WorldWideScience

Sample records for eddy correlation technique

  1. Eddy Correlation Flux Measurement System (ECOR) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  2. Surface fluxes of CO{sub 2}, O{sub 3} and H{sub 2}O measured by the eddy correlation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aurela, M.; Laurila, T. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1995-12-31

    Air pollution by ozone has been recognized as a regional problem of the first priority. The acute effects on plants have been documented across Europe, and experimental evidence for chronic and subtle effects is growing. To protect crops and trees UN-ECE has defined the concept of critical levels for ozone. The concept is, however, still developing, and new research findings are needed to improve its scientific basis. O{sub 3} and CO{sub 2} are both important greenhouse gases and their exchange between the biosphere and the atmosphere is therefore a subject of growing interest. The eddy correlation technique is a new micrometeorological method to measure fluxes on the ecosystem scale. In this method the high-frequency fluctuating components of the vertical wind velocity and, for example, the concentration, are measured and correlated to give a direct measurement of the flux F{sub c} = w{sup `}c{sup `}, where the primes denote deviations from mean values. Perhaps the most difficult requirement in flux measurements with the eddy correlation technique is the need for fast-response sensors. The sampling should be done at a frequency no lower than 5 Hz. In addition general micro- meteorological requirements exist regarding statistical stationarity and horizontal homogeneity. Eddy correlation measurements can be used to study ozone deposition velocities and the net carbon balance within the related physiological processes of the ecosystem. In this study the turbulent fluxes of these gases were measured in Finland by this direct method above a forest for the first time. Fluxes were studied in a boreal Scots pine (Pinus sylvestris) forest

  3. Surface fluxes of CO{sub 2}, O{sub 3} and H{sub 2}O measured by the eddy correlation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aurela, M; Laurila, T [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Air pollution by ozone has been recognized as a regional problem of the first priority. The acute effects on plants have been documented across Europe, and experimental evidence for chronic and subtle effects is growing. To protect crops and trees UN-ECE has defined the concept of critical levels for ozone. The concept is, however, still developing, and new research findings are needed to improve its scientific basis. O{sub 3} and CO{sub 2} are both important greenhouse gases and their exchange between the biosphere and the atmosphere is therefore a subject of growing interest. The eddy correlation technique is a new micrometeorological method to measure fluxes on the ecosystem scale. In this method the high-frequency fluctuating components of the vertical wind velocity and, for example, the concentration, are measured and correlated to give a direct measurement of the flux F{sub c} = w{sup `}c{sup `}, where the primes denote deviations from mean values. Perhaps the most difficult requirement in flux measurements with the eddy correlation technique is the need for fast-response sensors. The sampling should be done at a frequency no lower than 5 Hz. In addition general micro- meteorological requirements exist regarding statistical stationarity and horizontal homogeneity. Eddy correlation measurements can be used to study ozone deposition velocities and the net carbon balance within the related physiological processes of the ecosystem. In this study the turbulent fluxes of these gases were measured in Finland by this direct method above a forest for the first time. Fluxes were studied in a boreal Scots pine (Pinus sylvestris) forest

  4. Eddy correlation measurements of oxygen uptake in deep ocean sediments

    DEFF Research Database (Denmark)

    Berg, P.; Glud, Ronnie Nøhr; Hume, A.

    2010-01-01

    .62 +/- 0.23 (SE, n = 7), 1.65 +/- 0.33 (n = 2), and 1.43 +/- 0.15 (n = 25) mmol m(-2) d(-1). The very good agreement between the eddy correlation flux and the chamber flux serves as a new, important validation of the eddy correlation technique. It demonstrates that the eddy correlation instrumentation......Abstract: We present and compare small sediment-water fluxes of O-2 determined with the eddy correlation technique, with in situ chambers, and from vertical sediment microprofiles at a 1450 m deep-ocean site in Sagami Bay, Japan. The average O-2 uptake for the three approaches, respectively, was 1...... available today is precise and can resolve accurately even very small benthic O-2 fluxes. The correlated fluctuations in vertical velocity and O-2 concentration that give the eddy flux had average values of 0.074 cm s(-1) and 0.049 mu M. The latter represents only 0.08% of the 59 mu M mean O-2 concentration...

  5. Eddy Correlation Flux Measurement System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  6. Benthic O-2 uptake of two cold-water coral communities estimated with the non-invasive eddy correlation technique

    DEFF Research Database (Denmark)

    Rovelli, Lorenzo; Attard, Karl M.; Bryant, Lee D.

    2015-01-01

    , was a channel-like sound in Northern Norway at a depth of 220 m. Both sites were characterized by the presence of live mounds of the reef framework-forming scleractinian Lophelia pertusa and reef-associated fauna such as sponges, crustaceans and other corals. The measured O-2 uptake at the 2 sites varied...... times higher than the global mean for soft sediment communities at comparable depths. The measurements document the importance of CWC communities for local and regional carbon cycling and demonstrate that the EC technique is a valuable tool for assessing rates of benthic O2 uptake in such complex...

  7. Oxygen exchange and ice melt measured at the ice-water interface by eddy correlation

    DEFF Research Database (Denmark)

    Long, M.H.; Koopmans, D.; Berg, P.

    2012-01-01

    heterotrophic with a daily gross primary production of 0.69 mmol O2 mĝ̂'2 dĝ̂'1 and a respiration rate of ĝ̂'2.13 mmol O2 mĝ̂'2 dĝ̂'1 leading to a net ecosystem metabolism of ĝ̂'1.45 mmol O2 mĝ̂'2 dĝ̂'1. This application of the eddy correlation technique produced high temporal resolution O2 fluxes and ice melt......This study examined fluxes across the ice-water interface utilizing the eddy correlation technique. Temperature eddy correlation systems were used to determine rates of ice melting and freezing, and O2 eddy correlation systems were used to examine O2 exchange rates driven by biological and physical...

  8. Eddy correlation measurements in wet environmental conditions

    Science.gov (United States)

    Cuenca, R. H.; Migliori, L.; O Kane, J. P.

    2003-04-01

    The lower Feale catchment is a low-lying peaty area of 200 km^2 situated in southwest Ireland that is subject to inundation by flooding. The catchment lies adjacent to the Feale River and is subject to tidal signals as well as runoff processes. Various mitigation strategies are being investigated to reduce the damage due to flooding. Part of the effort has required development of a detailed hydrologic balance for the study area which is a wet pasture environment with local field drains that are typically flooded. An eddy correlation system was installed in the summer of 2002 to measure components of the energy balance, including evapotranspiration, along with special sensors to measure other hydrologic variables particular to this study. Data collected will be essential for validation of surface flux models to be developed for this site. Data filtering is performed using a combination of software developed by the Boundary-Layer Group (BLG) at Oregon State University together with modifications made to this system for conditions at this site. This automated procedure greatly reduces the tedious inspection of individual records. The package of tests, developed by the BLG for both tower and aircraft high frequency data, checks for electronic spiking, signal dropout, unrealistic magnitudes, extreme higher moment statistics, as well as other error scenarios not covered by the instrumentation diagnostics built into the system. Critical parameter values for each potential error were developed by applying the tests to real fast response turbulent time series. Potential instrumentation problems, flux sampling problems, and unusual physical situations records are flagged for removal or further analysis. A final visual inspection step is required to minimize rejection of physically unusual but real behavior in the time series. The problems of data management, data quality control, individual instrumentation sensitivity, potential underestimation of latent and sensible heat

  9. Aquatic Eddy Correlation: Quantifying the Artificial Flux Caused by Stirring-Sensitive O

    NARCIS (Netherlands)

    Holtappels, M.; Noss, C.; Hancke, K.; Cathalot, C.; McGinnis, D.F.; Lorke, A.; Glud, R.N.

    2015-01-01

    In the last decade, the aquatic eddy correlation (EC) technique has proven to be a powerful approach for non-invasive measurements of oxygen fluxes across the sediment water interface. Fundamental to the EC approach is the correlation of turbulent velocity and oxygen concentration fluctuations

  10. Non-Destructive Techniques Based on Eddy Current Testing

    Science.gov (United States)

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  11. Eddy current technique applied to automated tube profilometry

    International Nuclear Information System (INIS)

    Dobbeni, D.; Melsen, C. van

    1982-01-01

    The use of eddy current methods in the first totally automated pre-service inspection of the internal diameter of PWR steam generator tubes is described. The technique was developed at Laborelec, the Belgian Laboratory of the Electricity Supply Industry. Details are given of the data acquisition system and of the automated manipulator. Representative tube profiles are illustrated. (U.K.)

  12. Defect detection in conducting materials using eddy current testing techniques

    Directory of Open Access Journals (Sweden)

    Brauer Hartmut

    2014-01-01

    Full Text Available Lorentz force eddy current testing (LET is a novel nondestructive testing technique which can be applied preferably to the identification of internal defects in nonmagnetic moving conductors. The LET is compared (similar testing conditions with the classical eddy current testing (ECT. Numerical FEM simulations have been performed to analyze the measurements as well as the identification of internal defects in nonmagnetic conductors. The results are compared with measurements to test the feasibility of defect identification. Finally, the use of LET measurements to estimate of the electrical conductors under test are described as well.

  13. In situ coral reef oxygen metabolism: an eddy correlation study.

    Directory of Open Access Journals (Sweden)

    Matthew H Long

    Full Text Available Quantitative studies of coral reefs are challenged by the three-dimensional hard structure of reefs and the high spatial variability and temporal dynamics of their metabolism. We used the non-invasive eddy correlation technique to examine respiration and photosynthesis rates, through O2 fluxes, from reef crests and reef slopes in the Florida Keys, USA. We assessed how the photosynthesis and respiration of different reef habitats is controlled by light and hydrodynamics. Numerous fluxes (over a 0.25 h period were as high as 4500 mmol O2 m(-2 d(-1, which can only be explained by efficient light utilization by the phototrophic community and the complex canopy structure of the reef, having a many-fold larger surface area than its horizontal projection. Over diel cycles, the reef crest was net autotrophic, whereas on the reef slope oxygen production and respiration were balanced. The autotrophic nature of the shallow reef crests implies that the export of organics is an important source of primary production for the larger area. Net oxygen production on the reef crest was proportional to the light intensity, up to 1750 µmol photons m(-2 s(-1 and decreased thereafter as respiration was stimulated by high current velocities coincident with peak light levels. Nighttime respiration rates were also stimulated by the current velocity, through enhanced ventilation of the porous framework of the reef. Respiration rates were the highest directly after sunset, and then decreased during the night suggesting that highly labile photosynthates produced during the day fueled early-night respiration. The reef framework was also important to the acquisition of nutrients as the ambient nitrogen stock in the water had sufficient capacity to support these high production rates across the entire reef width. These direct measurements of complex reefs systems yielded high metabolic rates and dynamics that can only be determined through in situ, high temporal resolution

  14. Oxygen optodes as fast sensors for eddy correlation measurements in aquatic systems

    DEFF Research Database (Denmark)

    Chipman, Lindsay; Huettel, Markus; Berg, Peter

    2012-01-01

    The aquatic eddy-correlation technique can be used to noninvasively determine the oxygen exchange across the sediment-water interface by analyzing the covariance of vertical flow velocity and oxygen concentration in a small measuring volume above the sea bed. The method requires fast sensors...... that combine the advantages of noninvasive measurements and integration of fluxes over a large footprint area, using a relatively rugged and less expensive sensor....

  15. Eddy current techniques for super duplex stainless steel characterization

    International Nuclear Information System (INIS)

    Camerini, C.; Sacramento, R.; Areiza, M.C.; Rocha, A.; Santos, R.; Rebello, J.M.; Pereira, G.

    2015-01-01

    Super duplex stainless steel (SDSS) is a two-phase material where the microstructure consists of grains of ferrite (δ) and austenite (γ). SDSS exhibit an attractive combination of properties, such as: strength, toughness and stress corrosion cracking resistance. Nevertheless, SDSS attain these properties after a controlled solution heat treatment, leading to a similar volumetric fraction of δ and γ. Any further heat treatment, welding operation for example, can change the balance of the original phases, or may also lead to precipitation of a deleterious phase, such as sigma (σ). For these situations, the material corrosion resistance is severely impaired. In the present study, several SDSS samples with low σ phase content and non-balanced microstructure were intentionally obtained by thermally treating SDSS specimens. Electromagnetic techniques, conventional Eddy Current Testing (ECT) and Saturated Low Frequency Eddy Current (SLOFEC), were employed to characterize the SDSS samples. The results showed that ECT and SLOFEC are reliable techniques to evaluate σ phase presence in SDSS and can provide an estimation of the δ content. - Highlights: • Sigma phase precipitation, even for low amounts, dramatically affects SDSS properties. • SDSS samples were thermally treated and carefully characterized by X-Ray Diffraction. • NDT techniques detected low amounts of sigma phase in SDSS microstructure

  16. Eddy current techniques for super duplex stainless steel characterization

    Energy Technology Data Exchange (ETDEWEB)

    Camerini, C., E-mail: cgcamerini@metalmat.ufrj.br [Laboratory of Non-Destructive Testing, Corrosion and Welding, Department of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro (Brazil); Sacramento, R.; Areiza, M.C.; Rocha, A. [Laboratory of Non-Destructive Testing, Corrosion and Welding, Department of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro (Brazil); Santos, R. [PETROBRAS R& D Center, Rio de Janeiro (Brazil); Rebello, J.M.; Pereira, G. [Laboratory of Non-Destructive Testing, Corrosion and Welding, Department of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro (Brazil)

    2015-08-15

    Super duplex stainless steel (SDSS) is a two-phase material where the microstructure consists of grains of ferrite (δ) and austenite (γ). SDSS exhibit an attractive combination of properties, such as: strength, toughness and stress corrosion cracking resistance. Nevertheless, SDSS attain these properties after a controlled solution heat treatment, leading to a similar volumetric fraction of δ and γ. Any further heat treatment, welding operation for example, can change the balance of the original phases, or may also lead to precipitation of a deleterious phase, such as sigma (σ). For these situations, the material corrosion resistance is severely impaired. In the present study, several SDSS samples with low σ phase content and non-balanced microstructure were intentionally obtained by thermally treating SDSS specimens. Electromagnetic techniques, conventional Eddy Current Testing (ECT) and Saturated Low Frequency Eddy Current (SLOFEC), were employed to characterize the SDSS samples. The results showed that ECT and SLOFEC are reliable techniques to evaluate σ phase presence in SDSS and can provide an estimation of the δ content. - Highlights: • Sigma phase precipitation, even for low amounts, dramatically affects SDSS properties. • SDSS samples were thermally treated and carefully characterized by X-Ray Diffraction. • NDT techniques detected low amounts of sigma phase in SDSS microstructure.

  17. Eddy current techniques for super duplex stainless steel characterization

    Science.gov (United States)

    Camerini, C.; Sacramento, R.; Areiza, M. C.; Rocha, A.; Santos, R.; Rebello, J. M.; Pereira, G.

    2015-08-01

    Super duplex stainless steel (SDSS) is a two-phase material where the microstructure consists of grains of ferrite (δ) and austenite (γ). SDSS exhibit an attractive combination of properties, such as: strength, toughness and stress corrosion cracking resistance. Nevertheless, SDSS attain these properties after a controlled solution heat treatment, leading to a similar volumetric fraction of δ and γ. Any further heat treatment, welding operation for example, can change the balance of the original phases, or may also lead to precipitation of a deleterious phase, such as sigma (σ). For these situations, the material corrosion resistance is severely impaired. In the present study, several SDSS samples with low σ phase content and non-balanced microstructure were intentionally obtained by thermally treating SDSS specimens. Electromagnetic techniques, conventional Eddy Current Testing (ECT) and Saturated Low Frequency Eddy Current (SLOFEC), were employed to characterize the SDSS samples. The results showed that ECT and SLOFEC are reliable techniques to evaluate σ phase presence in SDSS and can provide an estimation of the δ content.

  18. Detection of localized damage by eddy currents technique

    Directory of Open Access Journals (Sweden)

    Aoukili A.

    2014-01-01

    Full Text Available Non destructive evaluation techniques based on eddy currents (EC are largely used for quality control of the castings in a lot of industries. The principle of detection by EC consists in using an adequate inductive coil to generate them by a variable magnetic field, and measuring their effects by using one or several sensors. These effects result from the interaction between the induced magnetic field and the excited conductive material. A local variation of the physical properties or geometry of the tested sample, due to a singularity or a flaw, causes a modification of the EC distribution, enabling thus detection. In order to optimize the capacity of defect revealing by means of EC based probes, an accurate modelling of the problem is essential. This can be used to perform simulation of the EC distribution under different circumstances and to analyze the EC sensitivity to the various implicated parameters. In this work, the modelling of EC is made by using the finite element method. Using a B-scan strategy was used, detection of a small defect having the shape of an open cavity is shown to be correctly indicated via monitoring variations of the induced voltage in the receiver coil.

  19. Correlation of eddy current responses between fatigue cracks and electrical-discharge-machining notches

    Science.gov (United States)

    Seo, Sukho; Choi, Gyudong; Eom, Tae Jhoun; Lee, Bokwon; Lee, Soo Yeol

    2017-07-01

    The eddy current responses of Electrical Discharge Machining (EDM) notches and fatigue cracks are directly compared to verify the reliability of eddy current inspection. The fatigue crack growth tests using a constant load range control mode were conducted to obtain a variety of edge crack sizes, ranging from 0.9 to 6.6 mm for Al alloy and from 0.1 to 3 mm for Ti alloy. EDM notch specimens of Al and Ti alloys were accordingly prepared in lengths similar to that of the fatigued specimen. The crack length was determined by optical microscope and scanning electron microscope. The eddy current responses between the EDM and fatigued specimens with varying notch/crack length were examined using probe sensors at (100-500) kHz and (1-2) MHz for Al and Ti alloys, respectively. The results show a significant difference in the eddy current signal between the two specimens, based on the correlation between the eddy current response and notch/crack length. This suggests that eddy current inspection using the EDM reference specimen is inaccurate in determining the precise crack size, unless the eddy current response data base is obtained from a fatigue-cracked specimen.

  20. Immersed transient eddy current flow metering: a calibration-free velocity measurement technique for liquid metals

    Science.gov (United States)

    Krauter, N.; Stefani, F.

    2017-10-01

    Eddy current flow meters are widely used for measuring the flow velocity of electrically conducting fluids. Since the flow induced perturbations of a magnetic field depend both on the geometry and the conductivity of the fluid, extensive calibration is needed to get accurate results. Transient eddy current flow metering has been developed to overcome this problem. It relies on tracking the position of an impressed eddy current system that is moving with the same velocity as the conductive fluid. We present an immersed version of this measurement technique and demonstrate its viability by numerical simulations and a first experimental validation.

  1. Immersed transient eddy current flow metering: a calibration-free velocity measurement technique for liquid metals

    International Nuclear Information System (INIS)

    Krauter, N; Stefani, F

    2017-01-01

    Eddy current flow meters are widely used for measuring the flow velocity of electrically conducting fluids. Since the flow induced perturbations of a magnetic field depend both on the geometry and the conductivity of the fluid, extensive calibration is needed to get accurate results. Transient eddy current flow metering has been developed to overcome this problem. It relies on tracking the position of an impressed eddy current system that is moving with the same velocity as the conductive fluid. We present an immersed version of this measurement technique and demonstrate its viability by numerical simulations and a first experimental validation. (paper)

  2. Surface inspection technique with an eddy current testing array probe

    International Nuclear Information System (INIS)

    Nishimizu, Akira; Endo, Hisashi; Tooma, Masahiro; Otani, Kenichi; Ouchi, Hirofumi; Yoshida, Isao; Nonaka, Yoshio

    2010-01-01

    An eddy current testing (ECT) system has been developed for inspecting weld surfaces of components in the reactor pressure vessel of nuclear plants. The system can be applied to curved surfaces with an ECT array probe, it can discriminate flaws from other signal factors by using a combination of arrayed coils signal-phase. The system is applied to a mock-up of core internal components and the signal discrimination using the signal-phase clearly separated flaw and noise signals. (author)

  3. Quantitative Evaluation of Defect in Stainless Steel 304 Tube Using Pulsed Eddy Current Technique

    International Nuclear Information System (INIS)

    Nurul Ain Ahmad Latif; Ilham Mukriz Zainal Abidin; Nurul Ain Ahmad Latif; Nordin Jamaludin; Zaredah Hashim; Norhayati Ramli

    2016-01-01

    Pulsed eddy current (PEC) is an advanced non-destructive testing (NDT) technique that operates based on electromagnetic principle. The excitation consists of broad frequency spectrum leading to be a potential in detecting defects that are deeply buried inside the specimen. In this paper, the experiment and simulation were conducted on stainless steel plate 304 fabricated with open surface defects having a different defect depth as an investigation towards the correlation between extracted signal feature and defect depth. Two common features; time to peak and peak value that corresponds to the location depth of defect and size of defect were used for signals analysis and evaluation. The results that acquired through finite element method (FEM) simulation were compared with experimental results for the signals evaluation and defect quantification. (author)

  4. Amplitudes of solar p modes: Modelling of the eddy time-correlation function

    Energy Technology Data Exchange (ETDEWEB)

    Belkacem, K [Institut d' Astrophysique et de Geophysique, Universite de Liege, Allee du 6 Aout 17-B 4000 Liege (Belgium); Samadi, R; Goupil, M J, E-mail: Kevin.Belkacem@ulg.ac.BE [LESIA, UMR8109, Universite Pierre et Marie Curie, Universite Denis Diderot, Obs. de Paris, 92195 Meudon Cedex (France)

    2011-01-01

    Modelling amplitudes of stochastically excited oscillations in stars is a powerful tool for understanding the properties of the convective zones. For instance, it gives us information on the way turbulent eddies are temporally correlated in a very large Reynolds number regime. We discuss the way the time correlation between eddies is modelled and we present recent theoretical developments as well as observational results. Eventually, we discuss the physical underlying meaning of the results by introducing the Ornstein-Uhlenbeck process, which is a sub-class of a Gaussian Markov process.

  5. Tests of a robust eddy correlation system for sensible heat flux

    Science.gov (United States)

    Blanford, J. H.; Gay, L. W.

    1992-03-01

    Sensible heat flux estimates from a simple, one-propeller eddy correlation system (OPEC) were compared with those from a sonic anemometer eddy correlation system (SEC). In accordance with similarity theory, the performance of the OPEC system improved with increasing height of the sensor above the surface. Flux totals from the two systems at sites with adequate fetch were in excellent agreement after frequency response corrections were applied. The propeller system appears suitable for long periods of unattended measurement. The sensible heat flux measurements can be combined with net radiation and soil heat flux measurements to estimate latent heat as a residual in the surface energy balance.

  6. Characterization of irradiated fuel rods using pulsed eddy current techniques

    International Nuclear Information System (INIS)

    Martin, M.R.; Francis, W.C.

    1975-11-01

    A number of irradiated fuel rods and unfueled zircaloy cladding tubes (''water tubes'') were obtained from the Saxton reactor through arrangements with the Westinghouse Electric Corporation for use in subsequent irradiation effects and fuel behavior programs. A comprehensive nondestructive and corroborative destructive characterization program was undertaken on these fuel rods and tubes by ANC to provide baseline data on their characteristics prior to further testing and for comparison against post-post data. This report deals primarily with one portion of the NDT program performed remotely in the hot cells. The portion of interest in this paper is the pulsed eddy current inspection used in the nondestructive phase of the work. 6 references

  7. Enhancing the capabilities of eddy current techniques for non-destructive evaluation of austenitic stainless steels

    International Nuclear Information System (INIS)

    Rao, B.P.C.; Thirunavukkarasu, S.; Sasi, B.; Jayakumar, T.; Baldev Raj

    2010-01-01

    Eddy current non-destructive evaluation (NDE) techniques find many applications during fabrication and in-service inspection of components made of stainless steel. In recent years, concurrent developments in electromagnetic field detection sensors such as giant magneto-resistive (GMR), giant-magneto impedance (GMI) and SQUIDs sensors, computers, microelectronics, and incorporating advanced signal and image processing techniques, have paved the way for enhancing the capabilities of existing eddy current (EC) techniques for examination of austenitic stainless steel (SS) plates, tubes and other geometries and several innovative methodologies have been developed. This paper highlights a few such applications in EC testing to austenitic stainless steel components used in fast reactors. (author)

  8. Carbon dioxide exchange over agricultural landscape using eddy correlation and footprint modelling

    DEFF Research Database (Denmark)

    Søgaard, H.; Jensen, N.O.; Bøgh, E.

    2003-01-01

    Within an agricultural landscape of western Denmark, the carbon dioxide exchange was studied throughout a year (April 1998-March 1999). During the growing season, five eddy correlation systems were operated in parallel over some of the more important crops (winter wheat, winter barley, spring...

  9. Development of Eddy Current Technique for Reactor In-Core Flux Thimble Wear

    International Nuclear Information System (INIS)

    Park, S. S.; Jang, Y. Y.; Yim, C. Y.; Park, K. H.

    1990-01-01

    Since in-core flux thimble tube wear the due to flow-induced vibration could degrade the integrity of nuclear reactor, the effective detection and interpretation of the wear is important. In order to establish an inspection technique for thimble tubes, an eddy current experiment was performed to determine the optimum test frequency, defect sensitivity and evaluation accuracy. Eddy current probes were designed and fabricated with a theory. Specimens with artificial defects were fabricated using electro discharge machining method. The results from inspection technique developed and on-site inspection showed good applicability

  10. Nondestructive evaluation of a cermet coating using ultrasonic and eddy current techniques

    International Nuclear Information System (INIS)

    Roge, B.; Fahr, A.; Giguere, J.S.R.; McRae, K.I.

    2002-01-01

    This paper describes a series of experiments conducted to characterize cermet coatings using conventional ultrasonic and eddy current techniques as well as an ultrasonic leaky surface wave method. The results demonstrate the ability of these techniques to detect the presence of artificial defects on the surface or beneath the surface of the coating. In addition, ultrasonic tests in particular ultrasonic leaky surface waves demonstrate the ability to detect the presence of manufacturing flaws. Ultrasonic time-of-flight and eddy current quadrature measurements also show sensitivity to variations in coating thickness

  11. Development of an eddy current inspection technique for sleeved engine disk bolt holes

    International Nuclear Information System (INIS)

    Palanisamy, R.; Lakin, K.M.

    1983-01-01

    Recent research programs have concentrated mainly on developing techniques to characterize surface breaking cracks and very little has been done towards characterizing subsurface flaws in conducting materials. Presented in this paper are the results of some initial theoretical work aimed at the development of a reliable eddy current technique to detect and characterize defects in engine disk bolt holes under a 0.05'' stainless steel sleeve. The change in impedance of an absolute eddy current coil with and without ferrite core, and the distribution of eddy currents around a second layer crack with and without a thin insulating film between the two conducting layers have been predicted numerically. The overall system development goals and methods to accomplish them are outlined briefly

  12. Application of an eddy current technique to steam generator U-bend characterization. Final report

    International Nuclear Information System (INIS)

    Cramer, W.E.; de la Pintiere, L.; Narita, S.; Bergander, M.J.

    1982-04-01

    Eddy current nondestructive testing techniques are used widely throughout the utility industry for the early detection of tube damage in critical power plant components such as steam generators. In this project, the application of an eddy current technique for the characterization of U-bend transitions in the first row tubing in Westinghouse 51 Series Steam Generators has been investigated. A method has been developed for detection of the opposite transition in the U-bend and for defining its severity. Investigation included two different types of U-bend transitions. Using the developed eddy current method for U-bend characterization, on-site inspection was performed on all tubes in the first row in four 51 Series steam generators in Power Plant Unit No. 2 and in one 51 Series steam generator in Power Plant Unit No. 1. The advantages and limitations of the developed method as well as the recommendations for further investigations are included

  13. Some techniques of correlation experiments

    International Nuclear Information System (INIS)

    Allas, R.G.

    1976-01-01

    Some general remarks concerning correlation techniques are made. Most of the remarks are limited to correlated pairs of charged particles. The relatively simple system 3 He + 3 H → A + B + C, where all possible charged particle pairs A,B are detected and particle C is left undetected either charged or neutral, is considered. (G.T.H.)

  14. Nitrous oxide emissions from a beech forest floor measured by eddy covariance and soil enclosure techniques

    DEFF Research Database (Denmark)

    Pihlatie, M.; Rinne, J.; Ambus, P.

    2005-01-01

    Spring time nitrous oxide (N2O) emissions from an old beech (Fagus sylvatica L.) forest were measured with eddy covariance (EC) and chamber techniques. The aim was to obtain information on the spatial and temporal variability in N2O emissions and link the emissions to soil environmental parameters...

  15. Strongly correlated systems experimental techniques

    CERN Document Server

    Mancini, Ferdinando

    2015-01-01

    The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognize...

  16. Application of numerical analysis techniques to eddy current testing for steam generator tubes

    International Nuclear Information System (INIS)

    Morimoto, Kazuo; Satake, Koji; Araki, Yasui; Morimura, Koichi; Tanaka, Michio; Shimizu, Naoya; Iwahashi, Yoichi

    1994-01-01

    This paper describes the application of numerical analysis to eddy current testing (ECT) for steam generator tubes. A symmetrical and three-dimensional sinusoidal steady state eddy current analysis code was developed. This code is formulated by future element method-boundary element method coupling techniques, in order not to regenerate the mesh data in the tube domain at every movement of the probe. The calculations were carried out under various conditions including those for various probe types, defect orientations and so on. Compared with the experimental data, it was shown that it is feasible to apply this code to actual use. Furthermore, we have developed a total eddy current analysis system which consists of an ECT calculation code, an automatic mesh generator for analysis, a database and display software for calculated results. ((orig.))

  17. Multiscale correlations in highly resolved Large Eddy Simulations

    Science.gov (United States)

    Biferale, Luca; Buzzicotti, Michele; Linkmann, Moritz

    2017-11-01

    Understanding multiscale turbulent statistics is one of the key challenges for many modern applied and fundamental problems in fluid dynamics. One of the main obstacles is the existence of anomalously strong non Gaussian fluctuations, which become more and more important with increasing Reynolds number. In order to assess the performance of LES models in reproducing these extreme events with reasonable accuracy, it is helpful to further understand the statistical properties of the coupling between the resolved and the subgrid scales. We present analytical and numerical results focussing on the multiscale correlations between the subgrid stress and the resolved velocity field obtained both from LES and filtered DNS data. Furthermore, a comparison is carried out between LES and DNS results concerning the scaling behaviour of higher-order structure functions using both Smagorinsky or self-similar Fourier sub-grid models. ERC AdG Grant No 339032 NewTURB.

  18. Improvement of ISI techniques by multi-frequency eddy current testing method for steam generator tube in PWR plant

    International Nuclear Information System (INIS)

    Endo, Takashi; Kamimura, Takeo; Nishihara, Masatoshi; Araki, Yasuo; Fukui, Shigetaka.

    1982-05-01

    Eddy current flaw detection techniques are applied to the in-service inspection (ISI) of steam generator tubes in pressurized water reactors (PWR) plant. To improve the reliability and operating efficiency of the plants, efforts are being made to develop eddy current testing methods of various kinds. Multi-frequency eddy current testing method, one of new method, has recently been applied to actual heat exchanger tubes, contributing to the improvement of the detectability and signal evaluation of the ISI. The outline of multi-frequency eddy current testing method and its effects on the improvement of flaw detecting and signal evaluation accuracy are described. (author)

  19. An Eddy Current Testing Platform System for Pipe Defect Inspection Based on an Optimized Eddy Current Technique Probe Design

    Science.gov (United States)

    Rifai, Damhuji; Abdalla, Ahmed N.; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A.

    2017-01-01

    The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient. PMID:28335399

  20. FORTRAN programs for transient eddy current calculations using a perturbation-polynomial expansion technique

    International Nuclear Information System (INIS)

    Carpenter, K.H.

    1976-11-01

    A description is given of FORTRAN programs for transient eddy current calculations in thin, non-magnetic conductors using a perturbation-polynomial expansion technique. Basic equations are presented as well as flow charts for the programs implementing them. The implementation is in two steps--a batch program to produce an intermediate data file and interactive programs to produce graphical output. FORTRAN source listings are included for all program elements, and sample inputs and outputs are given for the major programs

  1. A comparison of methane emission measurements using eddy covariance and manual and automated chamber-based techniques in Tibetan Plateau alpine wetland

    International Nuclear Information System (INIS)

    Yu, Lingfei; Wang, Hao; Wang, Guangshuai; Song, Weimin; Huang, Yao; Li, Sheng-Gong; Liang, Naishen; Tang, Yanhong; He, Jin-Sheng

    2013-01-01

    Comparing of different CH 4 flux measurement techniques allows for the independent evaluation of the performance and reliability of those techniques. We compared three approaches, the traditional discrete Manual Static Chamber (MSC), Continuous Automated Chamber (CAC) and Eddy Covariance (EC) methods of measuring the CH 4 fluxes in an alpine wetland. We found a good agreement among the three methods in the seasonal CH 4 flux patterns, but the diurnal patterns from both the CAC and EC methods differed. While the diurnal CH 4 flux variation from the CAC method was positively correlated with the soil temperature, the diurnal variation from the EC method was closely correlated with the solar radiation and net CO 2 fluxes during the daytime but was correlated with the soil temperature at nighttime. The MSC method showed 25.3% and 7.6% greater CH 4 fluxes than the CAC and EC methods when measured between 09:00 h and 12:00 h, respectively. -- Highlights: •Chamber and eddy covariance methods showed similar seasonal CH 4 flux patterns. •Chamber and eddy covariance methods showed different diurnal CH 4 flux patterns. •Static chamber methods gave a higher magnitude of CH 4 flux. -- The chamber-based methods and the eddy covariance method showed similar seasonal CH 4 flux patterns, but the manual static chamber method resulted in a higher CH 4 flux measurement

  2. Eddy current technique for detecting and sizing surface cracks in steel components

    International Nuclear Information System (INIS)

    Cecco, V.S.; Carter, J.R.; Sullivan, S.P.

    1995-01-01

    Cracking has occurred in pressure vessel nozzles and girth welds due to thermal fatigue. Pipe welds, welds in support structures, and welds in reactor vault liner panels in nuclear facilities have failed because of cracks. Cracking can also occur in turbine rotor bore surfaces due to high cycle fatigue. Dye penetrant, magnetic particle and other surface NDT methods are used to detect cracks but cannot be used for depth sizing. Crack depth can be measured with various NDT methods such as ultrasonic time-of-flight diffraction (TOFD), potential drop, and eddy current. The TOFD technique can be difficult to implement on nozzle welds and is best suited for sizing deep cracks (>5 mm). The conventional eddy current method is easy to implement, but crack sizing is normally limited to shallow cracks ( 2 mm) cracks. Eddy current testing (ET) techniques are readily amenable to remote/automatic inspections. These new probes could augment present magnetic particle (MT) and dye penetrant (PT) testing through provision of reliable defect depth information. Reliable crack sizing permits identification of critical cracks for plant life extension and licensing purposes. In addition, performing PT and MT generates low level radioactive waste in some inspection applications in nuclear facilities. Replacing these techniques with ET for some components will eliminate some of this radioactive waste. (author)

  3. Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced Eddy Current Techniques

    Science.gov (United States)

    Todorov, E. I.; Mohr, W. C.; Lozev, M. G.

    2008-02-01

    Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced eddy current (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.

  4. Techniques for processing remote field eddy current signals from bend regions of steam generator tubes of prototype fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thirunavukkarasu, S. [Non Destructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, TN 603 102 (India); Rao, B.P.C., E-mail: bpcrao@igcar.gov.in [Non Destructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, TN 603 102 (India); Jayakumar, T.; Raj, Baldev [Non Destructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, TN 603 102 (India)

    2011-04-15

    Steam generator (SG) is one of the most critical components of sodium cooled fast breeder reactor. Remote field eddy current (RFEC) technique has been chosen for in-service inspection (ISI) of these ferromagnetic SG tubes made of modified 9Cr-1Mo steel (Grade 91). Expansion bends are provided in the SGs to accommodate differential thermal expansion. During ISI using RFEC technique, in expansion bend regions, exciter-receiver coil misalignment, bending stresses, probe wobble and magnetic permeability variations produce disturbing noise hindering detection of defects. Fourier filtering, cross-correlation and wavelet transform techniques have been studied for noise reduction as well as enhancement of RFEC signals of defects in bend regions, having machined grooves and localized defects. Performance of these three techniques has been compared using signal-to-noise ratio (SNR). Fourier filtering technique has shown better performance for noise reduction while cross-correlation technique has resulted in significant enhancement of signals. Wavelet transform technique has shown the combined capability of noise reduction and signal enhancement and resulted in unambiguous detection of 10% of wall loss grooves and localized defects in the bend regions with SNR better than 7 dB.

  5. CANDU fuel sheath integrity and oxide layer thickness determination by Eddy current technique

    International Nuclear Information System (INIS)

    Gheorghe, Gabriela; Man, Ion; Parvan, Marcel; Valeca, Serban

    2010-01-01

    This paper presents results concerning the integrity assessment of the fuel elements cladding and measurements of the oxide layer on sheaths, using the eddy current technique. Flaw detection using eddy current provides information about the integrity of fuel element sheath or presence of defects in the sheath produced by irradiation. The control equipment consists of a flaw detector with eddy currents, operable in the frequency range 10 Hz to 10 MHz, and a differential probe. The calibration of the flaw detector is done using artificial defects (longitudinal, transversal, external and internal notches, bored and unbored holes) obtained on Zircaloy-4 tubes identical to those out of which the sheath of the CANDU fuel element is manufactured (having a diameter of 13.08 mm and a wall thickness of 0.4 mm). When analyzing the behavior of the fuel elements' cladding facing the corrosion is important to know the thickness of the zirconium oxide layer. The calibration of the device measuring the thickness of the oxide layer is done using a Zircaloy-4 tube identical to that which the cladding of the CANDU fuel element is manufactured of, and calibration foils, as well. (authors)

  6. Effects of transient bottom water currents and oxygen concentrations on benthic exchange rates as assessed by eddy correlation measurements

    DEFF Research Database (Denmark)

    Holtappels, Moritz; Glud, Ronnie N.; Doris, Daphne

    2013-01-01

    Eddy correlation (EC) measurements in the benthic boundary layer (BBL) allow estimating benthic O2 uptake from a point distant to the sediment surface. This noninvasive approach has clear advantages as it does not disturb natural hydrodynamic conditions, integrates the flux over a large foot-print...... area and allows many repetitive flux measurements. A drawback is, however, that the measured flux in the bottom water is not necessarily equal to the flux across the sediment-water interface. A fundamental assumption of the EC technique is that mean current velocities and mean O2 concentrations...... in the bottom water are in steady state, which is seldom the case in highly dynamic environments like coastal waters. Therefore, it is of great importance to estimate the error introduced by nonsteady state conditions. We investigated two cases of transient conditions. First, the case of transient O2...

  7. Impact of water use efficiency on eddy covariance flux partitioning using correlation structure analysis

    Science.gov (United States)

    Anderson, Ray; Skaggs, Todd; Alfieri, Joseph; Kustas, William; Wang, Dong; Ayars, James

    2016-04-01

    Partitioned land surfaces fluxes (e.g. evaporation, transpiration, photosynthesis, and ecosystem respiration) are needed as input, calibration, and validation data for numerous hydrological and land surface models. However, one of the most commonly used techniques for measuring land surface fluxes, Eddy Covariance (EC), can directly measure net, combined water and carbon fluxes (evapotranspiration and net ecosystem exchange/productivity). Analysis of the correlation structure of high frequency EC time series (hereafter flux partitioning or FP) has been proposed to directly partition net EC fluxes into their constituent components using leaf-level water use efficiency (WUE) data to separate stomatal and non-stomatal transport processes. FP has significant logistical and spatial representativeness advantages over other partitioning approaches (e.g. isotopic fluxes, sap flow, microlysimeters), but the performance of the FP algorithm is reliant on the accuracy of the intercellular CO2 (ci) concentration used to parameterize WUE for each flux averaging interval. In this study, we tested several parameterizations for ci as a function of atmospheric CO2 (ca), including (1) a constant ci/ca ratio for C3 and C4 photosynthetic pathway plants, (2) species-specific ci/ca-Vapor Pressure Deficit (VPD) relationships (quadratic and linear), and (3) generalized C3 and C4 photosynthetic pathway ci/ca-VPD relationships. We tested these ci parameterizations at three agricultural EC towers from 2011-present in C4 and C3 crops (sugarcane - Saccharum officinarum L. and peach - Prunus persica), and validated again sap-flow sensors installed at the peach site. The peach results show that the species-specific parameterizations driven FP algorithm came to convergence significantly more frequently (~20% more frequently) than the constant ci/ca ratio or generic C3-VPD relationship. The FP algorithm parameterizations with a generic VPD relationship also had slightly higher transpiration (5 Wm-2

  8. Application of eddy current inversion technique to the sizing of defects in Inconel welds with rough surfaces

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Machida, Eiji; Janousek, Ladislav; Rebican, Mihai; Chen, Zhenmao; Miya, Kenzo

    2005-01-01

    This paper evaluates the applicability of eddy current inversion techniques to the sizing of defects in Inconel welds with rough surfaces. For this purpose, a plate Inconel weld specimen, which models the welding of a stub tube in a boiling water nuclear reactor is fabricated, and artificial notches machined into the specimen. Eddy current inspections using six different eddy current probes are conducted and efficiencies were evaluated for the six probes for weld inspection. It is revealed that if suitable probes are applied, an Inconel weld does not cause large noise levels during eddy current inspections even though the surface of the weld is rough. Finally, reconstruction of the notches is performed using eddy current signals measured using the uniform eddy current probe that showed the best results among the six probes in this study. A simplified configuration is proposed in order to consider the complicated configuration of the welded specimen in numerical simulations. While reconstructed profiles of the notches are slightly larger than the true profiles, quite good agreements are obtained in spite of the simple approximation of the configuration, which reveals that eddy current testing would be an efficient non-destructive testing method for the sizing of defects in Inconel welds

  9. Applications of pulsed Eddy Current (PEC) technique on defect and material assessment

    International Nuclear Information System (INIS)

    Nurul A'in Ahmad Latif; Noorhazleena Azaman; Ilham Mukriz Zainal Abidin

    2014-01-01

    The pulsed eddy current (PEC) is an emerging electromagnetic method and widely used in multiple field including aerospace, petrochemical, industry and transportation. PEC mainly depends on the multiple variables such as peak value and rising time to detect and quantify the defects. Apart of its advantage as non contacting technique, it has ability on conducting surface and subsurface detection. Additionally, PEC is high sensitive to variety parameters that are inherent in the flaws. Compare to conventional eddy current, PEC allows deeper penetration as it is a combination from multiple frequencies. This paper demonstrates the abilities of PEC technique performing multiple testing in various fields such as conducting conductivity testing, measuring the material thickness and identifying depth of the defects. The conductivity testing will be performed on multiple materials such as aluminium, stainless steel, copper, austenitic steel and titanium. To measure the material thicknesses, PEC testing will be conducted on the multi layered specimen with the different thickness. Meanwhile to identify depth of defects, the testing will be carried out using a stainless steel calibration block contains multiple length of defect. For the validation purposes, all the results generate through the experiments will be compared with simulation results produced using dedicated software, COMSOL. (author)

  10. Application of an eddy correlation system for the estimation of oxygen benthic fluxes in coastal permeable sediments impacted by submarine groundwater discharge

    Science.gov (United States)

    Donis, D.; Janssen, F.; Böttcher, M.; McGinnis, D.; Holtappels, M.; Wenzhöfer, F.

    2012-04-01

    Measurements of solute exchange across the sediment-water interface are crucial for marine environment monitoring. This interface has fundamental filter functions for the mass exchange between the seafloor and the water column. Being a non-invasive technique, the eddy correlation method, is probably the most accurate measurement for benthic fluxes. It does not interfere with local hydrodynamics and integrates over large areas, showing considerable advantages compared to traditional methods, i.e., microprofiles and benthic chambers. One of the most important exchange processes across the sediment-water interface is flux of oxygen, which is a predominant control factor for the biogeochemical activity in the sediment, carbon processing and the composition of benthic communities. The eddy correlation method performs simultaneous recordings of vertical velocities and oxygen concentrations at a specific distance to the seafloor and is becoming a standard method for resolving dissolved oxygen fluxes in aquatic systems. However, data treatment and interpretation, especially in shallow environments, is still challenging. One major concern in eddy correlation studies of coastal environments is how to consider surface wave motions that can dominate the turbulence range and that may bias flux calculations. A critical part of the data treatment thus is the removal of wave biases from the vertical velocity component, by separating the wave frequency oscillations (due to a tilted or miss-aligned sensor) from those containing meaningful flux contributions. Here we present in situ benthic oxygen exchange rates as determined by an eddy correlation system (ECS) and simultaneously deployed stirred benthic chambers. The study was carried out in a coastal ecosystem of the southern Baltic Sea that was impacted by low salinity groundwater discharge (Hel peninsula, Poland). Oxygen fluxes determined with ECS compared well with results from benthic chambers. Flux data and seepage rates are

  11. Applicability of eddy current inversion techniques to the sizing of defects in Inconel welds of BWR internals

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Janousek, Ladislav; Rebican, Mihai; Chen, Zhenmao; Miya, Kenzo; Machida, Eiji

    2004-01-01

    This paper evaluates the applicability of eddy current inversion techniques to the sizing of defects in Inconel welds with rough surfaces. For this purpose, a plate Inconel weld specimen, which models the welding of a stub tube in a boiling water nuclear reactor, is fabricated, and artificial notches machined into the specimen. Eddy current inspections using six probes in weld inspection evaluated. It is revealed that if suitable probes are applied, an Inconel weld does not provide large noise signals in eddy current inspections even though the surface of the weld is rough. Finally, reconstruction of the notches are performed using eddy current signals measured with the use of the uniform eddy current probe that showed the best results among the six probes in the inspection. A simplified configuration is proposed in order to consider the complicated configuration of the welded specimen in numerical simulations. While reconstructed profiles of the notches are slightly larger than the true profiles, quite good agreements are obtained in spite of the simple approximation of the configuration, which reveals that eddy current testing would be an efficient non-destructive testing method for the sizing of defects in Inconel welds. (author)

  12. Particular treatments in Eddy current technique. Application to the control of corrugated tubes

    International Nuclear Information System (INIS)

    1982-11-01

    When the testing of a given product shows that, owing to a particular shape of this product or to its environment, disturbing effects can hide the presence of harmful defects, use must be made of testing artifices or particular treatments enabling an efficient examination to be made. On this score, many eddy current problems are solved by means of the following processes: - use of specific sensors adapted to the geometry of the product, - spectral analysis of the analog results of analyses, - combination of the results of analyses obtained simultaneously at different frequencies (multifrequency techniques). An example of an application is given for corrugated tubes achieved by hollow and helical milling of smooth tubes [fr

  13. Sensor Fusion Techniques for Phased-Array Eddy Current and Phased-Array Ultrasound Data

    Energy Technology Data Exchange (ETDEWEB)

    Arrowood, Lloyd F. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2018-03-15

    Sensor (or Data) fusion is the process of integrating multiple data sources to produce more consistent, accurate and comprehensive information than is provided by a single data source. Sensor fusion may also be used to combine multiple signals from a single modality to improve the performance of a particular inspection technique. Industrial nondestructive testing may utilize multiple sensors to acquire inspection data depending upon the object under inspection and the anticipated types of defects that can be identified. Sensor fusion can be performed at various levels of signal abstraction with each having its strengths and weaknesses. A multimodal data fusion strategy first proposed by Heideklang and Shokouhi that combines spatially scattered detection locations to improve detection performance of surface-breaking and near-surface cracks in ferromagnetic metals is shown using a surface inspection example and is then extended for volumetric inspections. Utilizing data acquired from an Olympus Omniscan MX2 from both phased array eddy current and ultrasound probes on test phantoms, single and multilevel fusion techniques are employed to integrate signals from the two modalities. Preliminary results demonstrate how confidence in defect identification and interpretation benefit from sensor fusion techniques. Lastly, techniques for integrating data into radiographic and volumetric imagery from computed tomography are described and results are presented.

  14. Experience with the Large Eddy Simulation (LES) Technique for the Modelling of Premixed and Non-premixed Combustion

    OpenAIRE

    Malalasekera, W; Ibrahim, SS; Masri, AR; Gubba, SR; Sadasivuni, SK

    2013-01-01

    Compared to RANS based combustion modelling, the Large Eddy Simulation (LES) technique has recently emerged as a more accurate and very adaptable technique in terms of handling complex turbulent interactions in combustion modelling problems. In this paper application of LES based combustion modelling technique and the validation of models in non-premixed and premixed situations are considered. Two well defined experimental configurations where high quality data are available for validation is...

  15. First measurements of H2O2 and organic peroxide surface fluces by the Relaxed Eddy Accumulation technique

    NARCIS (Netherlands)

    Valverde-Canossa, J.; Ganzeveld, L.N.; Rappenglück, B.; Steinbrecher, R.; Klemm, O.; Schuster, G.; Moortgat, G.K.

    2006-01-01

    The relaxed eddy-accumulation (REA) technique was specially adapted to a high-performance liquid chromatographer (enzymatic method) and scrubbing coils to measure concentrations and fluxes of hydrogen peroxide (H2O2) and organic peroxides with a carbon chain C4, of which only methylhydroperoxide

  16. Analysis of Grassland Ecosystem Physiology at Multiple Scales Using Eddy Covariance, Stable Isotope and Remote Sensing Techniques

    Science.gov (United States)

    Flanagan, L. B.; Geske, N.; Emrick, C.; Johnson, B. G.

    2006-12-01

    Grassland ecosystems typically exhibit very large annual fluctuations in above-ground biomass production and net ecosystem productivity (NEP). Eddy covariance flux measurements, plant stable isotope analyses, and canopy spectral reflectance techniques have been applied to study environmental constraints on grassland ecosystem productivity and the acclimation responses of the ecosystem at a site near Lethbridge, Alberta, Canada. We have observed substantial interannual variation in grassland productivity during 1999-2005. In addition, there was a strong correlation between peak above-ground biomass production and NEP calculated from eddy covariance measurements. Interannual variation in NEP was strongly controlled by the total amount of precipitation received during the growing season (April-August). We also observed significant positive correlations between a multivariate ENSO index and total growing season precipitation, and between the ENSO index and annual NEP values. This suggested that a significant fraction of the annual variability in grassland productivity was associated with ENSO during 1999-2005. Grassland productivity varies asymmetrically in response to changes in precipitation with increases in productivity during wet years being much more pronounced than reductions during dry years. Strong increases in plant water-use efficiency, based on carbon and oxygen stable isotope analyses, contribute to the resilience of productivity during times of drought. Within a growing season increased stomatal limitation of photosynthesis, associated with improved water-use efficiency, resulted in apparent shifts in leaf xanthophyll cycle pigments and changes to the Photochemical Reflectance Index (PRI) calculated from hyper-spectral reflectance measurements conducted at the canopy-scale. These shifts in PRI were apparent before seasonal drought caused significant reductions in leaf area index (LAI) and changes to canopy-scale "greenness" based on NDVI values. With

  17. A comparative study on the property determination of metal matrix composites using ultrasonic and eddy current techniques

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo

    1997-01-01

    Ultrasonic and eddy current methods were developed for the quantitative determination of material properties in particulate reinforced metal matrix composites. The proposed techniques employed measurements of ultrasonic velocity and eddy current conductivity, together with theoretical models which relate the effective anisotropic properties of the composites to their microstructures. The approach was used for a wide range of SiC particulate reinforced Al matrix(SiC p /Al) composites to estimate the particulate volume fractions of the composites. The SiC p volume fraction was calculated by coupling the measured velocity and conductivity with their corresponding model predictions. Both methods were shown to be reliable in determining the reinforcement volume fractions. However, the ultrasonic method was found to be better than the eddy current method, since the electrical conductivity was sensitive to the presence of intermetallic compounds formed during processing stage.

  18. Comprehensive comparison of gap filling techniques for eddy covariance net carbon fluxes

    Science.gov (United States)

    Moffat, A. M.; Papale, D.; Reichstein, M.; Hollinger, D. Y.; Richardson, A. D.; Barr, A. G.; Beckstein, C.; Braswell, B. H.; Churkina, G.; Desai, A. R.; Falge, E.; Gove, J. H.; Heimann, M.; Hui, D.; Jarvis, A. J.; Kattge, J.; Noormets, A.; Stauch, V. J.

    2007-12-01

    Review of fifteen techniques for estimating missing values of net ecosystem CO2 exchange (NEE) in eddy covariance time series and evaluation of their performance for different artificial gap scenarios based on a set of ten benchmark datasets from six forested sites in Europe. The goal of gap filling is the reproduction of the NEE time series and hence this present work focuses on estimating missing NEE values, not on editing or the removal of suspect values in these time series due to systematic errors in the measurements (e.g. nighttime flux, advection). The gap filling was examined by generating fifty secondary datasets with artificial gaps (ranging in length from single half-hours to twelve consecutive days) for each benchmark dataset and evaluating the performance with a variety of statistical metrics. The performance of the gap filling varied among sites and depended on the level of aggregation (native half- hourly time step versus daily), long gaps were more difficult to fill than short gaps, and differences among the techniques were more pronounced during the day than at night. The non-linear regression techniques (NLRs), the look-up table (LUT), marginal distribution sampling (MDS), and the semi-parametric model (SPM) generally showed good overall performance. The artificial neural network based techniques (ANNs) were generally, if only slightly, superior to the other techniques. The simple interpolation technique of mean diurnal variation (MDV) showed a moderate but consistent performance. Several sophisticated techniques, the dual unscented Kalman filter (UKF), the multiple imputation method (MIM), the terrestrial biosphere model (BETHY), but also one of the ANNs and one of the NLRs showed high biases which resulted in a low reliability of the annual sums, indicating that additional development might be needed. An uncertainty analysis comparing the estimated random error in the ten benchmark datasets with the artificial gap residuals suggested that the

  19. USE OF RELAXED EDDY ACCUMULATION TO MEASURE BIOSPHERE-ATMOSPHERE EXCHANGE OF ISOPRENE AND OTHER BIOLOGICAL TRACE GASES

    Science.gov (United States)

    The micrometeorological flux measurement technique known as relaxed eddy accumulation (REA) holds promise as a powerful new tool for ecologists. The more popular eddy covariance (eddy correlation) technique requires the use of sensors that can respond at fast rates (10 Hz), and t...

  20. Non destructive technique for cracks detection by an eddy current in differential mode for steel frames

    International Nuclear Information System (INIS)

    Harzalla, S.; Chabaat, M.; Belgacem, F. Bin Muhammad

    2014-01-01

    In this paper, a nondestructive technique is used as a tool to control cracks and microcracks in materials. A simulation by a numerical approach such as the finite element method is employed to detect cracks and eventually; to study their propagation using a crucial parameter such as the stress intensity factor. This approach has been used in the aircraft industry to control cracks. Besides, it makes it possible to highlight the defects of parts while preserving the integrity of the controlled products. On the other side, it is proven that the reliability of the control of defects gives convincing results for the improvement of the quality and the safety of the material. Eddy current testing (ECT) is a standard technique in industry for the detection of surface breaking flaws in magnetic materials such as steels. In this context, simulation tools can be used to improve the understanding of experimental signals, optimize the design of sensors or evaluate the performance of ECT procedures. CEA-LIST has developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. The developments presented herein address the case of flaws located inside a planar and magnetic medium. Simulation results are obtained through the application of the Volume Integral Method (VIM). When considering the ECT of a single flaw, a system of two differential equations is derived from Maxwell equations. The numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments. Besides, a probe response is calculated by application of the Lorentz reciprocity theorem. Finally, the approach itself as well as comparisons between simulation results and measured data are presented

  1. Non destructive technique for cracks detection by an eddy current in differential mode for steel frames

    Energy Technology Data Exchange (ETDEWEB)

    Harzalla, S., E-mail: harzallahozil@yahoo.fr; Chabaat, M., E-mail: mchabaat@yahoo.com [Built Environmental Research Laboratory, Civil Engineering Faculty, University of Sciences and Technology Houari Boumediene, B.P. 32 El Alia Bab-Ezzouar, Algiers 16111 (Algeria); Belgacem, F. Bin Muhammad, E-mail: fbmbelgacem@gmail.com [Department of Mathematics, Faculty of Basic Education, PAAET, Al-Aardhia (Kuwait)

    2014-12-10

    In this paper, a nondestructive technique is used as a tool to control cracks and microcracks in materials. A simulation by a numerical approach such as the finite element method is employed to detect cracks and eventually; to study their propagation using a crucial parameter such as the stress intensity factor. This approach has been used in the aircraft industry to control cracks. Besides, it makes it possible to highlight the defects of parts while preserving the integrity of the controlled products. On the other side, it is proven that the reliability of the control of defects gives convincing results for the improvement of the quality and the safety of the material. Eddy current testing (ECT) is a standard technique in industry for the detection of surface breaking flaws in magnetic materials such as steels. In this context, simulation tools can be used to improve the understanding of experimental signals, optimize the design of sensors or evaluate the performance of ECT procedures. CEA-LIST has developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. The developments presented herein address the case of flaws located inside a planar and magnetic medium. Simulation results are obtained through the application of the Volume Integral Method (VIM). When considering the ECT of a single flaw, a system of two differential equations is derived from Maxwell equations. The numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments. Besides, a probe response is calculated by application of the Lorentz reciprocity theorem. Finally, the approach itself as well as comparisons between simulation results and measured data are presented.

  2. Sediment-water gas exchange in two Swedish lakes measured by Eddy Correlation

    Science.gov (United States)

    Kokic, J.; Sahlee, E.; Brand, A.; Sobek, S.

    2014-12-01

    Lake sediments are hotspots for carbon (C) cycling, acting both as sinks and sources through C burial and production of carbon dioxide (CO2) and methane. The fate of this CO2 in the water column is controlled by bottom water turbulence, a factor not accounted for in current estimates of sediment CO2 fluxes. This study is aimed to quantify the turbulent CO2 flux across the sediment-water interface (SWI) by measuring the oxygen (O2) flux with the non-invasive Eddy Correlation (EC) method that combines measurements of 3D velocity (ADV) and O2 fluctuations with a microsensor. Using the metabolic relation (respiratory quotient, RQ) of O2 and CO2 derived from a sediment incubation experiment we present the first estimates of turbulent lake sediment CO2 flux from two boreal lakes in Sweden (Erssjön and Erken, 0.07 km2 and 23.7 km2 respectively). Only ~10 % of the total dataset was extracted for flux calculations due to poor signal-to-noise ratio in the velocity and O2 signals. The sediment in Lake Erssjön was both consuming and producing O2, related to bacterial respiration and photosynthesis. Mean O2 flux was -0.19 and 0.17 μmol O2 m-2 sec-1, comparing to 0.04 μmol O2 m-2 sec-1 derived from the sediment incubation experiment. Fluxes for Lake Erken are still to be determined. Experimentally derived RQ of the both lake sediments were close to unity implying that in-situ CO2 fluxes are of similar magnitude as O2 fluxes, varying between -0.15 and 0.18 μmol C m-2 sec-1. The first measurement of turbulent sediment O2 flux and estimate of turbulent CO2 flux from a small boreal lake show higher and more variable fluxes than previously found in experimental studies. The low amount of data extracted for flux calculations (~10%) point towards the difficulties in EC measurement in low-turbulence environments. On-going work focuses on the turbulence structure in lakes and its influence on the gas fluxes at the SWI.

  3. Annular gap measurement between pressure tube and calandria tube by eddy current technique

    International Nuclear Information System (INIS)

    Bhole, V.M.; Rastogi, P.K.; Kulkarni, P.G.

    1992-01-01

    In pressurised heavy water reactor (PHWR) major distinguishing feature is that there are number of identical fuel channels in the reactor core. Each channel consists of pressure tube of Zr-2.5 Nb or zircaloy-2 through which high temperature, high pressure primary coolant is passing. The pressure tube contains fuel. Surrounding the pressure tube there is low pressure, cool heavy water (moderator). The moderator is thermally separated from coolant by the tube which is nominally concentric with pressure tube called calandria tube. There are four garter springs in the annular gap between pressure tube and calandria tube. During the life of the reactor there are number of factors by which the pressure tube sags, most important factors are irradiation creep, thermal creep, fuel load etc. Because of the sag of pressure tube it can touch the calandria tube resulting in formation of cold spot. This leads to hydrogen concentration at that spot by which the material at that place becomes brittle and can lead to catastrophic failure of pressure tube. There is no useful access for measurement of annular gap either through the gas annular space or from exterior of calandria tube. So the annular gap was measured from inside surface of pressure tube which is accessible. Eddy current technique was used for finding the gap. The paper describe the details of split coil design of bobbin probe, selection of operating point on normalised impedance diagram by choosing frequency. Experimental results on full scale mock up, and actual gap measurement in reactor channel, are also given. (author). 7 figs

  4. Objective mapping of observed sub-surface mesoscale cold core eddy in the Bay of Bengal by stochastic inverse technique with tomographically simulated travel times

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Rao, M.M.M.; Sadhuram, Y.; Sridevi, B.; Maneesha, K.; SujithKumar, S.; Prasanna, P.L.; Murthy, K.S.R.

    of Bengal during south-west monsoon season and explore possibility to reconstruct the acoustic profile of the eddy by Stochastic Inverse Technique. A simulation experiment on forward and inverse problems for observed sound velocity perturbation field has...

  5. On the use of the Webb-Pearman-Leuning theory for closed-path eddy correlation measurements

    DEFF Research Database (Denmark)

    Ibrom, Andreas; Dellwik, Ebba; Larsen, Søren Ejling

    2007-01-01

    We consider an imperfection of real closed-path eddy correlation systems-the decoupling of the water vapour and CO2 concentrations-with respect to the application of the Webb-Pearman-Leuning (WPL) theory. It is described why and how the current application of the WPL theory needs to be adapted...... into account, over-corrected the annual flux by 21%, or 31 g m(-2) yr(-1), to which the decoupling effect contributed with 7%. We suggest either converting the raw data point-by-point to mixing ratios or using the uncorrected covariances of water vapour mole fractions with the vertical wind velocity that were...

  6. Implementation of isotope correlation technique for safeguards

    International Nuclear Information System (INIS)

    Persiani, P.J.; Bucher, R.G.

    1989-01-01

    The isotopic correlation technique (ICT) is based on the fundamental physics principle that the isotopic compositions of nuclear material in the fuel cycle systems contain information regarding the design and history of nuclear material flow from fuel fabrication, reactor operation, and through input to the reprocessing plant. Isotopic Correlation in conjunction with the gravimetric (or Pu/U) method for mass determination can be developed to provide an independent in-field verification of the reprocessing input accountancy at the dissolver and/or accountancy stage of the reprocessing plant. The Argonne National Laboratory program in isotope correlation techniques is based on three-dimensional reactor physics calculations of characteristic geometries/composition in each reactor class. 10 refs., 1 fig., 3 tabs

  7. Characterization of Elastic and Plastic Behaviors in Steel Plate Based on Eddy Current Technique Using a Portable Impedance Analyzer

    Directory of Open Access Journals (Sweden)

    Meng Fanlin

    2017-01-01

    Full Text Available A portable impedance analyzer (PIA was developed based on a TiePie-HS3 device to provide the comparable impedance measurement accuracy of the Agilent 4294a impedance analyzer in the frequency range of 0~250 kHz. Then the PIA was applied to monitor the tensile stress-induced variation of the eddy current sensor’s impedance in a medium-carbon steel sample. A model of equivalent magnetic field induced by the elastic stress and the number of pinning sites indicated that the inductance of the eddy current loop firstly increased with the increase in the tensile stress and then decreased at the yield point of the material. The experimental results testified that the variation of impedance amplitude, the variation of phase angle, and the shift of two featured frequencies demonstrated opposite variation trends before and after the yield point, as predicated by the model. A new parameter, which combined the impedance variation information of the selected two frequencies, was found to exhibit nearly monotonous dependency on the tensile stress in elastic and plastic stages. The new parameter together with the developed portable impedance analyzer provided the solution to identify the elastic and plastic behaviors in ferromagnetic materials in practical applications with an eddy current technique.

  8. Sensitive technique for detecting outer defect on tube with remote field eddy current testing

    International Nuclear Information System (INIS)

    Kobayashi, Noriyasu; Nagai, Satoshi; Ochiai, Makoto; Jimbo, Noboru; Komai, Masafumi

    2008-01-01

    In the remote field eddy current testing, we proposed the method of enhancing the magnetic flux density in the vicinity of an exciter coil by controlling the magnetic flux direction for increasing the sensitivity of detecting outer defects on a tube and used the flux guide made of a magnetic material for the method. The optimum structural shape of the flux guide was designed by the magnetic field analysis. On the experiment with the application of the flux guide, the magnetic flux density increased by 59% and the artificial defect detection signal became clear. We confirmed the proposed method was effective in a high sensitivity. (author)

  9. Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems

    DEFF Research Database (Denmark)

    Ibrom, Andreas; Dellwik, Ebba; Flyvbjerg, Henrik K.

    2007-01-01

    datasets for this substantial measurement error. In contrast to earlier studies, a large number of spectra and raw data have been used in the analysis to define the low-pass filtering characteristic of the EC system. This revealed that the cut-off frequency of the closed-path EC system for water vapour......Turbulent water vapour fluxes measured with closed-path eddy correlation (EC) systems are unintentionally low-pass filtered by the system in a manner that varies with environmental conditions. Why and how is described here. So is the practical method that systematically corrects long-term flux...... concentration measurements decreases exponentially with increasing relative humidity. After correction for this unintended filtering, the fluxes are consistent with CO2 and H2O fluxes that were measured with an open-path sensor at the same time. The correction of water vapour flux measurements over a Beech...

  10. Nondestructive examination of irradiated fuel rods by pulsed eddy current techniques

    International Nuclear Information System (INIS)

    Francis, W.C.; Quapp, W.J.; Martin, M.R.; Gibson, G.W.

    1976-02-01

    A number of fuel rods and unfueled zircaloy cladding tubes which had been irradiated in the Saxton reactor have undergone extensive nondestructive and corroborative destructive examinations by Aerojet Nuclear Company as part of the Water Reactor Safety Research Program, Irradiation Effects Test Series. This report discusses the pulsed eddy current (PEC) nondestructive examinations on the fuel rods and tubing and the metallography results on two fuel rods and one irradiated zircaloy tube. The PEC equipment, designed jointly by Argonne National Laboratory and Aerojet, performed very satisfactorily the functions of diameter, profile, and wall thickness measurements and OD and ID surface defect detection. The destructive examination provided reasonably good confirmation of ''defects'' detected in the nondestructive examination

  11. Detection of wall thinning of carbon steel pipe covered with insulation using Pulsed Eddy Current technique

    International Nuclear Information System (INIS)

    Park, Duckgun; Kishore, M. B.; Lee, D. H.

    2013-01-01

    The test sample is a ferromagnetic carbon steel pipe having different thickness, covered with a 10 cm plastic insulation laminated by 0.4 mm Al plate to simulate the pipelines in NPPs. The PEC Probe used for the wall thinning detection consists of an excitation coil and a Hall sensor. The excitation coils in the probe is driven by a rectangular bipolar current pulse and the Hall-sensor will detects the resultant field. The Hall sensor output is considered as PEC signal. Results shows that the PEC system can detect wall thinning in an insulated pipeline of the NPPs. Local wall thinning in pipelines affects the structural integrity of industries like nuclear power plants (NPPs). In the present study a pulsed eddy current (PEC) technology to detect the wall thing of carbon steel pipe covered with insulation is developed

  12. Investigating the computer analysis of eddy current NDT data

    International Nuclear Information System (INIS)

    Brown, R.L.

    1979-01-01

    The objective of this activity was to investigate and develop techniques for computer analysis of eddy current nondestructive testing (NDT) data. A single frequency commercial eddy current tester and a precision mechanical scanner were interfaced with a PDP-11/34 computer to obtain and analyze eddy current data from samples of 316 stainless steel tubing containing known discontinuities. Among the data analysis techniques investigated were: correlation, Fast Fourier Transforms (FFT), clustering, and Adaptive Learning Networks (ALN). The results were considered encouraging. ALN, for example, correctly identified 88% of the defects and non-defects from a group of 153 signal indications

  13. Modeling and simulation of defects detection in conductive multi-layered pieces by the eddy current technique

    International Nuclear Information System (INIS)

    Bennoud, S; Zergoug, M

    2015-01-01

    It has been shown that the eddy current method is one of the most effective techniques for the detection and characterization of surface and near-surface defects in conductive mediums especially in aluminum alloy. It is one of the most applied methods in industries which require a maximum of reliability and security (aerospace, aeronautics, nuclear, Etc). In this study, a code to solve electromagnetic problems by employing the finite element method is developed. The suggested model can simulate the probe response to the presence of a defect hidden in a multi-layered structure or a riveted structure on aluminum alloy. The developed code is based on the discretization in three dimensions of the Maxwell's equations in harmonic mode by the finite element method based on the combined potential formulations. That will enable us to interpret the results, to present them in graphical form and to carry out simulations for various applications

  14. Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique

    International Nuclear Information System (INIS)

    Rinne, Janne.; Pihlatie, Mari; Haapanala, Sami; Vesala, Timo; Riutta, Terhi; Tuittila, Eeva-Stiina; Aurela, Mika; Tuovinen, Juha-Pekka

    2007-01-01

    The northern wetlands are one of the major sources of methane into the atmosphere. We measured annual methane emission from a boreal minerotrophic fen, Siikaneva, by the eddy covariance method. The average wintertime emissions were below 1 mg/m 2 /h, and the summertime emissions about 3.5 mg/m 2 /h. The water table depth did have any clear effect on methane emissions. During most of the year the emission depended on the temperature of peat below the water table. However, during the high and late summer the emission was independent on peat temperature as well. No diurnal cycle of methane flux was found. The total annual emission from the Siikaneva site was 12.6 g/m 2 . The emissions of the snow free period contributed 91% to the annual emission. The emission pulse during the snow melting period was clearly detectable but of minor importance adding only less than 3% to the annual emission. Over 20% of the carbon assimilated during the year as carbon dioxide was emitted as methane. Thus methane emission is an important component of the carbon balance of the Siikaneva fen. This indicates need of taking methane into account when studying carbon balances of northern fen ecosystems

  15. Hot air impingement on a flat plate using Large Eddy Simulation (LES) technique

    Science.gov (United States)

    Plengsa-ard, C.; Kaewbumrung, M.

    2018-01-01

    Impinging hot gas jets to a flat plate generate very high heat transfer coefficients in the impingement zone. The magnitude of heat transfer prediction near the stagnation point is important and accurate heat flux distribution are needed. This research studies on heat transfer and flow field resulting from a single hot air impinging wall. The simulation is carried out using computational fluid dynamics (CFD) commercial code FLUENT. Large Eddy Simulation (LES) approach with a subgrid-scale Smagorinsky-Lilly model is present. The classical Werner-Wengle wall model is used to compute the predicted results of velocity and temperature near walls. The Smagorinsky constant in the turbulence model is set to 0.1 and is kept constant throughout the investigation. The hot gas jet impingement on the flat plate with a constant surface temperature is chosen to validate the predicted heat flux results with experimental data. The jet Reynolds number is equal to 20,000 and a fixed jet-to-plate spacing of H/D = 2.0. Nusselt number on the impingement surface is calculated. As predicted by the wall model, the instantaneous computed Nusselt number agree fairly well with experimental data. The largest values of calculated Nusselt number are near the stagnation point and decrease monotonically in the wall jet region. Also, the contour plots of instantaneous values of wall heat flux on a flat plate are captured by LES simulation.

  16. Frequency Optimization for Enhancement of Surface Defect Classification Using the Eddy Current Technique

    Science.gov (United States)

    Fan, Mengbao; Wang, Qi; Cao, Binghua; Ye, Bo; Sunny, Ali Imam; Tian, Guiyun

    2016-01-01

    Eddy current testing is quite a popular non-contact and cost-effective method for nondestructive evaluation of product quality and structural integrity. Excitation frequency is one of the key performance factors for defect characterization. In the literature, there are many interesting papers dealing with wide spectral content and optimal frequency in terms of detection sensitivity. However, research activity on frequency optimization with respect to characterization performances is lacking. In this paper, an investigation into optimum excitation frequency has been conducted to enhance surface defect classification performance. The influences of excitation frequency for a group of defects were revealed in terms of detection sensitivity, contrast between defect features, and classification accuracy using kernel principal component analysis (KPCA) and a support vector machine (SVM). It is observed that probe signals are the most sensitive on the whole for a group of defects when excitation frequency is set near the frequency at which maximum probe signals are retrieved for the largest defect. After the use of KPCA, the margins between the defect features are optimum from the perspective of the SVM, which adopts optimal hyperplanes for structure risk minimization. As a result, the best classification accuracy is obtained. The main contribution is that the influences of excitation frequency on defect characterization are interpreted, and experiment-based procedures are proposed to determine the optimal excitation frequency for a group of defects rather than a single defect with respect to optimal characterization performances. PMID:27164112

  17. Fluxes by eddy correlation over heterogeneous landscape: How shall we apply the Reynolds average?

    Science.gov (United States)

    Dobosy, R.

    2007-12-01

    Top-down estimates of carbon exchange across the earth's surface are implicitly an integral scheme, deriving bulk exchanges over large areas. Bottom-up estimates explicitly integrate the individual components of exchange to derive a bulk value. If these approaches are to be properly compared, their estimates should represent the same quantity. Over heterogeneous landscape, eddy-covariance flux computations from towers or aircraft intended for comparison with top-down approach face a question of the proper definition of the mean or base state, the departures from which yield the fluxes by Reynolds averaging. 1)≠Use a global base state derived over a representative sample of the surface, insensitive to land use. The departure quantities then fail to sum to zero over any subsample representing an individual surface type, violating Reynolds criteria. Yet fluxes derived from such subsamples can be directly composed into a bulk flux, globally satisfying Reynolds criteria. 2)≠Use a different base state for each surface type. satisfying Reynolds criteria individually. Then some of the flux may get missed if a surface's characteristics significantly bias its base state. Base state≠(2) is natural for tower samples. Base state≠(1) is natural for airborne samples over heterogeneous landscape, especially in patches smaller than an appropriate averaging length. It appears (1) incorporates a more realistic sample of the flux, though desirably there would be no practical difference between the two schemes. The schemes are related by the expression w¯*a*)C - w¯'a¯')C = w¯'ã¯)C+ wtilde ¯a¯')C+ wtilde ¯ã¯)C Here w is vertical motion, and a is some scalar, such as CO2. The star denotes departure from the global base state≠(1), and the prime from the base state≠(2), defined only over surface class≠C. The overbar with round bracket denotes average over samples drawn from class≠C, determined by footprint model. Thus a¯')C = 0 but a¯*)C ≠ 0 in general. The

  18. An assessment of the precision and confidence of aquatic eddy correlation measurements

    DEFF Research Database (Denmark)

    Donis, Daphne; Holtappels, Moritz; Noss, Christian

    2015-01-01

    facility with well-constrained hydrodynamics. These observations are used to review data processing procedures and to recommend improved deployment methods, thus improving the precision, reliability, and confidence of EC measurements. Specifically, this study demonstrates that 1) the alignment of the time...... series based on maximum cross correlation improved the precision of EC flux estimations; 2) an oxygen sensor with a response time of

  19. In Situ Determination of Thermal Profiles during Czochralski Silicon Crystal Growth by an Eddy Current Technique.

    Science.gov (United States)

    Choe, Kwang Su.

    An eddy current testing method was developed to continuously monitor crystal growth process and determine thermal profiles in situ during Czochralski silicon crystal growth. The work was motivated by the need to improve the quality of the crystal by controlling thermal gradients and annealing history over the growth cycle. The experimental concept is to monitor intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. The experiments were performed in a resistance-heated Czochralski puller with a 203 mm (8 inch) diameter crucible containing 6.5 kg melt. The silicon crystals being grown were about 80 mm in diameter and monitored by an encircling sensor operating at three different test frequencies (86, 53 and 19 kHz). A one-dimensional analytical solution was employed to translate the detected signals into electrical conductivities. In terms of experiments, the effects of changes in growth condition, which is defined by crystal and crucible rotation rates, crucible position, pull rate, and hot-zone configuration, were investigated. Under a given steady-state condition, the thermal profile was usually stable over the entire length of crystal growth. The profile shifted significantly, however, when the crucible rotation rate was kept too high. As a direct evidence to the effects of melt flow on heat transfer process, a thermal gradient minimum was observed about the crystal/crucible rotation combination of 20/-10 rpm cw. The thermal gradient reduction was still most pronounced when the pull rate or the radiant heat loss to the environment was decreased: a nearly flat axial thermal gradient was achieved when either the pull rate was halved or the height of the exposed crucible wall was effectively doubled. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5 ^{rm o}C/mm. Regardless of growth condition, the three-frequency data revealed radial thermal gradients much larger

  20. Estimation of Correlation Functions by the Random Decrement Technique

    DEFF Research Database (Denmark)

    Brincker, Rune; Krenk, Steen; Jensen, Jakob Laigaard

    responses simulated by two SDOF ARMA models loaded by the same bandlimited white noise. The speed and the accuracy of the RDD technique is compared to the Fast Fourier Transform (FFT) technique. The RDD technique does not involve multiplications, but only additions. Therefore, the technique is very fast......The Random Decrement (RDD) Technique is a versatile technique for characterization of random signals in the time domain. In this paper a short review of the theoretical basis is given, and the technique is illustrated by estimating auto-correlation functions and cross-correlation functions on modal...

  1. Estimation of Correlation Functions by the Random Decrement Technique

    DEFF Research Database (Denmark)

    Brincker, Rune; Krenk, Steen; Jensen, Jacob Laigaard

    1991-01-01

    responses simulated by two SDOF ARMA models loaded by the same band-limited white noise. The speed and the accuracy of the RDD technique is compared to the Fast Fourier Transform (FFT) technique. The RDD technique does not involve multiplications, but only additions. Therefore, the technique is very fast......The Random Decrement (RDD) Technique is a versatile technique for characterization of random signals in the time domain. In this paper a short review of the theoretical basis is given, and the technique is illustrated by estimating auto-correlation functions and cross-correlation functions on modal...

  2. Estimation of Correlation Functions by the Random Decrement Technique

    DEFF Research Database (Denmark)

    Brincker, Rune; Krenk, Steen; Jensen, Jakob Laigaard

    1992-01-01

    responses simulated by two SDOF ARMA models loaded by the same bandlimited white noise. The speed and the accuracy of the RDD technique is compared to the Fast Fourier Transform (FFT) technique. The RDD technique does not involve multiplications, but only additions. Therefore, the technique is very fast......The Random Decrement (RDD) Technique is a versatile technique for characterization of random signals in the time domain. In this paper a short review of the theoretical basis is given, and the technique is illustrated by estimating auto-correlation functions and cross-correlation functions on modal...

  3. Comparative CO{sub 2} flux measurements by eddy covariance technique using open- and closed-path gas analysers over the equatorial Pacific Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Fumiyoshi (Graduate School of Natural Science and Technology, Okayama Univ., Okayama (Japan); Atmosphere and Ocean Research Inst., Univ. of Tokyo, Tokyo (Japan)), Email: fkondo@aori.u-tokyo.ac.jp; Tsukamoto, Osamu (Graduate School of Natural Science and Technology, Okayama Univ., Okayama (Japan))

    2012-04-15

    Direct comparison of airsea CO{sub 2} fluxes by open-path eddy covariance (OPEC) and closed-path eddy covariance (CPEC) techniques was carried out over the equatorial Pacific Ocean. Previous studies over oceans have shown that the CO{sub 2} flux by OPEC was larger than the bulk CO{sub 2} flux using the gas transfer velocity estimated by the mass balance technique, while the CO{sub 2} flux by CPEC agreed with the bulk CO{sub 2} flux. We investigated a traditional conflict between the CO{sub 2} flux by the eddy covariance technique and the bulk CO{sub 2} flux, and whether the CO{sub 2} fluctuation attenuated using the closed-path analyser can be measured with sufficient time responses to resolve small CO{sub 2} flux over oceans. Our results showed that the closed-path analyser using a short sampling tube and a high volume air pump can be used to measure the small CO{sub 2} fluctuation over the ocean. Further, the underestimated CO{sub 2} flux by CPEC due to the attenuated fluctuation can be corrected by the bandpass covariance method; its contribution was almost identical to that of H{sub 2}O flux. The CO{sub 2} flux by CPEC agreed with the total CO{sub 2} flux by OPEC with density correction; however, both of them are one order of magnitude larger than the bulk CO{sub 2} flux

  4. Comparative CO2 flux measurements by eddy covariance technique using open- and closed-path gas analysers over the equatorial Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Fumiyoshi Kondo

    2012-04-01

    Full Text Available Direct comparison of air–sea CO2 fluxes by open-path eddy covariance (OPEC and closed-path eddy covariance (CPEC techniques was carried out over the equatorial Pacific Ocean. Previous studies over oceans have shown that the CO2 flux by OPEC was larger than the bulk CO2 flux using the gas transfer velocity estimated by the mass balance technique, while the CO2 flux by CPEC agreed with the bulk CO2 flux. We investigated a traditional conflict between the CO2 flux by the eddy covariance technique and the bulk CO2 flux, and whether the CO2 fluctuation attenuated using the closed-path analyser can be measured with sufficient time responses to resolve small CO2 flux over oceans. Our results showed that the closed-path analyser using a short sampling tube and a high volume air pump can be used to measure the small CO2 fluctuation over the ocean. Further, the underestimated CO2 flux by CPEC due to the attenuated fluctuation can be corrected by the bandpass covariance method; its contribution was almost identical to that of H2O flux. The CO2 flux by CPEC agreed with the total CO2 flux by OPEC with density correction; however, both of them are one order of magnitude larger than the bulk CO2 flux.

  5. Correlation techniques in nuclear power plant monitoring

    International Nuclear Information System (INIS)

    Bastl, W.

    1976-01-01

    Ever increasing effects are recently being made to monitor the mechanical behaviour of the nuclear power plants during operation. For technical as well as economical reasons one is forced to make do with the smallest number of sensors. In order to still obtain efficient control systems, an attempt is made on the one hand to make use of the already existing operational instrumentation, on the other hand to obtain a maximum of information by specific use of few additional sensors. In both cases, correlation analysis plays a large role because an optimum positioning of the sensor is seldom possible and thus, as a rule, the interesting information must be separated from very noisy signals. (orig./LH) [de

  6. Development of Quality Assessment Techniques for Large Eddy Simulation of Propulsion and Power Systems in Complex Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Lacaze, Guilhem [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oefelein, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Large-eddy-simulation (LES) is quickly becoming a method of choice for studying complex thermo-physics in a wide range of propulsion and power systems. It provides a means to study coupled turbulent combustion and flow processes in parameter spaces that are unattainable using direct-numerical-simulation (DNS), with a degree of fidelity that can be far more accurate than conventional engineering methods such as the Reynolds-averaged Navier-Stokes (RANS) approx- imation. However, development of predictive LES is complicated by the complex interdependence of different type of errors coming from numerical methods, algorithms, models and boundary con- ditions. On the other hand, control of accuracy has become a critical aspect in the development of predictive LES for design. The objective of this project is to create a framework of metrics aimed at quantifying the quality and accuracy of state-of-the-art LES in a manner that addresses the myriad of competing interdependencies. In a typical simulation cycle, only 20% of the computational time is actually usable. The rest is spent in case preparation, assessment, and validation, because of the lack of guidelines. This work increases confidence in the accuracy of a given solution while min- imizing the time obtaining the solution. The approach facilitates control of the tradeoffs between cost, accuracy, and uncertainties as a function of fidelity and methods employed. The analysis is coupled with advanced Uncertainty Quantification techniques employed to estimate confidence in model predictions and calibrate model's parameters. This work has provided positive conse- quences on the accuracy of the results delivered by LES and will soon have a broad impact on research supported both by the DOE and elsewhere.

  7. Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance

    Science.gov (United States)

    Krauss, Ken W.; Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Cormier, Nicole; Moss, Rebecca; Johnson, Darren; Neubauer, Scott C; Raynie, Richard C

    2016-01-01

    Coastal marshes take up atmospheric CO2 while emitting CO2, CH4, and N2O. This ability to sequester carbon (C) is much greater for wetlands on a per-area basis than from most ecosystems, facilitating scientific, political, and economic interest in their value as greenhouse gas sinks. However, the greenhouse gas balance of Gulf of Mexico wetlands is particularly understudied. We describe the net ecosystem exchange (NEEc) of CO2 and CH4 using eddy covariance (EC) in comparison with fluxes of CO2, CH4, and N2O using chambers from brackish and freshwater marshes in Louisiana, USA. From EC, we found that 182 g C m-2 y-1 was lost through NEEc from the brackish marsh. Of this, 11 g C m-2 y-1 resulted from net CH4 emissions and the remaining 171 g C m-2 y-1 resulted from net CO2 emissions. In contrast, -290 g C m2 y-1 was taken up through NEEc by the freshwater marsh, with 47 g C m-2 y-1 emitted as CH4 and -337 g C m-2 y-1 taken up as CO2. From chambers, we discovered that neither site had large fluxes of N2O. Sustained-flux greenhouse gas accounting metrics indicated that both marshes had a positive (warming) radiative balance, with the brackish marsh having a substantially greater warming effect than the freshwater marsh. That net respiratory emissions of CO2 and CH4 as estimated through chamber techniques were 2-4 times different from emissions estimated through EC requires additional understanding of the artifacts created by different spatial and temporal sampling footprints between techniques.

  8. Gaseous isotope correlation technique for safeguards at reprocessing facilities

    International Nuclear Information System (INIS)

    Ohkubo, Michiaki.

    1988-03-01

    The isotope correlation technique based on gaseous stable fission products can be used as a means of verifying the input measurement to fuel reprocessing plants. This paper reviews the theoretical background of the gaseous fission product isotope correlation technique. The correlations considered are those between burnup and various isotopic ratios of Kr and Xe nuclides. The feasibility of gaseous ICT application to Pu input accountancy of reprocessing facilities is also discussed. The technique offers the possibility of in situ measurement verification by the inspector. (author). 16 refs, 7 figs

  9. Isotope correlation and mass spectrometry techniques for irradiated fuel assay

    International Nuclear Information System (INIS)

    Deron, S.

    1985-01-01

    This paper outlines the methods used to account for fissionable materials in irradiated nuclear fuel elements entering reprocessing plants. Verification is accomplished at three mass balance stations in the plant. Techniques employed fall into two categories: isotopic and isotope dilution analyses by mass spectometry and isotope correlation techniques. These methods are discussed in some detail

  10. Eddies in the Red Sea: A statistical and dynamical study

    KAUST Repository

    Zhan, Peng; Subramanian, Aneesh C.; Yao, Fengchao; Hoteit, Ibrahim

    2014-01-01

    correlated with stratification but positively correlated with vertical shear of horizontal velocity and eddy growth rate, suggesting that the generation of baroclinic instability is responsible for the activities of eddies in the Red Sea.

  11. On the estimate of the transpiration in Mediterranean heterogeneous ecosystems with the coupled use of eddy covariance and sap flow techniques.

    Science.gov (United States)

    Corona, Roberto; Curreli, Matteo; Montaldo, Nicola; Oren, Ram

    2013-04-01

    Mediterranean ecosystems are commonly heterogeneous savanna-like ecosystems, with contrasting plant functional types (PFT) competing for the water use. Mediterranean regions suffer water scarcity due to the dry climate conditions. In semi-arid regions evapotranspiration (ET) is the leading loss term of the root-zone water budget with a yearly magnitude that may be roughly equal to the precipitation. Despite the attention these ecosystems are receiving, a general lack of knowledge persists about the estimate of ET and the relationship between ET and the plant survival strategies for the different PFTs under water stress. During the dry summers these water-limited heterogeneous ecosystems are mainly characterized by a simple dual PFT-landscapes with strong-resistant woody vegetation and bare soil since grass died. In these conditions due to the low signal of the land surface fluxes captured by the sonic anemometer and gas analyzer the widely used eddy covariance may fail and its ET estimate is not robust enough. In these conditions the use of the sap flow technique may have a key role, because theoretically it provides a direct estimate of the woody vegetation transpiration. Through the coupled use of the sap flow sensor observations, a 2D foot print model of the eddy covariance tower and high resolution satellite images for the estimate of the foot print land cover map, the eddy covariance measurements can be correctly interpreted, and ET components (bare soil evaporation and woody vegetation transpiration) can be separated. The case study is at the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: trees, including wild olives and cork oaks, different shrubs and herbaceous species. An extensive field campaign started in 2004. Land-surface fluxes and CO2 fluxes are estimated by an eddy covariance technique based micrometeorological tower. Soil moisture profiles were also continuously estimated using water

  12. Monitoring of civil engineering structures using Digital Image Correlation technique

    Science.gov (United States)

    Malesa, M.; Szczepanek, D.; Kujawińska, M.; Świercz, A.; Kołakowski, P.

    2010-06-01

    The Digital Image Correlation (DIC) technique enables full field, noncontact measurements of displacements and strains of a wide variety of objects. An adaptation of the DIC technique for monitoring of civil-engineering structures is presented in the paper. A general concept of the complex, automatic monitoring system, in which the DIC sensor plays an important role is described. Some new software features, which aim to facilitate outdoor measurements and speed up the correlation analysis, is also introduced. As an example of application, measurements of a railway bridge in Nieporet (Poland) are presented. The experimental results are compared with displacements of a FEM model of the bridge.

  13. A Comparison of Three Gap Filling Techniques for Eddy Covariance Net Carbon Fluxes in Short Vegetation Ecosystems

    Directory of Open Access Journals (Sweden)

    Xiaosong Zhao

    2015-01-01

    Full Text Available Missing data is an inevitable problem when measuring CO2, water, and energy fluxes between biosphere and atmosphere by eddy covariance systems. To find the optimum gap-filling method for short vegetations, we review three-methods mean diurnal variation (MDV, look-up tables (LUT, and nonlinear regression (NLR for estimating missing values of net ecosystem CO2 exchange (NEE in eddy covariance time series and evaluate their performance for different artificial gap scenarios based on benchmark datasets from marsh and cropland sites in China. The cumulative errors for three methods have no consistent bias trends, which ranged between −30 and +30 mgCO2 m−2 from May to October at three sites. To reduce sum bias in maximum, combined gap-filling methods were selected for short vegetation. The NLR or LUT method was selected after plant rapidly increasing in spring and before the end of plant growing, and MDV method was used to the other stage. The sum relative error (SRE of optimum method ranged between −2 and +4% for four-gap level at three sites, except for 55% gaps at soybean site, which also obviously reduced standard deviation of error.

  14. Qualification of the LF-eddy current technique for the inspection of stainless steel cladding and applications on the reactor pressure vessel

    International Nuclear Information System (INIS)

    Weiss, R.; Becker, R.; Lucht, B.; Mohr, F.; Hartwig, K.

    2001-01-01

    As part of the re-inspection of the reactor pressure vessel of the nuclear power plant, the low-frequency-eddy current technique was implemented during the 1995 outage. Since then, this inspection technique and the testing equipment have seen steady further development. Therefore, optimization of the entire testing system, including qualification based on the 1995 results, was conducted. The eddy current testing system was designed as a ten-channel test system with sensors having separate transmitter and receiver coils. The first qualification of the testing technique and sensors was performed using a single-channel system; a second qualification was then carried out using the new testing electronics. The sensor design allows for a simultaneous detection of surface and subsurface flaws. This assumes that testing is performed simultaneously using four frequencies. Data analysis and evaluation are performed using a digital multi-frequency regression analysis technique The detection limits determined using this technique led to the definition of the following recording limits for testing in which the required signal-to-noise ratio of 6 dB was reliably observed. - Detection of surface connected longitudinal and transverse flaws: - notch, 3 mm deep and 10 mm long, for weave bead cladding; - notch, 2 mm deep and 20 mm long, for strip weld cladding. - Detection of embedded planar longitudinal and transverse flaws: - ligament of 7 mm for 8 mm clad thickness and 3 mm; - ligament for 4 mm clad thickness, notch starting at the carbon steel base material with a length of 20 mm. - Detection of embedded volumetric longitudinal and transverse flaws: - 3 mm diameter side-drilled hole (SDH) for 8 mm clad thickness; ligament, 4 mm. For 4 mm clad thickness: diameter, 2 mm SDH; ligament, 2 mm. All SDHs are 55 mm deep

  15. Nuclear material safeguards surveillance and accountancy by isotope correlation techniques

    International Nuclear Information System (INIS)

    Persiani, P.J.; Goleb, J.A.

    1981-01-01

    This paper presents the initial phase of the US study program and involves the computation of isotopic correlations for the LMFBR fuel cycle. The LWR fuel cycle phase of the study is currently in progress. The selection of the more safeguards effective functionals will depend not only on the level of reliability of isotope correlation technique (ICT) for verification, but also on the capability and difficulty of developing measurement methods. Performance characteristics of existing and proposed isotopic measurement techniques cover the general areas including assay and isotopic wet chemistry and NDA: (1) simultaneous multicomponent analysis techniques, (2) mass spectrometry, (3) x-ray fluorescence or densitometry with high flux monochromatic x-ray sources and high dispersion spectrometers, (4) passive and active neutron interrogation, (5) high level gamma-ray spectroscopy, (6) coulometry, and (7) potentiometry. The measurement capabilities and inherent limitations of these systems are to be evaluated in terms of total systems, operational mode, sample preparation requirements and consequent effect on dissolver solution representation, accuracy and precision estimates (if available), development status of the technique, and development requirements. The isotopic correlation technique shows considerable promise for use in verifying the initial isotopic composition and burnup of discharged assemblies based on the measured ratios of several key isotopes, obtained probably at the dissolver stage in reprocessing. This technique should, for example, easily be capable of indicating the exchange of a blanket assembly for a fuel assembly

  16. Weak value amplification via second-order correlated technique

    International Nuclear Information System (INIS)

    Cui Ting; Huang Jing-Zheng; Zeng Gui-Hua; Liu Xiang

    2016-01-01

    We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that weak value amplification (WVA) experiment can also be implemented by a second-order correlated system. We then build two-dimensional second-order correlated function patterns for achieving higher amplification factor and discuss the signal-to-noise ratio influence. Several advantages can be obtained by our proposal. For instance, detectors with high resolution are not necessary. Moreover, detectors with low saturation intensity are available in WVA setup. Finally, type-one technical noise can be effectively suppressed. (paper)

  17. Development of Multichannel Eddy Current Testing Instrument

    International Nuclear Information System (INIS)

    Lee, Hee Jong; Cho, Chan Hee; Nam, Min Woo; Yoon, Byung Sik; Yoo, Hyun Joo

    2010-01-01

    Four main techniques of electromagnetic testing are used for commercial applications: eddy current testing, alternating current field testing, magnetic flux leakage testing and remote field testing. Eddy current testing is a nondestructive evaluation method, which makes eddy current flow on a specimen by applying driving pulse to eddy current probe coil, by using eddy current testing device, and makes the change of eddy current which is dependently caused by flaws, material characteristics, testing condition, receiving through eddy current, and analyzes material properties, flaws, status on the specimen. Application of EC instrumentation varies widely in industry from the identification of metal heat treatment to the inspection of steam generator tubing in nuclear power plants. In this study, we have designed multichannel EC instrument which can be applicable to the NDE of the tube in heat exchanger for electric power facility, chemistry, and military industry, and finally confirmed the proper function of EC instrumentation

  18. Measurement of spatial correlation functions using image processing techniques

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1985-01-01

    A procedure for using digital image processing techniques to measure the spatial correlation functions of composite heterogeneous materials is presented. Methods for eliminating undesirable biases and warping in digitized photographs are discussed. Fourier transform methods and array processor techniques for calculating the spatial correlation functions are treated. By introducing a minimal set of lattice-commensurate triangles, a method of sorting and storing the values of three-point correlation functions in a compact one-dimensional array is developed. Examples are presented at each stage of the analysis using synthetic photographs of cross sections of a model random material (the penetrable sphere model) for which the analytical form of the spatial correlations functions is known. Although results depend somewhat on magnification and on relative volume fraction, it is found that photographs digitized with 512 x 512 pixels generally have sufficiently good statistics for most practical purposes. To illustrate the use of the correlation functions, bounds on conductivity for the penetrable sphere model are calculated with a general numerical scheme developed for treating the singular three-dimensional integrals which must be evaluated

  19. A technique for plasma velocity-space cross-correlation

    Science.gov (United States)

    Mattingly, Sean; Skiff, Fred

    2018-05-01

    An advance in experimental plasma diagnostics is presented and used to make the first measurement of a plasma velocity-space cross-correlation matrix. The velocity space correlation function can detect collective fluctuations of plasmas through a localized measurement. An empirical decomposition, singular value decomposition, is applied to this Hermitian matrix in order to obtain the plasma fluctuation eigenmode structure on the ion distribution function. A basic theory is introduced and compared to the modes obtained by the experiment. A full characterization of these modes is left for future work, but an outline of this endeavor is provided. Finally, the requirements for this experimental technique in other plasma regimes are discussed.

  20. Multi-scale properties of large eddy simulations: correlations between resolved-scale velocity-field increments and subgrid-scale quantities

    Science.gov (United States)

    Linkmann, Moritz; Buzzicotti, Michele; Biferale, Luca

    2018-06-01

    We provide analytical and numerical results concerning multi-scale correlations between the resolved velocity field and the subgrid-scale (SGS) stress-tensor in large eddy simulations (LES). Following previous studies for Navier-Stokes equations, we derive the exact hierarchy of LES equations governing the spatio-temporal evolution of velocity structure functions of any order. The aim is to assess the influence of the subgrid model on the inertial range intermittency. We provide a series of predictions, within the multifractal theory, for the scaling of correlation involving the SGS stress and we compare them against numerical results from high-resolution Smagorinsky LES and from a-priori filtered data generated from direct numerical simulations (DNS). We find that LES data generally agree very well with filtered DNS results and with the multifractal prediction for all leading terms in the balance equations. Discrepancies are measured for some of the sub-leading terms involving cross-correlation between resolved velocity increments and the SGS tensor or the SGS energy transfer, suggesting that there must be room to improve the SGS modelisation to further extend the inertial range properties for any fixed LES resolution.

  1. Scaling gross ecosystem production at Harvard Forest with remote sensing: a comparison of estimates from a constrained quantum-use efficiency model and eddy correlation

    International Nuclear Information System (INIS)

    Waring, R.H.; Law, B.E.; Goulden, M.L.; Bassow, S.L.; McCreight, R.W.; Wofsy, S.C.; Bazzaz, F.A.

    1995-01-01

    Two independent methods of estimating gross ecosystem production (GEP) were compared over a period of 2 years at monthly integrals for a mixed forest of conifers and deciduous hardwoods at Harvard Forest in central Massachusetts. Continuous eddy flux measurements of net ecosystem exchange (NEE) provided one estimate of GEP by taking day to night temperature differences into account to estimate autotrophic and heterotrophic respiration. GEP was also estimated with a quantum efficiency model based on measurements of maximum quantum efficiency (Qmax), seasonal variation in canopy phenology and chlorophyll content, incident PAR, and the constraints of freezing temperatures and vapour pressure deficits on stomatal conductance. Quantum efficiency model estimates of GEP and those derived from eddy flux measurements compared well at monthly integrals over two consecutive years (R 2 = 0–98). Remotely sensed data were acquired seasonally with an ultralight aircraft to provide a means of scaling the leaf area and leaf pigmentation changes that affected the light absorption of photosynthetically active radiation to larger areas. A linear correlation between chlorophyll concentrations in the upper canopy leaves of four hardwood species and their quantum efficiencies (R 2 = 0–99) suggested that seasonal changes in quantum efficiency for the entire canopy can be quantified with remotely sensed indices of chlorophyll. Analysis of video data collected from the ultralight aircraft indicated that the fraction of conifer cover varied from < 7% near the instrument tower to about 25% for a larger sized area. At 25% conifer cover, the quantum efficiency model predicted an increase in the estimate of annual GEP of < 5% because unfavourable environmental conditions limited conifer photosynthesis in much of the non-growing season when hardwoods lacked leaves

  2. Experiments with eddy currents: the eddy current brake

    International Nuclear Information System (INIS)

    Gonzalez, Manuel I

    2004-01-01

    A moderate-cost experimental setup is presented to help students to understand some qualitative and quantitative aspects of eddy currents. The setup operates like an eddy current brake, a device commonly used in heavy vehicles to dissipate kinetic energy by generating eddy currents. A set of simple experiments is proposed to measure eddy current losses and to relate them to various relevant parameters. Typical results for each of the experiments are presented, and comparisons with theoretical predictions are included. The experiments, which are devoted to first-year undergraduate students, deal also with other pedagogically relevant topics in electricity and magnetism, such as basic laws, electrical measurement techniques, the sources of the magnetic field and others

  3. On discriminant analysis techniques and correlation structures in high dimensions

    DEFF Research Database (Denmark)

    Clemmensen, Line Katrine Harder

    This paper compares several recently proposed techniques for performing discriminant analysis in high dimensions, and illustrates that the various sparse methods dier in prediction abilities depending on their underlying assumptions about the correlation structures in the data. The techniques...... the methods in two: Those who assume independence between the variables and thus use a diagonal estimate of the within-class covariance matrix, and those who assume dependence between the variables and thus use an estimate of the within-class covariance matrix, which also estimates the correlations between...... variables. The two groups of methods are compared and the pros and cons are exemplied using dierent cases of simulated data. The results illustrate that the estimate of the covariance matrix is an important factor with respect to choice of method, and the choice of method should thus be driven by the nature...

  4. Advancement of the Eddy Current Testing using neural network technique. Development of 3-D finite element analysis sytem of elctro-magnetic field

    International Nuclear Information System (INIS)

    Sakai, Takayuki; Soneda, Naoki

    1994-01-01

    In PWR plants, an automatic recognition system of Eddy Current Testing (ECT) signals of steam generator tubes are strongly required to reduce inspectors' labor and to improve the reliability of the testing. Although the neural-network technique is very promising for this kind of system, it is necessary to evaluate its applicability to ECT signals throughly, where a database of the relationship of the defects and ECT signals plays a very important role. In this paper, a three dimensional finite element analysis system of electromagnetic field, which consists of an FEM code and pre/post processor, is developed to generate a database of ECT signals. T-Ω method and the edge element are employed in the FEM code to reduce the required computer memory. The code is verified through some comparisons with experiments and other calculations. (author)

  5. Analysis of Cell Phone Usage Using Correlation Techniques

    OpenAIRE

    T S R MURTHY; D. SIVA RAMA KRISHNA

    2011-01-01

    The present paper is a sample survey analysis, examined based on correlation techniques. The usage ofmobile phones is clearly almost un-avoidable these days and as such the authors have made a systematicsurvey through a well prepared questionnaire on making use of mobile phones to the maximum extent.These samples are various economical groups across a population of over one-lakh people. The resultsare scientifically categorized and interpreted to match the ground reality.

  6. Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog

    Directory of Open Access Journals (Sweden)

    P. Alekseychik

    2017-08-01

    Full Text Available Very few studies of ecosystem–atmosphere exchange involving eddy covariance data have been conducted in Siberia, with none in the western Siberian middle taiga. This work provides the first estimates of carbon dioxide (CO2 and energy budgets in a typical bog of the western Siberian middle taiga based on May–August measurements in 2015. The footprint of measured fluxes consisted of a homogeneous mixture of tree-covered ridges and hollows with the vegetation represented by typical sedges and shrubs. Generally, the surface exchange rates resembled those of pine-covered bogs elsewhere. The surface energy balance closure approached 100 %. Net CO2 uptake was comparatively high, summing up to 202 gC m−2 for the four measurement months, while the Bowen ratio was seasonally stable at 28 %. The ecosystem turned into a net CO2 source during several front passage events in June and July. The periods of heavy rain helped keep the water table at a sustainably high level, preventing a usual drawdown in summer. However, because of the cloudy and rainy weather, the observed fluxes might rather represent the special weather conditions of 2015 than their typical magnitudes.

  7. High-speed technique based on a parallel projection correlation procedure for digital image correlation

    Science.gov (United States)

    Zaripov, D. I.; Renfu, Li

    2018-05-01

    The implementation of high-efficiency digital image correlation methods based on a zero-normalized cross-correlation (ZNCC) procedure for high-speed, time-resolved measurements using a high-resolution digital camera is associated with big data processing and is often time consuming. In order to speed-up ZNCC computation, a high-speed technique based on a parallel projection correlation procedure is proposed. The proposed technique involves the use of interrogation window projections instead of its two-dimensional field of luminous intensity. This simplification allows acceleration of ZNCC computation up to 28.8 times compared to ZNCC calculated directly, depending on the size of interrogation window and region of interest. The results of three synthetic test cases, such as a one-dimensional uniform flow, a linear shear flow and a turbulent boundary-layer flow, are discussed in terms of accuracy. In the latter case, the proposed technique is implemented together with an iterative window-deformation technique. On the basis of the results of the present work, the proposed technique is recommended to be used for initial velocity field calculation, with further correction using more accurate techniques.

  8. Comparison of correlation analysis techniques for irregularly sampled time series

    Directory of Open Access Journals (Sweden)

    K. Rehfeld

    2011-06-01

    Full Text Available Geoscientific measurements often provide time series with irregular time sampling, requiring either data reconstruction (interpolation or sophisticated methods to handle irregular sampling. We compare the linear interpolation technique and different approaches for analyzing the correlation functions and persistence of irregularly sampled time series, as Lomb-Scargle Fourier transformation and kernel-based methods. In a thorough benchmark test we investigate the performance of these techniques.

    All methods have comparable root mean square errors (RMSEs for low skewness of the inter-observation time distribution. For high skewness, very irregular data, interpolation bias and RMSE increase strongly. We find a 40 % lower RMSE for the lag-1 autocorrelation function (ACF for the Gaussian kernel method vs. the linear interpolation scheme,in the analysis of highly irregular time series. For the cross correlation function (CCF the RMSE is then lower by 60 %. The application of the Lomb-Scargle technique gave results comparable to the kernel methods for the univariate, but poorer results in the bivariate case. Especially the high-frequency components of the signal, where classical methods show a strong bias in ACF and CCF magnitude, are preserved when using the kernel methods.

    We illustrate the performances of interpolation vs. Gaussian kernel method by applying both to paleo-data from four locations, reflecting late Holocene Asian monsoon variability as derived from speleothem δ18O measurements. Cross correlation results are similar for both methods, which we attribute to the long time scales of the common variability. The persistence time (memory is strongly overestimated when using the standard, interpolation-based, approach. Hence, the Gaussian kernel is a reliable and more robust estimator with significant advantages compared to other techniques and suitable for large scale application to paleo-data.

  9. Fuel reprocessing data validation using the isotope correlation technique

    International Nuclear Information System (INIS)

    Persiani, P.J.; Bucher, R.G.; Pond, R.B.; Cornella, R.J.

    1990-01-01

    The Isotope Correlation Technique (ICT), in conjunction with the gravimetric (Pu/U ratio) method for mass determination, provides an independent verification of the input accountancy at the dissolver or accountancy stage of the reprocessing plant. The Isotope Correlation Technique has been applied to many classes of domestic and international reactor systems (light-water, heavy-water, and graphite reactors) operating in a variety of modes (power, research, and production reactors), and for a variety of reprocessing fuel cycle management strategies. Analysis of reprocessing operations data based on isotopic correlations derived for assemblies in a PWR environment and fuel management scheme, yielded differences between the measurement-derived and ICT-derived plutonium mass determinations of (- 0.02 ± 0.23)% for the measured U-235 and (+ 0.50 ± 0.31)% for the measured Pu-239, for a core campaign. The ICT analyses has been implemented for the plutonium isotopics in a depleted uranium assembly in a heavy-water, enriched uranium system and for the uranium isotopes in the fuel assemblies in light-water, highly-enriched systems

  10. Binary joint transform correlation using error-diffusion techniques

    Science.gov (United States)

    Inbar, Hanni; Marom, Emanuel; Konforti, Naim

    1993-08-01

    Optical pattern recognition techniques based on the optical joint transform correlator (JTC) scheme are attractive due to their simplicity. Recent improvements in spatial light modulators (SLM) increased the popularity of the JTC, providing means for real time operation. Using a binary SLM for the display of the Fourier spectrum, first requires binarization of the joint power spectrum distribution. Although hard-clipping is the simplest and most common binarization method used, we suggest to apply error-diffusion as an improved binarization technique. The performance of a binary JTC, whose input image is considered to contain additive zero-mean white Gaussian noise, is investigated. Various ways for nonlinearly modifying the joint power spectrum prior to the binarization step, which is based on either error-diffusion or hard-clipping techniques, are discussed. These nonlinear modifications aim at increasing the contrast of the interference fringes at the joint power spectrum plane, leading to better definition of the correlation signal. Mathematical analysis, computer simulations and experimental results are presented.

  11. Problems and limitations of eddy current tube inspection

    International Nuclear Information System (INIS)

    Ilham Mukriz Zainal Abidin; Khairul Anuar Mohd Salleh; Mohamed Hairul Hasmoni

    2003-01-01

    Incomplete appreciation of eddy current limitations has contributed to both under-utilization and misapplication of the technique. A brief review on the physical principle of eddy current is presented. Eddy current technique in identifying inhomogeneity in tested tubes is discussed, highlighting its limitation in distinguishing between real pit type defects and other mundane anomalies. The variables responsible for limitation in eddy current tube inspection are discussed and alternative approaches, where they exist, are suggested. (Author)

  12. Momentum, sensible heat and CO2 correlation coefficient variability: what can we learn from 20 years of continuous eddy covariance measurements?

    Science.gov (United States)

    Hurdebise, Quentin; Heinesch, Bernard; De Ligne, Anne; Vincke, Caroline; Aubinet, Marc

    2017-04-01

    Long-term data series of carbon dioxide and other gas exchanges between terrestrial ecosystems and atmosphere become more and more numerous. Long-term analyses of such exchanges require a good understanding of measurement conditions during the investigated period. Independently of climate drivers, measurements may indeed be influenced by measurement conditions themselves subjected to long-term variability due to vegetation growth or set-up changes. The present research refers to the Vielsalm Terrestrial Observatory (VTO) an ICOS candidate site located in a mixed forest (beech, silver fir, Douglas fir, Norway spruce) in the Belgian Ardenne. Fluxes of momentum, carbon dioxide and sensible heat have been continuously measured there by eddy covariance for more than 20 years. During this period, changes in canopy height and measurement height occurred. The correlation coefficients (for momemtum, sensible heat and CO2) and the normalized standard deviations measured for the past 20 years at the Vielsalm Terrestrial Observatory (VTO) were analysed in order to define how the fluxes, independently of climate conditions, were affected by the surrounding environment evolution, including tree growth, forest thinning and tower height change. A relationship between canopy aerodynamic distance and the momentum correlation coefficient was found which is characteristic of the roughness sublayer, and suggests that momentum transport processes were affected by z-d. In contrast, no relationship was found for sensible heat and CO2 correlation coefficients, suggesting that the z-d variability observed did not affect their turbulent transport. There were strong differences in these coefficients, however, between two wind sectors, characterized by contrasted stands (height differences, homogeneity) and different hypotheses were raised to explain it. This study highlighted the importance of taking the surrounding environment variability into account in order to ensure the spatio

  13. Eddies in the Red Sea: A statistical and dynamical study

    KAUST Repository

    Zhan, Peng

    2014-06-01

    Sea level anomaly (SLA) data spanning 1992–2012 were analyzed to study the statistical properties of eddies in the Red Sea. An algorithm that identifies winding angles was employed to detect 4998 eddies propagating along 938 unique eddy tracks. Statistics suggest that eddies are generated across the entire Red Sea but that they are prevalent in certain regions. A high number of eddies is found in the central basin between 18°N and 24°N. More than 87% of the detected eddies have a radius ranging from 50 to 135 km. Both the intensity and relative vorticity scale of these eddies decrease as the eddy radii increase. The averaged eddy lifespan is approximately 6 weeks. AEs and cyclonic eddies (CEs) have different deformation features, and those with stronger intensities are less deformed and more circular. Analysis of long-lived eddies suggests that they are likely to appear in the central basin with AEs tending to move northward. In addition, their eddy kinetic energy (EKE) increases gradually throughout their lifespans. The annual cycles of CEs and AEs differ, although both exhibit significant seasonal cycles of intensity with the winter and summer peaks appearing in February and August, respectively. The seasonal cycle of EKE is negatively correlated with stratification but positively correlated with vertical shear of horizontal velocity and eddy growth rate, suggesting that the generation of baroclinic instability is responsible for the activities of eddies in the Red Sea.

  14. Nuclear material safeguards surveillance and accountancy by isotope correlation techniques

    International Nuclear Information System (INIS)

    Persiani, P.J.; Goleb, J.A.; Kroc, T.K.

    1981-11-01

    The purpose of this study is to investigate the applicability of isotope correlation techniques (ICT) to the Light Water Reactor (LWR) and the Liquid Metal Fast Breeder Reactor (LMFBR) fuel cycles for nuclear material accountancy and safeguards surveillance. The isotopic measurement of the inventory input to the reprocessing phase of the fuel cycle is the primary direct determination that an anomaly may exist in the fuel management of nuclear material. The nuclear materials accountancy gap which exists between the fabrication plant output and the input to the reprocessing plant can be minimized by using ICT at the dissolver stage of the reprocessing plant. The ICT allows a level of verification of the fabricator's fuel content specifications, the irradiation history, the fuel and blanket assemblies management and scheduling within the reactor, and the subsequent spent fuel assembly flows to the reprocessing plant. The investigation indicates that there exist relationships between isotopic concentration which have predictable, functional behavior over a range of burnup. Several cross-correlations serve to establish the initial core assembly-averaged composition. The selection of the more effective functionals will depend not only on the level of reliability of ICT for verification, but also on the capability, accuracy and difficulty of developing measurement methods. The propagation of measurement errors on the correlation functions and respective sensitivities to isotopic compositional changes have been examined and found to be consistent with current measurement methods

  15. A Pixel Correlation Technique for Smaller Telescopes to Measure Doubles

    Science.gov (United States)

    Wiley, E. O.

    2013-04-01

    Pixel correlation uses the same reduction techniques as speckle imaging but relies on autocorrelation among captured pixel hits rather than true speckles. A video camera operating at speeds (8-66 milliseconds) similar to lucky imaging to capture 400-1,000 video frames. The AVI files are converted to bitmap images and analyzed using the interferometric algorithms in REDUC using all frames. This results in a series of corellograms from which theta and rho can be measured. Results using a 20 cm (8") Dall-Kirkham working at f22.5 are presented for doubles with separations between 1" to 5.7" under average seeing conditions. I conclude that this form of visualizing and analyzing visual double stars is a viable alternative to lucky imaging that can be employed by telescopes that are too small in aperture to capture a sufficient number of speckles for true speckle interferometry.

  16. Assessment of the soil water balance by the combination of cosmic ray neutron sensing and eddy covariance technique in an irrigated citrus orchard (Marrakesh, Morocco)

    Science.gov (United States)

    Mroos, Katja; Baroni, Gabriele; Er-Raki, Salah; Francke, Till; Khabba, Said; Jarlan, Lionel; Hanich, Lahoucine; Oswald, Sascha E.

    2014-05-01

    Irrigation water requirement plays a crucial role in many agricultural areas and especially in arid and semi-arid landscapes. Improvements in the water management and the performance of the irrigation systems require a correct evaluation of the hydrological processes involved. However, some difficulties can arise due to the heterogeneity of the soil-plant system and of the irrigation scheme. To overcome these limitations, in this study, the soil water balance is analyzed by the combination of the Eddy Covariance technique (EC) and Cosmic Ray neutron Sensing (CRS). EC provides the measurement of the actual evapotranspiration over the area as it was presented in many field conditions. Moreover CRS showed to be a valuable approach to measure the root zone soil moisture integrated in a footprint of ~30 ha. In this way, the combination of the two methodologies should provide a better analysis of the soil water balance at field scale, as opposed to point observations, e.g. by TDR, evaporimeter and fluxmeter. Then, this could increase the capability to assess the irrigation efficiency and the agricultural water management. The study is conducted in a citrus orchard situated in a semi-arid region, 30 km southwest of Marrakesh (Morocco). The site is flat and planted with trees of same age growing in parallel rows with drip irrigation lines and application of fertilizer and pesticides. The original soil seems modified on the surface by the agricultural use, creating differences between trees, rows and lines. In addition, the drip irrigation creates also a spatial variability of the water flux distribution in the field, making this site an interesting area to test the methodology. Particular attention is given to the adaptation of the standard soil sampling campaign used for the calibration of the CRS and the introduction of a weighing function. Data were collected from June to December 2013, which corresponds to the high plant transpiration. Despite the intention of the

  17. Tools and Methods for Visualization of Mesoscale Ocean Eddies

    Science.gov (United States)

    Bemis, K. G.; Liu, L.; Silver, D.; Kang, D.; Curchitser, E.

    2017-12-01

    Mesoscale ocean eddies form in the Gulf Stream and transport heat and nutrients across the ocean basin. The internal structure of these three-dimensional eddies and the kinematics with which they move are critical to a full understanding of their transport capacity. A series of visualization tools have been developed to extract, characterize, and track ocean eddies from 3D modeling results, to visually show the ocean eddy story by applying various illustrative visualization techniques, and to interactively view results stored on a server from a conventional browser. In this work, we apply a feature-based method to track instances of ocean eddies through the time steps of a high-resolution multidecadal regional ocean model and generate a series of eddy paths which reflect the life cycle of individual eddy instances. The basic method uses the Okubu-Weiss parameter to define eddy cores but could be adapted to alternative specifications of an eddy. Stored results include pixel-lists for each eddy instance, tracking metadata for eddy paths, and physical and geometric properties. In the simplest view, isosurfaces are used to display eddies along an eddy path. Individual eddies can then be selected and viewed independently or an eddy path can be viewed in the context of all eddy paths (longer than a specified duration) and the ocean basin. To tell the story of mesoscale ocean eddies, we combined illustrative visualization techniques, including visual effectiveness enhancement, focus+context, and smart visibility, with the extracted volume features to explore eddy characteristics at multiple scales from ocean basin to individual eddy. An evaluation by domain experts indicates that combining our feature-based techniques with illustrative visualization techniques provides an insight into the role eddies play in ocean circulation. A web-based GUI is under development to facilitate easy viewing of stored results. The GUI provides the user control to choose amongst available

  18. Eddy current inspection of tubing

    International Nuclear Information System (INIS)

    Bauza, J. L. R.; Herrero, J.; Diaz, J.

    1966-01-01

    The Experimental research work carried out to develop a Eddy current testing equipment is described. Search coils with ferrite or air cores were used and the obtained results are discussed. Valuable information was gained from a improved channel in which a direct measure of the defect and the reference signal phase difference is obtained. Artificial defect used to evaluate resolution and sensitivity were produced by electro-machining and mechanical means. Finned SAP tubing was tested in a routine basis with the described equipment and the results plotted. Basic and theoretical considerations on the Eddy current testing technique are given in the last section of this report. (Author)

  19. Eddy current seminar

    International Nuclear Information System (INIS)

    Emson, C.R.I.

    1988-11-01

    The paper presents the fifth symposium in the series of Eddy Current Seminars, held in Abingdon, 1988. The meeting included a discussion on three-dimensional eddy current formulations, as well as thirteen contributed papers on computational electromagnetics. Of the thirteen papers, two papers on eddy currents in tokamaks were selected for INIS and indexed separately. (U.K.)

  20. Estimation of net ecosystem metabolism of seagrass meadows in the coastal waters of the East Sea and Black Sea using the noninvasive eddy covariance technique

    Science.gov (United States)

    Lee, Jae Seong; Kang, Dong-Jin; Hineva, Elitsa; Slabakova, Violeta; Todorova, Valentina; Park, Jiyoung; Cho, Jin-Hyung

    2017-06-01

    We measured the community-scale metabolism of seagrass meadows in Bulgaria (Byala [BY]) and Korea (Hoopo Bay [HP]) to understand their ecosystem function in coastal waters. A noninvasive in situ eddy covariance technique was applied to estimate net O2 flux in the seagrass meadows. From the high-quality and high-resolution time series O2 data acquired over > 24 h, the O2 flux driven by turbulence was extracted at 15-min intervals. The spectrum analysis of vertical flow velocity and O2 concentration clearly showed well-developed turbulence characteristics in the inertial subrange region. The hourly averaged net O2 fluxes per day ranged from -474 to 326 mmol O2 m-2 d-1 (-19 ± 41 mmol O2 m-2 d-1) at BY and from -74 to 482 mmol O2 m-2 d-1 (31 ± 17 mmol O2 m-2 d-1) at HP. The net O2 production rapidly responded to photosynthetically available radiation (PAR) and showed a good relationship between production and irradiance (P-I curve). The hysteresis pattern of P-I relationships during daytime also suggested increasing heterotrophic respiration in the afternoon. With the flow velocity between 3.30 and 6.70 cm s-1, the community metabolism during daytime and nighttime was significantly increased by 20 times and 5 times, respectively. The local hydrodynamic characteristics may be vital to determining the efficiency of community photosynthesis. The net ecosystem metabolism at BY was estimated to be -17 mmol O2 m-2 d-1, which was assessed as heterotrophy. However, that at HP was 36 mmol O2 m-2 d-1, which suggested an autotrophic state.

  1. Estimation of Correlation Functions by the Random DEC Technique

    DEFF Research Database (Denmark)

    Brincker, Rune; Krenk, Steen; Jensen, Jakob Laigaard

    The Random Dec Technique is a versatile technique for characterization of random signals in the time domain. In this paper a short review of the most important properties of the technique is given. The review is mainly based on recently achieved results that are still unpublished, or that has just...

  2. Eddy current manual: v.1

    International Nuclear Information System (INIS)

    Cecco, V.S.; Van Drunen, G.; Sharp, F.L.

    1983-09-01

    This training and reference manual was assembled to provide those involved in eddy current testing with both the fundamental principles of the technique as well as the knowledge to deal with often complicated test results. A non-rigorous approach is used to simplify complex physical phenomena. Emphasis is placed on proper choice of test frequency and signal interpretation. Defect detection and diagnosis receive particular attention. Design and construction of probes are covered extensively since probes play a key role in eddy current testing. The advantages and limitations of various probe types are discussed. Electromagnetic theory, instrumentation, test methods and signal analysis are covered. Simplified derivations of probe response to test parameters are presented to develop a basic understanding of eddy current behaviour. Eddy current signals are presented on impedance plane diagrams throughout the manual since this is the most common display on modern, general purpose instruments. The use of Σphase lagΣ in signal analysis is covered in detail. To supplement theory, practical examples are presented to develop proficiency in performing inspections, and to illustrate how basic principles are applied to diagnose real signals

  3. Eddy current testing, volume 1

    International Nuclear Information System (INIS)

    Cecco, V.S.; Van Drunen, G.; Sharp, F.L.

    1981-11-01

    This training and reference manual was assembled to provide those involved in eddy current testing with both the fundamental principles of the technique as well as the knowledge to deal with often complicated test results. A non-rigorous approach is used to simplify complex physical phenomena. Emphasis is placed on proper choice of test frequency and interpretation. Defect detection and diagnosis receive particular attention. Design and construction of probes are covered extensively since probes play a key role in eddy current testing. The advantages and limitations of various probe types are discussed. Electromagnetic theory, instrumentation, test methods and signal analysis are covered. Simplified derivations of probe response to test parameters are presented to develop a basic understanding of eddy current behaviour. Eddy current signals are presented on impedance plane diagrams throughout the manual since this is the most common display on modern, general purpose instruments. The use of 'phase leg' in signal analysis is covered in detail. To supplement theory, practical examples are presented to develop proficiency in performing inspections, and to illustrate how basic principles are applied to diagnose real signals

  4. Quantitative pulsed eddy current analysis

    International Nuclear Information System (INIS)

    Morris, R.A.

    1975-01-01

    The potential of pulsed eddy current testing for furnishing more information than conventional single-frequency eddy current methods has been known for some time. However, a fundamental problem has been analyzing the pulse shape with sufficient precision to produce accurate quantitative results. Accordingly, the primary goal of this investigation was to: demonstrate ways of digitizing the short pulses encountered in PEC testing, and to develop empirical analysis techniques that would predict some of the parameters (e.g., depth) of simple types of defect. This report describes a digitizing technique using a computer and either a conventional nuclear ADC or a fast transient analyzer; the computer software used to collect and analyze pulses; and some of the results obtained. (U.S.)

  5. Eddie Rocket's Franchise

    OpenAIRE

    Vahter, Jenni

    2008-01-01

    Eddie Rocket's Franchise - Setting up a franchise restaurant in Helsinki. TIIVISTELMÄ: Eddie Rocket's on menestynyt amerikkalaistyylinen 1950-luvun ”diner” franchiseravintolaketju Irlannista. Ravintoloita on perustettu viimeisen 18 vuoden aikana 28 kappaletta Irlantiin ja Isoon Britanniaan sekä yksi Espanjaan. Tämän tutkimuksen tarkoitus on tutkia onko Eddie Rocket'silla potentiaalia menestyä Helsingissä, Suomessa. Tutkimuskysymystä on lähestytty toimiala-analyysin, markkinatutkimuksen j...

  6. The sewing technique and correlation functions on arbitrary Riemann surfaces

    International Nuclear Information System (INIS)

    Di Vecchia, P.

    1989-01-01

    We describe in the case of free bosonic and fermionic theories the sewing procedure, that is a very convenient way for constructing correlation functions of these theories on an arbitrary Riemann surface from their knowledge on the sphere. The fundamental object that results from this construction is the N-point g-loop vertex. It summarizes the information of all correlation functions of the theory on an arbitrary Riemann surface. We then check explicitly the bosonization rules and derive some useful formulas. (orig.)

  7. Application of digital-image-correlation techniques in analysing ...

    Indian Academy of Sciences (India)

    Basis theory of strain analysis using the digital image correlation method .... Type 304N Stainless Steel (Modulus of Elasticity = 193 MPa, Tensile Yield .... also proves the accuracy of the qualitative analyses by using the DIC ... We thank the National Science Council of Taiwan for supporting this research through grant. No.

  8. A correlation-based pulse detection technique for gamma-ray/neutron detectors

    International Nuclear Information System (INIS)

    Faisal, Muhammad; Schiffer, Randolph T.; Flaska, Marek; Pozzi, Sara A.; Wentzloff, David D.

    2011-01-01

    We present a correlation-based detection technique that significantly improves the probability of detection for low energy pulses. We propose performing a normalized cross-correlation of the incoming pulse data to a predefined pulse template, and using a threshold correlation value to trigger the detection of a pulse. This technique improves the detector sensitivity by amplifying the signal component of incoming pulse data and rejecting noise. Simulation results for various different templates are presented. Finally, the performance of the correlation-based detection technique is compared to the current state-of-the-art techniques.

  9. Study of water flowrate using time transient and cross-correlation techniques with 82Br radiotracer

    International Nuclear Information System (INIS)

    Salgado, William L.; Brandao, Luiz E.B.

    2013-01-01

    This paper aims to determinate the water flowrate using Time Transient and Cross-Correlation techniques. The detection system uses two NaI (T1) detectors adequately positioned on the outside of pipe and a gamma-ray source ( 82 Br radiotracer). The water flowrate measurements using Time Transient and Cross-Correlation techniques were compared to invasive conventional measurements of the flowrate previously installed in pipeline. Discrepancies between Time Transient and Cross-Correlation techniques flowmeter previously installed in pipeline. Discrepancies between Time Transient and Cross-Correlation techniques flowrate values were found to be less than 3% in relation to conventional ones. (author)

  10. Recognizing limitations in eddy current testing

    International Nuclear Information System (INIS)

    Van Drunen, G.; Cecco, V.S.

    1981-11-01

    This paper addresses known limitations and constraints in eddy current nondestructive testing. Incomplete appreciation for eddy current limitations is believed to have contributed to both under-utilization and misapplication of the technique. Neither situation need arise if known limitations are recognized. Some, such as the skin depth effect, are inherent to electromagnetic test methods and define the role of eddy current testing. Others can be overcome with available technology such as surface probes to find circumferential cracks in tubes and magnetic saturation of ferromagnetic alloys to eliminate permeability effects. The variables responsible for limitations in eddy current testing are discussed and where alternative approaches exist, these are presented. Areas with potential for further research and development are also identified

  11. Generation of Quasi-Gaussian Pulses Based on Correlation Techniques

    Directory of Open Access Journals (Sweden)

    POHOATA, S.

    2012-02-01

    Full Text Available The Gaussian pulses have been mostly used within communications, where some applications can be emphasized: mobile telephony (GSM, where GMSK signals are used, as well as the UWB communications, where short-period pulses based on Gaussian waveform are generated. Since the Gaussian function signifies a theoretical concept, which cannot be accomplished from the physical point of view, this should be expressed by using various functions, able to determine physical implementations. New techniques of generating the Gaussian pulse responses of good precision are approached, proposed and researched in this paper. The second and third order derivatives with regard to the Gaussian pulse response are accurately generated. The third order derivates is composed of four individual rectangular pulses of fixed amplitudes, being easily to be generated by standard techniques. In order to generate pulses able to satisfy the spectral mask requirements, an adequate filter is necessary to be applied. This paper emphasizes a comparative analysis based on the relative error and the energy spectra of the proposed pulses.

  12. High resolution eddy current microscopy

    Science.gov (United States)

    Lantz, M. A.; Jarvis, S. P.; Tokumoto, H.

    2001-01-01

    We describe a sensitive scanning force microscope based technique for measuring local variations in resistivity by monitoring changes in the eddy current induced damping of a cantilever with a magnetic tip oscillating above a conducting sample. To achieve a high sensitivity, we used a cantilever with an FeNdBLa particle mounted on the tip. Resistivity measurements are demonstrated on a silicon test structure with a staircase doping profile. Regions with resistivities of 0.0013, 0.0041, and 0.022 Ω cm are clearly resolved with a lateral resolution of approximately 180 nm. For this range of resistivities, the eddy current induced damping is found to depend linearly on the sample resistivity.

  13. Eddy current inspection on heat exchanger tubes - problems and limitations

    International Nuclear Information System (INIS)

    Ilham Mukriz; Zainal Abidin Mohamed; Hairul Hasmoni Khairul Anuar; Mohd Salleh; Mahmood Dollah

    2005-01-01

    This paper focus on problems associated to eddy current inspection of heat exchanger tubes. A brief review on heat exchanger design and operation is presented. Eddy current technique in identifying inhomogeneity in tested tubes is discussed, highlighting its limitation in distinguishing between real pit type defects and other mundane anomalies. The limitation of the eddy current probe and equipment pertinent to the inspection are identified and areas of improvement are discussed. (Author)

  14. Eddy current detection of corrosion damage in heat exchanger tubes

    International Nuclear Information System (INIS)

    Van Drunen, G.; Cecco, V.S.; Carter, J.R.

    1980-05-01

    Eddy current is often the most effective nondestructive test method available for in-service inspection of small bore tubing in heat exchangers. The basic principles, advantages and shortcomings of the technique are outlined. Typical eddy current indications from corrosion-related defects such as stress corrosion cracks, pitting and tube denting under support plates are presented. Eddy current signals from features such as magnetite deposits and ferromagnetic inclusions which might be mistaken for defects are also discussed. (auth)

  15. Automation of eddy current system for in-service inspection of turbine and generator bores

    International Nuclear Information System (INIS)

    Viertl, J.R.M.

    1988-01-01

    The most commonly applied inspection method for ferromagnetic turbine and generator rotor bores is the magnetic particle test technique. This method is subjective, depends on the test operator's skill and diligence in identifying test indications, and suffers from poor repeatability, especially for small indications. Automation would improve repeatability. However, magnetic particle tests are not easily automated, because the data are in the form of sketches, photographs, and written and oral descriptions of the indications. Eddy current inspection has obvious potential to replace magnetic particle methods in this application. Eddy current tests can be readily automated, as the data are in the form of voltages that can be recorded, digitized, and manipulated by a computer. The current project continues the investigation of the correlation between eddy current and magnetic particle inspection. Two systems have been combined to acquire eddy current data automatically. This combination of systems consists of the Nortec-25L Eddyscope (to provide the analog eddy current signals) and the General Electric DATAQ (TM) System (to perform the automatic data acquisition). The automation of the system is discussed

  16. Correlation techniques for the improvement of signal-to-noise ratio in measurements with stochastic processes

    CERN Document Server

    Reddy, V R; Reddy, T G; Reddy, P Y; Reddy, K R

    2003-01-01

    An AC modulation technique is described to convert stochastic signal variations into an amplitude variation and its retrieval through Fourier analysis. It is shown that this AC detection of signals of stochastic processes when processed through auto- and cross-correlation techniques improve the signal-to-noise ratio; the correlation techniques serve a similar purpose of frequency and phase filtering as that of phase-sensitive detection. A few model calculations applied to nuclear spectroscopy measurements such as Angular Correlations, Mossbauer spectroscopy and Pulse Height Analysis reveal considerable improvement in the sensitivity of signal detection. Experimental implementation of the technique is presented in terms of amplitude variations of harmonics representing the derivatives of normal spectra. Improved detection sensitivity to spectral variations is shown to be significant. These correlation techniques are general and can be made applicable to all the fields of particle counting where measurements ar...

  17. Eddy current testing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin; Lee, Hyang Beom; Kim, Young Hwan [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan Univ., Gunsan (Korea, Republic of)

    2004-02-15

    Eddy current testing has been widely used for non destructive testing of steam generator tubes. In order to retain reliability in ECT, the following subjects were carried out in this study: numerical modeling and analysis of defects by using BC and RPC probes in SG tube, preparation of absolute coil impedance plane diagram by FEM. Signal interpretation of the eddy current signals obtained from nuclear power plants.

  18. Eddy current testing

    International Nuclear Information System (INIS)

    Song, Sung Jin; Lee, Hyang Beom; Kim, Young Hwan; Shin, Young Kil

    2004-02-01

    Eddy current testing has been widely used for non destructive testing of steam generator tubes. In order to retain reliability in ECT, the following subjects were carried out in this study: numerical modeling and analysis of defects by using BC and RPC probes in SG tube, preparation of absolute coil impedance plane diagram by FEM. Signal interpretation of the eddy current signals obtained from nuclear power plants

  19. Experimental modeling of eddy current inspection capabilities

    International Nuclear Information System (INIS)

    Junker, W.R.; Clark, W.G.

    1984-01-01

    This chapter examines the experimental modeling of eddy current inspection capabilities based upon the use of liquid mercury samples designed to represent metal components containing discontinuities. A brief summary of past work with mercury modeling and a detailed discussion of recent experiments designed to further evaluate the technique are presented. The main disadvantages of the mercury modeling concept are that mercury is toxic and must be handled carefully, liquid mercury can only be used to represent nonferromagnetic materials, and wetting and meniscus problems can distort the effective size of artificial discontinuities. Artificial discontinuities placed in a liquid mercury sample can be used to represent discontinuities in solid metallic structures. Discontinuity size and type cannot be characterized from phase angle and signal amplitude data developed with a surface scanning, pancake-type eddy current probe. It is concluded that the mercury model approach can greatly enhance the overall understanding and applicability of eddy current inspection techniques

  20. Large eddy simulation of premixed and non-premixed combustion

    OpenAIRE

    Malalasekera, W; Ibrahim, SS; Masri, AR; Sadasivuni, SK; Gubba, SR

    2010-01-01

    This paper summarises the authors experience in using the Large Eddy Simulation (LES) technique for the modelling of premixed and non-premixed combustion. The paper describes the application of LES based combustion modelling technique to two well defined experimental configurations where high quality data is available for validation. The large eddy simulation technique for the modelling flow and turbulence is based on the solution of governing equations for continuity and momentum in a struct...

  1. Casimir Interaction from Magnetically Coupled Eddy Currents

    Science.gov (United States)

    Intravaia, Francesco; Henkel, Carsten

    2009-09-01

    We study the quantum and thermal fluctuations of eddy (Foucault) currents in thick metallic plates. A Casimir interaction between two plates arises from the coupling via quasistatic magnetic fields. As a function of distance, the relevant eddy current modes cross over from a quantum to a thermal regime. These modes alone reproduce previously discussed thermal anomalies of the electromagnetic Casimir interaction between good conductors. In particular, they provide a physical picture for the Casimir entropy whose nonzero value at zero temperature arises from a correlated, glassy state.

  2. Large Eddy Simulations using oodlesDST

    Science.gov (United States)

    2016-01-01

    Research Agency DST-Group-TR-3205 ABSTRACT The oodlesDST code is based on OpenFOAM software and performs Large Eddy Simulations of......maritime platforms using a variety of simulation techniques. He is currently using OpenFOAM software to perform both Reynolds Averaged Navier-Stokes

  3. Comparison of ecosystem water flux measured with the Eddy covariance- and the direct xylem sap flux method in a mountainous forest

    Energy Technology Data Exchange (ETDEWEB)

    Stefanicki, G; Geissbuehler, P; Siegwolf, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The Eddy covariance technique allows to measure different components of turbulent air fluxes, including the flow of water vapour. Sap flux measurements determine directly the water flow in tree stems. We compared the water flux just above the crowns of trees in a forest by the technique of Eddy covariance and the water flux by the xylem sap flux method. These two completely different approaches showed a good qualitative correspondence. The correlation coefficient is 0.8. With an estimation of the crown diameter of the measured tree we also find a very good quantitative agreement. (author) 3 figs., 5 refs.

  4. MASCOTTE: analytical model of eddy current signals

    International Nuclear Information System (INIS)

    Delsarte, G.; Levy, R.

    1992-01-01

    Tube examination is a major application of the eddy current technique in the nuclear and petrochemical industries. Such examination configurations being specially adapted to analytical modes, a physical model is developed on portable computers. It includes simple approximations made possible by the effective conditions of the examinations. The eddy current signal is described by an analytical formulation that takes into account the tube dimensions, the sensor conception, the physical characteristics of the defect and the examination parameters. Moreover, the model makes it possible to associate real signals and simulated signals

  5. Development of a system for monitoring and diagnosis of steam generator tubes using artificial intelligence techniques on Eddy Current Test signals

    International Nuclear Information System (INIS)

    Mesquita, Roberto Navarro de; Ting, Daniel Kao Sun; Lopez, Luis A. Negro M.; Upadhyaya, Belle R.

    2002-01-01

    New classification and feature extraction methods for steam generator tube defects are being developed by IPEN/CNEN-SP in cooperation with UTK to improve a monitoring and diagnosis system for classification and characterization of steam generator tube defects using Eddy Current Testing (ECT) signals. The first methodology being developed uses a set of feature extraction methods applied to different tube defect type ECT signals and each obtained feature vector is projected into a bi-dimensional map obtained by a Self-Organizing Map neural network. This methodology allows an optimal feature extraction method selection for the defect type classification. Other approach is being developed using tubes with different manufactured defect types which are tested using MIZ-17ET equipment with 4 sets of probes (two different diameter). A fuzzy inference system will be used to build a knowledge base for these defects. These methodology and algorithms will be integrated into an automated diagnosis system being developed with UTK, which is designed to read both on-line acquired data, as well as stored data files. These commercial software tools are the ones usually utilized in nuclear power plants. (author)

  6. Development of a system for monitoring and diagnosis of steam generator tubes using artificial intelligence techniques on Eddy Current Test signals

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Roberto Navarro de [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Monitoracao e Diagnostico]|[Sao Paulo Univ., SP (Brazil); Ting, Daniel Kao Sun [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Monitoracao e Diagnostico; Cabral, Eduardo Lobo C. [Sao Paulo Univ., SP (Brazil); Lopez, Luis A. Negro M. [Faculdade de Engenharia Industrial, Sao Bernardo do Campo, SP (Brazil); Upadhyaya, Belle R. [Tennessee Univ., Knoxville, TN (United States)

    2002-07-01

    New classification and feature extraction methods for steam generator tube defects are being developed by IPEN/CNEN-SP in cooperation with UTK to improve a monitoring and diagnosis system for classification and characterization of steam generator tube defects using Eddy Current Testing (ECT) signals. The first methodology being developed uses a set of feature extraction methods applied to different tube defect type ECT signals and each obtained feature vector is projected into a bi-dimensional map obtained by a Self-Organizing Map neural network. This methodology allows an optimal feature extraction method selection for the defect type classification. Other approach is being developed using tubes with different manufactured defect types which are tested using MIZ-17ET equipment with 4 sets of probes (two different diameter). A fuzzy inference system will be used to build a knowledge base for these defects. These methodology and algorithms will be integrated into an automated diagnosis system being developed with UTK, which is designed to read both on-line acquired data, as well as stored data files. These commercial software tools are the ones usually utilized in nuclear power plants. (author)

  7. Comparison between correlated sampling and the perturbation technique of MCNP5 for fixed-source problems

    International Nuclear Information System (INIS)

    He Tao; Su Bingjing

    2011-01-01

    Highlights: → The performance of the MCNP differential operator perturbation technique is compared with that of the MCNP correlated sampling method for three types of fixed-source problems. → In terms of precision, the MCNP perturbation technique outperforms correlated sampling for one type of problem but performs comparably with or even under-performs correlated sampling for the other two types of problems. → In terms of accuracy, the MCNP perturbation calculations may predict inaccurate results for some of the test problems. However, the accuracy can be improved if the midpoint correction technique is used. - Abstract: Correlated sampling and the differential operator perturbation technique are two methods that enable MCNP (Monte Carlo N-Particle) to simulate small response change between an original system and a perturbed system. In this work the performance of the MCNP differential operator perturbation technique is compared with that of the MCNP correlated sampling method for three types of fixed-source problems. In terms of precision of predicted response changes, the MCNP perturbation technique outperforms correlated sampling for the problem involving variation of nuclide concentrations in the same direction but performs comparably with or even underperforms correlated sampling for the other two types of problems that involve void or variation of nuclide concentrations in opposite directions. In terms of accuracy, the MCNP differential operator perturbation calculations may predict inaccurate results that deviate from the benchmarks well beyond their uncertainty ranges for some of the test problems. However, the accuracy of the MCNP differential operator perturbation can be improved if the midpoint correction technique is used.

  8. Cardiac-driven Pulsatile Motion of Intracranial Cerebrospinal Fluid Visualized Based on a Correlation Mapping Technique.

    Science.gov (United States)

    Yatsushiro, Satoshi; Sunohara, Saeko; Hayashi, Naokazu; Hirayama, Akihiro; Matsumae, Mitsunori; Atsumi, Hideki; Kuroda, Kagayaki

    2018-04-10

    A correlation mapping technique delineating delay time and maximum correlation for characterizing pulsatile cerebrospinal fluid (CSF) propagation was proposed. After proofing its technical concept, this technique was applied to healthy volunteers and idiopathic normal pressure hydrocephalus (iNPH) patients. A time-resolved three dimensional-phase contrast (3D-PC) sampled the cardiac-driven CSF velocity at 32 temporal points per cardiac period at each spatial location using retrospective cardiac gating. The proposed technique visualized distributions of propagation delay and correlation coefficient of the PC-based CSF velocity waveform with reference to a waveform at a particular point in the CSF space. The delay time was obtained as the amount of time-shift, giving the maximum correlation for the velocity waveform at an arbitrary location with that at the reference location. The validity and accuracy of the technique were confirmed in a flow phantom equipped with a cardiovascular pump. The technique was then applied to evaluate the intracranial CSF motions in young, healthy (N = 13), and elderly, healthy (N = 13) volunteers and iNPH patients (N = 13). The phantom study demonstrated that root mean square error of the delay time was 2.27%, which was less than the temporal resolution of PC measurement used in this study (3.13% of a cardiac cycle). The human studies showed a significant difference (P correlation coefficient between the young, healthy group and the other two groups. A significant difference (P correlation coefficients in intracranial CSF space among all groups. The result suggests that the CSF space compliance of iNPH patients was lower than that of healthy volunteers. The correlation mapping technique allowed us to visualize pulsatile CSF velocity wave propagations as still images. The technique may help to classify diseases related to CSF dynamics, such as iNPH.

  9. Eddy Current Testing at Level 2: Manual for the Syllabi Contained in IAEA-TECDOC-628.Rev. 2 'Training Guidelines for Non Destructive Testing Techniques'

    International Nuclear Information System (INIS)

    2011-01-01

    The International Atomic Energy Agency has been active in the promotion of non-destructive testing (NDT) technology in the world for many decades. The prime reason for this interest has been the need for stringent standards for quality control for safe operation of nuclear as well as other industrial installations. It has successfully executed a number of programmes including technical co-operation (TC) projects (national and regional) and the coordinated research projects (CRP) of which NDT was an important part. Through these programmes a large number of persons in the Member States have been trained, leading to establishment of national certifying bodies (NCB) responsible for training and certification of NDT personnel. Consequently, a state of self-sufficiency in this area of technology has been achieved in many of them. All along there has been a realization of the need to have well established training guidelines and related books in order, firstly, to guide the IAEA experts who were involved in this training programme and, secondly, to achieve some level of international uniformity and harmonization of training materials and consequent competence of NDT personnel. The syllabi for training courses have been published in the form of IAEA-TECDOC publications. The first was IAEA-TECDOC-407 (1987), which contained syllabi for the basic five methods, i.e. liquid penetrant testing, magnetic particle testing, eddy current testing, radiographic testing and ultrasonic testing. To accommodate advancements in NDT technology, later versions of this publication were issued in 1991, 2002 and 2008, the current version being IAEA-TECDOC-628/Rev.2 (2008), which includes additional and more advanced NDT methods. This IAEA-TECDOC, as well as most of the international standards on the subject of training and certification of NDT personnel including ISO 9712 (2005), define three levels of competence. Among these, level 1 is the lowest and level 3 the highest. The intermediate

  10. Theoretical and practical program in the non-destructive testing by eddy currents - the first level

    International Nuclear Information System (INIS)

    Shaaban, H.I.; Addarwish, J.M.A.

    2014-11-01

    The testing using eddy currents is one of the non-destructive tests that use electromagnetic property as a basis for testing procedures, and there are many other ways to use this principle, including Remote Field Testing and the Magnetic Flux Leakage test. Eddy currents are electrical currents moving in a circular path, and took the name eddy of eddies that form when a liquid or gas is moving in a circular path because of objection obstacles to its track. They are generated in the material using a variable magnetic field. Non-destructive testing by eddy currents is a technique used for the detection of defects and interruptions in a material and it is a process that relies on the generation of small eddy currents in the material of the part to be examined, provided that this part is of an electrically conducting material. This technique and its scientific basis are explained in this book. Also the devices used in this technique and how to use these devices in details are explained. The book contains Twelve chapters: Introduction to non destructive testing - Engineering materials and its mechanical characteristics - Electrical and magnetic characteristics of engineering materials - Introduction to testing by eddy currents - Factors affecting eddy currents - Basis of electrical circuits used in eddy currents testing devices - Probes of eddy currents testing - Eddy currents testing devices (Theoretical) - Analysis of the examination results of testing by eddy currents: techniques and applications - Applications of testing by eddy currents - Eddy currents testing devices (Application) - Practical lessons for the first level in testing by eddy currents.

  11. Interview with Eddie Reisch

    Science.gov (United States)

    Owen, Hazel

    2013-01-01

    Eddie Reisch is currently working as a policy advisor for Te Reo Maori Operational Policy within the Student Achievement group with the Ministry of Education in New Zealand, where he has implemented and led a range of e-learning initiatives and developments, particularly the Virtual Learning Network (VLN). He is regarded as one of the leading…

  12. Remote field eddy current testing of ferromagnetic tubes

    International Nuclear Information System (INIS)

    David, B.

    1990-01-01

    In order to test ferromagnetic tubes using internal probes, Intercontrole and the CEA have carried out theoretical and experimental works and developed a method to adapt the Remote Field Eddy Current technique which has been known and used for 30 years now. This document briefly recalls the basic principles of the Remote Field Eddy Current technique, the various steps of the works carried out and mainly describes examples of field inspection of ferromagnetic tubes and pipes [fr

  13. Fiber Strain Measurement for Wide Region Quasidistributed Sensing by Optical Correlation Sensor with Region Separation Techniques

    Directory of Open Access Journals (Sweden)

    Xunjian Xu

    2010-01-01

    Full Text Available The useful application of optical pulse correlation sensor for wide region quasidistributed fiber strain measurement is investigated. Using region separation techniques of wavelength multiplexing with FBGs and time multiplexing with intensity partial reflectors, the sensor measures the correlations between reference pulses and monitoring pulses from several cascadable selected sensing regions. This novel sensing system can select the regions and obtain the distributed strain information in any desired sensing region.

  14. A study of trapped ion dynamics by photon-correlation and pulse-probe techniques

    International Nuclear Information System (INIS)

    Rink, J.; Dholakia, K.; Zs, G.; Horvath, K.; Hernandez-Pozos, J. L.; Power, W.; Segal, D. M.; Thompson, R. C.; Walker, T.

    1995-01-01

    We demonstrate non-evasive methods for observing ion and ion cloud oscillation frequencies in a quadrupole ion trap. These trap resonances are measured for small clouds using a photon correlation technique. For large clouds the rotation frequency can be detected with the help of an additional pulsed probe laser. We show applications of the photon correlation method such as estimating the dynamic properties of a combined trap and detecting ion crystals

  15. Positronium in metal-oxide powders studied with age. The age-momentum correlation technique

    International Nuclear Information System (INIS)

    Waeyenberge, B. van; Dauve, Ch.

    2001-01-01

    For the first time positronium is investigated in the fine powders of MgO and Al 2 O 3 using age-momentum correlation technique based on a relativistic positron beam. The application of this technique for investigating the interaction of positronium with the grain surfaces is discussed and compared with other techniques. The previously reported interaction of the positronium with paramagnetic centers is further studied. A qualitative interpretation of the spectra is given. In the Al 2 O 3 samples we found some unexpected behaviour of the conversion quenching of ortho-positronium at irradiation induced paramagnetic surface defect. (author)

  16. Correlation between near infrared spectroscopy and electrical techniques in measuring skin moisture content

    International Nuclear Information System (INIS)

    Mohamad, M; Sabbri, A R M; Jafri, M Z Mat; Omar, A F

    2014-01-01

    Near infrared (NIR) spectroscopy technique serves as an important tool for the measurement of moisture content of skin owing to the advantages it has over the other techniques. The purpose of the study is to develop a correlation between NIR spectrometer with electrical conventional techniques for skin moisture measurement. A non-invasive measurement of moisture content of skin was performed on different part of human face and hand under control environment (temperature 21 ± 1 °C, relative humidity 45 ± 5 %). Ten healthy volunteers age between 21-25 (male and female) participated in this study. The moisture content of skin was measured using DermaLab ® USB Moisture Module, Scalar Moisture Checker and NIR spectroscopy (NIRQuest). Higher correlation was observed between NIRQuest and Dermalab moisture probe with a coefficient of determination (R 2 ) above 70 % for all the subjects. However, the value of R 2 between NIRQuest and Moisture Checker was observed to be lower with the R 2 values ranges from 51.6 to 94.4 %. The correlation of NIR spectroscopy technique successfully developed for measuring moisture content of the skin. The analysis of this correlation can help to establish novel instruments based on an optical system in clinical used especially in the dermatology field

  17. Multiple-output all-optical header processing technique based on two-pulse correlation principle

    NARCIS (Netherlands)

    Calabretta, N.; Liu, Y.; Waardt, de H.; Hill, M.T.; Khoe, G.D.; Dorren, H.J.S.

    2001-01-01

    A serial all-optical header processing technique based on a two-pulse correlation principle in a semiconductor laser amplifier in a loop mirror (SLALOM) configuration that can have a large number of output ports is presented. The operation is demonstrated experimentally at a 10Gbit/s Manchester

  18. Isotope correlation techniques for verifying input accountability measurements at a reprocessing plant

    International Nuclear Information System (INIS)

    Umezawa, H.; Nakahara, Y.

    1983-01-01

    Isotope correlation techniques were studied to verify input accountability measurements at a reprocessing plant. On the basis of a historical data bank, correlation between plutonium-to-uranium ratio and isotopic variables was derived as a function of burnup. The burnup was determined from the isotopic ratios of uranium and plutonium, too. Data treatment was therefore made in an iterative manner. The isotopic variables were defined to cover a wide spectrum of isotopes of uranium and plutonium. The isotope correlation techniques evaluated important parameters such as the fuel burnup, the most probable ratio of plutonium to uranium, and the amounts of uranium and plutonium in reprocessing batches in connection with fresh fuel fabrication data. In addition, the most probable values of isotope abundance of plutonium and uranium could be estimated from the plutonium-to-uranium ratio determined, being compared with the reported data for verification. A pocket-computer-based system was developed to enable inspectors to collect and evaluate data in a timely fashion at the input accountability measurement point by the isotope correlation techniques. The device is supported by battery power and completely independent of the operator's system. The software of the system was written in BASIC. The data input can be stored in a cassette tape and transferred into a higher level computer. The correlations used for the analysis were given as a form of analytical function. Coefficients for the function were provided relevant to the type of reactor and the initial enrichment of fuel. (author)

  19. Turbulent fluxes by "Conditional Eddy Sampling"

    Science.gov (United States)

    Siebicke, Lukas

    2015-04-01

    for the field (one to two orders of magnitude lower compared to current closed-path laser based eddy covariance systems). Potential applications include fluxes of CO2, CH4, N2O, VOCs and other tracers. Finally we assess the flux accuracy of the Conditional Eddy Sampling (CES) approach as in our real implementation relative to alternative techniques including eddy covariance (EC) and relaxed eddy accumulation (REA). We further quantify various sources of instrument and method specific measurement errors. This comparison uses real measurements of 20 Hz turbulent time series of 3D wind velocity, sonic temperature and CO2 mixing ratio over a mixed decidious forest at the 'ICOS' flux tower site 'Hainich', Germany. Results from a simulation using real wind and CO2 timeseries from the Hainich site from 30 April to 3 November 2014 and real instrument performance suggest that the maximum flux estimates error (50% and 75% error quantiles) from Conditional Eddy Sampling (CES) relative to the true flux is 1.3% and 10%, respectively for monthly net fluxes, 1.6% and 7%, respectively for daily net fluxes and 8% and 35%, respectively for 30-minute CO2 flux estimates. Those results from CES are promising and outperform our REA estimates by about a factor of 50 assuming REA with constant b value. Results include flux time series from the EC, CES and REA approaches from 30-min to annual resolution.

  20. Field transients of coherent terahertz synchrotron radiation accessed via time-resolving and correlation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, A.; Hübers, H.-W. [Humboldt-Universität zu Berlin, Institute of Physics, Newtonstraße 15, 12489 Berlin (Germany); Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstrasse 29, 12489 Berlin (Germany); Semenov, A. [Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstrasse 29, 12489 Berlin (Germany); Hoehl, A.; Ulm, G. [Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin (Germany); Ries, M.; Wüstefeld, G. [Helmholz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Ilin, K.; Thoma, P.; Siegel, M. [Institute of Micro- and Nanoelectronic Systems, Karlsruhe Institute of Technology (KIT), Hertzstrasse 16, 76187 Karlsruhe (Germany)

    2016-03-21

    Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the duration of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.

  1. Sea Surface Height Variability and Eddy Statistical Properties in the Red Sea

    KAUST Repository

    Zhan, Peng

    2013-05-01

    Satellite sea surface height (SSH) data over 1992-2012 are analyzed to study the spatial and temporal variability of sea level in the Red Sea. Empirical orthogonal functions (EOF) analysis suggests the remarkable seasonality of SSH in the Red Sea, and a significant correlation is found between SSH variation and seasonal wind cycle. A winding-angle based eddy identification algorithm is employed to derive the mesoscale eddy information from SSH data. Totally more than 5500 eddies are detected, belonging to 2583 eddy tracks. Statistics suggest that eddies generate over the entire Red Sea, with two regions in the central basin of high eddy frequency. 76% of the detected eddies have a radius ranging from 40km to 100km, of which both intensity and absolute vorticity decrease with eddy radius. The average eddy lifespan is about 5 weeks, and eddies with longer lifespan tend to have larger radius but less intensity. Different deformation rate exists between anticyclonic eddies (AEs) and cyclonic eddies (CEs), those eddies with higher intensity appear to be less deformed and more circular. Inspection of the 84 long-lived eddies suggests the AEs tend to move a little more northward than CEs. AE generation during summer is obviously lower than that during other seasons, while CE generation is higher during spring and summer. Other features of AEs and CEs are similar with both vorticity and intensity reaching the summer peaks in August and winter peaks in January. Inter-annual variability reveals that the eddies in the Red Sea are isolated from the global event. The eddy property tendencies are different from the south and north basin, both of which exhibit a two-year cycle. Showing a correlation coefficient of -0.91, Brunt–Väisälä frequency is negatively correlated with eddy kinetic energy (EKE), which results from AE activities in the high eddy frequency region. Climatological vertical velocity shear variation is identical with EKE except in the autumn, suggesting the

  2. Eddy energy separator

    Energy Technology Data Exchange (ETDEWEB)

    Mukhutdinov, R.Kh.; Prokopov, O.I.

    1982-01-01

    An eddy energy separator is proposed which contains a chamber with nozzle input of compressed air and sleeves for cold and hot streams. In order to increase productivity, the chamber is cylindrical and the nozzle input is arranged along its axis. Coaxially to the input, there is an adaptor forming an annular channel with its end arranged in an angle to the axis of the chamber. The nozzle input and the adaptor are installed with the possibility of relative movement.

  3. Properties, Mechanisms and Predictability of Eddies in the Red Sea

    KAUST Repository

    Zhan, Peng

    2018-04-01

    Eddies are one of the key features of the Red Sea circulation. They are not only crucial for energy conversion among dynamics at different scales, but also for materials transport across the basin. This thesis focuses on studying the characteristics of Red Sea eddies, including their temporal and spatial properties, their energy budget, the mechanisms of their evolution, and their predictability. Remote sensing data, in-situ observations, the oceanic general circulation model, and data assimilation techniques were employed in this thesis. The eddies in the Red Sea were first identified using altimeter data by applying an improved winding-angle method, based on which the statistical properties of those eddies were derived. The results suggested that eddies occur more frequently in the central basin of the Red Sea and exhibit a significant seasonal variation. The mechanisms of the eddies’ evolution, particularly the eddy kinetic energy budget, were then investigated based on the outputs of a long-term eddy resolving numerical model configured for the Red Sea with realistic forcing. Examination of the energy budget revealed that the eddies acquire the vast majority of kinetic energy through conversion of eddy available potential energy via baroclinic instability, which is intensified during winter. The possible factors modulating the behavior of the several observed eddies in the Red Sea were then revealed by conducting a sensitivity analysis using the adjoint model. These eddies were found to exhibit different sensitivities to external forcings, suggesting different mechanisms for their evolution. This is the first known adjoint sensitivity study on specific eddy events in the Red Sea and was hitherto not previously appreciated. The last chapter examines the predictability of Red Sea eddies using an ensemble-based forecasting and assimilation system. The forecast sea surface height was used to evaluate the overall performance of the short-term eddy

  4. Eddy Powell 1939 - 2003

    CERN Multimedia

    2003-01-01

    We were saddened to learn that Eddy Powell had passed away on Saturday 26 July after a long illness. Eddy had so many friends at CERN and made such a contribution to the Organisation that it is impossible that his passing goes without comment. Eddy was born in England on 4 August 1939 and, after serving his apprenticeship with the U.K. Ministry of Defence, he joined CERN in September 1965. As an electrical design draftsman with the Synchro-cyclotron Division he played an important role in the upgrades of that machine in the early 1970's, particularly on the RF systems and later on the development of the ISOLDE facility. This brought him into close contact with many of the technical support services in CERN and, unlike many of his compatriots, he acquired a remarkably good fluency in French. Always inquisitive on the physics carried out at CERN, he spent a great deal of time learning from physicists and engineers at all levels. When he felt sufficiently confident he became a CERN Guide for general public visit...

  5. Forest Ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles

    Science.gov (United States)

    Speckman, Heather N.; Frank, John M.; Bradford, John B.; Miles, Brianna L.; Massman, William J.; Parton, William J.; Ryan, Michael G.

    2015-01-01

    Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence (summer night mean friction velocity (u*) = 0.7 m s−1), during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber-based estimates of ecosystem respiration during the growth season, developed from foliage, wood and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ±0.22 μmol m−2 s−1 in 2005 to 4.6 ±0.16 μmol m−2 s−1 in 2011). Soil efflux remained at ~3.3 μmol m−2 s−1 throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 μmol m−2 s−1 for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r2 from 0.18-0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of > 0.7 m s−1. The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r2=0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates.

  6. The correlated k-distribution technique as applied to the AVHRR channels

    Science.gov (United States)

    Kratz, David P.

    1995-01-01

    Correlated k-distributions have been created to account for the molecular absorption found in the spectral ranges of the five Advanced Very High Resolution Radiometer (AVHRR) satellite channels. The production of the k-distributions was based upon an exponential-sum fitting of transmissions (ESFT) technique which was applied to reference line-by-line absorptance calculations. To account for the overlap of spectral features from different molecular species, the present routines made use of the multiplication transmissivity property which allows for considerable flexibility, especially when altering relative mixing ratios of the various molecular species. To determine the accuracy of the correlated k-distribution technique as compared to the line-by-line procedure, atmospheric flux and heating rate calculations were run for a wide variety of atmospheric conditions. For the atmospheric conditions taken into consideration, the correlated k-distribution technique has yielded results within about 0.5% for both the cases where the satellite spectral response functions were applied and where they were not. The correlated k-distribution's principal advantages is that it can be incorporated directly into multiple scattering routines that consider scattering as well as absorption by clouds and aerosol particles.

  7. Eddy current testing using digital technology

    International Nuclear Information System (INIS)

    Houseman, H.E.; Lamb, L.T.; Kitson, B.

    1985-01-01

    Eddy current inspection techniques have been used extensively in industry as an accepted method of non-destructive testing. The application of this technology has proven invaluable for both the control of product quality during the manufacturing process as well as the verification of material integrity throughout the life of a given component. One of the major areas in the power industry where eddy current techniques have been used is for the inspection of installed tubing in various heat exchangers including the steam generators of pressurized water reactor (PWR) nuclear steam supply systems. As increased emphasis is placed upon the operability and safety of these components, test instrumentation has been advanced to improve the efficiency and reliability of inservice inspections. At the same time, plant owners along with manufacturers and inspection service vendors are developing analytical tools for assessing the inspection results. One of the techniques that offers significant potential has been made possible by recent advances in digital technology. The application of digital techniques to the eddy current method offers not only a means to improve the test instrumentation but also an environment whereby other facets of the inservice inspection effort can be enchanced

  8. EDDY - a FORTRAN program to extract significant features from eddy-current test data - the basis of the CANSCAN system

    International Nuclear Information System (INIS)

    Jarvis, R.G.; Cranston, R.J.

    1982-09-01

    The FORTRAN program EDDY is designed to analyse data: from eddy-current scans of steam generator tubes. It is written in modular form, for future development, and it uses signal-recognition techniques that the authors developed in the profilometry of irradiated fuel elements. During a scan, significant signals are detected and extracted for immediate attention or more detailed analysis later. A version of the program was used in the CANSCAN system 'for automated eddy-current in-service inspection of nuclear steam generator tubing'

  9. Two-detector cross-correlation noise technique and its application in measuring reactor kinetic parameters

    International Nuclear Information System (INIS)

    Lu Guiping; Peng Feng; Yi Jieyi

    1988-01-01

    The two-detector cross-correlation noise technique is a new method of measuring reactor kinetic parameters developed in the sixties. It has the advantages of non-perturbation in core, high signal to noise ratio, low space dependent effect, and simple and reliable in measurement. A special set of cross-correlation analyzer has been prepared for measuring kinetic parameters of several reactor assemblies, such as the High Flux Engineering Test Reactor, its zero power mock up facility and a low enriched uranium light water lattice zero power facility

  10. Investigations into the Impact of the Equivalence Ratio on Turbulent Premixed Combustion Using Particle Image Velocimetry and Large Eddy Simulation Techniques: “V” and “M” Flame Configurations in a Swirl Combustor

    KAUST Repository

    Kewlani, Gaurav

    2016-03-24

    Turbulent premixed combustion is studied using experiments and numerical simulations in an acoustically uncoupled cylindrical sudden-expansion swirl combustor, and the impact of the equivalence ratio on the flame–flow characteristics is analyzed. In order to numerically capture the inherent unsteadiness exhibited in the flow, the large eddy simulation (LES) technique based on the artificial flame thickening combustion model is employed. The experimental data are obtained using particle image velocimetry. It is observed that changes in heat loading, in the presence of wall confinement, significantly influence the flow field in the wake region, the stabilization location of the flame, and the flame intensity. Specifically, increasing the equivalence ratio drastically reduces the average inner recirculation zone size and causes transition of the flame macrostructure from the “V” configuration to the “M” configuration. In other words, while the flame stabilizes along the inner shear layer for the V flame, a persistent diffuse reaction zone is also manifested along the outer shear layer for the M flame. The average chemiluminescence intensity increases in the case of the M flame macrostructure, while the axial span of the reaction zone within the combustion chamber decreases. The predictions of the numerical approach resemble the experimental observations, suggesting that the LES framework can be an effective tool for examining the effect of heat loading on flame–flow interactions and the mechanism of transition of the flame macrostructure with a corresponding change in the equivalence ratio.

  11. System for evaluating weld quality using eddy currents

    Science.gov (United States)

    Todorov, Evgueni I.; Hay, Jacob

    2017-12-12

    Electromagnetic and eddy current techniques for fast automated real-time and near real-time inspection and monitoring systems for high production rate joining processes. An eddy current system, array and method for the fast examination of welds to detect anomalies such as missed seam (MS) and lack of penetration (LOP) the system, array and methods capable of detecting and sizing surface and slightly subsurface flaws at various orientations in connection with at least the first and second weld pass.

  12. Relationships among the slopes of lines derived from various data analysis techniques and the associated correlation coefficient

    Science.gov (United States)

    Cohen, S. C.

    1980-01-01

    A technique for fitting a straight line to a collection of data points is given. The relationships between the slopes and correlation coefficients, and between the corresponding standard deviations and correlation coefficient are given.

  13. Quantum correlated imaging is a promising new technique in medical imaging

    Institute of Scientific and Technical Information of China (English)

    Nan Zhang; Zhaohua Yang

    2017-01-01

    Cardio-cerebral vascular diseases are common and frequently occurring serious diseases that threaten humans. In recent years, Digital Subtraction Angiography (DSA) has played a vital role in the diagnosis and treatment of cardio-cerebral vascular diseases. However, DSA is not able to visualize intravascular structures in real time, and it is especially difficult to evaluate each layer of the vascular wall and the composition of atherosclerotic plaques with DSA. Quantum correlated imaging is a new technique that can be used to perform real-time online imaging of intravascular flow, vascular wall structure, and atherosclerotic plaque composition. Quantum correlated imaging is a promising new technique that will soon be used in the diagnosis and treatment of cardio-cerebral vascular diseases.

  14. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry

    Science.gov (United States)

    Gradl, Paul

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  15. EDDIE RICKENBACKER: RACETRACK ENTREPRENEUR

    Directory of Open Access Journals (Sweden)

    W. David Lewis

    2000-01-01

    Full Text Available Edward V. (Eddie Rickenbacker (1890-1973 is best remembered for hisrecord as a combat pilot in World War I, in which he shot down 26 Germa naircraft and won fame as America’s "Ace of Aces." From 1934 until 1963 he was general manager, president, and board chairman of Eastern Air Lines, which was for a time the most profitable air carrier in the United States. This paper shows how Rickenbacker’s fiercely entrepreneurial style of management was born in his early involvement in the automobile industry, and particularly in his career as an automobile racing driver from 1909 through 1916.

  16. How Equalization Techniques Affect the TCP Performance of MC-CDMA Systems in Correlated Fading Channels

    Directory of Open Access Journals (Sweden)

    Giacomo Leonardi

    2007-12-01

    Full Text Available This paper investigates the impact of several equalization techniques for multicarrier code division multiple access systems on the performance at both lower and upper layers (i.e., physical and TCP layers. Classical techniques such as maximal ratio combining, equal gain combining, orthogonality restoring combining, minimum mean square error, as well as a partial equalization (PE are investigated in time- and frequency-correlated fading channels with various numbers of interferers. Their impact on the performance at upper level is then studied. The results are obtained through an integrated simulation platform carefully reproducing all main aspects affecting the quality of service perceived by the final user, allowing an investigation of the real gain produced by signal processing techniques at TCP level.

  17. [Correlation and conversion of plasma cholinesterase activity values using three techniques].

    Science.gov (United States)

    Carmona-Fonseca, Jaime

    2007-07-01

    To determine mathematical correlations of three quantitative techniques to measure plasma cholinesterase, using reference values already established for two populations in the department of Antioquia, Colombia. In this descriptive, cross-sectional, prospective study, two independent, representative samples of working adults (18 to 65 years old) were examined. In both samples the adults worked for businesses associated with Colombia's Social Security system. Adults in the two samples had not been exposed to cholinesterase-inhibiting pesticides. The samples were from two neighboring regions of the department of Antioquia: one sample (415 adults) was from the Aburrá Valley, and the other (412 adults) was from Oriente Antioqueño (Eastern Antioquia). Plasma cholinesterase (EC 3.1.1.8) was measured using three quantitative methods: Michel, EQM, and Monotest. Linear regression equations were developed to correlate results of these three techniques. Six simple linear regression equations were defined to show the relationship of three measurement techniques for plasma cholinesterase. There was a moderate correlation of the three techniques (r = 0.686 to 0.771), but it increased (r = 0.744 to 0.811) when 12 (1.5%) outliers were eliminated. Associations among the three techniques were highly significant (P EQM (U/mL) = 0.40773 + 1.8757 (Michel [delta pH/h]); Michel (delta pH/h) = 0.25799 + 0.33871 (EQM [U/mL]); Monotest (U/L) = 462.0 + 4 565.0 (Michel [delta pH/h]); Michel (delta pH/h) = 0.42956 + 0.00012125 (Monotest [U/L]); EQM (U/mL) = 0.75333 + 0.00031056 (Monotest [U/L]); and Monotest (U/L) = 262.0 + 2 118.0 (EQM [U/mL]). The proposed mathematical models allow conversion of cholinesterase activity values using the Michel, EQM, and Monotest techniques. These models can be of assistance in Colombia and other countries where a variety of measurement techniques are used, and where it becomes difficult to compare the results of different studies. Having mathematical models

  18. Conditional Eddies in Plasma Turbulence

    DEFF Research Database (Denmark)

    Johnsen, Helene; Pécseli, Hans; Trulsen, J.

    1986-01-01

    Conditional structures, or eddies, in turbulent flows are discussed with special attention to electrostatic turbulence in plasmas. The potential variation of these eddies is obtained by sampling the fluctuations only when a certain condition is satisfied in a reference point. The resulting...

  19. Eddy current manual, volume 2

    International Nuclear Information System (INIS)

    Cecco, V.S.; Van Drunen, G.; Sharp, F.L.

    1984-09-01

    This report on eddy current testing is divided into three sections: (a) Demonstration of Basic Principles, (b) Practical (Laboratory) Tests and, (c) Typical Certification Questions. It is intended to be used as a supplement to ΣEddy Current Manual, Volume 1Σ (AECL-7523) during CSNDT Foundation Level II and III courses

  20. Scalar Similarity for Relaxed Eddy Accumulation Methods

    Science.gov (United States)

    Ruppert, Johannes; Thomas, Christoph; Foken, Thomas

    2006-07-01

    The relaxed eddy accumulation (REA) method allows the measurement of trace gas fluxes when no fast sensors are available for eddy covariance measurements. The flux parameterisation used in REA is based on the assumption of scalar similarity, i.e., similarity of the turbulent exchange of two scalar quantities. In this study changes in scalar similarity between carbon dioxide, sonic temperature and water vapour were assessed using scalar correlation coefficients and spectral analysis. The influence on REA measurements was assessed by simulation. The evaluation is based on observations over grassland, irrigated cotton plantation and spruce forest. Scalar similarity between carbon dioxide, sonic temperature and water vapour showed a distinct diurnal pattern and change within the day. Poor scalar similarity was found to be linked to dissimilarities in the energy contained in the low frequency part of the turbulent spectra ( definition.

  1. Coordination analysis of players' distribution in football using cross-correlation and vector coding techniques.

    Science.gov (United States)

    Moura, Felipe Arruda; van Emmerik, Richard E A; Santana, Juliana Exel; Martins, Luiz Eduardo Barreto; Barros, Ricardo Machado Leite de; Cunha, Sergio Augusto

    2016-12-01

    The purpose of this study was to investigate the coordination between teams spread during football matches using cross-correlation and vector coding techniques. Using a video-based tracking system, we obtained the trajectories of 257 players during 10 matches. Team spread was calculated as functions of time. For a general coordination description, we calculated the cross-correlation between the signals. Vector coding was used to identify the coordination patterns between teams during offensive sequences that ended in shots on goal or defensive tackles. Cross-correlation showed that opponent teams have a tendency to present in-phase coordination, with a short time lag. During offensive sequences, vector coding results showed that, although in-phase coordination dominated, other patterns were observed. We verified that during the early stages, offensive sequences ending in shots on goal present greater anti-phase and attacking team phase periods, compared to sequences ending in tackles. Results suggest that the attacking team may seek to present a contrary behaviour of its opponent (or may lead the adversary behaviour) in the beginning of the attacking play, regarding to the distribution strategy, to increase the chances of a shot on goal. The techniques allowed detecting the coordination patterns between teams, providing additional information about football dynamics and players' interaction.

  2. Eddy current inspection of stationary blade rings

    International Nuclear Information System (INIS)

    Krzywosz, K.J.; Hastings, S.N.

    1994-01-01

    Stationary turbine blade rings in a US power plant have experienced chloride-induced cracking. Failure analysis determined two types of cracking mechanisms: corrosion fatigue cracking confined to the leading edge of the outer shroud; and stress corrosion cracking present all over the blade surface. Fluorescent dye penetrant is typically used to detect and size cracks. However, it requires cleaning the blade rings by sandblasting to obtain reliable inspection results. Sand blasting in turn requires sealing the lower half of the turbine housing to prevent sand from contaminating the rest of the power plant components. Furthermore, both the penetrant examination and the removal of the sand are time consuming and costly. An alternative NDE technique is desirable which requires no pre-cleaning of the blade and a quick go/no-go inspection with the capability of estimating the crack length. This paper presents an innovative eddy current technique which meets the desired objectives by incorporating the use of specially designed contoured scanners equipped with an array of pancake coils. A set of eddy current pancake coils housed in three different scanners is used to manually scan and inspect the convex side of the stationary blade rings. The pancake coils are operated in a transmit/receive mode using two separate eddy current instruments. This paper presents the inspection concept, including scanner and probe designs, and test results from the various stages of multiple blade rings

  3. Pulsed eddy currents: principle and applications

    International Nuclear Information System (INIS)

    Bernard, A.; Coutanceau, N.

    1993-04-01

    Eddy currents are widely used as a non destructive testing technique specially for heat exchanger testing. The specificities of pulsed eddy current testing are analyzed in terms of probe design and signal processing. The specific applications are detailed. They are divided in two parts. First part, deals with the two main applications of the high peak energy supplied to the probe. One concerns the design of focused probes used for the detection of small defects in irradiated fuel rods. The other concerns the saturation of ferromagnetic materials in order to test the full thickness of the exchanger tubes. Second part, deals with applications of the wide and low frequency spectrum generated by the pulse source. It enables the testing of thick materials, and the detection of sub-surface defects. It has been tested on austenitic steel (nuclear pressure vessel nozzle), multilayered structures of aluminium alloys (aeronautics) and sleeved structures (nuclear pressure vessel head penetrations through thermal sleeves)

  4. Obituary: John Allen Eddy (1931-2009)

    Science.gov (United States)

    Gingerich, Owen

    2011-12-01

    , "This Mercury is Hot! Red Shift, Black Body, and a Perfect Radiator." Ironically, within a few years he was laid off from his HAO position as a result of budget cuts at its parent organization, the National Center for Atmospheric Research (NCAR). In an interview a quarter of a century later Eddy remarked, "I found out how hard it is for a person with a Ph.D. to get another job at that time, and often wished I didn't have one, for I was often told, true or not, that I was overqualified for the few jobs that turned up." Eddy found a temporary job writing a book for NASA as part of a series on the Skylab spacecraft; the book, The New Sun, was published in 1979. Again, working on his own time, he revived an earlier finding, namely, that between 1645 and 1715 the sun was almost devoid of spots, and he greatly extended the previous work of Gustav Spörer and Walter Maunder by showing during that period a dearth of aurorae and atmospheric carbon-14, a diminution of the solar corona during eclipses, and probably a correlation with cooling of the earth. For onomatopoiec reasons, the rhythm of the m's, Eddy chose the title "the Maunder Minimum" for the phenomenon, and for his unusually long cover story in the 18 June 1976 issue of Science. The paper was well received, and for a while Eddy was an invited speaker fifty times a year. In 1977, Eddy scored yet again, with his third cover story in Science, a jointly authored paper on solar rotation in the early 17th century. In 1977-78 Eddy had a fellowship at the Harvard-Smithsonian Center for Astrophysics in Cambridge, and during that time Ken Brecher and I had a series of conversations with Jack in which we worked out a proposal for a historical astronomy division within the AAS; since I had just been an AAS Councilor, I negotiated with the Society for its actualization, and Eddy became the first HAD president, in 1981-83. He introduced the logo, Dürer's ancient astronomer, and at the end of his term, the plaque with the motto "Ich

  5. Modeling mesoscale eddies

    Science.gov (United States)

    Canuto, V. M.; Dubovikov, M. S.

    Mesoscale eddies are not resolved in coarse resolution ocean models and must be modeled. They affect both mean momentum and scalars. At present, no generally accepted model exists for the former; in the latter case, mesoscales are modeled with a bolus velocity u∗ to represent a sink of mean potential energy. However, comparison of u∗(model) vs. u∗ (eddy resolving code, [J. Phys. Ocean. 29 (1999) 2442]) has shown that u∗(model) is incomplete and that additional terms, "unrelated to thickness source or sinks", are required. Thus far, no form of the additional terms has been suggested. To describe mesoscale eddies, we employ the Navier-Stokes and scalar equations and a turbulence model to treat the non-linear interactions. We then show that the problem reduces to an eigenvalue problem for the mesoscale Bernoulli potential. The solution, which we derive in analytic form, is used to construct the momentum and thickness fluxes. In the latter case, the bolus velocity u∗ is found to contain two types of terms: the first type entails the gradient of the mean potential vorticity and represents a positive contribution to the production of mesoscale potential energy; the second type of terms, which is new, entails the velocity of the mean flow and represents a negative contribution to the production of mesoscale potential energy, or equivalently, a backscatter process whereby a fraction of the mesoscale potential energy is returned to the original reservoir of mean potential energy. This type of terms satisfies the physical description of the additional terms given by [J. Phys. Ocean. 29 (1999) 2442]. The mesoscale flux that enters the momentum equations is also contributed by two types of terms of the same physical nature as those entering the thickness flux. The potential vorticity flux is also shown to contain two types of terms: the first is of the gradient-type while the other terms entail the velocity of the mean flow. An expression is derived for the mesoscale

  6. Correlation between histological outcome and surgical cartilage repair technique in the knee: A meta-analysis.

    Science.gov (United States)

    DiBartola, Alex C; Everhart, Joshua S; Magnussen, Robert A; Carey, James L; Brophy, Robert H; Schmitt, Laura C; Flanigan, David C

    2016-06-01

    Compare histological outcomes after microfracture (MF), autologous chondrocyte implantation (ACI), and osteochondral autograft transfer (OATS). Literature review using PubMed MEDLINE, SCOPUS, Cumulative Index for Nursing and Allied Health Literature (CINAHL), and Cochrane Collaboration Library. Inclusion criteria limited to English language studies International Cartilage Repair Society (ICRS) grading criteria for cartilage analysis after ACI (autologous chondrocyte implantation), MF (microfracture), or OATS (osteochondral autografting) repair techniques. Thirty-three studies investigating 1511 patients were identified. Thirty evaluated ACI or one of its subtypes, six evaluated MF, and seven evaluated OATS. There was no evidence of publication bias (Begg's p=0.48). No statistically significant correlation was found between percent change in clinical outcome and percent biopsies showing ICRS Excellent scores (R(2)=0.05, p=0.38). Percent change in clinical outcome and percent of biopsies showing only hyaline cartilage were significantly associated (R(2)=0.24, p=0.024). Mean lesion size and histological outcome were not correlated based either on percent ICRS Excellent (R(2)=0.03, p=0.50) or percent hyaline cartilage only (R(2)=0.01, p=0.67). Most common lesion location and histological outcome were not correlated based either on percent ICRS Excellent (R(2)=0.03, p=0.50) or percent hyaline cartilage only (R(2)=0.01, p=0.67). Microfracture has poorer histologic outcomes than other cartilage repair techniques. OATS repairs primarily are comprised of hyaline cartilage, followed closely by cell-based techniques, but no significant difference was found cartilage quality using ICRS grading criteria among OATS, ACI-C, MACI, and ACI-P. IV, meta-analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Large eddy simulation of turbulent mixing in a T-junction

    International Nuclear Information System (INIS)

    Kim, Jung Woo

    2010-12-01

    In this report, large eddy simulation was performed in order to further improve our understanding the physics of turbulent mixing in a T-junction, which is recently regarded as one of the most important problems in nuclear thermal-hydraulics safety. Large eddy simulation technique and the other numerical methods used in this study were presented in Sec. 2, and the numerical results obtained from large eddy simulation were described in Sec. 3. Finally, the summary was written in Sec. 4

  8. Automatic detection and classification of damage zone(s) for incorporating in digital image correlation technique

    Science.gov (United States)

    Bhattacharjee, Sudipta; Deb, Debasis

    2016-07-01

    Digital image correlation (DIC) is a technique developed for monitoring surface deformation/displacement of an object under loading conditions. This method is further refined to make it capable of handling discontinuities on the surface of the sample. A damage zone is referred to a surface area fractured and opened in due course of loading. In this study, an algorithm is presented to automatically detect multiple damage zones in deformed image. The algorithm identifies the pixels located inside these zones and eliminate them from FEM-DIC processes. The proposed algorithm is successfully implemented on several damaged samples to estimate displacement fields of an object under loading conditions. This study shows that displacement fields represent the damage conditions reasonably well as compared to regular FEM-DIC technique without considering the damage zones.

  9. Auto-correlation based intelligent technique for complex waveform presentation and measurement

    International Nuclear Information System (INIS)

    Rana, K P S; Singh, R; Sayann, K S

    2009-01-01

    Waveform acquisition and presentation forms the heart of many measurement systems. Particularly, data acquisition and presentation of repeating complex signals like sine sweep and frequency-modulated signals introduces the challenge of waveform time period estimation and live waveform presentation. This paper presents an intelligent technique, for waveform period estimation of both the complex and simple waveforms, based on the normalized auto-correlation method. The proposed technique is demonstrated using LabVIEW based intensive simulations on several simple and complex waveforms. Implementation of the technique is successfully demonstrated using LabVIEW based virtual instrumentation. Sine sweep vibration waveforms are successfully presented and measured for electrodynamic shaker system generated vibrations. The proposed method is also suitable for digital storage oscilloscope (DSO) triggering, for complex signals acquisition and presentation. This intelligence can be embodied into the DSO, making it an intelligent measurement system, catering wide varieties of the waveforms. The proposed technique, simulation results, robustness study and implementation results are presented in this paper.

  10. Large eddy simulation of bundle turbulent flows

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Barsamian, H.R.

    1995-01-01

    Large eddy simulation may be defined as simulation of a turbulent flow in which the large scale motions are explicitly resolved while the small scale motions are modeled. This results into a system of equations that require closure models. The closure models relate the effects of the small scale motions onto the large scale motions. There have been several models developed, the most popular is the Smagorinsky eddy viscosity model. A new model has recently been introduced by Lee that modified the Smagorinsky model. Using both of the above mentioned closure models, two different geometric arrangements were used in the simulation of turbulent cross flow within rigid tube bundles. An inlined array simulations was performed for a deep bundle (10,816 nodes) as well as an inlet/outlet simulation (57,600 nodes). Comparisons were made to available experimental data. Flow visualization enabled the distinction of different characteristics within the flow such as jet switching effects in the wake of the bundle flow for the inlet/outlet simulation case, as well as within tube bundles. The results indicate that the large eddy simulation technique is capable of turbulence prediction and may be used as a viable engineering tool with the careful consideration of the subgrid scale model. (author)

  11. Turbulence prediction in two-dimensional bundle flows using large eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, W.A.; Hassan, Y.A. [Texas A& M Univ., College Station, TX (United States)

    1995-09-01

    Turbulent flow is characterized by random fluctuations in the fluid velocity and by intense mixing of the fluid. Due to velocity fluctuations, a wide range of eddies exists in the flow field. Because these eddies carry mass, momentum, and energy, this enhanced mixing can sometimes lead to serious problems, such as tube vibrations in many engineering systems that include fluid-tube bundle combinations. Nuclear fuel bundles and PWR steam generators are existing examples in nuclear power plants. Fluid-induced vibration problems are often discovered during the operation of such systems because some of the fluid-tube interaction characteristics are not fully understood. Large Eddy Simulation, incorporated in a three dimensional computer code, became one of the promising techniques to estimate flow turbulence, predict and prevent of long-term tube fretting affecting PWR steam generators. the present turbulence investigations is a step towards more understanding of fluid-tube interaction characteristics by comparing the tube bundles with various pitch-to-diameter ratios were performed. Power spectral densities were used for comparison with experimental data. Correlations, calculations of different length scales in the flow domain and other important turbulent-related parameters were calculated. Finally, important characteristics of turbulent flow field were presented with the aid of flow visualization with tracers impeded in the flow field.

  12. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Baier, S.; Rochet, A.; Hofmann, G. [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Kraut, M. [Institute for Micro Process Engineering, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen (Germany); Grunwaldt, J.-D., E-mail: grunwaldt@kit.edu [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen (Germany)

    2015-06-15

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.

  13. Digital Image Correlation Techniques Applied to Large Scale Rocket Engine Testing

    Science.gov (United States)

    Gradl, Paul R.

    2016-01-01

    Rocket engine hot-fire ground testing is necessary to understand component performance, reliability and engine system interactions during development. The J-2X upper stage engine completed a series of developmental hot-fire tests that derived performance of the engine and components, validated analytical models and provided the necessary data to identify where design changes, process improvements and technology development were needed. The J-2X development engines were heavily instrumented to provide the data necessary to support these activities which enabled the team to investigate any anomalies experienced during the test program. This paper describes the development of an optical digital image correlation technique to augment the data provided by traditional strain gauges which are prone to debonding at elevated temperatures and limited to localized measurements. The feasibility of this optical measurement system was demonstrated during full scale hot-fire testing of J-2X, during which a digital image correlation system, incorporating a pair of high speed cameras to measure three-dimensional, real-time displacements and strains was installed and operated under the extreme environments present on the test stand. The camera and facility setup, pre-test calibrations, data collection, hot-fire test data collection and post-test analysis and results are presented in this paper.

  14. On the Decay Ratio Determination in BWR Stability Analysis by Auto-Correlation Function Techniques

    International Nuclear Information System (INIS)

    Behringer, K.; Hennig, D.

    2002-11-01

    A novel auto-correlation function (ACF) method has been investigated for determining the oscillation frequency and the decay ratio in BWR stability analyses. The neutron signals are band-pass filtered to separate the oscillation peak in the power spectral density (PSD) from background. Two linear second-order oscillation models are considered. These models, corrected for signal filtering and including a background term under the peak in the PSD, are then least-squares fitted to the ACF of the previously filtered neutron signal, in order to determine the oscillation frequency and the decay ratio. Our method uses fast Fourier transform techniques with signal segmentation for filtering and ACF estimation. Gliding 'short-term' ACF estimates on a record allow the evaluation of uncertainties. Numerical results are given which have been obtained from neutron data of the recent Forsmark I and Forsmark II NEA benchmark project. Our results are compared with those obtained by other participants in the benchmark project. The present PSI report is an extended version of the publication K. Behringer, D. Hennig 'A novel auto-correlation function method for the determination of the decay ratio in BWR stability studies' (Behringer, Hennig, 2002)

  15. Automation of a McBain-Bakr-type thermogravimetric analyzer using a digital image correlation technique

    International Nuclear Information System (INIS)

    Trexler, M.D.; Sanders, T.H. Jr.; Singh, P.M.

    2006-01-01

    Thermogravimetric analysis was used to obtain corrosion kinetics data for several materials in high-temperature environments. A thermogravimetric analyzer has been developed that uses a McBain-Bakr quartz spring balance in conjunction with a digital image acquisition and analysis package to accurately characterize materials through image correlation. This provides a new method for automatically measuring mass changes continuously with a variable resolution depending on the spring component. The decomposition of calcium oxalate was used to verify the validity of the technique. The results show two reactions, whose reaction temperatures were determined by the intercept method, upon heating to 650 deg. C. The mass loss at the first reaction temperature, 200 deg. C, was 20% and a 30% loss was observed at 500 deg. C. Comparison of the experimentally obtained results with those of other researchers who used commercial instruments suggests that the method of using digital image analysis in conjunction with a spring to monitor mass change is a viable and accurate replacement for automatic electrobalances and cathetometers for thermal analysis of materials. Additional comparison between corrosion tests performed on SA210 steel in H 2 S using both a commercial thermobalance and the developed technique confirmed that high-temperature corrosion can be monitored accurately with the proposed method

  16. Correlations between forced oscillation technique parameters and pulmonary densitovolumetry values in patients with acromegaly

    Directory of Open Access Journals (Sweden)

    G.B. Camilo

    2015-01-01

    Full Text Available The aims of this study were to evaluate the forced oscillation technique (FOT and pulmonary densitovolumetry in acromegalic patients and to examine the correlations between these findings. In this cross-sectional study, 29 non-smoking acromegalic patients and 17 paired controls were subjected to the FOT and quantification of lung volume using multidetector computed tomography (Q-MDCT. Compared with the controls, the acromegalic patients had a higher value for resonance frequency [15.3 (10.9-19.7 vs 11.4 (9.05-17.6 Hz, P=0.023] and a lower value for mean reactance [0.32 (0.21-0.64 vs 0.49 (0.34-0.96 cm H2O/L/s2, P=0.005]. In inspiratory Q-MDCT, the acromegalic patients had higher percentages of total lung volume (TLV for nonaerated and poorly aerated areas [0.42% (0.30-0.51% vs 0.25% (0.20-0.32%, P=0.039 and 3.25% (2.48-3.46% vs 1.70% (1.45-2.15%, P=0.001, respectively]. Furthermore, the acromegalic patients had higher values for total lung mass in both inspiratory and expiratory Q-MDCT [821 (635-923 vs 696 (599-769 g, P=0.021 and 844 (650-945 vs 637 (536-736 g, P=0.009, respectively]. In inspiratory Q-MDCT, TLV showed significant correlations with all FOT parameters. The TLV of hyperaerated areas showed significant correlations with intercept resistance (rs=−0.602, P<0.001 and mean resistance (rs=−0.580, P<0.001. These data showed that acromegalic patients have increased amounts of lung tissue as well as nonaerated and poorly aerated areas. Functionally, there was a loss of homogeneity of the respiratory system. Moreover, there were correlations between the structural and functional findings of the respiratory system, consistent with the pathophysiology of the disease.

  17. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    Directory of Open Access Journals (Sweden)

    Damhuji Rifai

    2016-02-01

    Full Text Available Non-destructive eddy current testing (ECT is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.

  18. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    Science.gov (United States)

    Rifai, Damhuji; Abdalla, Ahmed N.; Ali, Kharudin; Razali, Ramdan

    2016-01-01

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123

  19. Three-dimensional analysis of eddy current with the finite element method

    International Nuclear Information System (INIS)

    Takano, Ichiro; Suzuki, Yasuo

    1977-05-01

    The finite element method is applied to three-dimensional analysis of eddy current induced in a large Tokamak device (JT-60). Two techniques to study the eddy current are presented: those of ordinary vector potential and modified vector potential. The latter is originally developed for decreasing dimension of the global matrix. Theoretical treatment of these two is given. The skin effect for alternate current flowing in the circular loop of rectangular cross section is examined as an example of the modified vector potential technique, and the result is compared with analytical one. This technique is useful in analysis of the eddy current problem. (auth.)

  20. Large Eddy Simulation of Sydney Swirl Non-Reaction Jets

    DEFF Research Database (Denmark)

    Yang, Yang; Kær, Søren Knudsen; Yin, Chungen

    The Sydney swirl burner non-reaction case was studied using large eddy simulation. The two-point correlation method was introduced and used to estimate grid resolution. Energy spectra and instantaneous pressure and velocity plots were used to identify features in flow field. By using these method......, vortex breakdown and precessing vortex core are identified and different flow zones are shown....

  1. Ocean eddies and climate predictability.

    Science.gov (United States)

    Kirtman, Ben P; Perlin, Natalie; Siqueira, Leo

    2017-12-01

    A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.

  2. Design and development of correlation techniques to maintain a space surveillance system catalogue

    Science.gov (United States)

    Olmedo, E.; Sánchez Ortiz, Noelia; Lerate, Mercedes; Belló-Mora, Miguel; Klinkrad, H.

    2009-10-01

    A growing interest exists in a future, autonomous European Space Surveillance System (ESSS). Currently, most of the knowledge about Earth-orbiting space objects is based on information provided by the USASPACECOM. This paper presents the required initial orbit determination (IOD) and correlation techniques to process optical measurements. Former studies were focused on the handling of radar measurements, which are summarised with the aim of describing a global procedure for processing hybrid measurement types (combination of radar and optic data for catalogue maintenance). The introduction of manoeuvres are presented due to their importance in the space object catalogue maintenance. The detection of uncatalogued objects and the successful correlation of already catalogued objects involve two different tasks for telescopes: survey and tasking. Assumptions for both strategies are developed on the basis of the previous work developed at the University of Berne (see [T. Flohrer, T. Schildknecht, R. Musci, E. Stöveken, Performance estimation for GEO space surveillance, Advances in Space Research 35 (2005). [1]; T. Flohrer, T. Schildknecht, R. Musci, Proposed strategies for optical observations in a future European Space Surveillance Network, presented in the 36th COSPAR Scientific Assembly (2006). [2]; R. Musci, T. Schildknecht, M. Ploner, Orbit improvement for GEO objects using follow-up observations, Advances in Space Research 34 (2004). [3]; R. Musci, T. Schildknecht, M. Ploner, G. Beutler, Orbit improvement for GTO objects using follow-up observations, Advances in Space Research 35 (2005). [4]; R. Musci, T. Schildknecht, T. Flohrer, G. Beutler, Concept for a catalogue of space debris in GEO, Proceedings of the Fourth European Conference on Space Debris, (ESA SP-587, 2005). [5

  3. Nuclear spectroscopic study of the 117In and 77Se using angular correlation technique

    International Nuclear Information System (INIS)

    Zamboni, C.B.

    1981-01-01

    The integral pertubed angular correlation technique has been used to measure the g-factor of the 587 KeV(3/2 - ) state in 117 In. The measurements were made in an external magnetic field of 26 Kg. The 1303-273 KeV gamma cascade in 117 In populated from the beta decay of 117 Cd was utilized for the measurement. The result is g(587 KeV) = -0.233+-0.057. The present result shows the 587 KeV state may not be a simple P 3/2 proton hole state but rather a complex admixture of different configurations. The g-factor of the 249 KeV state in 77 Se has also been measured by the time differential pertubed angular correlation (TDPAC) method in an external magnetic field of 25 Kg. The 755-249 KeV gamma cascade in 77 Se populated from the electron capture decay of 57h 77 Br utilized for the measurement. The g-factor is determined to be g(249 KeV) = 0.486 +- 0.009. In addition the half life of the 249 KeV state in 77 Se has also been measured by the delayed gamma-gamma coincidence method utilizing the gamma cascades 572-249 KeV and 750-249 KeV in 77 Se. The resulting value of the half life is T 1/2 (249 KeV) = (9.56 +- 0.10)ns. The experimental results are discussed in terms of nuclear models applicable for nuclei in this mass region. (author) [pt

  4. An avenue of eddies: Quantifying the biophysical properties of mesoscale eddies in the Tasman Sea

    Science.gov (United States)

    Everett, J. D.; Baird, M. E.; Oke, P. R.; Suthers, I. M.

    2012-08-01

    The Tasman Sea is unique - characterised by a strong seasonal western boundary current that breaks down into a complicated field of mesoscale eddies almost immediately after separating from the coast. Through a 16-year analysis of Tasman Sea eddies, we identify a region along the southeast Australian coast which we name ‘Eddy Avenue’ where eddies have higher sea level anomalies, faster rotation and greater sea surface temperature and chlorophyll a anomalies. The density of cyclonic and anticyclonic eddies within Eddy Avenue is 23% and 16% higher respectively than the broader Tasman Sea. We find that Eddy Avenue cyclonic and anticyclonic eddies have more strongly differentiated biological properties than those of the broader Tasman Sea, as a result of larger anticyclonic eddies formed from Coral Sea water depressing chl. a concentrations, and for coastal cyclonic eddies due to the entrainment of nutrient-rich shelf waters. Cyclonic eddies within Eddy Avenue have almost double the chlorophyll a (0.35 mg m-3) of anticyclonic eddies (0.18 mg m-3). The average chlorophyll a concentration for cyclonic eddies is 16% higher in Eddy Avenue and 28% lower for anticyclonic eddies when compared to the Tasman Sea. With a strengthening East Australian Current, the propagation of these eddies will have significant implications for heat transport and the entrainment and connectivity of plankton and larval fish populations.

  5. Remote field eddy current testing

    International Nuclear Information System (INIS)

    Cheong, Y. M.; Jung, H. K.; Huh, H.; Lee, Y. S.; Shim, C. M.

    2001-03-01

    The state-of-art technology of the remote field eddy current, which is actively developed as an electromagnetic non-destructive testing tool for ferromagnetic tubes, is described. The historical background and recent R and D activities of remote-field eddy current technology are explained including the theoretical development of remote field eddy current, such as analytical and numerical approach, and the results of finite element analysis. The influencing factors for actual applications, such as the effect of frequency, magnetic permeability, receiving sensitivity, and difficulties of detection and classification of defects are also described. Finally, two examples of actual application, 1) the gap measurement between pressure tubes and calandria tube in CANDU reactor and, 2) the detection of defects in the ferromagnetic heat exchanger tubes, are described. The future research efforts are also included

  6. A novel acoustic method for gas flow measurement using correlation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Knuuttila, M. [VTT Chemical Technology, Espoo (Finland). Industrial Physics

    1997-12-31

    The study demonstrates a new kind of acoustic method for gas flow measurement. The method uses upstream and downstream propagating low frequency plane wave and correlation techniques for volume flow rate determination. The theory of propagating low frequency plane waves in the pipe is introduced and is proved empirically to be applicable for flow measurement. The flow profile dependence of the method is verified and found to be negligible at least in the region of moderate perturbations. The physical principles of the method were applied in practice in the form of a flowmeter with new design concepts. The developed prototype meters were verified against the reference standard of NMI (Nederlands Meetinstituut), which showed that a wide dynamic range of 1:80 is achievable with total expanded uncertainty below 0.3 %. Also the requirements used for turbine meters of linearity, weighted mean error and stability were shown to be well fulfilled. A brief comparison with other flowmeter types shows the new flowmeter to be competitive. The advantages it offers are a small pressure drop over the meter, no blockage of flow in possible malfunction, no pulsation to flow, essentially no moving parts, and the possibility for bidirectional measurements. The introduced flowmeter is also capable of using the telephone network or a radio-modem to read the consumption of gas and report its operation to the user. (orig.) 51 refs.

  7. Thermal behaviour of hafnium diethylenetriaminepentaacetate studied using the perturbed angular correlation technique

    Energy Technology Data Exchange (ETDEWEB)

    Chain, Cecilia Y. [Universidad Nacional de La Plata (Argentina). Dept. de Fisica; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), La Plata (Argentina). IFLP-CCT; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina); Rivas, Patricia [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), La Plata (Argentina). IFLP-CCT; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina); Universidad Nacional de La Plata (Argentina). Facultad de Ciencias Agrarias y Forestales; Pasquevich, Alberto F. [Universidad Nacional de La Plata (Argentina). Dept. de Fisica; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), La Plata (Argentina). IFLP-CCT; Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (CIC-PBA) (Argentina)

    2014-07-01

    Polyaminecarboxilic ligands like diethylenetriaminepentaacetic acid form stable complexes with many heavy metal ions, excelling as cation chelants especially in the field of radiopharmacy. The aim of this work is to characterize, by using the Time Differential Perturbed Angular Correlations (TDPAC) technique, the hyperfine interactions at hafnium sites in hafnium diethylenetriaminepentaacetate and to investigate their evolution as temperature increases. TDPAC results for KHfDTPA.3H{sub 2}O obtained by chemical synthesis yield a well defined and highly asymmetric interaction of quadrupole frequency ω{sub Q} = 141 Mrad/s, which is consistent with the existence of a unique site for the metal in the crystal lattice. The thermal behaviour of the chelate is investigated by means of differential scanning calorimetry and thermogravimetrical analyses revealing that an endothermic dehydration of KHfDTPA.3H{sub 2}O takes place in one step between 80 C and 180 C. The anhydrous KHfDTPA thus arising is characterized by a fully asymmetric and well defined interaction of quadrupole frequency ω{sub Q} = 168 Mrad/s. (orig.)

  8. Passive and active correlation techniques for the detection of nuclear materials

    International Nuclear Information System (INIS)

    Deyglun, Clement; Carasco, Cedric; Perot, Bertrand; Eleon, Cyrille; Sannie, Guillaume; Boudergui, Karim; Corre, Gwenole; Konzdrasovs, Vladimir; Pras, Philippe

    2013-06-01

    In the frame of the French trans-governmental R and D program against CBRN-E threats, CEA (French Alternative Energies and Atomic Energy Commission) is studying the detection of Special Nuclear Materials (SNM) by neutron interrogation with the Associated Particle Technique (APT). Coincidences including at least 3 fission neutrons or gamma rays induced by tagged neutrons are used to detect and distinguish SNM from benign materials in which lower multiplicity events of 1 or 2 particles are produced by (n, 2n) or (n, n'γ) reactions. Coincidence are detected by fast plastic scintillators and correlated with tagged neutrons to improve the signal-to-noise ratio. Dedicated data acquisition electronics (DAQ) has been developed with independent FPGA cards associated to each detector, so that the acquisition window can be opened by any of the plastic scintillators. DAQ tests in passive mode are presented, in which acquisition is triggered by the sum signal of all detectors. The system time and energy calibration and resolution are reported, as well as the qualification of numerical simulations thanks to experimental data acquired with simple setups using a 252 Cf source. Numerical studies for the design and performance of cargo container inspection are also performed with the MCNP-PoliMi computer code and the ROOT data analysis package. SNM detection in iron cargo is quite straightforward but in organic matrix, data processing will need to combine more information to evidence SNM. (authors)

  9. Thermal behaviour of hafnium diethylenetriaminepentaacetate studied using the perturbed angular correlation technique

    International Nuclear Information System (INIS)

    Chain, Cecilia Y.; Rivas, Patricia

    2014-01-01

    Polyaminecarboxilic ligands like diethylenetriaminepentaacetic acid form stable complexes with many heavy metal ions, excelling as cation chelants especially in the field of radiopharmacy. The aim of this work is to characterize, by using the Time Differential Perturbed Angular Correlations (TDPAC) technique, the hyperfine interactions at hafnium sites in hafnium diethylenetriaminepentaacetate and to investigate their evolution as temperature increases. TDPAC results for KHfDTPA.3H 2 O obtained by chemical synthesis yield a well defined and highly asymmetric interaction of quadrupole frequency ω Q = 141 Mrad/s, which is consistent with the existence of a unique site for the metal in the crystal lattice. The thermal behaviour of the chelate is investigated by means of differential scanning calorimetry and thermogravimetrical analyses revealing that an endothermic dehydration of KHfDTPA.3H 2 O takes place in one step between 80 C and 180 C. The anhydrous KHfDTPA thus arising is characterized by a fully asymmetric and well defined interaction of quadrupole frequency ω Q = 168 Mrad/s. (orig.)

  10. Energy Cascade Analysis: from Subscale Eddies to Mean Flow

    Science.gov (United States)

    Cheikh, Mohamad Ibrahim; Wonnell, Louis; Chen, James

    2017-11-01

    Understanding the energy transfer between eddies and mean flow can provide insights into the energy cascade process. Much work has been done to investigate the energy cascade at the level of the smallest eddies using different numerical techniques derived from the Navier-Stokes equations. These methodologies, however, prove to be computationally inefficient when producing energy spectra for a wide range of length scales. In this regard, Morphing Continuum Theory (MCT) resolves the length-scales issues by assuming the fluid continuum to be composed of inner structures that play the role of subscale eddies. The current study show- cases the capabilities of MCT in capturing the dynamics of energy cascade at the level of subscale eddies, through a supersonic turbulent flow of Mach 2.93 over an 8× compression ramp. Analysis of the results using statistical averaging procedure shows the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding rotational kinetic energy of the subscale eddies, indicating a multiscale transfer of energy. The results show that MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.

  11. Investigation on a new inducer of pulsed eddy current thermography

    Directory of Open Access Journals (Sweden)

    Min He

    2016-09-01

    Full Text Available In this paper, a new inducer of pulsed eddy current thermography (PECT is presented. The use of the inducer can help avoid the problem of blocking the infrared (IR camera’s view in eddy current thermography technique. The inducer can also provide even heating of the test specimen. This paper is concerned with the temperature distribution law around the crack on a specimen when utilizing the new inducer. Firstly, relative mathematical models are provided. In the following section, eddy current distribution and temperature distribution around the crack are studied using the numerical simulation method. The best separation distance between the inducer and the specimen is also determined. Then, results of temperature distribution around the crack stimulated by the inducer are gained by experiments. Effect of current value on temperature rise is studied as well in the experiments. Based on temperature data, temperature features of the crack are discussed.

  12. Eddy Current Testing for Detecting Small Defects in Thin Films

    Science.gov (United States)

    Obeid, Simon; Tranjan, Farid M.; Dogaru, Teodor

    2007-03-01

    Presented here is a technique of using Eddy Current based Giant Magneto-Resistance sensor (GMR) to detect surface and sub-layered minute defects in thin films. For surface crack detection, a measurement was performed on a copper metallization of 5-10 microns thick. It was done by scanning the GMR sensor on the surface of the wafer that had two scratches of 0.2 mm, and 2.5 mm in length respectively. In another experiment, metal coatings were deposited over the layers containing five defects with known lengths such that the defects were invisible from the surface. The limit of detection (resolution), in terms of defect size, of the GMR high-resolution Eddy Current probe was studied using this sample. Applications of Eddy Current testing include detecting defects in thin film metallic layers, and quality control of metallization layers on silicon wafers for integrated circuits manufacturing.

  13. Eddy currents in accelerator magnets

    CERN Document Server

    Moritz, G

    2010-01-01

    This paper covers the main eddy current effects in accelerator magnets - field modification (time delay and field quality) and resistive power losses. In the first part, starting from the Maxwell equations, a basic understanding of the processes is given and explained with examples of simple geometry and time behaviour. Useful formulas are derived for an analytic estimate of the size of the effects. In the second part the effects in real magnets are analysed and described in comparison with numerical and measured results. Finally, based on the previous parts, design recommendations are given regarding how to minimize eddy current effects.

  14. A Baroclinic Eddy Mixer: Supercritical Transformation of Compensated Eddies

    Science.gov (United States)

    Sutyrin, G.

    2016-02-01

    In contrast to many real-ocean rings and eddies, circular vortices with initial lower layer at rest tend to be highly unstable in idealized two-layer models, unless their radius is made small or the lower layer depth is made artificially large. Numerical simulations of unstable vortices with parameters typical for ocean eddies revealed strong deformations and pulsations of the vortex core in the two-layer setup due to development of corotating tripolar structures in the lower layer during their supercritical transformation. The addition of a middle layer with the uniform potential vorticity weakens vertical coupling between the upper and lower layer that enhances vortex stability and makes the vortex lifespan more realistic. Such a three-layer vortex model possesses smaller lower interface slope than the two-layer model that reduces the potential vorticity gradient in the lower layer and provides with less unstable configurations. While cyclonic eddies become only slightly deformed and look nearly circular when the middle layer with uniform potential vorticity is added, anticyclonic eddies tend to corotating and pulsating elongated states through potential vorticity stripping and stirring. Enhanced vortex stability in such three-layer setup has important implications for adequate representation of the energy transfer across scales.

  15. Acoustical characteristics and simulated tomographic inversion of a cold core eddy in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Navelkar, G.S.; Murty, T.V.R.; Murty, C.S.

    generalised inverse, based on singular value decomposition technique. The numerical experiment shows that 18 eigen rays with 9 layers enable reconstruction of the eddy profile adequately using 9 eigen modes...

  16. Synoptic scale eddies in the Northern Hemisphere summer: A POP analysis

    International Nuclear Information System (INIS)

    Fyfe, J.

    1994-01-01

    This abstract summarizes some recent comparisons between observed and simulated summertime (JJA) band pass filtered (2-10 day) eddies in the Atlantic region. Our main diagnostic tool is the Principal Oscillation Pattern (POP) technique

  17. Use of eddy current mixes to solve a weld examination application

    International Nuclear Information System (INIS)

    Ward, R.C.; LaBoissonniere, A.

    1995-01-01

    The augmentation of typical nondestructive (i.e., ultrasound) weld inspection techniques by the use of eddy current tools may significantly enhance the quality and reliability of weld inspections. One recent example is the development of an eddy current technique for use in the examination of BWR core shroud welds, where multi-frequency mixes are used to eliminate signals coming from the weld material so that the examination of the heat affected zone is enhanced. An analysis tool most commonly associated with ultrasound examinations, the C-Scan based on gated information, may be implemented with eddy current data to enhance analysis

  18. Automation of eddy current system for in-service inspection of turbine and generator rotor bores

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The current project (EPRI-RP-1975-5) is a continuation of activities that began several years ago. Those results (EPRI-RP-1957-1) indicated that eddy current testing shows promise for in-service inspection. The current project investigates the degree to which eddy current testing can be used to replace bore magnetic particle testing. For this purpose, correlation studies between eddy current and magnetic particle tests are being undertaken on laboratory rotor sections and field test pieces of rotors. The eddy current data are to be gathered automatically by a combination of the Nortec-25L Eddyscope (to provide the analog eddy current signals) and the General Electric DATAQ/sup TM/ (a registered trademark of the General Electric Co.) System (to perform the automatic data acquisition). This paper describes some test results on a flaked laboratory rotor section

  19. Correlation analysis of energy indicators for sustainable development using multivariate statistical techniques

    International Nuclear Information System (INIS)

    Carneiro, Alvaro Luiz Guimaraes; Santos, Francisco Carlos Barbosa dos

    2007-01-01

    Energy is an essential input for social development and economic growth. The production and use of energy cause environmental degradation at all levels, being local, regional and global such as, combustion of fossil fuels causing air pollution; hydropower often causes environmental damage due to the submergence of large areas of land; and global climate change associated with the increasing concentration of greenhouse gases in the atmosphere. As mentioned in chapter 9 of Agenda 21, the Energy is essential to economic and social development and improved quality of life. Much of the world's energy, however, is currently produced and consumed in ways that could not be sustained if technologies were remain constant and if overall quantities were to increase substantially. All energy sources will need to be used in ways that respect the atmosphere, human health, and the environment as a whole. The energy in the context of sustainable development needs a set of quantifiable parameters, called indicators, to measure and monitor important changes and significant progress towards the achievement of the objectives of sustainable development policies. The indicators are divided into four dimensions: social, economic, environmental and institutional. This paper shows a methodology of analysis using Multivariate Statistical Technique that provide the ability to analyse complex sets of data. The main goal of this study is to explore the correlation analysis among the indicators. The data used on this research work, is an excerpt of IBGE (Instituto Brasileiro de Geografia e Estatistica) data census. The core indicators used in this study follows The IAEA (International Atomic Energy Agency) framework: Energy Indicators for Sustainable Development. (author)

  20. Large Eddy Simulation of turbulence

    International Nuclear Information System (INIS)

    Poullet, P.; Sancandi, M.

    1994-12-01

    Results of Large Eddy Simulation of 3D isotropic homogeneous turbulent flows are presented. A computer code developed on Connexion Machine (CM5) has allowed to compare two turbulent viscosity models (Smagorinsky and structure function). The numerical scheme influence on the energy density spectrum is also studied [fr

  1. Forest ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles.

    Science.gov (United States)

    Speckman, Heather N; Frank, John M; Bradford, John B; Miles, Brianna L; Massman, William J; Parton, William J; Ryan, Michael G

    2015-02-01

    Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence [summer night mean friction velocity (u*) = 0.7 m s(-1)], during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber-based estimates of ecosystem respiration during the growth season, developed from foliage, wood, and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ± 0.22 μmol m(-2) s(-1) in 2005 to 4.6 ± 0.16 μmol m(-2) s(-1) in 2011). Soil efflux remained at ~3.3 μmol m(-2) s(-1) throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 μmol m(-2) s(-1) for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r(2) from 0.18 to 0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of >0.7 m s(-1). The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r(2) = 0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates. © 2014 John Wiley & Sons Ltd.

  2. Static Vented Chamber and Eddy Covariance Methane Flux Comparisons in Mid-South US Rice

    Science.gov (United States)

    Reba, M. L.; Fong, B.; Adviento-Borbe, A.; Runkle, B.; Suvocarev, K.; Rival, I.

    2017-12-01

    Rice cultivation contributes higher amounts of GHG emissions (CO2 and CH4) due to flooded field conditions. A comparison between eddy covariance and static vented flux chamber measurement techniques is presented. Rice GHG emissions originating from plot level chambers may not accurately describe the aggregate effects of all the soil and micrometeorological variations across a production field. Eddy covariance (EC) is a direct, integrated field measurement of field scale trace gases. Flux measurements were collected in NE Arkansas production size rice fields (16 ha, 40 ac) during the 2015 and 2016 production seasons (June-August) in continuous flood (CF) irrigation. The study objectives included quantifying the difference between chamber and EC measurements, and categorizing flux behavior to growth stage and field history. EC daily average emissions correlated with chamber measurements (R2=0.27-0.54) more than average from 09:00-12:00 which encompassed chamber measurement times (R2=0.23-0.32). Maximum methane emissions occurred in the late afternoon from 14:00-18:00 which corresponded with maximum soil heat flux and air temperature. The total emissions from the study fields ranged from 27-117 kg CH4-C ha-1 season-1. The emission profile was lower in 2015, most likely due to higher rainfall and cooler temperatures during the growing season compared to 2016. These findings improve our understanding of GHG emissions at the field scale under typical production practices and validity of chamber and EC flux measurement techniques.

  3. Atmospheric Transmission Measurements Using IR Lasers, Fourier Transform Spectroscopy, and Gas-Filter Correlation Techniques

    National Research Council Canada - National Science Library

    Dowling, J

    1977-01-01

    ... and a gas filter correlation spectrometer. Results obtained from three concurrent experiments used to generate a data base appropriate to high resolution transmission model validation are displayed...

  4. Fast patient-specific Monte Carlo brachytherapy dose calculations via the correlated sampling variance reduction technique

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, Andrew; Le Yi; Williamson, Jeffrey F. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2012-02-15

    Purpose: To demonstrate potential of correlated sampling Monte Carlo (CMC) simulation to improve the calculation efficiency for permanent seed brachytherapy (PSB) implants without loss of accuracy. Methods: CMC was implemented within an in-house MC code family (PTRAN) and used to compute 3D dose distributions for two patient cases: a clinical PSB postimplant prostate CT imaging study and a simulated post lumpectomy breast PSB implant planned on a screening dedicated breast cone-beam CT patient exam. CMC tallies the dose difference, {Delta}D, between highly correlated histories in homogeneous and heterogeneous geometries. The heterogeneous geometry histories were derived from photon collisions sampled in a geometrically identical but purely homogeneous medium geometry, by altering their particle weights to correct for bias. The prostate case consisted of 78 Model-6711 {sup 125}I seeds. The breast case consisted of 87 Model-200 {sup 103}Pd seeds embedded around a simulated lumpectomy cavity. Systematic and random errors in CMC were unfolded using low-uncertainty uncorrelated MC (UMC) as the benchmark. CMC efficiency gains, relative to UMC, were computed for all voxels, and the mean was classified in regions that received minimum doses greater than 20%, 50%, and 90% of D{sub 90}, as well as for various anatomical regions. Results: Systematic errors in CMC relative to UMC were less than 0.6% for 99% of the voxels and 0.04% for 100% of the voxels for the prostate and breast cases, respectively. For a 1 x 1 x 1 mm{sup 3} dose grid, efficiency gains were realized in all structures with 38.1- and 59.8-fold average gains within the prostate and breast clinical target volumes (CTVs), respectively. Greater than 99% of the voxels within the prostate and breast CTVs experienced an efficiency gain. Additionally, it was shown that efficiency losses were confined to low dose regions while the largest gains were located where little difference exists between the homogeneous and

  5. Climatic feedbacks between stationary and transient eddies

    International Nuclear Information System (INIS)

    Branscome, L.E.

    1994-01-01

    Stationary eddies make a significant contribution to poleward heat transport during Northern Hemisphere winter, equaling the transport by transient eddies. On the other hand, stationary eddy transport during the summer is negligible. The effect of topography on time-mean stationary waves and low-frequency variability has been widely studied. In contrast, little attention has been given to the climatic feedbacks associated with stationary eddies. Furthermore, the relationship between stationary and transient eddies in the context of global and regional climate is not well understood. The response of the climate system to anthropogenic forcing is likely to have some dependence on stationary wave transport and its interaction with transient eddies. Some early GCM simulations and observational analyses indicate a strong feedback between the meridional heat fluxes of stationary and transient eddies

  6. Novel Techniques for Quantification of Correlation Between Primary Liquid Jet Breakup and Downstream Spray Characteristics

    Science.gov (United States)

    2016-10-05

    of the combustion products , swirl is important for enhancing mixing, controlling combustion instability and also, promoting disintegration of the...calculated correlations was obtained and normalized with the product of the respective rms of fluctuations of droplets to obtain the final correlation

  7. Multivariate correlation analysis technique based on euclidean distance map for network traffic characterization

    NARCIS (Netherlands)

    Tan, Zhiyuan; Jamdagni, Aruna; He, Xiangjian; Nanda, Priyadarsi; Liu, Ren Ping; Qing, Sihan; Susilo, Willy; Wang, Guilin; Liu, Dongmei

    2011-01-01

    The quality of feature has significant impact on the performance of detection techniques used for Denial-of-Service (DoS) attack. The features that fail to provide accurate characterization for network traffic records make the techniques suffer from low accuracy in detection. Although researches

  8. Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3-D structure and transport with application to the salinity maximum

    Science.gov (United States)

    Amores, Angel; Melnichenko, Oleg; Maximenko, Nikolai

    2017-01-01

    The mean vertical structure and transport properties of mesoscale eddies are investigated in the North Atlantic subtropical gyre by combining historical records of Argo temperature/salinity profiles and satellite sea level anomaly data in the framework of the eddy tracking technique. The study area is characterized by a low eddy kinetic energy and sea surface salinity maximum. Although eddies have a relatively weak signal at surface (amplitudes around 3-7 cm), the eddy composites reveal a clear deep signal that penetrates down to at least 1200 m depth. The analysis also reveals that the vertical structure of the eddy composites is strongly affected by the background stratification. The horizontal patterns of temperature/salinity anomalies can be reconstructed by a linear combination of a monopole, related to the elevation/depression of the isopycnals in the eddy core, and a dipole, associated with the horizontal advection of the background gradient by the eddy rotation. A common feature of all the eddy composites reconstructed is the phase coherence between the eddy temperature/salinity and velocity anomalies in the upper ˜300 m layer, resulting in the transient eddy transports of heat and salt. As an application, a box model of the near-surface layer is used to estimate the role of mesoscale eddies in maintaining a quasi-steady state distribution of salinity in the North Atlantic subtropical salinity maximum. The results show that mesoscale eddies are able to provide between 4 and 21% of the salt flux out of the area required to compensate for the local excess of evaporation over precipitation.

  9. A new correlation based alignment technique for use in electron tomography

    International Nuclear Information System (INIS)

    Jones, S.D.; Härting, M.

    2013-01-01

    In this paper we present a new correlation based method for the alignment of a single axis tilt series. Rather than performing the pairwise correlation procedure with the central image as the starting point, the method presented here calculates the optimal starting position within the tilt series and proceeds towards both ends. The starting position is determined by maximisation of a viability function, J, which rewards cumulative series correlation and penalises both cumulative series shift and distance from the centre of the image series. - Highlights: • Pairwise correlation based alignment is investigated as a function of seed position. • It is shown that the convention of using the central image as the seed is not optimal. • A function is proposed which improves alignment by finding the optimal seed position. • The method is found to produce alignment with lower residual scores with the phantom data. • Superior alignment is produced vs the standard method with the experimental data

  10. The perturbed angular correlation method - a modern technique in studying solids

    International Nuclear Information System (INIS)

    Unterricker, S.; Hunger, H.J.

    1979-01-01

    Starting from theoretical fundamentals the differential perturbed angular correlation method has been explained. By using the probe nucleus 111 Cd the magnetic dipole interaction in Fesub(x)Alsub(1-x) alloys and the electric quadrupole interaction in Cd have been measured. The perturbed angular correlation method is a modern nuclear measuring method and can be applied in studying ordering processes, phase transformations and radiation damages in metals, semiconductors and insulators

  11. On the computation of molecular surface correlations for protein docking using fourier techniques.

    Science.gov (United States)

    Sakk, Eric

    2007-08-01

    The computation of surface correlations using a variety of molecular models has been applied to the unbound protein docking problem. Because of the computational complexity involved in examining all possible molecular orientations, the fast Fourier transform (FFT) (a fast numerical implementation of the discrete Fourier transform (DFT)) is generally applied to minimize the number of calculations. This approach is rooted in the convolution theorem which allows one to inverse transform the product of two DFTs in order to perform the correlation calculation. However, such a DFT calculation results in a cyclic or "circular" correlation which, in general, does not lead to the same result as the linear correlation desired for the docking problem. In this work, we provide computational bounds for constructing molecular models used in the molecular surface correlation problem. The derived bounds are then shown to be consistent with various intuitive guidelines previously reported in the protein docking literature. Finally, these bounds are applied to different molecular models in order to investigate their effect on the correlation calculation.

  12. Direct and large-eddy simulation IX

    CERN Document Server

    Kuerten, Hans; Geurts, Bernard; Armenio, Vincenzo

    2015-01-01

    This volume reflects the state of the art of numerical simulation of transitional and turbulent flows and provides an active forum for discussion of recent developments in simulation techniques and understanding of flow physics. Following the tradition of earlier DLES workshops, these papers address numerous theoretical and physical aspects of transitional and turbulent flows. At an applied level it contributes to the solution of problems related to energy production, transportation, magneto-hydrodynamics and the environment. A special session is devoted to quality issues of LES. The ninth Workshop on 'Direct and Large-Eddy Simulation' (DLES-9) was held in Dresden, April 3-5, 2013, organized by the Institute of Fluid Mechanics at Technische Universität Dresden. This book is of interest to scientists and engineers, both at an early level in their career and at more senior levels.

  13. Flexible eddy current coil arrays

    International Nuclear Information System (INIS)

    Krampfner, Y.; Johnson, D.P.

    1987-01-01

    A novel approach was devised to overcome certain limitations of conventional eddy current testing. The typical single-element hand-wound probe was replaced with a two dimensional array of spirally wound probe elements deposited on a thin, flexible polyimide substrate. This provides full and reliable coverage of the test area and eliminates the need for scanning. The flexible substrate construction of the array allows the probes to conform to irregular part geometries, such as turbine blades and tubing, thereby eliminating the need for specialized probes for each geometry. Additionally, the batch manufacturing process of the array can yield highly uniform and reproducible coil geometries. The array is driven by a portable computer-based eddy current instrument, smartEDDY/sup TM/, capable of two-frequency operation, and offers a great deal of versatility and flexibility due to its software-based architecture. The array is coupled to the instrument via an 80-switch multiplexer that can be configured to address up to 1600 probes. The individual array elements may be addressed in any desired sequence, as defined by the software

  14. Determination of Seric E immuno-globulins. Comparison of two techniques, radioimmunological and immuno enzymatic. Clinical correlations

    International Nuclear Information System (INIS)

    Lafosse-Marin, Sylvie.

    1977-09-01

    Because of the very low seric IgE concentrations their research and analysis are difficult and many techniques of a more or less sophisticated kind have been proposed for this reason. Our aim was to compare two total seric IgE determination methods: one recent, the enzymmuno-Plaque-Pasteur (EPP); the other, most commonly used at present, the Radio-Immuno-Sorbent-Test (RIST). For this we measured total seric IgE in a hundred and one children by the EPP technique and compared our results with those supplied from the same samples by a laboratory using the RIST technique; the results were then correlated with clinical evidence. The technique proposed by the Pasteur Institute to determine total seric IgE is based on radial immunodiffusion sensitized by the use of antibodies labelled with glucose oxydase. This simple technique, easy to use, requires no expensive materials but has two disadvantages: it takes rather a long time and can only measure IgE concentrations of 50 UI/ml or more. The RIST technique is based on competitive fixation, onto anti-IgE-coated Sephadex particles of the IgE under analysis and of a fixed dose of radio-labelled IgE. This second technique, though faster, has the major disadvantage of being practicable in few laboratories because of the heavy equipment needed and the radioactivity used. This study has shown on the whole an equivalence (correlation coefficient 0.95) between the results given by the two techniques: EPP and RIST (the comparison was made between the IgE contents and not their logarithm) [fr

  15. Eddy Covariance Measurements of the Sea-Spray Aerosol Flu

    Science.gov (United States)

    Brooks, I. M.; Norris, S. J.; Yelland, M. J.; Pascal, R. W.; Prytherch, J.

    2015-12-01

    Historically, almost all estimates of the sea-spray aerosol source flux have been inferred through various indirect methods. Direct estimates via eddy covariance have been attempted by only a handful of studies, most of which measured only the total number flux, or achieved rather coarse size segregation. Applying eddy covariance to the measurement of sea-spray fluxes is challenging: most instrumentation must be located in a laboratory space requiring long sample lines to an inlet collocated with a sonic anemometer; however, larger particles are easily lost to the walls of the sample line. Marine particle concentrations are generally low, requiring a high sample volume to achieve adequate statistics. The highly hygroscopic nature of sea salt means particles change size rapidly with fluctuations in relative humidity; this introduces an apparent bias in flux measurements if particles are sized at ambient humidity. The Compact Lightweight Aerosol Spectrometer Probe (CLASP) was developed specifically to make high rate measurements of aerosol size distributions for use in eddy covariance measurements, and the instrument and data processing and analysis techniques have been refined over the course of several projects. Here we will review some of the issues and limitations related to making eddy covariance measurements of the sea spray source flux over the open ocean, summarise some key results from the last decade, and present new results from a 3-year long ship-based measurement campaign as part of the WAGES project. Finally we will consider requirements for future progress.

  16. Correlation Study of PVDF Membrane Morphology with Protein Adsorption: Quantitative Analysis by FTIR/ATR Technique

    Science.gov (United States)

    Ideris, N.; Ahmad, A. L.; Ooi, B. S.; Low, S. C.

    2018-05-01

    Microporous PVDF membranes were used as protein capture matrices in immunoassays. Because the most common labels in immunoassays were detected based on the colour change, an understanding of how protein concentration varies on different PVDF surfaces was needed. Herein, the correlation between the membrane pore size and protein adsorption was systematically investigated. Five different PVDF membrane morphologies were prepared and FTIR/ATR was employed to accurately quantify the surface protein concentration on membranes with small pore sizes. SigmaPlot® was used to find a suitable curve fit for protein adsorption and membrane pore size, with a high correlation coefficient, R2, of 0.9971.

  17. First experience from in-core sensor validation based on correlation and neuro-fuzzy techniques

    International Nuclear Information System (INIS)

    Figedy, S.

    2011-01-01

    In this work new types of nuclear reactor in-core sensor validation methods are outlined. The first one is based on combination of correlation coefficients and mutual information indices, which reflect the correlation of signals in linear and nonlinear regions. The method may be supplemented by wavelet transform based signal features extraction and pattern recognition by artificial neural networks and also fuzzy logic based decision making. The second one is based on neuro-fuzzy modeling of residuals between experimental values and their theoretical counterparts obtained from the reactor core simulator calculations. The first experience with this approach is described and further improvements to enhance the outcome reliability are proposed (Author)

  18. Magnetic resonance imaging inside cylindrical metal containers with an eddy current self-compensated method

    International Nuclear Information System (INIS)

    Han, Hui; Balcom, Bruce J

    2011-01-01

    Magnetic resonance imaging (MRI) measurements inside cylindrical metal structures have recently been proposed and form the basis for new high-pressure MRI studies. The critical problem for MRI inside cylindrical metal structures is significant eddy currents induced by the switched magnetic field gradients, which usually corrupt spatial and motion encoding without appropriate correction. In this work a so-called standard SPRITE (single point ramped imaging with T 1 enhancement) technique is applied for imaging inside cylindrical metal structures. We show that the standard SPRITE technique is fundamentally immune to large-scale eddy current effects and yields artifact-free high-quality images with no eddy current correction required. Standard SPRITE image acquisition avoids the complications involved in the measurement and compensation of eddy current effects for MRI with cylindrical metal structures. This work is a substantial advance toward the extension of MRI to new challenging systems, which are of practical importance

  19. Correlation of breast tissue histology and optical signatures to improve margin assessment techniques

    Science.gov (United States)

    Kennedy, Stephanie; Caldwell, Matthew; Bydlon, Torre; Mulvey, Christine; Mueller, Jenna; Wilke, Lee; Barry, William; Ramanujam, Nimmi; Geradts, Joseph

    2016-06-01

    Optical spectroscopy is sensitive to morphological composition and has potential applications in intraoperative margin assessment. Here, we evaluate ex vivo breast tissue and corresponding quantified hematoxylin & eosin images to correlate optical scattering signatures to tissue composition stratified by patient characteristics. Adipose sites (213) were characterized by their cell area and density. All other benign and malignant sites (181) were quantified using a grid method to determine composition. The relationships between mean reduced scattering coefficient (), and % adipose, % collagen, % glands, adipocyte cell area, and adipocyte density were investigated. These relationships were further stratified by age, menopausal status, body mass index (BMI), and breast density. We identified a positive correlation between and % collagen and a negative correlation between and age and BMI. Increased collagen corresponded to increased variability. In postmenopausal women, was similar regardless of fibroglandular content. Contributions from collagen and glands to were independent and equivalent in benign sites; glands showed a stronger positive correlation than collagen to in malignant sites. Our data suggest that scattering could differentiate highly scattering malignant from benign tissues in postmenopausal women. The relationship between scattering and tissue composition will support improved scattering models and technologies to enhance intraoperative optical margin assessment.

  20. Advanced driver assistance system: Road sign identification using VIAPIX system and a correlation technique

    Science.gov (United States)

    Ouerhani, Y.; Alfalou, A.; Desthieux, M.; Brosseau, C.

    2017-02-01

    We present a three-step approach based on the commercial VIAPIX® module for road traffic sign recognition and identification. Firstly, detection in a scene of all objects having characteristics of traffic signs is performed. This is followed by a first-level recognition based on correlation which consists in making a comparison between each detected object with a set of reference images of a database. Finally, a second level of identification allows us to confirm or correct the previous identification. In this study, we perform a correlation-based analysis by combining and adapting the Vander Lugt correlator with the nonlinear joint transformation correlator (JTC). Of particular significance, this approach permits to make a reliable decision on road traffic sign identification. We further discuss a robust scheme allowing us to track a detected road traffic sign in a video sequence for the purpose of increasing the decision performance of our system. This approach can have broad practical applications in the maintenance and rehabilitation of transportation infrastructure, or for drive assistance.

  1. Correlation between ICDAS and histology: Differences between stereomicroscopy and microradiography with contrast solution as histological techniques.

    Directory of Open Access Journals (Sweden)

    Samara de Azevedo Gomes Campos

    Full Text Available Detection of occlusal caries with visual examination using ICDAS correlates strongly with histology under stereomicroscopy (SM, but dentin aspects under SM are ambiguous regarding mineral content. Thus, our aim was to test two null hypotheses: SM and microradiography result in similar correlations between ICDAS and histology; SM and microradiography result in similar positive (PPV and negative predictive values (NPV of ICDAS cut-off 1-2 (scores 0-2 as sound with histological threshold D3 (demineralization in the inner third of dentin. Occlusal surfaces of extracted permanent teeth (n = 115 were scored using ICDAS. Undemineralized ground sections were histologically scored using both SM without contrast solution and microradiography after immersion in Thoulet's solution 1.47 for 24 h (MRC. Correlation between ICDAS and histology differed from SM (0.782 to MRC (0.511 (p = 0.0002, with a large effect size "q" of 0.49 (95% CI: 0.638/0.338. For ICDAS cut-off 1-2 and D3, PPV from MRC (0.56 was higher than that from SM (0.28 (p< 0.00001; effect size h = 0.81, and NPV from MRC (0.72 was lower than that from SM (1,00 (p < 0.00001; effect size h = 1.58. In conclusion, SM overestimated the correlation between ICDAS and lesion depth, and underestimated the number of occlusal surfaces with ICDAS cut-off 1-2 and deep dentin demineralization.

  2. Investigation of electromagnetic properties of BiFeO3 by Time Differential Perturbed Angular Correlation (TDPAC) technique at ISOLDE

    CERN Document Server

    Efe, Ipek

    2017-01-01

    Time differential perturbed angular correlation (TDPAC) technique is one of the most sensitive techniques to study about the electric and magnetic fields at the individual lattice points. It benefits from the hyperfine interactions between the probe atom and its neighborhood. Multiferroic materials have been intensively studied to promote and understand the possibility of controlling magnetic properties by electric fields instead of magnetic fields which opens the path to faster, smaller, and more energy-efficient spintronic devices, such as memory elements, high-frequency magnetic devices, and micro-electro-mechanical systems, for data-storage technologies. BiFeO3 is one of the famous and important multiferroic materials since it shows both antiferromagnetic and ferroelectric behavior at room temperature. In this study, we report on the first time-differential perturbed angular correlation (TDPAC) measurements carried out on polycrystalline BiFeO3 samples using the nuclear probe 181Hf(181Ta) after implantati...

  3. Local eddy current measurements in pulsed fields

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J.H. [SEPI-Electronica, ESIME-IPN, UPALM Edif. ' Z' . Zacatenco, Mexico DF 07738 (Mexico)], E-mail: jhespina@gmail.com; Groessinger, R. [Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Hallen, J.M. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)

    2008-07-15

    This work presents new eddy current measurements in pulsed fields. A commercial point pick-up coil is used to detect the induction signal along the radius of Cu and Al samples with cylindrical shape and diameters between 5 and 35 mm. Local eddy current measurements were performed on the surface of conducting materials due to the small dimensions of the coil. A simple electrical circuit, used as a model, is proposed to describe the local eddy current effect in pulsed fields. The proposed model allows to calculate the phase shift angle between the signal proportional to eddy currents and the applied external field in a pulsed field magnetometer.

  4. Eddy current testing probe optimization using a parallel genetic algorithm

    Directory of Open Access Journals (Sweden)

    Dolapchiev Ivaylo

    2008-01-01

    Full Text Available This paper uses the developed parallel version of Michalewicz's Genocop III Genetic Algorithm (GA searching technique to optimize the coil geometry of an eddy current non-destructive testing probe (ECTP. The electromagnetic field is computed using FEMM 2D finite element code. The aim of this optimization was to determine coil dimensions and positions that improve ECTP sensitivity to physical properties of the tested devices.

  5. Improvements in the chronology, geochemistry and correlation techniques of tephra in Antarctic ice

    Science.gov (United States)

    Iverson, N. A.; Dunbar, N. W.; McIntosh, W. C.; Pearce, N. J.; Kyle, P. R.

    2013-12-01

    Visible and crypto tephra layers found in West Antarctic ice provide an excellent record of Antarctic volcanism over the past 100ka. Tephra layers are deposited almost instantaneously across wide areas creating horizons that, if found in several locations, provide 'pinning points' to adjust ice time scales that may otherwise be lacking detailed chronology. Individual tephra layers can have distinct chemical fingerprints allowing them to correlate over great distances. Advances in sample preparation, geochemical analyses (major and trace elements) of fine grained tephra and higher precision 40Ar/39Ar dating of young (typically too small to be directly dated by 40Ar/39Ar method, making it very important to geochemically correlate these layers to proximal deposits where more and larger feldspar can be sampled. The correlation of WDC06A-2767.117 to the coarse, proximal BIT-152 provides one such link. The New Mexico Geochronology Research Lab (NMGRL) has two new multi-collector ARGUS VI mass spectrometers that can provide single crystal laser fusion ages that are approximately an order of magnitude more precise than the previous determinations. With these advancements in analytical technology, we hope to improve precision on 'pinning points' in the deep ice cores where annual layer counting becomes less precise.

  6. Eddy covariance methane measurements at a Ponderosa pine plantation in California

    NARCIS (Netherlands)

    Smeets, C.J.P.P.; Holzinger, R.; Vigano, I.; Goldstein, A.H.; Röckmann, T.

    2009-01-01

    Long term methane flux measurements have been mostly performed with plant or soil enclosure techniques on specific components of an ecosystem. New fast response methane analyzers make it possible to use the eddy covariance (EC) technique instead. The EC technique is advantageous because it allows

  7. Eddy current system for inspection of train hollow axles

    Energy Technology Data Exchange (ETDEWEB)

    Chady, Tomasz; Psuj, Grzegorz; Sikora, Ryszard; Kowalczyk, Jacek; Spychalski, Ireneusz [Department of Electrical and Computer Engineering, Faculty of Electrical Engineering, West Pomeranian University of Technology, Szczecin (Poland)

    2014-02-18

    The structural integrity of wheelsets used in rolling stock is of great importance to the safety. In this paper, electromagnetic system with an eddy current transducer suitable for the inspection of hollow axles have been presented. The transducer was developed to detect surface braking defects having depth not smaller than 0.5 mm. Ultrasound technique can be utilized to inspect the whole axle, but it is not sufficiently sensitive to shallow defects located close to the surface. Therefore, the electromagnetic technique is proposed to detect surface breaking cracks that cannot be detected by ultrasonic technique.

  8. DESY: Handling persistent eddy currents

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-04-15

    The vanishing electrical resistance of superconducting coils as well as their ability to provide magnetic fields far beyond those of saturated iron is the main motivation behind the push to use superconducting technology in big new proton accelerators. But this advantage can turn into a drawback at low excitations when the eddy currents - induced in any electromagnet when the field is changed - do not decay, but continue to flow. Preparations for the proton ring of the HERA electron-proton collider nearing completion at the German DESY Laboratory in Hamburg have borne this in mind.

  9. DESY: Handling persistent eddy currents

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The vanishing electrical resistance of superconducting coils as well as their ability to provide magnetic fields far beyond those of saturated iron is the main motivation behind the push to use superconducting technology in big new proton accelerators. But this advantage can turn into a drawback at low excitations when the eddy currents - induced in any electromagnet when the field is changed - do not decay, but continue to flow. Preparations for the proton ring of the HERA electron-proton collider nearing completion at the German DESY Laboratory in Hamburg have borne this in mind

  10. Ingredients of the Eddy Soup: A Geometric Decomposition of Eddy-Mean Flow Interactions

    Science.gov (United States)

    Waterman, S.; Lilly, J. M.

    2014-12-01

    Understanding eddy-mean flow interactions is a long-standing problem in geophysical fluid dynamics with modern relevance to the task of representing eddy effects in coarse resolution models while preserving their dependence on the underlying dynamics of the flow field. Exploiting the recognition that the velocity covariance matrix/eddy stress tensor that describes eddy fluxes, also encodes information about eddy size, shape and orientation through its geometric representation in the form of the so-called variance ellipse, suggests a potentially fruitful way forward. Here we present a new framework that describes eddy-mean flow interactions in terms of a geometric description of the eddy motion, and illustrate it with an application to an unstable jet. Specifically we show that the eddy vorticity flux divergence F, a key dynamical quantity describing the average effect of fluctuations on the time-mean flow, may be decomposed into two components with distinct geometric interpretations: 1. variations in variance ellipse orientation; and 2. variations in the anisotropic part of the eddy kinetic energy, a function of the variance ellipse size and shape. Application of the divergence theorem shows that F integrated over a region is explained entirely by variations in these two quantities around the region's periphery. This framework has the potential to offer new insights into eddy-mean flow interactions in a number of ways. It identifies the ingredients of the eddy motion that have a mean flow forcing effect, it links eddy effects to spatial patterns of variance ellipse geometry that can suggest the mechanisms underpinning these effects, and finally it illustrates the importance of resolving eddy shape and orientation, and not just eddy size/energy, to accurately represent eddy feedback effects. These concepts will be both discussed and illustrated.

  11. Pre-analysis techniques applied to area-based correlation aiming Digital Terrain Model generation

    Directory of Open Access Journals (Sweden)

    Maurício Galo

    2005-12-01

    Full Text Available Area-based matching is an useful procedure in some photogrammetric processes and its results are of crucial importance in applications such as relative orientation, phototriangulation and Digital Terrain Model generation. The successful determination of correspondence depends on radiometric and geometric factors. Considering these aspects, the use of procedures that previously estimate the quality of the parameters to be computed is a relevant issue. This paper describes these procedures and it is shown that the quality prediction can be computed before performing matching by correlation, trough the analysis of the reference window. This procedure can be incorporated in the correspondence process for Digital Terrain Model generation and Phototriangulation. The proposed approach comprises the estimation of the variance matrix of the translations from the gray levels in the reference window and the reduction of the search space using the knowledge of the epipolar geometry. As a consequence, the correlation process becomes more reliable, avoiding the application of matching procedures in doubtful areas. Some experiments with simulated and real data are presented, evidencing the efficiency of the studied strategy.

  12. Nuclear spectroscopy study of the 117 Sn by the angular correlation technique

    International Nuclear Information System (INIS)

    Borges, Joao Baptista

    1977-01-01

    The directional correlation of gamma cascade (553-159) keV populated in 117 Sn through the β - decay of 117 In has been measured. An automatic gamma spectrometer utilizing Ge(Li) and NaI (Tl) detectors was used to measure the angular correlation. The results are analysed in terms of the multipole mixing ratio for the 159 keV transition in 117 Sn. The results are: A 22 = -0 064±0.005, A 44 = 0.005±0.007 with δ(E2/M1) 159keV = 0.036+0.021. The life time of the 159 keV state has also been determined by using the plastic scintillator detectors, and utilizing the delayed gamma-gamma coincidence method the resulting value of the life time is T 1/2 = 275±15 psec. Further measurements have been carried out to determine the nuclear g-factor of the 159 keV state utilizing the NaI(Tl) detectors and an external magnetic field of 25.5 k Gauss. The method of 'integral rotation with reverse field and constant angle' was utilized for the determination of the g-factor with the resulting value of g(159 keV) = +0.47±0.10. The experimental results are discussed in terms of single particle model and the pairing plus quadrupole model of Kisslinger and Sorensen. (author)

  13. In situ characterization of organic matter in two primitive chondrites through correlated microanalytical techniques

    Science.gov (United States)

    Wende, A. M.; Nittler, L.; Steele, A.; Herd, C. D.

    2009-12-01

    Primitive meteorites contain up to 2 wt % C, much of it in the form of insoluble organic matter (IOM). Bulk analyses have revealed the IOM to be marked by large D and 15N enrichments relative to terrestrial values. Isotopic imaging studies have revealed the presence of `hotspots’, sub-μm to μm-sized regions of IOM exhibiting extreme isotope enrichments. An interesting subpopulation of organic grains, ’nanoglobules’, which have hollow, spherical morphologies, is known to account for a portion of these hot spots. Previous work has suggested that nanoglobules can be identified in situ by native UV fluorescence. The isotopic enrichments are believed to point to low-T chemical fractionations either in the interstellar medium (ISM) or the outer regions of the early Solar System. As part of a larger study investigating the origin and evolution of IOM in the Solar System, a correlated, in situ, microanalytical approach was employed to characterize local isotopic and morphological heterogeneities in IOM in the highly primitive chondrites QUE 99177 (CR3) and Tagish Lake (C-ung). Previous NanoSIMS ion imaging of a QUE 99177 section revealed the spatial and isotopic distribution of C in the matrix with a spatial resolution of 200 nm. Manual definition of >3300 C-rich regions in the NanoSIMS images indicates that grains smaller than 1 μm across, which account for 80% of the IOM area, have a size distribution that is similar to estimates of the size distribution of carbonaceous dust in the diffuse ISM, supporting an interstellar origin for the IOM. Micro-Raman spectroscopy, which is highly sensitive to the degree of disorder in carbonaceous materials, was attempted on the same regions analyzed by NanoSIMS in QUE 99177. Unfortunately, surface damage due to both the prior SIMS analyses and removal of a prior C coat precluded acquisition of useful Raman spectra. Consequently, future correlated work will entail performing Raman analyses on uncoated samples prior to SIMS

  14. Large eddy simulations of compressible magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Grete, Philipp

    2016-01-01

    Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the

  15. Large eddy simulations of compressible magnetohydrodynamic turbulence

    Science.gov (United States)

    Grete, Philipp

    2017-02-01

    Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the

  16. Large eddy simulations of compressible magnetohydrodynamic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Grete, Philipp

    2016-09-09

    Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the

  17. Residual stresses measurement by using ring-core method and 3D digital image correlation technique

    International Nuclear Information System (INIS)

    Hu, Zhenxing; Xie, Huimin; Zhu, Jianguo; Wang, Huaixi; Lu, Jian

    2013-01-01

    Ring-core method/three-dimensional digital image correlation (3D DIC) residual stresses measurement is proposed. Ring-core cutting is a mechanical stress relief method, and combining with 3D DIC system the deformation of the specimen surface can be measured. An optimization iteration method is proposed to obtain the residual stress and rigid-body motion. The method has the ability to cut an annular trench at a different location out of the field of view. A compression test is carried out to demonstrate how residual stress is determined by using 3D DIC system and outfield measurement. The results determined by the approach are in good agreement with the theoretical value. Ring-core/3D DIC has shown its robustness to determine residual stress and can be extended to application in the engineering field. (paper)

  18. Correlation between Fe–V–C alloys surface hardness and plasma temperature via LIBS technique

    Energy Technology Data Exchange (ETDEWEB)

    Messaoud Aberkane, S., E-mail: smessaoud@cdta.dz [Centre de Développement des Technologies Avancées, Baba Hassen, Alger (Algeria); Bendib, A. [Université des Sciences et de Technologie Houari Boumediene, Bab-Ezzouar, Alger (Algeria); Yahiaoui, K.; Boudjemai, S.; Abdelli-Messaci, S.; Kerdja, T. [Centre de Développement des Technologies Avancées, Baba Hassen, Alger (Algeria); Amara, S.E. [Université des Sciences et de Technologie Houari Boumediene, Bab-Ezzouar, Alger (Algeria); Harith, M.A. [National Institute of Laser Enhanced Science, Cairo University (Egypt)

    2014-05-01

    Highlights: • New application of LIBS in industry. • Hardness of metallic alloys estimation using LIBS calibration curves. • Linear correlation between the plasma temperature and the hardness of metallic alloys. • The shock wave is fast when the material is hard. - Abstract: Surface hardness is a very important characteristic of metals. Its monitoring plays a key role in industry. In the present paper, using laser induced breakdown spectroscopy (LIBS), Fe–V{sub 18%}–C{sub 1%} alloys with different heat treatments have been used for making the correlation between surface hardness and laser-induced plasma temperatures. All investigated samples were characterized by the same ferrite phase with different Vickers surface hardnesses. The differences in hardness values were attributed to the crystallite size changes. A linear relationship has been obtained between the Vickers surface hardness and the laser induced plasma temperature. For comparison the relation between surface hardness and the ratio of the vanadium ionic to atomic spectral lines intensities (VII/VI) provided good linear results too. However, adopting the proposed approach of using the plasma temperature, instead, is more reliable in view of the difficulties that could be encountered in choosing the proper ionic and atomic spectral lines. To validate this approach we have investigated the shock wave speed induced by laser interaction with the used samples. It was found that harder is the material faster is the shock wave. The determination of the surface hardness via measuring T{sub e} shows the feasibility of using LIBS as an easy and reliable method for in situ industrial application for production control.

  19. Establishing structure-property correlations and classification of base oils using statistical techniques and artificial neural networks

    International Nuclear Information System (INIS)

    Kapur, G.S.; Sastry, M.I.S.; Jaiswal, A.K.; Sarpal, A.S.

    2004-01-01

    The present paper describes various classification techniques like cluster analysis, principal component (PC)/factor analysis to classify different types of base stocks. The API classification of base oils (Group I-III) has been compared to a more detailed NMR derived chemical compositional and molecular structural parameters based classification in order to point out the similarities of the base oils in the same group and the differences between the oils placed in different groups. The detailed compositional parameters have been generated using 1 H and 13 C nuclear magnetic resonance (NMR) spectroscopic methods. Further, oxidation stability, measured in terms of rotating bomb oxidation test (RBOT) life, of non-conventional base stocks and their blends with conventional base stocks, has been quantitatively correlated with their 1 H NMR and elemental (sulphur and nitrogen) data with the help of multiple linear regression (MLR) and artificial neural networks (ANN) techniques. The MLR based model developed using NMR and elemental data showed a high correlation between the 'measured' and 'estimated' RBOT values for both training (R=0.859) and validation (R=0.880) data sets. The ANN based model, developed using fewer number of input variables (only 1 H NMR data) also showed high correlation between the 'measured' and 'estimated' RBOT values for training (R=0.881), validation (R=0.860) and test (R=0.955) data sets

  20. Wind changes above warm Agulhas Current eddies

    CSIR Research Space (South Africa)

    Rouault, M

    2016-01-01

    Full Text Available speeds above the eddies at the instantaneous scale; 20 % of cases had incomplete data due to partial global coverage by the scatterometer for one path. For cases where the wind is stronger above warm eddies, there is no relationship between the increase...

  1. Oceanic eddies in synthetic aperture radar images

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    determining mechanism of eddy formation in this case is the vorticity (shear) of the currents or devi- ation of one current by another. Figure 10 shows the ERS-1 SAR image with a couple of cyclonic eddies that is supposedly located in the area of confluence of oppositely directed currents in the central part of the Japan Sea.

  2. Mesoscale Eddies in the Solomon Sea

    Science.gov (United States)

    Hristova, H. G.; Kessler, W. S.; McWilliams, J. C.; Molemaker, M. J.

    2011-12-01

    Water mass transformation in the strong equatorward flows through the Solomon Sea influences the properties of the Equatorial Undercurrent and subsequent cold tongue upwelling. High eddy activity in the interior Solomon Sea seen in altimetric sea surface height (SSH) and in several models may provide a mechanism for these transformations. We investigate these effects using a mesoscale (4-km resolution) sigma-coordinate (ROMS) model of the Solomon Sea nested in a basin solution, forced by a repeating seasonal cycle, and evaluated against observational data. The model generates a vigorous upper layer eddy field; some of these are apparently shed as the New Guinea Coastal Undercurrent threads through the complex topography of the region, others are independent of the strong western boundary current. We diagnose the scales and vertical structure of the eddies in different parts of the Solomon Sea to illuminate their generation processes and propagation characteristics, and compare these to observed eddy statistics. Hypotheses tested are that the Solomon Sea mesoscale eddies are generated locally by baroclinic instability, that the eddies are shed as the South Equatorial Current passes around and through the Solomon Island chain, that eddies are generated by the New Guinea Coastal Undercurrent, or that eddies occurring outside of the Solomon Sea propagate into the Solomon Sea. These different mechanisms have different implications for the resulting mixing and property fluxes. They also provide different interpretations for SSH signals observed from satellites (e.g., that will be observed by the upcoming SWOT satellite).

  3. Prevalent urinary incontinence as a correlate of pregnancy, vaginal childbirth and obstetric techniques

    DEFF Research Database (Denmark)

    Foldspang, Anders; Mommsen, Søren; Djurhuus, Jens Christian

    1999-01-01

    OBJECTIVES: This study examined the association between pregnancy, vaginal childbirth and obstetric techniques, and the prevalence of urinary incontinence among adult women aged 20 to 59 years. METHODS: A cross-sectional survey enrolled a random sample of 6240 women aged 20 to 59 years who were...... mailed a self-administered questionnaire focusing on urinary incontinence and other health variables. More than 75% of the women responded. The present analysis includes 4345 women who were not pregnant and did not experience a vaginal childbirth during 1994. RESULTS: Multivariate prevalence odds ratios...... showed increases in relation to urinary incontinence during pregnancy, urinary incontinence immediately after a vaginal childbirth, and age of 30 years or more at the second vaginal childbirth. No multivariate associations were found for forceps delivery or vacuum extraction delivery, episiotomy...

  4. The application of correlation techniques to the angular spectrum of scattered radiation from tokamak plasmas

    International Nuclear Information System (INIS)

    Nazikian, R.

    1990-07-01

    In the limit of the first Born approximation for a partially coherent secondary source, consisting of a spatially random plasma illuminated by a coherent plane wave, it is shown that the spectral coherence of the scattered radiation as measured on an arbitrary plane beyond the scatterer conveys information on the three dimensional intensity distribution of the random source. By defining a new two point statistical measure of the random field, closely related to the cross spectral density, we show that the fluctuation amplitude of the random source along the direction of the incident plane wave may by recovered from the measurement of the scattered radiation. The application of cross spectral techniques to fluctuation studies on tokamaks is considered. 7 refs

  5. A Review of Material Properties Estimation Using Eddy Current Testing and Capacitor Imaging

    Directory of Open Access Journals (Sweden)

    Mohd. Amri Yunus

    2009-01-01

    Full Text Available he non destructive testing applications based on inductive (eddy current testing and capacitive sensors are widely used for imaging of material properties. The simple structure, safe to use, low cost, non contact application, good response at medium range frequency of the sensors make them preferable to be used in the industries. The aim of this study is to talk about the material properties estimation applications using eddy current testing and capacitive sensing. The basic operations of eddy current testing and capacitive sensing with example of application in the non destructive testing are discussed. Next, the recent advancements of eddy current testing and capacitive testing in imaging technique are presented in this paper.

  6. A Method for Eddy Current Field Measurement in Permanent Magnet Magnetic Resonance Imaging Systems

    Directory of Open Access Journals (Sweden)

    SONG Rui

    2018-03-01

    Full Text Available Magnetic resonance imaging (MRI is a widely used medical imaging technique. In MRI system, gradient magnetic fields are used to code spatial information. However, the fast-switching electric currents in the gradients coils used to generate gradient fields also induce vortex electric field, often referred as eddy current, in the surrounding metal conductors. In this paper, a method for eddy current field measurement was proposed. Based on the Faraday law of electromagnetic induction, an eddy current field measuring device was designed. Combining hardware acquisition and software processing, the eddy current field was obtained by subtracting the ideal gradient field from the magnetic field measured experimentally, whose waveform could be displayed in real time. The proposed method was verified by experimental results.

  7. Eddy current analysis in fusion devices

    International Nuclear Information System (INIS)

    Turner, L.R.

    1988-06-01

    In magnetic fusion devices, particularly tokamaks and reversed field pinch (RFP) experiments, time-varying magnetic fields are in intimate contact with electrically conducting components of the device. Induced currents, fields, forces, and torques result. This note reviews the analysis of eddy current effects in the following systems: Interaction of a tokamak plasma with the eddy currents in the first wall, blanket, and shield (FWBS) systems; Eddy currents in a complex but two-dimensional vacuum vessel, as in TFTR, JET, and JT-60; Eddy currents in the FWBS system of a tokamak reactor, such as NET, FER, or ITER; and Eddy currents in a RFP shell. The cited studies are chosen to be illustrative, rather than exhaustive. 42 refs

  8. Eddy Current Flaw Characterization Using Neural Networks

    International Nuclear Information System (INIS)

    Song, S. J.; Park, H. J.; Shin, Y. K.

    1998-01-01

    Determination of location, shape and size of a flaw from its eddy current testing signal is one of the fundamental issues in eddy current nondestructive evaluation of steam generator tubes. Here, we propose an approach to this problem; an inversion of eddy current flaw signal using neural networks trained by finite element model-based synthetic signatures. Total 216 eddy current signals from four different types of axisymmetric flaws in tubes are generated by finite element models of which the accuracy is experimentally validated. From each simulated signature, total 24 eddy current features are extracted and among them 13 features are finally selected for flaw characterization. Based on these features, probabilistic neural networks discriminate flaws into four different types according to the location and the shape, and successively back propagation neural networks determine the size parameters of the discriminated flaw

  9. Studies of continuum states in {sup 16}Ne using three-body correlation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Marganiec, J. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Research Division GSI, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Wamers, F. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Research Division GSI, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, Frankfurt am Main (Germany); Aksouh, F.; Aksyutina, Yu.; Boretzky, K.; Chatillon, A.; Emling, H.; Geissel, H.; Heil, M.; Hoffmann, J.; Karagiannis, C.; Kiselev, O.A.; Kurz, N.; Litvinov, Yu.A.; Muentz, C.; Nociforo, C.; Ott, W.; Rossi, D.; Simon, H.; Suemmerer, K.; Weick, H. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Alvarez-Pol, H.; Beceiro-Novo, S.; Cortina-Gil, D.; Rodriguez-Tajes, C. [Universidade de Santiago de Compostela, Grupo de Fisica Nuclear, Santiago de Compostela (Spain); Aumann, T.; Panin, V. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Borge, M.J.G. [CERN, ISOLDE-EP, Geneva (Switzerland); CSIC, Instituto de Estructura de la Materia, Madrid (Spain); Chartier, M. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Chulkov, L.V. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Kurchatov Institute, Moscow (Russian Federation); Ershova, O.; Langer, C.; Plag, R.; Reifarth, R.; Wimmer, C. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Goethe Universitaet, Institut fuer Angewandte Physik, Frankfurt am Main (Germany); Fraile, L.M. [Universidad Complutense de Madrid, CEI Moncloa, Grupo de Fisica Nuclear, FAMN, Madrid (Spain); Fynbo, H.O.U.; Riisager, K. [University of Aarhus, Department of Physics and Astronomy, Aarhus (Denmark); Galaviz, D.; Perea, A.; Tengblad, O. [CSIC, Instituto de Estructura de la Materia, Madrid (Spain); Hoffmann, D.H.H.; Richter, A.; Schrieder, G. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Johansson, H.T.; Jonson, B.; Nilsson, T.; Nyman, G.; Zhukov, M.V. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Kratz, J.V. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Kernchemie, Mainz (Germany); Kulessa, R. [Uniwersytet Jagellonski, Instytut Fizyki, Krakov (Poland); Lantz, M. [Uppsala Universitet, Institutionen foer fysik och astronomi, Uppsala (Sweden); Le Bleis, T. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Technische Universitaet Muenchen, Physik-Department E12, Garching (Germany); Lemmon, R. [STFC Daresbury Lab, Warrington, Nuclear Physics Group, Cheshire (United Kingdom); Mahata, K. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Bhabha Atomic Research Centre, Nuclear Physics Division, Trombay (India); Paschalis, S. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); University of Liverpool, Department of Physics, Liverpool (United Kingdom); Savran, D. [Research Division GSI, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, Frankfurt am Main (Germany); Stroth, J. [Goethe Universitaet, Institut fuer Angewandte Physik, Frankfurt am Main (Germany); Wiescher, M. [University of Notre Dame, JINA, Notre Dame, IN (United States)

    2015-01-01

    Two-proton decay of the unbound T{sub z} =-2 nucleus {sup 16}Ne, produced in one-neutron knockout from a 500 MeV/u {sup 17}Ne beam, has been studied at GSI. The ground state, at a resonance energy 1.388(15) MeV, (Γ = 0.082(15) MeV) above the {sup 14}O+p+p threshold, and two narrow resonances at E{sub r} = 3.220(46) MeV and 7.57(6) MeV have been investigated. A comparison of the energy difference between the first excited 2{sup +} state and the 0{sup +} ground state in {sup 16}Ne with its mirror nucleus {sup 16}C reveals a small Thomas-Ehrman shift (TES) of +70(46) keV. A trend of the TES for the T = 2 quintet is obtained by completing the known data with a prediction for {sup 16}F obtained from an IMME analysis. The decay mechanisms of the observed three resonances were revealed from an analysis of the energy and angular correlations of the {sup 14}O+p+p decay products. The ground state decay can be considered as a genuine three-body (democratic) mode and the excited states decay sequentially via states in the intermediate nucleus {sup 15}F, the 3.22 MeV state predominantly via the {sup 15}F ground-state resonance, while the 7.57 MeV state decays via the 5/2{sup +} resonance in {sup 15}F at 2.8 MeV above the {sup 14}O+p+p threshold. Further, from an analysis of angular correlations, the spin-parity of the 7.57 MeV state has been determined as I{sup π} = 2{sup +} and assigned as the third 2{sup +} state in {sup 16}Ne based on a comparison with {sup 16}C. (orig.)

  10. Study of Sedimentary Outcrop of Semanggol Formation with the Correlation of Geology, Geotechnical and Geophysics Technique

    Science.gov (United States)

    Nordiana, A. N.; Nordiana, M. M.; Jia, Teoh Ying; Hisham, Hazrul; Sulaiman, Nabila; Maslinda, Umi; Taqiuddin, Z. M.; Nur Amalina, M. K. A.; Afiq Saharudin, Muhamad

    2017-04-01

    The study location was at Bukit Kukus, Kuala Ketil, Kedah, Malaysia where the geological outcrop of this Semanggol Formation comprises of chert, mudstone, and volcanic tuff. The study was conducted using two geophysical methods, which are 2-D Resistivity and Ground Penetrating Radar (GPR). The objectives of the study are to correlate both of the geophysical methods through the value of conductivity and to identify the physical properties of rocks through the value of porosity and permeability. The data acquisition for both methods was conducted on the same line. For 2-D Resistivity method, the length of the line is 60 m with 1.5 m electrode spacing and the array used was Wenner-Schlumberger. For GPR method, the survey line was on top of the resistivity line, and the frequency of the antenna used is 250 MHz. A good correlation exists between both of the GPR signature and contour maps for resistivity from the surfer 10 software with the outcrop feature. Conductivity value from both GPR and Resistivity method was compared and the range value of conductivity obtained from GPR method almost equivalent with Resistivity method based on derivation and calculation for the sedimentary rocks, which are 0.037 to 0.574 miliSiemens per metre (mS/m) for chert and 0.186 to 10.142 miliSiemens per metre (mS/m) for mudstone. Two types of rock samples were taken, and several geotechnical tests were conducted, but only the value of permeability, K and porosity, ɸ of chert can be calculated, which are 1.95E-22 m2 (original condition) and 2.27E-22 m2 (dry condition) and 3 percent respectively as the sample of mudstone was damaged. The parameter of the 2-D resistivity method derived from Archie’s law was used to calculate the porosity, ɸf value using the Formation Factor equation. The range values of porosity, ɸf for chert mostly in the range of 5 to 25 percent, which is 6.26 to 13.36 percent but slightly out of range for mudstone, which is 14.12 to 36.02 percent.

  11. Validating eddy current array probes for inspecting steam generator tubes

    International Nuclear Information System (INIS)

    Sullivan, S.P.; Cecco, V.S.; Obrutsky, L.S.

    1997-01-01

    A CANDU nuclear reactor was shut down for over one year because steam generator (SG) tubes had failed with outer diameter stress-corrosion cracking (ODSCC) in the U-bend section. Novel, single-pass eddy current transmit-receive probes, denoted as C3, were successful in detecting all significant cracks so that the cracked tubes could be plugged and the unit restarted. Significant numbers of tubes with SCC were removed from a SG in order to validate the results of the new probe. Results from metallurgical examinations were used to obtain probability-of-detection (POD) and sizing accuracy plots to quantify the performance of this new inspection technique. Though effective, the above approach of relying on tubes removed from a reactor is expensive, in terms of both economic and radiation-exposure costs. This led to a search for more affordable methods to validate inspection techniques and procedures. Methods are presented for calculating POD curves based on signal-to-noise studies using field data. Results of eddy current scans of tubes with laboratory-induced ODSCC are presented with associated POD curves. These studies appear promising in predicting realistic POD curves for new inspection technologies. They are being used to qualify an improved eddy current array probe in preparation for field use. (author)

  12. Comparison of infrared and 3D digital image correlation techniques applied for mechanical testing of materials

    Science.gov (United States)

    Krstulović-Opara, Lovre; Surjak, Martin; Vesenjak, Matej; Tonković, Zdenko; Kodvanj, Janoš; Domazet, Željko

    2015-11-01

    To investigate the applicability of infrared thermography as a tool for acquiring dynamic yielding in metals, a comparison of infrared thermography with three dimensional digital image correlation has been made. Dynamical tension tests and three point bending tests of aluminum alloys have been performed to evaluate results obtained by IR thermography in order to detect capabilities and limits for these two methods. Both approaches detect pastification zone migrations during the yielding process. The results of the tension test and three point bending test proved the validity of the IR approach as a method for evaluating the dynamic yielding process when used on complex structures such as cellular porous materials. The stability of the yielding process in the three point bending test, as contrary to the fluctuation of the plastification front in the tension test, is of great importance for the validation of numerical constitutive models. The research proved strong performance, robustness and reliability of the IR approach when used to evaluate yielding during dynamic loading processes, while the 3D DIC method proved to be superior in the low velocity loading regimes. This research based on two basic tests, proved the conclusions and suggestions presented in our previous research on porous materials where middle wave infrared thermography was applied.

  13. Developing Dynamic Digital Image Correlation Technique to Monitor Structural Damage of Old Buildings under External Excitation

    Directory of Open Access Journals (Sweden)

    Ming-Hsiang Shih

    2014-01-01

    Full Text Available The capacity of buildings to resist external excitation is an important factor to consider for the structural design of buildings. When subject to external excitation, a building may suffer a certain degree of damages, and its residual capacity to resist external excitation cannot be evaluated. In this research, dynamic digital image correlation method combined with parameter evaluation available in system identification is used to evaluate the structural capacity to resist external excitation. The results reveal possible building latent safety problems so that timely structural reinforcement or dismantling of the building can be initiated to alleviate further damages. The results of experiments using the proposed method conform to the results obtained using the conventional method, but this method is more convenient and rapid than the latter in the subsequent procedure of data processing. If only the frequency change is used, the damages suffered by the building can be detected, but the damage location is not revealed. The interstory drift mode shape (IDMS based on the characteristic of story drift has higher sensitivity than the approximate story damage index (ADSI method based on modal frequency and vibration type; however, both indices can be used to determine the degree and location of building damages.

  14. Evaluation of digital image correlation techniques using realistic ground truth speckle images

    International Nuclear Information System (INIS)

    Cofaru, C; Philips, W; Van Paepegem, W

    2010-01-01

    Digital image correlation (DIC) has been acknowledged and widely used in recent years in the field of experimental mechanics as a contactless method for determining full field displacements and strains. Even though several sub-pixel motion estimation algorithms have been proposed in the literature, little is known about their accuracy and limitations in reproducing complex underlying motion fields occurring in real mechanical tests. This paper presents a new method for evaluating sub-pixel motion estimation algorithms using ground truth speckle images that are realistically warped using artificial motion fields that were obtained following two distinct approaches: in the first, the horizontal and vertical displacement fields are created according to theoretical formulas for the given type of experiment while the second approach constructs the displacements through radial basis function interpolation starting from real DIC results. The method is applied in the evaluation of five DIC algorithms with results indicating that the gradient-based DIC methods generally have a quality advantage when using small sized blocks and are a better choice for calculating very small displacements and strains. The Newton–Raphson is the overall best performing method with a notable quality advantage when large block sizes are employed and in experiments where large strain fields are of interest

  15. Studies of continuum states in${16}$ Ne using three-body correlation techniques

    CERN Document Server

    Marganiec, J; Aksouh, F; Aksyutina, Yu; Alvarez-Pol, H; Aumann, T; Beceiro-Novo, S; Boretzky, K; Borge, M J G; Chartier, M; Chatillon, A; Chulkov, L V; Cortina-Gil, D; Emling, H; Ershova, O; Fraile, L M; Fynbo, H O U; Galaviz, D; Geissel, H; Heil, M; Hoffmann, D H H; Hoffmann, J; Johansson, H T; Jonson, B; Karagiannis, C; Kiselev, O A; Kratz, J V; Kulessa, R; Kurz, N; Langer, C; Lantz, M; Le Bleis, T; Lemmon, R; Litvinov, Yu A; Mahata, K; Müntz, C; Nilsson, T; Nociforo, C; Nyman, G; Ott, W; Panin, V; Paschalis, S; Perea, A; Plag, R; Reifarth, R; Richter, A; Rodriguez-Tajes, C; Rossi, D; Riisager, K; Savran, D; Schrieder, G; Simon, H; Stroth, J; Sümmerer, K; Tengblad, O; Weick, H; Wiescher, M; Wimmer, C; Zhukov, M V

    2015-01-01

    Two-proton decay of the unbound $ T_{z} =-2$ nucleus$^{16}$Ne , produced in one-neutron knockout from a 500 MeV/u$^{17}$Ne beam, has been studied at GSI. The ground state, at a resonance energy 1.388(15) MeV, ( $ \\Gamma =0.082(15)$ MeV) above the$^{14}$O +p+p threshold, and two narrow resonances at $ E_{r} =3.220(46)$ MeV and 7.57(6) MeV have been investigated. A comparison of the energy difference between the first excited 2$^{+}$ state and the 0$^{+}$ ground state in$^{16}$Ne with its mirror nucleus$^{16}$C reveals a small Thomas-Ehrman shift (TES) of $ +70(46)$ keV. A trend of the TES for the T = 2 quintet is obtained by completing the known data with a prediction for$^{16}$F obtained from an IMME analysis. The decay mechanisms of the observed three resonances were revealed from an analysis of the energy and angular correlations of the$^{14}$O +p+p decay products. The ground state decay can be considered as a genuine three-body (democratic) mode and the excited states decay sequentially via states in the i...

  16. Quality and Reliability of Large-Eddy Simulations

    CERN Document Server

    Meyers, Johan; Sagaut, Pierre

    2008-01-01

    Computational resources have developed to the level that, for the first time, it is becoming possible to apply large-eddy simulation (LES) to turbulent flow problems of realistic complexity. Many examples can be found in technology and in a variety of natural flows. This puts issues related to assessing, assuring, and predicting the quality of LES into the spotlight. Several LES studies have been published in the past, demonstrating a high level of accuracy with which turbulent flow predictions can be attained, without having to resort to the excessive requirements on computational resources imposed by direct numerical simulations. However, the setup and use of turbulent flow simulations requires a profound knowledge of fluid mechanics, numerical techniques, and the application under consideration. The susceptibility of large-eddy simulations to errors in modelling, in numerics, and in the treatment of boundary conditions, can be quite large due to nonlinear accumulation of different contributions over time, ...

  17. Eddy-current inspection of high flux isotope reactor nuclear control rods

    International Nuclear Information System (INIS)

    Smith, J.H.; Chitwood, L.D.

    1981-07-01

    Inner control rods for the High Flux Isotope Reactor were nondestructively inspected for defects by eddy-current techniques. During these examinations aluminum cladding thickness and oxide thickness on the cladding were also measured. Special application techniques were required because of the high-radiation levels (approx. 10 5 R/h at 30 cm) present and the relatively large temperature gradients that occurred on the surface of the control rods. The techniques used to perform the eddy-current inspections and the methods used to reduce the associated data are described

  18. Eddy current quality control of soldered current-carrying busbar splices of superconducting magnets

    CERN Document Server

    Kogan, L; Savary, F; Principe, R; Datskov, V; Rozenfel'd, E; Khudjakov, B

    2015-01-01

    The eddy current technique associated with a U-shaped transducer is studied for the quality control of soldered joints between superconducting busbars ('splices'). Two other quality control techniques, based on X-rays and direct measurement of the electrical resistance, are also studied for comparison. A comparative analysis of the advantages and disadvantages of these three methods in relation to the quality control of soldered superconducting busbar cables enclosed in copper shells is used for benchmarking. The results of inspections with the U-shaped eddy current transducer carried out on several sample joints presenting different types of soldering defects show the potential of this type of nondestructive (ND) quality control technique.

  19. Observational evidence of seasonality in the timing of loop current eddy separation

    Science.gov (United States)

    Hall, Cody A.; Leben, Robert R.

    2016-12-01

    Observational datasets, reports and analyses over the time period from 1978 through 1992 are reviewed to derive pre-altimetry Loop Current (LC) eddy separation dates. The reanalysis identified 20 separation events in the 15-year record. Separation dates are estimated to be accurate to approximately ± 1.5 months and sufficient to detect statistically significant LC eddy separation seasonality, which was not the case for previously published records because of the misidentification of separation events and their timing. The reanalysis indicates that previously reported LC eddy separation dates, determined for the time period before the advent of continuous altimetric monitoring in the early 1990s, are inaccurate because of extensive reliance on satellite sea surface temperature (SST) imagery. Automated LC tracking techniques are used to derive LC eddy separation dates in three different altimetry-based sea surface height (SSH) datasets over the time period from 1993 through 2012. A total of 28-30 LC eddy separation events were identified in the 20-year record. Variations in the number and dates of eddy separation events are attributed to the different mean sea surfaces and objective-analysis smoothing procedures used to produce the SSH datasets. Significance tests on various altimetry and pre-altimetry/altimetry combined date lists consistently show that the seasonal distribution of separation events is not uniform at the 95% confidence level. Randomization tests further show that the seasonal peak in LC eddy separation events in August and September is highly unlikely to have occurred by chance. The other seasonal peak in February and March is less significant, but possibly indicates two seasons of enhanced probability of eddy separation centered near the spring and fall equinoxes. This is further quantified by objectively dividing the seasonal distribution into two seasons using circular statistical techniques and a k-means clustering algorithm. The estimated

  20. Correlation of open cell-attached and excised patch clamp techniques.

    Science.gov (United States)

    Filipovic, D; Hayslett, J P

    1995-11-01

    The excised patch clamp configuration provides a unique technique for some types of single channel analyses, but maintenance of stable, long-lasting preparations may be confounded by rundown and/or rapid loss of seal. Studies were performed on the amiloride-sensitive Na+ channel, located on the apical surface of A6 cells, to determine whether the nystatin-induced open cell-attached patch could serve as an alternative configuration. Compared to excised inside-out patches, stable preparations were achieved more readily with the open cell-attached patch (9% vs. 56% of attempts). In both preparations, the current voltage (I-V) relation was linear, current amplitudes were equal at opposite equivalent clamped voltages, and Erev was zero in symmetrical Na+ solutions, indicating similar Na+ activities on the cytosolic and external surfaces of the patch. Moreover, there was no evidence that nystatin altered channel activity in the patch because slope conductance (3-4pS) and Erev (75 mV), when the bath was perfused with a high K:low Na solution (ENa = 80 mV), were nearly equal in both patch configurations. Our results therefore indicate that the nystatin-induced open cell-attached patch can serve as an alternative approach to the excised inside-out patch when experiments require modulation of univalent ions in the cytosol.

  1. Synthesis of dynamic phase profile by the correlation technique for spatial control of optical beams in multiplexing and switching

    Science.gov (United States)

    Bugaychuk, Svitlana A.; Gnatovskyy, Vladimir O.; Sidorenko, Andrey V.; Pryadko, Igor I.; Negriyko, Anatoliy M.

    2015-11-01

    New approach for the correlation technique, which is based on multiple periodic structures to create a controllable angular spectrum, is proposed and investigated both theoretically and experimentally. The transformation of an initial laser beam occurs due to the actions of consecutive phase periodic structures, which may differ by their parameters. Then, after the Fourier transformation of a complex diffraction field, the output diffraction orders will be changed both by their intensities and by their spatial position. The controllable change of output angular spectrum is carried out by a simple control of the parameters of the periodic structures. We investigate several simple examples of such management.

  2. Correlations Between Life-Detection Techniques and Implications for Sampling Site Selection in Planetary Analog Missions

    Science.gov (United States)

    Gentry, Diana M.; Amador, Elena S.; Cable, Morgan L.; Chaudry, Nosheen; Cullen, Thomas; Jacobsen, Malene B.; Murukesan, Gayathri; Schwieterman, Edward W.; Stevens, Adam H.; Stockton, Amanda; Tan, George; Yin, Chang; Cullen, David C.; Geppert, Wolf

    2017-10-01

    We conducted an analog sampling expedition under simulated mission constraints to areas dominated by basaltic tephra of the Eldfell and Fimmvörðuháls lava fields (Iceland). Sites were selected to be "homogeneous" at a coarse remote sensing resolution (10-100 m) in apparent color, morphology, moisture, and grain size, with best-effort realism in numbers of locations and replicates. Three different biomarker assays (counting of nucleic-acid-stained cells via fluorescent microscopy, a luciferin/luciferase assay for adenosine triphosphate, and quantitative polymerase chain reaction (qPCR) to detect DNA associated with bacteria, archaea, and fungi) were characterized at four nested spatial scales (1 m, 10 m, 100 m, and >1 km) by using five common metrics for sample site representativeness (sample mean variance, group F tests, pairwise t tests, and the distribution-free rank sum H and u tests). Correlations between all assays were characterized with Spearman's rank test. The bioluminescence assay showed the most variance across the sites, followed by qPCR for bacterial and archaeal DNA; these results could not be considered representative at the finest resolution tested (1 m). Cell concentration and fungal DNA also had significant local variation, but they were homogeneous over scales of >1 km. These results show that the selection of life detection assays and the number, distribution, and location of sampling sites in a low biomass environment with limited a priori characterization can yield both contrasting and complementary results, and that their interdependence must be given due consideration to maximize science return in future biomarker sampling expeditions.

  3. Investigation of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting radial Growth on a Rotating Disk

    Science.gov (United States)

    Clem, Michelle M.; Woike, Mark R.

    2013-01-01

    The Aeronautical Sciences Project under NASA`s Fundamental Aeronautics Program is extremely interested in the development of novel measurement technologies, such as optical surface measurements in the internal parts of a flow path, for in situ health monitoring of gas turbine engines. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. In the present study, a cross-correlation imaging technique is investigated in a proof-of-concept study as a possible optical technique to measure the radial growth and strain field on an already cracked sub-scale turbine engine disk under loaded conditions in the NASA Glenn Research Center`s High Precision Rotordynamics Laboratory. The optical strain measurement technique under investigation offers potential fault detection using an applied high-contrast random speckle pattern and imaging the pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds induces an external load, resulting in a radial growth of the disk of approximately 50.0-im in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be .shifted`. The resulting particle displacements between the two images will then be measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. In order to develop and validate this optical strain measurement technique an initial proof-of-concept experiment is carried out in a controlled environment. Using PIV optimization principles and guidelines, three potential speckle patterns, for future use on the rotating disk, are developed

  4. Trace elemental correlation study in malignant and normal breast tissue by PIXE technique

    International Nuclear Information System (INIS)

    Raju, G.J. Naga; Sarita, P.; Kumar, M. Ravi; Murty, G.A.V. Ramana; Reddy, B. Seetharami; Lakshminarayana, S.; Vijayan, V.; Lakshmi, P.V.B. Rama; Gavarasana, Satyanarayana; Reddy, S. Bhuloka

    2006-01-01

    Particle induced X-ray emission technique was used to study the variations in trace elemental concentrations between normal and malignant human breast tissue specimens and to understand the effects of altered homeostasis of these elements in the etiology of breast cancer. A 3 MeV proton beam was used to excite the biological samples of normal and malignant breast tissues. The elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb and Sr were identified and their relative concentrations were estimated. Almost all the elements were found to be elevated (p < 0.05, Wilcoxon signed-ranks test) in the cancerous tissues when compared with normal tissues. The excess levels of trace elements observed in the cancerous breast tissues could either be a cause or a consequence of breast cancer. Regarding their role in the initiation or promotion of breast cancer, one possible interpretation is that the elevated levels of Cu, Fe and Cr could have led to the formation of free radicals or other reactive oxygen species (ROS) that adversely affect DNA thereby causing breast cancer, which is mainly attributed to genetic abnormalities. Moreover, since Cu and Fe are required for angiogenesis, elevated concentrations of these elements are likely to promote breast cancer by increasing the blood supply for tumor growth. On the other hand elevated concentrations of elements in breast cancer tissues might also be a consequence of the cancer. This can be understood in terms of the biochemical and histological differences between normal and cancerous breast tissues. Tumors, characterized by unregulated multiplication of cells, need an ever-increasing supply of essential nutrients including trace elements. This probably results in an increased vascularity of malignant tissues, which in turn leads to enhancement of elemental concentrations in tumors

  5. [Correlation and interconversion between erythrocyte cholinesterase values obtained by the Michel and the EQM techniques].

    Science.gov (United States)

    Carmona-Fonseca, Jaime

    2006-12-01

    Several techniques are available to measure red cell cholinesterase; therefore, evaluations with several methods provide a measure of concordance. An equation was formulated to transform native data of reference values to reference units of cholinesterase activity as measured by Michel and EQM tests. The experimental design was descriptive, transversal and prospective. The group sampled was a representative adult working population, aged 18-75, without previous exposure to cholinesterase inhibitors pesticides. The individuals were affiliated to the Social Security System and resided in Valle de Aburrá and Cercano Oriente Antioqueño (Antioquia Province, northwestern Colombia). Of 827 individuals, quantitative erythrocytes (Michel y EQM) tests exhibited "r" coefficients between 0.67 and R2 coefficient of 44%.,This indicated that one test explained the results in other test in 44% of the cases. The corelation was higher in Aburrá than in Oriente. The linear model for the 827 individuals was as follows: EQM U/g oxy-hemoglobin = 9.575 U/ g oxy-hemoglobin + 29.791 (Michel delta pH/hour). Michel delta pH/hr = 0.3312 delta pH/hour + 0.0149 (EQM U/g oxy-hemoglobin), where EQM was expressed in U/g oxy-hemoglobin and Michel pH change/hr. Inter-sections (coefficient a) and inclines (coefficient b) were significant in this model. In the adjusted equations, after exclusion of 12 extreme data (1.5% of 827), the r coefficient increased from 0.67 to 0.72 The adjusted equations were as follows: EQM U/g oxy-hemoglobin = 8.1884 U/g oxy-hemoglobin + 31.3920 (Michel delta pH/hour); Michel delta pH/hr = 0.2925 delta pH/hr + 0.0161 (EQM U/g oxy-hemoglobin). This system of linear equations permitted the transformation of Michel (delta PH/ hr) units to EQM (U/g oxy-hemoglobin) units and vice versa. This will facilitate data comparisons by clinicians and epidemiologists who are using these methods of cholinesterase measurement.

  6. Conformable eddy current array delivery

    Science.gov (United States)

    Summan, Rahul; Pierce, Gareth; Macleod, Charles; Mineo, Carmelo; Riise, Jonathan; Morozov, Maxim; Dobie, Gordon; Bolton, Gary; Raude, Angélique; Dalpé, Colombe; Braumann, Johannes

    2016-02-01

    The external surface of stainless steel containers used for the interim storage of nuclear material may be subject to Atmospherically Induced Stress Corrosion Cracking (AISCC). The inspection of such containers poses a significant challenge due to the large quantities involved; therefore, automating the inspection process is of considerable interest. This paper reports upon a proof-of-concept project concerning the automated NDT of a set of test containers containing artificially generated AISCCs. An Eddy current array probe with a conformable padded surface from Eddyfi was used as the NDT sensor and end effector on a KUKA KR5 arc HW robot. A kinematically valid cylindrical raster scan path was designed using the KUKA|PRC path planning software. Custom software was then written to interface measurement acquisition from the Eddyfi hardware with the motion control of the robot. Preliminary results and analysis are presented from scanning two canisters.

  7. Determining Confounding Sensitivities In Eddy Current Thin Film Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gros, Ethan; Udpa, Lalita; Smith, James A.; Wachs, Katelyn

    2016-07-01

    Determining Confounding Sensitivities In Eddy Current Thin Film Measurements Ethan Gros, Lalita Udpa, Electrical Engineering, Michigan State University, East Lansing MI 48824 James A. Smith, Experiment Analysis, Idaho National Laboratory, Idaho Falls ID 83415 Eddy current (EC) techniques are widely used in industry to measure the thickness of non-conductive films on a metal substrate. This is done using a system whereby a coil carrying a high-frequency alternating current is used to create an alternating magnetic field at the surface of the instrument's probe. When the probe is brought near a conductive surface, the alternating magnetic field will induce ECs in the conductor. The substrate characteristics and the distance of the probe from the substrate (the coating thickness) affect the magnitude of the ECs. The induced currents load the probe coil affecting the terminal impedance of the coil. The measured probe impedance is related to the lift off between coil and conductor as well as conductivity of the test sample. For a known conductivity sample, the probe impedance can be converted into an equivalent film thickness value. The EC measurement can be confounded by a number of measurement parameters. It is the goal of this research to determine which physical properties of the measurement set-up and sample can adversely affect the thickness measurement. The eddy current testing is performed using a commercially available, hand held eddy current probe (ETA3.3H spring loaded eddy probe running at 8 MHz) that comes with a stand to hold the probe. The stand holds the probe and adjusts the probe on the z-axis to help position the probe in the correct area as well as make precise measurements. The signal from the probe is sent to a hand held readout, where the results are recorded directly in terms of liftoff or film thickness. Understanding the effect of certain factors on the measurements of film thickness, will help to evaluate how accurate the ETA3.3H spring

  8. NDE reliability gains from combining eddy-current and ultrasonic testing

    International Nuclear Information System (INIS)

    Horn, D.; Mayo, W.R.

    1999-01-01

    We investigate statistical methods for combining the results of two complementary inspection techniques, eddy-current and ultrasonic testing. The reliability of rejection/acceptance decisions based on combined information is compared with that based on each inspection technique individually. The measured reliability increases with the amount of information incorporated in the decision. (author)

  9. Carotid plaque signal differences among four kinds of T1-weighted magnetic resonance imaging techniques: A histopathological correlation study

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Ayumi; Narumi, Shinsuke; Ohba, Hideki; Yamaguchi, Mao; Terayama, Yasuo [Iwate Medical University, Department of Neurology and Gerontology, Morioka (Japan); Sasaki, Makoto; Kudo, Kohsuke [Iwate Medical University, Institute for Biomedical Sciences, Morioka (Japan); Ogasawara, Kuniaki; Kobayashi, Masakazu [Iwate Medical University, Department of Neurosurgery, Morioka (Japan); Hitomi, Jiro [Iwate Medical University, Department of Anatomy, Morioka (Japan)

    2012-11-15

    Several magnetic resonance (MR) imaging techniques are used to examine atherosclerotic plaque of carotid arteries; however, the best technique for visualizing intraplaque characteristics has yet to be determined. Here, we directly compared four kinds of T1-weighted (T1W) imaging techniques with pathological findings in patients with carotid stenosis. A total of 31 patients who were candidates for carotid endarterectomy were prospectively examined using a 1.5-T MRI scanner, which produced four kinds of T1W images, including non-gated spin echo (SE), cardiac-gated black-blood (BB) fast-SE (FSE), magnetization-prepared rapid acquisition with gradient echo (MPRAGE), and source image of three-dimensional time-of-flight MR angiography (SI-MRA). The signal intensity of the carotid plaque was manually measured, and the contrast ratio (CR) against the adjacent muscle was calculated. CRs from the four imaging techniques were compared to each other and correlated with histopathological specimens. CRs of the carotid plaques mainly containing fibrous tissue, lipid/necrosis, and hemorrhage were significantly different with little overlaps (range: 0.92-1.15, 1.22-1.52, and 1.55-2.30, respectively) on non-gated SE. However, BB-FSE showed remarkable overlaps among the three groups (0.89-1.10, 1.07-1.23, and 1.01-1.42, respectively). MPRAGE could discriminate fibrous plaques from hemorrhagic plaques but not from lipid/necrosis-rich plaques: (0.77-1.07, 1.45-2.43, and 0.85-1.42, respectively). SI-MRA showed the same tendencies (1.01-1.39, 1.45-2.57, and 1.12-1.39, respectively). Among T1W MR imaging techniques, non-gated SE images can more accurately characterize intraplaque components in patients who underwent CEA when compared with cardiac-gated BB-FSE, MPRAGE, and SI-MRA images. (orig.)

  10. Multifrequency eddy-current inspection of seam weld in steel sheath

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.H.; Dodd, C.V.; Chitwood, L.D.

    1985-04-01

    Multifrequency eddy-current techniques were used to perform a continuous on-line inspection of the seam weld in the steel jacket for a superconducting cable. The inspection was required to detect both surface and internal weld flaws in the presence of a large, highly conductive central conductor. Raw eddy-current data were recorded on magnetic tape, and test properties such as discontinuity size and weld penetration were determined by mathematically fitting these data to coefficients developed with representative standards. A sophisticated computer-controlled scanning technique was applied, and a unique scanning device was developed to provide full coverage of the weld and heat-affected zone. The techniques used to develop this multifrequency eddy-current examination are described in this report along with the test equipment, test procedures, and computer programs.

  11. Multifrequency eddy-current inspection of seam weld in steel sheath

    International Nuclear Information System (INIS)

    Smith, J.H.; Dodd, C.V.; Chitwood, L.D.

    1985-04-01

    Multifrequency eddy-current techniques were used to perform a continuous on-line inspection of the seam weld in the steel jacket for a superconducting cable. The inspection was required to detect both surface and internal weld flaws in the presence of a large, highly conductive central conductor. Raw eddy-current data were recorded on magnetic tape, and test properties such as discontinuity size and weld penetration were determined by mathematically fitting these data to coefficients developed with representative standards. A sophisticated computer-controlled scanning technique was applied, and a unique scanning device was developed to provide full coverage of the weld and heat-affected zone. The techniques used to develop this multifrequency eddy-current examination are described in this report along with the test equipment, test procedures, and computer programs

  12. Convection anomalies associated with warm eddy at the coastal area

    Science.gov (United States)

    Shi, R.; Wang, D.

    2017-12-01

    A possible correlation between a warm eddy and thunderstorms and convective precipitations are investigated at the coastal area in the northwestern South China Sea. Compared to the climatological mean in August from 2006 to 2013, an extreme enhancement of thunderstorm activities and precipitation rate are identified at the southern offshore area of Hainan island in August 2010 when a strong and long-live warm eddy was observed near the coastline at the same time. The 3 hourly satellite data (TRMM) indicate that the nocturnal convections is strong offshore and that could be responsible for the extreme positive anomalies of thunderstorms and rainfall in August 2010. The TRMM data also show a small reduction of thunderstorm activities and rainfall on the island in the afternoon. Meanwhile, the Weather Research and Forecasting (WRF) model was applied to simulate the change of rainfall in August 2010. The WRF simulation of rainfall rate is comparable with the observation results while there is some difference in the spatial distribution. The WRF simulation successfully captured the strong offshore rainfall and the diurnal variation of rainfall in August 2010. The WRF simulation indicated that the different convergence induced by sea/land breeze could be one essential reason for the adjustment of thunderstorms and rainfall in 2010. The substantial connection between sea/land breeze and upper layer heat content modified by the warm eddy is still on ongoing and will be reported in the future work.

  13. Zonal migration and transport variations of the Kuroshio east of Taiwan induced by eddy impingements

    Science.gov (United States)

    Chang, Ming-Huei; Jan, Sen; Mensah, Vigan; Andres, Magdalena; Rainville, Luc; Yang, Yiing Jang; Cheng, Yu-Hsin

    2018-01-01

    Variability of the Kuroshio east of Taiwan was observed at a cross-stream transect 50 km south of the PCM-1 line with an array of three moored ADCPs measuring for 23 months, supplemented with eleven repeated shipboard surveys. Observations of the Kuroshio's velocity structure reveal the absence of an obvious regular seasonal signal, but significant variability at 70-200 day period for both maximum velocity axis migration and transport due to interactions with mesoscale eddies. Empirical orthogonal function (EOF) analysis shows the migration and transport modes explain 46% and 29% of the total variance, respectively, which is in contrast to the findings at the PCM-1 line where the transport mode explained more variance than did the migration mode. The Kuroshio transport in the upper 500 m across a 150 km section is 17.2 Sv with a standard deviation of 5 Sv. The estimated Kuroshio transport is 4.3 Sv lower than that reported for the PCM-1 line, likely due to the interannual variations related to abundance of mesoscale eddies in the Subtropical Counter Current (STCC) region. Transport variability east of Taiwan is mostly caused by Kuroshio-eddy interactions. When single anticyclonic (cyclonic) eddies encounter the Kuroshio, they enhance (reduce) poleward transport, presumably by increasing (decreasing) the sea level anomaly (SLA) along the eastern flank of the Kuroshio (correlation = 0.82). When a pair of eddies impinges on the Kuroshio, the upstream confluence and diffluence caused by the dipole eddies increases and decreases the Kuroshio transport, respectively. Furthermore, the eastward (westward) currents that result from either the single eddy or the dipole eddy produce flow divergence (convergence) adjacent to the Kuroshio's eastern edge, favoring the offshore (onshore) migration of the Kuroshio axis.

  14. Assessment of resectability of pancreatic cancer with dynamic contrast-enhanced MR imaging: technique, surgical correlation and patient outcome

    International Nuclear Information System (INIS)

    Spencer, J.A.; Ward, J.; Guthrie, J.A.; Robinson, P.J.A.; Guillou, P.J.

    1998-01-01

    The aim of our work was to investigate the use of a dynamic contrast-enhanced MR (DCEMR) technique for staging apparently localised pancreatic cancer, and to determine the patterns of tumour and vascular enhancement with this technique. Thirty-five consecutive patients were examined. The MR findings were correlated with surgical findings in 13 patients and with clinical outcome in 22 patients. Breath-hold gradient-echo fast low angle shot (TR = 100, TE = 4, flip angle 80 ) acquisitions were obtained at 10 and 40 s (right anterior coronal oblique plane) and at 90 s (axial plane) following intravenous gadolinium. Mean contrast-to-noise ratio was higher on the first than the second acquisition (p < 0.001) and higher on the second acquisition than the third (p < 0.005). Tumour conspicuity was greatest and arterial anatomy was best demonstrated on the first acquisition and the portal venous anatomy on the second. Small tumours were isointense by the third acquisition. Maximal intensity projections were helpful. The MR findings correctly predicted the surgical findings in 11 of 13 cases (85 %) and the clinical course in the other 22 patients. The DCEMR imaging technique is valuable in the staging of patients with pancreatic cancer. Capillary and portal venous phase images are both required for complete local staging. (orig.)

  15. Texture evolution and microstructural changes during solid-state dewetting: A correlative study by complementary in situ TEM techniques

    International Nuclear Information System (INIS)

    Niekiel, Florian; Kraschewski, Simon M.; Schweizer, Peter; Butz, Benjamin; Spiecker, Erdmann

    2016-01-01

    The transition of a thin film into an energetically favorable set of particles at temperatures below the melting point of the bulk material is known as solid-state dewetting. In this work the dewetting behavior of 16 nm thick discontinuous Au thin films on amorphous silicon nitride membranes is quantitatively studied by complementary in situ transmission electron microscopy techniques taking advantage of the unique capabilities of a chip-based heating system. The combination of dedicated imaging and diffraction techniques is used to investigate the interplay of grain growth and texture evolution with the process of dewetting. The results show an initial coarsening of the microstructure preceding the other processes. Texture evolution is highly correlated to material retraction and agglomeration during the following dewetting process. In-plane grain rotation has been observed, acting as an additional mechanism for orientation changes. From a methodological perspective this work demonstrates the capabilities of today’s transmission electron microscopy in combination with state-of-the-art in situ instrumentation. In particular the combination of complementary information from different dedicated techniques in one and the same setup is demonstrated to be highly beneficial.

  16. Eddy Current Thermography: System Development and Its Application in NDT

    International Nuclear Information System (INIS)

    Nurliyana Shamimie Rusli; Ilham Mukriz Zainal Abidin; Sidek, H.A.A.

    2015-01-01

    Eddy Current Thermography (ECT) is an integrative technique which combines eddy current and thermographic NDT in order to provide an efficient method for defect detection. The technique is applicable to electrically conductive material and has the ability to detect surface and subsurface defect. ECT is a non-contact technique; has the ability to provide instantaneous response and high scanning speed that makes it reliable for defect detection and assessment. The technique combines electromagnetic excitation of the work-piece via a coil carrying current, heating of the material by induction and inspection by transient infrared thermography. In this paper, the development of ECT system is detailed, including coil design for global and local heating of samples, and optimisation of excitation parameters (frequency, power, heating duration etc). Results from 3D FEM simulation and experimental investigations are also presented to provide the overview of underlying phenomena and application of ECT. The work demonstrates the effectiveness of the developed ECT system and technique in defect detection and assessment. (author)

  17. Applying computer modeling to eddy current signal analysis for steam generator and heat exchanger tube inspections

    International Nuclear Information System (INIS)

    Sullivan, S.P.; Cecco, V.S.; Carter, J.R.; Spanner, M.; McElvanney, M.; Krause, T.W.; Tkaczyk, R.

    2000-01-01

    Licensing requirements for eddy current inspections for nuclear steam generators and heat exchangers are becoming increasingly stringent. The traditional industry-standard method of comparing inspection signals with flaw signals from simple in-line calibration standards is proving to be inadequate. A more complete understanding of eddy current and magnetic field interactions with flaws and other anomalies is required for the industry to generate consistently reliable inspections. Computer modeling is a valuable tool in improving the reliability of eddy current signal analysis. Results from computer modeling are helping inspectors to properly discriminate between real flaw signals and false calls, and improving reliability in flaw sizing. This presentation will discuss complementary eddy current computer modeling techniques such as the Finite Element Method (FEM), Volume Integral Method (VIM), Layer Approximation and other analytic methods. Each of these methods have advantages and limitations. An extension of the Layer Approximation to model eddy current probe responses to ferromagnetic materials will also be presented. Finally examples will be discussed demonstrating how some significant eddy current signal analysis problems have been resolved using appropriate electromagnetic computer modeling tools

  18. Design and optimization of the low frequency eddy current technique for the volumetric inspection of austenitic small diameter tubes with a wall thickness up to 12 mm; Auslegung und Optimierung des Niederfrequenz-Wirbelstrom-Verfahrens fuer die volumetrische Pruefung von austenitischen Neben- und Kleinleitungen mit Wandstaerken bis 12 mm

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R; Bessert, S; Disque, M; Weiss, R [Fraunhofer-Institut fuer Zerstoerungsfreie Pruefverfahren, Saarbruecken (Germany)

    1998-11-01

    The low-frequency eddy current technique discussed is a suitable external inspection technique detecting defects at the inner walls of small-diameter tubes and measuring their depths via the ligament. A testing system with optimized sensor lus software for image recording, evaluation, display and documentation is available. The current state of development of the system permits detection and measurement of defects up to 20 mm in size in austenitic inner walls 12.5 mm thick down to a depth of 3 mm. This applies both to the homogenous base metal and the weld with {delta} ferrite. (orig./CB) [Deutsch] Das vorgestellte Niederfrequenz-Wirbelstrom-Verfahren ist geeignet, bei Pruefung von aussen Fehler an der Innenseite von Klein- und Nebenleitungen nachzuweisen und ueber das Ligament deren Tiefe zu bestimmen. Ein entsprechendes Pruefsystem mit optimiertem Sensor und der Software zur Aufnahme, Auswertung, Darstellung und Dokumentation der Wirbelstrom-Urdaten steht zur Verfuegung. Beim jetzigen Entwicklungsstand liegt die Nachweisgrenze fuer einen 20 mm langen Innenfehler in einer 12.5 mm dicken austenitischen Wandung bei einer Fehlertiefe von 3 mm. Dies gilt sowohl fuer den homogenen Grundwerkstoff als auch fuer Schweissgefuege mit {delta}-Ferrit. (orig./MM)

  19. Dynamic large eddy simulation: Stability via realizability

    Science.gov (United States)

    Mokhtarpoor, Reza; Heinz, Stefan

    2017-10-01

    The concept of dynamic large eddy simulation (LES) is highly attractive: such methods can dynamically adjust to changing flow conditions, which is known to be highly beneficial. For example, this avoids the use of empirical, case dependent approximations (like damping functions). Ideally, dynamic LES should be local in physical space (without involving artificial clipping parameters), and it should be stable for a wide range of simulation time steps, Reynolds numbers, and numerical schemes. These properties are not trivial, but dynamic LES suffers from such problems over decades. We address these questions by performing dynamic LES of periodic hill flow including separation at a high Reynolds number Re = 37 000. For the case considered, the main result of our studies is that it is possible to design LES that has the desired properties. It requires physical consistency: a PDF-realizable and stress-realizable LES model, which requires the inclusion of the turbulent kinetic energy in the LES calculation. LES models that do not honor such physical consistency can become unstable. We do not find support for the previous assumption that long-term correlations of negative dynamic model parameters are responsible for instability. Instead, we concluded that instability is caused by the stable spatial organization of significant unphysical states, which are represented by wall-type gradient streaks of the standard deviation of the dynamic model parameter. The applicability of our realizability stabilization to other dynamic models (including the dynamic Smagorinsky model) is discussed.

  20. Multifrequency Eddy current testing of heat exchange tubes with a rotating probe

    International Nuclear Information System (INIS)

    Levy, R.

    1982-01-01

    Multi-frequency eddy current analyses have been used in France industrially since 1975. In light of the experienced gained during many steam generator inspections, this technique was applied to the examination of sheet and tube heat exchangers featuring tubes in very different materials such as copper, stainless steel and titanium. The principle of multi-frequency Eddy current inspection is first reviewed, using the example of a condenser with nickel alloy tubes (Inconel, Incoloy). This is followed by the description of a specific application of this technique to a condenser with titanium tubes, analyzed with a rotating local probe [fr

  1. Eddy Effects in the General Circulation, Spanning Mean Currents, Mesoscale Eddies, and Topographic Generation, Including Submesoscale Nests

    Science.gov (United States)

    2014-09-30

    alongshore winds favoring upwelling circulation. As for the other EBUS (e.g., Humboldt, Benguela, and Canary Currents ), equatorward winds drive...Eddy Effects in the General Circulation, Spanning Mean Currents , Mesoscale Eddies, and Topographic Generation, Including Submesoscale Nests...environments OBJECTIVES The central scientific questions are how the eddies control the persistent currents by their eddy-induced momentum and buoyancy fluxes

  2. Eddy current testing with high penetration

    International Nuclear Information System (INIS)

    Becker, R.; Kroening, M.

    1999-01-01

    The low-frequency eddy current testing method is used when penetration into very deep layers is required. The achievable penetration depth is determined among other parameters by the lowest testing frequency that can be realised together with the eddy current sensor. When using inductive sensors, the measuring effect declines proportional to the lowering frequency (induction effect). Further reduction of testing frequency requires other types of sensors, as e.g. the GMR (Giant Magnetic Resistance), which achieves a constant measuring sensitivity down to the steady field. The multi-frequency eddy current testing method MFEC 3 of IZFP described here can be operated using three different scanning frequencies at a time. Two variants of eddy current probes are used in this case. Both have an inductive winding at their emitters, of the type of a measuring probe. The receiver end is either also an inductive winding, or a magnetic field-responsive resistance (GMR). (orig./CB) [de

  3. ECAPS - Eddy Current Approach and Proximity Satellites

    Data.gov (United States)

    National Aeronautics and Space Administration — Multiple, energized coils in a small satellite will generate eddy currents in the skin of the International Space Station (ISS). This will create repulsive forces...

  4. Observed eddy dissipation in the Agulhas Current

    CSIR Research Space (South Africa)

    Braby, L

    2016-08-01

    Full Text Available (negative) velocity anomalies propagate downstream in the Agulhas Current at 44 km/d (23 km/d). Many models are unable to represent these eddy dissipation processes, affecting our understanding of the Agulhas Current....

  5. Eddy current testing device using unbalance bridge

    International Nuclear Information System (INIS)

    Hoshikawa, H.; Koido, J.; Ishibashi, Y.

    1976-01-01

    An easily readjustable unbalance bridge has been invented and in utilizing the same, an eddy current testing equipment excellent in suppression of the lift-off effect and high in the detection sensitivity has been developed

  6. Thin film eddy current impulse deicer

    Science.gov (United States)

    Smith, Samuel O.; Zieve, Peter B.

    1990-01-01

    Two new styles of electrical impulse deicers has been developed and tested in NASA's Icing Research Tunnel. With the Eddy Current Repulsion Deicing Boot (EDB), a thin and flexible spiral coil is encapsulated between two thicknesses of elastomer. The coil, made by an industrial printed circuit board manufacturer, is bonded to the aluminum aircraft leading edge. A capacitor bank is discharged through the coil. Induced eddy currents repel the coil from the aluminum aircraft structure and shed accumulated ice. A second configuration, the Eddy Current Repulsion Deicing-Strip (EDS) uses an outer metal erosion strip fastened over the coil. Opposite flowing eddy currents repel the strip and create the impulse deicing force. The outer strip serves as a surface for the collection and shedding of ice and does not require any structural properties. The EDS is suitable for composite aircraft structures. Both systems successfully dispelled over 95 percent of the accumulated ice from airfoils over the range of the FAA icing envelope.

  7. Progress of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting Radial Growth on a Rotating Disk

    Science.gov (United States)

    Clem, Michelle M.; Abdul-Aziz, Ali; Woike, Mark R.; Fralick, Gustave C.

    2015-01-01

    The modern turbine engine operates in a harsh environment at high speeds and is repeatedly exposed to combined high mechanical and thermal loads. The cumulative effects of these external forces lead to high stresses and strains on the engine components, such as the rotating turbine disks, which may eventually lead to a catastrophic failure if left undetected. The operating environment makes it difficult to use conventional strain gauges, therefore, non-contact strain measurement techniques is of interest to NASA and the turbine engine community. This presentation describes one such approach; the use of cross correlation analysis to measure strain experienced by the engine turbine disk with the goal of assessing potential faults and damage.

  8. Eddies off the Queen Charlotte Islands

    Science.gov (United States)

    2002-01-01

    The bright red, green, and turquoise patches to the west of British Columbia's Queen Charlotte Islands and Alaska's Alexander Archipelago highlight the presence of biological activity in the ocean. These colors indicate high concentrations of chlorophyll, the primary pigment found in phytoplankton. Notice that there are a number of eddies visible in the Pacific Ocean in this pseudo-color scene. The eddies are formed by strong outflow currents from rivers along North America's west coast that are rich in nutrients from the springtime snowmelt running off the mountains. This nutrient-rich water helps stimulate the phytoplankton blooms within the eddies. (For more details, read Tracking Eddies that Feed the Sea.) To the west of the eddies in the water, another type of eddy-this one in the atmosphere-forms the clouds into the counterclockwise spiral characteristic of a low pressure system in the Northern Hemisphere. (Click on the image above to see it at full resolution; or click to see the scene in true-color.) The snow-covered mountains of British Columbia are visible in the upper righthand corner of the image. This scene was constructed using SeaWiFS data collected on June 13, 2002. SeaWiFS image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  9. DIGITAL IMAGE CORRELATION FROM COMMERCIAL TO FOS SOFTWARE: A MATURE TECHNIQUE FOR FULL-FIELD DISPLACEMENT MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    V. Belloni

    2018-05-01

    Full Text Available In the last few decades, there has been a growing interest in studying non-contact methods for full-field displacement and strain measurement. Among such techniques, Digital Image Correlation (DIC has received particular attention, thanks to its ability to provide these information by comparing digital images of a sample surface before and after deformation. The method is now commonly adopted in the field of civil, mechanical and aerospace engineering and different companies and some research groups implemented 2D and 3D DIC software. In this work a review on DIC software status is given at first. Moreover, a free and open source 2D DIC software is presented, named py2DIC and developed in Python at the Geodesy and Geomatics Division of DICEA of the University of Rome “La Sapienza”; its potentialities were evaluated by processing the images captured during tensile tests performed in the Structural Engineering Lab of the University of Rome “La Sapienza” and comparing them to those obtained using the commercial software Vic-2D developed by Correlated Solutions Inc, USA. The agreement of these results at one hundredth of millimetre level demonstrate the possibility to use this open source software as a valuable 2D DIC tool to measure full-field displacements on the investigated sample surface.

  10. Nuclear techniques and cross-correlation methods for spectral analysis in two-phase flow measurements in mineral pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Luis E.B.; Salgado, Cesar M., E-mail: brandaos@ien.gov.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Divisao de Radiofarmacos; Sicilliano, Umberto C.C.S., E-mail: umberto.cassara@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Metalurgia

    2013-07-01

    In mineral industry is common to use water to transport pellets inside pipes. In these units, the correct measurement of flow (both solid and liquid phase) is important to guarantee a safe operation. Cross correlation flow meters are devices specially suited to be used in dual-phase flow and they are based on measure the transit time due the disturbances registered between two points, in our case gamma attenuation from radioactive sources. The emphasis of this work is the application of gamma transmission and scattering technique associated with spectral analysis methods to measure the flow of solid phase in a liquid fluid in side the pipe. The detectors and the sources are out side of the tube and are positioned 10.0 cm distant one from the other. The photons of transmission/scattering gamma radiation were registered, and across-correlation method was applied to measure the flow and spectral analysis was used to study the flow profile inside the pipe. (author)

  11. Eddy-current probe design

    International Nuclear Information System (INIS)

    Kincaid, T.G.; McCary, R.O.

    1983-01-01

    This paper describes theoretical and experimental work directed toward finding the optimum probe dimensions and operating frequency for eddy current detection of half-penny surface cracks in nonmagnetic conducting materials. The study applies to probes which excite an approximately uniform spatial field over the length of the crack at the surface of the material. In practical terms, this means that the probe is not smaller than the crack length in any of its critical dimensions. The optimization of a simple coil probe is first analyzed in detail. It is shown that signal-to-noise ratio and lift-off discrimination are maximized by a pancake coil with mean radius not greater than the crack length, operated at a frequency which gives a skin depth equal to the crack depth. The results obtained for the simple coil are then used as a basis for discussion of the design of coils with ferrite cores and shields, and for the design of recording head type probes

  12. Summary of the Effort to Use Active-induced Time Correlation Techniques to Measure the Enrichment of HEU

    Energy Technology Data Exchange (ETDEWEB)

    McConchie, Seth M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crye, Jason Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Pena, Kirsten [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Sword, Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mihalczo, John T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-30

    This document summarizes the effort to use active-induced time correlation techniques to measure the enrichment of bulk quantities of enriched uranium. In summary, these techniques use an external source to initiate fission chains, and the time distribution of the detected fission chain neutrons is sensitive to the fissile material enrichment. The number of neutrons emitted from a chain is driven by the multiplication of the item, and the enrichment is closely coupled to the multiplication of the item. As the enrichment increases (decreases), the multiplication increases (decreases) if the geometry is held constant. The time distribution of fission chain neutrons is a complex function of the enrichment and material configuration. The enrichment contributes to the probability of a subsequent fission in a chain via the likelihood of fissioning on an even-numbered isotope versus an odd-numbered isotope. The material configuration contributes to the same probability via solid angle effects for neutrons inducing subsequent fissions and the presence of any moderating material. To simplify the ability to accurately measure the enrichment, an associated particle imaging (API) D-T neutron generator and an array of plastic scintillators are used to simultaneously image the item and detect the fission chain neutrons. The image is used to significantly limit the space of enrichment and material configuration and enable the enrichment to be determined unambiguously.

  13. Progress of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting Radial Growth on a Rotating Disk

    Science.gov (United States)

    Clem, Michelle M.; Woike, Mark R.; Abdul-Aziz, Ali

    2014-01-01

    The Aeronautical Sciences Project under NASA's Fundamental Aeronautics Program is interested in the development of novel measurement technologies, such as optical surface measurements for the in situ health monitoring of critical constituents of the internal flow path. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. The present study, aims to further validate and develop an optical strain measurement technique to measure the radial growth and strain field of an already cracked disk, mimicking the geometry of a sub-scale turbine engine disk, under loaded conditions in the NASA Glenn Research Center's High Precision Rotordynamics Laboratory. The technique offers potential fault detection by imaging an applied high-contrast random speckle pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds (loaded conditions) induces an external load, resulting in a radial growth of the disk of approximately 50.0-µm in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be 'shifted'. The resulting particle displacements between the two images is measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. A random particle distribution is adhered onto the surface of the cracked disk and two bench top experiments are carried out to evaluate the technique's ability to measure the induced particle displacements. The disk is shifted manually using a translation stage equipped with a fine micrometer and a hotplate is used to induce thermal growth of the disk, causing the

  14. Testing techniques in nuclear, petroleum and metallurgic industries

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The nondestructive testing techniques by ultrasonic waves, eddy currents, acoustic emission used by Intercontrole (a CEA's affiliated firm in nuclear petrochemical, and engineering site measurements) are presented [fr

  15. DeepEddy : a simple deep architecture for mesoscale oceanic eddy detection in SAR images

    NARCIS (Netherlands)

    Huang, Dongmei; Du, Yanling; He, Qi; Song, Wei; Liotta, Antonio

    2017-01-01

    Automatic detection of mesoscale oceanic eddies is in great demand to monitor their dynamics which play a significant role in ocean current circulation and marine climate change. Traditional methods of eddies detection using remotely sensed data are usually based on physical parameters, geometrics,

  16. Study, design and manufacture eddy current probes for industry applications

    International Nuclear Information System (INIS)

    Nguyen Phuc; Nguyen Van Thuy; Vuong Binh Duong; Do Minh Duc; Trinh Dinh Truong; Tran Trong Duc; Do Tung Khanh; Dang Quang Trung

    2016-01-01

    This study is based on the studying, designing and manufacturing of eddy current probes for industry applications. The main tasks of this study include: i) Describes the overview and classification of eddy current probes (which can be classified into three categories based on the mode of operation: absolute eddy current probe, differential eddy current probe and reflect eddy current probe); ii) Describes the three methods of probe designing and manufacturing (including experimental, analytical and numerical designs); iii) Describes the designing and manufacturing of eddy current probes for industry applications, which based on experimental and analytical methods. Based on this study, we have successfully manufactured some current probes (including absolute eddy current probe, differential eddy current probe and reflect eddy current probe) for surface and tube inspections. (author)

  17. Visualization and Analysis of Wireless Sensor Network Data for Smart Civil Structure Applications Based On Spatial Correlation Technique

    Science.gov (United States)

    Chowdhry, Bhawani Shankar; White, Neil M.; Jeswani, Jai Kumar; Dayo, Khalil; Rathi, Manorma

    2009-07-01

    Disasters affecting infrastructure, such as the 2001 earthquakes in India, 2005 in Pakistan, 2008 in China and the 2004 tsunami in Asia, provide a common need for intelligent buildings and smart civil structures. Now, imagine massive reductions in time to get the infrastructure working again, realtime information on damage to buildings, massive reductions in cost and time to certify that structures are undamaged and can still be operated, reductions in the number of structures to be rebuilt (if they are known not to be damaged). Achieving these ideas would lead to huge, quantifiable, long-term savings to government and industry. Wireless sensor networks (WSNs) can be deployed in buildings to make any civil structure both smart and intelligent. WSNs have recently gained much attention in both public and research communities because they are expected to bring a new paradigm to the interaction between humans, environment, and machines. This paper presents the deployment of WSN nodes in the Top Quality Centralized Instrumentation Centre (TQCIC). We created an ad hoc networking application to collect real-time data sensed from the nodes that were randomly distributed throughout the building. If the sensors are relocated, then the application automatically reconfigures itself in the light of the new routing topology. WSNs are event-based systems that rely on the collective effort of several micro-sensor nodes, which are continuously observing a physical phenomenon. WSN applications require spatially dense sensor deployment in order to achieve satisfactory coverage. The degree of spatial correlation increases with the decreasing inter-node separation. Energy consumption is reduced dramatically by having only those sensor nodes with unique readings transmit their data. We report on an algorithm based on a spatial correlation technique that assures high QoS (in terms of SNR) of the network as well as proper utilization of energy, by suppressing redundant data transmission

  18. Development and Experimental Validation of Large Eddy Simulation Techniques for the Prediction of Combustion-Dynamic Process in Syngas Combustion: Characterization of Autoignition, Flashback, and Flame-Liftoff at Gas-Turbine Relevant Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ihme, Matthias [Univ. of Michigan, Ann Arbor, MI (United States); Driscoll, James [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-08-31

    The objective of this closely coordinated experimental and computational research effort is the development of simulation techniques for the prediction of combustion processes, relevant to the oxidation of syngas and high hydrogen content (HHC) fuels at gas-turbine relevant operating conditions. Specifically, the research goals are (i) the characterization of the sensitivity of syngas ignition processes to hydrodynamic processes and perturbations in temperature and mixture composition in rapid compression machines and ow-reactors and (ii) to conduct comprehensive experimental investigations in a swirl-stabilized gas turbine (GT) combustor under realistic high-pressure operating conditions in order (iii) to obtain fundamental understanding about mechanisms controlling unstable flame regimes in HHC-combustion.

  19. Eddy currents in pulsed field measurements

    International Nuclear Information System (INIS)

    Kuepferling, M.; Groessinger, R.; Wimmer, A.; Taraba, M.; Scholz, W.

    2002-01-01

    Full text: One problem of pulsed field magnetometry is an error in magnetization, which appears in measurements of conducting samples. This error is due to eddy currents induced by a time varying field. To allow predictions how eddy currents exert influence on the hysteresis loop, systematic experimental and theoretical studies of pulsed field measurements of metallic samples were performed. The theoretical studies include analytical calculations as well as numerical ones using a 2D finite element software. In the measurements three physical parameters have been varied: i) the conductivity of the sample by using two different materials, in this case technical Cu and Al ii) size and shape of the sample by using cylinders, spheres and cuboids iii) the pulse duration of the external field by changing the capacitor battery from 8mF ( =9.1ms) to 24mF ( =15.7ms). The time dependence of the external field corresponds with a pulsed damped harmonic oscillation with a maximum value of 5.2T. The samples were studied in the as cast state (after machining) as well as after heat treatment. Theoretical calculations showed not only good agreement with the absolute values of the measured eddy current m agnetization , they also gave an explanation of the shape of the eddy current hysteresis and the dependence of the eddy current 'magnetization' on parameters as pulse duration of the external field and conductivity of the sample. (author)

  20. Eddy Current, Magnetic Particle and Hardness Testing, Aviation Quality Control (Advanced): 9227.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This unit of instruction includes the principles of eddy current, magnetic particle and hardness testing; standards used for analyzing test results; techniques of operating equipment; interpretation of indications; advantages and limitations of these methods of testing; care and calibration of equipment; and safety and work precautions. Motion…

  1. Investigation of wake interaction using full-scale lidar measurements and large eddy simulation

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Troldborg, Niels

    2016-01-01

    dynamics flow solver, using large eddy simulation and fully turbulent inflow. The rotors are modelled using the actuator disc technique. A mutual validation of the computational fluid dynamics model with the measurements is conducted for a selected dataset, where wake interaction occurs. This validation...

  2. Interferenceless coded aperture correlation holography-a new technique for recording incoherent digital holograms without two-wave interference.

    Science.gov (United States)

    Vijayakumar, A; Rosen, Joseph

    2017-06-12

    Recording digital holograms without wave interference simplifies the optical systems, increases their power efficiency and avoids complicated aligning procedures. We propose and demonstrate a new technique of digital hologram acquisition without two-wave interference. Incoherent light emitted from an object propagates through a random-like coded phase mask and recorded directly without interference by a digital camera. In the training stage of the system, a point spread hologram (PSH) is first recorded by modulating the light diffracted from a point object by the coded phase masks. At least two different masks should be used to record two different intensity distributions at all possible axial locations. The various recorded patterns at every axial location are superposed in the computer to obtain a complex valued PSH library cataloged to its axial location. Following the training stage, an object is placed within the axial boundaries of the PSH library and the light diffracted from the object is once again modulated by the same phase masks. The intensity patterns are recorded and superposed exactly as the PSH to yield a complex hologram of the object. The object information at any particular plane is reconstructed by a cross-correlation between the complex valued hologram and the appropriate element of the PSH library. The characteristics and the performance of the proposed system were compared with an equivalent regular imaging system.

  3. Eddy current inspection of tubing; Inspeccion de tubos por corrientes de Foucault

    Energy Technology Data Exchange (ETDEWEB)

    Bauza, J L. R.; Herrero, J; Diaz, J

    1966-07-01

    The Experimental research work carried out to develop a Eddy current testing equipment is described. Search coils with ferrite or air cores were used and the obtained results are discussed. Valuable information was gained from a improved channel in which a direct measure of the defect and the reference signal phase difference is obtained. Artificial defect used to evaluate resolution and sensitivity were produced by electro-machining and mechanical means. Finned SAP tubing was tested in a routine basis with the described equipment and the results plotted. Basic and theoretical considerations on the Eddy current testing technique are given in the last section of this report. (Author)

  4. Crack detection with an eddy-current probe integrated into an endoscope

    International Nuclear Information System (INIS)

    Elfinger, F.X.

    1982-01-01

    Objective and quantitive crack detection in inaccessible machine internals is possible without dismantling the equipment through the combination of endoscopic and eddy-current techniques, whereby the endoscope is used both as an optical and a mechanical manipulator. Thus the availability of machinery can be increased and the overhaul costs lowered. The integrated endoscope/eddy-current probe should be utilised whenever normal endoscopic inspection indicates a possible crack location which cannot be assessed definitively through visual observation alone. Its use is also advantageous in monitoring crack propagation within a component. (orig.) [de

  5. Solitonlike solutions in loop current eddies

    Science.gov (United States)

    Nakamoto, Shoichiro

    1989-01-01

    The application of the nonlinear quasi-geostrophic equations to an isolated eddy in the western continental slope region in the Gulf of Mexico is examined for a two-layer ocean model with bottom topography. In the linear limit, solutions are topographic nondispersive waves. Form-preserving solutions, or solitons, have been found. The solution is shown to be a limiting form for a nonlinear dispersive system propagating northward along the topographic waveguide in the western continental slope region in the Gulf of Mexico. Using satellite-tracked drifter data, a linear relationship is found between the amplitude of the deduced stream function of the eddy and its observed translational velocity over the continental slope, which supports the hypothesis that some mesoscale eddies interacting with the continental slope behave as solitons.

  6. Lateral resolution of eddy current imaging

    International Nuclear Information System (INIS)

    Hassan, W.; Blodgett, M.; Nagy, P.B.

    2002-01-01

    Analytical, finite element simulation, and experimental methods were used to investigate the lateral resolution of eddy current microscopy. It was found that the lateral resolution of eddy current imaging is ultimately limited by the probe-coil geometry and dimensions, but both the inspection frequency and the phase angle can be used to optimize the resolution, to some degree, at the expense of sensitivity. Electric anisotropy exhibited by noncubic crystallographic classes of materials such as titanium alloys can play a very similar role in electromagnetic materials characterization of polycrystalline metals to that of elastic anisotropy in ultrasonic materials characterization. Our results demonstrate that eddy current microscopy can be enhanced via a high-resolution, small diameter probe-coil which delivers a unique materials characterization tool well suited for the evaluation of Ti alloys

  7. Anticyclonic eddy energy and pathways in the Algerian basin (1993-2007)

    Science.gov (United States)

    Pessini, Federica; Perilli, Angelo; Olita, Antonio

    2016-04-01

    use in the study area. This automated method allowed the investigation of mesoscale eddy variability using several years (1993-2007) of satellite altimetry observations. To verify the reliability of the technique, we compared the eddy pathways derived from the application of the modified Penven method with independent observations. Preliminary results suggest that AEs, moving anticlockwise within the sub-basin, complete as many as two or three laps, depending on their lifetime, following the Algerian Gyre path. We suppose that AEs acquire kinetic energy from the Algerian current, occasionally in sufficient magnitude to cause their detachment. This phenomenon mainly takes place near the Sardinian Channel. Eddies formed on the thermal front, called Frontal Anticyclonic Eddies (FAEs), remain localized in the northern part of the sub-basin and have lower energy and shorter life than AEs. They usually don't interact with AEs. Basic statistics on eddy trajectories and energy characteristics allow the evaluation of these mesoscale structures' relevance of on (sub-) basin circulation.

  8. Mechanical properties and eddy current testing of thermally aged Z3CN20.09M cast duplex stainless steel

    Science.gov (United States)

    Liu, Tonghua; Wang, Wei; Qiang, Wenjiang; Shu, Guogang

    2018-04-01

    To study the thermal aging embrittlement of Z3CN20.09M duplex stainless steel produced in China, accelerated thermal aging experiments were carried out at 380 °C up to 9000 h. Microhardness measurements, Charpy impact and eddy current tests were performed on aged samples to characterize their thermal aging embrittlement. The results showed that the signal amplitude of eddy current decreased with the increase in aging time. Two quantitative correlations of the eddy current signal amplitude with both the Charpy impact energy, and the Vickers microhardness of the ferrite phase are obtained. The study showed that eddy current testing could be used to non-destructively evaluate the thermal aging embrittlement of cast duplex stainless steels.

  9. Development of a diagnostic expert system for eddy current data analysis using applied artificial intelligence methods

    International Nuclear Information System (INIS)

    Upadhyaya, B.R.; Yan, W.; Henry, G.

    1999-01-01

    A diagnostic expert system that integrates database management methods, artificial neural networks, and decision-making using fuzzy logic has been developed for the automation of steam generator eddy current test (ECT) data analysis. The new system, known as EDDYAI, considers the following key issues: (1) digital eddy current test data calibration, compression, and representation; (2) development of robust neural networks with low probability of misclassification for flaw depth estimation; (3) flaw detection using fuzzy logic; (4) development of an expert system for database management, compilation of a trained neural network library, and a decision module; and (5) evaluation of the integrated approach using eddy current data. The implementation to field test data includes the selection of proper feature vectors for ECT data analysis, development of a methodology for large eddy current database management, artificial neural networks for flaw depth estimation, and a fuzzy logic decision algorithm for flaw detection. A large eddy current inspection database from the Electric Power Research Institute NDE Center is being utilized in this research towards the development of an expert system for steam generator tube diagnosis. The integration of ECT data pre-processing as part of the data management, fuzzy logic flaw detection technique, and tube defect parameter estimation using artificial neural networks are the fundamental contributions of this research. (orig.)

  10. Development of a diagnostic expert system for eddy current data analysis using applied artificial intelligence methods

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, B.R.; Yan, W. [Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering; Behravesh, M.M. [Electric Power Research Institute, Palo Alto, CA (United States); Henry, G. [EPRI NDE Center, Charlotte, NC (United States)

    1999-09-01

    A diagnostic expert system that integrates database management methods, artificial neural networks, and decision-making using fuzzy logic has been developed for the automation of steam generator eddy current test (ECT) data analysis. The new system, known as EDDYAI, considers the following key issues: (1) digital eddy current test data calibration, compression, and representation; (2) development of robust neural networks with low probability of misclassification for flaw depth estimation; (3) flaw detection using fuzzy logic; (4) development of an expert system for database management, compilation of a trained neural network library, and a decision module; and (5) evaluation of the integrated approach using eddy current data. The implementation to field test data includes the selection of proper feature vectors for ECT data analysis, development of a methodology for large eddy current database management, artificial neural networks for flaw depth estimation, and a fuzzy logic decision algorithm for flaw detection. A large eddy current inspection database from the Electric Power Research Institute NDE Center is being utilized in this research towards the development of an expert system for steam generator tube diagnosis. The integration of ECT data pre-processing as part of the data management, fuzzy logic flaw detection technique, and tube defect parameter estimation using artificial neural networks are the fundamental contributions of this research. (orig.)

  11. Transmit-receive eddy current probes

    International Nuclear Information System (INIS)

    Obrutsky, L.S.; Sullivan, S.P.; Cecco, V.S.

    1997-01-01

    In the last two decades, due to increased inspection demands, eddy current instrumentation has advanced from single-frequency, single-output instruments to multifrequency, computer-aided systems. This has significantly increased the scope of eddy current testing, but, unfortunately, it has also increased the cost and complexity of inspections. In addition, this approach has not always improved defect detectability or signal-to-noise. Most eddy current testing applications are still performed with impedance probes, which have well known limitations. However, recent research at AECL has led to improved eddy current inspections through the design and development of transmit-receive (T/R) probes. T/R eddy current probes, with laterally displaced transmit and receive coils, present a number of advantages over impedance probes. They have improved signal-to-noise ratio in the presence of variable lift-off compared to impedance probes. They have strong directional properties, permitting probe optimization for circumferential or axial crack detection, and possess good phase discrimination to surface defects. They can significantly increase the scope of eddy current testing permitting reliable detection and sizing of cracks in heat exchanger tubing as well as in welded areas of both ferritic and non-ferromagnetic components. This presentation will describe the operating principles of T/R probes with the help of computer-derived normalized voltage diagrams. We will discuss their directional properties and analyze the advantages of using single and multiple T/R probes over impedance probes for specific inspection cases. Current applications to surface and tube testing and some typical inspection results will be described. (author)

  12. Computer programs for the acquisition and analysis of eddy-current array probe data

    International Nuclear Information System (INIS)

    Pate, J.R.; Dodd, C.V.

    1996-07-01

    Objective of the Improved Eddy-Curent ISI (in-service inspection) for Steam Generators Tubing program is to upgrade and validate eddy-current inspections, including probes, instrumentation, and data processing techniques for ISI of new, used, and repaired steam generator tubes; to improve defect detection, classification and characterization as affected by diameter and thickness variations, denting, probe wobble, tube sheet, tube supports, copper and sludge deposits, even when defect types and other variables occur in combination; to transfer this advanced technology to NRC's mobile NDE laboratory and staff. This report documents computer programs that were developed for acquisition of eddy-current data from specially designed 16-coil array probes. Complete code as well as instructions for use are provided

  13. Characterisation of eddy current signals using different types of artificial neural networks

    International Nuclear Information System (INIS)

    Shyamsunder, M.T.; Rajagopalan, C.; Jayakumar, T.; Kalyanasundaram, P.; Baldev Raj; Ray, K.K.

    1996-01-01

    Eddy current testing is one of the important techniques in nondestructive testing. Automated characterisation of eddy current signals (ECS), either in the form of lissajous patterns (figure-of-eight) or individual voltage vs. time signals is an area of growing interest. This is particularly relevant in environments where the signal-to-noise ratio (SNR) of ECS are very poor. Intelligent, timely and precise interpretation of resulting data, is the key for improving the efficiency of NDT and E. A comprehensive study has been undertaken by the authors for the characterisation of ECS having poor SNR, using three types of artificial neural networks (ANNs). The types of ANNs used in this study are [a] the error-back propagation model, [b] the binary Hopfield model and [c] the Kohonen's self-organising maps model. Eddy current signals, acquired from different types of defects such as holes and notches on stainless steel type 316 sheets were used in this study. (author)

  14. Evaluation and field validation of Eddy-Current array probes for steam generator tube inspection

    International Nuclear Information System (INIS)

    Dodd, C.V.; Pate, J.R.

    1996-07-01

    The objective of the Improved Eddy-Current ISI for Steam Generator Tubing program is to upgrade and validate eddy-current inspections, including probes, instrumentation, and data processing techniques for inservice inspection of new, used, and repaired steam generator tubes; to improve defect detection, classification, and characterization as affected by diameter and thickness variations, denting, probe wobble, tube sheet, tube supports, copper and sludge deposits, even when defect types and other variables occur in combination; to transfer this advanced technology to NRC's mobile NDE laboratory and staff. This report describes the design of specialized high-speed 16-coil eddy-current array probes. Both pancake and reflection coils are considered. Test results from inspections using the probes in working steam generators are given. Computer programs developed for probe calculations are also supplied

  15. Assessment of a relaxed eddy accumulation for measurements of fluxes of biogenic volatile organic compounds: Study over arable crops and a mature beech forest

    DEFF Research Database (Denmark)

    Gallagher, M.W.; Clayborough, R.; Beswick, K.M.

    2000-01-01

    A relaxed eddy accumulation (REA) system, based on the design by Beverland et al. (Journal of Geophysics Research 101 (D17) 22, 807-22, 815), for the measurement of biogenic VOC species was evaluated by intercomparison with an eddy correlation CO2 flux system over a mature deciduous beech canopy...... (Fagus Sylvatica) during the FOREXNOX program. Measurements from a site where winter wheat and barley (Hordeum Vulgare ann Triticum Aestivum) were being harvested are also presented. The system was inter-compared with two different eddy correlation systems for measuring CO2 fluxes. Good results were...

  16. About Eddy Currents in Induction Melting Processes

    Directory of Open Access Journals (Sweden)

    Gafiţa Nicolae-Bogdan

    2008-05-01

    Full Text Available In this paper we present a method forcomputing the eddy currents in induction meltingprocesses for non-ferrous alloys. We take intoconsideration the situation when only the crucible ismoving, inside the coils. This fact makes differentialcomputation methods to be hard to apply, because isnecessary to generate a new mesh and a new systemmatrix for every for every new position of the cruciblerelated to the coils. Integral methods cancel thisdrawback because the mesh is generated only for thedomains with eddy currents. For integral methods, themesh and the inductance matrix remain unchangedduring the movement of the crucible; only the free termsof the equation system will change.

  17. Eddy current standards - Cracks versus notches

    Science.gov (United States)

    Hagemaier, D. J.; Collingwood, M. R.; Nguyen, K. H.

    1992-10-01

    Eddy current tests aimed at evaluating cracks and electron-discharge machined (EDM) notches in 7075-T6 aluminum specimens are described. A comparison of the shape and amplitude of recordings made from both transverse and longitudinal scans of small EDM notches and fatigue cracks showd almost identical results. The signal amplitude and phase angle increased with an increase of EDM notch and crak size. It is concluded that equivalent eddy current results obtained from similar-size surface cracks and notches in aluminum can be used to establish a desired sensitivity level for inspection.

  18. Eddy current inspection of mildly ferromagnetic tubing

    International Nuclear Information System (INIS)

    Mayo, W.R.; Carter, J.R.

    1984-02-01

    The past decade has seen the development of eddy current probes for inspection of the mildly ferro-magnetic alloy Monel 400. Due to the rapid advances in permanent magnet technology similar probes have been upgraded to magnetically saturate, and hence inspect, the duplex stainless steel Sandvik 3RE60, which has saturation induction more than twice that of Monel 400. Prototypes of these probes have been tested in three ways: saturation capability, quality of typical eddy current data, and ability to eliminate permeability induced signals. Successful laboratory testing, potential applications, and limitations of these type probes are discussed

  19. Corrosion Assessment of Steel Bars Used in Reinforced Concrete Structures by Means of Eddy Current Testing

    Science.gov (United States)

    de Alcantara, Naasson P.; da Silva, Felipe M.; Guimarães, Mateus T.; Pereira, Matheus D.

    2015-01-01

    This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT) to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works. PMID:26712754

  20. Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling

    Directory of Open Access Journals (Sweden)

    A. Budishchev

    2014-09-01

    Full Text Available Most plot-scale methane emission models – of which many have been developed in the recent past – are validated using data collected with the closed-chamber technique. This method, however, suffers from a low spatial representativeness and a poor temporal resolution. Also, during a chamber-flux measurement the air within a chamber is separated from the ambient atmosphere, which negates the influence of wind on emissions. Additionally, some methane models are validated by upscaling fluxes based on the area-weighted averages of modelled fluxes, and by comparing those to the eddy covariance (EC flux. This technique is rather inaccurate, as the area of upscaling might be different from the EC tower footprint, therefore introducing significant mismatch. In this study, we present an approach to validate plot-scale methane models with EC observations using the footprint-weighted average method. Our results show that the fluxes obtained by the footprint-weighted average method are of the same magnitude as the EC flux. More importantly, the temporal dynamics of the EC flux on a daily timescale are also captured (r2 = 0.7. In contrast, using the area-weighted average method yielded a low (r2 = 0.14 correlation with the EC measurements. This shows that the footprint-weighted average method is preferable when validating methane emission models with EC fluxes for areas with a heterogeneous and irregular vegetation pattern.

  1. Eddy current characterization of small cracks using least square support vector machine

    Science.gov (United States)

    Chelabi, M.; Hacib, T.; Le Bihan, Y.; Ikhlef, N.; Boughedda, H.; Mekideche, M. R.

    2016-04-01

    Eddy current (EC) sensors are used for non-destructive testing since they are able to probe conductive materials. Despite being a conventional technique for defect detection and localization, the main weakness of this technique is that defect characterization, of the exact determination of the shape and dimension, is still a question to be answered. In this work, we demonstrate the capability of small crack sizing using signals acquired from an EC sensor. We report our effort to develop a systematic approach to estimate the size of rectangular and thin defects (length and depth) in a conductive plate. The achieved approach by the novel combination of a finite element method (FEM) with a statistical learning method is called least square support vector machines (LS-SVM). First, we use the FEM to design the forward problem. Next, an algorithm is used to find an adaptive database. Finally, the LS-SVM is used to solve the inverse problems, creating polynomial functions able to approximate the correlation between the crack dimension and the signal picked up from the EC sensor. Several methods are used to find the parameters of the LS-SVM. In this study, the particle swarm optimization (PSO) and genetic algorithm (GA) are proposed for tuning the LS-SVM. The results of the design and the inversions were compared to both simulated and experimental data, with accuracy experimentally verified. These suggested results prove the applicability of the presented approach.

  2. Corrosion Assessment of Steel Bars Used in Reinforced Concrete Structures by Means of Eddy Current Testing

    Directory of Open Access Journals (Sweden)

    Naasson P. de Alcantara

    2015-12-01

    Full Text Available This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works.

  3. The eddy kinetic energy budget in the Red Sea

    KAUST Repository

    Zhan, Peng; Subramanian, Aneesh C.; Yao, Fengchao; Kartadikaria, Aditya R.; Guo, Daquan; Hoteit, Ibrahim

    2016-01-01

    The budget of eddy kinetic energy (EKE) in the Red Sea, including the sources, redistributions and sink, is examined using a high-resolution eddy-resolving ocean circulation model. A pronounced seasonally varying EKE is identified, with its maximum

  4. Visualization and analysis of eddies in a global ocean simulation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Sean J [Los Alamos National Laboratory; Hecht, Matthew W [Los Alamos National Laboratory; Petersen, Mark [Los Alamos National Laboratory; Strelitz, Richard [Los Alamos National Laboratory; Maltrud, Mathew E [Los Alamos National Laboratory; Ahrens, James P [Los Alamos National Laboratory; Hlawitschka, Mario [UC DAVIS; Hamann, Bernd [UC DAVIS

    2010-10-15

    Eddies at a scale of approximately one hundred kilometers have been shown to be surprisingly important to understanding large-scale transport of heat and nutrients in the ocean. Due to difficulties in observing the ocean directly, the behavior of eddies below the surface is not very well understood. To fill this gap, we employ a high-resolution simulation of the ocean developed at Los Alamos National Laboratory. Using large-scale parallel visualization and analysis tools, we produce three-dimensional images of ocean eddies, and also generate a census of eddy distribution and shape averaged over multiple simulation time steps, resulting in a world map of eddy characteristics. As expected from observational studies, our census reveals a higher concentration of eddies at the mid-latitudes than the equator. Our analysis further shows that mid-latitude eddies are thicker, within a range of 1000-2000m, while equatorial eddies are less than 100m thick.

  5. Davisson-Germer Prize in Atomic or Surface Physics: The COLTRIMS multi-particle imaging technique-new Insight into the World of Correlation

    Science.gov (United States)

    Schmidt-Bocking, Horst

    2008-05-01

    The correlated many-particle dynamics in Coulombic systems, which is one of the unsolved fundamental problems in AMO-physics, can now be experimentally approached with so far unprecedented completeness and precision. The recent development of the COLTRIMS technique (COLd Target Recoil Ion Momentum Spectroscopy) provides a coincident multi-fragment imaging technique for eV and sub-eV fragment detection. In its completeness it is as powerful as the bubble chamber in high energy physics. In recent benchmark experiments quasi snapshots (duration as short as an atto-sec) of the correlated dynamics between electrons and nuclei has been made for atomic and molecular objects. This new imaging technique has opened a powerful observation window into the hidden world of many-particle dynamics. Recent multiple-ionization studies will be presented and the observation of correlated electron pairs will be discussed.

  6. An Extensible Processing Framework for Eddy-covariance Data

    Science.gov (United States)

    Durden, D.; Fox, A. M.; Metzger, S.; Sturtevant, C.; Durden, N. P.; Luo, H.

    2016-12-01

    The evolution of large data collecting networks has not only led to an increase of available information, but also in the complexity of analyzing the observations. Timely dissemination of readily usable data products necessitates a streaming processing framework that is both automatable and flexible. Tower networks, such as ICOS, Ameriflux, and NEON, exemplify this issue by requiring large amounts of data to be processed from dispersed measurement sites. Eddy-covariance data from across the NEON network are expected to amount to 100 Gigabytes per day. The complexity of the algorithmic processing necessary to produce high-quality data products together with the continued development of new analysis techniques led to the development of a modular R-package, eddy4R. This allows algorithms provided by NEON and the larger community to be deployed in streaming processing, and to be used by community members alike. In order to control the processing environment, provide a proficient parallel processing structure, and certify dependencies are available during processing, we chose Docker as our "Development and Operations" (DevOps) platform. The Docker framework allows our processing algorithms to be developed, maintained and deployed at scale. Additionally, the eddy4R-Docker framework fosters community use and extensibility via pre-built Docker images and the Github distributed version control system. The capability to process large data sets is reliant upon efficient input and output of data, data compressibility to reduce compute resource loads, and the ability to easily package metadata. The Hierarchical Data Format (HDF5) is a file format that can meet these needs. A NEON standard HDF5 file structure and metadata attributes allow users to explore larger data sets in an intuitive "directory-like" structure adopting the NEON data product naming conventions.

  7. Determination of linear defect depths from eddy currents disturbances

    Science.gov (United States)

    Ramos, Helena Geirinhas; Rocha, Tiago; Pasadas, Dário; Ribeiro, Artur Lopes

    2014-02-01

    One of the still open problems in the inspection research concerns the determination of the maximum depth to which a surface defect goes. Eddy current testing being one of the most sensitive well established inspection methods, able to detect and characterize different type of defects in conductive materials, is an adequate technique to solve this problem. This paper reports a study concerning the disturbances in the magnetic field and in the lines of current due to a machined linear defect having different depths in order to extract relevant information that allows the determination of the defect characteristics. The image of the eddy currents (EC) is paramount to understand the physical phenomena involved. The EC images for this study are generated using a commercial finite element model (FLUX). The excitation used produces a uniform magnetic field on the plate under test in the absence of defects and the disturbances due to the defects are compared with those obtained from experimental measurements. In order to increase the limited penetration depth of the method giant magnetoresistors (GMR) are used to lower the working frequency. The geometry of the excitation planar coil produces a uniform magnetic field on an area of around the GMR sensor, inducing a uniform eddy current distribution on the plate. In the presence of defects in the material surface, the lines of currents inside the material are deviated from their uniform direction and the magnetic field produced by these currents is sensed by the GMR sensor. Besides the theoretical study of the electromagnetic system, the paper describes the experiments that have been carried out to support the theory and conclusions are drawn for cracks having different depths.

  8. Measurement of heat and momentum eddy diffusivities in recirculating LMFBR outlet plenum flows

    International Nuclear Information System (INIS)

    Manno, V.P.; Golay, M.W.

    1978-06-01

    An optical technique has been developed for the measurement of the eddy diffusivity of heat in a transparent flowing medium. The method uses a combination of two established measurement tools: a Mach-Zehnder interferometer for the monitoring of turbulently fluctuating temperature and a Laser Doppler Anemometer (LDA) for the measurement of turbulent velocity fluctuations. The technique is applied to the investigation of flow fields characteristic of the LMFBR outlet plenum. The study is accomplished using air as the working fluid in a small scale Plexiglas test section. Lows are introduced into both the 1 / 15 scale FFTF outlet plenum and the 3 / 80 scale CRBR geometry plenum at inlet Reynolds numbers of 22,000. Measurements of the eddy diffusivity of heat and the eddy diffusivity of momentum are performed at a total of 11 measurement stations. Significant differences of the turbulence parameters are found between the two geometries, and the higher chimney structure of the CRBR case is found to be the major cause of the distinction. Spectral intensity studies of the fluctuating electronic analog signals of velocity and temperature are also performed. Error analysis of the overall technique indicates an experimental error of 10% in the determination of the eddy diffusivity of heat and 6% in the evaluation of turbulent momentum viscosity. In general it is seen that the turbulence in the cases observed is not isotropic, and use of isotropic turbulent heat and momentum diffusivities in transport modelling would not be a valid procedure

  9. 76 FR 59394 - Big Eddy-Knight Transmission Project

    Science.gov (United States)

    2011-09-26

    ... DEPARTMENT OF ENERGY Bonneville Power Administration Big Eddy-Knight Transmission Project AGENCY... Eddy-Knight Transmission Project in Wasco County, Oregon and Klickitat County, Washington. Construction of the Big Eddy-Knight Transmission Project will accommodate long-term firm transmission requests...

  10. Eddy properties in the Southern California Current System

    Science.gov (United States)

    Chenillat, Fanny; Franks, Peter J. S.; Capet, Xavier; Rivière, Pascal; Grima, Nicolas; Blanke, Bruno; Combes, Vincent

    2018-05-01

    The California Current System (CCS) is an eastern boundary upwelling system characterized by strong eddies that are often generated at the coast. These eddies contribute to intense, long-distance cross-shelf transport of upwelled water with enhanced biological activity. However, the mechanisms of formation of such coastal eddies, and more importantly their capacity to trap and transport tracers, are poorly understood. Their unpredictability and strong dynamics leave us with an incomplete picture of the physical and biological processes at work, their effects on coastal export, lateral water exchange among eddies and their surrounding waters, and how long and how far these eddies remain coherent structures. Focusing our analysis on the southern part of the CCS, we find a predominance of cyclonic eddies, with a 25-km radius and a SSH amplitude of 6 cm. They are formed near shore and travel slightly northwest offshore for 190 days at 2 km day-1. We then study one particular, representative cyclonic eddy using a combined Lagrangian and Eulerian numerical approach to characterize its kinematics. Formed near shore, this eddy trapped a core made up of 67% California Current waters and 33% California Undercurrent waters. This core was surrounded by other waters while the eddy detached from the coast, leaving the oldest waters at the eddy's core and the younger waters toward the edge. The eddy traveled several months as a coherent structure, with only limited lateral exchange within the eddy.

  11. Large Eddy Simulation for Incompressible Flows An Introduction

    CERN Document Server

    Sagaut, P

    2005-01-01

    The first and most exhaustive work of its kind devoted entirely to the subject, Large Eddy Simulation presents a comprehensive account and a unified view of this young but very rich discipline. LES is the only efficient technique for approaching high Reynolds numbers when simulating industrial, natural or experimental configurations. The author concentrates on incompressible fluids and chooses his topics in treating with care both the mathematical ideas and their applications. The book addresses researchers as well as graduate students and engineers. The second edition was a greatly enriched version motivated both by the increasing theoretical interest in LES and the increasing number of applications. Two entirely new chapters were devoted to the coupling of LES with multiresolution multidomain techniques and to the new hybrid approaches that relate the LES procedures to the classical statistical methods based on the Reynolds-Averaged Navier-Stokes equations. This 3rd edition adds various sections to the text...

  12. Large eddy simulation of vortex breakdown behind a delta wing

    International Nuclear Information System (INIS)

    Mary, I.

    2003-01-01

    A large eddy simulation (LES) of a turbulent flow past a 70 deg. sweep angle delta wing is performed and compared with wind tunnel experiments. The angle of attack and the Reynolds number based on the root chord are equal to 27 deg. and 1.6x10 6 , respectively. Due to the high value of the Reynolds number and the three-dimensional geometry, the mesh resolution usually required by LES cannot be reached. Therefore a local mesh refinement technique based on semi-structured grids is proposed, whereas different wall functions are assessed in this paper. The goal is to evaluate if these techniques are sufficient to provide an accurate solution of such flow on available supercomputers. An implicit Miles model is retained for the subgrid scale (SGS) modelling because the resolution is too coarse to take advantage of more sophisticated SGS models. The solution sensitivity to grid refinement in the streamwise and wall normal direction is investigated

  13. Cycloidal meandering of a mesoscale anticyclonic eddy

    Science.gov (United States)

    Kizner, Ziv; Shteinbuch-Fridman, Biana; Makarov, Viacheslav; Rabinovich, Michael

    2017-08-01

    By applying a theoretical approach, we propose a hypothetical scenario that might explain some features of the movement of a long-lived mesoscale anticyclone observed during 1990 in the Bay of Biscay [R. D. Pingree and B. Le Cann, "Three anticyclonic slope water oceanic eddies (SWODDIES) in the southern Bay of Biscay in 1990," Deep-Sea Res., Part A 39, 1147 (1992)]. In the remote-sensing infrared images, at the initial stage of observations, the anticyclone was accompanied by two cyclonic eddies, so the entire structure appeared as a tripole. However, at later stages, only the anticyclone was seen in the images, traveling generally west. Unusual for an individual eddy were the high speed of its motion (relative to the expected planetary beta-drift) and the presence of almost cycloidal meanders in its trajectory. Although surface satellites seem to have quickly disappeared, we hypothesize that subsurface satellites continued to exist, and the coherence of the three vortices persisted for a long time. A significant perturbation of the central symmetry in the mutual arrangement of three eddies constituting a tripole can make reasonably fast cycloidal drift possible. This hypothesis is tested with two-layer contour-dynamics f-plane simulations and with finite-difference beta-plane simulations. In the latter case, the interplay of the planetary beta-effect and that due to the sloping bottom is considered.

  14. A probe for Eddy current inspection devices

    International Nuclear Information System (INIS)

    1974-01-01

    The invention relates to a surface probe for Eddy current inspection devices. According to the invention, said probe comprises two magnetic core windings, with their axes in parallel relationship and at right angles to the surface of the part to be inspected. This can be applied to the nondestructive inspection of reactor components [fr

  15. Eddy current testing of heat exchangers tubes

    International Nuclear Information System (INIS)

    Gouez, J.F.; Rieusset, A.; Groix, F.

    An automatic system for Eddy Current testing of heat exchangers tubes of warships was developed. The advantages are an exposure of the controller limited at the time required to put in place the system and a reduced time of control [fr

  16. Wind changes above warm Agulhas Current eddies

    CSIR Research Space (South Africa)

    Roualt, M

    2016-10-01

    Full Text Available Sea-surface temperature (SST), altimetry derived sea-level anomalies (SLA) and surface current are used south of the Agulhas Current to identify warm core mesoscale ocean eddies presenting a distinct SST perturbation superior to 1(supo...

  17. Oceanic eddies in synthetic aperture radar images

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2000) can be carried out in two different ways. The first one is ..... mushroom-like currents forming composite multi- .... eddies. Combination of SAR, IR and color data will ... Fu L-L and Holt B 1982 Seasat views oceans and sea ice with.

  18. Detached Eddy Simulations of Hypersonic Transition

    Science.gov (United States)

    Yoon, S.; Barnhardt, M.; Candler, G.

    2010-01-01

    This slide presentation reviews the use of Detached Eddy Simulation (DES) of hypersonic transistion. The objective of the study was to investigate the feasibility of using CFD in general, DES in particular, for prediction of roughness-induced boundary layer transition to turbulence and the resulting increase in heat transfer.

  19. Regularization modeling for large-eddy simulation

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Holm, D.D.

    2003-01-01

    A new modeling approach for large-eddy simulation (LES) is obtained by combining a "regularization principle" with an explicit filter and its inversion. This regularization approach allows a systematic derivation of the implied subgrid model, which resolves the closure problem. The central role of

  20. IEDA [Intelligent Eddy Current Data Analysis] helps make sense of eddy current data [steam generators

    International Nuclear Information System (INIS)

    Clark, R.

    1989-01-01

    The increasing sophistication of eddy current signal interpretation in steam generator tubing has improved capabilities, but has also made the process of analysis more complex and time consuming. Westinghouse has developed an intelligent computerised tool - the IEDA (Intelligent Eddy Current Data Analysis) system, to lighten the load on analysts. Since 1985, 44 plants have been inspected with IEDA, representing over 400,000 tubes. The system has provided a repeatability and a consistency not achieved by human operators. (U.K.)

  1. Overview of frequency bandwidth determination techniques of useful signal in case of leaks detection by correlation method

    International Nuclear Information System (INIS)

    Faerman, V A; Avramchuk, V S; Luneva, E E

    2014-01-01

    In this paper an overview of useful signal detection methods on the background of intense noise and limits determination methods of useful signal is presented. The following features are considered: peculiarities of usage of correlation analysis, cross-amplitude spectrum, coherence function, cross-phase spectrum, time-frequency correlation function in case of frequency limits determination as well as leaks detection in pipelines. The possibility of using time-frequency correlation function for solving above named issues is described. Time- frequency correlation function provides information about the signals correlation for each of the investigated frequency bands. Data about location of peaks on the surface plot of a time- frequency correlation function allows making an assumption about the spectral composition of useful signal and its frequency boundaries

  2. Mesoscale Eddies in the Northwestern Pacific Ocean: Three-Dimensional Eddy Structures and Heat/Salt Transports

    Science.gov (United States)

    Dong, Di; Brandt, Peter; Chang, Ping; Schütte, Florian; Yang, Xiaofeng; Yan, Jinhui; Zeng, Jisheng

    2017-12-01

    The region encompassing the Kuroshio Extension (KE) in the Northwestern Pacific Ocean (25°N-45°N and 130°E-180°E) is one of the most eddy-energetic regions of the global ocean. The three-dimensional structures and transports of mesoscale eddies in this region are comprehensively investigated by combined use of satellite data and Argo profiles. With the allocation of Argo profiles inside detected eddies, the spatial variations of structures of eddy temperature and salinity anomalies are analyzed. The results show that eddies predominantly have subsurface (near-surface) intensified temperature and salinity anomalies south (north) of the KE jet, which is related to different background stratifications between these regions. A new method based on eddy trajectories and the inferred three-dimensional eddy structures is proposed to estimate heat and salt transports by eddy movements in a Lagrangian framework. Spatial distributions of eddy transports are presented over the vicinity of the KE for the first time. The magnitude of eddy-induced meridional heat (freshwater volume) transport is on the order of 0.01 PW (103 m3/s). The eddy heat transport divergence results in an oceanic heat loss south and heat gain north of the KE, thereby reinforcing and counteracting the oceanic heat loss from air-sea fluxes south and north of the KE jet, respectively. It also suggests a poleward heat transport across the KE jet due to eddy propagation.

  3. Wind Forced Variability in Eddy Formation, Eddy Shedding, and the Separation of the East Australian Current

    Science.gov (United States)

    Bull, Christopher Y. S.; Kiss, Andrew E.; Jourdain, Nicolas C.; England, Matthew H.; van Sebille, Erik

    2017-12-01

    The East Australian Current (EAC), like many other subtropical western boundary currents, is believed to be penetrating further poleward in recent decades. Previous observational and model studies have used steady state dynamics to relate changes in the westerly winds to changes in the separation behavior of the EAC. As yet, little work has been undertaken on the impact of forcing variability on the EAC and Tasman Sea circulation. Here using an eddy-permitting regional ocean model, we present a suite of simulations forced by the same time-mean fields, but with different atmospheric and remote ocean variability. These eddy-permitting results demonstrate the nonlinear response of the EAC to variable, nonstationary inhomogeneous forcing. These simulations show an EAC with high intrinsic variability and stochastic eddy shedding. We show that wind stress variability on time scales shorter than 56 days leads to increases in eddy shedding rates and southward eddy propagation, producing an increased transport and southward reach of the mean EAC extension. We adopt an energetics framework that shows the EAC extension changes to be coincident with an increase in offshore, upstream eddy variance (via increased barotropic instability) and increase in subsurface mean kinetic energy along the length of the EAC. The response of EAC separation to regional variable wind stress has important implications for both past and future climate change studies.

  4. Surface and near surface defect detection in thick copper EB-welds using eddy current testing

    International Nuclear Information System (INIS)

    Pitkaenen, J.; Lipponen, A.

    2010-01-01

    The surface inspection of thick copper electron beam (EB) welds plays an important role in the acceptance of nuclear fuel disposal. The main reasons to inspect these components are related to potential manufacturing and handling defects. In this work the data acquisition software, visualising tools for eddy current (EC) measurements and eddy current sensors were developed for detection of unwanted defects. The eddy current equipment was manufactured by IZFP and the visualising software in active co-operation with Posiva and IZFP for the inspections. The inspection procedure was produced during the development of the inspection techniques. The inspection method development aims to qualify the method for surface and near surface defect detection and sizing according to ENIQ. The study includes technical justification to be carried out, and compilation of a defect catalogue and experience from measurements within the Posiva's research on issues related to manufacturing. The depth of penetration in copper components in eddy current testing is rather small. To detect surface breaking defects the eddy current inspection is a good solution. A simple approach was adopted using two techniques: higher frequency was used to detect surface defects and to determine the dimensions of the defects except depth, lower frequency was used to detect defects having a ligament and for sizing of deeper surface breaking defects. The higher frequency was 30 kHz and the lower frequency was 200 Hz. The higher frequency probes were absolute bobbing coils and lower frequency probes combined transmitter - several receiver coils. To evaluate both methods, calibration blocks were manufactured by FNS for weld inspections. These calibration specimens mainly consisted of electron discharge machined notches and holes of varying shapes, lengths and diameters in the range of 1 mm to 20 mm of depth. Also one copper lid specimen with 152 defects was manufactured and used for evaluation of weld inspection

  5. In-service examination of IHX tubing with eddy current NDT equipment

    International Nuclear Information System (INIS)

    Brown, R.L.

    1972-01-01

    Single and multiple frequency eddy current (ET) nondestructive testing (NDT) techniques and equipment were investigated for in-service inspection of sodium-contaminated intermediate heat exchanger (IHX) tubing. A four frequency technique, demonstrated in the laboratory, was relatively insensitive to signals caused by probe motion, tube support plates, and residual sodium on the outer surface of the tubes. No method was found to avoid the signals from residual sodium on the inside surfaces of the tube. (U.S.)

  6. Fast-GPU-PCC: A GPU-Based Technique to Compute Pairwise Pearson's Correlation Coefficients for Time Series Data-fMRI Study.

    Science.gov (United States)

    Eslami, Taban; Saeed, Fahad

    2018-04-20

    Functional magnetic resonance imaging (fMRI) is a non-invasive brain imaging technique, which has been regularly used for studying brain’s functional activities in the past few years. A very well-used measure for capturing functional associations in brain is Pearson’s correlation coefficient. Pearson’s correlation is widely used for constructing functional network and studying dynamic functional connectivity of the brain. These are useful measures for understanding the effects of brain disorders on connectivities among brain regions. The fMRI scanners produce huge number of voxels and using traditional central processing unit (CPU)-based techniques for computing pairwise correlations is very time consuming especially when large number of subjects are being studied. In this paper, we propose a graphics processing unit (GPU)-based algorithm called Fast-GPU-PCC for computing pairwise Pearson’s correlation coefficient. Based on the symmetric property of Pearson’s correlation, this approach returns N ( N − 1 ) / 2 correlation coefficients located at strictly upper triangle part of the correlation matrix. Storing correlations in a one-dimensional array with the order as proposed in this paper is useful for further usage. Our experiments on real and synthetic fMRI data for different number of voxels and varying length of time series show that the proposed approach outperformed state of the art GPU-based techniques as well as the sequential CPU-based versions. We show that Fast-GPU-PCC runs 62 times faster than CPU-based version and about 2 to 3 times faster than two other state of the art GPU-based methods.

  7. Eddy-induced salinity pattern in the North Pacific

    Science.gov (United States)

    Abe, H.; Ebuchi, N.; Ueno, H.; Ishiyama, H.; Matsumura, Y.

    2017-12-01

    This research examines spatio-temporal behavior of sea surface salinity (SSS) after intense rainfall events using observed data from Aquarius. Aquarius SSS in the North Pacific reveals one notable event in which SSS is locally freshened by intense rainfall. Although SSS pattern shortly after the rainfall reflects atmospheric pattern, its final form reflects ocean dynamic structure; an anticyclonic eddy. Since this anticyclonic eddy was located at SSS front created by precipitation, this eddy stirs the water in a clockwise direction. This eddy stirring was visible for several months. It is expected horizontal transport by mesoscale eddies would play significant role in determining upper ocean salinity structure.

  8. Eddy current imaging. Simplifying the direct problem. Analysis of a 2D case with formulations

    International Nuclear Information System (INIS)

    Spineanu, A.; Zorgati, R.

    1995-01-01

    Eddy current non-destructive testing is used by EDF to detect faults affecting conductive objects such as steam generator tubes. A new technique, known as eddy current imaging, is being developed to facilitate diagnosis in this context. The first stage in this work, discussed in the present paper, consists in solving the direct problem. This entails determining the measurable quantities, on the basis of a thorough knowledge of the material considered. This was done by formulating the direct problem in terms of eddy currents in general 3D geometry context, applying distribution theory and Maxwell equations. Since no direct problem code was available we resorted to simplified situations. Taking care not to interfere with previous developments or those to be attempted in an inversion context, we studied the case of a flaw affecting a 2D structure, illuminated by a plane wave type probe. For this configuration, we studied the exact model and compared results with those of a linearized simplified model. This study emphasizes the ill-posed situation of the eddy current inverse problem related with the severe electromagnetic field attenuation. This means that regularization of the inverse problem, although absolutely necessary, will not be sufficient. Owing to the simplicity of the models available and implemented during the inversion process, processing real data would not yet be possible. We must first focus all our efforts on the direct 3 D problem, in conformity with the requirements of the inverse procedure ad describing a realistic eddy current NDT situation. At the same time, consideration should be given to the design of a specific probe customized for eddy current imaging. (authors). 9 refs., 5 figs., 3 appends

  9. Coupled circuit numerical analysis of eddy currents in an open MRI system

    Science.gov (United States)

    Akram, Md. Shahadat Hossain; Terada, Yasuhiko; Keiichiro, Ishi; Kose, Katsumi

    2014-08-01

    We performed a new coupled circuit numerical simulation of eddy currents in an open compact magnetic resonance imaging (MRI) system. Following the coupled circuit approach, the conducting structures were divided into subdomains along the length (or width) and the thickness, and by implementing coupled circuit concepts we have simulated transient responses of eddy currents for subdomains in different locations. We implemented the Eigen matrix technique to solve the network of coupled differential equations to speed up our simulation program. On the other hand, to compute the coupling relations between the biplanar gradient coil and any other conducting structure, we implemented the solid angle form of Ampere’s law. We have also calculated the solid angle for three dimensions to compute inductive couplings in any subdomain of the conducting structures. Details of the temporal and spatial distribution of the eddy currents were then implemented in the secondary magnetic field calculation by the Biot-Savart law. In a desktop computer (Programming platform: Wolfram Mathematica 8.0®, Processor: Intel(R) Core(TM)2 Duo E7500 @ 2.93 GHz; OS: Windows 7 Professional; Memory (RAM): 4.00 GB), it took less than 3 min to simulate the entire calculation of eddy currents and fields, and approximately 6 min for X-gradient coil. The results are given in the time-space domain for both the direct and the cross-terms of the eddy current magnetic fields generated by the Z-gradient coil. We have also conducted free induction decay (FID) experiments of eddy fields using a nuclear magnetic resonance (NMR) probe to verify our simulation results. The simulation results were found to be in good agreement with the experimental results. In this study we have also conducted simulations for transient and spatial responses of secondary magnetic field induced by X-gradient coil. Our approach is fast and has much less computational complexity than the conventional electromagnetic numerical

  10. Ultrasound and Eddy-Current inspection of longitudinal shroud welds in the Santa Maria de Garona Nuclear Power Plant

    International Nuclear Information System (INIS)

    Elorza, J.; Fernandez, F.

    1998-01-01

    This is the first time that this kind of inspection has been performed in the world with the Ultrasound (UT) and Eddy-Current (EC) techniques. The inspection, performed during the 19th refueling outage in March 1997, using the MIDAS acquisition and analysis system, which allows joint UT and EC inspection. MIDAS is the new inspection system developed by Tecnatom for vessel internals that integrates acquisition and evaluation of the data obtained from the use of Ultrasound and Eddy-Current inspection techniques. The inspection was completed in less than the scheduled time, and covered the programmed volumes without any noteworthy incidents. (Author)

  11. Ethene, propene, butene and isoprene emissions from a ponderosa pine forest measured by relaxed eddy accumulation

    Science.gov (United States)

    Rhew, Robert C.; Deventer, Malte Julian; Turnipseed, Andrew A.; Warneke, Carsten; Ortega, John; Shen, Steve; Martinez, Luis; Koss, Abigail; Lerner, Brian M.; Gilman, Jessica B.; Smith, James N.; Guenther, Alex B.; de Gouw, Joost A.

    2017-11-01

    Alkenes are reactive hydrocarbons that influence local and regional atmospheric chemistry by playing important roles in the photochemical production of tropospheric ozone and in the formation of secondary organic aerosols. The simplest alkene, ethene (ethylene), is a major plant hormone and ripening agent for agricultural commodities. The group of light alkenes (C2-C4) originates from both biogenic and anthropogenic sources, but their biogenic sources are poorly characterized, with limited field-based flux observations. Here we report net ecosystem fluxes of light alkenes and isoprene from a semiarid ponderosa pine forest in the Rocky Mountains of Colorado, USA using the relaxed eddy accumulation (REA) technique during the summer of 2014. Ethene, propene, butene and isoprene emissions have strong diurnal cycles, with median daytime fluxes of 123, 95, 39 and 17 µg m-2 h-1, respectively. The fluxes were correlated with each other, followed general ecosystem trends of CO2 and water vapor, and showed similar sunlight and temperature response curves as other biogenic VOCs. The May through October flux, based on measurements and modeling, averaged 62, 52, 24 and 18 µg m-2 h-1 for ethene, propene, butene and isoprene, respectively. The light alkenes contribute significantly to the overall biogenic source of reactive hydrocarbons: roughly 18 % of the dominant biogenic VOC, 2-methyl-3-buten-2-ol. The measured ecosystem scale fluxes are 40-80 % larger than estimates used for global emissions models for this type of ecosystem.

  12. Expert system for eddy current signal analysis: non destructive testing of steam generator tubings

    International Nuclear Information System (INIS)

    Benoist, B.

    1991-01-01

    Automatic analysis, by computer, of defect signals in steam generator tubes, based on Eddy current multifrequency technique, is must often inefficient due to pilgrim noise. The first step is to use a method that allows us to eleminate the noise: the adaptative interpolation. Thanks to this method, which ensures reliable data on each channel, the analysis can be realised by taking into account the data corresponding to each basic or mixed channel. By correlating these diverse data, we can class the signals according to two types of defects: single defects (symmetrical), multiple defects (several in the same place). The second step is to use an expert system which allows a reliable diagnosis for whatever family the defect belongs to. According to this classification, analysis is continued and results in the characterization of the defect. The expert system has already been developed with the general purpose application expert system shell SUPER, which is briefly described. The knowledge base (SOCRATE) and the specific tools developed for this application are thoroughly described. The first results obtained with signals corresponding to real defects, that have been recorded in different places, are presented and discussed. The expert system is revealed efficient in all the studied cases, even with signals obtained in very noisy environments [fr

  13. Eddy covariance flux measurements of biogenic VOCs during ECHO 2003 using proton transfer reaction mass spectrometry

    Directory of Open Access Journals (Sweden)

    C. Spirig

    2005-01-01

    Full Text Available Within the framework of the AFO 2000 project ECHO, two PTR-MS instruments were operated in combination with sonic anemometers to determine biogenic VOC fluxes from a mixed deciduous forest site in North-Western Germany. The measurement site was characterised by a forest of inhomogeneous composition, complex canopy structure, limited extension in certain wind directions and frequent calm wind conditions during night time. The eddy covariance (EC technique was applied since it represents the most direct flux measurement approach on the canopy scale and is, therefore, least susceptible to these non-ideal conditions. A specific flux calculation method was used to account for the sequential multi-component PTR-MS measurements and allowing an individual delay time adjustment as well as a rigorous quality control based on cospectral analysis. The validated flux results are consistent with light and temperature dependent emissions of isoprene and monoterpenes from this forest, with average daytime emissions of 0.94 and 0.3µg m-2s-1, respectively. Emissions of methanol reached on average 0.087µg m-2s-1 during daytime, but fluxes were too small to be detected during night time. Upward fluxes of the isoprene oxidation products methyl vinyl ketone (MVK and methacrolein (MACR were also found, being two orders of magnitude lower than those of isoprene. Calculations with an analytical footprint model indicate that the observed isoprene fluxes correlate with the fraction of oaks within the footprints of the flux measurement.

  14. Eddy current spectroscopy for near-surface residual stress profiling in surface treated nonmagnetic engine alloys

    Science.gov (United States)

    Abu-Nabah, Bassam A.

    Recent research results indicated that eddy current conductivity measurements can be exploited for nondestructive evaluation of near-surface residual stresses in surface-treated nickel-base superalloy components. Most of the previous experimental studies were conducted on highly peened (Almen 10-16A) specimens that exhibit harmful cold work in excess of 30% plastic strain. Such high level of cold work causes thermo-mechanical relaxation at relatively modest operational temperatures; therefore the obtained results were not directly relevant to engine manufacturers and end users. The main reason for choosing peening intensities in excess of recommended normal levels was that in low-conductivity engine alloys the eddy current penetration depth could not be forced below 0.2 mm without expanding the measurements above 10 MHz which is beyond the operational range of most commercial eddy current instruments. As for shot-peened components, it was initially felt that the residual stress effect was more difficult to separate from cold work, texture, and inhomogeneity effects in titanium alloys than in nickel-base superalloys. In addition, titanium alloys have almost 50% lower electric conductivity than nickel-base superalloys; therefore require proportionally higher inspection frequencies, which was not feasible until our recent breakthrough in instrument development. Our work has been focused on six main aspects of this continuing research, namely, (i) the development of an iterative inversion technique to better retrieve the depth-dependent conductivity profile from the measured frequency-dependent apparent eddy current conductivity (AECC), (ii) the extension of the frequency range up to 80 MHz to better capture the peak compressive residual stress in nickel-base superalloys using a new eddy current conductivity measuring system, which offers better reproducibility, accuracy and measurement speed than the previously used conventional systems, (iii) the lift-off effect on

  15. Meridional transport of salt in the global ocean from an eddy-resolving model

    Science.gov (United States)

    Treguier, A. M.; Deshayes, J.; Le Sommer, J.; Lique, C.; Madec, G.; Penduff, T.; Molines, J.-M.; Barnier, B.; Bourdalle-Badie, R.; Talandier, C.

    2014-04-01

    The meridional transport of salt is computed in a global eddy-resolving numerical model (1/12° resolution) in order to improve our understanding of the ocean salinity budget. A methodology is proposed that allows a global analysis of the salinity balance in relation to surface water fluxes, without defining a "freshwater anomaly" based on an arbitrary reference salinity. The method consists of a decomposition of the meridional transport into (i) the transport by the time-longitude-depth mean velocity, (ii) time-mean velocity recirculations and (iii) transient eddy perturbations. Water is added (rainfall and rivers) or removed (evaporation) at the ocean surface at different latitudes, which creates convergences and divergences of mass transport with maximum and minimum values close to ±1 Sv. The resulting meridional velocity effects a net transport of salt at each latitude (±30 Sv PSU), which is balanced by the time-mean recirculations and by the net effect of eddy salinity-velocity correlations. This balance ensures that the total meridional transport of salt is close to zero, a necessary condition for maintaining a quasi-stationary salinity distribution. Our model confirms that the eddy salt transport cannot be neglected: it is comparable to the transport by the time-mean recirculation (up to 15 Sv PSU) at the poleward and equatorial boundaries of the subtropical gyres. Two different mechanisms are found: eddy contributions are localized in intense currents such as the Kuroshio at the poleward boundary of the subtropical gyres, while they are distributed across the basins at the equatorward boundaries. Closer to the Equator, salinity-velocity correlations are mainly due to the seasonal cycle and large-scale perturbations such as tropical instability waves.

  16. Thin tube testing by eddy currents

    International Nuclear Information System (INIS)

    David, Bernard; Pigeon, Michel

    1981-01-01

    It is often necessary to define test conditions in eddy current testing, in consequence rules and laws allowing a rapid choice of these conditions are welcome. The similarity law, given by Forster, using the reduced frequency f/fg, allows extrapolation of results from an object to one another, if these two objects are similar (i.e. all their dimensions are proportional). In a particular case, often met, a law going further is given to describe, in a sole way, eddy current behaviour using the reduced frequency in all thin tubes (internal to external diameter ratio between 0.85 to 1). For instance working at f/fe=2 defines the same verification leading to identical results, whatever the nature, the diameter or the thickness may be, if the tubes are thin. A diagram is given and a slide-rule, based on this principle, has been realized [fr

  17. Computer modelling of eddy current probes

    International Nuclear Information System (INIS)

    Sullivan, S.P.

    1992-01-01

    Computer programs have been developed for modelling impedance and transmit-receive eddy current probes in two-dimensional axis-symmetric configurations. These programs, which are based on analytic equations, simulate bobbin probes in infinitely long tubes and surface probes on plates. They calculate probe signal due to uniform variations in conductor thickness, resistivity and permeability. These signals depend on probe design and frequency. A finite element numerical program has been procured to calculate magnetic permeability in non-linear ferromagnetic materials. Permeability values from these calculations can be incorporated into the above analytic programs to predict signals from eddy current probes with permanent magnets in ferromagnetic tubes. These programs were used to test various probe designs for new testing applications. Measurements of magnetic permeability in magnetically biased ferromagnetic materials have been performed by superimposing experimental signals, from special laboratory ET probes, on impedance plane diagrams calculated using these programs. (author). 3 refs., 2 figs

  18. Large Eddy Simulation for Compressible Flows

    CERN Document Server

    Garnier, E; Sagaut, P

    2009-01-01

    Large Eddy Simulation (LES) of compressible flows is still a widely unexplored area of research. The authors, whose books are considered the most relevant monographs in this field, provide the reader with a comprehensive state-of-the-art presentation of the available LES theory and application. This book is a sequel to "Large Eddy Simulation for Incompressible Flows", as most of the research on LES for compressible flows is based on variable density extensions of models, methods and paradigms that were developed within the incompressible flow framework. The book addresses both the fundamentals and the practical industrial applications of LES in order to point out gaps in the theoretical framework as well as to bridge the gap between LES research and the growing need to use it in engineering modeling. After introducing the fundamentals on compressible turbulence and the LES governing equations, the mathematical framework for the filtering paradigm of LES for compressible flow equations is established. Instead ...

  19. The use of isotopic correlation technique for determination of sup(241)Am and sup(243)Am concentration in nuclear irradiated fuels

    International Nuclear Information System (INIS)

    Souza Sarkis, J.E. de.

    1990-01-01

    In the last years the isotopic correlation technique is emerging as a powerful tool for the determination of concentration and isotopic composition of heavy nuclides in the nuclear fuel cycle. Accordingly, this technique has gained significant importance for the safeguard of the nuclear materials as well as for the accounting and build up of actinides elements in the irradiated nuclear fuels. In this work 42 isotopic correlations between the nuclides sup(241)Am and sup(243)Am and post irradiation isotopic data of 7 samples from fuel element BE-124 and 1 sample from fuel element BE-120 from the Obrigheim pressurized water nuclear power reactor, Federal Republic of Germany, were proposed. These isotopic correlations allowed to estimate the isotopic concentrations of sup(241)Am and sup(243)Am with an average deviation, relative to the experimental data obtained from isotopic dilution mass spectrometry technique, of 10%. These results are more precise than those found using the computer code ORIGEN 2 demonstrating the great potential of this technique for the determination of isotopic concentration and build up of those nuclides in irradiated nuclear fuels. The analytical and other experimental aspects of the post irradiation isotopic analysis of nuclear fuels are also discussed. (author)

  20. Multi-frequency eddy current testing method

    International Nuclear Information System (INIS)

    Levy, R.; Gallet, G.

    1980-01-01

    Monitoring by multi-frequency eddy currents has been used since 1975 in French nuclear stations; this method applies perfectly to examinations in non-irradiated surroundings. The restrictions connected with operations in controlled zones (radioactivity) have led to the development of a delayed analysis device which in no way changes the principle of the method, but allows greater flexibility of use by reducing the volume of equipment needed and by limiting the intervention of personnel to a strict minimum [fr

  1. Parameterized and resolved Southern Ocean eddy compensation

    Science.gov (United States)

    Poulsen, Mads B.; Jochum, Markus; Nuterman, Roman

    2018-04-01

    The ability to parameterize Southern Ocean eddy effects in a forced coarse resolution ocean general circulation model is assessed. The transient model response to a suite of different Southern Ocean wind stress forcing perturbations is presented and compared to identical experiments performed with the same model in 0.1° eddy-resolving resolution. With forcing of present-day wind stress magnitude and a thickness diffusivity formulated in terms of the local stratification, it is shown that the Southern Ocean residual meridional overturning circulation in the two models is different in structure and magnitude. It is found that the difference in the upper overturning cell is primarily explained by an overly strong subsurface flow in the parameterized eddy-induced circulation while the difference in the lower cell is mainly ascribed to the mean-flow overturning. With a zonally constant decrease of the zonal wind stress by 50% we show that the absolute decrease in the overturning circulation is insensitive to model resolution, and that the meridional isopycnal slope is relaxed in both models. The agreement between the models is not reproduced by a 50% wind stress increase, where the high resolution overturning decreases by 20%, but increases by 100% in the coarse resolution model. It is demonstrated that this difference is explained by changes in surface buoyancy forcing due to a reduced Antarctic sea ice cover, which strongly modulate the overturning response and ocean stratification. We conclude that the parameterized eddies are able to mimic the transient response to altered wind stress in the high resolution model, but partly misrepresent the unperturbed Southern Ocean meridional overturning circulation and associated heat transports.

  2. Cyclonic entrainment of preconditioned shelf waters into a frontal eddy

    Science.gov (United States)

    Everett, J. D.; Macdonald, H.; Baird, M. E.; Humphries, J.; Roughan, M.; Suthers, I. M.

    2015-02-01

    The volume transport of nutrient-rich continental shelf water into a cyclonic frontal eddy (entrainment) was examined from satellite observations, a Slocum glider and numerical simulation outputs. Within the frontal eddy, parcels of water with temperature/salinity signatures of the continental shelf (18-19°C and >35.5, respectively) were recorded. The distribution of patches of shelf water observed within the eddy was consistent with the spiral pattern shown within the numerical simulations. A numerical dye tracer experiment showed that the surface waters (≤50 m depth) of the frontal eddy are almost entirely (≥95%) shelf waters. Particle tracking experiments showed that water was drawn into the eddy from over 4° of latitude (30-34.5°S). Consistent with the glider observations, the modeled particles entrained into the eddy sunk relative to their initial position. Particles released south of 33°S, where the waters are cooler and denser, sunk 34 m deeper than their release position. Distance to the shelf was a critical factor in determining the volume of shelf water entrained into the eddy. Entrainment reduced to 0.23 Sv when the eddy was furthest from the shelf, compared to 0.61 Sv when the eddy was within 10 km of the shelf. From a biological perspective, quantifying the entrainment of shelf water into frontal eddies is important, as it is thought to play a significant role in providing an offshore nursery habitat for coastally spawned larval fish.

  3. Large Eddy Simulation (LES for IC Engine Flows

    Directory of Open Access Journals (Sweden)

    Kuo Tang-Wei

    2013-10-01

    Full Text Available Numerical computations are carried out using an engineering-level Large Eddy Simulation (LES model that is provided by a commercial CFD code CONVERGE. The analytical framework and experimental setup consist of a single cylinder engine with Transparent Combustion Chamber (TCC under motored conditions. A rigorous working procedure for comparing and analyzing the results from simulation and high speed Particle Image Velocimetry (PIV experiments is documented in this work. The following aspects of LES are analyzed using this procedure: number of cycles required for convergence with adequate accuracy; effect of mesh size, time step, sub-grid-scale (SGS turbulence models and boundary condition treatments; application of the proper orthogonal decomposition (POD technique.

  4. Generating wind fluctuations for Large Eddy Simulation inflow boundary condition

    International Nuclear Information System (INIS)

    Bekele, S.A.; Hangan, H.

    2004-01-01

    Large Eddy Simulation (LES) studies of flows over bluff bodies immersed in a boundary layer wind environment require instantaneous wind characteristics. The influences of the wind environment on the building pressure distribution are a well-established fact in the experimental study of wind engineering. Measured wind data of full or model scale are available only at a limited number of points. A method of obtaining instantaneous wind data at all mesh points of the inlet boundary for LES computation is necessary. Herein previous and new wind inflow generation techniques are presented. The generated wind data is then applied to a LES computation of a channel flow. The characteristics of the generated wind fluctuations in comparison to the measured data and the properties of the flow field computed from these two wind data are discussed. (author)

  5. Large Eddy Simulation of Cryogenic Injection Processes at Supercritical Pressure

    Science.gov (United States)

    Oefelein, Joseph C.

    2002-01-01

    This paper highlights results from the first of a series of hierarchical simulations aimed at assessing the modeling requirements for application of the large eddy simulation technique to cryogenic injection and combustion processes in liquid rocket engines. The focus is on liquid-oxygen-hydrogen coaxial injectors at a condition where the liquid-oxygen is injected at a subcritical temperature into a supercritical environment. For this situation a diffusion dominated mode of combustion occurs in the presence of exceedingly large thermophysical property gradients. Though continuous, these gradients approach the behavior of a contact discontinuity. Significant real gas effects and transport anomalies coexist locally in colder regions of the flow, with ideal gas and transport characteristics occurring within the flame zone. The current focal point is on the interfacial region between the liquid-oxygen core and the coaxial hydrogen jet where the flame anchors itself.

  6. Eddy current inspection of weld defects in tubing

    Science.gov (United States)

    Katragadda, G.; Lord, W.

    1992-01-01

    An approach using differential probes for the inspection of weld defects in tubing is studied. Finite element analysis is used to model the weld regions and defects. Impedance plane signals are predicted for different weld defect types and compared wherever possible with signals from actual welds in tubing. Results show that detection and sizing of defects in tubing is possible using differential eddy current techniques. The phase angle of the impedance plane trajectory gives a good indication of the sizing of the crack. Data on the type of defect can be obtained from the shape of the impedance plane trajectory and the phase. Depending on the skin depth, detection of outer wall, inner wall, and subsurface defects is possible.

  7. Large Eddy Simulation of Turbulent Flows in Wind Energy

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak

    This research is devoted to the Large Eddy Simulation (LES), and to lesser extent, wind tunnel measurements of turbulent flows in wind energy. It starts with an introduction to the LES technique associated with the solution of the incompressible Navier-Stokes equations, discretized using a finite......, should the mesh resolution, numerical discretization scheme, time averaging period, and domain size be chosen wisely. A thorough investigation of the wind turbine wake interactions is also conducted and the simulations are validated against available experimental data from external sources. The effect...... Reynolds numbers, and thereafter, the fully-developed infinite wind farm boundary later simulations are performed. Sources of inaccuracy in the simulations are investigated and it is found that high Reynolds number flows are more sensitive to the choice of the SGS model than their low Reynolds number...

  8. Aero-Acoustic Modelling using Large Eddy Simulation

    International Nuclear Information System (INIS)

    Shen, W Z; Soerensen, J N

    2007-01-01

    The splitting technique for aero-acoustic computations is extended to simulate three-dimensional flow and acoustic waves from airfoils. The aero-acoustic model is coupled to a sub-grid-scale turbulence model for Large-Eddy Simulations. In the first test case, the model is applied to compute laminar flow past a NACA 0015 airfoil at a Reynolds number of 800, a Mach number of 0.2 and an angle of attack of 20 deg. The model is then applied to compute turbulent flow past a NACA 0015 airfoil at a Reynolds number of 100 000, a Mach number of 0.2 and an angle of attack of 20 deg. The predicted noise spectrum is compared to experimental data

  9. Large-Eddy-Simulation of turbulent magnetohydrodynamic flows

    Directory of Open Access Journals (Sweden)

    Woelck Johannes

    2017-01-01

    Full Text Available A magnetohydrodynamic turbulent channel flow under the influence of a wallnormal magnetic field is investigated using the Large-Eddy-Simulation technique and k-equation subgrid-scale-model. Therefore, the new solver MHDpisoFoam is implemented in the OpenFOAM CFD-Code. The temporal decay of an initial turbulent field for different magnetic parameters is investigated. The rms values of the averaged velocity fluctuations show a similar, trend for each coordinate direction. 80% of the fluctuations are damped out in the range between 0 < Ha < < 75 at Re = 6675. The trend can be approximated via an exponential of the form exp(−a·Ha, where a is a scaling parameter. At higher Hartmann numbers the fluctuations decrease in an almost linear way. Therefore, the results of this study show that it may be possible to construct a general law for the turbulence damping due to action of magnetic fields.

  10. Influence of residual stresses during eddy current testing of zircaloy bar material

    International Nuclear Information System (INIS)

    Saibaba, N.; Das, G.; Pratap, Y.; Acharya, S.; Chaube, R.K.; Jayaraj, R.N.

    2009-01-01

    Full text: Zirconium alloy bar is the input material for making end plugs required for encapsulating the fuel tubes after loading of uranium di-oxide pellets. These bars are manufactured through extrusion followed by multi-pass swaging and intermediate vacuum annealing. The bar is subjected to 100% Ultrasonic testing to ensure that defect free material is used for making the end plugs. The elements thus welded are subjected to helium leak testing for checking the weld integrity. However, stray cases of helium leakage from fuel elements were observed on few occasions. On investigation, it was found that the leakage was from small porosity present in the plugs. In order to isolate such an eventuality, stricter ultrasonic standards were adopted and additionally eddy current testing was introduced. It was observed that a number of eddy current signals equal to the defect standard were noticed and the reasons for these indications could not be identified. This led to a significant fall in the material recovery. An in-depth study with various heat treatment cycles and process steps was carried out. It was finally concluded that the indications observed in eddy current testing were due to the residual stresses on the periphery of the bar material caused due by improper straightening being carried out at the final stage of the bar manufacture. This paper presents the systematic studies carried out and correlation established between the eddy current signals and the residual stresses

  11. Forward transformation for high resolution eddy current tomography using whitney elements

    International Nuclear Information System (INIS)

    Szewczyk, R.; Salach, J.; Nowicki, M.; Ruokolainen, J.; Raback, P.

    2014-01-01

    Tomographic methods are intensively developed field of non-destructive testing. The main advantage of this type of NDT method is 3D information concerning the shape of the discontinuities in investigated material. On the other hand, the most common tomography method utilizing X-rays creates the significant risks typical to X-ray technique. As a result, Xray tomography is difficult to use in industry. Introduced to the industry in 2007, the eddy current tomography is safe and cost effective. However, in opposite to X-ray tomography, eddy current tomography requires sophisticated and time consuming inverse transformation creating 2D or 3D view of discontinuities. For this reason solutions presented previously are focused on 2D inverse transformation and exhibit limited resolution. For eddy current tomography, the forward tomographic transformation is most important, which is the base of inverse transformation. This paper presents the novel, fast and cost-effective solution utilizing Whitney elements method for such forward transformation. As a result, new possibilities of development in the area of high resolution 3D eddy current tomography are created. (authors)

  12. Large eddy simulation of spanwise rotating turbulent channel flow with dynamic variants of eddy viscosity model

    Science.gov (United States)

    Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi

    2018-04-01

    A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.

  13. Eddy Covariance Method for CO2 Emission Measurements: CCS Applications, Principles, Instrumentation and Software

    Science.gov (United States)

    Burba, George; Madsen, Rod; Feese, Kristin

    2013-04-01

    The Eddy Covariance method is a micrometeorological technique for direct high-speed measurements of the transport of gases, heat, and momentum between the earth's surface and the atmosphere. Gas fluxes, emission and exchange rates are carefully characterized from single-point in-situ measurements using permanent or mobile towers, or moving platforms such as automobiles, helicopters, airplanes, etc. Since the early 1990s, this technique has been widely used by micrometeorologists across the globe for quantifying CO2 emission rates from various natural, urban and agricultural ecosystems [1,2], including areas of agricultural carbon sequestration. Presently, over 600 eddy covariance stations are in operation in over 120 countries. In the last 3-5 years, advancements in instrumentation and software have reached the point when they can be effectively used outside the area of micrometeorology, and can prove valuable for geological carbon capture and sequestration, landfill emission measurements, high-precision agriculture and other non-micrometeorological industrial and regulatory applications. In the field of geological carbon capture and sequestration, the magnitude of CO2 seepage fluxes depends on a variety of factors. Emerging projects utilize eddy covariance measurement to monitor large areas where CO2 may escape from the subsurface, to detect and quantify CO2 leakage, and to assure the efficiency of CO2 geological storage [3,4,5,6,7,8]. Although Eddy Covariance is one of the most direct and defensible ways to measure and calculate turbulent fluxes, the method is mathematically complex, and requires careful setup, execution and data processing tailor-fit to a specific site and a project. With this in mind, step-by-step instructions were created to introduce a novice to the conventional Eddy Covariance technique [9], and to assist in further understanding the method through more advanced references such as graduate-level textbooks, flux networks guidelines, journals

  14. Correlation of Self Potential and Ground Magnetic Survey Techniques to Investigate Fluid Seepage in Archaeological site, Sungai Batu, Lembah Bujang, Kedah, Malaysia

    OpenAIRE

    Tajudeen O. Adeeko; Nordiana M. Muztaza; Taqiuddin M. Zakaria; Nurina Ismail

    2018-01-01

    One of the substantial of geophysics is to investigate the subsurface condition of the earth (groundwater) using appropriate geophysical techniques. In this research the correlation of self potential (SP) and ground magnetic methods was used to investigate fluid seepage in Archaeological site, Sungai Batu, Lembah Bujang, Kedah, Malaysia. Self-potential method was used to determine flow of water, and Ground magnetic method was used to find object that can influence the result of self potential...

  15. Continuous measurement of air-water gas exchange by underwater eddy covariance

    Science.gov (United States)

    Berg, Peter; Pace, Michael L.

    2017-12-01

    mixing. This effect is unaccounted for in widely used empirical correlations for gas exchange coefficients and is another source of uncertainty in gas exchange estimates. The aquatic eddy covariance technique allows studies of air-water gas exchange processes and their controls at an unparalleled level of detail. A finding related to the new approach is that heat fluxes at the air-water interface can, contrary to those typically found in the benthic environment, be substantial and require correction of O2 sensor readings using high-speed parallel temperature measurements. Fast-responding O2 sensors are inherently sensitive to temperature changes, and if this correction is omitted, temperature fluctuations associated with the turbulent heat flux will mistakenly be recorded as O2 fluctuations and bias the O2 eddy flux calculation.

  16. Continuous measurement of air–water gas exchange by underwater eddy covariance

    Directory of Open Access Journals (Sweden)

    P. Berg

    2017-12-01

    out of the river that affected the turbulent mixing. This effect is unaccounted for in widely used empirical correlations for gas exchange coefficients and is another source of uncertainty in gas exchange estimates. The aquatic eddy covariance technique allows studies of air–water gas exchange processes and their controls at an unparalleled level of detail. A finding related to the new approach is that heat fluxes at the air–water interface can, contrary to those typically found in the benthic environment, be substantial and require correction of O2 sensor readings using high-speed parallel temperature measurements. Fast-responding O2 sensors are inherently sensitive to temperature changes, and if this correction is omitted, temperature fluctuations associated with the turbulent heat flux will mistakenly be recorded as O2 fluctuations and bias the O2 eddy flux calculation.

  17. Development of comprehensive image processing technique for differential diagnosis of liver disease by using multi-modality images. Pixel-based cross-correlation method using a profile

    International Nuclear Information System (INIS)

    Inoue, Akira; Okura, Yasuhiko; Akiyama, Mitoshi; Ishida, Takayuki; Kawashita, Ikuo; Ito, Katsuyoshi; Matsunaga, Naofumi; Sanada, Taizo

    2009-01-01

    Imaging techniques such as high magnetic field imaging and multidetector-row CT have been markedly improved recently. The final image-reading systems easily produce more than a thousand diagnostic images per patient. Therefore, we developed a comprehensive cross-correlation processing technique using multi-modality images, in order to decrease the considerable time and effort involved in the interpretation of a radiogram (multi-formatted display and/or stack display method, etc). In this scheme, the criteria of an attending radiologist for the differential diagnosis of liver cyst, hemangioma of liver, hepatocellular carcinoma, and metastatic liver cancer on magnetic resonance images with various sequences and CT images with and without contrast enhancement employ a cross-correlation coefficient. Using a one-dimensional cross-correlation method, comprehensive image processing could be also adapted for various artifacts (some depending on modality imaging, and some on patients), which may be encountered at the clinical scene. This comprehensive image-processing technique could assist radiologists in the differential diagnosis of liver diseases. (author)

  18. New signal processing methods for the evaluation of eddy current NDT data

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Signal processing and pattern recognition methods play a crucial role in a number of areas associated with nondestructive evaluation. Defect characterization schemes often involve mapping the signal onto an appropriate feature domain and using pattern recognition techniques for classification. In addition, signal processing methods are also used to acquire, enhance, restore, and compress data. EPRI Project RP 2673-4 is concerned with developing new signal processing and pattern recognition techniques for evaluating eddy current signals. Efforts under this project have focused on three closely related areas. The thrust has been to: (1) develop a scheme to compress eddy current signals for the purposes of storing them in a compact form, (2) develop a robust clustering algorithm capable of discarding feature vectors that fall in the gray areas between clusters, and (3) investigate the feasibility of designing and developing a digital eddyscope

  19. Binary phase masks on self-developing photopolymers: the technique for formation and testing in an optical correlator

    International Nuclear Information System (INIS)

    Yezhov, P V; Il'in, O A; Smirnova, T N; Tikhonov, E A

    2003-01-01

    Binary phase masks (PMs) of size 256x256 cells with a random distribution of elements, formed on the self-developing FPK-488 photopolymer, are studied. The masks were prepared by the projection method using amplitude transparencies. The phase shift between the mask elements corresponding to the regions of the amplitude transparency with the optical density D = 0 and 2 was (0.85±0.05)π at the wavelength of 0.633 μm. Holographic matched filters were recorded for PMs obtained. The diffraction efficiency of holographic matched PM filters was 40 %. The signal-to-noise ratio for recognition signals for PMs in the Vander Lugt correlator was 20 dB. The normalised power density of the recognition signal is studied as a function of the rotation angle of a PM in the input plane of the Vander Lugt correlator. (laser applications and other topics in quantum electronics)

  20. Observations of near-inertial kinetic energy inside mesoscale eddies.

    Science.gov (United States)

    Garcia Gomez, B. I.; Pallas Sanz, E.; Candela, J.

    2016-02-01

    The near-nertial oscillations (NIOs), generated by the wind stress on the surface mixed layer, are the inertia gravity waves with the lowest frequency and the highest kinetic energy. NIOs are important because they drive vertical mixing in the interior ocean during wave breaking events. Although the interaction between NIOs and mesoescale eddies has been reported by several authors, these studies are mostly analytical and numerical, and only few observational studies have attempted to show the differences in near-inertial kinetic energy (KEi) between anticyclonic and cyclonic eddies. In this work the spatial structure of the KEi inside the mesoscale eddies is computed using daily satellite altimetry and observations of horizontal velocity from 30 moorings equipped with acoustic Doppler current profilers in the western Gulf of Mexico. Consistent to theory, the obtained four-year KEi-composites show two times more KEi inside the anticyclonic eddies than inside the cyclonic ones. The vertical cross-sections of the KEi-composites show that the KEi is mainly located near the surface and at the edge of the cyclonic eddies (positive vorticity), whereas the KEi in anticyclonic eddies (negative vorticity) is maximum in the eddy's center and near to the base of the eddy where the NIOs become more inertial, are trapped, and amplified. A relative maximum in the upper anticyclonic eddy is also observed. The cyclonic eddies present a maximum of KEi near to the surface at 70 m, while the maximum of KEi in the anticyclonic eddies occurs between 800 and 1000 m. It is also shown the dependence between the distribution and magnitude of the KEi and the eddy's characteristics such as radius, vorticity, and amplitude.

  1. Eddy current seminar, 24-26 Mar 1986

    International Nuclear Information System (INIS)

    Emson, C.R.I.

    1986-06-01

    The paper concerns the Eddy Current Seminars, held at the Rutherford Appleton Laboratory, United Kingdom, March 1986. Twenty two papers were presented on eddy current phenomena, and two of the papers are indexed separately. The first deals with a finite difference scheme for time dependent eddy currents in Tokamaks, the second is an analysis of the FELIX experiments with cantilevered beams and hollow cylinders. (UK)

  2. BRAIN initiative: fast and parallel solver for real-time monitoring of the eddy current in the brain for TMS applications.

    Science.gov (United States)

    Sabouni, Abas; Pouliot, Philippe; Shmuel, Amir; Lesage, Frederic

    2014-01-01

    This paper introduce a fast and efficient solver for simulating the induced (eddy) current distribution in the brain during transcranial magnetic stimulation procedure. This solver has been integrated with MRI and neuronavigation software to accurately model the electromagnetic field and show eddy current in the head almost in real-time. To examine the performance of the proposed technique, we used a 3D anatomically accurate MRI model of the 25 year old female subject.

  3. A new disjunct eddy-covariance system for BVOC flux measurements - validation on CO2 and H2O fluxes

    Science.gov (United States)

    Baghi, R.; Durand, P.; Jambert, C.; Jarnot, C.; Delon, C.; Serça, D.; Striebig, N.; Ferlicoq, M.; Keravec, P.

    2012-12-01

    The disjunct eddy covariance (DEC) method is an interesting alternative to the conventional eddy covariance (EC) method because it allows the estimation of turbulent fluxes of species for which fast sensors are not available. We have developed and validated a new disjunct sampling system (called MEDEE). This system is built with chemically inert materials. Air samples are taken quickly and alternately in two cylindrical reservoirs, the internal pressures of which are regulated by a moving piston. The MEDEE system was designed to be operated either on the ground or aboard an aircraft. It is also compatible with most analysers since it transfers the air samples at a regulated pressure. To validate the system, DEC and EC measurements of CO2 and latent heat fluxes were performed concurrently during a field campaign. EC fluxes were first compared to simulated DEC (SDEC) fluxes and then to actual DEC fluxes. Both the simulated and actual DEC fluxes showed a good agreement with EC fluxes in terms of correlation. The determination coefficients (R2) were 0.93 and 0.91 for DEC and SDEC latent heat fluxes, respectively. For DEC and SDEC CO2 fluxes R2 was 0.69 in both cases. The conditions of low fluxes experienced during the campaign impaired the comparison of the different techniques especially for CO2 flux measurements. Linear regression analysis showed an 14% underestimation of DEC fluxes for both CO2 and latent heat compared to EC fluxes. A first field campaign, focusing on biogenic volatile organic compound (BVOC) emissions, was carried out to measure isoprene fluxes above a downy oak (Quercus Pubescens) forest in the south-east of France. The measured standard emission rate was in the lower range of reported values in earlier studies. Further analysis will be conducted through ground-based and airborne campaigns in the coming years.

  4. Lesion size detection in geographic atrophy by polarization-sensitive optical coherence tomography and correlation to conventional imaging techniques.

    Science.gov (United States)

    Schütze, Christopher; Bolz, Matthias; Sayegh, Ramzi; Baumann, Bernhard; Pircher, Michael; Götzinger, Erich; Hitzenberger, Christoph K; Schmidt-Erfurth, Ursula

    2013-01-28

    To investigate the reproducibility of automated lesion size detection in patients with geographic atrophy (GA) using polarization-sensitive spectral-domain optical coherence tomography (PS-OCT) and to compare findings with scanning laser ophthalmoscopy (SLO), fundus autofluorescence (FAF), and intensity-based spectral-domain OCT (SD-OCT). Twenty-nine eyes of 22 patients with GA were examined by PS-OCT, selectively identifying the retinal pigment epithelium (RPE). A novel segmentation algorithm was applied, automatically detecting and quantifying areas of RPE atrophy. The reproducibility of the algorithm was assessed, and lesion sizes were correlated with manually delineated SLO, FAF, and intensity-based SD-OCT images to validate the clinical applicability of PS-OCT in GA evaluation. Mean GA lesion size of all patients was 5.28 mm(2) (SD: 4.92) in PS-OCT. Mean variability of individual repeatability measurements was 0.83 mm(2) (minimum: 0.05; maximum: 3.65). Mean coefficient of variation was 0.07 (min: 0.01; max: 0.19). Mean GA area in SLO (Spectralis OCT) was 5.15 mm(2) (SD: 4.72) and 2.5% smaller than in PS-OCT (P = 0.9, Pearson correlation coefficient = 0.98, P < 0.01). Mean GA area in intensity-based SD-OCT pseudo-SLO images (Cirrus OCT) was 5.14 mm(2) (SD: 4.67) and 2.7% smaller than in PS-OCT (P = 0.9, Pearson correlation coefficient = 0.98, P < 0.01). Mean GA area of all eyes measured 5.41 mm(2) (SD: 4.75) in FAF, deviating by 2.4% from PS-OCT results (P = 0.89, Pearson correlation coefficient = 0.99, P < 0.01). PS-OCT demonstrated high reproducibility of GA lesion size determination. Results correlated well with SLO, FAF, and intensity-based SD-OCT fundus imaging. PS-OCT may therefore be a valuable and specific imaging modality for automated GA lesion size determination in scientific studies and clinical practice.

  5. Dispersion of tracers by the oceanic eddy field modelling programme

    International Nuclear Information System (INIS)

    Richards, K.J.

    1986-01-01

    A numerical model has been developed to study the dispersion of tracers by the oceanic eddy field. The study is designed to investigate the horizontal and vertical structure of the eddies and how this structure is influenced by the bottom topography. It is found that hills and valleys have a strong effect on the eddies above them. The flow close to the bottom has a tendency to be steered by the height contours. The surface and bottom flows become decorrelated and the vertical variation of the kinetic energy of the eddies is increased with higher topographic features. (author)

  6. Eddy Current Assessment of Engineered Components Containing Nanofibers

    Science.gov (United States)

    Ko, Ray T.; Hoppe, Wally; Pierce, Jenny

    2009-03-01

    The eddy current approach has been used to assess engineered components containing nanofibers. Five specimens with different programmed defects were fabricated. A 4-point collinear probe was used to verify the electrical resistivity of each specimen. The liftoff component of the eddy current signal was used to test two extreme cases with different nano contents. Additional eddy current measurements were also used in detecting a missing nano layer simulating a manufacturing process error. The results of this assessment suggest that eddy current liftoff measurement can be a useful tool in evaluating the electrical properties of materials containing nanofibers.

  7. Numeric signal analysis process, with particular application to eddy current testing

    International Nuclear Information System (INIS)

    Combes, J.Y.; Ledinghen, E. de; Lionti, F.

    1996-01-01

    Eddy current testing uses analogic demodulation process, and then analog or digital phase shift measurement. These techniques are efficient, but not always versatile enough to apply to different configurations, in particular when a change of operating frequency is requested. This method performs an entirely digital conditioning. Excitation is simultaneously performed at N different frequencies (typically N=4). By sampling at a much higher frequency, 2N equation are obtained, allowing the resolution of the linear equations system. (D.L.)

  8. Unsupervised Classification of Surface Defects in Wire Rod Production Obtained by Eddy Current Sensors

    Directory of Open Access Journals (Sweden)

    Sergio Saludes-Rodil

    2015-04-01

    Full Text Available An unsupervised approach to classify surface defects in wire rod manufacturing is developed in this paper. The defects are extracted from an eddy current signal and classified using a clustering technique that uses the dynamic time warping distance as the dissimilarity measure. The new approach has been successfully tested using industrial data. It is shown that it outperforms other classification alternatives, such as the modified Fourier descriptors.

  9. Formation of intrathermocline eddies at ocean fronts by wind-driven destruction of potential vorticity

    Science.gov (United States)

    Thomas, Leif N.

    2008-08-01

    A mechanism for the generation of intrathermocline eddies (ITEs) at wind-forced fronts is examined using a high resolution numerical simulation. Favorable conditions for ITE formation result at fronts forced by "down-front" winds, i.e. winds blowing in the direction of the frontal jet. Down-front winds exert frictional forces that reduce the potential vorticity (PV) within the surface boundary in the frontal outcrop, providing a source for the low-PV water that is the materia prima of ITEs. Meandering of the front drives vertical motions that subduct the low-PV water into the pycnocline, pooling it into the coherent anticyclonic vortex of a submesoscale ITE. As the fluid is subducted along the outcropping frontal isopycnal, the low-PV water, which at the surface is associated with strongly baroclinic flow, re-expresses itself as water with nearly zero absolute vorticity. This generation of strong anticyclonic vorticity results from the tilting of the horizontal vorticity of the frontal jet, not from vortex squashing. During the formation of the ITE, high-PV water from the pycnocline is upwelled alongside the subducting low-PV surface water. The positive correlation between the ITE's velocity and PV fields results in an upward, along-isopycnal eddy PV flux that scales with the surface frictional PV flux driven by the wind. The relationship between the eddy and wind-induced frictional PV flux is nonlocal in time, as the eddy PV flux persists long after the wind forcing is shut off. The ITE's PV flux affects the large-scale flow by driving an eddy-induced transport or bolus velocity down the outcropping isopycnal layer with a magnitude that scales with the Ekman velocity.

  10. Correlating electronic and geometric structures of organic films and interfaces by means of synchrotron radiation based techniques

    International Nuclear Information System (INIS)

    Yamane, Hiroyuki

    2013-01-01

    The electronic structure of organic thin films and interfaces plays a crucial role in the performance of optoelectronic devices using organic semiconductors, and is seriously dominated by the geometric film/interface structure due to the anisotropic spatial distribution of molecular orbitals. This paper briefly reviews the recent progress of the examination of correlating electronic structure and geometric structure of archetypal organic semiconductor thin films and interfaces by using spectroscopic experiments with synchrotron radiation such as angle-resolved photoelectron spectroscopy, x-ray absorption spectroscopy, and x-ray standing wave. (author)

  11. Three-dimensional Improved Delayed Detached Eddy Simulation of a two-bladed vertical axis wind turbine

    International Nuclear Information System (INIS)

    Lei, Hang; Zhou, Dai; Bao, Yan; Li, Ye; Han, Zhaolong

    2017-01-01

    Highlights: • The Improved Delayed Detached Eddy Simulation and polyhedral mesh are utilized. • Power coefficient and wake velocity are compared between experiments and simulations. • Improved Delayed Detached Eddy Simulation shows more vortices under dynamic stall. • Different scales of flow separations are distinguished by these two models. - Abstract: The aerodynamic performance of a two-bladed vertical axis wind turbine is investigated using the turbulence model of the Improved Delayed Detached Eddy Simulation and the polyhedral mesh. The sliding mesh technique is used to simulate the rotation of the rotor. Meanwhile, the results obtained by the shear stress transport k-ω model are presented as contrast. Then, the simulated power coefficients at different tip speed ratios and the wake velocity are validated by comparison with the experimental data from available literature. It is shown that the power coefficients and wake velocity predicted by the Improved Delayed Detached Eddy Simulation are closer to the experimental data than those by the shear stress transport k-ω model. The pressure distributions predicted by the two turbulence models show different degrees of discrepancies in different scales of flow separation. By comparing the vorticity magnitude graphs, the Improved Delayed Detached Eddy Simulation is found to be able to capture more exquisite vortices after the flow separations. Limited by its inherent ability, the shear stress transport k-ω model predicts vortices that are less realistic than those of Improved Delayed Detached Eddy Simulation. Hence, it may cause some errors in predicting the pressure distributions, especially when the blades suffer dynamic stall. It is demonstrated that the Improved Delayed Detached Eddy Simulation is regarded as a reliable model to analyze the aerodynamic performance of vertical axis wine turbines.

  12. Eddy current array probe for detection of surface breaking cracks in the extrados of feeder bends

    International Nuclear Information System (INIS)

    Obrutsky, L.S.; Cassidy, R.A.; Chaplin, K.; Martin, P.; Bureau, J.F.

    2006-01-01

    A new eddy current array probe has been implemented as a straightforward and promising technique for detection of outer diameter (OD) surface-breaking cracks on the extrados of feeder bends. The design is based on previous work performed at AECL, which had demonstrated that eddy current probes with laterally displaced transmit-receive coils can overcome some of the limitations of inspecting ferritic steel components for surface-breaking cracks. The Feeder Integrity Joint Program-CANDU Owners Group Inc. (FIJP-COG) Non-Destructive Evaluation (NDE) Team members commissioned AECL to work in collaboration with the probe manufacturer ZETEC, to develop a field usable eddy current array probe. The objective was to acquire a technique with the following capabilities: fast scanning non-contact inspection technique for surface breaking discontinuities; full inspection of the bend extrados OD surface in a single scan; ability to inspect first and second bends with similar settings and capabilities; permanent record for future reference; axial and circumferential crack detection in a single scan; capability to detect OD surface-breaking cracks, which can provide additional information to that provided by ultrasonic testing (UT) for flaw characterization, and detection threshold: Surface breaking cracks equivalent to a 0.5 mm deep, 10 mm long EDM notch located on the OD of the bend extrados. This paper discusses the basis for probe design, summarizes the experimental work to evaluate probe capabilities and analyzes the results from the field trial. (author)

  13. Eddy current array probe for detection of surface breaking cracks in the extrados of feeder bends

    Energy Technology Data Exchange (ETDEWEB)

    Obrutsky, L.S.; Cassidy, R.A.; Chaplin, K. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)]. E-mail: obrutskyl@aecl.ca; Martin, P. [NB Power, Point Lepreau NGS, Point Lepreau, New Brunswick (Canada)]. E-mail: PMartin@nbpower.com; Bureau, J.F. [Zetec, Quebec, Quebec (Canada)]. E-mail: jean-francois.bureau@zetec.com

    2006-07-01

    A new eddy current array probe has been implemented as a straightforward and promising technique for detection of outer diameter (OD) surface-breaking cracks on the extrados of feeder bends. The design is based on previous work performed at AECL, which had demonstrated that eddy current probes with laterally displaced transmit-receive coils can overcome some of the limitations of inspecting ferritic steel components for surface-breaking cracks. The Feeder Integrity Joint Program-CANDU Owners Group Inc. (FIJP-COG) Non-Destructive Evaluation (NDE) Team members commissioned AECL to work in collaboration with the probe manufacturer ZETEC, to develop a field usable eddy current array probe. The objective was to acquire a technique with the following capabilities: fast scanning non-contact inspection technique for surface breaking discontinuities; full inspection of the bend extrados OD surface in a single scan; ability to inspect first and second bends with similar settings and capabilities; permanent record for future reference; axial and circumferential crack detection in a single scan; capability to detect OD surface-breaking cracks, which can provide additional information to that provided by ultrasonic testing (UT) for flaw characterization, and detection threshold: Surface breaking cracks equivalent to a 0.5 mm deep, 10 mm long EDM notch located on the OD of the bend extrados. This paper discusses the basis for probe design, summarizes the experimental work to evaluate probe capabilities and analyzes the results from the field trial. (author)

  14. Solution of magnetic field and eddy current problem induced by rotating magnetic poles (abstract)

    Science.gov (United States)

    Liu, Z. J.; Low, T. S.

    1996-04-01

    The magnetic field and eddy current problems induced by rotating permanent magnet poles occur in electromagnetic dampers, magnetic couplings, and many other devices. Whereas numerical techniques, for example, finite element methods can be exploited to study various features of these problems, such as heat generation and drag torque development, etc., the analytical solution is always of interest to the designers since it helps them to gain the insight into the interdependence of the parameters involved and provides an efficient tool for designing. Some of the previous work showed that the solution of the eddy current problem due to the linearly moving magnet poles can give satisfactory approximation for the eddy current problem due to rotating fields. However, in many practical cases, especially when the number of magnet poles is small, there is significant effect of flux focusing due to the geometry. The above approximation can therefore lead to marked errors in the theoretical predictions of the device performance. Bernot et al. recently described an analytical solution in a polar coordinate system where the radial field is excited by a time-varying source. A discussion of an analytical solution of the magnetic field and eddy current problems induced by moving magnet poles in radial field machines will be given in this article. The theoretical predictions obtained from this method is compared with the results obtained from finite element calculations. The validity of the method is also checked by the comparison of the theoretical predictions and the measurements from a test machine. It is shown that the introduced solution leads to a significant improvement in the air gap field prediction as compared with the results obtained from the analytical solution that models the eddy current problems induced by linearly moving magnet poles.

  15. Evaluation of the eddy-current method of inspecting steam generator tubing

    International Nuclear Information System (INIS)

    Flora, J.H.; Brown, S.D.; Weeks, J.R.

    1976-01-01

    The objective of this project has been to evaluate the eddy-current method of inspecting steam generator tubing by conducting a series of laboratory experiments with conventional eddy-current equipment. The experiments have involved obtaining eddy-current measurements on samples of 7/8-inch OD Inconel-600 tubing provided by the Westinghouse Nuclear Energy Systems Division. A variety of machined defects and some chemically induced flaws, such as stress corrosion cracks were fabricated in the tubing. Statistical evaluation of the data was employed to estimate the error encountered in measuring corrosion defects of various depths. It appears that the eddy-current technique can provide a reasonable measure of defect depth under certain conditions. On the other hand, the evaluation indicates that it is difficult to determine the depth of certain types of flaws with reliability and precision. Furthermore, although some defects as shallow as 10 percent of the tube wall could be detected, it was not possible to detect other types of flaws that were less than 40 percent deep even when the tube supports were not near the defects. The difficulty in detecting small volume flaws is attributed to low signal-to-noise ratio. Noise is a result of unwanted signals from test variables, such as wobble and variations in tube properties. The error in measurement of certain types of larger defects is associatedin part with test variables and also with the effects that the geometry of the defect has on the eddy-current signal patterns. The distortions in signal patterns caused by gradual wastage type defects and the poor reproducibility of signal patterns obtained from notches that represent stress corrosion cracks are described. Some developments that will rectify these detection and depth measurement problems are discussed

  16. Essential parameters in eddy current inspection

    International Nuclear Information System (INIS)

    Stepinski, T.

    2000-05-01

    Our aim was to qualitatively analyze a number of variables that may affect the result of eddy current (EC) inspection but because of various reasons are not considered as essential in common practice. In the report we concentrate on such variables that can vary during or between inspections but their influence is not determined during routine calibrations. We present a qualitative analysis of the influence of the above-mentioned variables on the ability to detect and size flaws using mechanized eddy current testing (ET). ET employs some type of coil or probe, sensing magnetic flux generated by eddy currents induced in the tested specimen. An amplitude-phase modulated signal (with test frequency f0 ) from the probe is sensed by the EC instrument. The amplitude-phase modulated signal is amplified and demodulated in phase-sensitive detectors removing carrier frequency f0 from the signal. The detectors produce an in-phase and a quadrature component of the signal defining it as a point in the impedance plane. Modern instruments are provided with a screen presenting the demodulated and filtered signal in complex plane. We focus on such issues, related to the EC equipment as, probe matching, distortion introduced by phase discriminators and signal filters, and the influence of probe resolution and lift-off on sizing. The influence of different variables is investigated by means of physical reasoning employing theoretical models and demonstrated using simulated and real EC signals. In conclusion, we discuss the way in which the investigated variables may affect the result of ET. We also present a number of practical recommendations for the users of ET and indicate the areas that are to be further analyzed

  17. Theory and application of high temperature superconducting eddy current probes for nondestructive evaluation

    Science.gov (United States)

    Claycomb, James Ronald

    1998-10-01

    Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic

  18. EddyOne automated analysis of PWR/WWER steam generator tubes eddy current data

    International Nuclear Information System (INIS)

    Nadinic, B.; Vanjak, Z.

    2004-01-01

    INETEC Institute for Nuclear Technology developed software package called Eddy One which has option of automated analysis of bobbin coil eddy current data. During its development and on site use, many valuable lessons were learned which are described in this article. In accordance with previous, the following topics are covered: General requirements for automated analysis of bobbin coil eddy current data; Main approaches to automated analysis; Multi rule algorithms for data screening; Landmark detection algorithms as prerequisite for automated analysis (threshold algorithms and algorithms based on neural network principles); Field experience with Eddy One software; Development directions (use of artificial intelligence with self learning abilities for indication detection and sizing); Automated analysis software qualification; Conclusions. Special emphasis is given on results obtained on different types of steam generators, condensers and heat exchangers. Such results are then compared with results obtained by other automated software vendors giving clear advantage to INETEC approach. It has to be pointed out that INETEC field experience was collected also on WWER steam generators what is for now unique experience.(author)

  19. Magnetic Field of Conductive Objects as Superposition of Elementary Eddy Currents and Eddy Current Tomography

    Science.gov (United States)

    Sukhanov, D. Ya.; Zav'yalova, K. V.

    2018-03-01

    The paper represents induced currents in an electrically conductive object as a totality of elementary eddy currents. The proposed scanning method includes measurements of only one component of the secondary magnetic field. Reconstruction of the current distribution is performed by deconvolution with regularization. Numerical modeling supported by the field experiments show that this approach is of direct practical relevance.

  20. Very large eddy simulation of the Red Sea overflow

    Science.gov (United States)

    Ilıcak, Mehmet; Özgökmen, Tamay M.; Peters, Hartmut; Baumert, Helmut Z.; Iskandarani, Mohamed

    Mixing between overflows and ambient water masses is a critical problem of deep-water mass formation in the downwelling branch of the meridional overturning circulation of the ocean. Modeling approaches that have been tested so far rely either on algebraic parameterizations in hydrostatic ocean circulation models, or on large eddy simulations that resolve most of the mixing using nonhydrostatic models. In this study, we examine the performance of a set of turbulence closures, that have not been tested in comparison to observational data for overflows before. We employ the so-called very large eddy simulation (VLES) technique, which allows the use of k-ɛ models in nonhydrostatic models. This is done by applying a dynamic spatial filtering to the k-ɛ equations. To our knowledge, this is the first time that the VLES approach is adopted for an ocean modeling problem. The performance of k-ɛ and VLES models are evaluated by conducting numerical simulations of the Red Sea overflow and comparing them to observations from the Red Sea Outflow Experiment (REDSOX). The computations are constrained to one of the main channels transporting the overflow, which is narrow enough to permit the use of a two-dimensional (and nonhydrostatic) model. A large set of experiments are conducted using different closure models, Reynolds numbers and spatial resolutions. It is found that, when no turbulence closure is used, the basic structure of the overflow, consisting of a well-mixed bottom layer (BL) and entraining interfacial layer (IL), cannot be reproduced. The k-ɛ model leads to unrealistic thicknesses for both BL and IL, while VLES results in the most realistic reproduction of the REDSOX observations.

  1. Toward a Mexican eddy covariance network for carbon cycle science

    Science.gov (United States)

    Vargas, Rodrigo; Yépez, Enrico A.

    2011-09-01

    First Annual MexFlux Principal Investigators Meeting; Hermosillo, Sonora, Mexico, 4-8 May 2011; The carbon cycle science community has organized a global network, called FLUXNET, to measure the exchange of energy, water, and carbon dioxide (CO2) between the ecosystems and the atmosphere using the eddy covariance technique. This network has provided unprecedented information for carbon cycle science and global climate change but is mostly represented by study sites in the United States and Europe. Thus, there is an important gap in measurements and understanding of ecosystem dynamics in other regions of the world that are seeing a rapid change in land use. Researchers met under the sponsorship of Red Temática de Ecosistemas and Consejo Nacional de Ciencia y Tecnologia (CONACYT) to discuss strategies to establish a Mexican eddy covariance network (MexFlux) by identifying researchers, study sites, and scientific goals. During the meeting, attendees noted that 10 study sites have been established in Mexico with more than 30 combined years of information. Study sites span from new sites installed during 2011 to others with 9 to 6 years of measurements. Sites with the longest span measurements are located in Baja California Sur (established by Walter Oechel in 2002) and Sonora (established by Christopher Watts in 2005); both are semiarid ecosystems. MexFlux sites represent a variety of ecosystem types, including Mediterranean and sarcocaulescent shrublands in Baja California; oak woodland, subtropical shrubland, tropical dry forest, and a grassland in Sonora; tropical dry forests in Jalisco and Yucatan; a managed grassland in San Luis Potosi; and a managed pine forest in Hidalgo. Sites are maintained with an individual researcher's funds from Mexican government agencies (e.g., CONACYT) and international collaborations, but no coordinated funding exists for a long-term program.

  2. Inverse source problems for eddy current equations

    International Nuclear Information System (INIS)

    Rodríguez, Ana Alonso; Valli, Alberto; Camaño, Jessika

    2012-01-01

    We study the inverse source problem for the eddy current approximation of Maxwell equations. As for the full system of Maxwell equations, we show that a volume current source cannot be uniquely identified by knowledge of the tangential components of the electromagnetic fields on the boundary, and we characterize the space of non-radiating sources. On the other hand, we prove that the inverse source problem has a unique solution if the source is supported on the boundary of a subdomain or if it is the sum of a finite number of dipoles. We address the applicability of this result for the localization of brain activity from electroencephalography and magnetoencephalography measurements. (paper)

  3. Under-ice eddy covariance flux measurements of heat, salt, momentum, and dissolved oxygen in an artificial sea ice pool

    DEFF Research Database (Denmark)

    Else, B. G T; Rysgaard, S.; Attard, K.

    2015-01-01

    as one possible cause of the high fluxes. Momentum fluxes showed interesting correlations with ice growth and melt but were generally higher than expected. We concluded that with the exception of the conductivity sensor, the eddy covariance system worked well, and that useful information about turbulent......Turbulent exchanges under sea ice play a controlling role in ice mass balance, ice drift, biogeochemistry, and mixed layer modification. In this study, we examined the potential to measure under-ice turbulent exchanges of heat, salt, momentum, and dissolved oxygen using eddy covariance...... in an experimental sea ice facility. Over a 15-day period in January 2013, an underwater eddy covariance system was deployed in a large (500 m3) inground concrete pool, which was filled with artificial seawater and exposed to the ambient (−5 to −30 °C) atmosphere. Turbulent exchanges were measured continuously...

  4. Recent Ship, Satellite and Autonomous Observations of Southern Ocean Eddies

    Science.gov (United States)

    Strutton, P. G.; Moreau, S.; Llort, J.; Phillips, H. E.; Patel, R.; Della Penna, A.; Langlais, C.; Lenton, A.; Matear, R.; Dawson, H.; Boyd, P. W.

    2016-12-01

    The Southern Ocean is the area of greatest uncertainty regarding the exchange of CO2 between the ocean and atmosphere. It is also a region of abundant energetic eddies that significantly impact circulation and biogeochemistry. In the Indian sector of the Southern Ocean, cyclonic eddies are unusual in that they are upwelling favorable, as for cyclonic eddies elsewhere, but during summer they are low in silicate and phytoplankton biomass. The reverse is true for anticyclonic eddies in that they have counter-intuitive positive chlorophyll anomalies in summer. Similar but less obvious patterns occur in the Pacific and Atlantic sectors. Using ship, satellite and autonomous observations in the region south of Australia, the physical and biogeochemical signatures of both types of eddies were documented in 2016. A cyclonic eddy that lived for seven weeks exhibited doming isopycnals indicative of upwelling. However, low surface silicate and chlorophyll concentrations appeared to be characteristic of surface waters to the south where the eddy formed. Higher chlorophyll was confined to filaments at the eddy edge. Surface nitrate and phosphate concentrations were more than sufficient for a bloom of non-siliceous phytoplankton to occur. Acoustic observations from a high resolution TRIAXUS transect through the eddy documented high zooplankton biomass in the upper 150m. It is hypothesized that a non-diatom bloom was prevented by grazing pressure, but light may have also been an important limiting resource in late summer (April). Two SOCCOM floats that were deployed in the eddy field continued to monitor the physics, nitrate and bio-optics through the transition to winter. These observations across complementary platforms have identified and then explained the reason for these unexpected biological anomalies in an energetic and globally important region of the global ocean. Understanding the role of eddies in this region will be critical to the representation of mesoscale

  5. Development of a 3D electromagnetic model for eddy current tubing inspection application to steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Maillot, V. [Institut de Radioprotection et de Surete Nucleaire, IRSN, 92 - Fontenay aux Roses (France); Pichenot, G.; Premel, D.; Sollier, T. [CEA Saclay, DRT/DECS, 91 - Gif-sur-Yvette (France)

    2003-10-01

    In nuclear plants, the inspection of heat exchanger tubes is usually carried out by using eddy current nondestructive testing. A numerical model, based on a volume integral approach using the Green's dyadic formalism, has been developed, with support from the French Institute for Radiological Protection and Nuclear Safety, to predict the response of an eddy current bobbin coil to 3D flaws located in the tube's wall. With an aim of integrating this model into the NDE multi techniques platform CIVA, it has been validated with experimental data for 2D and 3D flaws. (authors)

  6. Finite element circuit theory of the numerical code EDDYMULT for solving eddy current problems in a multi-torus system

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Ozeki, Takahisa

    1986-07-01

    The finite element circuit theory is extended to the general eddy current problem in a multi-torus system, which consists of various torus conductors and axisymmetric coil systems. The numerical procedures are devised to avoid practical restrictions of computer storage and computing time, that is, the reduction technique of eddy current eigen modes to save storage and the introduction of shape function into the double area integral of mode coupling to save time. The numerical code EDDYMULT based on the theory is developed to use in designing tokamak device from the viewpoints of the evaluation of electromagnetic loading on the device components and the control analysis of tokamak equilibrium. (author)

  7. Turbulent eddy diffusion models in exposure assessment - Determination of the eddy diffusion coefficient.

    Science.gov (United States)

    Shao, Yuan; Ramachandran, Sandhya; Arnold, Susan; Ramachandran, Gurumurthy

    2017-03-01

    The use of the turbulent eddy diffusion model and its variants in exposure assessment is limited due to the lack of knowledge regarding the isotropic eddy diffusion coefficient, D T . But some studies have suggested a possible relationship between D T and the air changes per hour (ACH) through a room. The main goal of this study was to accurately estimate D T for a range of ACH values by minimizing the difference between the concentrations measured and predicted by eddy diffusion model. We constructed an experimental chamber with a spatial concentration gradient away from the contaminant source, and conducted 27 3-hr long experiments using toluene and acetone under different air flow conditions (0.43-2.89 ACHs). An eddy diffusion model accounting for chamber boundary, general ventilation, and advection was developed. A mathematical expression for the slope based on the geometrical parameters of the ventilation system was also derived. There is a strong linear relationship between D T and ACH, providing a surrogate parameter for estimating D T in real-life settings. For the first time, a mathematical expression for the relationship between D T and ACH has been derived that also corrects for non-ideal conditions, and the calculated value of the slope between these two parameters is very close to the experimentally determined value. The values of D T obtained from the experiments are generally consistent with values reported in the literature. They are also independent of averaging time of measurements, allowing for comparison of values obtained from different measurement settings. These findings make the use of turbulent eddy diffusion models for exposure assessment in workplace/indoor environments more practical.

  8. Transport and accumulation of PVP-Hypericin in cancer and normal cells characterized by image correlation spectroscopy techniques.

    Science.gov (United States)

    Penjweini, Rozhin; Smisdom, Nick; Deville, Sarah; Ameloot, Marcel

    2014-05-01

    PVP-Hypericin (PVP: polyvinylpyrrolidone) is a potent anti-cancer photosensitizer for photodynamic diagnosis (PDD) and therapy (PDT). However, cellular targets and mechanisms involved in the cancer-selectivity of the photosensitizer are not yet fully understood. This paper gives new insights into the differential transport and localization of PVP-Hypericin in cancer and normal cells which are essential to unravel the mechanisms of action and cancer-selectivity. Temporal (TICS) and spatiotemporal (STICS) image correlation spectroscopy are used for the assessment of PVP-Hypericin diffusion and/or velocity in the case of concerted flow in human cervical epithelial HeLa and human lung carcinoma A549 cells, as well as in human primary dendritic cells (DC) and human peripheral blood mononuclear cells (PBMC). Spatiotemporal image cross-correlation spectroscopy (STICCS) based on organelle specific fluorescent labeling is employed to study the accumulation of the photosensitizer in nucleus, mitochondria, early-endosomes and lysosomes of the cells and to assess the dynamics of co-migrating molecules. Whereas STICS and TICS did not show a remarkable difference between the dynamics of PVP-Hypericin in HeLa, A549 and DC cells, a significantly different diffusion rate of the photosensitizer was measured in PBMC. STICCS detected a stationary accumulation of PVP-Hypericin within the nucleus, mitochondria, early endosomes and lysosomes of HeLa and A549 cells. However, significant flow due to the directed motion of the organelles was detected. In contrast, no accumulation in the nucleus and mitochondria of DC and PBMC could be monitored. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. An efficient 3-D eddy-current solver using an independent impedance method for transcranial magnetic stimulation.

    Science.gov (United States)

    De Geeter, Nele; Crevecoeur, Guillaume; Dupre, Luc

    2011-02-01

    In many important bioelectromagnetic problem settings, eddy-current simulations are required. Examples are the reduction of eddy-current artifacts in magnetic resonance imaging and techniques, whereby the eddy currents interact with the biological system, like the alteration of the neurophysiology due to transcranial magnetic stimulation (TMS). TMS has become an important tool for the diagnosis and treatment of neurological diseases and psychiatric disorders. A widely applied method for simulating the eddy currents is the impedance method (IM). However, this method has to contend with an ill conditioned problem and consequently a long convergence time. When dealing with optimal design problems and sensitivity control, the convergence rate becomes even more crucial since the eddy-current solver needs to be evaluated in an iterative loop. Therefore, we introduce an independent IM (IIM), which improves the conditionality and speeds up the numerical convergence. This paper shows how IIM is based on IM and what are the advantages. Moreover, the method is applied to the efficient simulation of TMS. The proposed IIM achieves superior convergence properties with high time efficiency, compared to the traditional IM and is therefore a useful tool for accurate and fast TMS simulations.

  10. Gap-filling eddy-covariance data using a complex system of neural networks

    Science.gov (United States)

    Dúbrava, Matúš; Rebok, Tomáš; Havránková, Kateřina; Pavelka, Marian

    2014-05-01

    The eddy-covariance technique measures the flux of matter and energy between various ecosystems and the atmosphere. The fluxes characterize an interaction of the ecosystems with their surroundings and provide valuable knowledge to Global Climate Change issues. Among the main assets of the method belongs the possible evaluation of the carbon balance, expressed as the Net Ecosystem carbon Exchange (NEE) parameter. However, when unfavorable micro-meteorological conditions (e.g., stable stratification and low turbulent mixing) happen, measured fluxes are inaccurate and need to be corrected and/or gap-filled. Thus, there is a long-term challenge for many research teams from the flux community to develop the most accurate gap-filling method -- many statistical as well as empirical approaches have been proposed so far (e.g., mean replacement, interpolation, extrapolation, regression analysis, methods based on plant physiology depending on meteorological variables, etc.), each of them having its strengths and weaknesses. The artificial neural networks (ANNs) -- purely empirical non-linear regression models generally able to solve any fitness approximation and pattern recognition problem -- were proven as a promising approach and one of the most precise method for gap-filling the eddy-covariance data. However, even though providing encouraging results when considering a prediction error throughout the whole dataset, they considerably fail in fitting inherently present spikes in the NEE values. This drawback results from the nature of ANNs, since their ability to fit spikes is partly in contrast with their ability to reliably approximate previously unseen data -- while the spike fitting can be improved by an increasing number of training epochs, this often leads to ANNs over-fitting and thus losing their generalization ability, resulting in higher overall prediction error. Since the proper generalization ability has greater impact on the precision of the results, current

  11. Eddy current testing of composite pressure vessels

    Science.gov (United States)

    Casperson, R.; Pohl, R.; Munzke, D.; Becker, B.; Pelkner, M.

    2018-04-01

    The use of composite pressure vessels instead of conventional vessels made of steel or aluminum grew strongly over the last decade. The reason for this trend is the tremendous weight saving in the case of composite vessels. However, the long-time behavior is not fully understood for filling and discharging cycles and creep strength and their influence on the CFRP coating (carbon fiber reinforced plastics) and the internal liner (steel, aluminum, or plastics). The CFRP ensures the pressure resistance while the inner liner is used as a container for liquid or gas. To overcome the missing knowledge of aging, BAM started an internal project to investigate degradation of these material systems. Therefore, applicable testing methods like eddy current testing are needed. Normally, high-frequency eddy current testing (HF-ET, f > 10 MHz) is deployed for CFRP due to its low conductivity of the fiber, which is in the order of 0.01 MS/s, and the capacitive coupling between the fibers. Nevertheless, in some cases conventional ET can be applied. We show a concise summary of studies on the application of conventional ET of composite pressure vessels.

  12. Large-Eddy Simulation of Subsonic Jets

    International Nuclear Information System (INIS)

    Vuorinen, Ville; Wehrfritz, Armin; Yu Jingzhou; Kaario, Ossi; Larmi, Martti; Boersma, Bendiks Jan

    2011-01-01

    The present study deals with development and validation of a fully explicit, compressible Runge-Kutta-4 (RK4) Navier-Stokes solver in the opensource CFD programming environment OpenFOAM. The background motivation is to shift towards explicit density based solution strategy and thereby avoid using the pressure based algorithms which are currently proposed in the standard OpenFOAM release for Large-Eddy Simulation (LES). This shift is considered necessary in strongly compressible flows when Ma > 0.5. Our application of interest is related to the pre-mixing stage in direct injection gas engines where high injection pressures are typically utilized. First, the developed flow solver is discussed and validated. Then, the implementation of subsonic inflow conditions using a forcing region in combination with a simplified nozzle geometry is discussed and validated. After this, LES of mixing in compressible, round jets at Ma = 0.3, 0.5 and 0.65 are carried out. Respectively, the Reynolds numbers of the jets correspond to Re = 6000, 10000 and 13000. Results for two meshes are presented. The results imply that the present solver produces turbulent structures, resolves a range of turbulent eddy frequencies and gives also mesh independent results within satisfactory limits for mean flow and turbulence statistics.

  13. Mesoscale eddies are oases for higher trophic marine life

    KAUST Repository

    Godø , Olav R.; Samuelsen, Annette; Macaulay, Gavin J.; Patel, Ruben; Hjø llo, Solfrid Sæ tre; Horne, John; Kaartvedt, Stein; Johannessen, Johnny A.

    2012-01-01

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. 2012 God et al.

  14. Automatic analysis of signals during Eddy currents controls

    International Nuclear Information System (INIS)

    Chiron, D.

    1983-06-01

    A method and the corresponding instrument have been developed for automatic analysis of Eddy currents testing signals. This apparatus enables at the same time the analysis, every 2 milliseconds, of two signals at two different frequencies. It can be used either on line with an Eddy Current testing instrument or with a magnetic tape recorder [fr

  15. Mesoscale eddies are oases for higher trophic marine life.

    Directory of Open Access Journals (Sweden)

    Olav R Godø

    Full Text Available Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life.

  16. Mesoscale eddies are oases for higher trophic marine life

    KAUST Repository

    Godø, Olav R.

    2012-01-17

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. 2012 God et al.

  17. Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2013-01-01

    The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...

  18. Signal processing of eddy current three-dimensional maps

    International Nuclear Information System (INIS)

    Birac, C.; David, D.; Lamant, D.

    1987-01-01

    Digital processing of eddy current three-dimensional maps improves accuracy of detection: flattening, filtering, computing deconvolution, mapping new variables,.., give new possibilities for difficult test problems. With simulation of defects, probes, probe travels, it is now possible to compute new eddy current processes, without machining defects or building probes

  19. Eddy energy sources and flux in the Red Sea

    KAUST Repository

    Zhan, Peng; Subramanian, Aneesh C.; Kartadikaria, Aditya R.; Hoteit, Ibrahim

    2015-01-01

    the basin and by pumping the nutrient-enriched subsurface water to sustain the primary production. Previous observations and modeling work suggest that the Red Sea is rich of eddy activities. In this study, the eddy energy sources and sinks have been studied

  20. Experimental measurements of the eddy current signal due to a flawed, conducting half space

    International Nuclear Information System (INIS)

    Long, S.A.; Toomsawasdi, S.; Zaman, A.J.M.

    1984-01-01

    This chapter reports on an experimental investigation in which the change in impedance of a practical multi-turn eddy current coil near a conducting half space is measured as a function of the conductivity and the lift-off distance. The results are compared in a qualitative fashion with the analytical results for a single-turn coil. Measurements are also made of the change in impedance due to a small void in the conducting half space as a function of both its depth and radial position. The results indicate that, at least in a qualitative fashion, the precisely derived analytical solutions adequately predict the general behavior of the change in complex impedance of an eddy current coil above a conducting ground plane as a function of lift-off distance. It is determined that the effect of a sub-surface void on the change in inductance of the test coil correlates well with theoretical calculations

  1. Dynamic subgrid scale model of large eddy simulation of cross bundle flows

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Barsamian, H.R.

    1996-01-01

    The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization

  2. Evaluation of a scatter correlation technique for single photon transmission measurements in PET by means of Monte Carlo simulations

    International Nuclear Information System (INIS)

    Wegmann, K.; Brix, G.

    2000-01-01

    Purpose: Single photon transmission (SPT) measurements offer a new approach for the determination of attenuation correction factors (ACF) in PET. It was the aim of the present work, to evaluate a scatter correction alogrithm proposed by C. Watson by means of Monte Carlo simulations. Methods: SPT measurements with a Cs-137 point source were simulated for a whole-body PET scanner (ECAT EXACT HR + ) in both the 2D and 3D mode. To examine the scatter fraction (SF) in the transmission data, the detected photons were classified as unscattered or scattered. The simulated data were used to determine (i) the spatial distribution of the SFs, (ii) an ACF sinogram from all detected events (ACF tot ) and (iii) from the unscattered events only (ACF unscattered ), and (iv) an ACF cor =(ACF tot ) 1+Κ sinogram corrected according to the Watson algorithm. In addition, density images were reconstructed in order to quantitatively evaluate linear attenuation coefficients. Results: A high correlation was found between the SF and the ACF tot sinograms. For the cylinder and the EEC phantom, similar correction factors Κ were estimated. The determined values resulted in an accurate scatter correction in both the 2D and 3D mode. (orig.) [de

  3. Perturbative triples correction for local pair natural orbital based explicitly correlated CCSD(F12*) using Laplace transformation techniques.

    Science.gov (United States)

    Schmitz, Gunnar; Hättig, Christof

    2016-12-21

    We present an implementation of pair natural orbital coupled cluster singles and doubles with perturbative triples, PNO-CCSD(T), which avoids the quasi-canonical triples approximation (T0) where couplings due to off-diagonal Fock matrix elements are neglected. A numerical Laplace transformation of the canonical expression for the perturbative (T) triples correction is used to avoid an I/O and storage bottleneck for the triples amplitudes. Results for a test set of reaction energies show that only very few Laplace grid points are needed to obtain converged energy differences and that PNO-CCSD(T) is a more robust approximation than PNO-CCSD(T0) with a reduced mean absolute deviation from canonical CCSD(T) results. We combine the PNO-based (T) triples correction with the explicitly correlated PNO-CCSD(F12*) method and investigate the use of specialized F12-PNOs in the conventional triples correction. We find that no significant additional errors are introduced and that PNO-CCSD(F12*)(T) can be applied in a black box manner.

  4. Optimisation of sea surface current retrieval using a maximum cross correlation technique on modelled sea surface temperature

    Science.gov (United States)

    Heuzé, Céline; Eriksson, Leif; Carvajal, Gisela

    2017-04-01

    Using sea surface temperature from satellite images to retrieve sea surface currents is not a new idea, but so far its operational near-real time implementation has not been possible. Validation studies are too region-specific or uncertain, due to the errors induced by the images themselves. Moreover, the sensitivity of the most common retrieval method, the maximum cross correlation, to the three parameters that have to be set is unknown. Using model outputs instead of satellite images, biases induced by this method are assessed here, for four different seas of Western Europe, and the best of nine settings and eight temporal resolutions are determined. For all regions, tracking a small 5 km pattern from the first image over a large 30 km region around its original location on a second image, separated from the first image by 6 to 9 hours returned the most accurate results. Moreover, for all regions, the problem is not inaccurate results but missing results, where the velocity is too low to be picked by the retrieval. The results are consistent both with limitations caused by ocean surface current dynamics and with the available satellite technology, indicating that automated sea surface current retrieval from sea surface temperature images is feasible now, for search and rescue operations, pollution confinement or even for more energy efficient and comfortable ship navigation.

  5. Effect of the surface film electric resistance on eddy current detectability of surface cracks in Alloy 600 tubes

    International Nuclear Information System (INIS)

    Saario, T.; Paine, J.P.N.

    1995-01-01

    The most widely used technique for NDE of steam generator tubing is eddy current. This technique can reliably detect cracks grown in sodium hydroxide environment only at depths greater than 50% through wall. However, cracking caused by thiosulphate solutions have been detected and sized at shallower depths. The disparity has been proposed to be caused by the different electric resistance of the crack wall surface films and corrosion products in the cracks formed in different environments. This work was undertaken to clarify the role of surface film electric resistance on the disparity found in eddy current detectability of surface cracks in alloy 600 tubes. The proposed model explaining the above mentioned disparity is the following. The detectability of tightly closed cracks by the eddy current technique depends on the electric resistance of the surface films of the crack walls. The nature and resistance of the films which form on the crack walls during operation depends on the composition of the solution inside the crack and close to the crack location. During cooling down of the steam generator, because of contraction and loss of internal pressurization, the cracks are rather tightly closed so that exchange of electrolyte and thus changes in the film properties become difficult. As a result, the surface condition prevailing at high temperature is preserved. If the environment is such that the films formed on the crack walls under operating conditions have low electric resistance, eddy current technique will fail to indicate these cracks or will underestimate the size of these cracks. However, if the electric resistance of the films is high, a tightly closed crack will resemble an open crack and will be easily indicated and correctly sized by eddy current technique

  6. Analysis of thermal fluctuations in the semiscale tests to determine flow transit delay times using a transfer function cross-correlation technique

    International Nuclear Information System (INIS)

    Raptis, A.C.; Popper, G.F.

    1977-08-01

    On April 14, 1976, EG and G performed the Semiscale Blowdown 29-1 experiment to try to establish the feasibility of using a transit time flowmeter (TTF) to measure transient blowdown two-phase flow rates. The recorded signals from that experiment were made available to and analyzed by the Argonne National Laboratory using the transfer function cross-correlation technique. The theoretical background for the transfer function method of analysis and the results of the data analysis are presented. Histograms of transit time during the blowdown are shown and topics for further investigation are identified

  7. Development of eddy current probe for fiber orientation assessment in carbon fiber composites

    Science.gov (United States)

    Wincheski, Russell A.; Zhao, Selina

    2018-04-01

    Measurement of the fiber orientation in a carbon fiber composite material is crucial in understanding the load carrying capability of the structure. As manufacturing conditions including resin flow and molding pressures can alter fiber orientation, verification of the as-designed fiber layup is necessary to ensure optimal performance of the structure. In this work, the development of an eddy current probe and data processing technique for analysis of fiber orientation in carbon fiber composites is presented. A proposed directional eddy current probe is modeled and its response to an anisotropic multi-layer conductor simulated. The modeling results are then used to finalize specifications of the eddy current probe. Experimental testing of the fabricated probe is presented for several samples including a truncated pyramid part with complex fiber orientation draped to the geometry for resin transfer molding. The inductively coupled single sided measurement enables fiber orientation characterization through the thickness of the part. The fast and cost-effective technique can be applied as a spot check or as a surface map of the fiber orientations across the structure. This paper will detail the results of the probe design, computer simulations, and experimental results.

  8. Regional cerebral blood flow (RCBF) measurements by SPECT analysis of Xenon-133 transit: Validation of technique and clinical correlation

    International Nuclear Information System (INIS)

    Rezai, K.; Kirchner, P.; Armstrong, C.; Ehrhardt, J.; Damasio, H.; Adams, H.; Damasio, A.

    1984-01-01

    The SPECT system (Tomomatic-64) developed by a previous study for rCBF measurements with Xe-133 was validated with phantom simulations and clinical studies. A bi-compartmental flow phantom was developed consisting of a Xenon-133 pump connected in series to head and lung compartments. Flow rates between 0.2 and 1.4 brain volumes/min (20-140 cc/100ml/min) were tested against Tomomatic measurements by linear regression. Correlation was excellent (r=1.0) in the range of 0.2-1.2 (20-120 cc/100ml/min), representing flow rates which are most likely to be encountered in clinical studies. Flow rates above 1.2 (120 cc/100 ml/min) were significantly underestimated. 32 studies on 20 volunteers gave a mean normal flow of 72 (SD=12) cc/ 100g/min. Mean regional flow ranged from 62 in frontal lobes to 75 in central gray matter. Right-to-left variation was less than 5%. The lowest regional flow in a normal subject was 45 cc/100g/min. 68 studies were performed on 30 stroke patients. In 27 rCBF was less than 45 in affected brain areas for a sensitivity of 90% which improved to 97% when comparisons with contralateral brain were included. Initial CT scans were normal or non-diagnostic in 10, but showed CVA's in regions of reduced rCBF in 17 patients. rCBF abnormalities involved greater portions of brain than CT changes, often (8/17) including distant regions, unpredicted by CT or clinical studies but known to be strongly interconnected to the area of structural damage. SPECT estimates of rCBF appear to be a sensitive research and diagnostic tool and complement the structural information provided by CT

  9. Coupling method of magnetic memory and eddy current nondestructive testing for retired crankshafts

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Chen; Hua, Lin; Wang, Xiaokai; Wang, Zhou; Qin, Xunpeng; Fang, Zhou [Wuhan University of Technology, Wuhan (Korea, Republic of)

    2016-07-15

    To verify the validity of the Coupling method of magnetic memory and eddy current (CMMEC) testing for crankshafts, we use this technique to test a 12-cylinder V-design diesel crankshaft. First, the stress distribution in the crankshaft was obtained under 12 working conditions using a Finite element (FE) model that complied with the commercial FE code ABAQUS. Second, Magnetic memory testing (MMT) and Eddy current testing (ECT) were adopted to detect the regions of stress concentration in the crankshaft and the specific location of cracks based on simulation results. Lastly, magnetic particle testing was conducted to detect and display the corresponding crack to verify the CMMEC testing results. The MMT and ECT results can provide basis and guidance for the remanufacture and life evaluation of retired crankshafts.

  10. Eddy Covariance Measurements of Methane Flux at a Tropical Peat Forest in Sarawak, Malaysian Borneo

    Science.gov (United States)

    Tang, Angela C. I.; Stoy, Paul C.; Hirata, Ryuichi; Musin, Kevin K.; Aeries, Edward B.; Wenceslaus, Joseph; Melling, Lulie

    2018-05-01

    Tropical biogenic sources are a likely cause of the recent increase in global atmospheric methane concentration. To improve our understanding of tropical methane sources, we used the eddy covariance technique to measure CH4 flux (FCH4) between a tropical peat forest ecosystem and the atmosphere in Malaysian Borneo over a 2-month period during the wet season. Mean daily FCH4 during the measurement period, on the order of 0.024 g C-CH4·m-2·day-1, was similar to eddy covariance FCH4 measurements from tropical rice agroecosystems and boreal fen ecosystems. A linear modeling analysis demonstrated that air temperature (Tair) was critical for modeling FCH4 before the water table breached the surface and that water table alone explained some 20% of observed FCH4 variability once standing water emerged. Future research should measure FCH4 on an annual basis from multiple tropical ecosystems to better constrain tropical biogenic methane sources.

  11. Large eddy simulation of mixing between hot and cold sodium flows - comparison with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Simoneau, J.P.; Noe, H.; Menant, B.

    1995-09-01

    The large eddy simulation is becoming a potential powerful tool for the calculation of turbulent flows. In nuclear liquid metal cooled fast reactors, the knowledge of the turbulence characteristics is of great interest for the prediction and the analysis of thermal stripping phenomena. The objective of this paper is to give a contribution in the evaluation of the large eddy simulation technique is an individual case. The problem chosen is the case of the mixing between hot and cold sodium flows. The computations are compared with available sodium tests. This study shows acceptable qualitative results but the simple model used is not able to predict the turbulence characteristics. More complex models including larger domains around the fluctuating zone and fluctuating boundary conditions could be necessary. Validation works are continuing.

  12. Coupling method of magnetic memory and eddy current nondestructive testing for retired crankshafts

    International Nuclear Information System (INIS)

    Ni, Chen; Hua, Lin; Wang, Xiaokai; Wang, Zhou; Qin, Xunpeng; Fang, Zhou

    2016-01-01

    To verify the validity of the Coupling method of magnetic memory and eddy current (CMMEC) testing for crankshafts, we use this technique to test a 12-cylinder V-design diesel crankshaft. First, the stress distribution in the crankshaft was obtained under 12 working conditions using a Finite element (FE) model that complied with the commercial FE code ABAQUS. Second, Magnetic memory testing (MMT) and Eddy current testing (ECT) were adopted to detect the regions of stress concentration in the crankshaft and the specific location of cracks based on simulation results. Lastly, magnetic particle testing was conducted to detect and display the corresponding crack to verify the CMMEC testing results. The MMT and ECT results can provide basis and guidance for the remanufacture and life evaluation of retired crankshafts.

  13. Predicting deep percolation with eddy covariance under mulch drip irrigation

    Science.gov (United States)

    Ming, Guanghui; Tian, Fuqiang; Hu, Hongchang

    2016-04-01

    Water is essential for the agricultural development and ecological sustainability of the arid and semi-arid oasis with rare precipitation input and high evaporation demand. Deep percolation (DP) defined as excess irrigation water percolating below the plant root zone will reduce irrigation water use efficiency (WUE). But the DP was often ignored in mulch drip irrigation (MDI) which has reached the area of 1.6 million hectares in Xinjiang, the northwest of China. In this study DP experiments were conducted at an agricultural experiment station located within an irrigation district in the Tarim River Basin for four cotton growing periods. First it was detected the irrigation water infiltrated into the soil layers below 100cm and the groundwater level responded to the irrigation events well. Then DP below 100cm soil layers was calculated using the soil water balance method with the aid of eddy covariance (with the energy balance closure of 0.72). The negative DP (groundwater contribution to the crop-water use through capillary rising) at the seedling and harvesting stages can reach 77mm and has a good negative correlation with the groundwater level and positive correlation with potential evaporation. During the drip irrigation stage approximately 45% of the irrigation became DP and resulted in the low irrigation WUE of 0.6. The DP can be 164mm to 270mm per year which was positive linearly correlated to irrigation depth and negative linear correlated to irrigation interval. It is better to establish the irrigation schedule with small irrigation depth and given frequently to reduce deep percolation and meet crop needs.

  14. Improved eddy-current inspection for steam generator tubing

    International Nuclear Information System (INIS)

    Dodd, C.V.; Pate, J.R.; Allen, J.D. Jr.

    1989-01-01

    Computer programs have been written to allow the analysis of different types of eddy-current probes and their performance under different steam generator test conditions. The probe types include the differential bobbin probe, the absolute bobbin probe, the pancake probe and the reflection probe. The generator test conditions include tube supports, copper deposits, magnetite deposits, denting, wastage, pitting, cracking and IGA. These studies are based mostly on computed values, with the limited number of test specimens available used to verify the computed results. The instrument readings were computed for a complete matrix of the different test conditions, and then the test conditions determined as a function of the readings by a least-squares technique. A comparison was made of the errors in fit and instrument drift for the different probe types. The computations of the change in instrument reading due to the defects have led to an ''inversion'' technique in which the defect properties can be computed from the instrument readings. This has been done both experimentally and analytically for each of these probe types. 3 refs., 13 figs., 1 tab

  15. The Correlation of Cardiac and Hepatic Hemosiderosis as Measured by T2*MRI Technique with Ferritin Levels and Hemochromatosis Gene Mutations in Iranian Patients with Beta Thalassemia Major

    Directory of Open Access Journals (Sweden)

    Mohammad Soleiman Soltanpour

    2018-01-01

    Full Text Available Objectives: Organ-specific hemosiderosis and iron overload complications are more serious and more frequent in some patients with beta thalassemia major (BTM compared with others. We investigated whether coinheritance of HFE H63D or C282Y gene mutations in patients with BTM contributes to the phenotypic variation of iron overload complications and assessed the correlation of cardiac and hepatic hemosiderosis with plasma ferritin levels. Methods: We studied 60 patients with BTM with a mean age of 17.5±9.1 years from the Northwest of Iran. HFE gene mutations were analyzed using the polymerase chain reaction-restriction fragment length polymorphism method. Cardiac and hepatic hemosiderosis was assessed using T2*magnetic resonance imaging (MRI. Ferritin levels were measured using the enzyme immunoassay method. Results: Ferritin levels showed a strong inverse correlation with hepatic T2*MRI values (r = -0.631, p = 0.001 but a poor correlation with cardiac T2*MRI values (r = -0.297, p = 0.044. The correlation between cardiac T2*MRI values and hepatic T2*MRI values was poor and insignificant (r = 0.287, p = 0.058. Genotype and allele distribution of HFE H63D and C282Y mutation did not differ significantly between patients with and without hepatic or cardiac hemosiderosis (p > 0.050. However, carriers of HFE 63D allele had significantly higher ferritin levels compared with non-carriers (1 903±993 vs. 992±683, p < 0.001. Conclusions: Cardiac T2*MRI values showed a poor correlation with hepatic T2*MRI values and ferritin levels. Accurate assessment of cardiac iron overload in patients with BTM can only be done using the T2*MRI technique. Additionally, HFE H63D is a significant determinant factor for elevated ferritin levels in BTM patients.

  16. Validation of diffuse correlation spectroscopy sensitivity to nicotinamide-induced blood flow elevation in the murine hindlimb using the fluorescent microsphere technique

    Science.gov (United States)

    Proctor, Ashley R.; Ramirez, Gabriel A.; Han, Songfeng; Liu, Ziping; Bubel, Tracy M.; Choe, Regine

    2018-03-01

    Nicotinamide has been shown to affect blood flow in both tumor and normal tissues, including skeletal muscle. Intraperitoneal injection of nicotinamide was used as a simple intervention to test the sensitivity of noninvasive diffuse correlation spectroscopy (DCS) to changes in blood flow in the murine left quadriceps femoris skeletal muscle. DCS was then compared with the gold-standard fluorescent microsphere (FM) technique for validation. The nicotinamide dose-response experiment showed that relative blood flow measured by DCS increased following treatment with 500- and 1000-mg / kg nicotinamide. The DCS and FM technique comparison showed that blood flow index measured by DCS was correlated with FM counts quantified by image analysis. The results of this study show that DCS is sensitive to nicotinamide-induced blood flow elevation in the murine left quadriceps femoris. Additionally, the results of the comparison were consistent with similar studies in higher-order animal models, suggesting that mouse models can be effectively employed to investigate the utility of DCS for various blood flow measurement applications.

  17. Comparison of optical beam smoothing techniques for inertial confinement fusion and improvement of smoothing by the use of zero-correlation masks

    International Nuclear Information System (INIS)

    Lehmberg, R. H.; Rothenberg, J. E.

    2000-01-01

    We present analytic theory and numerical simulations comparing the optical beam smoothing capabilities of the smoothing by spectral dispersion (SSD) technique using random temporal phase modulation, with that of the induced spatial incoherence technique. The analytic theory provides a simple formula for the SSD mode spectrum in the usual case where the phase mask at the focusing lens is random, and its asymptotic limit quantitatively relates the long wavelength mode smoothing to the width of the angular dispersion. With parameters and phase aberration relevant to the National Ignition Facility beams, the SSD simulations show that the large long wavelength components, which are also found in earlier simulations, can be significantly reduced by replacing the independent random phase masks in each pair of adjacent beams by a conjugate pair of zero-correlation masks. These simulations suggest that one can combine zero-correlation masks with random temporal phase modulation and multiple color cycles to achieve SSD smoothing approaching the optical bandwidth limit at all spatial frequencies, without using large angular dispersions. (c) 2000 American Institute of Physics

  18. Large eddy simulation of cavitating flows

    Science.gov (United States)

    Gnanaskandan, Aswin; Mahesh, Krishnan

    2014-11-01

    Large eddy simulation on unstructured grids is used to study hydrodynamic cavitation. The multiphase medium is represented using a homogeneous equilibrium model that assumes thermal equilibrium between the liquid and the vapor phase. Surface tension effects are ignored and the governing equations are the compressible Navier Stokes equations for the liquid/vapor mixture along with a transport equation for the vapor mass fraction. A characteristic-based filtering scheme is developed to handle shocks and material discontinuities in non-ideal gases and mixtures. A TVD filter is applied as a corrector step in a predictor-corrector approach with the predictor scheme being non-dissipative and symmetric. The method is validated for canonical one dimensional flows and leading edge cavitation over a hydrofoil, and applied to study sheet to cloud cavitation over a wedge. This work is supported by the Office of Naval Research.

  19. Large eddy simulation of hydrodynamic cavitation

    Science.gov (United States)

    Bhatt, Mrugank; Mahesh, Krishnan

    2017-11-01

    Large eddy simulation is used to study sheet to cloud cavitation over a wedge. The mixture of water and water vapor is represented using a homogeneous mixture model. Compressible Navier-Stokes equations for mixture quantities along with transport equation for vapor mass fraction employing finite rate mass transfer between the two phases, are solved using the numerical method of Gnanaskandan and Mahesh. The method is implemented on unstructured grid with parallel MPI capabilities. Flow over a wedge is simulated at Re = 200 , 000 and the performance of the homogeneous mixture model is analyzed in predicting different regimes of sheet to cloud cavitation; namely, incipient, transitory and periodic, as observed in the experimental investigation of Harish et al.. This work is supported by the Office of Naval Research.

  20. Large-eddy simulation of contrails

    Energy Technology Data Exchange (ETDEWEB)

    Chlond, A [Max-Planck-Inst. fuer Meteorologie, Hamburg (Germany)

    1998-12-31

    A large eddy simulation (LES) model has been used to investigate the role of various external parameters and physical processes in the life-cycle of contrails. The model is applied to conditions that are typical for those under which contrails could be observed, i.e. in an atmosphere which is supersaturated with respect to ice and at a temperature of approximately 230 K or colder. The sensitivity runs indicate that the contrail evolution is controlled primarily by humidity, temperature and static stability of the ambient air and secondarily by the baroclinicity of the atmosphere. Moreover, it turns out that the initial ice particle concentration and radiative processes are of minor importance in the evolution of contrails at least during the 30 minutes simulation period. (author) 9 refs.

  1. Scaling relations for eddy current phenomena

    International Nuclear Information System (INIS)

    Dodd, C.V.; Deeds, W.E.

    1975-11-01

    Formulas are given for various electromagnetic quantities for coils in the presence of conductors, with the scaling parameters factored out so that small-scale model experiments can be related to large-scale apparatus. Particular emphasis is given to such quantities as eddy current heating, forces, power, and induced magnetic fields. For axially symmetric problems, closed-form integrals are available for the vector potential and all the other quantities obtainable from it. For unsymmetrical problems, a three-dimensional relaxation program can be used to obtain the vector potential and then the derivable quantities. Data on experimental measurements are given to verify the validity of the scaling laws for forces, inductances, and impedances. Indirectly these also support the validity of the scaling of the vector potential and all of the other quantities obtained from it

  2. Large eddy simulation of breaking waves

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Deigaard, Rolf

    2001-01-01

    A numerical model is used to simulate wave breaking, the large scale water motions and turbulence induced by the breaking process. The model consists of a free surface model using the surface markers method combined with a three-dimensional model that solves the flow equations. The turbulence....... The incoming waves are specified by a flux boundary condition. The waves are approaching in the shore-normal direction and are breaking on a plane, constant slope beach. The first few wave periods are simulated by a two-dimensional model in the vertical plane normal to the beach line. The model describes...... the steepening and the overturning of the wave. At a given instant, the model domain is extended to three dimensions, and the two-dimensional flow field develops spontaneously three-dimensional flow features with turbulent eddies. After a few wave periods, stationary (periodic) conditions are achieved...

  3. Eddy current technologies for thick metal structures

    International Nuclear Information System (INIS)

    Takagi, Toshiyuki; Endo, Hisashi

    2004-01-01

    One of approach of an eddy current testing (ECT) for thick metal structures is introduced. The detection limit of ECT is capable of enlarging thick more than 10 mm, which is ordinarily about 5 mm, by the design of probe. On the basis of results of numerical analysis, the defect detection in thick and shape is evaluated by the distribution of experimental ECT signals. The problems of ECT for thick metal structures and measures, approach to probe design, the specifications of probe, evaluation of experimental results and defect detection are described. By ECT fast simulator, good slit sharp is simulated in the case of 10 and 20 mm of EDM slit length and 5, 10 and 15 mm of slit height. (S.Y.)

  4. Large-eddy simulation of contrails

    Energy Technology Data Exchange (ETDEWEB)

    Chlond, A. [Max-Planck-Inst. fuer Meteorologie, Hamburg (Germany)

    1997-12-31

    A large eddy simulation (LES) model has been used to investigate the role of various external parameters and physical processes in the life-cycle of contrails. The model is applied to conditions that are typical for those under which contrails could be observed, i.e. in an atmosphere which is supersaturated with respect to ice and at a temperature of approximately 230 K or colder. The sensitivity runs indicate that the contrail evolution is controlled primarily by humidity, temperature and static stability of the ambient air and secondarily by the baroclinicity of the atmosphere. Moreover, it turns out that the initial ice particle concentration and radiative processes are of minor importance in the evolution of contrails at least during the 30 minutes simulation period. (author) 9 refs.

  5. A comparison of the structure, properties, and water mass composition of quasi-isotropic eddies in western boundary currents in an eddy-resolving ocean model

    Science.gov (United States)

    Rykova, Tatiana; Oke, Peter R.; Griffin, David A.

    2017-06-01

    Using output from a near-global eddy-resolving ocean model, we analyse the properties and characteristics of quasi-isotropic eddies in five Western Boundary Current (WBC) regions, including the extensions of the Agulhas, East Australian Current (EAC), Brazil-Malvinas Confluence (BMC), Kuroshio and Gulf Stream regions. We assess the model eddies by comparing to satellite and in situ observations, and show that most aspects of the model's representation of eddies are realistic. We find that the mean eddies differ dramatically between these WBC regions - all with some unique and noteworthy characteristics. We find that the vertical displacement of isopycnals of Agulhas eddies is the greatest, averaging 350-450 m at depths of over 800-900 m. EAC (BMC) eddies are the least (most) barotropic, with only 50% (85-90%) of the velocity associated with the barotropic mode. Kuroshio eddies are the most stratified, resulting in small isopycnal displacement, even for strong eddies; and Gulf Stream eddies carry the most heat. Despite their differences, we explicitly show that the source waters for anticyclonic eddies are a mix of the WBC water (from the boundary current itself) and water that originates equatorward of the WBC eddy-field; and cyclonic eddies are a mix of WBC water and water that originates poleward of the WBC eddy-field.

  6. Lumbar epidural depth using transverse ultrasound scan and its correlation with loss of resistance technique: A prospective observational study in Indian population.

    Science.gov (United States)

    Chauhan, Amit Kumar; Bhatia, Rohan; Agrawal, Sanjay

    2018-01-01

    The objective of the present study was to evaluate the skin-epidural space distance as assessed by ultrasonography and conventional loss of resistance (LOR) technique and to find the correlation of epidural depth with body mass index (BMI). Ninety-eight patients of either sex, American Society of Anesthesiology I/II, BMI transverse plane at L3-L4 intervertebral space. Thereafter, the epidural depth from skin was assessed with conventional LOR method while performing the epidural. The needle depth (ND) was measured using a sterile linear scale, and any change in the needle direction or intervertebral space was noted. The patients were demographically similar. Depth of epidural space measured by US depth (UD) was 3.96 ± 0.44 cm (range 3.18-5.44 cm) and by ND was 4.04 ± 0.52 cm (range 2.7-5.7 cm). The Pearson's correlation coefficient (r) between UD and ND was 0.935 (95% confidence interval: 0.72-0.92, r 2 = 0.874, P study demonstrates a good correlation between UD and ND and shows that the preprocedural US scan in transverse plane provides accurate needle entry site with a high success rate in single attempt for lumbar epidurals in patients with a BMI <30 kg/m 2 .

  7. Internal and forced eddy variability in the Labrador Sea

    Science.gov (United States)

    Bracco, A.; Luo, H.; Zhong, Y.; Lilly, J.

    2009-04-01

    Water mass transformation in the Labrador Sea, widely believed to be one of the key regions in the Atlantic Meridional Overturning Circulation (AMOC), now appears to be strongly impacted by vortex dynamics of the unstable boundary current. Large interannual variations in both eddy shedding and buoyancy transport from the boundary current have been observed but not explained, and are apparently sensitive to the state of the inflowing current. Heat and salinity fluxes associated with the eddies drive ventilation changes not accounted for by changes in local surface forcing, particularly during occasional years of extreme eddy activity, and constitute a predominant source of "internal" oceanic variability. The nature of this variable eddy-driven restratification is one of the outstanding questions along the northern transformation pathway. Here we investigate the eddy generation mechanism and the associated buoyancy fluxes by combining realistic and idealized numerical modeling, data analysis, and theory. Theory, supported by idealized experiments, provides criteria to test hypotheses as to the vortex formation process (by baroclinic instability linked to the bottom topography). Ensembles of numerical experiments with a high-resolution regional model (ROMS) allow for quantifying the sensitivity of eddy generation and property transport to variations in local and external forcing parameters. For the first time, we reproduce with a numerical simulation the observed interannual variability in the eddy kinetic energy in the convective region of the Labrador Basin and along the West Greenland Current.

  8. Eddy energy sources and flux in the Red Sea

    KAUST Repository

    Zhan, Peng

    2015-04-01

    In the Red Sea, eddies are reported to be one of the key features of hydrodynamics in the basin. They play a significant role in converting the energy among the large-scale circulation, the available potential energy (APE) and the eddy kinetic energy (EKE). Not only do eddies affect the horizontal circulation, deep-water formation and overturning circulation in the basin, but they also have a strong impact on the marine ecosystem by efficiently transporting heat, nutrients and carbon across the basin and by pumping the nutrient-enriched subsurface water to sustain the primary production. Previous observations and modeling work suggest that the Red Sea is rich of eddy activities. In this study, the eddy energy sources and sinks have been studied based on a high-resolution MITgcm. We have also investigated the possible mechanisms of eddy generation in the Red Sea. Eddies with high EKE are found more likely to appear in the central and northern Red Sea, with a significant seasonal variability. They are more inclined to occur during winter when they acquire their energy mainly from the conversion of APE. In winter, the central and especially the northern Red Sea are subject to important heat loss and extensive evaporation. The resultant densified upper-layer water tends to sink and release the APE through baroclinic instability, which is about one order larger than the barotropic instability contribution and is the largest source term for the EKE in the Red Sea. As a consequence, the eddy energy is confined to the upper layer but with a slope deepening from south to north. In summer, the positive surface heat flux helps maintain the stratification and impedes the gain of APE. The EKE is, therefore, much lower than that in winter despite a higher wind power input. Unlike many other seas, the wind energy is not the main source of energy to the eddies in the Red Sea.

  9. Thermal large Eddy simulations and experiments in the framework of non-isothermal blowing

    International Nuclear Information System (INIS)

    Brillant, G.

    2004-06-01

    The aim of this work is to study thermal large-eddy simulations and to determine the nonisothermal blowing impact on a turbulent boundary layer. An experimental study is also carried out in order to complete and validate simulation results. In a first time, we developed a turbulent inlet condition for the velocity and the temperature, which is necessary for the blowing simulations.We studied the asymptotic behavior of the velocity, the temperature and the thermal turbulent fluxes in a large-eddy simulation point of view. We then considered dynamics models for the eddy-diffusivity and we simulated a turbulent channel flow with imposed temperature, imposed flux and adiabatic walls. The numerical and experimental study of blowing permitted to obtain to the modifications of a thermal turbulent boundary layer with the blowing rate. We observed the consequences of the blowing on mean and rms profiles of velocity and temperature but also on velocity-velocity and velocity-temperature correlations. Moreover, we noticed an increase of the turbulent structures in the boundary layer with blowing. (author)

  10. Eddy current analysis by the finite element circuit method

    International Nuclear Information System (INIS)

    Kameari, A.; Suzuki, Y.

    1977-01-01

    The analysis of the transient eddy current in the conductors by ''Finite Element Circuit Method'' is developed. This method can be easily applied to various geometrical shapes of thin conductors. The eddy currents on the vacuum vessel and the upper and lower support plates of JT-60 machine (which is now being constructed by Japan Atomic Energy Research Institute) are calculated by this method. The magnetic field induced by the eddy current is estimated in the domain occupied by the plasma. And the force exerted to the vacuum vessel is also estimated

  11. Large Eddy Simulation of High-Speed, Premixed Ethylene Combustion

    Science.gov (United States)

    Ramesh, Kiran; Edwards, Jack R.; Chelliah, Harsha; Goyne, Christopher; McDaniel, James; Rockwell, Robert; Kirik, Justin; Cutler, Andrew; Danehy, Paul

    2015-01-01

    A large-eddy simulation / Reynolds-averaged Navier-Stokes (LES/RANS) methodology is used to simulate premixed ethylene-air combustion in a model scramjet designed for dual mode operation and equipped with a cavity for flameholding. A 22-species reduced mechanism for ethylene-air combustion is employed, and the calculations are performed on a mesh containing 93 million cells. Fuel plumes injected at the isolator entrance are processed by the isolator shock train, yielding a premixed fuel-air mixture at an equivalence ratio of 0.42 at the cavity entrance plane. A premixed flame is anchored within the cavity and propagates toward the opposite wall. Near complete combustion of ethylene is obtained. The combustor is highly dynamic, exhibiting a large-scale oscillation in global heat release and mass flow rate with a period of about 2.8 ms. Maximum heat release occurs when the flame front reaches its most downstream extent, as the flame surface area is larger. Minimum heat release is associated with flame propagation toward the cavity and occurs through a reduction in core flow velocity that is correlated with an upstream movement of the shock train. Reasonable agreement between simulation results and available wall pressure, particle image velocimetry, and OH-PLIF data is obtained, but it is not yet clear whether the system-level oscillations seen in the calculations are actually present in the experiment.

  12. Large eddy simulation of a fuel rod subchannel

    International Nuclear Information System (INIS)

    Mayer, Gusztav

    2007-01-01

    In a VVER-440 reactor the measured outlet temperature is related to fuel limit parameters and the power upgrading plans of VVER-440 reactors motivated us to obtain more information on the mixing process of the fuel assemblies. In a VVER-440 rod bundle the fuel rods are arranged in triangular array. Measurement shows (Krauss and Meyer, 1998) that the classical engineering approach, which tries to trace the characterization of such systems back to equivalent (hydraulic diameter) pipe flows, does not give reasonable results. Due to the different turbulence characteristics, the mixing is more intensive in rod bundles than it would be expected based on equivalent pipe flow correlations. As a possible explanation of the high mixing, secondary flow was deduced from measurements by several experimentalists (Trupp and Azad, 1975). Another candidate to explain the high mixing is the so-called flow pulsation phenomenon (Krauss and Meyer, 1998). In this paper we present subchannel simulations (Mayer et al. 2007) using large eddy simulation (LES) methodology and the lattice Boltzmann method (LBM) without the spacers at Reynolds number 21000. The simulation results are compared with the measurements of Trupp and Azad (1975). The mean axial velocity profile shows good agreement with the measurement data. Secondary flow has been observed directly in the simulation results. Reasonable agreement has been achieved for most Reynolds stresses. Nevertheless, the calculated normal stresses show small, but systematic deviation from the measurement data. (author)

  13. Pulsed eddy current inspection system for nondestructive examination of irradiated fuel rods

    International Nuclear Information System (INIS)

    Yancey, M.E.

    1979-01-01

    An inspection system has been developed for nondestructive examination of irradiated fuel rods utilizing pulsed eddy current techniques. The system employs an encircling type pulsed eddy current transducer capable of sensing small defects located on both the inner and outer diameter fuel rod surfaces during a single scan. Pulsed eddy current point probes are used to provide fuel rod wall thikness data and an indication of radial defect location. Two linear variable differential transformers are used to provide information on fuel rod diameter variation. A microprocessor based control system is used to automatically scan fuel rods up to 4.06 meters in length at predetermined radial locations. Defects as small as 0.005 cm deep by 0.254 cm long by 0.005 cm wide have been detected on outside diameter surfaces of a 1.43 cm outside diameter fuel rod cladding with a 0.094 cm wall thickness and 0.010 cm deep by 0.254 cm long by 0.005 cm wide on the inside diameter surface

  14. Conductivity Profile Determination by Eddy Current for Shot Peened Superalloy Surfaces Toward Residual Stress Assessment

    International Nuclear Information System (INIS)

    Shen, Y.; Lo, C. C. H.; Frishman, A. M.; Lee, C.; Nakagawa, N.

    2007-01-01

    This paper describes an eddy current model-based method for inverting near-surface conductivity deviation profiles of surface treated materials from swept-high frequency eddy current (SHFEC) data. This work forms part of our current research directed towards the development of an electromagnetic nondestructive technique for assessing residual stress of shot-peened superalloy components. The inversion procedure is based on the use of a parameterized function to describe the near-surface conductivity as a function of depth for a shot-peened surface, and the laterally uniform multi-layer theory of Cheng, Dodd and Deeds to calculate the resulting coil impedance deviations. The convergence of the inversion procedure has been tested against synthesized eddy current data. As a demonstration, the conductivity deviation profiles of a series of Inconel 718 specimens, shot peened at various Almen intensities, have been obtained by inversion. Several consistency tests were conducted to examine the reliability of the inverted conductivity profiles. The results show that conductivity deviation profiles can be reliably determined from SHFEC data within the accuracy of the current measurement system

  15. Ecological implications of eddy retention in the open ocean: a Lagrangian approach

    International Nuclear Information System (INIS)

    D’Ovidio, Francesco; Penna, Alice Della; Cotté, Cedric; De Monte, Silvia; Guinet, Christophe

    2013-01-01

    The repartition of tracers in the ocean’s upper layer on the scale of a few tens of kilometres is largely determined by the horizontal transport induced by surface currents. Here we consider surface currents detected from satellite altimetry (Jason and Envisat missions) and we study how surface waters may be trapped by mesoscale eddies through a semi-Lagrangian diagnostic which combines the Lyapunov approach with Eulerian techniques. Such a diagnostic identifies the regions of the ocean’s upper layer with different retention times that appear to influence the behaviour of a tagged marine predator (an elephant seal) along a foraging trip. The comparison between predator trajectory and eddy retention time suggests that water trapping by mesoscale eddies, derived from satellite altimetry, may be an important factor for monitoring hotspots of trophic interactions in the open ocean. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (paper)

  16. The current California drought through EDDI's eyes: early warning and monitoring of agricultural and hydrologic drought with the new Evaporative Demand Drought Index.

    Science.gov (United States)

    Hobbins, M.; McEvoy, D.; Huntington, J. L.; Wood, A. W.; Morton, C.; Verdin, J. P.

    2015-12-01

    hydrologic droughts, with correlations to water-year streamflow that are highest at the 9- to 12-month aggregation periods, and during the summer. EDDI shows significant promise as a leading indicator of drought, thereby providing a valuable planning window for growers and water resource managers.

  17. Experimental investigations on bubble turbulent diffusion in a vertical large diameter pipe by means of wire-mesh sensors and correlation techniques

    International Nuclear Information System (INIS)

    Annalisa Manera; Horst-Michael Prasser; Dirk Lucas

    2005-01-01

    correction consists in deconvolutioning the spatial cross-correlation obtained with the technique described above with the auto-correlation of the gas-fraction distribution measured by the first sensor. It is found that for a given liquid superficial velocity a sudden increase of the diffusion coefficient takes place when the superficial gas velocity is increased above a certain value. For superficial liquid velocities higher than 0.6 m/s the abrupt increase of the diffusion coefficient occurs in correspondence of the transition between wall-peak and center-peak gas-fraction profiles. The experimental diffusion coefficients are compared with the prediction of the Sato's model (experimental gas-fraction profiles and bubble size distributions are given as input). Even if this model has been developed for bubbly flow, satisfactory agreement with the experimental data is found also in the churn-turbulent regime. A detailed discussion on the comparison between experiments and Sato's model is given in the paper. (authors)

  18. Nondestructive examination techniques on Candu fuel elements

    International Nuclear Information System (INIS)

    Gheorghe, G.; Man, I.

    2013-01-01

    During irradiation in nuclear reactor, fuel elements undergo dimensional and structural changes, and changes of surface conditions sheath as well, which can lead to damages and even loss of integrity. Visual examination and photography of Candu fuel elements are among the non-destructive examination techniques, next to dimensional measurements that include profiling (diameter, bending, camber) and length, sheath integrity control with eddy currents, measurement of the oxide layer thickness by eddy current techniques. Unirradiated Zircaloy-4 tubes were used for calibration purposes, whereas irradiated Zircaloy-4 tubes were actually subjected to visual inspection and dimensional measurements. We present results of measurements done by eddy current techniques on Zircaloy- 4 tubes, unirradiated, but oxidized in an autoclave prior to examinations. The purpose of these nondestructive examination techniques is to determine those parameters that characterize the behavior and performance of nuclear fuel operation. (authors)

  19. Nesting Large-Eddy Simulations Within Mesoscale Simulations for Wind Energy Applications

    Science.gov (United States)

    Lundquist, J. K.; Mirocha, J. D.; Chow, F. K.; Kosovic, B.; Lundquist, K. A.

    2008-12-01

    With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES) account for complex terrain and resolve individual atmospheric eddies on length scales smaller than turbine blades. These small-domain high-resolution simulations are possible with a range of commercial and open- source software, including the Weather Research and Forecasting (WRF) model. In addition to "local" sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting that a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecating model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosoviæ (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Post-tensioning tendon force loss detection using low power pulsed eddy current measurement

    Science.gov (United States)

    Kim, Ji-Min; Lee, Jun; Sohn, Hoon

    2018-04-01

    In the field of bridge engineering, pre-fabrication of a bridge member and its construction in site have been issued and studied, which achieves improved quality and rapid construction. For integration of those pre-fabricated segments into a structural member (i.e., a concrete slab, girder and pier), post-tensioning (PT) technique is adopted utilizing a high-strength steel tendon, and an effective investigation of the remaining PT tendon force is essential to assure an overall structural integrity. This study proposes a pulsed eddy current based tendon force loss detection system. A compact eddy current sensor is designed to be installed on the surface of an anchor holding a steel PT tendon. The intensity of the induced eddy current varies with PT tendon force alteration due to the magnetostriction effect of a ferromagnetic material. The advantages of the proposed system are as follows: (1) low power consumption, (2) rapid inspection, and (3) simple installation. Its performance was validated experimentally in a full-scale lab test of a 3.3-m long, 15.2-mm diameter mono-tendon that was tensioned using a universal testing machine. Tendon force was controlled from 20 to 180 kN with 20 kN interval, and eddy current responses were measured and analyzed at each force condition. The proposed damage index and the amount of force loss of PT tendon were monotonically related, and an excessive loss as much as 30 % of an initially-introduced tendon force was successfully predicted.

  1. New eddy current testing system in steam generator tubes

    International Nuclear Information System (INIS)

    Nagata, Yasuyuki; Shimone, Junri; Maeda, Kotaro; Harada, Yutaka; Murakami, Ryuji

    2003-01-01

    Eddy Current Testing (ECT) technique is applied to PWR Steam Generator (SG) tubes during refueling outage inspection. Bobbin type probe is generally used for the inspection, but it cannot provide sufficient detectability for very tight cracks. NEL, R/D Tech (Canada) and AECL (Canada) jointly developed new ECT probe. The probe is transmit and receive type array probe. It has axial defect detection mode and circumferential defect detection mode. Its inspection speed is as fast as conventional bobbin probe, and detectability performance is same or better than performance of rotating pancake coil (RPC) probe, which is used for detailed inspection. As a tester of the new probe, we have developed new ECT tester TC7700. It is able to transmit composite wave from the 4 independent oscillators (simultaneous excitation system) compared with the conventional inspection system. As regarding for field inspection system, we have integrated Zetec (USA) probe positioner, probe pusher and R/D Tech TC7700. We are also developing new analysis software. The software has automated data screening function, which can deal with large amount of data compared with conventional bobbin probe. We plan to perform a large-scale field trial using the probe and new system in near future. (author)

  2. Towards Large Eddy Simulation of gas turbine compressors

    Science.gov (United States)

    McMullan, W. A.; Page, G. J.

    2012-07-01

    With increasing computing power, Large Eddy Simulation could be a useful simulation tool for gas turbine axial compressor design. This paper outlines a series of simulations performed on compressor geometries, ranging from a Controlled Diffusion Cascade stator blade to the periodic sector of a stage in a 3.5 stage axial compressor. The simulation results show that LES may offer advantages over traditional RANS methods when off-design conditions are considered - flow regimes where RANS models often fail to converge. The time-dependent nature of LES permits the resolution of transient flow structures, and can elucidate new mechanisms of vorticity generation on blade surfaces. It is shown that accurate LES is heavily reliant on both the near-wall mesh fidelity and the ability of the imposed inflow condition to recreate the conditions found in the reference experiment. For components embedded in a compressor this requires the generation of turbulence fluctuations at the inlet plane. A recycling method is developed that improves the quality of the flow in a single stage calculation of an axial compressor, and indicates that future developments in both the recycling technique and computing power will bring simulations of axial compressors within reach of industry in the coming years.

  3. Quantitative Evaluation of Remote Field Eddy Current Defect Signals

    International Nuclear Information System (INIS)

    Jeong, Jin Oh; Yi, Jae Kyung; Kim, Hyoung Jean

    2000-01-01

    The remote field eddy current (RFEC) inspection was performed on the ductile cast iron pipes with nominal outer diameter of 100mm, which were machined with various shapes and sizes of defects. Ductile cast iron pipes which are used as water supply pipe have the non-uniform thickness and asymmetric cross section due to relatively high degree of allowable errors during the manufacturing processes. These characteristics of ductile cast in pipes cause the long range background noises in RFEC signals along the pipe. In this study, tile machined defects in pipes were effectively classified by the moving window average (MWA) method which eliminated the long-range noise. The voltage plane polar plots (VPPP) method was used to quantitatively evaluate the depth and circumferential degree of defects. The VPPP signatures showed that the angle between defect signature and the normalized in-phase component on the VPPP is linear to the depth of defects. The nondestructive RFEC technique proved to be capable of quantitatively evaluating the machined defects of underground water supply pipe

  4. N2O fluxes over a corn field from an open-path, laser-based eddy covariance system and static chambers

    Science.gov (United States)

    Tao, L.; Pan, D.; Gelfand, I.; Abraha, M.; Moyer, R.; Poe, A.; Sun, K.; Robertson, P.; Zondlo, M. A.

    2015-12-01

    Nitrous oxide (N2O) is important greenhouse and ozone-depleting gase. Although many efforts have been paid to N2O emissions, the spatial and temporal variability of N2O emissions still subject to large uncertainty. Application of the eddy covariance method for N2O emissions research would allow continuous ecosystem level flux measurements. The caveat, however, is need for high precision and high frequency measurements in field. In this study, an open-path, quantum cascade-laser-based eddy covariance N2O sensor has been deployed nearly continuously since May 2015 over a corn field at the W.K. Kellogg Biological Station site in SW Michigan. The field precision of the N2O sensor was assessed to be 0.1 ppbv at 10 Hz, and the total consumption was ~ 40 W, allowing the system to be powered solely by solar panels. The stability of the sensor under different temperature and humidity was tested within an environmental chamber. Spectroscopic experiments and cospectra analyses were carried out to study specific corrections associated with the sensor for eddy covariance techniques, including the line broadening effect due to water vapor and high frequency flux attenuation owning to sample path averaging. Ogive analyses indicated that the high-frequency N2O flux loss due to various damping effects was comparable to those of the CO2 flux. The detection limit of flux was estimated to be 0.3 ng N s-1 m-2 with a flux averaging interval of 30 minutes. The results from the EC system were also compared with ground measurements by standard static chambers (SC). Overall, more than 150 individual chamber measurements were taken within the footprint of the EC system. We found good correlation between the EC and SC methods given the spatiotemporal differences between the two techniques (R2 = 0.75). Both methods detected increased emissions during afternoon as compared to morning and night hours. Differences between EC and SC were also studied by investigating spatial variability with a

  5. Revolutionary introduction of RIA/IRMA methodology in medical diagnostics: a study employing the technique for hyperprolactinemia and its correlation with hypothyroidism

    International Nuclear Information System (INIS)

    Tasneem, A.

    2011-01-01

    The aim of the study was to determine the incidence of hyperprolactinemia, its underlying causes and consequences, and to study its correlation with hypothyroidism. The study was carried out on 1365 male and female subjects referred to Centre for Nuclear Medicine Lahore for hormonal estimation. Serum Prolactin and thyroid stimulating hormone (TSH) levels were measured using IRMA kits. Prevalence of hyperprolactinemia turned out to be 4.90%. Menstrual irregularity appeared as a major consequence. The incidence rate was the highest in the age range of 21-27 years. Hypothyroidism in hyperprolactinemic subjects was observed to be 22.7%. i) Immunoradiometric assay is a micro analytical technique which can measure very minute amount of the antigens in the serum. II) Prevalence of hypothyroidism in hyperprolactinemic subjects in our population is promising enough to estimate thyroid hormone levels in hyperprolactinemic patients. (author)

  6. Making mock-FNA smears from fresh surgical pathology specimens to improve smear preparation technique and to create cytohistological correlation series.

    Directory of Open Access Journals (Sweden)

    Tibor Mezei

    Full Text Available Fine needle aspiration (FNA cytology is a well-established diagnostic method based on the microscopic interpretation of often scant cytological material; therefore, experience, good technique and smear quality are equally important in obtaining satisfactory results.We studied the use of fresh surgical pathology specimens for making so-called mock-FNA smears with the potential of cytohistological correlation. Additionally, we studied how this process aids the improvement of preparation technique and smear quality.Cytological aspirates from 32 fresh biopsy specimens from various sites: lung (20, lymph nodes (6, and breast (6 were obtained, all with a clinical diagnosis of tumor. Aspiration was performed from grossly palpable tumors. 25 G needle and Cameco-type syringe holder was used with minimal or no suction.Unfixed surgical specimens provided sufficient cytological material that resulted in good quality smears. After standard processing of specimens into microscopic sections from paraffin embedded tissues, cytohistological case-series were created. No significant alteration was reported in tissue architecture on hematoxylin-eosin stained sections after the aspiration procedure. A gradual, but steady improvement was observed in smear quality just after a few preparations.Our study proved that surgical specimens may be used as a source of cytological material to create cytohistological correlation studies and also to improve FNA cytology skills. The use of very fine gauge needle (25 G, 0,6 mm diameter during the sampling process does not alter tissue architecture therefore the final histopathological diagnosis is not compromised. We conclude that by using fresh surgical specimens useful cytohistological collections can be created both as a teaching resource and as improving experience.

  7. Properties, Mechanisms and Predictability of Eddies in the Red Sea

    KAUST Repository

    Zhan, Peng

    2018-01-01

    of Red Sea eddies, including their temporal and spatial properties, their energy budget, the mechanisms of their evolution, and their predictability. Remote sensing data, in-situ observations, the oceanic general circulation model, and data assimilation

  8. Theoretical study of a flat eddy current probe

    International Nuclear Information System (INIS)

    Bouchard, A.; Dumont-Fillon, J.; Labbe, G.

    1976-01-01

    A mathematical model for the computation of the impedance of an eddy current probe has been determined in the case of flat product testing. Various applications are discussed with particular emphasis on ferromagnetic materials [fr

  9. IVA Ultrasonic and Eddy Current NDE for ISS

    Data.gov (United States)

    National Aeronautics and Space Administration — The project intends to develop a combined Ultrasonic and Eddy Current nondestructive evaluation (NDE) instrument for IVA use on ISS. A suite of IVA and EVA NDE...

  10. Eddy current testing probe with dual half-cylindrical coils

    Science.gov (United States)

    Bae, Byung-Hoon; Choi, Jung-Mi; Kim, Soo-Yong

    2000-02-01

    We have developed a new eddy current probe composed of a dual half-cylindrical (2HC) coil as an exciting coil and a sensing coil that is placed in the small gap of the 2HC coil. The 2HC coil induces a linear eddy current on the narrow region within the target medium. The magnitude of eddy current has a maximum peak with the narrow width, underneath the center of the exciting 2HC coil. Because of the linear eddy current, the probe can be used to detect not only the existence of a crack but also its direction in conducting materials. Using specimen with a machined crack, and varying the exciting frequency from 0.5 to 100 kHz, we investigated the relationships between the direction of crack and the output voltage of the sensing coil.

  11. Foam-machining tool with eddy-current transducer

    Science.gov (United States)

    Copper, W. P.

    1975-01-01

    Three-cutter machining system for foam-covered tanks incorporates eddy-current sensor. Sensor feeds signal to numerical controller which programs rotational and vertical axes of sensor travel, enabling cutterhead to profile around tank protrusions.

  12. An atmospheric electrical method to determine the eddy diffusion ...

    Indian Academy of Sciences (India)

    Keywords. Atmospheric electrical profiles; electrode layer; ion–aerosol balance equations. ... eddy diffusion theory (K-theory) in our model equations. K-theory is appropriate for near neutral ...... limit of strong turbulent mixing; J. Geophys. Res.

  13. Monte carlo feasibility study of an active neutron assay technique for full-volume UF{sub 6} cylinder assay using a correlated interrogation source

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Karen A., E-mail: kamiller@lanl.gov [Los Alamos National Laboratory, Los Alamos, P.O. Box 1663 MS E540, NM 87545 (United States); Menlove, Howard O.; Swinhoe, Martyn T.; Marlow, Johnna B. [Los Alamos National Laboratory, Los Alamos, P.O. Box 1663 MS E540, NM 87545 (United States)

    2013-03-01

    Uranium cylinder assay plays an important role in the nuclear material accounting at gas centrifuge enrichment plants. The Passive Neutron Enrichment Meter (PNEM) was designed to determine uranium mass and enrichment in 30B and 48Y cylinders using total neutron and coincidence counting in the passive mode. 30B and 48Y cylinders are used to hold bulk UF{sub 6} feed, product, and tails at enrichment plants. In this paper, we report the results of a Monte-Carlo-based feasibility study for an active uranium cylinder assay system based on the PNEM design. There are many advantages of the active technique such as a shortened count time and a more direct measure of {sup 235}U content. The active system is based on a modified PNEM design and uses a {sup 252}Cf source as the correlated, active interrogation source. We show through comparison with a random AmLi source of equal strength how the use of a correlated driver significantly boosts the active signal and reduces the statistical uncertainty. We also discuss ways in which an active uranium cylinder assay system can be optimized to minimize background from {sup 238}U fast-neutron induced fission and direct counts from the interrogation source.

  14. Analysis of two-phase flow velocity measurements by cross-correlation techniques and the applicability of the drift flux model for their interpretation

    International Nuclear Information System (INIS)

    Analytis, G.Th.; Luebbesmeyer, D.

    1982-11-01

    An extensive and detailed investigation of two-phase flow velocity measurements by cross-correlating noise signals of information carriers (neutrons, gammas, visible light) modulated by the two-phase flow and registered by two axially placed detectors outside the flow is pursued. To this end, a detailed analysis of velocity measurements in experimental loops and a large number of velocity measurements in a commercial BWR is undertaken, and the applicability and limitations of the drift flux model for their interpretation is investigated. On the basis of this extensive analysis, the authors propose a physically plausible explanation for the deviations in the upper part of the core, expound on why the drift flux model is, to a great extent, not suitable for interpreting two-phase flow velocity measurements by cross-correlation techniques reported in the present work, and conclude that due to the large number of uncertainties and the lack of detailed knowledge about the kind of microstructures of the flow which the detectors prefer to ''sample'', one can safely assume that at least in the lower half of the core the velocity measured can be well approximated by the velocity of the centre of volume, from which the mass fluxes can readily be computed. (Auth.)

  15. Fragmentation of the C60 molecule in collision with light ions studied by a multi-correlation technique. Cross-sections, electron spectroscopy

    International Nuclear Information System (INIS)

    Rentenier, A.

    2004-04-01

    A quantitative study of the C60 fullerenes fragmentation in collision with light ions (H n + with n=1,2,3, He q+ with q=1,2) in the velocity range 0,1 - 2,3 u.a.) is presented. The multi-correlation technique, developed between fragment ions and electrons with well defined energy, has enlightened some of the dependences and properties of fragmentation mechanisms (cross sections, electron spectroscopy, size distributions, kinetic energy of fragment ions, Campi's scatter plot, activation energies). The deposited energy hence appeared as an important parameter. Cross sections have been measured, for the first time, for all the collisional processes. Ionisation and capture only depends on the collision velocity. On the other hand, scaling laws with the deposited energy have been observed for the cross sections of multifragmentation, which depends on the collision energy and the nature of the projectile. The deposited energy has also been found as an essential parameter to understand the evolution of the charged fragment size distributions. The electron spectroscopy, achieved at an emission angle of 35 degrees, showed spectra peaked at important energies (from 5 to 20 eV). The spectra shape depends on the collision velocity. A first theoretical analysis points out the link between the observed energy distribution and the presence of a centrifugal potential barrier. Finally, correlation experiments between produced ions and electron energy reveal that electron energy increases with internal energy. (author)

  16. Correlation of Self Potential and Ground Magnetic Survey Techniques to Investigate Fluid Seepage in Archaeological site, Sungai Batu, Lembah Bujang, Kedah, Malaysia

    Directory of Open Access Journals (Sweden)

    Tajudeen O. Adeeko

    2018-05-01

    Full Text Available One of the substantial of geophysics is to investigate the subsurface condition of the earth (groundwater using appropriate geophysical techniques. In this research the correlation of self potential (SP and ground magnetic methods was used to investigate fluid seepage in Archaeological site, Sungai Batu, Lembah Bujang, Kedah, Malaysia. Self-potential method was used to determine flow of water, and Ground magnetic method was used to find object that can influence the result of self potential measurement and the aquifer depth, the lines were spread 0m ≤ x ≤ 9m, 0m ≤ y ≤ 30m with a trace intervals of 1.5m and 0.75m per electrode spacing respectively. The result display by Self Potential signals gives a clear understand that water flow from higher value (central towards the lower value which is mostly at the southwest part than other areas and distinct level of feasible flow at different part ranges from -30mV to +35mV,which are very related to seepage flow patterns, negative SP anomalies were related with subsurface seepage flow paths (recharge zone and positive SP anomalies were related with areas of seepage outflow (discharge zone; and Ground Magnetic signals shows good details of the buried materials with high magnetic values which was interpreted as baked clay bricks and low magnetic values indicate groundwater seepage with depth of 5m. Therefore, the two results have correlation significant at 0.8 which show good correlation in groundwater investigation in this study, which validates the results.

  17. Interpretation of quasi-static and dynamic tensile behavior by digital image correlation technique in TWinning Induced Plasticity (TWIP) and low-carbon steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Minju; Park, Jaeyeong; Sohn, Seok Su; Kim, Hyoung Seop [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Nack J. [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Lee, Sunghak, E-mail: shlee@postech.ac.kr [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2017-05-02

    In this study, dynamic tensile tests were conducted on TWinning Induced Plasticity (TWIP) and low-carbon (LC) steel sheets at a strain rate of 1500–2000/s by using a split Hopkinson tensile bar, and deformation mechanisms related with improvement of dynamic tensile properties were investigated by a digital image correlation (DIC) technique. The dynamic tensile strength was higher than the quasi-static tensile strength in both TWIP and LC sheets, while the dynamic elongation was same to the quasi-static elongation in the TWIP sheet and was much lower than the quasi-static elongation in the LC sheet. According to the DIC results of the dynamically tensioned TWIP sheet, the homogeneous deformation occurred before the necking at the strain of 47.4%. This indicated that the dynamic deformation processes were almost similar to the quasi-static ones as the TWIP sheet was homogeneously deformed in the initial and intermediate deformation stages. This could be explained by deformation mechanisms including twinning, in consideration of favorable effect of increased twinning on tensile properties under the dynamic loading. On the other hand, the dynamically tensioned LC sheet was rapidly deformed and fractured as the necking was intensified in a narrow strain-concentrated region. The present DIC technique is an outstanding method for detailed dynamic deformation analyses, and provides an important idea for practical safety analyses of automotive steel sheets.

  18. Mapping of the surface rupture induced by the M 7.3 Kumamoto Earthquake along the Eastern segment of Futagawa fault using image correlation techniques

    Science.gov (United States)

    Ekhtari, N.; Glennie, C. L.; Fielding, E. J.; Liang, C.

    2016-12-01

    Near field surface deformation is vital to understanding the shallow fault physics of earthquakes but near-field deformation measurements are often sparse or not reliable. In this study, we use the Co-seismic Image Correlation (COSI-Corr) technique to map the near-field surface deformation caused by the M 7.3 April 16, 2016 Kumamoto Earthquake, Kyushu, Japan. The surface rupture around the Eastern segment of Futagawa fault is mapped using a pair of panchromatic 1.5 meter resolution SPOT 7 images. These images were acquired on January 16 and April 29, 2016 (3 months before and 13 days after the earthquake respectively) with close to nadir (less than 1.5 degree off nadir) viewing angle. The two images are ortho-rectified using SRTM Digital Elevation Model and further co-registered using tie points far away from the rupture field. Then the COSI-Corr technique is utilized to produce an estimated surface displacement map, and a horizontal displacement vector field is calculated which supplies a seamless estimate of near field displacement measurements along the Eastern segment of the Futagawa fault. The COSI-Corr estimated displacements are then compared to other existing displacement observations from InSAR, GPS and field observations.

  19. The role of eddy transports in climate change

    International Nuclear Information System (INIS)

    Stone, P.H.

    1994-01-01

    Large-scale atmospheric eddies are the dominant transport mechanisms in mid and high latitudes. Thus, climate models must simulate these eddies, their effects, and their feedbacks accurately. Getting the feedbacks right is particularly important since it is the feedbacks which affect climate sensitivity. Observational studies of these feedbacks are hindered by the lack of actual climate changes for which good data is available, and by the lack of data on vertical heat fluxes. General circulation model (GCM) studies are hindered by errors in GCM simulations of transports in the current climate; the dependence of GCM results on uncertain subgrid scale parameterizations; and large computational requirements. A more promising approach for learning about eddy feedbacks and how they can be modelled is process model studies. So far these studies have only looked at the feedback between eddy sensible heat fluxes arising from baroclinic instability and the temperature structure. The results indicate that there is a very strong negative feedback between eddy fluxes and temperature structure, both meridional and vertical, with the fluxes themselves being sensitive to small changes in temperature structure. These studies need to be extended to higher vertical resolution, and to include the effects of moisture, stationary eddies, and coupling to the oceans

  20. Large-eddy simulations for turbulent flows

    International Nuclear Information System (INIS)

    Husson, S.

    2007-07-01

    The aim of this work is to study the impact of thermal gradients on a turbulent channel flow with imposed wall temperatures and friction Reynolds numbers of 180 and 395. In this configuration, temperature variations can be strong and induce significant variations of the fluid properties. We consider the low Mach number equations and carry out large eddy simulations. We first validate our simulations thanks to comparisons of some of our LES results with DNS data. Then, we investigate the influence of the variations of the conductivity and the viscosity and show that we can assume these properties constant only for weak temperature gradients. We also study the thermal sub-grid-scale modelling and find no difference when the sub-grid-scale Prandtl number is taken constant or dynamically calculated. The analysis of the effects of strongly increasing the temperature ratio mainly shows a dissymmetry of the profiles. The physical mechanism responsible of these modifications is explained. Finally, we use semi-local scaling and the Van Driest transformation and we show that they lead to a better correspondence of the low and high temperature ratios profiles. (author)