or (ii) governed by anomalous diffusion driven by electrostatic turbulence. In both the collisional and anomalous radial transport cases, we find that one single diffusion coefficient determines the radial transport of particles, momentum and heat. The parallel transport laws and parallel thermal force in the scrape-off layer assume an unconventional form, in which the relative ion-impurity flow is driven by a combination of the conventional parallel gradients, and new (i) collisional or (ii) anomalous terms involving products of radial derivatives of the temperature and density with the radial shear of the parallel velocity. Thus, in the presence of anomalous radial diffusion, the parallel ion transport cannot be entirely classical, as usually assumed in numerical edge computations. The underlying physical reason is the appearance of a novel type of parallel thermal force resulting from the combined action of anomalous diffusion and radial temperature and velocity gradients. In highly sheared flows the new terms can modify impurity penetration into the core plasma

  19. High and distinct range-edge genetic diversity despite local bottlenecks.

    Directory of Open Access Journals (Sweden)

    Jorge Assis

    Full Text Available The genetic consequences of living on the edge of distributional ranges have been the subject of a largely unresolved debate. Populations occurring along persistent low latitude ranges (rear-edge are expected to retain high and unique genetic diversity. In contrast, currently less favourable environmental conditions limiting population size at such range-edges may have caused genetic erosion that prevails over past historical effects, with potential consequences on reducing future adaptive capacity. The present study provides an empirical test of whether population declines towards a peripheral range might be reflected on decreasing diversity and increasing population isolation and differentiation. We compare population genetic differentiation and diversity with trends in abundance along a latitudinal gradient towards the peripheral distribution range of Saccorhiza polyschides, a large brown seaweed that is the main structural species of kelp forests in SW Europe. Signatures of recent bottleneck events were also evaluated to determine whether the recently recorded distributional shifts had a negative influence on effective population size. Our findings show decreasing population density and increasing spatial fragmentation and local extinctions towards the southern edge. Genetic data revealed two well supported groups with a central contact zone. As predicted, higher differentiation and signs of bottlenecks were found at the southern edge region. However, a decrease in genetic diversity associated with this pattern was not verified. Surprisingly, genetic diversity increased towards the edge despite bottlenecks and much lower densities, suggesting that extinctions and recolonizations have not strongly reduced diversity or that diversity might have been even higher there in the past, a process of shifting genetic baselines.

  20. The effect of edge and impurities sites properties on their localized states in semi-infinite zigzag edged 2D honeycomb graphene sheet

    OpenAIRE

    Ahmed, Maher

    2011-01-01

    In this work, the tridiagonal method is used to distinguish between edges modes and area modes to study the edge sites properties effect on edge localized states of semi-infinite zigzag 2D honeycomb graphene sheet. The results show a realistic behavior for the dependance of edge localized states of zigzag graphene on the edge sites properties which explaining the experimental results of measured local density of states at the edge of graphene, while at the same time removing the inconsistence...

  1. Theoretical transport analysis of density limit with radial electric field in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2010-11-01

    The confinement property in helical toroidal plasmas is clarified. The analysis is performed by use of the one-dimensional transport equations with the effect of the radiative loss and the radial profile of the electric field. The analytical results in the edge region show the steep gradient in the electron temperature, which indicates the transport barrier formation. Because of the rapid increase of the radiative loss at the low electron temperature, the anomalous heat diffusivity is reduced near the edge. Next, the efficiency of the heating power input in the presence of the radiative loss is studied. The scaling of the critical density in helical devices is also derived. (author)

  2. Mangroves on the Edge: Anthrome-Dependent Fragmentation Influences Ecological Condition (Turbo, Colombia, Southern Caribbean

    Directory of Open Access Journals (Sweden)

    Juan Felipe Blanco-Libreros

    2015-06-01

    Full Text Available Marine protected areas are commonly seen as the most effective strategy for protecting mangroves from external human pressures but little is known about the role of public land-tenure contexts (dense settlements, agricultural or range lands and wild anthromes on clearing rates, patch properties, and ecological condition. We addressed the following questions using a peri-urban to wild gradient along the anthropogenic coastal-scape in Turbo Municipality (Colombia, Southern Caribbean: Do the different deforestation rates observed under peri-urban, rural, military-protected and wild land-use-and-tenure contexts, promote distinctive fragmentation patterns? Do these patterns influence loggers’ access and ultimately ecosystem ecological condition? Loss rate (1938–2009 was the greatest peri-urban mangroves and positively correlated with urban edge and patch density. Pasture edge was highest in rural mangroves while mean patch area was higher in protected and wild mangroves. An Anthropogenic Disturbance Index (ADI was strongly correlated with reduced mean patch area and increased patch density, due to increased trampling and logging, that ultimately promoted high densities of thin (diameter: <5 cm Laguncularia racemosa trees but had no significant effect on the presence of a dominant benthic gastropod. In conclusion, both protection and remoteness were effective in reducing anthropogenic edges and fragmentation, and thus contributed to a high ecological condition in mangroves at a major deforestation hotspot.

  3. Rev1, Rev3, or Rev7 siRNA Abolishes Ultraviolet Light-Induced Translesion Replication in HeLa Cells: A Comprehensive Study Using Alkaline Sucrose Density Gradient Sedimentation

    Directory of Open Access Journals (Sweden)

    Jun Takezawa

    2010-01-01

    Full Text Available When a replicative DNA polymerase stalls upon encountering a lesion on the template strand, it is relieved by other low-processivity polymerase(s, which insert nucleotide(s opposite the lesion, extend by a few nucleotides, and dissociate from the 3′-OH. The replicative polymerase then resumes DNA synthesis. This process, termed translesion replication (TLS or replicative bypass, may involve at least five different polymerases in mammals, although the participating polymerases and their roles have not been entirely characterized. Using siRNAs originally designed and an alkaline sucrose density gradient sedimentation technique, we verified the involvement of several polymerases in ultraviolet (UV light-induced TLS in HeLa cells. First, siRNAs to Rev3 or Rev7 largely abolished UV-TLS, suggesting that these 2 gene products, which comprise Polζ, play a main role in mutagenic TLS. Second, Rev1-targeted siRNA also abrogated UV-TLS, indicating that Rev1 is also indispensable to mutagenic TLS. Third, Polη-targeted siRNA also prevented TLS to a greater extent than our expectations. Forth, although siRNA to Polι had no detectable effect, that to Polκ delayed UV-TLS. To our knowledge, this is the first study reporting apparent evidence for the participation of Polκ in UV-TLS.

  4. Stability of edge states and edge magnetism in graphene nanoribbons

    OpenAIRE

    Kunstmann, Jens; Özdoğan, Cem; Quandt, Alexander; Fehske, Holger

    2010-01-01

    We critically discuss the stability of edge states and edge magnetism in zigzag edge graphene nanoribbons (ZGNRs). We point out that magnetic edge states might not exist in real systems, and show that there are at least three very natural mechanisms - edge reconstruction, edge passivation, and edge closure - which dramatically reduce the effect of edge states in ZGNRs or even totally eliminate them. Even if systems with magnetic edge states could be made, the intrinsic magnetism would not be ...

  5. Scanning tunneling microscopy and spectroscopy studies of graphite edges

    International Nuclear Information System (INIS)

    Niimi, Y.; Matsui, T.; Kambara, H.; Tagami, K.; Tsukada, M.; Fukuyama, Hiroshi

    2005-01-01

    We studied experimentally and theoretically the electronic local density of states (LDOS) near single-step edges at the surface of exfoliated graphite. In scanning tunneling microscopy measurements, we observed the (3x3)R30 o and honeycomb superstructures extending over 3-4-bar nm both from the zigzag and armchair edges. Calculations based on a density-functional-derived non-orthogonal tight-binding model show that these superstructures can coexist if the two types of edges admix each other in real graphite step edges. Scanning tunneling spectroscopy measurements near the zigzag edge reveal a clear peak in the LDOS at an energy below the Fermi energy by 20-bar meV. No such a peak was observed near the armchair edge. We concluded that this peak corresponds to the 'edge state' theoretically predicted for graphene ribbons, since a similar prominent LDOS peak due to the edge state is obtained by the first principles calculations

  6. Progress in quantifying the edge physics of the H mode regime in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Baker, D.R.; Burrell, K.H.

    2001-01-01

    Edge conditions in DIII-D are being quantified in order to provide insight into the physics of the H mode regime. Several studies show that electron temperature is not the key parameter that controls the L-H transition. Gradients of edge temperature and pressure are much more promising candidates for elements of such parameters. They systematically increase during the L phases of discharges which make a transition to H mode, and these increases are typically larger than the increases in the underlying quantities. The quality of H mode confinement is strongly correlated with the height of the H mode pedestal for the pressure. The gradient of the pressure is limited by MHD modes, in particular by ideal kink ballooning modes with finite mode number n. For a wide variety of discharges, the width of the barrier for electron pressure is well described by a relationship that is proportional to (β p ped ) 1/2 . A new regime of confinement, called the quiescent H mode, which provides steady state operation with no ELMs, low radiated power and normal H mode confinement, has been discovered. A coherent edge MHD mode provides adequate particle transport to control the plasma density while permitting the pressure pedestal to remain almost identical to that observed in ELMing discharges. (author)

  7. Progress in qualifying the edge physics of the H-mode regime in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Baker, D.R.; Boedo, J.A.

    2001-01-01

    Edge conditions in DIII-D are being quantified in order to provide insight into the physics of the H-mode regime. Electron temperature is not the key parameter that controls the L-H transition. Gradients of edge temperature and pressure are much more promising candidates for such parameters. The quality of H-mode confinement is strongly correlated with the height of the H-mode pedestal for the pressure. The gradient of the pressure appears to be controlled by MHD modes, in particular by kink-ballooning modes with finite mode number n. For a wide variety of discharges, the width of the barrier is well described with a relationship that is proportional to (β p ped ) 1/2 . An attractive regime of confinement has been discovered which provides steady-state operation with no ELMs, low impurity content and normal H-mode confinement. A coherent edge MHD-mode evidently provides adequate particle transport to control the plasma density and impurity content while permitting the pressure pedestal to remain almost identical to that observed in ELMing discharges. (author)

  8. Nanoindentation near the edge

    Science.gov (United States)

    J.E. Jakes; C.R. Frihart; J.F. Beecher; R.J. Moon; P.J. Resto; Z.H. Melgarejo; O.M. Saurez; H. Baumgart; A.A. Elmustafa; D.S. Stone

    2009-01-01

    Whenever a nanoindent is placed near an edge, such as the free edge of the specimen or heterophase interface intersecting the surface, the elastic discontinuity associated with the edge produces artifacts in the load-depth data. Unless properly handled in the data analysis, the artifacts can produce spurious results that obscure any real trends in properties as...

  9. Experimental investigation of edge sheared flow development and configuration effects in the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, M. A.; Hidalgo, C.; Alonso, A.; Calderon, E.; Orozco, R. O.; Pablos, J. L. de

    2005-07-01

    It is well known the importance of the shear as a stabilizing mechanism to control plasma fluctuations in magnetically confined plasmas [1]. It has been clearly established that Ex B shear stabilization mechanisms are an important piece for the improvement of confinement on fusion devices. In particular both edge and core transport barriers are related to a large increase in the Ex B sheared flow. As a consequence clarifying the driving mechanisms of sheared flow in fusion plasmas is a main issue. The existence of parallel and perpendicular sheared flows at the plasma edge, and the interplay between them in different plasma conditions has been studied in the TJ-II [2]. Recent experiments carried out by means of different approaches in the TJ-II stellarator have shown that the generation of spontaneous edge perpendicular sheared flow can be externally controlled by means of plasma density with good reproducibility and reliability [3, 4]. Although experimentally the plasma density has been used as an external control knob, it would be more appropriate to characterize experimental results in terms of edge plasma gradient (e.g. ion saturation current gradient) [3]. It has also been found that there exists a coupling between the onset of sheared flow development and an increase in the level of plasma edge turbulence; once sheared flow is fully developed the level of fluctuations and turbulent transport slightly decreases whereas edge gradients and plasma density increase. It has been experimentally established that the minimum plasma density (or/and minimum level of plasma turbulence) essential for the development of the shear layer depends on the plasma magnetic configuration [5, 6]. For some plasma magnetic configurations with high iota value a sheared flow-induced regime with characteristics resembling those of an improved confinement one has been found. The similarity in the structure of the velocity shear layer and in the turbulence characteristics [7] in different

  10. Internal transport barrier discharges in JET and their sensitivity to edge conditions

    International Nuclear Information System (INIS)

    Sips, A.C.C.

    2001-01-01

    Experiments in JET have concentrated on steady state discharges with internal transport barriers (ITBs). The ITBs are formed during the current rise phase of the discharge with low magnetic shear (=r/q(dq/dr)) in the centre and with high additional heating power. In order to achieve stability against disruptions at high pressure peaking, which is typical for ITB discharges, the pressure profile can be broadened with an H mode transport barrier at the edge of the plasma. However, the strong increase in edge pressure during an ELM free H mode weakens the ITB owing to a reduction of the rotational shear and pressure gradient at the ITB location. In addition, type I ELM activity during the H mode phase leads to a collapse of the ITB with the input powers available in JET (up to 28 MW). The best ITB discharges are obtained with input power control to reduce the core pressure, and with the edge pressure of the plasma controlled by argon gas dosing. These discharges achieve steady conditions for several energy confinement times (τ E ) with H97 confinement enhancement factors (τ E /τ E,ITER97scaling ) of 1.2-1.6 at line averaged densities of around 30-40% of the Greenwald density. Increasing the density by using additional deuterium gas dosing or shallow pellet fuelling leads to a weakening of the ITB. In order to sustain ITBs at higher densities, type III ELMs should be maintained at the plasma edge, giving scope for future experiments in JET. (author)

  11. Calculation of the Capture Edge in the OGMS Superconducting Separator

    International Nuclear Information System (INIS)

    Kozak, S.

    1998-01-01

    Many ferromagnetic particles, that should be deflected, are captured on the wall of an OGMS (Open Gradient Magnetic Separation) separator. This ferromagnetic material influences magnetic and hydrodynamic conditions in the separator working area. The problem how to calculate the capture edge can be defined as the search for the geometry of a nonlinear system at known boundary conditions. The boundary conditions on the capture edge are the function of the capture edge geometry. The experimental results of the separation recovery are given. The capture edge calculation has been performed by FLUX 2D and the results are presented. (author)

  12. An Edge Rotation and Temperature Diagnostic on NSTX

    International Nuclear Information System (INIS)

    Biewer, T.M.; Bell, R.E.; Feder, R.; Johnson, D.W.; Palladino, R.W.

    2003-01-01

    A new diagnostic for the National Spherical Torus Experiment (NSTX) is described whose function is to measure ion rotation and temperature at the plasma edge. The diagnostic is sensitive to C III, C IV, and He II intrinsic emission, covering a radial region of 15 cm at the extreme edge of the outboard midplane. Thirteen chords are distributed between toroidal and poloidal views, allowing the toroidal and poloidal rotation and temperature of the plasma edge to be simultaneously measured with 10 ms resolution. Combined with the local pressure gradient and the EFIT code reconstructed magnetic field profile, the edge flow gives a measure of the local radial electric field

  13. Edge-effect interactions in fragmented and patchy landscapes.

    Science.gov (United States)

    Porensky, Lauren M; Young, Truman P

    2013-06-01

    Ecological edges are increasingly recognized as drivers of landscape patterns and ecosystem processes. In fragmented and patchy landscapes (e.g., a fragmented forest or a savanna with scattered termite mounds), edges can become so numerous that their effects pervade the entire landscape. Results of recent studies in such landscapes show that edge effects can be altered by the presence or proximity of other nearby edges. We considered the theoretical significance of edge-effect interactions, illustrated various landscape configurations that support them and reviewed existing research on this topic. Results of studies from a variety of locations and ecosystem types show that edge-effect interactions can have significant consequences for ecosystems and conservation, including higher tree mortality rates in tropical rainforest fragments, reduced bird densities in grassland fragments, and bush encroachment and reduced wildlife densities in a tropical savanna. To clarify this underappreciated concept and synthesize existing work, we devised a conceptual framework for edge-effect interactions. We first worked to reduce terminological confusion by clarifying differences among terms such as edge intersection and edge interaction. For cases in which nearby edge effects interact, we proposed three possible forms of interaction: strengthening (presence of a second edge causes stronger edge effects), weakening (presence of a second edge causes weaker edge effects), and emergent (edge effects change completely in the presence of a second edge). By clarifying terms and concepts, this framework enables more precise descriptions of edge-effect interactions and facilitates comparisons of results among disparate study systems and response variables. A better understanding of edge-effect interactions will pave the way for more appropriate modeling, conservation, and management in complex landscapes. © 2013 Society for Conservation Biology.

  14. Investigating profile stiffness and critical gradients in shaped TCV discharges using local gyrokinetic simulations of turbulent transport

    Science.gov (United States)

    Merlo, G.; Brunner, S.; Sauter, O.; Camenen, Y.; Görler, T.; Jenko, F.; Marinoni, A.; Told, D.; Villard, L.

    2015-05-01

    The experimental observation made on the TCV tokamak of a significant confinement improvement in plasmas with negative triangularity (δ TEMs) and electron temperature gradient (ETG) modes are the dominant microinstabilities, with the latter providing a significant contribution to the non-linear electron heat fluxes near the plasma edge. Two series of simulations with different levels of realism are performed, addressing the question of profile stiffness at various radial locations. Retaining finite collisionality, impurities and electromagnetic effects, as well as the physical electron-to-ion mass ratio are all necessary in order to approach the experimental flux measurements. However, flux-tube simulations are unable to fully reproduce the TCV results, pointing towards the need to carry out radially nonlocal (global) simulations, i.e. retaining finite machine size effects, in a future study. Some conclusions about the effect of triangularity can nevertheless be drawn based on the flux-tube results. In particular, the importance of considering the sensitivity to both temperature and density gradient is shown. The flux tube results show an increase of the critical gradients towards the edge, further enhanced when δ < 0, and they also appear to indicate a reduction of profile stiffness towards plasma edge.

  15. ELMs and the role of current-driven instabilities in the edge

    International Nuclear Information System (INIS)

    Snyder, P.B.; Wilson, H.R.

    2001-01-01

    Edge localized modes (ELMs) can limit tokamak performance both directly, via large transient heat loads, and indirectly, through constraints placed on the H-mode pedestal height which impact global confinement. Theoretical understanding of the physics of ELMs should allow optimisation of existing experiments, and lead to greater confidence in projections for Next Step devices. However, understanding ELMs has proved challenging, in part because the sharp edge pressure gradients and consequent large bootstrap currents in the pedestal region provide drive for a variety of modes over a wide range of toroidal mode numbers (n). Here we present a brief discussion of ELM phenomenology, focussing primarily on ELMs whose frequency increases with input power. Theories of ELMs will be reviewed, emphasizing those which incorporate current-driven instabilities such as kink or 'peeling' modes. Parallel current plays a dual role in the edge, enhancing second stability access for ballooning modes while providing drive for peeling modes. The strong collisionality dependence of the edge bootstrap current introduces separate density and temperature dependence into pedestal MHD stability. We give a detailed description of recent work on coupled peeling-ballooning modes, including a model for ELM characteristics and temperature pedestal limits. Peeling-ballooning stability analysis of experimental discharges will be discussed, emphasising comparisons of different ELM regimes, such as the comparison between 'giant' and 'grassy' ELM shots on JT-60U. (orig.)

  16. Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments

    International Nuclear Information System (INIS)

    Madsen, Jens

    2010-09-01

    The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite Larmor radius effects on the radial plasma transport. The coexistence of low-frequency fluctuations, having length scales comparable to the ion gyroradius, steep pressure gradients and strong E x B flows in the edge region of fusion plasmas violates the standard gyrokinetic ordering. In this thesis two models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov-Maxwell equations expressed in guiding-center coordinates are derived including a local energy theorem. The second order terms describe lowest order finite Larmor radius effects. This set of equations might be relevant for edge plasmas due to the capability of capturing strong E x B flows and lowest order finite Larmor radius effects self-consistently. Next, an extension of the existing gyrokinetic formalism with strong flows is presented. In this work the background electric fields is dynamical, whereas earlier contributions did only incorporate a stationary electric field. In an ordering relevant for edge plasma turbulence, fully electromagnetic second order gyrokinetic coordinates and the corresponding gyrokinetic Vlasov-Maxwell equations are derived, including a local energy theorem. By taking the polarization and magnetization densities in the drift kinetic limit, we present the gyrokinetic Vlasov-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor

  17. Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Jens

    2010-09-15

    The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite Larmor radius effects on the radial plasma transport. The coexistence of low-frequency fluctuations, having length scales comparable to the ion gyroradius, steep pressure gradients and strong E x B flows in the edge region of fusion plasmas violates the standard gyrokinetic ordering. In this thesis two models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov-Maxwell equations expressed in guiding-center coordinates are derived including a local energy theorem. The second order terms describe lowest order finite Larmor radius effects. This set of equations might be relevant for edge plasmas due to the capability of capturing strong E x B flows and lowest order finite Larmor radius effects self-consistently. Next, an extension of the existing gyrokinetic formalism with strong flows is presented. In this work the background electric fields is dynamical, whereas earlier contributions did only incorporate a stationary electric field. In an ordering relevant for edge plasma turbulence, fully electromagnetic second order gyrokinetic coordinates and the corresponding gyrokinetic Vlasov-Maxwell equations are derived, including a local energy theorem. By taking the polarization and magnetization densities in the drift kinetic limit, we present the gyrokinetic Vlasov-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor

  18. Characterization and Modification of Edge-Driven Instabilities in the DIII-D Tokamak

    International Nuclear Information System (INIS)

    Ferron, J.R.; Lao, L.L.; Osborne, T.H.; Strait, E.J.; Turnbull, A.D.; Miller, R.L.; Taylor, T.S.; Doyle, E.J.; Rice, B.W.; Zhang, C.; Chen, L.; Baylor, L.R.; Murakami, M.; Wade, M.R.

    1999-01-01

    The character of edge localized modes (ELMs) and the height of the edge pressure pedestal in DIII-D tokamak H-mode discharges have been modified by varying the discharge shape (triangularity and squareness) and the safety factor, increasing the edge radiation, and injecting deuterium pellets. Changes in the ELM frequency and amplitude, and the magnitude of the edge pressure gradient, and changes in the calculated extent of the region of access to the ballooning mode second stability regime are observed

  19. Improvement and implementation for Canny edge detection algorithm

    Science.gov (United States)

    Yang, Tao; Qiu, Yue-hong

    2015-07-01

    Edge detection is necessary for image segmentation and pattern recognition. In this paper, an improved Canny edge detection approach is proposed due to the defect of traditional algorithm. A modified bilateral filter with a compensation function based on pixel intensity similarity judgment was used to smooth image instead of Gaussian filter, which could preserve edge feature and remove noise effectively. In order to solve the problems of sensitivity to the noise in gradient calculating, the algorithm used 4 directions gradient templates. Finally, Otsu algorithm adaptively obtain the dual-threshold. All of the algorithm simulated with OpenCV 2.4.0 library in the environments of vs2010, and through the experimental analysis, the improved algorithm has been proved to detect edge details more effectively and with more adaptability.

  20. Theory of neoclassical ion temperature-gradient-driven turbulence

    Science.gov (United States)

    Kim, Y. B.; Diamond, P. H.; Biglari, H.; Callen, J. D.

    1991-02-01

    The theory of collisionless fluid ion temperature-gradient-driven turbulence is extended to the collisional banana-plateau regime. Neoclassical ion fluid evolution equations are developed and utilized to investigate linear and nonlinear dynamics of negative compressibility ηi modes (ηi≡d ln Ti/d ln ni). In the low-frequency limit (ωB2p. As a result of these modifications, growth rates are dissipative, rather than sonic, and radial mode widths are broadened [i.e., γ˜k2∥c2s(ηi -(2)/(3) )/μi, Δx˜ρs(Bt/Bp) (1+ηi)1/2, where k∥, cs, and ρs are the parallel wave number, sound velocity, and ion gyroradius, respectively]. In the limit of weak viscous damping, enhanced neoclassical polarization persists and broadens radial mode widths. Linear mixing length estimates and renormalized turbulence theory are used to determine the ion thermal diffusivity in both cases. In both cases, a strong favorable dependence of ion thermal diffusivity on Bp (and hence plasma current) is exhibited. Furthermore, the ion thermal diffusivity for long wavelength modes exhibits favorable density scaling. The possible role of neoclassical ion temperature-gradient-driven modes in edge fluctuations and transport in L-phase discharges and the L to H transition is discussed.

  1. On the role of impurity radiation on edge turbulence in the TJ-1 Tokamak

    International Nuclear Information System (INIS)

    Ochando, M.A.; Pedrosa, M.A.; Balbin, R.; Garcia-Cortes, I.; Hidalgo, C.

    1994-01-01

    The correlation between edge radiation and electron temperature and density fluctuations has been studied in the vicinity of the upper poloidal limiter of the TJ-I tokamak. When edge impurity radiation is strongly raked in the proximity of the limiter radius, electron temperature fluctuations are notably higher than density fluctuations. Results provide experimental evidence of edge turbulence driven by thermal instabilities

  2. Plasma density control with ergodic divertor on Tore Supra; Controle de la densite du plasma en presence du divertor ergodique dans le tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Meslin, B

    1998-04-30

    Plasma density control on the tokamak Tore Supra is important for the optimization of every experimental scenario dealing with the improvement of plasma performances. Specific conditions are required both in the plasma bulk and at the edge. Within the framework of the present study, a magnetic configuration is used in the e plasma edge of Tore Supra: the ergodic divertor configuration. A magnetic perturbation which is resonant with the permanent field destroys the plasma confinement locally, opening the field lines onto the material components. They aim of the study is the characterization of the edge density in every relevant scenario for Tore Supra. The first part of this work is dedicated to density and temperature measurements by a series of fixed Langmuir probes located at the very edge of the plasma. Thanks to them, density regimes have been put in evidence during experiments where the volume averaged density , an usual control parameter of the plasma, was varied. The analysis of heat and particle transport through the plasma edge region explains the mechanisms leading to those regimes. The essential factor in our analysis is the dependence of the electron conductivity and ionization depth on temperature. While heat conduction governs the heat transport, the edge density varies linearly according to . Below a critical temperature, reached when the ion flux amplification at constant power density is large enough, a parallel temperature gradient appears leading to a density gradient in the opposite direction in order to maintain the pressure constant along the field lines. A high recycling regime is obtained and the edge density varies like {sup 3}. The pressure conservation is no more satisfied during the detachment of the plasma, which is characterized by a high neutral density at low temperatures leading to a ion momentum loss by friction against the neutrals. The edge density drops in those conditions. These regimes are similar

  3. Emergent properties of patch shapes affect edge permeability to animals.

    Directory of Open Access Journals (Sweden)

    Vilis O Nams

    Full Text Available Animal travel between habitat patches affects populations, communities and ecosystems. There are three levels of organization of edge properties, and each of these can affect animals. At the lowest level are the different habitats on each side of an edge, then there is the edge itself, and finally, at the highest level of organization, is the geometry or structure of the edge. This study used computer simulations to (1 find out whether effects of edge shapes on animal behavior can arise as emergent properties solely due to reactions to edges in general, without the animals reacting to the shapes of the edges, and to (2 generate predictions to allow field and experimental studies to test mechanisms of edge shape response. Individual animals were modeled traveling inside a habitat patch that had different kinds of edge shapes (convex, concave and straight. When animals responded edges of patches, this created an emergent property of responding to the shape of the edge. The response was mostly to absolute width of the shapes, and not the narrowness of them. When animals were attracted to edges, then they tended to collect in convexities and disperse from concavities, and the opposite happened when animals avoided edges. Most of the responses occurred within a distance of 40% of the perceptual range from the tip of the shapes. Predictions were produced for directionality at various locations and combinations of treatments, to be used for testing edge behavior mechanisms. These results suggest that edge shapes tend to either concentrate or disperse animals, simply because the animals are either attracted to or avoid edges, with an effect as great as 3 times the normal density. Thus edge shape could affect processes like pollination, seed predation and dispersal and predator abundance.

  4. Consistent Atomic Geometries and Electronic Structure of Five Phases of Potassium Niobate from Density-Functional Theory

    Directory of Open Access Journals (Sweden)

    Falko Schmidt

    2017-01-01

    Full Text Available We perform a comprehensive theoretical study of the structural and electronic properties of potassium niobate (KNbO3 in the cubic, tetragonal, orthorhombic, monoclinic, and rhombohedral phase, based on density-functional theory. The influence of different parametrizations of the exchange-correlation functional on the investigated properties is analyzed in detail, and the results are compared to available experimental data. We argue that the PBEsol and AM05 generalized gradient approximations as well as the RTPSS meta-generalized gradient approximation yield consistently accurate structural data for both the external and internal degrees of freedom and are overall superior to the local-density approximation or other conventional generalized gradient approximations for the structural characterization of KNbO3. Band-structure calculations using a HSE-type hybrid functional further indicate significant near degeneracies of band-edge states in all phases which are expected to be relevant for the optical response of the material.

  5. Edge database analysis for extrapolation to ITER

    International Nuclear Information System (INIS)

    Shimada, M.; Janeschitz, G.; Stambaugh, R.D.

    1999-01-01

    An edge database has been archived to facilitate cross-machine comparisons of SOL and edge pedestal characteristics, and to enable comparison with theoretical models with an aim to extrapolate to ITER. The SOL decay lengths of power, density and temperature become broader for increasing density and q 95 . The power decay length is predicted to be 1.4-3.5 cm (L-mode) and 1.4-2.7 cm (H-mode) at the midplane in ITER. Analysis of Type I ELMs suggests that each giant ELM on ITER would exceed the ablation threshold of the divertor plates. Theoretical models are proposed for the H-mode transition, for Type I and Type III ELMs and are compared with the edge pedestal database. (author)

  6. Edge effects in composites

    International Nuclear Information System (INIS)

    Guz, A.N.; Kokhanenko, Yu.V.

    1995-01-01

    In the present article we survey papers on edge effects investigated by the rigorous approach. We interpret edge effects as stressed states created in a composite as a result of zones in which the stresses exhibit a rapidly changing behavior in comparison with the slow variation of the stresses outside such zones. Here the range of the edge effect is defined as the distance from the point of its inception to the boundary of the edge zone in a given direction. The transition of the stresses to the slowly varying state is determined within prescribed error limits. The size and configuration of the edge zone depends on the tolerated error. Clearly, the main difficulty associated with the rigorous approach is finding solutions of the elasticity problems. The finite-difference approach is suggested for the approximate solution of these problems. In light of the comparative time consumption of the finite-difference approach, it is best directed at certain classes of problems rather than at particular individual problems. Not too many papers on the investigation of edge effects by the rigorous approach have been published to date. Below, following in their footsteps, we formulate edge effect problems in composites, determine classes of problems, and investigate edge effects in composite materials and structural elements using them in Cartesian (planar and three-dimensional problems) and cylindrical (axisymmetric problems) coordinate frames. We note that the division of approaches to the study of edge effects into qualitative (nonrigorous) and quantitative (rigorous) reflects the authors own point of view. Of course, other schemes of classification of the approaches to the investigation of the regions of rapidly varying states in composites are possible

  7. SEPARATION OF X-BEARING BOVINE SPERM BY CENTRIFUGATION IN CONTINUOUS PERCOLL AND OPTIPREP DENSITY GRADIENT: EFFECT IN SPERM VIABILITY AND IN VITRO EMBRYO PRODUCTION SEPARAÇÃO DE ESPERMATOZOIDES PORTADORES DO CROMOSSOMO X BOVINO POR CENTRIFUGAÇÃO EM GRADIENTE DE DENSIDADE CONTÍNUO DE PERCOLL E OPTIPREP: EFEITO SOBRE A VIABILIDADE ESPERMÁTICA E NA PRODUÇÃO IN VITRO DE EMBRIÕES

    Directory of Open Access Journals (Sweden)

    Aline Costa Lucio

    2009-07-01

    Full Text Available

    The aim of this study was to separate X-bearing bovine sperm by continuous Percoll and OptiPrep density gradients and to validate the sexing of resultant in vitro produced embryos by Polimerase Chain Reaction (PCR. Frozen/thawed sperm was layered on density gradients which were previously prepared in polystyrene tubes, 24 h before procedures and maintained at 4 °C. The tubes were centrifuged at 500 x g for 15 min at 22 °C. Supernatants were gently aspirated and the sperm recovered from the bottom of the tubes. Viability and integrity of sperm were evaluated by Trypan Blue/Giemsa stain. Cleavage and blastocyst rates were determined by in vitro production of embryos and PCR was performed for identification of the embryos’ genetic sex. No damage in viability and acrossomal integrity and in cleavage and blastocyst rates was found in the Percoll and OptiPrep treatment compared to the non-centrifuged group (P>0.05. The percentage of female embryos in the Percoll and OptiPrep group was 63.0 and 47.6%, respectively. The female embryos in control group were 48.7%. A sexual deviation in the Percoll density gradient was achieved without reduction of sperm viability and in vitro production rates.

    KEY WORDS: Bovine, centrifugation, in vitro production of embryos, PCR, X-bearing sperm.

    O objetivo deste estudo foi separar espermatozoides bovinos portadores do cromossomo X pela centrifugação em gradiente de densidade contínuo de Percoll e OptiPrep, e validar a sexagem pela reação em cadeia da polimerase (PCR, dos embriões produzidos in vitro. Para a sexagem, espermatozoides descongelados foram depositados nos gradientes de densidade, previamente preparados, em tubos de poliestireno, 24 horas antes da sexagem e mantidos a 4°C. Centrifugou-se a 500 x g por quinze minutos a 22°C. Os sobrenadantes foram aspirados, e os espermatozoides recuperados do

  8. Edge colouring by total labellings

    DEFF Research Database (Denmark)

    Brandt, Stephan; Rautenbach, D.; Stiebitz, M.

    2010-01-01

    We introduce the concept of an edge-colouring total k-labelling. This is a labelling of the vertices and the edges of a graph G with labels 1, 2, ..., k such that the weights of the edges define a proper edge colouring of G. Here the weight of an edge is the sum of its label and the labels of its...

  9. Adobe Edge Quickstart Guide

    CERN Document Server

    Labrecque, Joseph

    2012-01-01

    Adobe Edge Quickstart Guide is a practical guide on creating engaging content for the Web with Adobe's newest HTML5 tool. By taking a chapter-by-chapter look at each major aspect of Adobe Edge, the book lets you digest the available features in small, easily understandable chunks, allowing you to start using Adobe Edge for your web design needs immediately. If you are interested in creating engaging motion and interactive compositions using web standards with professional tooling, then this book is for you. Those with a background in Flash Professional wanting to get started quickly with Adobe

  10. Urbanization Impacts on Mammals across Urban-Forest Edges and a Predictive Model of Edge Effects

    OpenAIRE

    Villaseñor, Nélida R.; Driscoll, Don A.; Escobar, Martín A. H.; Gibbons, Philip; Lindenmayer, David B.

    2014-01-01

    With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing den...

  11. Characterization of low density carbon foams by x-ray computed tomography (CT) and ion microtomography (IMF)

    International Nuclear Information System (INIS)

    Moddeman, W.E.; Kramer, D.P.; Firsich, D.W.; Trainer, P.D.; Yancy, R.N.; Weirup, D.L.; Logan, C.M.; Pontau, A.E.; Antolak, A.J.; Morse, D.H.

    1990-01-01

    Two NDT techniques were used to characterize low-density, microcellular, carbon foams fabricated from a salt replica process. In this paper the two techniques are x-ray computed tomography (CT) and ion microtomography (IMT); data are presented on carbon foams that contain high-density regions. The data show that densities which differ by 3 ) materials. The data reveal that the carbon foams produced by this replica process have small density variations; the density being ∼30% greater at the outer edges than when compared to the interior of the foam. In addition, the density gradient is found to be rather sharp, that is the density drops-off rapidly from the outer edges to a uniform one in the interior of the foam. This edge build-up in carbon density was explained in terms of polymer concentrating on the foam exterior during drying which immediately followed a polymer infusion processing step. Supporting analytical data from other techniques show the foam material to be >88.8% carbon

  12. Radial electric field studies in the plasma edge of ASDEX upgrade

    International Nuclear Information System (INIS)

    Viezzer, Eleonora

    2012-01-01

    In magnetically confined fusion plasmas, edge transport barriers (ETBs) are formed during the transition from a highly turbulent state (low confinement regime, L-mode) to a high energy confinement regime (H-mode) with reduced turbulence and transport. The performance of an H-mode fusion plasma is highly dependent on the strength of the ETB which extends typically over the outermost 5% of the confined plasma. The formation of the ETB is strongly connected to the existence of a sheared plasma flow perpendicular to the magnetic field caused by a local radial electric field E r . The gradients in E r and the accompanying E x B velocity shear play a fundamental role in edge turbulence suppression, transport barrier formation and the transition to H-mode. Thus, the interplay between macroscopic flows and transport at the plasma edge is of crucial importance to understanding plasma confinement and stability. The work presented in this thesis is based on charge exchange recombination spectroscopy (CXRS) measurements performed at the plasma edge of the ASDEX Upgrade (AUG) tokamak. During this thesis new high-resolution CXRS diagnostics were installed at the outboard and inboard miplane of AUG, which provide measurements of the temperature, density and flows of the observed species. From these measurements the radial electric field can be directly determined via the radial force balance equation. The new CXRS measurements, combined with the other edge diagnostics available at AUG, allow for an unprecedented, high-accuracy localization (2-3 mm) of the E r profile. The radial electric field has been derived from charge exchange spectra measured on different impurity species including He 2+ , B 5+ , C 6+ and Ne 10+ . The resulting E r profiles are found to be identical within the uncertainties regardless of the impurity species used, thus demonstrating the validity of the diagnostic technique. Inside the ETB the E r profile forms a deep, negative (i.e. directed towards the

  13. Density limits in Tokamaks

    International Nuclear Information System (INIS)

    Tendler, M.

    1984-06-01

    The energy loss from a tokamak plasma due to neutral hydrogen radiation and recycling is of great importance for the energy balance at the periphery. It is shown that the requirement for thermal equilibrium implies a constraint on the maximum attainable edge density. The relation to other density limits is discussed. The average plasma density is shown to be a strong function of the refuelling deposition profile. (author)

  14. Edge profile analysis of Joint European Torus (JET) Thomson scattering data: Quantifying the systematic error due to edge localised mode synchronisation.

    Science.gov (United States)

    Leyland, M J; Beurskens, M N A; Flanagan, J C; Frassinetti, L; Gibson, K J; Kempenaars, M; Maslov, M; Scannell, R

    2016-01-01

    The Joint European Torus (JET) high resolution Thomson scattering (HRTS) system measures radial electron temperature and density profiles. One of the key capabilities of this diagnostic is measuring the steep pressure gradient, termed the pedestal, at the edge of JET plasmas. The pedestal is susceptible to limiting instabilities, such as Edge Localised Modes (ELMs), characterised by a periodic collapse of the steep gradient region. A common method to extract the pedestal width, gradient, and height, used on numerous machines, is by performing a modified hyperbolic tangent (mtanh) fit to overlaid profiles selected from the same region of the ELM cycle. This process of overlaying profiles, termed ELM synchronisation, maximises the number of data points defining the pedestal region for a given phase of the ELM cycle. When fitting to HRTS profiles, it is necessary to incorporate the diagnostic radial instrument function, particularly important when considering the pedestal width. A deconvolved fit is determined by a forward convolution method requiring knowledge of only the instrument function and profiles. The systematic error due to the deconvolution technique incorporated into the JET pedestal fitting tool has been documented by Frassinetti et al. [Rev. Sci. Instrum. 83, 013506 (2012)]. This paper seeks to understand and quantify the systematic error introduced to the pedestal width due to ELM synchronisation. Synthetic profiles, generated with error bars and point-to-point variation characteristic of real HRTS profiles, are used to evaluate the deviation from the underlying pedestal width. We find on JET that the ELM synchronisation systematic error is negligible in comparison to the statistical error when assuming ten overlaid profiles (typical for a pre-ELM fit to HRTS profiles). This confirms that fitting a mtanh to ELM synchronised profiles is a robust and practical technique for extracting the pedestal structure.

  15. Vibrationally resolved NEXAFS at C and N K-edges of pyridine, 2-fluoropyridine and 2,6-difluoropyridine: A combined experimental and theoretical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Baiardi, Alberto; Mendolicchio, Marco; Barone, Vincenzo, E-mail: vincenzo.barone@sns.it [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa (Italy); Fronzoni, Giovanna; Cardenas Jimenez, Gustavo Adolfo; Stener, Mauro; Grazioli, Cesare [Dipartimento di Scienze Chimiche e Farmaceutiche, Universita’ di Trieste, Via Giorgieri 1, 34127 Trieste (Italy); Simone, Monica de [CNR-IOM, Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste (Italy); Coreno, Marcello [CNR-ISM, UOS Trieste, Area Science Park Basovizza, 34149 Trieste (Italy)

    2015-11-28

    In the present work, the near edge X-ray absorption spectroscopy (NEXAFS) spectra at both C and N K-edges of pyridine, 2-fluoropyridine, and 2,6-difluoropyridine have been studied both experimentally and theoretically. From an electronic point of view, both transition potential density functional theory and time-dependent density functional theory approaches lead to reliable results provided that suitable basis sets and density functionals are employed. In this connection, the global hybrid B3LYP functional in conjunction with the EPR-III basis set appears particularly suitable after constant scaling of the band positions. For the N K-edge, vertical energies obtained at these levels and broadened by symmetric Gaussian distributions provide spectra in reasonable agreement with the experiment. Vibronic contributions further modulate the band-shapes leading to a better agreement with the experimental results, but are not strictly necessary for semi-quantitative investigations. On the other hand, vibronic contributions are responsible for strong intensity redistribution in the NEXAFS C K-edge spectra, and their inclusion is thus mandatory for a proper description of experiments. In this connection, the simple vertical gradient model is particularly appealing in view of its sufficient reliability and low computational cost. For more quantitative results, the more refined vertical Hessian approach can be employed, and its effectiveness has been improved thanks to a new least-squares fitting approach.

  16. Urbanization impacts on mammals across urban-forest edges and a predictive model of edge effects.

    Science.gov (United States)

    Villaseñor, Nélida R; Driscoll, Don A; Escobar, Martín A H; Gibbons, Philip; Lindenmayer, David B

    2014-01-01

    With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will

  17. Urbanization impacts on mammals across urban-forest edges and a predictive model of edge effects.

    Directory of Open Access Journals (Sweden)

    Nélida R Villaseñor

    Full Text Available With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula. We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1 habitat quality/preference, (2 species response with the proximity to the adjacent habitat, and (3 spillover extent/sensitivity to adjacent habitat boundaries. This

  18. Adobe Edge Preview 3

    CERN Document Server

    Grover, Chris

    2011-01-01

    Want to use an Adobe tool to design animated web graphics that work on iPhone and iPad? You've come to the right book. Adobe Edge Preview 3: The Missing Manual shows you how to build HTML5 graphics using simple visual tools. No programming experience? No problem. Adobe Edge writes the underlying code for you. With this eBook, you'll be designing great-looking web elements in no time. Get to know the workspace. Learn how Adobe Edge Preview 3 performs its magic.Create and import graphics. Make drawings with Edge's tools, or use art you designed in other programs.Work with text. Build menus, lab

  19. Pavement edge treatment.

    Science.gov (United States)

    2013-01-01

    Four projects were built over two construction seasons using special devices attached to the paving machine that produces a 30 slope on the outside pavement edge instead of the near vertical drop-off common with conventional paving equipment. This ...

  20. A PKC-MARCKS-PI3K regulatory module links Ca2+ and PIP3 signals at the leading edge of polarized macrophages.

    Science.gov (United States)

    Ziemba, Brian P; Falke, Joseph J

    2018-01-01

    The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling. A hypothesis explaining this link emerged, postulating that Ca2+-activated PKC displaces the MARCKS protein from plasma membrane PIP2, thereby releasing sequestered PIP2 to serve as the target and substrate lipid of PI3K in PIP3 production. In vitro single molecule studies of the reconstituted pathway on lipid bilayers demonstrated the feasibility of this PKC-MARCKS-PI3K regulatory module linking Ca2+ and PIP3 signals in the reconstituted system. The present study tests the model predictions in live macrophages by quantifying the effects of: (a) two pathway activators-PDGF and ATP that stimulate chemoreceptors and Ca2+ influx, respectively; and (b) three pathway inhibitors-wortmannin, EGTA, and Go6976 that inhibit PI3K, Ca2+ influx, and PKC, respectively; on (c) four leading edge activity sensors-AKT-PH-mRFP, CKAR, MARCKSp-mRFP, and leading edge area that report on PIP3 density, PKC activity, MARCKS membrane binding, and leading edge expansion/contraction, respectively. The results provide additional evidence that PKC and PI3K are both essential elements of the leading edge positive feedback loop, and strongly support the existence of a PKC-MARCKS-PI3K regulatory module linking the leading edge Ca2+ and PIP3 signals. As predicted, activators stimulate leading edge PKC activity, displacement of MARCKS from the leading edge membrane and increased leading edge PIP3 levels, while inhibitors

  1. A PKC-MARCKS-PI3K regulatory module links Ca2+ and PIP3 signals at the leading edge of polarized macrophages.

    Directory of Open Access Journals (Sweden)

    Brian P Ziemba

    Full Text Available The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling. A hypothesis explaining this link emerged, postulating that Ca2+-activated PKC displaces the MARCKS protein from plasma membrane PIP2, thereby releasing sequestered PIP2 to serve as the target and substrate lipid of PI3K in PIP3 production. In vitro single molecule studies of the reconstituted pathway on lipid bilayers demonstrated the feasibility of this PKC-MARCKS-PI3K regulatory module linking Ca2+ and PIP3 signals in the reconstituted system. The present study tests the model predictions in live macrophages by quantifying the effects of: (a two pathway activators-PDGF and ATP that stimulate chemoreceptors and Ca2+ influx, respectively; and (b three pathway inhibitors-wortmannin, EGTA, and Go6976 that inhibit PI3K, Ca2+ influx, and PKC, respectively; on (c four leading edge activity sensors-AKT-PH-mRFP, CKAR, MARCKSp-mRFP, and leading edge area that report on PIP3 density, PKC activity, MARCKS membrane binding, and leading edge expansion/contraction, respectively. The results provide additional evidence that PKC and PI3K are both essential elements of the leading edge positive feedback loop, and strongly support the existence of a PKC-MARCKS-PI3K regulatory module linking the leading edge Ca2+ and PIP3 signals. As predicted, activators stimulate leading edge PKC activity, displacement of MARCKS from the leading edge membrane and increased leading edge PIP3 levels, while

  2. Local relative density modulates failure and strength in vertically aligned carbon nanotubes.

    Science.gov (United States)

    Pathak, Siddhartha; Mohan, Nisha; Decolvenaere, Elizabeth; Needleman, Alan; Bedewy, Mostafa; Hart, A John; Greer, Julia R

    2013-10-22

    Micromechanical experiments, image analysis, and theoretical modeling revealed that local failure events and compressive stresses of vertically aligned carbon nanotubes (VACNTs) were uniquely linked to relative density gradients. Edge detection analysis of systematically obtained scanning electron micrographs was used to quantify a microstructural figure-of-merit related to relative local density along VACNT heights. Sequential bottom-to-top buckling and hardening in stress-strain response were observed in samples with smaller relative density at the bottom. When density gradient was insubstantial or reversed, bottom regions always buckled last, and a flat stress plateau was obtained. These findings were consistent with predictions of a 2D material model based on a viscoplastic solid with plastic non-normality and a hardening-softening-hardening plastic flow relation. The hardening slope in compression generated by the model was directly related to the stiffness gradient along the sample height, and hence to the local relative density. These results demonstrate that a microstructural figure-of-merit, the effective relative density, can be used to quantify and predict the mechanical response.

  3. An improved computing method for the image edge detection

    Institute of Scientific and Technical Information of China (English)

    Gang Wang; Liang Xiao; Anzhi He

    2007-01-01

    The framework of detecting the image edge based on the sub-pixel multi-fractal measure (SPMM) is presented. The measure is defined, which gives the sub-pixel local distribution of the image gradient. The more precise singularity exponent of every pixel can be obtained by performing the SPMM analysis on the image. Using the singularity exponents and the multi-fractal spectrum of the image, the image can be segmented into a series of sets with different singularity exponents, thus the image edge can be detected automatically and easily. The simulation results show that the SPMM has higher quality factor in the image edge detection.

  4. Edge Simulation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, Sergei I. [Univ. of California, San Diego, CA (United States); Angus, Justin [Univ. of California, San Diego, CA (United States); Lee, Wonjae [Univ. of California, San Diego, CA (United States)

    2018-01-05

    The goal of the Edge Simulation Laboratory (ESL) multi-institutional project is to advance scientific understanding of the edge plasma region of magnetic fusion devices via a coordinated effort utilizing modern computing resources, advanced algorithms, and ongoing theoretical development. The UCSD team was involved in the development of the COGENT code for kinetic studies across a magnetic separatrix. This work included a kinetic treatment of electrons and multiple ion species (impurities) and accurate collision operators.

  5. Direct observation of current in type-I edge-localized-mode filaments on the ASDEX upgrade tokamak

    DEFF Research Database (Denmark)

    Vianello, N.; Zuin, M.; Cavazzana, R.

    2011-01-01

    Magnetically confined plasmas in the high confinement regime are regularly subjected to relaxation oscillations, termed edge localized modes (ELMs), leading to large transport events. Present ELM theories rely on a combined effect of edge current and the edge pressure gradients which result...

  6. Effect of the edge type and strain on the structural, electronic and magnetic properties of the BNRs.

    Science.gov (United States)

    Bhattacharyya, Swastibrata; Kawazoe, Yoshiyuki; Singhl, Abhishek K

    2012-03-01

    We present the effect of edge structures on the edge energy and stress of BN nanoribbons. Ab initio density functional calculations show that the armchair edge is lower in energy than the zigzag edge by 0.43 eV/angstrom. Both types of the edges are under the compressive stress. The zigzag edges are mechanically more stable than the armchair edges. Based on the calculated edge energies, the equilibrium shape of the BN flakes are found to be regular hexagonal, and dominated by the armchair edges. The zigzag ribbons are found to be half-metallic, whereas the armchair ribbons are semiconducting.

  7. Theory of Rapid Formation of Pedestal and Pedestal width due to Anomalous Particle Pinch in the Edge of H-mode Discharges

    Energy Technology Data Exchange (ETDEWEB)

    Kaw, P.K., E-mail: kaw@ipr.res.in [Institute for Plasma Research, Bhat (India); Singh, R. [Institute for Plasma Research, Bhat (India); ITER Organization, Saint Paul-lez-Durance [France; Nordman, H. [Chamlers Institute of Technology, Goteborg (Sweden); Garbet, X.; Bourdelle, C. [CEA, Saint Paul-lez-Durance (France); Campbell, D.; Loarte, A.; Bora, D. [ITER Organization, Saint Paul-lez-Durance (France)

    2012-09-15

    Full text: A theory based on a turbulent particle pinch is proposed to explain the rapid formation of sharp density gradients in tokamak edge plasmas, in particular the pedestal region. The inward radial particle flux in the pedestal results from the interaction between small scale electron temperature gradient driven (ETG) turbulence and self-consistently formed 'electron geodesic acoustic modes' (el-GAMs). To address this phenomenon, the el-GAM modulational instability driven by the ETG turbulence background is studied. The ETG level of fluctuations and particle pinch are estimated through the back reaction of eGAMs on ETG turbulence. It is found that the particle pinch is quite sensitive to magnetic shear, safety factor, ratio of electron to ion temperatures and atomic mass number. In the absence of particle source in the pedestal, the density gradient length scale, of the order of the pedestal width, is estimated. It is shown that it is proportional to the major radius, up to some dependence on the poloidal beta. Moreover it does not depend on the normalized gyro-radius. This scaling agrees with DIII-D and JET similarity experiments. This dependence is favorable when extrapolated to the pedestal width in ITER in spite of its low normalized gyro radius. It is also shown that the density scale length becomes sharper by increasing the magnetic shear. A new H-mode pedestal pressure scaling is derived assuming that the pressure gradient is limited by the ballooning instability. (author)

  8. Ion temperature gradient instability

    International Nuclear Information System (INIS)

    1989-01-01

    Anomalous ion thermal conductivity remains an open physics issue for the present generation of high temperature Tokamaks. It is generally believed to be due to Ion Temperature Gradient Instability (η i mode). However, it has been difficult, if not impossible to identify this instability and study the anomalous transport due to it, directly. Therefore the production and identification of the mode is pursued in the simpler and experimentally convenient configuration of the Columbia Linear Machine (CLM). CLM is a steady state machine which already has all the appropriate parameters, except η i . This parameter is being increased to the appropriate value of the order of 1 by 'feathering' a tungsten screen located between the plasma source and the experimental cell to flatten the density profile and appropriate redesign of heating antennas to steepen the ion temperature profile. Once the instability is produced and identified, a thorough study of the characteristics of the mode can be done via a wide range of variation of all the critical parameters: η i , parallel wavelength, etc

  9. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  10. Edge localized modes and edge pedestal in NBI and ICRF heated H, D and T-plasmas in JET

    International Nuclear Information System (INIS)

    Bhatnagar, V.; Lingertat, J.; Barnsley, R.

    1998-12-01

    Based on experiments carried out in JET in D:T mixtures varying from 100:0 to 5:95 and those carried out in hydrogen plasmas, the isotopic mass dependence of ELM parameters and the edge pedestal pressure in neutral beam (NBI) and ion cyclotron resonance (ICRF) heated H-mode plasmas is presented. The ELM frequency is found to decrease with the atomic mass number both in ICRH and NBI discharges. However, the frequency in the case of ICRH is about 8 - 10 times higher than in the NBI case. Assuming that ELMs occur at a critical edge pressure gradient, limited by the ballooning instability, the scaling of the maximum edge pressure is most consistent with the assumption that the width of the transport barrier scales as the ion poloidal Larmor radius governed by the average energy of fast ions at the edge. The critical edge pressure in NBI heated discharges increases with the isotopic mass which. is consistent with the higher deduced width of the edge transport, barrier in tritium than in deuterium and hydrogen. The critical edge pressure in ICRH discharges is smaller, presumably, due to the smaller fast-ion contribution to the edge region. As a consequence of the edge pressure scaling with isotopic mass, the edge operational space in the n e - T e diagram increases with operation in tritium. If the evidence that the edge pedestal width is governed by the average energy of fast ions in the edge prevails, the pedestal in ITER would be controlled by the slowing down energy spectrum of α-particles in the edge. (author)

  11. Density profile analysis during an ELM event in ASDEX Upgrade H-modes

    International Nuclear Information System (INIS)

    Nunes, I.; Manso, M.; Serra, F.; Horton, L.D.; Conway, G.D.; Loarte, A.

    2005-01-01

    This paper reports results on measurements of the density profiles. Here we analyse the behaviour of the electron density for a set of experiments in type I ELMy H-mode discharges in ASDEX Upgrade where the plasma current, plasma density, triangularity and input power were varied. Detailed measurements of the radial extent of the perturbation on the density profiles caused by the edge localized mode (ELM) crash (ELM affected depth), the velocity of the radial propagation of the perturbation as well as the width and gradient of the density pedestal are determined. The effect of a type I ELM event on the density profiles affects the outermost 20-40% of the plasma minor radius. At the scrape-off layer (SOL) the density profile broadens while in the pedestal region the density decreases resulting in a smaller density gradient. This change in the density profile defines a pivot point around which the density profile changes. The average radial velocity at the SOL is in the range 125-150 ms -1 and approximately constant for all the density layers far from the pivot point. The width of the density pedestal is approximately constant for all the ELMy H-mode discharges analysed, with values between 2 and 3.5 cm. These results are then compared with an analytical model where the width of the density is predominantly set by ionization (neutral penetration model). The width of the density profiles for L-mode discharges is included, since L- and H-mode have different particle transport. No agreement between the experimental results and the model is found

  12. Linear calculations of edge current driven kink modes with BOUT++ code

    Energy Technology Data Exchange (ETDEWEB)

    Li, G. Q., E-mail: ligq@ipp.ac.cn; Xia, T. Y. [Institute of Plasma Physics, CAS, Hefei, Anhui 230031 (China); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Xu, X. Q. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Snyder, P. B.; Turnbull, A. D. [General Atomics, San Diego, California 92186 (United States); Ma, C. H.; Xi, P. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); FSC, School of Physics, Peking University, Beijing 100871 (China)

    2014-10-15

    This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linear growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density.

  13. Linear calculations of edge current driven kink modes with BOUT++ code

    International Nuclear Information System (INIS)

    Li, G. Q.; Xia, T. Y.; Xu, X. Q.; Snyder, P. B.; Turnbull, A. D.; Ma, C. H.; Xi, P. W.

    2014-01-01

    This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linear growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density

  14. Properties on the edge: graphene edge energies, edge stresses, edge warping, and the Wulff shape of graphene flakes

    International Nuclear Information System (INIS)

    Branicio, Paulo S; Jhon, Mark H; Gan, Chee Kwan; Srolovitz, David J

    2011-01-01

    It has been shown that the broken bonds of an unreconstructed graphene edge generate compressive edge stresses leading to edge warping. Here, we investigate edge energies and edge stresses of graphene nanoribbons with arbitrary orientations from armchair to zigzag, considering both flat and warped edge shapes in the presence and absence of hydrogen. We use the second generation reactive empirical bond order potential to calculate the edge energies and stresses for clean and hydrogenated edges. Using these energies, we perform a Wulff construction to determine the equilibrium shapes of flat graphene flakes as a function of hydrogen chemical potential. While edge stresses for clean, flat edges are compressive, they become tensile if allowed to warp. Conversely, we find that edge energies change little (∼1%) with edge warping. Hydrogenation of the edges virtually eliminates both the edge energy and edge stresses. For warped edges an approximately linear relationship is found between amplitudes and wavelengths. The equilibrium shape of a graphene flake is determined by the value of the hydrogen chemical potential. For very small (and large) values of it the flakes have a nearly hexagonal (dodecagon) shape with zigzag oriented edges, while for intermediate values graphene flakes are found with complex shapes

  15. A substrate independent approach for generation of surface gradients

    Energy Technology Data Exchange (ETDEWEB)

    Goreham, Renee V. [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Mierczynska, Agnieszka; Pierce, Madelene [Ian Wark Research Institute, University of South Australia, Mawson Lakes 5095 (Australia); Short, Robert D.; Taheri, Shima; Bachhuka, Akash; Cavallaro, Alex; Smith, Louise E. [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir, E-mail: krasimir.vasilev@unisa.edu.au [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia)

    2013-01-01

    Recently, surface gradients have attracted significant interest for various research and technological applications. In this paper, we report a facile and versatile method for generating surface gradients of immobilized nanoparticles, nanotopography and ligands that is independent from the substrate material. The method consists of first depositing a functional polymer layer on a substrate and subsequent time controlled immersion of this functionalized substrate in solution gold nanoparticles (AuNPs), silver nanoparticles (AgNPs) or poly (styrenesulfonate) (PSS). Chemical characterization by X-ray Photoelectron Spectroscopy (XPS) and morphological analysis by Atomic Force Microscopy (AFM) show that the density of nanoparticles and the concentration of PSS across the surface increases in a gradient manner. As expected, time of immersion determines the concentration of surface bound species. We also demonstrate the generation of surface gradients of pure nanotopography. This is achieved by depositing a 5 nm thick plasma polymer layer on top of the number density gradient of nanoparticles to achieve a homogeneous surface chemistry. The surface independent approach for generation of surface gradients presented in this paper may open opportunities for a wider use of surface gradient in research and in various technologies. - Highlights: ► We present a substrate independent approach for generation of surface gradients. ► We demonstrate well-defined density gradients of gold and silver nanoparticles. ► We provide an example of pure surface nanotopography gradients. ► We demonstrate concentration gradients of bound ligands.

  16. A substrate independent approach for generation of surface gradients

    International Nuclear Information System (INIS)

    Goreham, Renee V.; Mierczynska, Agnieszka; Pierce, Madelene; Short, Robert D.; Taheri, Shima; Bachhuka, Akash; Cavallaro, Alex; Smith, Louise E.; Vasilev, Krasimir

    2013-01-01

    Recently, surface gradients have attracted significant interest for various research and technological applications. In this paper, we report a facile and versatile method for generating surface gradients of immobilized nanoparticles, nanotopography and ligands that is independent from the substrate material. The method consists of first depositing a functional polymer layer on a substrate and subsequent time controlled immersion of this functionalized substrate in solution gold nanoparticles (AuNPs), silver nanoparticles (AgNPs) or poly (styrenesulfonate) (PSS). Chemical characterization by X-ray Photoelectron Spectroscopy (XPS) and morphological analysis by Atomic Force Microscopy (AFM) show that the density of nanoparticles and the concentration of PSS across the surface increases in a gradient manner. As expected, time of immersion determines the concentration of surface bound species. We also demonstrate the generation of surface gradients of pure nanotopography. This is achieved by depositing a 5 nm thick plasma polymer layer on top of the number density gradient of nanoparticles to achieve a homogeneous surface chemistry. The surface independent approach for generation of surface gradients presented in this paper may open opportunities for a wider use of surface gradient in research and in various technologies. - Highlights: ► We present a substrate independent approach for generation of surface gradients. ► We demonstrate well-defined density gradients of gold and silver nanoparticles. ► We provide an example of pure surface nanotopography gradients. ► We demonstrate concentration gradients of bound ligands

  17. Plasma edge modelling with ICRF coupling

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2017-01-01

    Full Text Available The physics of Radio-Frequency (RF wave heating in the Ion Cyclotron Range of Frequencies (ICRF in the core plasmas of fusion devices are relatively well understood while those in the Scrape-Off Layer (SOL remain still unresolved. This paper is dedicated to study the ICRF interactions with the plasma edge, mainly from the theoretical and numerical point of view, in particular with the 3D edge plasma fluid and neutral transport code EMC3-EIRENE and various wave codes. Here emphasis is given to the improvement of ICRF coupling with local gas puffing and to the ICRF induced density convection in the SOL.

  18. Theory of edge radiation

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Kocharyan, V.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2008-08-15

    We formulate a complete theory of Edge Radiation based on a novel method relying on Fourier Optics techniques. Similar types of radiation like Transition UndulatorRadiation are addressed in the framework of the same formalism. Special attention is payed in discussing the validity of approximations upon which the theory is built. Our study makes consistent use of both similarity techniques and comparisons with numerical results from simulation. We discuss both near and far zone. Physical understanding of many asymptotes is discussed. Based on the solution of the field equation with a tensor Green's function technique, we also discuss an analytical model to describe the presence of a vacuum chamber. In particular, explicit calculations for a circular vacuum chamber are reported. Finally, we consider the use of Edge Radiation as a tool for electron beam diagnostics. We discuss Coherent Edge Radiation, Extraction of Edge Radiation by a mirror, and other issues becoming important at high electron energy and long radiation wavelength. Based on this work we also study the impact of Edge Radiation on XFEL setups and we discuss recent results. (orig.)

  19. Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges

    Science.gov (United States)

    Wu, Shuang; Liu, Bing; Shen, Cheng; Li, Si; Huang, Xiaochun; Lu, Xiaobo; Chen, Peng; Wang, Guole; Wang, Duoming; Liao, Mengzhou; Zhang, Jing; Zhang, Tingting; Wang, Shuopei; Yang, Wei; Yang, Rong; Shi, Dongxia; Watanabe, Kenji; Taniguchi, Takashi; Yao, Yugui; Wang, Weihua; Zhang, Guangyu

    2018-05-01

    The determination of the electronic structure by edge geometry is unique to graphene. In theory, an evanescent nonchiral edge state is predicted at the zigzag edges of graphene. Up to now, the approach used to study zigzag-edged graphene has mostly been limited to scanning tunneling microscopy. The transport properties have not been revealed. Recent advances in hydrogen plasma-assisted "top-down" fabrication of zigzag-edged graphene nanoribbons (Z-GNRs) have allowed us to investigate edge-related transport properties. In this Letter, we report the magnetotransport properties of Z-GNRs down to ˜70 nm wide on an h -BN substrate. In the quantum Hall effect regime, a prominent conductance peak is observed at Landau ν =0 , which is absent in GNRs with nonzigzag edges. The conductance peak persists under perpendicular magnetic fields and low temperatures. At a zero magnetic field, a nonlocal voltage signal, evidenced by edge conduction, is detected. These prominent transport features are closely related to the observable density of states at the hydrogen-etched zigzag edge of graphene probed by scanning tunneling spectroscopy, which qualitatively matches the theoretically predicted electronic structure for zigzag-edged graphene. Our study gives important insights for the design of new edge-related electronic devices.

  20. Aluminum and gallium nuclei as microscopic probes for pulsed electron-nuclear double resonance diagnostics of electric-field gradient and spin density in garnet ceramics doped with paramagnetic ions

    Science.gov (United States)

    Uspenskaya, Yu. A.; Mamin, G. V.; Babunts, R. A.; Badalyan, A. G.; Edinach, E. V.; Asatryan, H. R.; Romanov, N. G.; Orlinskii, S. B.; Khanin, V. M.; Wieczorek, H.; Ronda, C.; Baranov, P. G.

    2018-03-01

    The presence of aluminum and gallium isotopes with large nuclear magnetic and quadrupole moments in the nearest environment of impurity ions Mn2+ and Ce3+ in garnets made it possible to use hyperfine and quadrupole interactions with these ions to determine the spatial distribution of the unpaired electron and the gradient of the electric field at the sites of aluminum and gallium in the garnet lattice. High-frequency (94 GHz) electron spin echo detected electron paramagnetic resonance and electron-nuclear double resonance measurements have been performed. Large difference in the electric field gradient and quadrupole splitting at octahedral and tetrahedral sites allowed identifying the positions of aluminum and gallium ions in the garnet lattice and proving that gallium first fills tetrahedral positions in mixed aluminum-gallium garnets. This should be taken into account in the development of garnet-based scintillators and lasers. It is shown that the electric field gradient at aluminum nuclei near Mn2+ possessing an excess negative charge in the garnet lattice is ca. 2.5 times larger than on aluminum nuclei near Ce3+.

  1. Effect of magnetic configuration on density fluctuation and particle transport in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Yamagishi, O.; Ida, K.; Yamada, H.; Yoshinuma, M.; Yokoyama, M.; Miyazawa, J.; Morita, S.; Kawahata, K.; Tokzawa, T.; Shoji, M.; Vyacheslavov, L.N.; Sanin, A.L.

    2005-01-01

    The study of fluctuations and particle transport is important issue in heliotron and stellarator devices as well as in tokamaks. A two dimensional phase contrast interferometer (2D PCI) was developed to investigate fluctuation characteristics, which play role in confinement. The current 2D PCI can detect fluctuations for which -1 0.3 -1 and 5< f<500kHz. With the use of magnetic shear and the 2D detector, the spatial resolution around 20% of averaged minor radius is possible presently. The strongest fluctuations are localized in the plasma edge, where density gradients are negative, but fluctuations also exist in the positive density gradient region of the hollow density profile. The phase velocity of fluctuations in the positive gradient region is close to plasma ErxBt rotation. On the other hand, fluctuations in the negative density gradient region propagate in the ion diamagnetic direction in the plasma frame and do not follow ErxBt rotation. This suggests there is a different nature of the fluctuations in the positive and negative density gradient regions. A particle transport was studied by means of density modulation experiments. The systematic study was done at Rax=3.6m, which is so-called standard configuration. The density profiles vary from peaked to hollow with increasing heating power. It was also found that particle diffusion and convection are functions of electron temperature and its gradient respectively. The magnetic configuration is another parameter, which characterizes particle confinement. At more outward shifted configurations, helical ripple becomes larger and the ergodic region becomes thicker, then neoclassical transport becomes larger. However estimated diffusion coefficients are still around one order of magnitude larger than neoclassical values in edge region, where ρ = 0.7 ∼ 1.0 and they are larger at more outward configurations. At the same time the convection velocity is found to be comparable with neoclassical prediction at Rax=3

  2. Ion transport in turbulent edge plasmas

    International Nuclear Information System (INIS)

    Helander, P.; Massachusetts Inst. of Tech., Cambridge, MA; Hazeltine, R.D.; Catto, P.J.

    1996-02-01

    Edge plasmas, such as the tokamak scrape-off layer, exist as a consequence of a balance between cross-field diffusion and parallel losses. The former is usually anomalous, and is widely thought to be driven by strong electrostatic turbulence. It is shown that the anomalous diffusion affects the parallel ion transport by giving rise to a new type of thermal force between different ion species. This force is parallel to the magnetic field, but arises entirely because of perpendicular gradients, and could be important for impurity retention in the tokamak divertor. (author)

  3. Tensor voting for robust color edge detection

    OpenAIRE

    Moreno, Rodrigo; García, Miguel Ángel; Puig, Domenec

    2014-01-01

    The final publication is available at Springer via http://dx.doi.org/10.1007/978-94-007-7584-8_9 This chapter proposes two robust color edge detection methods based on tensor voting. The first method is a direct adaptation of the classical tensor voting to color images where tensors are initialized with either the gradient or the local color structure tensor. The second method is based on an extension of tensor voting in which the encoding and voting processes are specifically tailored to ...

  4. Viscosity in the edge of tokamak plasmas

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1993-05-01

    A fluid representation of viscosity has been incorporated into a set of fluid equations that are maximally ordered in the ''short-radial-gradient-scale-length'' (srgsl) ordering that is appropriate for the edge of tokamak plasmas. The srgsl ordering raises viscous drifts and other viscous terms to leading order and fundamentally alters the character of the fluid equations. A leasing order viscous drift is identified. Viscous-driven radial particle and energy fluxes in the scrape-off layer and divertor channel are estimated to have an order unity effect in reducing radial peaking of energy fluxes transported along the field lines to divertor collector plates

  5. High Speed Edge Detection

    Science.gov (United States)

    Prokop, Norman F (Inventor)

    2016-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  6. Edge and core dynamics in harness

    International Nuclear Information System (INIS)

    Ball, R.

    2007-01-01

    Resistive kink oscillations in tokamak plasmas are usually treated as core localized events, yet there there are several mechanisms by which they may interact with the edge dynamics. This suggests that we may regulate edge oscillatory behaviour, or ELMs, by harnessing the natural or contrived sawtooth period and amplitude. In this work I investigate core-edge oscillatory entrainment through direct propagation of heat pulses, inductive coupling, and global higher order resonance effects. In the core of auxiliary heated tokamak plasmas the ineluctable rhythm of slow buildup and rapid conversion of potential energy governs electron and heat radial transport. The growth phase of the sawtooth is accompanied by significant reconnection, then during the collapse the temperature and density in the core fall dramatically. There is evidence from experiments in reversed field pinch devices that ensuing energy fluxes can affect flow shear and confinement at the edge. The basis for this study is the dynamical (BDS) model for edge plasma behavior that was derived from electrostatic resistive MHD equations. The BDS model reflects the major qualitative features of edge dynamics that have been observed, such as L-H transitions and associated ELMs, hysteresis, and spontaneous reversal of poloidal shear flow. Under poorly dissipative conditions the transient behavior of the model can exhibit period-doubling, blue-sky, homoclinic, and other exotic bifurcations. Thus we might ask questions such as: Is it possible to mode-lock the edge dynamics to the core sawteeth? Can we induce, or prevent, a change in direction of shear flow? What about MHD effects? Is core-edge communication one way or is there some feedback? In the simplest prototype for coupled core-edge dynamics I model the sawtooth crash as a periodic power input to the edge potential energy reservoir. This is effected by coupling the BDS model to the dynamical system u = u(1 - u 2 - x 2 ) - ω s x, x = x(1-u 2 -x 2 ) + ω s u

  7. A new edge detection algorithm based on Canny idea

    Science.gov (United States)

    Feng, Yingke; Zhang, Jinmin; Wang, Siming

    2017-10-01

    The traditional Canny algorithm has poor self-adaptability threshold, and it is more sensitive to noise. In order to overcome these drawbacks, this paper proposed a new edge detection method based on Canny algorithm. Firstly, the media filtering and filtering based on the method of Euclidean distance are adopted to process it; secondly using the Frei-chen algorithm to calculate gradient amplitude; finally, using the Otsu algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value, and the half of the high threshold value is low threshold value. Experiment results show that this new method can effectively suppress noise disturbance, keep the edge information, and also improve the edge detection accuracy.

  8. Three gradients and the perception of flat and curved surfaces.

    Science.gov (United States)

    Cutting, J E; Millard, R T

    1984-06-01

    Researchers of visual perception have long been interested in the perceived slant of a surface and in the gradients that purportedly specify it. Slant is the angle between the line of sight and the tangent to the planar surface at any point, also called the surface normal. Gradients are the sources of information that grade, or change, with visual angle as one looks from one's feet upward to the horizon. The present article explores three gradients--perspective, compression, and density--and the phenomenal impression of flat and curved surfaces. The perspective gradient is measured at right angles to the axis of tilt at any point in the optic array; that is, when looking down a hallway at the tiles of a floor receding in the distance, perspective is measured by the x-axis width of each tile projected on the image plane orthogonal to the line of sight. The compression gradient is the ratio of y/x axis measures on the projected plane. The density gradient is measured by the number of tiles per unit solid visual angle. For flat surfaces and many others, perspective and compression gradients decrease with distance, and the density gradient increases. We discuss the manner in which these gradients change for various types of surfaces. Each gradient is founded on a different assumption about textures on the surfaces around us. In Experiment 1, viewers assessed the three-dimensional character of projections of flat and curved surfaces receding in the distance. They made pairwise judgments of preference and of dissimilarity among eight stimuli in each of four sets. The presence of each gradient was manipulated orthogonally such that each stimulus had zero, one, two, or three gradients appropriate for either a flat surface or a curved surface. Judgments were made were made for surfaces with both regularly shaped and irregularly shaped textures scattered on them. All viewer assessment were then scaled in one dimension. Multiple correlation and regression on the scale values

  9. Generalized Gradient Approximation Made Simple

    International Nuclear Information System (INIS)

    Perdew, J.P.; Burke, K.; Ernzerhof, M.

    1996-01-01

    Generalized gradient approximations (GGA close-quote s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. copyright 1996 The American Physical Society

  10. Experimental investigation of edge localised modes in JET

    International Nuclear Information System (INIS)

    Lindholm Colton, A.

    1993-08-01

    Edge Localised Modes (ELMs) in the JET tokamak have been studied experimentally, using density profile and fluctuation data from a multichannel reflectometer and temperature profile data from an ECE heterodyne radiometer. The following topics have been investigated: The radial extent and localisation of the density and temperature profile perturbations caused by the ELMs. Fluctuations in the density and magnetic field in connection with the ELMs. The correlation between the repetition frequency of the L-H transition ELMs, and the plasma edge temperature and density. Trajectories in n-T space prior to ELMs later in the H-mode. (au) (39 refs.)

  11. Tangential 2-D Edge Imaging for GPI and Edge/Impurity Modeling

    International Nuclear Information System (INIS)

    Maqueda, Ricardo; Levinton, Fred M.

    2011-01-01

    Nova Photonics, Inc. has a collaborative effort at the National Spherical Torus Experiment (NSTX). This collaboration, based on fast imaging of visible phenomena, has provided key insights on edge turbulence, intermittency, and edge phenomena such as edge localized modes (ELMs) and multi-faceted axisymmetric radiation from the edge (MARFE). Studies have been performed in all these areas. The edge turbulence/intermittency studies make use of the Gas Puff Imaging diagnostic developed by the Principal Investigator (Ricardo Maqueda) together with colleagues from PPPL. This effort is part of the International Tokamak Physics Activity (ITPA) edge, scrape-off layer and divertor group joint activity (DSOL-15: Inter-machine comparison of blob characteristics). The edge turbulence/blob study has been extended from the current location near the midplane of the device to the lower divertor region of NSTX. The goal of this effort was to study turbulence born blobs in the vicinity of the X-point region and their circuit closure on divertor sheaths or high density regions in the divertor. In the area of ELMs and MARFEs we have studied and characterized the mode structure and evolution of the ELM types observed in NSTX, as well as the study of the observed interaction between MARFEs and ELMs. This interaction could have substantial implications for future devices where radiative divertor regions are required to maintain detachment from the divertor plasma facing components.

  12. Evolution of Edge Pedestal Profiles Between ELMs

    Science.gov (United States)

    Floyd, J. P.; Stacey, W. M.; Groebner, R. J.

    2012-10-01

    The measured edge profile evolution in DIII-D discharges is analyzed in terms of the implied thermal diffusivities, ion diffusion coefficients and pinch velocities, using the momentum-balance methodology of Ref. [1], extended to take into account ion orbit loss and X-point loss. The evolution of the density, temperature, rotation and radial electric field profiles in the edge pedestal between edge localized modes (ELMs) provides information of these diffusive and non-diffusive transport processes in the pedestal of H-mode plasmas. This methodology is incorporated in the GTEDGE code developed for DIII-D data interpretation. Using a smaller integration time for the charge exchange recombination measurements than in Ref. [1] allows a more detailed examination of the time evolution of the ion temperature and rotation profiles. 6pt [1] W.M. Stacey and R.J. Groebner, Nucl. Fusion 51, 063024 (2011).

  13. The shape of dark matter haloes - V. Analysis of observations of edge-on galaxies

    NARCIS (Netherlands)

    Peters, S. P. C.; van der Kruit, P. C.; Allen, R. J.; Freeman, K. C.

    In previous papers in this series, we measured the stellar and H I content in a sample of edge-on galaxies. In the present paper, we perform a simultaneous rotation curve and vertical force field gradient decomposition for five of these edge-on galaxies. The rotation curve decomposition provides a

  14. Characterization of intermittency of impurity turbulent transport in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Futatani, S.; Benkadda, S.; Nakamura, Y.; Kondo, K.

    2008-01-01

    The statistical properties of impurity transport of a tokamak edge plasma embedded in a dissipative drift-wave turbulence are investigated using structure function analysis. The impurities are considered as a passive scalar advected by the plasma flow. Two cases of impurity advection are studied and compared: A decaying impurities case (given by a diffusion-advection equation) and a driven case (forced by a mean scalar gradient). The use of extended self-similarity enables us to show that the relative scaling exponent of structure functions of impurity density and vorticity exhibit similar multifractal scaling in the decaying case and follows the She-Leveque model. However, this property is invalidated for the impurity driven advection case. For both cases, potential fluctuations are self-similar and exhibit a monofractal scaling in agreement with Kolmogorov-Kraichnan theory for two-dimensional turbulence. These results obtained with a passive scalar model agree also with test-particle simulations.

  15. The Inner Urban Edge

    Science.gov (United States)

    Ferebee, Ann; Carpenter, Edward K.

    1974-01-01

    In this article, renewal of the inner urban edge is discussed. Norfolk (Virginia) is attempting to blur the difference between old and new neighbor hoods through zoning and architectural controls. Cincinnati (Ohio) is developing an environmentally sound hillside design. Reading (Pennsylvania) is utilizing old railyards for greenbelts of hiking and…

  16. Swords with Blunt Edges

    Science.gov (United States)

    Popham, W. James

    2004-01-01

    Many U.S. educators now wonder whether they're teachers or targets. This mentality stems from the specter of their school being sanctioned for failing the state accountability tests mandated under No Child Left Behind (NCLB). According to this author, most of those tests are like blunt-edged swords: They function badly in two directions. While…

  17. The Edge Detectors Suitable for Retinal OCT Image Segmentation

    Directory of Open Access Journals (Sweden)

    Su Luo

    2017-01-01

    Full Text Available Retinal layer thickness measurement offers important information for reliable diagnosis of retinal diseases and for the evaluation of disease development and medical treatment responses. This task critically depends on the accurate edge detection of the retinal layers in OCT images. Here, we intended to search for the most suitable edge detectors for the retinal OCT image segmentation task. The three most promising edge detection algorithms were identified in the related literature: Canny edge detector, the two-pass method, and the EdgeFlow technique. The quantitative evaluation results show that the two-pass method outperforms consistently the Canny detector and the EdgeFlow technique in delineating the retinal layer boundaries in the OCT images. In addition, the mean localization deviation metrics show that the two-pass method caused the smallest edge shifting problem. These findings suggest that the two-pass method is the best among the three algorithms for detecting retinal layer boundaries. The overall better performance of Canny and two-pass methods over EdgeFlow technique implies that the OCT images contain more intensity gradient information than texture changes along the retinal layer boundaries. The results will guide our future efforts in the quantitative analysis of retinal OCT images for the effective use of OCT technologies in the field of ophthalmology.

  18. Characterization and scaling of the tokamak edge transport barrier

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Philip Adrian

    2012-04-24

    The high confinement regime (H-mode) in a tokamak plasma displays a remarkable edge region. On a small spatial scale of 1-2 cm the properties of the plasma change significantly. Certain parameters vary 1-2 orders of magnitude in this region, called the pedestal. Currently, there is no complete understanding of how the pedestal forms or how it is sustained. The goal of this thesis is to contribute to the theoretical understanding of the pedestal and provide scalings towards larger machines, like ITER and DEMO. A pedestal database was built with data from different tokamaks: ASDEX Upgrade, DIIID and JET. The pedestal was characterized with the same method for all three machines. This gives the maximum value, gradient and width of the pedestal in n{sub e}, T{sub e} and T{sub i}. These quantities were analysed along with quantities derived from them, such as the pressure or the confinement time. For this purpose two parameter sets were used: normalized parameters (pressure {beta}, time {nu}{sub *}, length {rho}{sub *}, shape f{sub q}) and machine parameters (size a, magnetic field B{sub t}, plasma current I{sub p}, heating P). All results are dependent on the choice of the coordinate system: normalized poloidal flux {Psi}{sub N} and real space r/a. The most significant result, which was obtained with both parameter sets, shows a different scaling of the pedestal width for the electron temperature and the electron density. The presented scalings predict that in ITER and DEMO the temperature pedestal will be appreciably wider than the density pedestal. The pedestal top scaling for the pressure reveals differences between the electron and the ion pressure. In extrapolations this results in values for T{sub e,ped} of 4 keV (ITER) and 10 keV (DEMO), but significantly lower values for the ion temperature. A two-term method was applied to use the pedestal pressure to determine the pedestal contribution to the global confinement time {tau}{sub E}. The dependencies in the

  19. Characterization and scaling of the tokamak edge transport barrier

    International Nuclear Information System (INIS)

    Schneider, Philip Adrian

    2012-01-01

    The high confinement regime (H-mode) in a tokamak plasma displays a remarkable edge region. On a small spatial scale of 1-2 cm the properties of the plasma change significantly. Certain parameters vary 1-2 orders of magnitude in this region, called the pedestal. Currently, there is no complete understanding of how the pedestal forms or how it is sustained. The goal of this thesis is to contribute to the theoretical understanding of the pedestal and provide scalings towards larger machines, like ITER and DEMO. A pedestal database was built with data from different tokamaks: ASDEX Upgrade, DIIID and JET. The pedestal was characterized with the same method for all three machines. This gives the maximum value, gradient and width of the pedestal in n e , T e and T i . These quantities were analysed along with quantities derived from them, such as the pressure or the confinement time. For this purpose two parameter sets were used: normalized parameters (pressure β, time ν * , length ρ * , shape f q ) and machine parameters (size a, magnetic field B t , plasma current I p , heating P). All results are dependent on the choice of the coordinate system: normalized poloidal flux Ψ N and real space r/a. The most significant result, which was obtained with both parameter sets, shows a different scaling of the pedestal width for the electron temperature and the electron density. The presented scalings predict that in ITER and DEMO the temperature pedestal will be appreciably wider than the density pedestal. The pedestal top scaling for the pressure reveals differences between the electron and the ion pressure. In extrapolations this results in values for T e,ped of 4 keV (ITER) and 10 keV (DEMO), but significantly lower values for the ion temperature. A two-term method was applied to use the pedestal pressure to determine the pedestal contribution to the global confinement time τ E . The dependencies in the scaling for τ E,ped are nearly identical to the IPB98 global

  20. Fully Electromagnetic Nonlinear Gyrokinetic Equations for Tokamak Edge Turbulence

    International Nuclear Information System (INIS)

    Hahm, T.S.; Wang, Lu; Madsen, J.

    2008-01-01

    An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high E x B shear has been derived. The phase-space action variational Lie perturbation method ensures the preservation of the conservation laws of the underlying Vlasov-Maxwell system. Our generalized ordering takes ρ i θi ∼ L E ∼ L p i is the thermal ion Larmor radius and ρ θi = B/B θ ρ i ), as typically observed in the tokamak H-mode edge, with L E and L p being the radial electric field and pressure gradient lengths. We take k # perpendicular# ρ i ∼ 1 for generality, and keep the relative fluctuation amplitudes e(delta)φ/T i ∼ (delta)B/B up to the second order. Extending the electrostatic theory in the presence of high E x B shear [Hahm, Phys. Plasmas 3, 4658 (1996)], contributions of electromagnetic fluctuations to the particle charge density and current are explicitly evaluated via pull-back transformation from the gyrocenter distribution function in the gyrokinetic Maxwell's equation

  1. Interpretation of changes in diffusive and non-diffusive transport in the edge plasma during pedestal buildup following a low-high transition in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W. M.; Sayer, M.-H.; Floyd, J.-P. [Georgia Tech, Atlanta, Georgia 30332 (United States); Groebner, R. J. [General Atomics, San Diego, California 92186 (United States)

    2013-01-15

    The evolution of diffusive and non-diffusive transport during pedestal buildup following a low-high (L-H) transition has been interpreted from a particle-momentum-energy balance analysis of the measured density, temperature, and rotation velocity profiles in the plasma edge (0.82<{rho}<1.0) of a DIII-D [Luxon, Nucl. Fusion 42, 614 (2002)] discharge. In the discharge examined, there was an edge-localized-mode-free period of more than 600 ms following the L-H transition, and the majority of edge pedestal development occurred within the first 100 ms following the L-H transition. There appears to be a spatio-temporal correlation among the measured toroidal and poloidal rotation, the formation of a negative well in the measured radial electric field, the creation of a large inward particle pinch, the calculated intrinsic rotation due to ion orbit loss, and the measured formation of steep gradients in density and temperature in the outer region ({rho}>0.95) of the edge pedestal.

  2. Coreless Concept for High Gradient Induction Cell

    International Nuclear Information System (INIS)

    Krasnykh, Anatoly

    2008-01-01

    An induction linac cell for a high gradient is discussed. The proposed solid state coreless approach for the induction linac topology (SLIM(reg s ign)) is based on nanosecond mode operation. This mode may have an acceleration gradient comparable with gradients of rf- accelerator structures. The discussed induction system has the high electric efficiency. The key elements are a solid state semiconductor switch and a high electric density dielectric with a thin section length. The energy in the induction system is storied in the magnetic field. The nanosecond current break-up produces the high voltage. The induced voltage is used for acceleration. This manner of an operation allows the use of low voltage elements in the booster part and achieves a high accelerating gradient. The proposed topology was tested in POP (proof of principle) experiments

  3. Edge effects on the electronic properties of phosphorene nanoribbons

    International Nuclear Information System (INIS)

    Peng, Xihong; Copple, Andrew; Wei, Qun

    2014-01-01

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs) show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p z orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.

  4. Edge effects on the electronic properties of phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xihong, E-mail: xihong.peng@asu.edu [School of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States); Copple, Andrew [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Wei, Qun [School of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States); School of Physics and Optoelectronic Engineering, Xidian University, Xi' an 710071 (China)

    2014-10-14

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs) show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p{sub z} orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.

  5. Edge currents in frustrated Josephson junction ladders

    Science.gov (United States)

    Marques, A. M.; Santos, F. D. R.; Dias, R. G.

    2016-09-01

    We present a numerical study of quasi-1D frustrated Josephson junction ladders with diagonal couplings and open boundary conditions, in the large capacitance limit. We derive a correspondence between the energy of this Josephson junction ladder and the expectation value of the Hamiltonian of an analogous tight-binding model, and show how the overall superconducting state of the chain is equivalent to the minimum energy state of the tight-binding model in the subspace of one-particle states with uniform density. To satisfy the constraint of uniform density, the superconducting state of the ladder is written as a linear combination of the allowed k-states of the tight-binding model with open boundaries. Above a critical value of the parameter t (ratio between the intra-rung and inter-rung Josephson couplings) the ladder spontaneously develops currents at the edges, which spread to the bulk as t is increased until complete coverage is reached. Above a certain value of t, which varies with ladder size (t = 1 for an infinite-sized ladder), the edge currents are destroyed. The value t = 1 corresponds, in the tight-binding model, to the opening of a gap between two bands. We argue that the disappearance of the edge currents with this gap opening is not coincidental, and that this points to a topological origin for these edge current states.

  6. Edge diagnostics for tandem mirror machines

    International Nuclear Information System (INIS)

    Allen, S.L.

    1984-01-01

    The edge plasma in a tandem mirror machine shields the plasma core from cold neutral gas and impurities. A variety of diagnostics are used to measure the fueling, shielding, and confinement of the edge plasma in both the end plug and central cell regions. Fast ion gauges and residual gas analyzers measure the gas pressure and composition outside of the plasma. An array of Langmuir probes is used to measure the electron density and temperature. Extreme ultraviolet (euv) and visible spectroscopy are used to measure both the impurity and deuterium densities and to estimate the shielding factor for the core plasma. The linear geometry of a tandem mirror also allows direct measurements of the edge plasma by sampling the ions and electrons lost but the ends of the machine. Representative data obtained by these diagnostics during operation of the Tandem Mirror Experiment (TMX) and Tandem Mirror Experiment-Upgrade (TMX-U) experiments are presented. Diagnostics that are currently being developed to diagnose the edge plasma are also discussed

  7. Pancreatic islet isolation by mechanical-enzymatic separation, stationary collagenase digestion and dextran discontinuous density gradient purification: experimental study in dogs Isolamento das ilhotas pancreáticas pela separação mecânica-enzimática digestão estacionária com colagenase e purificação com gradiente de densidade descontínua de dextran: estudo experimental em cães

    Directory of Open Access Journals (Sweden)

    Jaques Waisberg

    2002-04-01

    Full Text Available The prospects for allotransplantation of pancreatic islets in man depend on the development of methods that provide sufficient quantities of pancreatic islets from a single donor, which are capable, when transplanted, of achieve the normalization of carbohydrate metabolism. Objective: Evaluate the efficacy of the isolation of Langerhans islets from dogs, by means of mechanical-enzymatic separation technique with stationary digestion using collagenase, and purification with a discontinuous dextran density gradient. Methods: The counting of islet numbers and evaluation of their sizes was accomplished by staining with diphenylthiocarbazone and using stereoscopic microscopes equipped with eyepiece reticule for the measurement of average diameters of stained islets. Results: The results disclosed that the average number of islets isolated was 81032.20 ± 24736.79 and the average number of islets isolated per kg of body weight was 6938.70 ± 1392.43. The average number of islets isolated per kg of body weight showed significant correlation with body weight and weight of the pancreas resected. Conclusion: The number of islets isolated, of a single donor, by mechanical-enzymatic separation, stationary collagenase digestion and discontinuous dextran density gradient purification can be sufficient to success of pancreatic islets transplant in dogs.A perspectiva do alotransplante de ilhotas pancreáticas no homem está na dependência do desenvolvimento de métodos que propiciem quantidades suficientes de ilhotas pancreáticas, originadas de doador único, capazes de, quando transplantadas, levarem à normalização do metabolismo dos hidratos de carbono. Objetivo: Avaliar, em cães, a eficácia do isolamento das ilhotas de Langerhans por meio da técnica de separação mecânica-enzimática, digestão estacionária com colagenase e purificação pelo gradiente de densidade descontínua de dextran. Métodos: A contagem do número e avaliação do tamanho

  8. Edge termination of MoS2 and CoMoS catalyst particles

    DEFF Research Database (Denmark)

    Byskov, Line Sjolte; Nørskov, Jens Kehlet; Clausen, B. S.

    2000-01-01

    The edge termination of MoS2 and CoMoS catalyst particles is studied by density functional calculations. We show that for structures without vacancies Mo-terminated edges have the lowest edge energies. Creation of vacancies, which are believed to be active sites in these catalyst systems, leads...

  9. Radiation profile measurements for edge transport barrier discharges in Compact Helical System using AXUV photodiode arrays

    International Nuclear Information System (INIS)

    Suzuki, C.; Okamura, S.; Minami, T.; Akiyama, T.; Fujisawa, A.; Ida, K.; Isobe, M.; Matsuoka, K.; Nagaoka, K.; Nishimura, S.; Peterson, B. J.; Shimizu, A.; Takahashi, C.; Toi, K.; Yoshimura, Y.

    2005-01-01

    The formation of edge transport barrier (ETB) has recently been found in Compact Helical System (CHS) plasmas heated by co-injected neutral beam injection (NBI) with strong gas puffing. This regime is characterized by the appearance of the steep gradient of the electron density near the edge following the abrupt drop of hydrogen Balmer alpha (H α ) line intensity. In addition to single channel pyroelectric detector as a conventional bolometer, we have employed unfiltered absolute extreme ultraviolet (AXUV) photodiode arrays as a simple and low-cost diagnostic to investigate spatial and temporal variations of radiation emissivity in the ETB discharges. A compact mounting module for a 20 channel AXUV photodiode array including an in-vacuum preamplifier for immediate current-voltage conversion has successfully been designed and fabricated. Two identical modules installed in the upper and lower viewports provide 40 lines of sight covering the inboard and outboard sides within the horizontally elongated cross section of the CHS plasma with wide viewing angle. Although spectral uniformity of the detector sensitivity of the AXUV photodiode is unsatisfied for photon energies lower than 200 eV, it has been confirmed that the signals of AXUV photodiode and pyroelectric detector in the ETB discharges show roughly the same behavior except for the very beginning and end of the discharges. The results of the measurements in typical ETB discharges show that the signals of all the channels of the AXUV photodiode arrays begin to increase more rapidly at the moment of the transition than before. The rate of the increase is larger for the edge viewing chords than for the center viewing ones, which indicates the flattening of the radiation profile following the change in the electron density profile after the formation of the ETB. However, the signals for the edge chords tend to saturate after several tens of milliseconds, while they still continue to increase for the central chords

  10. ICRF edge modeling

    International Nuclear Information System (INIS)

    1991-01-01

    This report describes the technical progress for the DOE sponsored grant, ''ICRF Edge Modeling.'' An emphasis is placed on the progress since the Technical Progress Report (January 10, 1990) was submitted to the Department of Energy. The design of ICRF antennas for C-Mod and TFTR was investigated during this period. In addition, quasilinear models for electron heating were refined and applied to the design of ICRF antennas. The relevant professional activities sponsored by this grant are given. 4 refs., 11 figs

  11. ICRF edge modeling studies

    Energy Technology Data Exchange (ETDEWEB)

    Lehrman, I.S. (Grumman Corp. Research Center, Princeton, NJ (USA)); Colestock, P.L. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1990-04-01

    Theoretical models have been developed, and are currently being refined, to explain the edge plasma-antenna interaction that occurs during ICRF heating. The periodic structure of a Faraday shielded antenna is found to result in strong ponderomotive force in the vicinity of the antenna. A fluid model, which incorporates the ponderomotive force, shows an increase in transport to the Faraday shield. A kinetic model shows that the strong antenna near fields act to increase the energy of deuterons which strike the shield, thereby increasing the sputtering of shield material. Estimates of edge impurity harmonic heating show no significant heating for either in or out-of-phase antenna operation. Additionally, a particle model for electrons near the shield shows that heating results from the parallel electric field associated with the fast wave. A quasilinear model for edge electron heating is presented and compared to the particle calculations. The models' predictions are shown to be consistent with measurements of enhanced transport. (orig.).

  12. The role of edge current-driven modes in ELM activity

    Energy Technology Data Exchange (ETDEWEB)

    Gimblett, C G; Hastie, R J; Helander, P [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)

    2006-10-15

    We propose a model for edge localized mode (ELM) evolution which goes beyond linear stability arguments by hypothesizing that peeling modes initiate a Taylor relaxation (a constrained minimization of the magnetic energy) of an outer annular plasma region. The relaxation has two effects on peeling mode stability: (a) As the relaxation process proceeds radially inwards it leaves in its wake a Taylor state, which for conventional tokamak ordering is simply a flattened equilibrium toroidal current density. This effect acting in isolation would provide a destabilizing effect (for conventional current profiles the edge current density would increase); (b) The formation of a (negative for conventional current profiles) skin current at the plasma-vacuum interface which has a counteracting stabilizing effect on peeling modes. For a finite relaxed annulus, these two opposing effects can balance and give a configuration that is stable to all possible peeling instabilities. The radial extent of the relaxed region required for stability can be calculated using this balance. This then leads to model predictions for ELM characteristics such as the widths and mode numbers, the magnitude of the attendant energy losses and the natural (deterministic) scatter in these quantities. We compare these model predictions with a number of experimentally observed ELM properties. Further, expanding the governing equations gives analytic expressions for ELM widths in terms of localized edge parameters. Peeling modes can occur even when the critical pressure gradient for the onset of ballooning modes has not been reached. For this reason 'type III' ELMs, which typically occur just above the threshold for L-H transitions, may be best described by this model.

  13. The role of edge current-driven modes in ELM activity

    International Nuclear Information System (INIS)

    Gimblett, C G; Hastie, R J; Helander, P

    2006-01-01

    We propose a model for edge localized mode (ELM) evolution which goes beyond linear stability arguments by hypothesizing that peeling modes initiate a Taylor relaxation (a constrained minimization of the magnetic energy) of an outer annular plasma region. The relaxation has two effects on peeling mode stability: (a) As the relaxation process proceeds radially inwards it leaves in its wake a Taylor state, which for conventional tokamak ordering is simply a flattened equilibrium toroidal current density. This effect acting in isolation would provide a destabilizing effect (for conventional current profiles the edge current density would increase); (b) The formation of a (negative for conventional current profiles) skin current at the plasma-vacuum interface which has a counteracting stabilizing effect on peeling modes. For a finite relaxed annulus, these two opposing effects can balance and give a configuration that is stable to all possible peeling instabilities. The radial extent of the relaxed region required for stability can be calculated using this balance. This then leads to model predictions for ELM characteristics such as the widths and mode numbers, the magnitude of the attendant energy losses and the natural (deterministic) scatter in these quantities. We compare these model predictions with a number of experimentally observed ELM properties. Further, expanding the governing equations gives analytic expressions for ELM widths in terms of localized edge parameters. Peeling modes can occur even when the critical pressure gradient for the onset of ballooning modes has not been reached. For this reason 'type III' ELMs, which typically occur just above the threshold for L-H transitions, may be best described by this model

  14. On the Dynamics of Edge-core Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hahm,T.S.; Diamond, P.H.; Lin, Z.; Rewoldt, G.; Gurcan, O.; Ethier, S.

    2005-08-26

    One of the nagging, unresolved questions in fusion theory is concerned with the extent of the edge. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the Gyrokinetic Toroidal Code (GTC) [Z. Lin et al., Science 281, 1835 (1998)] and its related dynamical model have been extended to a system with radially varying ion temperature gradient, in order to study the inward spreading of edge turbulence toward the core plasma. Due to such spreading, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only, and the precise boundary of the edge region is blurred. Even when the core gradient is within the Dimits shift regime (i.e., dominated by self-generated zonal flows which reduce the transport to a negligible value), a significant level of turbulence can penetrate to the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from a nonlinear diffusion model than from one based on linear toroidal coupling.

  15. Cell orientation gradients on an inverse opal substrate.

    Science.gov (United States)

    Lu, Jie; Zou, Xin; Zhao, Ze; Mu, Zhongde; Zhao, Yuanjin; Gu, Zhongze

    2015-05-20

    The generation of cell gradients is critical for understanding many biological systems and realizing the unique functionality of many implanted biomaterials. However, most previous work can only control the gradient of cell density and this has no effect on the gradient of cell orientation, which has an important role in regulating the functions of many connecting tissues. Here, we report on a simple stretched inverse opal substrate for establishing desired cell orientation gradients. It was demonstrated that tendon fibroblasts on the stretched inverse opal gradient showed a corresponding alignment along with the elongation gradient of the substrate. This "random-to-aligned" cell gradient reproduces the insertion part of many connecting tissues, and thus, will have important applications in tissue engineering.

  16. Travelling gradient thermocouple calibration

    International Nuclear Information System (INIS)

    Broomfield, G.H.

    1975-01-01

    A short discussion of the origins of the thermocouple EMF is used to re-introduce the idea that the Peltier and Thompson effects are indistinguishable from one another. Thermocouples may be viewed as devices which generate an EMF at junctions or as integrators of EMF's developed in thermal gradients. The thermal gradient view is considered the more appropriate, because of its better accord with theory and behaviour, the correct approach to calibration, and investigation of service effects is immediately obvious. Inhomogeneities arise in thermocouples during manufacture and in service. The results of travelling gradient measurements are used to show that such effects are revealed with a resolution which depends on the length of the gradient although they may be masked during simple immersion calibration. Proposed tests on thermocouples irradiated in a nuclear reactor are discussed

  17. Smoothness in Binomial Edge Ideals

    Directory of Open Access Journals (Sweden)

    Hamid Damadi

    2016-06-01

    Full Text Available In this paper we study some geometric properties of the algebraic set associated to the binomial edge ideal of a graph. We study the singularity and smoothness of the algebraic set associated to the binomial edge ideal of a graph. Some of these algebraic sets are irreducible and some of them are reducible. If every irreducible component of the algebraic set is smooth we call the graph an edge smooth graph, otherwise it is called an edge singular graph. We show that complete graphs are edge smooth and introduce two conditions such that the graph G is edge singular if and only if it satisfies these conditions. Then, it is shown that cycles and most of trees are edge singular. In addition, it is proved that complete bipartite graphs are edge smooth.

  18. High-confinement-mode edge stability of Alcator C-mod plasmas

    International Nuclear Information System (INIS)

    Mossessian, D.A.; Snyder, P.; Hubbard, A.; Hughes, J.W.; Greenwald, M.; La Bombard, B.; Snipes, J.A.; Wolfe, S.; Wilson, H.

    2003-01-01

    For steady state high-confinement-mode (H-mode) operation, a relaxation mechanism is required to limit build-up of the edge gradient and impurity content. Alcator C-Mod [Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] sees two such mechanisms--EDA (enhanced D-alpha H mode) and grassy ELMs (edge localized modes), but not large type I ELMs. In EDA the edge relaxation is provided by an edge localized quasicoherent (QC) electromagnetic mode that exists at moderate pedestal temperature T 95 >3.5, and does not limit the buildup of the edge pressure gradient. The q boundary of the operational space of the mode depends on plasma shape, with the q 95 limit moving down with increasing plasma triangularity. At high edge pressure gradients and temperatures the mode is replaced by broadband fluctuations ( f<50 kHz) and small irregular ELMs are observed. Ideal MHD (magnetohydrodynamic) stability analysis that includes both pressure and current driven edge modes shows that the discharges where the QC mode is observed are stable. The ELMs are identified as medium n (10< n<50) coupled peeling/ballooning modes. The predicted stability boundary of the modes as a function of pedestal current and pressure gradient is reproduced in experimental observations. The measured dependence of the ELMs' threshold and amplitude on plasma triangularity is consistent with the results of ideal MHD analysis performed with the linear stability code ELITE [Wilson et al., Phys. Plasmas 9, 1277 (2002)

  19. Quaternion Gradient and Hessian

    OpenAIRE

    Xu, Dongpo; Mandic, Danilo P.

    2014-01-01

    The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel gen...

  20. Plant biomass and species composition along an environmental gradient in montane riparian meadows

    Science.gov (United States)

    Kathleen A. Dwire; J. Boone Kauffman; E. N. Jack Brookshire; John E. Baham

    2004-01-01

    In riparian meadows, narrow zonation of the dominant vegetation frequently occurs along the elevational gradient from the stream edge to the floodplain terrace. We measured plant species composition and above- and belowground biomass in three riparian plant communities - a priori defined as wet, moist, and dry meadow - along short streamside topographic gradients in...

  1. Gradient Alloy for Optical Packaging

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in additive manufacturing, such as Laser Engineered Net Shaping (LENS), enables the fabrication of compositionally gradient microstructures, i.e. gradient...

  2. Edge turbulence and transport: Text and ATF modeling

    International Nuclear Information System (INIS)

    Ritz, C.P.; Rhodes, T.L.; Lin, H.; Rowan, W.L.; Bengtson, R.; Wootton, A.J.; Diamond, P.H.; Ware, A.S.; Thayer, D.R.

    1990-01-01

    We present experimental results on edge turbulence and transport from the tokamak TEXT and the torsatron ATF. The measured electrostatic fluctuations can explain the edge transport of particles and energy. Certain drive (radiation) and stabilizing (velocity shear) terms are suggested by the results. The experimental fluctuation levels and spectral widths can be reproduced by considering the nonlinear evolution of the reduced MHD equations, incorporating a thermal drive from line radiation. In the tokamak limit (with toroidal electric field) the model corresponds to the resistivity gradient mode, while in the currentless torsatron or stellarator limit it corresponds to a thermally driven drift wave

  3. Transport in the tokamak plasma edge

    International Nuclear Information System (INIS)

    Vold, E.L.

    1989-01-01

    Experimental observations characterize the edge plasma or boundary layer in magnetically confined plasmas as a region of great complexity. Evidence suggests the edge physics plays a key role in plasma confinement although the mechanism remains unresolved. This study focuses on issues in two areas: observed poloidal asymmetries in the Scrape Off Layer (SOL) edge plasma and the physical nature of the plasma-neutral recycling. A computational model solves the coupled two dimensional partial differential equations governing the plasma fluid density, parallel and radial velocities, electron and ion temperatures and neutral density under assumptions of toroidal symmetry, ambipolarity, anomalous diffusive radial flux, and neutral-ion thermal equilibrium. Drift flow and plasma potential are calculated as dependent quantities. Computational results are compared to experimental data for the CCT and TEXTOR:ALT-II tokamak limiter cases. Comparisons show drift flux is a major component of the poloidal flow in the SOL along the tangency/separatrix. Plasma-neutral recycling is characterized in several tokamak divertors, including the C-MOD device using magnetic flux surface coordinates. Recycling is characterized by time constant, τ rc , on the order of tens of milliseconds. Heat flux transients from the core into the edge on shorter time scales significantly increase the plasma temperatures at the target and may increase sputtering. Recycling conditions in divertors vary considerably depending on recycled flux to the core. The high density, low temperature solution requires that the neutral mean free path be small compared to the divertor target to x-point distance. The simulations and analysis support H-mode confinement and transition models based on the recycling divertor solution bifurcation

  4. Competing edge networks

    Science.gov (United States)

    Parsons, Mark; Grindrod, Peter

    2012-06-01

    We introduce a model for a pair of nonlinear evolving networks, defined over a common set of vertices, subject to edgewise competition. Each network may grow new edges spontaneously or through triad closure. Both networks inhibit the other's growth and encourage the other's demise. These nonlinear stochastic competition equations yield to a mean field analysis resulting in a nonlinear deterministic system. There may be multiple equilibria; and bifurcations of different types are shown to occur within a reduced parameter space. This situation models competitive communication networks such as BlackBerry Messenger displacing SMS; or instant messaging displacing emails.

  5. C-C bond unsaturation degree in monosubstituted ferrocenes for molecular electronics investigated by a combined near-edge x-ray absorption fine structure, x-ray photoemission spectroscopy, and density functional theory approach

    International Nuclear Information System (INIS)

    Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Zanoni, R.; Stranges, S.; Alagia, M.; Fronzoni, G.; Decleva, P.

    2012-01-01

    We present the results of an experimental and theoretical investigation of monosubstituted ethyl-, vinyl-, and ethynyl-ferrocene (EtFC, VFC, and EFC) free molecules, obtained by means of synchrotron-radiation based C 1s photoabsorption (NEXAFS) and photoemission (C 1s XPS) spectroscopies, and density functional theory (DFT) calculations. Such a combined study is aimed at elucidating the role played by the C-C bond unsaturation degree of the substituent on the electronic structure of the ferrocene derivatives. Such substituents are required for molecular chemical anchoring onto relevant surfaces when ferrocenes are used for molecular electronics hybrid devices. The high resolution C 1s NEXAFS spectra exhibit distinctive features that depend on the degree of unsaturation of the hydrocarbon substituent. The theoretical approach to consider the NEXAFS spectrum made of three parts allowed to disentangle the specific contribution of the substituent group to the experimental spectrum as a function of its unsaturation degree. C 1s IEs were derived from the experimental data analysis based on the DFT calculated IE values for the different carbon atoms of the substituent and cyclopentadienyl (Cp) rings. Distinctive trends of chemical shifts were observed for the substituent carbon atoms and the substituted atom of the Cp ring along the series of ferrocenes. The calculated IE pattern was rationalized in terms of initial and final state effects influencing the IE value, with special regard to the different mechanism of electron conjugation between the Cp ring and the substituent, namely the σ/π hyperconjugation in EtFC and the π-conjugation in VFC and EFC.

  6. On the Role of Impurity Radiation on Edge Turbulence in the TJ-I Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Ochando, M A; Pedrosa, M A; Balbin, R; Garcia-Cortes, I; Hidalgo, C

    1994-07-01

    The correlation between edge radiation and electron temperature and density fluctuations has been studied in the vicinity of the upper poloidal limiter of the TJ-I tokamak. When edge impurity radiation is strongly peaked in the proximity of the limiter radius, electron temperature fluctuations are notably higher than density fluctuations. Results provide experimental evidence of edge turbulence driven by thermal instabilities. (Author) 16 refs.

  7. On the Role of Impurity Radiation on Edge Turbulence in the TJ-I Tokamak

    International Nuclear Information System (INIS)

    Ochando, M. A.; Pedrosa, M. A.; Balbin, R.; Garcia-Cortes, I.; Hidalgo, C.

    1994-01-01

    The correlation between edge radiation and electron temperature and density fluctuations has been studied in the vicinity of the upper poloidal limiter of the TJ-I tokamak. When edge impurity radiation is strongly peaked in the proximity of the limiter radius, electron temperature fluctuations are notably higher than density fluctuations. Results provide experimental evidence of edge turbulence driven by thermal instabilities. (Author) 16 refs

  8. High Gradient Accelerator Research

    International Nuclear Information System (INIS)

    Temkin, Richard

    2016-01-01

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient<