WorldWideScience

Sample records for ectomycorrhizal fungus suillus

  1. Cd-tolerant Suillus luteus: A fungal insurance for pines exposed to Cd

    International Nuclear Information System (INIS)

    Krznaric, Erik; Verbruggen, Nathalie; Wevers, Jan H.L.; Carleer, Robert; Vangronsveld, Jaco; Colpaert, Jan V.

    2009-01-01

    Soil metal pollution can trigger evolutionary adaptation in soil-borne organisms. An in vitro screening test showed cadmium adaptation in populations of Suillus luteus (L.: Fr.) Roussel, an ectomycorrhizal fungus of pine trees. Cadmium stress was subsequently investigated in Scots pine (Pinus sylvestris L.) seedlings inoculated with a Cd-tolerant S. luteus, isolated from a heavy metal contaminated site, and compared to plants inoculated with a Cd-sensitive isolate from a non-polluted area. A dose-response experiment with mycorrhizal pines showed better plant protection by a Cd-adapted fungus: more fungal biomass and a higher nutrient uptake at high Cd exposure. In addition, less Cd was transferred to aboveground plant parts. Because of the key role of the ectomycorrhizal symbiosis for tree fitness, the evolution of Cd tolerance in an ectomycorrhizal partner such as S. luteus can be of major importance for the establishment of pine forests on Cd-contaminated soils. - The evolutionary adaptation for higher Cd tolerance in Suillus luteus, an ectomycorrhizal fungus, is of major importance for the amelioration of Cd toxicity in pine trees exposed to high Cd concentrations.

  2. Cd-tolerant Suillus luteus: A fungal insurance for pines exposed to Cd

    Energy Technology Data Exchange (ETDEWEB)

    Krznaric, Erik [Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek (Belgium); Verbruggen, Nathalie [Laboratoire de Physiologie et de Genetique Moleculaire des Plantes, Universite Libre de Bruxelles, Campus Plaine, CP242, Bd du Triomphe, 1050 Brussels (Belgium); Wevers, Jan H.L. [Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek (Belgium); Carleer, Robert [Laboratory of Applied Chemistry, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek (Belgium); Vangronsveld, Jaco [Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek (Belgium); Colpaert, Jan V., E-mail: jan.colpaert@uhasselt.b [Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek (Belgium)

    2009-05-15

    Soil metal pollution can trigger evolutionary adaptation in soil-borne organisms. An in vitro screening test showed cadmium adaptation in populations of Suillus luteus (L.: Fr.) Roussel, an ectomycorrhizal fungus of pine trees. Cadmium stress was subsequently investigated in Scots pine (Pinus sylvestris L.) seedlings inoculated with a Cd-tolerant S. luteus, isolated from a heavy metal contaminated site, and compared to plants inoculated with a Cd-sensitive isolate from a non-polluted area. A dose-response experiment with mycorrhizal pines showed better plant protection by a Cd-adapted fungus: more fungal biomass and a higher nutrient uptake at high Cd exposure. In addition, less Cd was transferred to aboveground plant parts. Because of the key role of the ectomycorrhizal symbiosis for tree fitness, the evolution of Cd tolerance in an ectomycorrhizal partner such as S. luteus can be of major importance for the establishment of pine forests on Cd-contaminated soils. - The evolutionary adaptation for higher Cd tolerance in Suillus luteus, an ectomycorrhizal fungus, is of major importance for the amelioration of Cd toxicity in pine trees exposed to high Cd concentrations.

  3. The SlZRT1 Gene Encodes a Plasma Membrane-Located ZIP (Zrt-, Irt-Like Protein Transporter in the Ectomycorrhizal Fungus Suillus luteus

    Directory of Open Access Journals (Sweden)

    Laura Coninx

    2017-11-01

    Full Text Available Zinc (Zn is an essential micronutrient but may become toxic when present in excess. In Zn-contaminated environments, trees can be protected from Zn toxicity by their root-associated micro-organisms, in particular ectomycorrhizal fungi. The mechanisms of cellular Zn homeostasis in ectomycorrhizal fungi and their contribution to the host tree’s Zn status are however not yet fully understood. The aim of this study was to identify and characterize transporters involved in Zn uptake in the ectomycorrhizal fungus Suillus luteus, a cosmopolitan pine mycobiont. Zn uptake in fungi is known to be predominantly governed by members of the ZIP (Zrt/IrtT-like protein family of Zn transporters. Four ZIP transporter encoding genes were identified in the S. luteus genome. By in silico and phylogenetic analysis, one of these proteins, SlZRT1, was predicted to be a plasma membrane located Zn importer. Heterologous expression in yeast confirmed the predicted function and localization of the protein. A gene expression analysis via RT-qPCR was performed in S. luteus to establish whether SlZRT1 expression is affected by external Zn concentrations. SlZRT1 transcripts accumulated almost immediately, though transiently upon growth in the absence of Zn. Exposure to elevated concentrations of Zn resulted in a significant reduction of SlZRT1 transcripts within the first hour after initiation of the exposure. Altogether, the data support a role as cellular Zn importer for SlZRT1 and indicate a key role in cellular Zn uptake of S. luteus. Further research is needed to understand the eventual contribution of SlZRT1 to the Zn status of the host plant.

  4. The SlZRT1 Gene Encodes a Plasma Membrane-Located ZIP (Zrt-, Irt-Like Protein) Transporter in the Ectomycorrhizal Fungus Suillus luteus.

    Science.gov (United States)

    Coninx, Laura; Thoonen, Anneleen; Slenders, Eli; Morin, Emmanuelle; Arnauts, Natascha; Op De Beeck, Michiel; Kohler, Annegret; Ruytinx, Joske; Colpaert, Jan V

    2017-01-01

    Zinc (Zn) is an essential micronutrient but may become toxic when present in excess. In Zn-contaminated environments, trees can be protected from Zn toxicity by their root-associated micro-organisms, in particular ectomycorrhizal fungi. The mechanisms of cellular Zn homeostasis in ectomycorrhizal fungi and their contribution to the host tree's Zn status are however not yet fully understood. The aim of this study was to identify and characterize transporters involved in Zn uptake in the ectomycorrhizal fungus Suillus luteus , a cosmopolitan pine mycobiont. Zn uptake in fungi is known to be predominantly governed by members of the ZIP (Zrt/IrtT-like protein) family of Zn transporters. Four ZIP transporter encoding genes were identified in the S. luteus genome. By in silico and phylogenetic analysis, one of these proteins, SlZRT1, was predicted to be a plasma membrane located Zn importer. Heterologous expression in yeast confirmed the predicted function and localization of the protein. A gene expression analysis via RT-qPCR was performed in S. luteus to establish whether SlZRT1 expression is affected by external Zn concentrations. SlZRT1 transcripts accumulated almost immediately, though transiently upon growth in the absence of Zn. Exposure to elevated concentrations of Zn resulted in a significant reduction of SlZRT1 transcripts within the first hour after initiation of the exposure. Altogether, the data support a role as cellular Zn importer for SlZRT1 and indicate a key role in cellular Zn uptake of S. luteus . Further research is needed to understand the eventual contribution of SlZRT1 to the Zn status of the host plant.

  5. Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth.

    Science.gov (United States)

    Bending, Gary D; Poole, Elizabeth J; Whipps, John M; Read, David J

    2002-03-01

    Bacteria from Pinus sylvestris-Suillus luteus mycorrhizas were isolated, characterised, and their effects on P. sylvestris-S. luteus interactions and plant growth investigated in vitro. The isolates formed five distinct phenotypic and physiological groups. Two of the groups, accounting for 34 of the 55 isolates, consisted of Bacillus spp., with three subgroups represented. The other groups contained Burkholderia spp., Serratia spp. and Pseudomonas spp. Representatives from each bacterial group were used in microcosm experiments to investigate bacterial effects on P. sylvestris-S. luteus interactions. Most Bacillus isolates stimulated growth of S. luteus along the P. sylvestris root, while isolates of Pseudomonas and Serratia inhibited root colonisation by the fungus. Burkholderia and Serratia isolates inhibited ectomycorrhiza formation by 97 and 41% respectively, while a single Bacillus isolate doubled the formation of first order ectomycorrhizal roots. There were no clear relationships between effects of the bacteria on root colonisation by the fungus after 4 weeks, and chitinase production or subsequent ectomycorrhiza formation. However, isolates that inhibited ectomycorrhiza formation appeared to associate preferentially with ectomycorrhizal roots. Several isolates enhanced plant growth substantially, although these effects were unrelated to either root colonisation by the fungus or ectomycorrhiza formation.

  6. Isolation and characterization of microsatellite loci from the ectomycorrhizal basidiomycete Suillus luteus

    OpenAIRE

    Muller, L.; LAMBAERTS, Marc; VANGRONSVELD, Jaco; COLPAERT, Jan

    2006-01-01

    Eight microsatellite loci were isolated from the ectomycorrhizal basidiomycete Suillus luteus using a dual-suppression-polymerase chain reaction (PCR) method. In a test sample of 40 isolates, the total number of alleles per locus and the expected heterozygosities ranged from five to 16 and from 0.532 to 0.811, respectively. These highly polymorphic markers allow an accurate description of the genetic diversity and structure of S. luteus populations.

  7. A single ectomycorrhizal fungal species can enable a Pinus invasion.

    Science.gov (United States)

    Hayward, Jeremy; Horton, Thomas R; Pauchard, Aníbal; Nuñnez, Martin A

    2015-05-01

    Like all obligately ectomycorrhizal plants, pines require ectomycorrhizal fungal symbionts to complete their life cycle. Pines introduced into regions far from their native range are typically incompatible with local ectomycorrhizal fungi, and, when they invade, coinvade with fungi from their native range. While the identities and distributions of coinvasive fungal symbionts of pine invasions are poorly known, communities that have been studied are notably depauperate. However, it is not yet clear whether any number of fungal coinvaders is able to support a Pinaceae invasion, or whether very depauperate communities are unable to invade. Here, we ask whether there is evidence for a minimum species richness of fungal symbionts necessary to support a pine/ectomycorrhizal fungus coinvasion. We sampled a Pinus contorta invasion front near Coyhaique, Chile, using molecular barcoding to identify ectomycorrhizal fungi. We report that the site has a total richness of four species, and that many invasive trees appear to be supported by only a single ectomycorrhizal fungus, Suillus luteus. We conclude that a single ectomycorrhizal (ECM) fungus can suffice to enable a pine invasion.

  8. Defoliation effects on enzyme activities of the ectomycorrhizal fungus Suillus granulatus in a Pinus contorta (lodgepole pine) stand in Yellowstone National Park.

    Science.gov (United States)

    Cullings, Ken; Ishkhanova, Galina; Henson, Joan

    2008-11-01

    Ectomycorrhizal (EM) basidiomycete fungi are obligate mutualists of pines and hardwoods that receive fixed C from the host tree. Though they often share most recent common ancestors with wood-rotting fungi, it is unclear to what extent EM fungi retain the ability to express enzymes that break down woody substrates. In this study, we tested the hypothesis that the dominant EM fungus in a pure pine system retains the ability to produce enzymes that break down woody substrates in a natural setting, and that this ability is inducible by reduction of host photosynthetic potential via partial defoliation. To achieve this, pines in replicate blocks were defoliated 50% by needle removal, and enzyme activities were measured in individual EM root tips that had been treated with antibiotics to prevent possible bacterial activity. Results indicate that the dominant EM fungal species (Suillus granulatus) expressed all enzymes tested (endocellulase D: -glucosidase, laccase, manganese peroxidase, lignin peroxidase, phosphatase and protease), and that activities of these enzymes increased significantly (P pine) has the potential to play a significant role in C, N and P cycling in this forested ecosystem. Therefore, many above-ground factors that reduce photosynthetic potential or divert fixed C from roots may have wide-reaching ecosystem effects.

  9. Cd-tolerant Suillus luteus: a fungal insurance for pines exposed to Cd.

    Science.gov (United States)

    Krznaric, Erik; Verbruggen, Nathalie; Wevers, Jan H L; Carleer, Robert; Vangronsveld, Jaco; Colpaert, Jan V

    2009-05-01

    Soil metal pollution can trigger evolutionary adaptation in soil-borne organisms. An in vitro screening test showed cadmium adaptation in populations of Suillus luteus (L.: Fr.) Roussel, an ectomycorrhizal fungus of pine trees. Cadmium stress was subsequently investigated in Scots pine (Pinus sylvestris L.) seedlings inoculated with a Cd-tolerant S. luteus, isolated from a heavy metal contaminated site, and compared to plants inoculated with a Cd-sensitive isolate from a non-polluted area. A dose-response experiment with mycorrhizal pines showed better plant protection by a Cd-adapted fungus: more fungal biomass and a higher nutrient uptake at high Cd exposure. In addition, less Cd was transferred to aboveground plant parts. Because of the key role of the ectomycorrhizal symbiosis for tree fitness, the evolution of Cd tolerance in an ectomycorrhizal partner such as S. luteus can be of major importance for the establishment of pine forests on Cd-contaminated soils.

  10. Hydroxamate siderophores of the ectomycorrhizal fungi Suillus granulatus and S. luteus.

    Science.gov (United States)

    Haselwandter, Kurt; Häninger, Gerlinde; Ganzera, Markus

    2011-02-01

    Despite indications that S. granulatus and S. luteus release iron-chelating compounds, the exact spectrum of ferric hydroxamates synthesized by these two Suillus species remained unclear. Hence the aim of this study was to identify all of the main siderophores produced by these two ectomycorrhizal fungal species under pure culture conditions. By means of HPLC and LC-MS analyses we show that S. granulatus releases cyclic and linear fusigen, ferrichrome, coprogen and triacetylfusarinine C into the nutrient medium, while S. luteus culture filtrates contain cyclic and linear fusigen, ferricrocin and coprogen. All of the different siderophores were identified on basis of reference compounds and their specific MS spectra which were recorded on a high resolution MS in positive electrospray ionisation mode. Initial HPLC separations were performed on a C-18 stationary phase, using an acidic eluent (0.1% formic acid in water and acetonitrile) in gradient mode. The potential of these two ectomycorrhizal fungal species to produce siderophores representing three different groups of hydroxamates is discussed in relation to its ecological significance.

  11. Intraspecific aluminium response in Suillus luteus (L. s.f. gray., an ectomycorrhizal symbiont of scots pine

    Directory of Open Access Journals (Sweden)

    Tomasz Leski

    2014-01-01

    Full Text Available Ten isolates of the ectomycorrhizal fungus Suillus luteus have been cultured on an aluminium containing growth medium in order to determine their in vitro aluminium tolerance. Five isolates originated from a site heavily polluted by acid rain with a high availability of aluminium in the soil. Five others were collected from a site free from direct pollution. Aluminium content in the sporocarps of S. luteus differed according to the site of origin and did not reveal symptoms of bioconcentration, although such phenomena were found when mycelium isolated from the sporocarps was submited to 100 mg/L Al in liquid culture. A clear relationship between Al accumulation in vitro and the site of origin of the isolate was not observed, although the highest amount of Al was found in the mycelium derived from the polluted soil. In a second experiment all isolates were grown in agar media containing 10, 100, 500 and 1000 mg/L-1 Al and the colony diameter during culture and the final colony dry weight determined. S. luteus appeared to be very tolerant to the presence of Al in the medium. Each of the parameters used to measure the metal tolerance of the fungus ranked the isolates in a slightly different order, but those originating from the polluted area showed some superiority over the others. In polluted soils this species seems to have been submitted to a selection for higher aluminium tolerance. The results are discussed with reference to the possibilities of transformating in vitro studies to situation in the forest ecosystem.

  12. Characterization of juvenile maritime pine (Pinus pinaster Ait.) ectomycorrhizal fungal community using morphotyping, direct sequencing and fruitbodies sampling.

    Science.gov (United States)

    Pestaña Nieto, Montserrat; Santolamazza Carbone, Serena

    2009-02-01

    Using ectomycorrhizal root tip morphotyping (anatomical and morphological identification), molecular analysis (internal transcribed spacer region amplification and sequencing), and fruitbody sampling, we assessed diversity and composition of the ectomycorrhizal fungal community colonizing juvenile Pinus pinaster Ait. under natural conditions in NW Spain. Overall, we found 15 Basidiomycetes and two Ascomycetes. Members of the family Thelephoraceae represented up to 59.4% of the samples. The most frequent species was Tomentella sublilacina followed by Thelephora terrestris, Russula drimeia, Suillus bovinus, and Paxillus involutus, while the less frequent were Pseudotomentella tristis, Lactarius subdulcis, Russula ochroleuca, and Entoloma conferendum. From October 2007 to June 2008, we sampled 208 sporocarps belonging to seven genera and nine species: Thelephora terrestris, Paxillus involutus, Suillus bovinus, Xerocomus badius, Scleroderma verrucosum, Amanita gemmata, A. rubescens, Amanita sp., and Russula sp. The species belonging to the genus Amanita, X. badius and S. verrucosum were not found on root samples. By comparing our results with a bibliographic review of papers published from 1922 to 2006, we found five genera and six species which have not been previously reported in symbiosis with P. pinaster. This is the first time that the diversity of the ectomycorrhizal fungal community associated with P. pinaster was investigated using molecular techniques. Considering that only 38% of the genera found by sequencing were found as fruitbodies, we conclude that integrating morphotyping and sporocarps surveys with molecular analysis of ectomycorrhizas is important to documenting the ectomycorrhizal fungus community.

  13. Influence of autoclaved saprotrophic fungal mycelia on proteolytic activity in ectomycorrhizal fungi.

    Science.gov (United States)

    Mucha, Joanna; Dahm, Hanna; Werner, Antoni

    2007-07-01

    The production of proteolytic enzymes by several strains of ectomycorrhizal fungi i.e., Amanita muscaria (16-3), Laccaria laccata (9-12), L. laccata (9-1), Suillus bovinus (15-4), Suillus bovinus (15-3), Suillus luteus (14-7) on mycelia of Trichoderma harzianum, Trichoderma virens and Mucor hiemalis and sodium caseinate, yeast extract was evaluated. The strains of A. muscaria (16-3) and L. laccata (9-12) were characterized by the highest activity of the acidic and neutral proteases. Taking the mycelia of saprotrophic fungi into consideration, the mycelium of M. hiemalis was the best inductor for proteolytic activity. The examined ectomycorrhizal fungi exhibited higher activity of acidic proteases than neutral ones on the mycelia of saprotrophic fungi, which may imply the participation of acidic proteases in nutrition.

  14. A novel, highly conserved metallothionein family in basidiomycete fungi and characterization of two representative SlMTa and SlMTb genes in the ectomycorrhizal fungus Suillus luteus.

    Science.gov (United States)

    Nguyen, Hoai; Rineau, François; Vangronsveld, Jaco; Cuypers, Ann; Colpaert, Jan V; Ruytinx, Joske

    2017-07-01

    The basidiomycete Suillus luteus is an important member of the ectomycorrhizal community that thrives in heavy metal polluted soils covered with pioneer pine forests. This study aimed to identify potential heavy metal chelators in S. luteus. Two metallothionein (MT) coding genes, SlMTa and SlMTb, were identified. When heterologously expressed in yeast, both SlMTa and SlMTb can rescue the Cu sensitive mutant from Cu toxicity. In S. luteus, transcription of both SlMTa and SlMTb is induced by Cu but not Cd or Zn. Several putative Cu-sensing and metal-response elements are present in the promoter sequences. These results indicate that SlMTa and SlMTb function as Cu-thioneins. Homologs of the S. luteus MTs are present in 49 species belonging to 10 different orders of the subphylum Agaricomycotina and are remarkably conserved. The length of the proteins, number and distribution of cysteine residues indicate a novel family of fungal MTs. The ubiquitous and highly conserved features of these MTs suggest that they are important for basic cellular functions in species in the subphylum Agaricomycotina. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Free amino acids production by ectomycorrhizal fungi of pine (Pinus sylvestris L.).

    Science.gov (United States)

    Rózycki, H; Strzelczyk, E

    1985-01-01

    Studies on free amino acids production by five species of ectomycorrhizal fungi (Amanita muscaria, Suillus granulatus, Suillus luteus, Suillus bovinus and Rhizopogon luteolus) show that all the fungi produced mainly: glutamic acid, leucine, lysine, ornithine, arginine and an unidentified ninhydrin-positive compound X3. Both the quality and quantity of amino acids released was different in the fungal species studied. The predominant amino acids in post-culture liquids in general did not exceed 1.5 micrograms/mg dry mass.

  16. Proteome analysis of an ectomycorrhizal fungus Boletus edulis under salt shock.

    Science.gov (United States)

    Liang, Yu; Chen, Hui; Tang, Mingjuan; Shen, Shihua

    2007-08-01

    Soil salinization has become a severe global problem and salinity is one of the most severe abiotic stresses inhibiting growth and survival of mycorrhizal fungi and their host plants. Salinity tolerance of ectomycorrhizal fungi and survival of ectomycorrhizal inocula is essential to reforestation and ecosystem restoration in saline areas. Proteomic changes of an ectomycorrhizal fungus, Boletus edulis, when exposed to salt stress conditions (4% NaCl, w/v) were determined using two-dimensional electrophoresis (2DE) and mass spectrometry (MS) techniques. Twenty-two protein spots, 14 upregulated and 8 downregulated, were found changed under salt stress conditions. Sixteen changed protein spots were identified by nanospray ESI Q-TOF MS/MS and liquid chromatography MS/MS. These proteins were involved in biosynthesis of methionine and S-adenosylmethionine, glycolysis, DNA repair, cell cycle control, and general stress tolerance, and their possible functions in salinity adaptation of Boletus edulis were discussed.

  17. Metabolism of [15N]alanine in the ectomycorrhizal fungus Paxillus involutus

    International Nuclear Information System (INIS)

    Chalot, M.; Finlay, R.D.; Ek, H.; Söderström, B.

    1995-01-01

    Chalot, M., Finlay, R. D., Ek, H., and Söderström, B. 1995. Metabolism of [ 15 N]alanine in the ectomycorrhizal fungus Paxillus involutus. Experimental Mycology 19, 297-304. Alanine metabolism in the ectomycorrhizal fungus Paxillus involutus was investigated using [ 15 N]alanine. Short-term exposure of mycelial discs to [ 15 N]alanine showed that the greatest flow of 15 N was to glutamate and to aspartate. Levels of enrichment were as high as 15-20% for glutamate and 13-18% for aspartate, whereas that of alanine reached 30%. Label was also detected in the amino-N of glutamine and in serine and glycine, although at lower levels. Preincubation of mycelia with aminooxyacetate, an inhibitor of transamination reactions. resulted in complete inhibition of the flow of the label to glutamate, aspartate, and amino-N of glutamine, whereas [ 15 N]alanine rapidly accumulated. This evidence indicates the direct involvement of alanine aminotransferase for translocation of 15 N from alanine to glutamate. Alanine may be a convenient reservoir of both nitrogen and carbon. (author)

  18. Changes in hyphal morphology and activity of phenoloxidases during interactions between selected ectomycorrhizal fungi and two species of Trichoderma.

    Science.gov (United States)

    Mucha, Joanna

    2011-06-01

    Patterns of phenoloxidase activity can be used to characterize fungi of different life styles, and changes in phenoloxidase synthesis were suspected to play a role in the interaction between ectomycorrhizal and two species of Trichoderma. Confrontation between the ectomycorrhizal fungi Amanita muscaria and Laccaria laccata with species of Trichoderma resulted in induction of laccase synthesis, and the laccase enzyme was bound to mycelia of ectomycorrhizal fungi. Tyrosinase release was noted only during interaction of L. laccata strains with Trichoderma harzianum and T. virens. Ectomycorrhizal fungi, especially strains of Suillus bovinus and S. luteus, inhibited growth of Trichoderma species and caused morphological changes in its colonies in the zone of interaction. In contrast, hyphal changes occurred less often in the ectomycorrhizal fungi tested. Species of Suillus are suggested to present a different mechanism in their interaction with other fungi than A. muscaria and L. laccata.

  19. Molecular Taxonomical Re-classification of the Genus Suillus Micheli ex S. F. Gray in South Korea.

    Science.gov (United States)

    Min, Young Ju; Park, Myung Soo; Fong, Jonathan J; Seok, Soon Ja; Han, Sang-Kuk; Lim, Young Woon

    2014-09-01

    The fungal genus Suillus Micheli ex S. F. Gray plays important roles in the survival and growth of plant seedlings. Humans have utilized these ectomycorrhizal fungi to enhance the nutrient uptake and defense systems of plants, particularly in the reforestation of coniferous forests. The genus Suillus is easily distinguishable by its distinctive morphological features, although the morphology of the fruiting body does not facilitate reliable interspecies discrimination. On the basis of micro-morphological features and internal transcribed spacer sequence analysis, we found that 51 of 117 Korean Suillus specimens had initially been misidentified. The list of the 12 Suillus species previously recorded in Korea was re-evaluated and revised to only eight distinct species: S. americanus, S. bovinus, S. granulatus, S. grevillei, S. luteus, S. pictus, S. placidus, and S. viscidus. We provide taxonomical descriptions for six of these species from the sample specimens.

  20. Synthesis of ectomycorrhizae on northern red oak seedlings in a Michigan nursery

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, R.K.; Johnson, P.S.

    1993-01-01

    Vegetative inoculum of the ectomycorrhizal fungus Suillus luteus was thoroughly mixed into fumigated nursery soil, and northern red oak seedlings of four families were evaluated one and two years after sowing for ectomycorrhizal development, growth, and nutrition. At the end of year one, treated seedlings were successfully inoculated with S. luteus, but the percentage varied significantly with family. Suillus luteus persisted on lateral roots two years following sowing. Two of four seedling families inoculated with S. luteus were significantly larger in size than control plants. These results suggest that the fungal symbiont S. luteus can be successfully introduced into nurseries and that early ectomycorrhizal development improves the growth of northern red oak seedlings.

  1. Seasonal dynamics of ectomycorrhizal fungus assemblages on oak seedlings in the southeastern Appalachian Mountains

    Science.gov (United States)

    John F. Walker; Orson K. Jr. Miller; Jonathan L. Horton

    2008-01-01

    The potential for seasonal dynamics in ectomycorrhizal (EM) fungal assemblages has important implications for the ecology of both the host trees and the fungal associates. We compared EM fungus distributions on root systems of out-planted oak seedlings at two sites in mixed southeastern Appalachian Mountain forests at the Coweeta Hydrologic Laboratory in North Carolina...

  2. Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils.

    Science.gov (United States)

    Adriaensen, K; Vrålstad, T; Noben, J-P; Vangronsveld, J; Colpaert, J V

    2005-11-01

    Natural populations thriving in heavy-metal-contaminated ecosystems are often subjected to selective pressures for increased resistance to toxic metals. In the present study we describe a population of the ectomycorrhizal fungus Suillus luteus that colonized a toxic Cu mine spoil in Norway. We hypothesized that this population had developed adaptive Cu tolerance and was able to protect pine trees against Cu toxicity. We also tested for the existence of cotolerance to Cu and Zn in S. luteus. Isolates from Cu-polluted, Zn-polluted, and nonpolluted sites were grown in vitro on Cu- or Zn-supplemented medium. The Cu mine isolates exhibited high Cu tolerance, whereas the Zn-tolerant isolates were shown to be Cu sensitive, and vice versa. This indicates the evolution of metal-specific tolerance mechanisms is strongly triggered by the pollution in the local environment. Cotolerance does not occur in the S. luteus isolates studied. In a dose-response experiment, the Cu sensitivity of nonmycorrhizal Pinus sylvestris seedlings was compared to the sensitivity of mycorrhizal seedlings colonized either by a Cu-sensitive or Cu-tolerant S. luteus isolate. In nonmycorrhizal plants and plants colonized by the Cu-sensitive isolate, root growth and nutrient uptake were strongly inhibited under Cu stress conditions. In contrast, plants colonized by the Cu-tolerant isolate were hardly affected. The Cu-adapted S. luteus isolate provided excellent insurance against Cu toxicity in pine seedlings exposed to elevated Cu levels. Such a metal-adapted Suillus-Pinus combination might be suitable for large-scale land reclamation at phytotoxic metalliferous and industrial sites.

  3. Effect of diflubenzuron on the development of Pinus pinaster seedlings inoculated with the ectomycorrhizal fungus Pisolithus tinctorius.

    Science.gov (United States)

    Ramos, Miguel A; Sousa, Nadine R; Franco, Albina R; Costa, Vítor; Oliveira, Rui S; Castro, Paula M L

    2013-01-01

    Diflubenzuron (DFB) is an insecticide commonly used to control forest pests. The objectives of this study were to assess the effect of diflubenzuron on the development of Pinus pinaster seedlings and Pisolithus tinctorius under laboratory conditions and to study the possible protective role of this ectomycorrhizal fungus against the effects of diflubenzuron. In vitro experiments revealed that diflubenzuron inhibited fungal growth at all tested concentrations (0.01, 0.1, 1, 10 and 100 mg L(-1)). Root growth was inhibited at the two highest diflubenzuron concentrations. The activity of the antioxidant defence system of non-inoculated P. pinaster increased at 1 and 10 mg DFB kg(-1) substrate, and inoculation increased the threshold to the highest concentration. The protective role of the ectomycorrhizal fungus was seen in the increase of CAT activity. This study revealed that despite causing no mortality, diflubenzuron has the ability to cause sub-lethal damage to P. pinaster. The disproportionate use of this insecticide may lead to higher amounts of its residues in soil and the biosphere, endangering trees, fungi and their symbiosis.

  4. Ectomycorrhizal community structure of different genotypes of Scots pine under forest nursery conditions.

    Science.gov (United States)

    Leski, Tomasz; Aucina, Algis; Skridaila, Audrius; Pietras, Marcin; Riepsas, Edvardas; Rudawska, Maria

    2010-10-01

    In this paper, we report the effect of Scots pine genotypes on ectomycorrhizal (ECM) community and growth, survival, and foliar nutrient composition of 2-year-old seedlings grown in forest bare-root nursery conditions in Lithuania. The Scots pine seeds originated from five stands from Latvia (P1), Lithuania (P2 and P3), Belarus (P4), and Poland (P5). Based on molecular identification, seven ECM fungal taxa were identified: Suillus luteus and Suillus variegatus (within the Suilloid type), Wilcoxina mikolae, Tuber sp., Thelephora terrestris, Cenococcum geophilum, and Russuloid type. The fungal species richness varied between five and seven morphotypes, depending on seed origin. The average species richness and relative abundance of most ECM morphotypes differed significantly depending on pine origin. The most essential finding of our study is the shift in dominance from an ascomycetous fungus like W. mikolae in P2 and P4 seedlings to basidiomycetous Suilloid species like S. luteus and S. variegatus in P1 and P5 seedlings. Significant differences between Scots pine origin were also found in seedling height, root dry weight, survival, and concentration of C, K, Ca, and Mg in the needles. The Spearman rank correlation coefficient revealed that survival and nutritional status of pine seedlings were positively correlated with abundance of Suilloid mycorrhizas and negatively linked with W. mikolae abundance. However, stepwise multiple regression analysis showed that only survival and magnesium content in pine needles were significantly correlated with abundance of ECM fungi, and Suilloid mycorrhizas were a main significant predictor. Our results may have implications for understanding the physiological and genetic relationship between the host tree and fungi and should be considered in management decisions in forestry and ECM fungus inoculation programs.

  5. Identification, evolution and functional characterization of two Zn CDF-family transporters of the ectomycorrhizal fungus Suillus luteus.

    Science.gov (United States)

    Ruytinx, Joske; Coninx, Laura; Nguyen, Hoai; Smisdom, Nick; Morin, Emmanuelle; Kohler, Annegret; Cuypers, Ann; Colpaert, Jan V

    2017-08-01

    Two genes, SlZnT1 and SlZnT2, encoding Cation Diffusion Facilitator (CDF) family transporters were isolated from Suillus luteus mycelium by genome walking. Both gene models are very similar and phylogenetic analysis indicates that they are most likely the result of a recent gene duplication event. Comparative sequence analysis of the deduced proteins predicts them to be Zn transporters. This function was confirmed by functional analysis in yeast for SlZnT1. SlZnT1 was able to restore growth of the highly Zn sensitive yeast mutant Δzrc1 and localized to the vacuolar membrane. Transformation of Δzrc1 yeast cells with SlZnT1 resulted in an increased accumulation of Zn compared to empty vector transformed Δzrc1 yeast cells and equals Zn accumulation in wild type yeast cells. We were not able to express functional SlZnT2 in yeast. In S. luteus, both SlZnT genes are constitutively expressed whatever the external Zn concentrations. A labile Zn pool was detected in the vacuoles of S. luteus free-living mycelium. Therefore we conclude that SlZnT1 is indispensable for maintenance of Zn homeostasis by transporting excess Zn into the vacuole. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Zn pollution counteracts Cd toxicity in metal-tolerant ectomycorrhizal fungi and their host plant, Pinus sylvestris.

    Science.gov (United States)

    Krznaric, Erik; Wevers, Jan H L; Cloquet, Christophe; Vangronsveld, Jaco; Vanhaecke, Frank; Colpaert, Jan V

    2010-08-01

    Adaptive Zn and Cd tolerance have evolved in populations of the ectomycorrhizal fungus Suillus luteus. When exposed to high concentrations of both metals in vitro, a one-sided antagonism was apparent in the Zn- and Cd-tolerant isolates. Addition of high Zn concentrations restored growth of Cd-stressed isolates, but not vice versa. The antagonistic effect was not detected in a S. luteus isolate from non-contaminated land and in Paxillus involutus. The fungi were inoculated on pine seedlings and subsequently exposed to ecologically relevant Zn and Cd concentrations in single and mixed treatments. The applied doses severely reduced nutrient acquisition of non-mycorrhizal pines and pines inoculated with metal-sensitive S. luteus. Highest translocation of Zn and Cd to shoots occurred in the same plants. Seedlings inoculated with fungi collected from the polluted site reduced metal transfer to their host and maintained nutrient acquisition under high metal exposure. The isolate showing highest tolerance in vitro also offered best protection in symbiosis. The antagonistic effect of high Zn on Cd toxicity was confirmed in the plant experiment. The results indicate that a Zn- and Cd-polluted soil has selected ectomycorrhizal fungi that are able to survive and protect their phytobiont from nutrient starvation and excessive metal uptake. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  7. Gene expression profiling of a Zn-tolerant and a Zn-sensitive Suillus luteus isolate exposed to increased external zinc concentrations

    OpenAIRE

    MULLER, Ludo; Craciun, A. R.; RUYTINX, Joske; LAMBAERTS, Marc; Verbruggen, N.; VANGRONSVELD, Jaco; COLPAERT, Jan

    2007-01-01

    Complementary DNA (cDNA)-amplified fragment-length polymorphism (AFLP) was applied to analyze transcript profiles of a Zn-tolerant and a Zn-sensitive isolate of the ectomycorrhizal basidiomycete Suillus luteus, both cultured with and without increased external zinc concentrations. From the obtained transcript profiles that covered approximately 2% of the total expected complement of genes in S. luteus, 144 nonredundant, differentially expressed transcript-derived fragments (TDFs), falling in ...

  8. Mycorrhization of containerised Pinus nigra seedlings with Suillus granulatus under open field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lazarevic, J.; Keca, N.; Martinovie, A.

    2012-07-01

    Seedling mycorrhization acts as an efficient tool for improving the quality of seedlings. In this study, the effectiveness of Suillus granulatus, originating from Pinus heldreichii forests (Montenegro), to produce containerized ectomycorrhizal seedlings of autochthonous Pinus nigra in open field conditions was investigated. Spore (106, 107, 108) and vegetative (1:16, 1:8, 1:4) inoculation on ectomycorrhizal formation and seedling growth were tested. Spore and vegetative inoculums of autochthonous Pisolithus arhizus were used in the same trial as additional control treatments. The utilization of vegetative and spore inoculums of autochthonous S. granulatus has proven to be an effective method of obtaining containerized ectomycorrhizal P. nigra seedlings under open field conditions after 11 months. S. granulatus spore inoculations resulted in well developed ectomycorrhiza, decreasing the growth of the P. nigra seedlings in the first growing season. Mycelial inoculations resulted in slightly developed S. granulatus ectomycorrhiza, which increased the growth of the seedlings. Therefore, it would be feasible to use spore inocula of S. granulatus, with 10{sup 6} spores per plant, to produce ectomycorrhizal P. nigra plants on a large scale. Controlled mycorrhizal inoculation of seedlings is not a common practice in Montenegrin and Serbian nurseries; as such, the obtained results will contribute to the enhancement of nursery production of Pinus nigra and other conifers. This also could be assumed as a starting point for many further efforts and investigations with autochthonous fungal and plant material in this region. (Author) 47 refs.

  9. Gold content of ectomycorrhizal and saprobic macrofungi - an update

    Science.gov (United States)

    Borovi ka, J.; anda, Z.; Jelínek, E.

    2006-05-01

    Species of macrofungi growing in the wild were collected from non-auriferous and unpolluted areas, and analyzed for gold. In addition, preliminary results of samples originated from an auriferous area are presented. Gold was determined using long-term instrumental neutron activation analysis (INAA). In total, 108 samples, including 49 species of ectomycorrhizal fungi and 30 species of terrestrial saprobes, were examined. The highest concentrations (expressed in dry weight) were found in ectomycorrhizal species Russula nigricans (235 ng g-1) and Suillus variegatus (1070 ng g-1). Among the saprobic macrofungi, an extraordinary high value 2250 ng g-1 was found in Lepiota cf. clypeolaria. Gold content of saprobic macrofungi originated from the auriferous area was obviously higher than that of macrofungi from non-auriferous areas. The highest contents were found in Agaricus silvaticus (4230 ng g-1) and in two samples of Lycoperdon perlatum (6955 and 7739 ng g-1).

  10. Gold content of ectomycorrhizal and saprobic macrofungi - an update

    International Nuclear Information System (INIS)

    Borovika, J; Randa; Jelinek, E

    2006-01-01

    Species of macrofungi growing in the wild were collected from non-auriferous and unpolluted areas, and analyzed for gold. In addition, preliminary results of samples originated from an auriferous area are presented. Gold was determined using long-term instrumental neutron activation analysis (INAA). In total, 108 samples, including 49 species of ectomycorrhizal fungi and 30 species of terrestrial saprobes, were examined. The highest concentrations (expressed in dry weight) were found in ectomycorrhizal species Russula nigricans (235 ng g -1 ) and Suillus variegatus (1070 ng g -1 ). Among the saprobic macrofungi, an extraordinary high value 2250 ng g -1 was found in Lepiota cf. clypeolaria. Gold content of saprobic macrofungi originated from the auriferous area was obviously higher than that of macrofungi from non-auriferous areas. The highest contents were found in Agaricus silvaticus (4230 ng g -1 ) and in two samples of Lycoperdon perlatum (6955 and 7739 ng g -1 )

  11. Effects of Different Ectomycorrhizal Fungal Inoculates on the Growth of Pinus tabulaeformis Seedlings under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2016-12-01

    Full Text Available The tree species Pinus tabulaeformis Carr. (P. tabulaeformis is commonly planted in China due to its economic and ecological value. In order to identify one or more ectomycorrhizal (ECM fungal species for future P. tabulaeformis afforestation, we investigated the effects of five ECM fungal species: Laccaria laccata, Boletus edulis, Gomphidius viscidus, Suillus grevillei, and Suillus luteus on the growth of P. tabulaeformis seedlings under greenhouse conditions. The growth parameters of P. tabulaeformis seedlings were evaluated 90 days following fungal colonisation. The majority of seedlings were significantly affected by ECM inoculation. Mycorrhizal inoculated seedlings were taller, had more lateral roots, and a greater biomass compared with the non-mycorrhizal (CK seedlings. With the exception of G. viscidus, inoculated seedlings exhibited higher phosphorus, potassium, and nitrogen content compared with the CK seedlings. In addition, ECM colonisation increased the enzymatic activity of catalase, acidic phosphatase, protease, and the urease content in the rhizosphere soil. Our study showed that Laccaria laccata, Suillus grevillei, and Suillus luteus may be useful for improving the growth and cultivation of P. tabulaeformis seedlings. Furthermore, we observed that S. luteus inoculation increased the gas exchange parameters of P. tabulaeformis seedlings under field conditions.

  12. Phylogenetic assessment of global Suillus ITS sequences supports morphologically defined species and reveals synonymous and undescribed taxa.

    Science.gov (United States)

    Nguyen, Nhu H; Vellinga, Else C; Bruns, Thomas D; Kennedy, Peter G

    The genus Suillus represents one of the most recognizable groups of mushrooms in conifer forests throughout the Northern Hemisphere. Although for decades the genus has been relatively well defined morphologically, previous molecular phylogenetic assessments have provided important yet preliminary insights into its evolutionary history. We present the first large-scale phylogenetic study of the boundaries of each species in the genus Suillus based on the most current internal transcribed spacer (ITS) barcode sequences available inPUBLIC databases, as well as sequencing of 224 vouchered specimens and cultures, 15 of which were type specimens from North America. We found that species boundaries delimited by morphological data are broadly congruent with those based on ITS sequences. However, some species appear to have been described several times under different names, several species groups cannot be resolved by ITS sequences alone, and undescribed taxa are apparent, especially in Asia. Therefore, we elevated S. tomentosus var. discolor to S. discolor; proposed synonymies of S. neoalbidipes with S. glandulosipes, S. borealis with S. brunnescens, Boletus serotinus and B. solidipes with Suillus elbensis, S. lactifluus with S. granulatus, S. himalayensis with S. americanus; and proposed usage of the names S. clintonianus in the place of the North American S. grevillei, S. weaverae for North American S. granulatus, S. ampliporus in the place of the North American S. cavipes, and S. elbensis in place of the North American S. viscidus. We showed that the majority of Suillus species have strong affinities for particular host genera. Although deep node support was low, geographic differentiation was apparent, with species from North America, Eurasia, and Asia often forming their own clades. Collectively, this comprehensive genus-level phylogenetic integration of currently available Suillus ITS molecular data and metadata will aid future taxonomic and ecological work on an

  13. Decomposition, nitrogen and phosphorus mineralization from beech leaf litter colonized with ectomycorrhizal or litter decomposing basidiomycetes

    OpenAIRE

    COLPAERT, Jan; VAN TICHELEN, Katia

    1996-01-01

    The decomposition and the nitrogen and phosphorus mineralization of fresh beech (Fagus sylvatica L.) leaf litter are described. Leaves were buried for up to 6 months in plant containers in which Scots pine (Pinus sylvestris L.) seedlings were cultivated at a low rate of nutrient addition. The saprotrophic abilities of three ectomycorrhizal fungi, Thelephora terrestris Ehrh.: Fr., Suillus bovinus (L.: Fr.) O. Kuntze and Paxillus involutes (Batsch: Fr) Fr., were compared with the degradation ca...

  14. Correlations between potassium, rubidium and cesium (133Cs and 137Cs) in sporocarps of Suillus variegatus in a Swedish boreal forest

    International Nuclear Information System (INIS)

    Vinichuk, M.; Rosen, K.; Johanson, K.J.; Dahlberg, A.

    2011-01-01

    An analysis of sporocarps of ectomycorrhizal fungi Suillus variegatus assessed whether cesium ( 133 Cs and 137 Cs) uptake was correlated with potassium (K) or rubidium (Rb) uptake. The question was whether intraspecific correlations of Rb, K and 133 Cs mass concentrations with 137 Cs activity concentrations in sporocarps were higher within, rather than among, different fungal species, and if genotypic origin of sporocarps within a population affected uptake and correlation. Sporocarps (n = 51) from a Swedish forest population affected by the fallout after the Chernobyl accident were studied. The concentrations were 31.9 ± 6.79 g kg -1 for K (mean ± SD, dwt), 0.40 ± 0.09 g kg -1 for Rb, 8.7 ± 4.36 mg kg -1 for 133 Cs and 63.7 ± 24.2 kBq kg -1 for 137 Cs. The mass concentrations of 133 Cs correlated with 137 Cs activity concentrations (r = 0.61). There was correlation between both 133 Cs concentrations (r = 0.75) and 137 Cs activity concentrations (r = 0.44) and Rb, but the 137 Cs/ 133 Cs isotopic ratio negatively correlated with Rb concentration. Concentrations of K and Rb were weakly correlated (r = 0.51). The 133 Cs mass concentrations, 137 Cs activity concentrations and 137 Cs/ 133 Cs isotopic ratios did not correlate with K concentrations. No differences between, within or, among genotypes in S. variegatus were found. This suggested the relationships between K, Rb, 133 Cs and 137 Cs in sporocarps of S. variegatus is similar to other fungal species. - Highlights: → We studied uptake of Cs ( 133 Cs and 137 Cs), K and Rb by Suillus variegates sporocarps. → Genotypic origin of fungus did not affect uptake of studied elements (isotopes). → Genotypic origin did not affect correlation between Cs ( 133 Cs and 137 Cs), K and Rb.

  15. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry

    DEFF Research Database (Denmark)

    Rineau, Francois; Roth, Doris; Shah, Firoz

    2012-01-01

    chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular...... the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matterprotein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism...... by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton...

  16. Ectomycorrhizal host specificity in a changing world: can legacy effects explain anomalous current associations?

    Science.gov (United States)

    Lofgren, Lotus; Nguyen, Nhu H; Kennedy, Peter G

    2018-02-07

    Despite the importance of ectomycorrhizal (ECM) fungi in forest ecosystems, knowledge about the ecological and co-evolutionary mechanisms underlying ECM host associations remains limited. Using a widely distributed group of ECM fungi known to form tight associations with trees in the family Pinaceae, we characterized host specificity among three unique Suillus-host species pairs using a combination of field root tip sampling and experimental bioassays. We demonstrate that the ECM fungus S. subaureus can successfully colonize Quercus hosts in both field and glasshouse settings, making this species unique in an otherwise Pinaceae-specific clade. Importantly, however, we found that the colonization of Quercus by S. subaureus required co-planting with a Pinaceae host. While our experimental results indicate that gymnosperms are required for the establishment of new S. subaureus colonies, Pineaceae hosts are locally absent at both our field sites. Given the historical presence of Pineaceae hosts before human alteration, it appears the current S. subaureus-Quercus associations represent carryover from past host presence. Collectively, our results suggest that patterns of ECM specificity should be viewed not only in light of current forest community composition, but also as a legacy effect of host community change over time. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  17. Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere

    Energy Technology Data Exchange (ETDEWEB)

    Joner, Erik J. [Laboratoire des Interactions Microorganismes-Mineraux-Matiere Organique dans les Sols (LIMOS), Universite H. Poincare Nancy 1, P.O. Box 239, F-54506 Vandoeuvre-les-Nancy (France)]. E-mail: erik.joner@jordforsk.no; Leyval, Corinne [Laboratoire des Interactions Microorganismes-Mineraux-Matiere Organique dans les Sols (LIMOS), Universite H. Poincare Nancy 1, P.O. Box 239, F-54506 Vandoeuvre-les-Nancy (France); Colpaert, Jan V. [Centre for Environmental Sciences, Environmental Biology Group, Hasselt University, Agoralaan, Gebouw D, B-3590 Diepenbeek (Belgium)

    2006-07-15

    Exploitation of mycorrhizas to enhance phytoremediation of organic pollutants has received attention recently due to their positive effects on establishment of plants in polluted soils. Some evidence exist that ectomycorrhizas enhance the degradation of pollutants of low recalcitrance, while less easily degradable polyaromatic molecules have been degraded only by some of these fungi in vitro. Natural polyaromatic (humic) substances are degraded more slowly in soil where ectomycorrhizal fungi are present, thus phytoremediation of recalcitrant pollutants may not benefit from the presence of these fungi. Using a soil spiked with three polycyclic aromatic hydrocarbons (PAHs) and an industrially polluted soil (1 g kg{sup -1} of {sigma}12 PAHs), we show that the ectomycorrhizal fungus Suillus bovinus, forming hydrophobic mycelium in soil that would easily enter into contact with hydrophobic pollutants, impedes rather than promotes PAH degradation. This result is likely to be a nutrient depletion effect caused by fungal scavenging of mineral nutrients. - The ectomycorrhizal fungus S. bovinus impeded degradation of PAHs in soil, probably due to its negative effect on the availability of mineral nutrients of more potent PAH degraders.

  18. Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere

    International Nuclear Information System (INIS)

    Joner, Erik J.; Leyval, Corinne; Colpaert, Jan V.

    2006-01-01

    Exploitation of mycorrhizas to enhance phytoremediation of organic pollutants has received attention recently due to their positive effects on establishment of plants in polluted soils. Some evidence exist that ectomycorrhizas enhance the degradation of pollutants of low recalcitrance, while less easily degradable polyaromatic molecules have been degraded only by some of these fungi in vitro. Natural polyaromatic (humic) substances are degraded more slowly in soil where ectomycorrhizal fungi are present, thus phytoremediation of recalcitrant pollutants may not benefit from the presence of these fungi. Using a soil spiked with three polycyclic aromatic hydrocarbons (PAHs) and an industrially polluted soil (1 g kg -1 of Σ12 PAHs), we show that the ectomycorrhizal fungus Suillus bovinus, forming hydrophobic mycelium in soil that would easily enter into contact with hydrophobic pollutants, impedes rather than promotes PAH degradation. This result is likely to be a nutrient depletion effect caused by fungal scavenging of mineral nutrients. - The ectomycorrhizal fungus S. bovinus impeded degradation of PAHs in soil, probably due to its negative effect on the availability of mineral nutrients of more potent PAH degraders

  19. Transcriptome analysis by cDNA-AFLP of Suillus luteus Cd-tolerant and Cd-sensitive isolates.

    Science.gov (United States)

    Ruytinx, Joske; Craciun, Adrian R; Verstraelen, Karen; Vangronsveld, Jaco; Colpaert, Jan V; Verbruggen, Nathalie

    2011-04-01

    The ectomycorrhizal basidiomycete Suillus luteus (L.:Fr.), a typical pioneer species which associates with young pine trees colonizing disturbed sites, is a common root symbiont found at heavy metal contaminated sites. Three Cd-sensitive and three Cd-tolerant isolates of S. luteus, isolated respectively from non-polluted and a heavy metal-polluted site in Limburg (Belgium), were used for a transcriptomic analysis. We identified differentially expressed genes by cDNA-AFLP analysis. The possible roles of some of the encoded proteins in heavy metal (Cd) accumulation and tolerance are discussed. Despite the high conservation of coding sequences in S. luteus, a large intraspecific variation in the transcript profiles was observed. This variation was as large in Cd-tolerant as in sensitive isolates and may help this pioneer species to adapt to novel environments.

  20. Screening of ectomycorrhizal fungi for degradation of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Braun-Luellemann, A.; Huettermann, A.; Majcherczyk, A. [Goettingen Univ. (Germany). Inst. fuer Forstbotanik

    2000-07-01

    Ectomycorrhizal fungi belonging to 16 species (27 strains) were tested for their ability to degrade polycyclic aromatic hydrocarbons (PAHs): Phenanthrene, chrysene, pyrene and benzo[a]pyrene. Cultivated on a complex liquid medium, most of the fungi tested were able to metabolise these compounds. Approximately 50% of the benzo[a]pyrene was removed by strains of Amanita excelsa, Leccinum versipelle, Suillus grevillei, S. luteus, and S. variegatus during a 4-week incubation period. The same amount of phenanthrene was also metabolised by A. muscaria, Paxillus involutus, and S. grevillei. The degradation of the other two PAHs was, for the most part, less effective. Only S. grevillei was able to remove 50% of the pyrene, whereas Boletus edulis and A. muscaria removed 35% of the chrysene. (orig.)

  1. Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations.

    Science.gov (United States)

    Machuca, A; Pereira, G; Aguiar, A; Milagres, A M F

    2007-01-01

    To investigate the in vitro production of metal-chelating compounds by ectomycorrhizal fungi collected from pine plantations in southern Chile. Scleroderma verrucosum, Suillus luteus and two isolates of Rhizopogon luteolus were grown in solid and liquid modified Melin-Norkans (MMN) media with and without iron addition and the production of iron-chelating compounds was determined by Chrome Azurol S (CAS) assay. The presence of hydroxamate and catecholate-type compounds and organic acids was also investigated in liquid medium. All isolates produced iron-chelating compounds as detected by CAS assay, and catecholates, hydroxamates as well as oxalic, citric and succinic acids were also detected in all fungal cultures. Scleroderma verrucosum produced the greatest amounts of catecholates and hydroxamates whereas the highest amounts of organic acids were detected in S. luteus. Nevertheless, the highest catecholate, hydroxamate and organic acid concentrations did not correlate with the highest CAS reaction which was observed in R. luteolus (Yum isolate). Ectomycorrhizal fungi produced a variety of metal-chelating compounds when grown in liquid MMN medium. However, the addition of iron to all fungi cultures reduced the CAS reaction, hydroxamate and organic acid concentrations. Catecholate production was affected differently by iron, depending on the fungal isolate. The ectomycorrhizal fungi described in this study have never been reported to produce metal-chelating compound production. Moreover, apart from some wood-rotting fungi, this is the first evidence of the presence of catecholates in R. luteolus, S. luteus and S. verrucosum cultures.

  2. Correlations between potassium, rubidium and cesium ({sup 133}Cs and {sup 137}Cs) in sporocarps of Suillus variegatus in a Swedish boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Vinichuk, M., E-mail: Mykhailo.Vinichuk@slu.s [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, SE-750 07 Uppsala (Sweden); Department of Ecology, Zhytomyr State Technological University, 103 Cherniakhovsky Str., 10005 Zhytomyr (Ukraine); Rosen, K.; Johanson, K.J. [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, SE-750 07 Uppsala (Sweden); Dahlberg, A. [Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, 750 07 Uppsala (Sweden)

    2011-04-15

    An analysis of sporocarps of ectomycorrhizal fungi Suillus variegatus assessed whether cesium ({sup 133}Cs and {sup 137}Cs) uptake was correlated with potassium (K) or rubidium (Rb) uptake. The question was whether intraspecific correlations of Rb, K and {sup 133}Cs mass concentrations with {sup 137}Cs activity concentrations in sporocarps were higher within, rather than among, different fungal species, and if genotypic origin of sporocarps within a population affected uptake and correlation. Sporocarps (n = 51) from a Swedish forest population affected by the fallout after the Chernobyl accident were studied. The concentrations were 31.9 {+-} 6.79 g kg{sup -1} for K (mean {+-} SD, dwt), 0.40 {+-} 0.09 g kg{sup -1} for Rb, 8.7 {+-} 4.36 mg kg{sup -1} for {sup 133}Cs and 63.7 {+-} 24.2 kBq kg{sup -1} for {sup 137}Cs. The mass concentrations of {sup 133}Cs correlated with {sup 137}Cs activity concentrations (r = 0.61). There was correlation between both {sup 133}Cs concentrations (r = 0.75) and {sup 137}Cs activity concentrations (r = 0.44) and Rb, but the {sup 137}Cs/{sup 133}Cs isotopic ratio negatively correlated with Rb concentration. Concentrations of K and Rb were weakly correlated (r = 0.51). The {sup 133}Cs mass concentrations, {sup 137}Cs activity concentrations and {sup 137}Cs/{sup 133}Cs isotopic ratios did not correlate with K concentrations. No differences between, within or, among genotypes in S. variegatus were found. This suggested the relationships between K, Rb, {sup 133}Cs and {sup 137}Cs in sporocarps of S. variegatus is similar to other fungal species. - Highlights: {yields} We studied uptake of Cs ({sup 133}Cs and {sup 137}Cs), K and Rb by Suillus variegates sporocarps. {yields} Genotypic origin of fungus did not affect uptake of studied elements (isotopes). {yields} Genotypic origin did not affect correlation between Cs ({sup 133}Cs and {sup 137}Cs), K and Rb.

  3. Genetic structure of Suillus luteus populations in heavy metal polluted and nonpolluted habitats.

    Science.gov (United States)

    Muller, Ludo A H; Vangronsveld, Jaco; Colpaert, Jan V

    2007-11-01

    The genetic structure of populations of the ectomycorrhizal basidiomycete Suillus luteus in heavy metal polluted and nonpolluted areas was studied. Sporocarps were collected at nine different locations and genotyped at four microsatellite loci. Six of the sampling sites were severely contaminated with heavy metals and were dominated by heavy metal-tolerant individuals. Considerable genetic diversity was found within the geographical subpopulations, but no reduction of the genetic diversity, current or historic, was observed in subpopulations inhabiting polluted soils. The genetic differentiation between the geographical subpopulations was low, and no evidence for clustering of subpopulations from polluted soils vs. subpopulations from nonpolluted soils was found. These results indicate that heavy metal pollution has a limited effect on the genetic structure of S. luteus populations, and this may be due to the high frequency of sexual reproduction and extensive gene flow in S. luteus, which allows rapid evolution of the tolerance trait while maintaining high levels of genetic diversity.

  4. [Influence of aluminum and manganese on the growth, nutrient uptake and the efflux by ectomycorrhizal fungi].

    Science.gov (United States)

    Li, Hua; Huang, Jian-Guo; Yuan, Ling

    2013-01-01

    Al3+ and Mn2+ limit forest growth and vegetation restoration in strongly acidic soils and mining areas of aluminum and manganese. The knowledge on the influence of these two elements on ectomycorrhizal fungi can provide theoretical and technical supports for the selection of powerful ectomycorrhizal fungal strains and the bioremediation of contaminated soil. Three ectomycorrhizal fungal strains, namely Suillus luteus 13 (Sl 13), Cenococcum geophilum 04 (Cg 04) and Pisolithus tinctorius 715 (Pt 715), were grown in liquid culture mediums with Al3+ and Mn2+ added alone and together to investigate fungal growth, nutrient uptake and organic acid efflux. The results showed that the biomass of Sl 13, Cg 04 and Pt 715 was decreased by 70.35%, 52.44% and 18.55%, respectively, under Mn2+ stress. Al3 also decreased the biomass of Sl 13 by 50.74% but increased that of Cg 04. The growth of ectomycorrhizal fungi was further inhibited when grown in culture solutions with addition of both Mn2+ and Al3 and the least growth inhibition was found with Pt 715. Cg 04 might thus have a strong resistance to Al3+ stress and Pt 715 to both Al3+ and Mn2+ compared to the others. Al3+ and Mn2+ decreased the nutrient uptake by the fungi, particularly by Sl 13 which showed more obvious reduction than Pt 715 and Cg 04. However, Al3+ and Mn2+ increased the efflux of oxalic acid and protons by ectomycorrhizal fungi. An additional oxalic acid exudation by Cg 04 was observed in the coexistence of Al3+ and Mn2+ and Pt 715 exuded not only oxalic acid but also succinic acid. Therefore, ectomycorrhizal fungi resistant to Mn2+ and Al3+ could effuse more organic acids than the sensitive ones in order to alleviate the harmfulness through complexation under the stress.

  5. Ectomycorrhizal community structure and function in relation to forest residue harvesting and wood ash applications

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, Shahid

    2000-05-01

    Ectomycorrhizal fungi form symbiotic associations with tree roots and assist in nutrient-uptake and -cycling in forest ecosystems, thereby constituting a most significant part of the microbial community. The aims of the studies described in this thesis were to evaluate the potential of DNA-based molecular methods in below-ground ectomycorrhizal community studies and to investigate changes in ectomycorrhizal communities on spruce roots in sites with different N deposition, and in sites subjected to harvesting of forest residues or application of wood ash. The ability of selected ectomycorrhizal fungi to mobilise nutrients from wood ash and to colonise root systems in the presence and absence of ash was also studied. In total 39 ectomycorrhizal species were detected in the experimental forests located in southern Sweden. At each site five to six species colonised around 60% of the root tips. The dominant species, common to the sites, were Tylospora fibrillosa, Thelephora terrestris and Cenococcum geophilum. Differences between two sites with differing levels of N deposition suggested that community structure may be influenced by N deposition, although site history, location and degree of isolation may also influence species composition. Repeated harvesting of forest residues reduced numbers of mycorrhizal roots in the humus layer to approximately 50% of that in control plots but no shift in the ectomycorrhizal community could be detected. At another site, application of granulated wood ash induced a shift in ectomycorrhizal community structure and three ectomycorrhizal fungi ('ash fungi') were found to colonise ash granules. Two 'ash fungi' showed a superior ability to solubilise stabilised wood ash in laboratory experiments compared to other ectomycorrhizal isolates from the same site. In laboratory microcosms containing intact mycorrhizal mycelia, colonisation of wood ash patches by one 'ash fungus' was good whereas colonisation by

  6. Ectomycorrhizal community structure and function in relation to forest residue harvesting and wood ash applications

    International Nuclear Information System (INIS)

    Mahmood, Shahid

    2000-05-01

    Ectomycorrhizal fungi form symbiotic associations with tree roots and assist in nutrient-uptake and -cycling in forest ecosystems, thereby constituting a most significant part of the microbial community. The aims of the studies described in this thesis were to evaluate the potential of DNA-based molecular methods in below-ground ectomycorrhizal community studies and to investigate changes in ectomycorrhizal communities on spruce roots in sites with different N deposition, and in sites subjected to harvesting of forest residues or application of wood ash. The ability of selected ectomycorrhizal fungi to mobilise nutrients from wood ash and to colonise root systems in the presence and absence of ash was also studied. In total 39 ectomycorrhizal species were detected in the experimental forests located in southern Sweden. At each site five to six species colonised around 60% of the root tips. The dominant species, common to the sites, were Tylospora fibrillosa, Thelephora terrestris and Cenococcum geophilum. Differences between two sites with differing levels of N deposition suggested that community structure may be influenced by N deposition, although site history, location and degree of isolation may also influence species composition. Repeated harvesting of forest residues reduced numbers of mycorrhizal roots in the humus layer to approximately 50% of that in control plots but no shift in the ectomycorrhizal community could be detected. At another site, application of granulated wood ash induced a shift in ectomycorrhizal community structure and three ectomycorrhizal fungi ('ash fungi') were found to colonise ash granules. Two 'ash fungi' showed a superior ability to solubilise stabilised wood ash in laboratory experiments compared to other ectomycorrhizal isolates from the same site. In laboratory microcosms containing intact mycorrhizal mycelia, colonisation of wood ash patches by one 'ash fungus' was good whereas colonisation by Piloderma croceum was poor. In a

  7. The effect of ectomycorrhizal fungi forming symbiosis with Pinus pinaster seedlings exposed to cadmium

    International Nuclear Information System (INIS)

    Sousa, Nadine R.; Ramos, Miguel A.; Marques, Ana P.G.C.; Castro, Paula M.L.

    2012-01-01

    Cadmium is one of the most toxic heavy metals and its accumulation in the upper layers of forest soils affects plants, microorganisms and their interactions. Adequate strategies for the reforestation of metal contaminated sites are of vital importance. The aim of this work was to evaluate the response of Pinus pinaster seedlings to Cd exposure and to assess the effect of inoculation with two selected ectomycorrhizal fungi, Suillus bovinus and Rhizopogon roseolus on that response. Seedlings were exposed to soil contaminated at 15 and 30 mg Cd kg −1 . Shoot biomass of P. pinaster decreased ca. 36% when exposed to 15 mg Cd kg −1 . Overall, colonization by S. bovinus significantly enhanced shoot development up to 30% in contaminated soil while colonization by R. roseolus produced no significant effect at both Cd concentrations tested and significantly increased the level of Cd in the shoots at both Cd concentrations. Metal accumulation in the shoots and roots of non-inoculated and S. bovinus-inoculated seedlings increased at the higher Cd levels whereas R. roseolus-inoculated seedlings were not sensitive to Cd variation in the soil. The results from our research show that inoculation with ECM fungi has a significant impact on metal uptake and development of P. pinaster seedlings; the differential response induced by the two tested species highlights the importance of selecting the appropriate strains for nursery inoculation, and, as such, this biological tool ought to be considered in reforestation processes of heavy metal contaminated areas by woody species. - Highlights: ► Ectomycorrhizal fungi can aid the reforestation of heavy metal contaminated areas. ► Cd inhibited the growth of non-inoculated 6 months-old Pinus pinaster seedlings. ► Inoculation with Suillus bovinus enhanced P. pinaster growth in Cd contaminated soil. ► Mycorrhizal symbiosis influenced the accumulation of Cd in P. pinaster seedlings.

  8. Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster.

    Science.gov (United States)

    Tatry, Marie-Violaine; El Kassis, Elie; Lambilliotte, Raphaël; Corratgé, Claire; van Aarle, Ingrid; Amenc, Laurie K; Alary, Rémi; Zimmermann, Sabine; Sentenac, Hervé; Plassard, Claude

    2009-03-01

    Ectomycorrhizal symbiosis markedly improves plant phosphate uptake, but the molecular mechanisms underlying this benefit are still poorly understood. We identified two ESTs in a cDNA library prepared from the ectomycorrhizal basidiomycete Hebeloma cylindrosporum with significant similarities to phosphate transporters from the endomycorrhizal fungus Glomus versiforme and from non-mycorrhizal fungi. The full-length cDNAs corresponding to these two ESTs complemented a yeast phosphate transport mutant (Deltapho84). Measurements of (33)P-phosphate influx into yeast expressing either cDNA demonstrated that the encoded proteins, named HcPT1 and HcPT2, were able to mediate Pi:H(+) symport with different affinities for Pi (K(m) values of 55 and 4 mum, respectively). Real-time RT-PCR showed that Pi starvation increased the levels of HcPT1 transcripts in H. cylindrosporum hyphae grown in pure culture. Transcript levels of HcPT2 were less dependent on Pi availability. The two transporters were expressed in H. cylindrosporum associated with its natural host plant, Pinus pinaster, grown under low or high P conditions. The presence of ectomycorrhizae increased net Pi uptake rates into intact Pinus pinaster roots at low or high soil P levels. The expression patterns of HcPT1 and HcPT2 indicate that the two fungal phosphate transporters may be involved in uptake of phosphate from the soil solution under the two soil P availability conditions used.

  9. Freezing tolerance of ectomycorrhizal fungi in pure culture.

    Science.gov (United States)

    Lehto, Tarja; Brosinsky, Arlena; Heinonen-Tanski, Helvi; Repo, Tapani

    2008-10-01

    The ability to survive freezing and thawing is a key factor for the existence of life forms in large parts of the world. However, little is known about the freezing tolerance of mycorrhizal fungi and their role in the freezing tolerance of mycorrhizas. Threshold temperatures for the survival of these fungi have not been assessed experimentally. We grew isolates of Suillus luteus, Suillus variegatus, Laccaria laccata, and Hebeloma sp. in liquid culture at room temperature. Subsequently, we exposed samples to a series of temperatures between +5 degrees C and -48 degrees C. Relative electrolyte leakage (REL) and re-growth measurements were used to assess the damage. The REL test indicated that the lethal temperature for 50% of samples (LT(50)) was between -8.3 degrees C and -13.5 degrees C. However, in the re-growth experiment, all isolates resumed growth after exposure to -8 degrees C and higher temperatures. As many as 64% of L. laccata samples but only 11% in S. variegatus survived -48 degrees C. There was no growth of Hebeloma and S. luteus after exposure to -48 degrees C, but part of their samples survived -30 degrees C. The fungi tolerated lower temperatures than was expected on the basis of earlier studies on fine roots of ectomycorrhizal trees. The most likely freezing tolerance mechanism here is tolerance to apoplastic freezing and the concomitant intracellular dehydration with consequent concentrating of cryoprotectant substances in cells. Studying the properties of fungi in isolation promotes the understanding of the role of the different partners of the mycorrhizal symbiosis in the freezing tolerance.

  10. The effect of ectomycorrhizal fungi forming symbiosis with Pinus pinaster seedlings exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Nadine R.; Ramos, Miguel A.; Marques, Ana P.G.C.; Castro, Paula M.L., E-mail: plcastro@esb.ucp.pt

    2012-01-01

    Cadmium is one of the most toxic heavy metals and its accumulation in the upper layers of forest soils affects plants, microorganisms and their interactions. Adequate strategies for the reforestation of metal contaminated sites are of vital importance. The aim of this work was to evaluate the response of Pinus pinaster seedlings to Cd exposure and to assess the effect of inoculation with two selected ectomycorrhizal fungi, Suillus bovinus and Rhizopogon roseolus on that response. Seedlings were exposed to soil contaminated at 15 and 30 mg Cd kg{sup -1}. Shoot biomass of P. pinaster decreased ca. 36% when exposed to 15 mg Cd kg{sup -1}. Overall, colonization by S. bovinus significantly enhanced shoot development up to 30% in contaminated soil while colonization by R. roseolus produced no significant effect at both Cd concentrations tested and significantly increased the level of Cd in the shoots at both Cd concentrations. Metal accumulation in the shoots and roots of non-inoculated and S. bovinus-inoculated seedlings increased at the higher Cd levels whereas R. roseolus-inoculated seedlings were not sensitive to Cd variation in the soil. The results from our research show that inoculation with ECM fungi has a significant impact on metal uptake and development of P. pinaster seedlings; the differential response induced by the two tested species highlights the importance of selecting the appropriate strains for nursery inoculation, and, as such, this biological tool ought to be considered in reforestation processes of heavy metal contaminated areas by woody species. - Highlights: Black-Right-Pointing-Pointer Ectomycorrhizal fungi can aid the reforestation of heavy metal contaminated areas. Black-Right-Pointing-Pointer Cd inhibited the growth of non-inoculated 6 months-old Pinus pinaster seedlings. Black-Right-Pointing-Pointer Inoculation with Suillus bovinus enhanced P. pinaster growth in Cd contaminated soil. Black-Right-Pointing-Pointer Mycorrhizal symbiosis

  11. Association of ectomycorrhizal fungi with Picea crassifolia (Pinaceae, Piceoidae) from high-altitude stands in Mount Helan Nature Reserve, China.

    Science.gov (United States)

    Fan, Y J; Grebenc, T; Wei, J; Zhao, Y L; Yan, W; Wang, L B

    2016-09-02

    We investigated the diversity of ectomycorrhiza associated with the endemic Picea crassifolia in Mount Helan National Nature Reserve in Inner Mongolia, China. Toward this objective, we conducted morphological and molecular identification of ectomycorrhizae in soil cubes taken from pure P. crassifolia stands. Eleven types of ectomycorrhizal (ECM) organisms were separated, briefly described, and identified. Nine morphotypes belonged to the phylum Basidiomycotina [Amphinema byssoides, Cortinarius sp (cf. limonius), Cortinarius vernus, Inocybe cf. nitidiscula, Inocybe sp 1, Sebacina incrustans, Sebacina sp, Suillus luteus, and Piceirhiza tuberculata x Picea crassifolia (comb. Nov.)], and two morphotypes to the phylum Ascomycotina (Cenococcum geophilum and Helvella sp). The diversity of ECM organisms in P. crassifolia was lower than that reported by other studies on spruce or pine forests, or on sporocarp diversity in the high-mountain forests of China. Most of the fungi in the rhizosphere did not correspond to species previously recorded as sporocarps above ground. Here, several new ectomycorrhiza morphotypes are proposed and described. We also confirmed the ectomycorrhizal status of the genus Sebacina (order Sebacinales).

  12. The host plant Pinus pinaster exerts specific effects on phosphate efflux and polyphosphate metabolism of the ectomycorrhizal fungus Hebeloma cylindrosporum: a radiotracer, cytological staining and 31 P NMR spectroscopy study.

    Science.gov (United States)

    Torres-Aquino, Margarita; Becquer, Adeline; Le Guernevé, Christine; Louche, Julien; Amenc, Laurie K; Staunton, Siobhan; Quiquampoix, Hervé; Plassard, Claude

    2017-02-01

    Ectomycorrhizal (ECM) association can improve plant phosphorus (P) nutrition. Polyphosphates (polyP) synthesized in distant fungal cells after P uptake may contribute to P supply from the fungus to the host plant if they are hydrolyzed to phosphate in ECM roots then transferred to the host plant when required. In this study, we addressed this hypothesis for the ECM fungus Hebeloma cylindrosporum grown in vitro and incubated without plant or with host (Pinus pinaster) and non-host (Zea mays) plants, using an experimental system simulating the symbiotic interface. We used 32 P labelling to quantify P accumulation and P efflux and in vivo and in vitro nuclear magnetic resonance (NMR) spectroscopy and cytological staining to follow the fate of fungal polyP. Phosphate supply triggered a massive P accumulation as newly synthesized long-chain polyP in H. cylindrosporum if previously grown under P-deficient conditions. P efflux from H. cylindrosporum towards the roots was stimulated by both host and non-host plants. However, the host plant enhanced 32 P release compared with the non-host plant and specifically increased the proportion of short-chain polyP in the interacting mycelia. These results support the existence of specific host plant effects on fungal P metabolism able to provide P in the apoplast of ectomycorrhizal roots. © 2016 John Wiley & Sons Ltd.

  13. Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals

    Science.gov (United States)

    Schmalenberger, A.; Duran, A. L.; Bray, A. W.; Bridge, J.; Bonneville, S.; Benning, L. G.; Romero-Gonzalez, M. E.; Leake, J. R.; Banwart, S. A.

    2015-01-01

    Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using 14CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle. PMID:26197714

  14. Limited transfer of nitrogen between wood decomposing and ectomycorrhizal mycelia when studied in the field

    DEFF Research Database (Denmark)

    Wallander, Håkan; Lindahl, Björn D.; Nilsson, Lars Ola

    2006-01-01

    was compared to the amount of 15N released from the wood-decomposing mycelia into the soil solution as 15N-NH4. The study was performed in peat-filled plastic containers placed in forest soil in the field. The wood-decomposing mycelium was growing from an inoculated wood piece and the ectomycorrhizal mycelium...... from an introduced root from a mature tree. The containers were harvested after 41 weeks when physical contact between the two foraging mycelia was established. At harvest, 15N content was analyzed in the peat (total N and 15NH4+) and in the mycorrhizal roots. A limited amount of 15N was transferred...... to the ectomycorrhizal fungus and this transfer could be explained by 15NH4+ released from the wooddecomposing fungus without involving any antagonistic interactions between the two mycelia. Using our approach, it was possible to study nutritional interactions between basidiomycete mycelia under field conditions...

  15. Synthesis of enzymes connected with mycoparasitism by ectomycorrhizal fungi.

    Science.gov (United States)

    Mucha, Joanna; Dahm, Hanna; Strzelczyk, Edmund; Werner, Antoni

    2006-03-01

    The production of enzymes involved in mycoparasitism by several strains of ectomycorrhizal fungi: Amanita muscaria (16-3), Laccaria laccata (9-12), L. laccata (9-1), Suillus bovinus (15-4), S. bovinus (15-3), S. luteus (14-7) on different substrates such as colloidal chitin, mycelia of Trichoderma harzianum, T. virens and Mucor hiemalis was examined. Chitinases and beta-1,3-glucanases were assayed spectrophotometrically by measuring the amount of reducing sugars releasing from suitable substrate by means of Miller's method. Beta-glucosidases were determined by measuring the amount of p-nitrophenol released from p-nitrophenyl-beta-D-glucopyranoside. It was observed that A. muscaria (16-3) and L. laccata (9-12) biosynthesized the highest activity of enzymes in contrast to the strains of S. bovinus and S. luteus. The mycelium of T. harzianum turned out to be the best substrate for the induction of beta-1,3-glucanases and beta-glucosidases for both strains of L. laccata, although the difference in the induction of chitinases in the presence of mycelia of different species of Trichoderma was not indicated.

  16. Spatial segregation and aggregation of ectomycorrhizal and root-endophytic fungi in the seedlings of two Quercus species.

    Directory of Open Access Journals (Sweden)

    Satoshi Yamamoto

    Full Text Available Diverse clades of mycorrhizal and endophytic fungi are potentially involved in competitive or facilitative interactions within host-plant roots. We investigated the potential consequences of these ecological interactions on the assembly process of root-associated fungi by examining the co-occurrence of pairs of fungi in host-plant individuals. Based on massively-parallel pyrosequencing, we analyzed the root-associated fungal community composition for each of the 249 Quercus serrata and 188 Quercus glauca seedlings sampled in a warm-temperate secondary forest in Japan. Pairs of fungi that co-occurred more or less often than expected by chance were identified based on randomization tests. The pyrosequencing analysis revealed that not only ectomycorrhizal fungi but also endophytic fungi were common in the root-associated fungal community. Intriguingly, specific pairs of these ectomycorrhizal and endophytic fungi showed spatially aggregated patterns, suggesting the existence of facilitative interactions between fungi in different functional groups. Due to the large number of fungal pairs examined, many of the observed aggregated/segregated patterns with very low P values (e.g., < 0.005 turned non-significant after the application of a multiple comparison method. However, our overall results imply that the community structures of ectomycorrhizal and endophytic fungi could influence each other through interspecific competitive/facilitative interactions in root. To test the potential of host-plants' control of fungus-fungus ecological interactions in roots, we further examined whether the aggregated/segregated patterns could vary depending on the identity of host plant species. Potentially due to the physiological properties shared between the congeneric host plant species, the sign of hosts' control was not detected in the present study. The pyrosequencing-based randomization analyses shown in this study provide a platform of the high

  17. [Response of ectomycorrhizal fungi to aluminum stress and low potassium soil].

    Science.gov (United States)

    Zhang, Wei; Huang, Jian-Guo; Yuan, Ling; Li, Yang-Bo; He, Lin-Wei

    2014-10-01

    Soil acidification, aluminum (Al3+) toxicity and nutrient deficiency could be some of the most important reasons for the decline and death of forests in tropical and subtropical areas. Ectomycorrhizal fungi for Al3+ resistance and nutrient mobilization are beneficial for preventing forests against Al3+ toxicity and increasing forest productivity. Therefore, Suillus luteus (SI 13), Pisolithus tinctorius (Pt 715) and Suillus subluteus (Ss 00) were grown in liquid culture medium with soil as the sole K source under Al3+ stress to study the fungal growth, organic acid and proton efflux, and potassium (K) unitization. The result indicated that the fungal growth, organic acid and proton efflux, and nutrient uptake, including nitrogen (N), phosphorus (P) and potassium (K), were regulated by Al3+ concentration in culture solutions. They increased with increasing Al3+ at low concentration and after reaching a peak, they started to decrease. Fungal strain with high resistance to Al3+ also showed higher Al3+ concentration at the peak than those with low ability. Al3+ concentration at the peak of fungal biomass and N uptake by Pt 715 was four folds or twice of Ss 00 and SI 13, respectively. The uptake of P and K and efflux of organic acids and protons by Pt 715 were also higher than Ss 00 and Sl 13. All three fungal strains could utilize structural K in soil minerals and the utilization rate reached 2.10% for Pt 715, 1.43% for Ss 00 and 1.17% for Sl 13, respectively, which could be related to the types and amount of organic acids and protons.

  18. Molecular characterization and evaluation of mycorrhizal capacity of Suillus isolates from central Spain for the selection of fungal inoculants.

    Science.gov (United States)

    Ruiz-Díez, Beatriz; Rincón, Ana M; de Felipe, María R; Fernández-Pascual, Mercedes

    2006-10-01

    Suillus fungal specimens of pine forests from a Mediterranean area of central Spain (Madrid region) were studied based on molecular and physiological analysis of sporocarps to obtain fungal native inocula to produce mycorrhizal Pinus halepensis Miller in nursery. Variation within the internal transcribed spacer (ITS) region of the ribosomal RNA genes of Suillus was examined by restriction fragment length polymorphism (RFLP) and direct sequencing of polymerase chain reaction products. Ribosomal DNA (rDNA) spacers were amplified from pure cultures obtained from fruit bodies of a range of Suillus species: Suillus bellinii (Inzenga) Watling, Suillus bovinus (Pers.) Kuntze, Suillus collinitus (Fr.) Kuntze, Suillus granulatus (L.) Snell, Suillus mediterraneensis (Jacquet. & Blum) Redeuil, Suillus luteus L. (Gray), and Suillus variegatus (Sw.) Kuntze. Interspecific variation in the length and number of restriction sites of the amplified ITS region was observed. This variation was confirmed by sequencing, which allowed us to identify some isolates. This is the first time that the ITS sequence of S. mediterraneensis is completely described. No intraspecific rDNA variation was observed within isolates of S. collinitus, S. mediterraneensis, and S. luteus. The phylogenetic analysis established the close relationship among these Mediterranean fungal species. As a further step to characterize the different isolates and to understand the relation between genetic and functional diversity, some physiological variables were evaluated. Intraspecific variation in axenic fungal growth and in mycorrhizal capacities was detected, especially within S. collinitus isolates. The fungal isolates stimulated the growth of P. halepensis in different rates. These studies indicated that ITS analysis, in conjunction with mycorrhizal tests, provides suitable combined tools for the analysis of Suillus spp. in a small geographic area for selecting isolates with final afforestation purposes.

  19. Ectomycorrhizal colonization of naturally regenerating Pinus sylvestris L. seedlings growing in different micro-habitats in boreal forest.

    Science.gov (United States)

    Iwański, Michał; Rudawska, Maria

    2007-07-01

    We investigated the species richness and composition of ectomycorrhizal (EM) fungi colonizing Pinus sylvestris L. seedlings naturally regenerating in boreal forest, in three different microhabitats: on forest ground, on decaying stumps, and within moss layer on erratic boulders. We tested the hypothesis that habitat differences would affect the composition of the EM community of regenerating pine seedlings. In total, 16 EM species were detected, from which none occurred on seedlings growing in all three microhabitats. Piloderma croceum and Cenococcum geophilum were common for seedlings growing in forest ground and on boulders, while Tricholoma aestuans and Suillus luteus were shared between seedlings growing on forest ground and decaying stumps. EM species richness and composition were strikingly different between seedlings regenerating in different microhabitats. Results are discussed as a function of dispersal and niche differentiation of EM fungi.

  20. The effect of fungicides used in the protection of forest tree seedlings on the growth of ectomycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Marta Aleksandrowicz-Trzcińska

    2014-08-01

    Full Text Available Fungitoxical activity of ten fungictdes most commonly used in the phytopathological protection of forest nurseries was studied, using the in vitro screening method. The fungitoxical activity was studied against five species of ectomycorrhizal fungi (seven strains. The resulting growth inhibition of fungi species and strains tested was prcscnted in terms of fungitoxicity classes of the preparations used. The highest total fungitoxicity against the mycelia of fungi taxa tested was found for Euparen, Bravo, Dithane M-45 and Ridomil. The weakest fungitoxical effect was observed for Topsin M and Bayleton. The least susceptible for the action of the fungicides studied were mycelia of Suillus luteus, while the most susceptible were those of Hebeloma crustuliniforme and Laccaria laccata. The study results arę useful for the selection of fungi strains proper for the artificial mycorrhization of seedlings.

  1. Gene expression profiling of a Zn-tolerant and a Zn-sensitive Suillus luteus isolate exposed to increased external zinc concentrations.

    Science.gov (United States)

    Muller, L A H; Craciun, A R; Ruytinx, J; Lambaerts, M; Verbruggen, N; Vangronsveld, J; Colpaert, J V

    2007-10-01

    Complementary DNA (cDNA)-amplified fragment-length polymorphism (AFLP) was applied to analyze transcript profiles of a Zn-tolerant and a Zn-sensitive isolate of the ectomycorrhizal basidiomycete Suillus luteus, both cultured with and without increased external zinc concentrations. From the obtained transcript profiles that covered approximately 2% of the total expected complement of genes in S. luteus, 144 nonredundant, differentially expressed transcript-derived fragments (TDFs), falling in different classes of expression pattern, were isolated and sequenced. Thirty-six of the represented genes showed homology to function-known genes, whereas 6 matched unknown protein coding sequences, and 102 were possibly novel. Although relatively few TDFs were found to be responsive to the different zinc treatments, their modulated expression levels may suggest a different transcriptional response to zinc treatments in both isolates. Among the identified genes that could be related to heavy-metal detoxification or the tolerance trait were genes encoding for homologues of a heat-shock protein, a putative metal transporter, a hydrophobin, and several proteins involved in ubiquitin-dependent proteolysis.

  2. Growth, nutrient uptake and ectomycorrhizal function in Pinus sylvestris plants exposed to aluminium and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen-Jonnarth, Ulla [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology

    2000-07-01

    The potential role of aluminium (Al) toxicity to trees has been of particular concern to forest owners and scientists since the early 1980's when Ulrich hypothesised that both Al and heavy metals were involved in forest dieback because of their increased concentrations in soil due to acidification. Since then, numerous studies have examined the effects of metals upon nutrient uptake by plants. However, most of these investigations have been carried out in the absence of mycorrhizal fungi, which, in most ecosystems, are crucial components in nutrient uptake by plants. The present work focused on the effects of elevated concentrations of Al and heavy metals on Scots pine (Pinus sylvestris L.) and the potential role of ectomycorrhiza in modifying these effects. Ectomycorrhizal colonisation enhanced the growth and nutrient uptake by seedlings. To some extent, colonisation also alleviated reduced nutrient uptake which was a feature of seedlings growing in the presence of the metals. This effect was particularly noticeable with respect to P uptake. In general, mycorrhizal seedlings grew better and had an improved P, K, Mg and S status compared with non-mycorrhizal seedlings. Significant differences were also found in nutrient uptake among seedlings colonised by different fungi. One fungus, Hebeloma cf. longicaudum, was more sensitive to the Al treatment than the pine seedlings. The use of the base cation / Al ratio as an indicator of the potential detrimental effects to trees to acidification and Al is discussed. The production of oxalic acid was found to increase when mycorrhizal and nonmycorrhizal seedlings were exposed to Al or Cu. Colonisation by Suillus variegatus or Rhizopogon roseolus, in particular, resulted in a marked increase. These results demonstrate that there is a capacity, especially by certain ectomycorrhizal fungi, for increased production of the metal-chelating oxalic acid when root systems are exposed to increased levels of metals. In a field

  3. Growth, nutrient uptake and ectomycorrhizal function in Pinus sylvestris plants exposed to aluminium and heavy metals

    International Nuclear Information System (INIS)

    Ahonen-Jonnarth, Ulla

    2000-01-01

    The potential role of aluminium (Al) toxicity to trees has been of particular concern to forest owners and scientists since the early 1980's when Ulrich hypothesised that both Al and heavy metals were involved in forest dieback because of their increased concentrations in soil due to acidification. Since then, numerous studies have examined the effects of metals upon nutrient uptake by plants. However, most of these investigations have been carried out in the absence of mycorrhizal fungi, which, in most ecosystems, are crucial components in nutrient uptake by plants. The present work focused on the effects of elevated concentrations of Al and heavy metals on Scots pine (Pinus sylvestris L.) and the potential role of ectomycorrhiza in modifying these effects. Ectomycorrhizal colonisation enhanced the growth and nutrient uptake by seedlings. To some extent, colonisation also alleviated reduced nutrient uptake which was a feature of seedlings growing in the presence of the metals. This effect was particularly noticeable with respect to P uptake. In general, mycorrhizal seedlings grew better and had an improved P, K, Mg and S status compared with non-mycorrhizal seedlings. Significant differences were also found in nutrient uptake among seedlings colonised by different fungi. One fungus, Hebeloma cf. longicaudum, was more sensitive to the Al treatment than the pine seedlings. The use of the base cation / Al ratio as an indicator of the potential detrimental effects to trees to acidification and Al is discussed. The production of oxalic acid was found to increase when mycorrhizal and nonmycorrhizal seedlings were exposed to Al or Cu. Colonisation by Suillus variegatus or Rhizopogon roseolus, in particular, resulted in a marked increase. These results demonstrate that there is a capacity, especially by certain ectomycorrhizal fungi, for increased production of the metal-chelating oxalic acid when root systems are exposed to increased levels of metals. In a field

  4. Secretome discovery reveals lignocellulose degradation capacity of the ectomycorrhizal fungus Paxillus involutus

    DEFF Research Database (Denmark)

    Roth, Doris; Rineau, Francois; Olsen, Peter B.

    2011-01-01

    To improve our understanding of the role ectomycorrhizal fungi play in biomass conversion, we studied the transcriptome of P. involutus grown on glass beads in extract of soil organic matter. The mycelium was used for a cDNA library screened by Transposon-Assisted Signal Trapping (TAST*) for gene...... the brown rot fungi systems. In addition, GH61 apparently acts as accessory protein both in enzymatic and in radical-based cellulolysis. * Becker et al., J. Microbial Methods, 2004, 57(1), 123-33....

  5. Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita strobiliformis

    Czech Academy of Sciences Publication Activity Database

    Hložková, K.; Matěnová, M.; Žáčková, P.; Strnad, Hynek; Hršelová, Hana; Hroudová, Miluše; Kotrba, P.

    2016-01-01

    Roč. 120, č. 3 (2016), s. 358-369 ISSN 1878-6146 R&D Projects: GA ČR(CZ) GAP504/11/0484 Institutional support: RVO:61388971 ; RVO:68378050 Keywords : Ectomycorrhizal fungi * Gene expression * Metal binding * Metallothionein Subject RIV: EB - Genetics ; Molecular Biology; EE - Microbiology, Virology (MBU-M) Impact factor: 2.184, year: 2016

  6. Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals.

    Science.gov (United States)

    Hrynkiewicz, Katarzyna; Baum, Christel

    2013-01-01

    Willow clones are used for the phytoextraction of heavy metals from contaminated soils and are usually mycorrhizal. The receptiveness of willow clones for mycorrhizal inoculum varies specific to genotype; however, it is unknown if this might have a significant impact on their efficiency in phytoextraction of heavy metals. Therefore, a model system with mycorrhizal and non-mycorrhizal willows of two different genotypes--one with usually stronger natural mycorrhizal colonization (Salix dasyclados), and one with lower natural mycorrhizal colonization (S. viminalis)--was investigated for its efficiency of phytoextraction of heavy metals (Cd, Pb, Cu, Zn) from contaminated soil. Inoculation with the ectomycorrhizal fungus Amanita muscaria significantly decreased the biomass of leaves of both inoculated willow clones, and increased or had no effect on the biomass of trunks and roots of S. dasyclados and S. viminalis, respectively. The concentrations of heavy metals in the biomass of S. dasyclados were in general higher than in S. viminalis irrespective of inoculation with the ectomycorrhizal fungus. Inoculation with A. muscaria significantly decreased the concentration of Cu in the trunks of both Salix taxa, but did not affected the concentrations of other heavy metals in the biomass. In conclusion, stronger receptiveness of willow clones for mycorrhizal inoculum was correlated with an increased total extraction of heavy metals from contaminated soils. Therefore, this seems to be a suitable criterion for effective willow clone selection for phytoremediation. Increased biomass production with relatively constant metal concentrations seems to be a major advantage of mycorrhizal formation of willows in phytoremediation of contaminated soils.

  7. Impact of metal pollution on fungal diversity and community structures.

    Science.gov (United States)

    Op De Beeck, Michiel; Lievens, Bart; Busschaert, Pieter; Rineau, Francois; Smits, Mark; Vangronsveld, Jaco; Colpaert, Jan V

    2015-06-01

    The impact of metal pollution on plant communities has been studied extensively in the past, but little is known about the effects of metal pollution on fungal communities that occur in metal-polluted soils. Metal-tolerant ecotypes of the ectomycorrhizal fungus Suillus luteus are frequently found in pioneer pine forests in the Campine region in Belgium on metal-polluted soils. We hypothesized that metal pollution would play an important role in shaping below-ground fungal communities that occur in these soils and that Suillus luteus would be a dominant player. To test these hypotheses, the fungal communities in a young pine plantation in soil polluted with zinc, and cadmium were studied using 454 amplicon pyrosequencing. Results show that zinc, cadmium and soil organic matter content were strongly correlated with the fungal community composition, but no effects on fungal diversity were observed. As hypothesized, S. luteus was found to be a dominant member of the studied fungal communities. However, other dominant fungal species, such as Sistotrema sp., Wilcoxina mikolae and Cadophora finlandica were found as well. Their presence in metal-polluted sites is discussed. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Physiological aspects underlying the improved outplanting performance of Pinus pinaster Ait. seedlings associated with ectomycorrhizal inoculation.

    Science.gov (United States)

    Sanchez-Zabala, Joseba; Majada, Juan; Martín-Rodrigues, Noemí; Gonzalez-Murua, Carmen; Ortega, Unai; Alonso-Graña, Manuel; Arana, Orats; Duñabeitia, Miren K

    2013-11-01

    Mycorrhizal inoculation of conifer roots is a key strategy to optimize establishment and performance of forest tree species under both natural and cultivated conditions and also to mitigate transplantation shock. However, despite being a common practice, inoculation in outdoor nursery conditions has been poorly studied. Here, we have evaluated effectiveness of four fungal species (Lactarius deliciosus, Lactarius quieticolor, Pisolithus arhizus, and Suillus luteus) in the production of mycorrhizal Pinus pinaster seedlings in an outdoor commercial nursery and their ability to improve seedling physiology and field performance. All inoculated seedlings showed a significant increase in growth at the end of the nursery stage and these differences remained after 3 years of growth in the field. Differences observed in the content of malondialdehyde, total chlorophyll, carotenoids, anthocyanins, and phenolic compounds from needles of mycorrhizal and control seedlings may reflect a different sensitivity to photo-oxidative damage. We conclude that ectomycorrhizal inoculation improves adaptability to changeable growing conditions of an outdoor nursery and produces a higher quality nursery stock, thereby enhancing seedling performance after planting.

  9. Ectomycorrhizal fungi as an alternative to the use of chemical fertilisers in nursery production of Pinus pinaster.

    Science.gov (United States)

    Sousa, Nadine R; Franco, Albina R; Oliveira, Rui S; Castro, Paula M L

    2012-03-01

    Addition of fertilisers is a common practice in nursery production of conifer seedlings. The aim of this study was to evaluate whether ectomycorrhizal (ECM) fungi can be an alternative to the use of chemical fertilisers in the nursery production of Pinus pinaster. A greenhouse nursery experiment was conducted by inoculating seedlings obtained from seeds of P. pinaster plus trees with a range of compatible ECM fungi: (1) Thelephora terrestris, (2) Rhizopogon vulgaris, (3) a mixture of Pisolithus tinctorius and Scleroderma citrinum, and (4) a mixture of Suillus bovinus, Laccaria laccata and Lactarius deterrimus, using forest soil as substrate. Plant development was assessed at two levels of N-P-K fertiliser (0 or 600 mg/seedling). Inoculation with a mixture of mycelium from S. bovinus, L. laccata and L. deterrimus and with a mixture of spores of P. tinctorius and S. citrinum improved plant growth and nutrition, without the need of fertiliser. Results indicate that selected ECM fungi can be a beneficial biotechnological tool in nursery production of P. pinaster. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Morphological, molecular and ecological aspects of the South American hypogeous fungus Alpova austroalnicola sp. nov.

    Science.gov (United States)

    Nouhra, Eduardo R; Dominguez, Laura S; Becerra, Alejandra G; Trappe, James M

    2005-01-01

    Field studies in Argentina's Yunga District revealed Alpova austroalnicola sp. nov., a hypogeous fungus associated with Alnus acuminata ssp. acuminata. Morphological and molecular studies based on amplification and sequencing of the nuclear LSU rDNA gene showed its unique identity within Alpova. Related genera included in the analyses were Boletus edulis, Rhizopogon spp., Suillus luteus and Truncocolumella citrina. Additional observations of animal diggings around the sites and microscopic examination of fecal pellets of the nine-banded armadillo (Dasypus novemcinctus novemcinctus) indicate A. austroalnicola is consumed and its spores dispersed by animals.

  11. T-DNA transfer from Agrobacterium tumefaciens to the ectomycorrhizal fungus Pisolithus microcarpus Transferencia de T-DNA de Agrobacterium tumefaciens al hongo ectomicorrícico Pisolithus microcarpus

    Directory of Open Access Journals (Sweden)

    A.G. Pardo

    2005-06-01

    Full Text Available The model ectomycorrhizal fungus Pisolithus microcarpus isolate 441 was transformed by using Agrobacterium tumefaciens LBA1100 and AGL-1. The selection marker was the Shble gene of Streptoallotecius hidustanus, conferring resistance to phleomycin, under the control of the gpd gene promoter and terminator of Schizophyllum commune. Transformation resulted in phleomycin resistant clones which were confirmed by PCR to contain the resistance cassette. A. tumefaciens-mediated gene transfer would allow the development of RNA interference technology in P. microcarpus.El hongo ectomicorrícico modelo Pisolithus microcarpus aislamiento 441 fue transformado utilizando Agrobacterium tumefaciens LBA 1100 y AGL-1. El marcador de selección fue el gen Shble de Streptoallotecius hidustanus, el cual confiere resistencia a fleomicina, bajo el control del promotor y terminador del gen gpd de Schizophyllum commune. La transformación resultó en clones resistentes a fleomicina comprobándose por PCR la presencia del transgen. La transferencia génica mediada por Agrobacterium podría permitir el desarrollo de la tecnología de interferencia por ARN en P. microcarpus.

  12. [Mercury in three species of Suillus mushroom from some sites in Poland].

    Science.gov (United States)

    Mielewska, Dominika; Stefańska, Aleksandra; Wenta, Justyna; Mazur, Michalina; Bielawski, Leszek; Danisiewicz, Dorota; Dryzałowska, Anna; Falandysz, Jerzy

    2008-01-01

    Total mercury content have been determined in fruiting bodies of Variegated Bolete (Suillus variegates), European Cow Bolete (S. bovinus) and Slippery Jack (S. luteus) and in underlying to mushroom's surface layer of soil substrate collected from several spatially distant one from another sites in Poland. All three Suillus mushroom species independent of the site characterized were by small mercury content. The arithmetic mean values of mercury concentration in caps and stipes, respectively, were: 0.17 +/- 0.07-0.22 +/- 0.12 and 0.047 +/- 0.015-0.071 +/- 0.035 microg/g dry weight for Variegated Bolete; 0.28 +/- 0.11-0.79 +/- 0.40 and 0.17 +/- 0.07- 0.51 +/- 0.22 microg/g dw for European Cow Bolete, and 0.095 +/- 0.082-0.17 +/- 0.05 and 0.045 +/- 0.026- 0.070 +/- 0.026 microg/g dw for Slippery Jack. All three species of Suillus mushrooms bio-concentrated mercury (BCF > 1). European Cow Bolete bioconcentrated mercury relatively more efficiently when compared to two other species, and means of BCF value of this element in its caps ranged from 18 +/- 10 to 45 +/- 20, and in stipes from 9.4 +/- 7.5 to 29 +/- 11. A level of surface soil pollution with mercury was low and averaged from 0.017 +/- 0.003 do 0.029 +/- 0.020 microg/g dw.

  13. Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus

    DEFF Research Database (Denmark)

    Sebastiana, Mónica; Martins, Joana; Figueiredo, Andreia

    2017-01-01

    in the roots. Consistent with the results of the biochemical analysis, the proteome analysis of the mycorrhizal roots suggests a decreasing utilization of sucrose for the metabolic activity of mycorrhizal roots which is consistent with an increased allocation of carbohydrates from the plant to the fungus...... to ectomycorrhizae formation using a proteomics approach complemented by biochemical analysis of carbohydrate levels. Comparative proteome analysis between mycorrhizal and nonmycorrhizal cork oak plants revealed no differences at the foliar level. However, the protein profile of 34 unique oak proteins was altered...... in order to sustain the symbiosis. In addition, a promotion of protein unfolding mechanisms, attenuation of defense reactions, increased nutrient mobilization from the plant-fungus interface (N and P), as well as cytoskeleton rearrangements and induction of plant cell wall loosening for fungal root...

  14. Molecular cloning and functional analysis of a H(+)-dependent phosphate transporter gene from the ectomycorrhizal fungus Boletus edulis in southwest China.

    Science.gov (United States)

    Wang, Junling; Li, Tao; Wu, Xiaogang; Zhao, Zhiwei

    2014-01-01

    Phosphate transporters (PTs), as entry points for phosphorus (P) in organisms, are involved in a number of P nutrition processes such as phosphate uptake, transport, and transfer. In the study, a PT gene 1632 bp long (named BePT) was cloned, identified, and functionally characterized from Boletus edulis. BePT was expected to encode a polypeptide with 543 amino acid residues. The BePT polypeptide belonged to the major facilitator superfamily and showed a high degree of sequence identity to the Pht1 family. A topology model revealed that BePT exhibited 12 transmembrane helices, divided into two halves, and connected by a large hydrophilic loop in the middle. A yeast mutant complementation analysis suggested that BePT was a functional PT which mediated orthophosphate uptake of yeast at micromolar concentrations. Green fluorescent protein-BePT fusion proteins expressed were extensively restricted to the plasma membrane in BePT transformed yeast, and its activity was dependent on electrochemical membrane potential. In vitro, quantitative PCR confirmed that the expression of BePT was significantly upregulated at lower phosphorus availability, which may enhance phosphate uptake and transport under phosphate starvation. Our results suggest that BePT plays a key role in phosphate acquisition in the ectomycorrhizal fungus B. edulis. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  15. Cryopreservation of ectomycorrhizal fungi has minor effects on root colonization of Pinus sylvestris plantlets and their subsequent nutrient uptake capacity.

    Science.gov (United States)

    Crahay, Charlotte; Wevers, Jan; Munaut, Françoise; Colpaert, Jan V; Declerck, Stéphane

    2013-08-01

    The use of ectomycorrhizal (ECM) fungi for afforestation, bioremediation, and timber production requires their maintenance over long periods under conditions that preserve their genetic, phenotypic, and physiological stability. Cryopreservation is nowadays considered as the most suitable method to maintain the phenotypic and genetic stability of a large number of filamentous fungi including the ECM fungi. Here, we compared the ability of eight ECM fungal isolates to colonize Pinus sylvestris roots and to transport inorganic phosphate (Pi) and NH4 (+) from the substrate to the plant after cryopreservation for 6 months at -130 °C or after storage at 4 °C. Overall, the mode of preservation had no significant effect on the colonization rates of P. sylvestris, the concentrations of ergosterol in the roots and substrate, and the uptake of Pi and NH4 (+). Comparing the isolates, differences were sometimes observed with one or the other method of preservation. Suillus bovinus exhibited a reduced ability to form mycorrhizas and to take up Pi following cryopreservation, while one Suillus luteus isolate exhibited a decreased ability to take up NH4 (+). Conversely, Hebeloma crustuliniforme, Laccaria bicolor, Paxillus involutus, and Pisolithus tinctorius exhibited a reduced ability to form mycorrhizas after storage at 4 °C, although this did not result in a reduced uptake of Pi and NH4 (+). Cryopreservation appeared as a reliable method to maintain important phenotypic characteristics (i.e., root colonization and nutrient acquisition) of most of the ECM fungal isolates studied. For 50 % of the ECM fungal isolates, the colonization rate was even higher with the cultures cryopreserved at -130 °C as compared to those stored at 4 °C.

  16. Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus.

    Science.gov (United States)

    Wolfe, Benjamin E; Pringle, Anne

    2012-04-01

    The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world.

  17. Effects of aluminum and manganese on the growth of ectomycorrhizal fungi.

    Science.gov (United States)

    Thompson, G W; Medve, R J

    1984-09-01

    Cenococcum graniforme, Suillus luteus, Thelephora terrestris, and three isolates of Pisolithus tinctorius were cultured on modified Melin-Norkrans medium at pH 3.4 and adjusted to 0 to 500 ppm (0 to 500 mug/ml) of aluminum or manganese sulfate. Except for T. terrestris, which was intolerant of aluminum at 150 and 250 to 500 ppm, and P. tinctorius isolate 250, which was intolerant of aluminum at 450 ppm, all fungi showed some growth at all concentrations of aluminum. S. luteus was the most tolerant to aluminum. Manganese was less fungitoxic than aluminum, with all fungi showing at least 65% growth at 500 ppm as compared with the control. C. graniforme was not inhibited at any concentration of manganese, and S. luteus was only affected at 500 ppm. P. tinctorius isolate 230 showed no significant variation in growth when subjected to various concentrations of three forms of manganese salts. Significant differences in growth were detected in response to three aluminum salts, but no detectable pattern was apparent. Genotypic responses to aluminum and manganese were evident for P. tinctorius. Isolates 210 and 230 were more tolerant to manganese than was isolate 250. Aluminum tolerance was in the order of isolate 230 > 210 > 250. Results of in vitro studies concerning tolerance responses of ectomycorrhizal fungi to aluminum and manganese were not consistent with field observations of the successional sequence of these fungi on acid coal spoils.

  18. Effects of aluminum and manganese on the growth of ectomycorrhizal fungi

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.W.; Medve, R.J.

    1984-09-01

    Cenococcum graniforme, Suillus luteus, Thelephora terrestris, and three isolates of Pisolithus tinctorius were cultured on modified Melin-Norkrans medium at pH 3.4 and adjusted to 0 to 500 ppm (0 to 500 ..mu..g/ml) of aluminum or manganese sulfate. Except for T. terrestris, which was intolerant of aluminum at 150 and 250 to 500 ppm, and P. tinctorius isolate 250, which was intolerant of aluminum at 450 ppm, all fungi showed some growth at all concentrations of aluminum. S. luteus was the most tolerant to aluminum. Manganese was less fungitoxic than aluminum, with all fungi showing at least 65% growth at 500 ppm as compared with the control. C graniforme was not inhibited at any concentration of manganese, and S. luteus was only affected at 500 ppm. P. tinctorius isolate 230 showed no significant variation in growth when subjected to various concentrations of three forms of manganese salts. Significant differences in growth were detected in response to three aluminum salts, but no detectable pattern was apparent. Genotypic responses to aluminum and manganese were evident for P. tinctorius. Isolates 210 and 230 were more tolerant to manganese than was isolate 250. Aluminum tolerance was in the order of isolate 230 > 210 > 250. Results of in vitro studies concerning tolerance responses of ectomycorrhizal fungi to aluminum and manganese were not consistent with field observations of the successional sequence of these fungi on acid coal spoils. 43 references, 3 tables.

  19. Mycorrhization helper bacteria: a case of specificity for altering ectomycorrhiza architecture but not ectomycorrhiza formation.

    Science.gov (United States)

    Aspray, Thomas J; Frey-Klett, Pascale; Jones, Julie E; Whipps, John M; Garbaye, Jean; Bending, Gary D

    2006-11-01

    Mycorrhization helper bacteria (MHB), isolated from phylogenetically distinct ectomycorrhizal symbioses involving Lactarius rufus, Laccaria bicolor or Suillus luteus, were tested for fungus specificity to enhance L. rufus-Pinus sylvestris or L. bicolor-P. sylvestris mycorrhiza formation. As MHB isolated from the L. rufus and S. luteus mycorrhiza were originally characterised using a microcosm system, we assessed their ability to enhance mycorrhiza formation in a glasshouse system in order to determine the extent to which MHB are system-specific. Paenibacillus sp. EJP73, an MHB for L. rufus in the microcosm, significantly enhanced L. bicolor mycorrhiza formation in the glasshouse, demonstrating that the MHB effect of this bacterium is neither fungus-specific nor limited to the original experimental system. Although the five MHB strains studied were unable to significantly enhance L. rufus mycorrhiza formation, two of them did have a significant effect on dichotomous short root branching by L. rufus. The effect was specific to Paenibacillus sp. EJP73 and Burkholderia sp. EJP67, the two strains isolated from L. rufus mycorrhiza, and was not associated with auxin production. Altered mycorrhiza architecture rather than absolute number of mycorrhizal roots may be an important previously overlooked parameter for defining MHB effects.

  20. Vertical distribution of ectomycorrhizal fungal taxa in a podzol profile

    NARCIS (Netherlands)

    Rosling, A.; Landeweert, R.; Lindahl, B.D.; Larsson, K.H.; Kuyper, T.W.; Taylor, A.F.S.; Finlay, R.F.

    2003-01-01

    Studies of ectomycorrhizal fungal communities in forest soils are usually restricted to the uppermost organic horizons. Boreal forest podzols are highly stratified and little is known about the vertical distribution of ectomycorrhizal communities in the underlying mineral horizons. Ectomycorrhizal

  1. [Al3+ Absorption and Assimilation by Four Ectomycorrhizal Fungi].

    Science.gov (United States)

    Wang, Ming-xia; Yuan, Ling; Huang, Jian-guo; Zhou, Zhi-feng

    2015-09-01

    The present experiment was carried out in order to know the resistance mechanism of the ectomycorrhizal (ECM) fungi under Al stress, to establish the theoretical foundation to alleviate the Al toxicity of trees, to guide the selection of Al-resisted ECM fungi and preserve forest health. The absorption and assimilation of Al3+ by four ECM fungi [Pisolithus tinctorius (Pt 715), Suillus luteus (Sl 08 and Sl 14), Gyroporus cyanescens (Gc 99)], which were isolated from different forest soils, were investigated in pure culture in liquid media. The growths of Pt 715 and Sl 08 were less affected by Al3+, but growths of S114 and Gc 99 were obviously inhibited by Al3+. With the increasing of Al3+ concentration in culture, the absorption and assimilation of Al3+ by four ECM fungi increased. It indicated that the concentration of Al3+ in environments might be the primary factor determining the Al3+ content in the cell of each tested fungi. Amounts of Al3+ absorbed (in total or calculated in unit hyphae) by the Al3+ tolerant strains (Pt 715 and Sl 08) were significantly lower than those by the Al3+ sensitive strains (S1 14 and Gc 99), which illustrated that reducing the absorption of Al3+ under Al3+ stress environment might be an effective approach to alleviate the Al3+ poison for these Al3+ tolerant strains. Furthermore, Al3+ stress could stimulate the ECM fungi to assimilate more N, P, and K, which might indicate that increasing requirement of the nutrients also could be helpful for ECM fungi to fight against the harmful effects caused by Al3+ stress.

  2. A contribution toward a monograph of North American species of Suillus

    Science.gov (United States)

    Alexander H. Smith; Harry D. Theirs

    1964-01-01

    One of the most troublesome groups of the Boletaceae, as far as the recognition of taxa is concerned, has been the group generally known as the section Viscipelles of Boletus in the older literature. This group represented a "gray area" between Boletinus on the one hand and Boletus sensu lato on the other. However, attempts to distinguish species in Suillus...

  3. Nitrogen isotope fractionation during N uptake via arbuscular mycorrhizal and ectomycorrhizal fungi into grey alder.

    Science.gov (United States)

    Schweiger, Peter F

    2016-10-20

    Arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi affect plant nitrogen (N) dynamics. Plant N isotope patterns have been used to characterise the contribution of ECM fungi to plant N uptake. By quantifying and comparing the effects of an AM and an ECM fungus on growth, N uptake and isotopic composition of one host plant grown at different relative N supply levels, the aim of this study was to improve the mechanistic understanding of natural 15 N abundance patterns in mycorrhizal plants and their underlying causes. Grey alders were inoculated with one ECM fungus or one AM fungus or left non-mycorrhizal. Plants were grown under semi-hydroponic conditions and were supplied with three rates of relative N supply ranging from deficient to luxurious. Neither mycorrhizal fungus increased plant growth or N uptake. AM root colonisation had no effect on whole plant δ 15 N and decreased foliar δ 15 N only under N deficiency. The roots of these plants were 15 N-enriched. ECM root colonisation consistently decreased foliar and whole plant δ 15 N. It is concluded, that both mycorrhizal fungi contributed to plant N uptake into the shoot. Nitrogen isotope fractionation during N assimilation and transformations in fungal mycelia is suggested to have resulted in plants receiving 15 N-depleted N via the mycorrhizal uptake pathways. Negative mycorrhizal growth effects are explained by symbiotic resource trade on carbon and N and decreased direct plant N uptake. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Distinguishing ectomycorrhizal and saprophytic fungi using carbon and nitrogen isotopic compositions

    Directory of Open Access Journals (Sweden)

    Weiguo Hou

    2012-05-01

    Full Text Available Ectomycorrhizal fungi, a group of widespread symbiotic fungi with plant, obtain carbon source from trees and improve plant mineral nutrient uptake with their widespread hyphal network. Ectomycorrhizal fungi can be used as inoculants to improve the survival rates of plantation. Saprophytic fungi use the nutrition from the debris of plant or animals, and it is difficult to distinguish the saprophytic and ectomycorrhizal fungi by morphological and anatomic methods. In this research, the differences of stable carbon and nitrogen isotopic compositions of these fungi were analyzed. The results showed that the abundances of 13C of were higher than those of ectomycorrhizal fungi and the abundances of 15N of saprophytic fungi were lower than those of ectomycorrhizal fungi. Such differences of stable carbon and nitrogen isotopic compositions between ectomycorrhizal fungi and saprophytic fungi can be ascribed to their different nutrition sources and ecological functions. These results collectively indicate that stable carbon and nitrogen isotopic compositions are an effective proxy for distinguishing between ectomycorrhizal and saprophytic fungi.

  5. Spatial Segregation and Aggregation of Ectomycorrhizal and Root-Endophytic Fungi in the Seedlings of Two Quercus Species

    Science.gov (United States)

    Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S.; Hidaka, Amane; Kadowaki, Kohmei; Toju, Hirokazu

    2014-01-01

    Diverse clades of mycorrhizal and endophytic fungi are potentially involved in competitive or facilitative interactions within host-plant roots. We investigated the potential consequences of these ecological interactions on the assembly process of root-associated fungi by examining the co-occurrence of pairs of fungi in host-plant individuals. Based on massively-parallel pyrosequencing, we analyzed the root-associated fungal community composition for each of the 249 Quercus serrata and 188 Quercus glauca seedlings sampled in a warm-temperate secondary forest in Japan. Pairs of fungi that co-occurred more or less often than expected by chance were identified based on randomization tests. The pyrosequencing analysis revealed that not only ectomycorrhizal fungi but also endophytic fungi were common in the root-associated fungal community. Intriguingly, specific pairs of these ectomycorrhizal and endophytic fungi showed spatially aggregated patterns, suggesting the existence of facilitative interactions between fungi in different functional groups. Due to the large number of fungal pairs examined, many of the observed aggregated/segregated patterns with very low P values (e.g., fungi could influence each other through interspecific competitive/facilitative interactions in root. To test the potential of host-plants' control of fungus–fungus ecological interactions in roots, we further examined whether the aggregated/segregated patterns could vary depending on the identity of host plant species. Potentially due to the physiological properties shared between the congeneric host plant species, the sign of hosts' control was not detected in the present study. The pyrosequencing-based randomization analyses shown in this study provide a platform of the high-throughput investigation of fungus–fungus interactions in plant root systems. PMID:24801150

  6. Strain Identity of the Ectomycorrhizal Fungus Laccaria bicolor Is More Important than Richness in Regulating Plant and Fungal Performance under Nutrient Rich Conditions

    Directory of Open Access Journals (Sweden)

    Christina Hazard

    2017-09-01

    Full Text Available Effects of biodiversity on productivity are more likely to be expressed when there is greater potential for niche complementarity. In soil, chemically complex pools of nutrient resources should provide more opportunities for niche complementarity than chemically simple pools. Ectomycorrhizal (ECM fungal genotypes can exhibit substantial variation in nutrient acquisition traits and are key components of soil biodiversity. Here, we tested the hypothesis that increasing the chemical complexity and forms of soil nutrients would enhance the effects of intraspecific ECM diversity on host plant and fungal productivity. In pure culture, we found substantial variation in growth of strains of the ECM fungus Laccaria bicolor on a range of inorganic and organic forms of nutrients. Subsequent experiments examined the effects of intraspecific identity and richness using Scots pine (Pinus sylvestris seedlings colonized with different strains of L. bicolor growing on substrates supplemented with either inorganic or organic forms of nitrogen and phosphorus. Intraspecific identity effects on plant productivity were only found under the inorganic nutrient amendment, whereas intraspecific identity affected fungal productivity to a similar extent under both nutrient treatments. Overall, there were no significant effects of intraspecific richness on plant and fungal productivity. Our findings suggest soil nutrient composition does not interact strongly with ECM intraspecific richness, at least under experimental conditions where mineral nutrients were not limiting. Under these conditions, intraspecific identity of ECM fungi becomes more important than richness in modulating plant and fungal performance.

  7. Morchella conica (Pers.) Boudier Ve Suillus luteus (L.) S. F. Gray Makrofunguslarının Antimikrobiyal Aktiviteleri

    OpenAIRE

    DUMAN, Rüstem; DOĞAN, Hasan Hüseyin; ATEŞ, Ali

    2003-01-01

    Bu çalışmada, iki makrofungus türünden [ Morchella conica (Pers.) Boudier ve Suillus luteus (L.) S. F. Gray ] çeşitli çözgenler yardımıyla elde edilen ekstrelerin farklı test mikroorganizmalarına karşı antimikrobiyal etkileri Disk Difüzyon metodu ile ölçülmüştür. Bulgularımıza göre; Morchella conica’ nın kloroform ekstresinin Sarcina lutea ATCC 9341’ ya, etanol ekstresinin Streptococcus salivarius RSHE 606’a, Suillus luteus’un etanol ekstresinin de Streptococcus mutans NCTC 10449 bakteri kült...

  8. Ectomycorrhizal fungi slow soil carbon cycling.

    Science.gov (United States)

    Averill, Colin; Hawkes, Christine V

    2016-08-01

    Respiration of soil organic carbon is one of the largest fluxes of CO2 on earth. Understanding the processes that regulate soil respiration is critical for predicting future climate. Recent work has suggested that soil carbon respiration may be reduced by competition for nitrogen between symbiotic ectomycorrhizal fungi that associate with plant roots and free-living microbial decomposers, which is consistent with increased soil carbon storage in ectomycorrhizal ecosystems globally. However, experimental tests of the mycorrhizal competition hypothesis are lacking. Here we show that ectomycorrhizal roots and hyphae decrease soil carbon respiration rates by up to 67% under field conditions in two separate field exclusion experiments, and this likely occurs via competition for soil nitrogen, an effect larger than 2 °C soil warming. These findings support mycorrhizal competition for nitrogen as an independent driver of soil carbon balance and demonstrate the need to understand microbial community interactions to predict ecosystem feedbacks to global climate. © 2016 John Wiley & Sons Ltd/CNRS.

  9. Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome

    Directory of Open Access Journals (Sweden)

    Cseke Leland J

    2011-05-01

    Full Text Available Abstract Background Mycorrhizae, symbiotic interactions between soil fungi and tree roots, are ubiquitous in terrestrial ecosystems. The fungi contribute phosphorous, nitrogen and mobilized nutrients from organic matter in the soil and in return the fungus receives photosynthetically-derived carbohydrates. This union of plant and fungal metabolisms is the mycorrhizal metabolome. Understanding this symbiotic relationship at a molecular level provides important contributions to the understanding of forest ecosystems and global carbon cycling. Results We generated next generation short-read transcriptomic sequencing data from fully-formed ectomycorrhizae between Laccaria bicolor and aspen (Populus tremuloides roots. The transcriptomic data was used to identify statistically significantly expressed gene models using a bootstrap-style approach, and these expressed genes were mapped to specific metabolic pathways. Integration of expressed genes that code for metabolic enzymes and the set of expressed membrane transporters generates a predictive model of the ectomycorrhizal metabolome. The generated model of mycorrhizal metabolome predicts that the specific compounds glycine, glutamate, and allantoin are synthesized by L. bicolor and that these compounds or their metabolites may be used for the benefit of aspen in exchange for the photosynthetically-derived sugars fructose and glucose. Conclusions The analysis illustrates an approach to generate testable biological hypotheses to investigate the complex molecular interactions that drive ectomycorrhizal symbiosis. These models are consistent with experimental environmental data and provide insight into the molecular exchange processes for organisms in this complex ecosystem. The method used here for predicting metabolomic models of mycorrhizal systems from deep RNA sequencing data can be generalized and is broadly applicable to transcriptomic data derived from complex systems.

  10. A continental view of pine-associated ectomycorrhizal fungal spore banks: a quiescent functional guild with a strong biogeographic pattern.

    Science.gov (United States)

    Glassman, Sydney I; Peay, Kabir G; Talbot, Jennifer M; Smith, Dylan P; Chung, Judy A; Taylor, John W; Vilgalys, Rytas; Bruns, Thomas D

    2015-03-01

    Ecologists have long acknowledged the importance of seed banks; yet, despite the fact that many plants rely on mycorrhizal fungi for survival and growth, the structure of ectomycorrhizal (ECM) fungal spore banks remains poorly understood. The primary goal of this study was to assess the geographic structure in pine-associated ECM fungal spore banks across the North American continent. Soils were collected from 19 plots in forests across North America. Fresh soils were pyrosequenced for fungal internal transcribed spacer (ITS) amplicons. Adjacent soil cores were dried and bioassayed with pine seedlings, and colonized roots were pyrosequenced to detect resistant propagules of ECM fungi. The results showed that ECM spore banks correlated strongly with biogeographic location, but not with the identity of congeneric plant hosts. Minimal community overlap was found between resident ECM fungi vs those in spore banks, and spore bank assemblages were relatively simple and dominated by Rhizopogon, Wilcoxina, Cenococcum, Thelephora, Tuber, Laccaria and Suillus. Similar to plant seed banks, ECM fungal spore banks are, in general, depauperate, and represent a small and rare subset of the mature forest soil fungal community. Yet, they may be extremely important in fungal colonization after large-scale disturbances such as clear cuts and forest fires. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Growth response of drought-stressed Pinus sylvestris seedlings to single- and multi-species inoculation with ectomycorrhizal fungi.

    Directory of Open Access Journals (Sweden)

    Tabea Kipfer

    Full Text Available Many trees species form symbiotic associations with ectomycorrhizal (ECM fungi, which improve nutrient and water acquisition of their host. Until now it is unclear whether the species richness of ECM fungi is beneficial for tree seedling performance, be it during moist conditions or drought. We performed a pot experiment using Pinus sylvestris seedlings inoculated with four selected ECM fungi (Cenococcum geophilum, Paxillus involutus, Rhizopogon roseolus and Suillus granulatus to investigate (i whether these four ECM fungi, in monoculture or in species mixtures, affect growth of P. sylvestris seedlings, and (ii whether this effect can be attributed to species number per se or to species identity. Two different watering regimes (moist vs. dry were applied to examine the context-dependency of the results. Additionally, we assessed the activity of eight extracellular enzymes in the root tips. Shoot growth was enhanced in the presence of S. granulatus, but not by any other ECM fungal species. The positive effect of S. granulatus on shoot growth was more pronounced under moist (threefold increase than under dry conditions (twofold increase, indicating that the investigated ECM fungi did not provide additional support during drought stress. The activity of secreted extracellular enzymes was higher in S. granulatus than in any other species. In conclusion, our findings suggest that ECM fungal species composition may affect seedling performance in terms of aboveground biomass.

  12. Growth response of drought-stressed Pinus sylvestris seedlings to single- and multi-species inoculation with ectomycorrhizal fungi.

    Science.gov (United States)

    Kipfer, Tabea; Wohlgemuth, Thomas; van der Heijden, Marcel G A; Ghazoul, Jaboury; Egli, Simon

    2012-01-01

    Many trees species form symbiotic associations with ectomycorrhizal (ECM) fungi, which improve nutrient and water acquisition of their host. Until now it is unclear whether the species richness of ECM fungi is beneficial for tree seedling performance, be it during moist conditions or drought. We performed a pot experiment using Pinus sylvestris seedlings inoculated with four selected ECM fungi (Cenococcum geophilum, Paxillus involutus, Rhizopogon roseolus and Suillus granulatus) to investigate (i) whether these four ECM fungi, in monoculture or in species mixtures, affect growth of P. sylvestris seedlings, and (ii) whether this effect can be attributed to species number per se or to species identity. Two different watering regimes (moist vs. dry) were applied to examine the context-dependency of the results. Additionally, we assessed the activity of eight extracellular enzymes in the root tips. Shoot growth was enhanced in the presence of S. granulatus, but not by any other ECM fungal species. The positive effect of S. granulatus on shoot growth was more pronounced under moist (threefold increase) than under dry conditions (twofold increase), indicating that the investigated ECM fungi did not provide additional support during drought stress. The activity of secreted extracellular enzymes was higher in S. granulatus than in any other species. In conclusion, our findings suggest that ECM fungal species composition may affect seedling performance in terms of aboveground biomass.

  13. Accumulation and distribution of mercury in fruiting bodies by fungus Suillus luteus foraged in Poland, Belarus and Sweden.

    Science.gov (United States)

    Saba, Martyna; Falandysz, Jerzy; Nnorom, Innocent C

    2016-02-01

    Presented in this paper is result of the study of the bioconcentration potential of mercury (Hg) by Suillus luteus mushroom collected from regions within Central, Eastern, and Northern regions of Europe. As determined by cold-vapor atomic absorption spectroscopy, the Hg content varied from 0.13 ± 0.05 to 0.33 ± 0.13 mg kg(-1) dry matter for caps and from 0.038 ± 0.014 to 0.095 ± 0.038 mg kg(-1) dry matter in stems. The Hg content of the soil substratum (0-10 cm layer) underneath the fruiting bodies showed generally low Hg concentrations that varied widely ranging from 0.0030 to 0.15 mg kg(-1) dry matter with mean values varying from 0.0078 ± 0.0035 to 0.053 ± 0.025 mg kg(-1) dry matter, which is below typical content in the Earth crust. The caps were observed to be on the richer in Hg than the stems at ratio between 1.8 ± 0.4 and 5.3 ± 2.6. The S. luteus mushroom showed moderate ability to accumulate Hg with bioconcentration factor (BCF) values ranging from 3.6 ± 1.3 to 42 ± 18. The consumption of fresh S. luteus mushroom in quantities up to 300 g week(-1) (assuming no Hg ingestion from other foods) from background areas in the Central, Eastern, and Northern part of Europe will not result in the intake of Hg exceeds the provisional weekly tolerance limit (PTWI) of 0.004 mg kg(-1) body mass.

  14. Viability of ectomycorrhizal fungi following cryopreservation.

    Science.gov (United States)

    Crahay, Charlotte; Declerck, Stéphane; Colpaert, Jan V; Pigeon, Mathieu; Munaut, Françoise

    2013-02-01

    The use of ectomycorrhizal (ECM) fungi in biotechnological processes requires their maintenance over long periods under conditions that maintain their genetic, phenotypic, and physiological stability. Cryopreservation is considered as the most reliable method for long-term storage of most filamentous fungi. However, this technique is not widespread for ECM fungi since many do not survive or exhibit poor recovery after freezing. The aim of this study was to develop an efficient cryopreservation protocol for the long-term storage of ECM fungi. Two cryopreservation protocols were compared. The first protocol was the conventional straw protocol (SP). The mycelium of the ECM isolates was grown in Petri dishes on agar and subsequently collected by punching the mycelium into a sterile straw before cryopreservation. In the second protocol, the cryovial protocol (CP), the mycelium of the ECM isolates was grown directly in cryovials filled with agar and subsequently cryopreserved. The same cryoprotectant solution, freezing, and thawing process, and re-growth conditions were used in both protocols. The survival (positive when at least 60 % of the replicates showed re-growth) was evaluated before and immediately after freezing as well as after 1 week, 1 m, and 6 m of storage at -130 °C. Greater survival rate (80 % for the CP as compared to 25 % for the SP) and faster re-growth (within 10 d for the CP compared to the 4 weeks for the SP) were observed for most isolates with the CP suggesting that the preparation of the cultures prior to freezing had a significant impact on the isolates survival. The suitability of the CP for cryopreservation of ECM fungi was further confirmed on a set of 98 ECM isolates and displayed a survival rate of 88 % of the isolates. Only some isolates belonging to Suillus luteus, Hebeloma crustuliniforme, Paxillus involutus and Thelephora terrestris failed to survive. This suggested that the CP is an adequate method for the ultra-low cryopreservation of

  15. Agrobacterium-mediated insertional mutagenesis in the mycorrhizal fungus Laccaria bicolor.

    Science.gov (United States)

    Stephan, B I; Alvarez Crespo, M C; Kemppainen, M J; Pardo, A G

    2017-05-01

    Agrobacterium-mediated gene transfer (AMT) is extensively employed as a tool in fungal functional genomics and accordingly, in previous studies we used AMT on a dikaryotic strain of the ectomycorrhizal basidiomycete Laccaria bicolor. The interest in this fungus derives from its capacity to establish a symbiosis with tree roots, thereby playing a major role in nutrient cycling of forest ecosystems. The ectomycorrhizal symbiosis is a highly complex interaction involving many genes from both partners. To advance in the functional characterization of fungal genes, AMT was used on a monokaryotic L. bicolor. A collection of over 1200 transgenic strains was produced, of which 200 randomly selected strains were analyzed for their genomic T-DNA insertion patterns. By means of insertional mutagenesis, a number of transgenic strains were obtained displaying differential growth features. Moreover, mating with a compatible strain resulted in dikaryons that retained altered phenotypic features of the transgenic monokaryon. The analysis of the T-DNA integration pattern revealed mostly similar results to those reported in earlier studies, confirming the usefulness of AMT on different genetic backgrounds of L. bicolor. Taken together, our studies display the great versatility and potentiality of AMT as a tool for the genetic characterization of L. bicolor.

  16. Rock-eating fungi: Ectomycorrhizal fungi are picky eaters

    Science.gov (United States)

    Rosenstock, Nicholas; Smits, Mark; Berner, Christoffer; Kram, Pavel; Wallander, Hakan

    2014-05-01

    Ectomycorrhizal fungi, which form mutualistic symbiosis with the roots of most temperate and boreal forest trees, play a key role in the provision of nitrogen and phosphorus to their plant symbionts; they have also been shown to provide potassium and magnesium. Ectomycorhizal hyphae colonize and take up mineral nutrients (including P, K, and Mg) from primary mineral surfaces in the soil. It is poorly understood whether mineral colonization and uptake of nutrients from minerals can increase in accordance with host plant demand for these nutrients, and this question has been difficult to address in field settings. Ectomycorrhizal fungal communities are diverse and niche separation according to nutrient uptake and transport to the host is commonly considered one of the major factors maintaining diversity and shaping ectomycorrhizal community composition.We investigated ectomycorrhizal growth, community composition, and mineral colonization in a series of connected Norway spruce forests in the Czech republic. These forests have similar aspect, climate and stand history, but are underlain by different parent materials and are, as a result, limited by different nutrients. The productivity of forests overlying a high amount of serpentinite rock are co-limited by K and P, those growing on primarily granitic rock are limited by Mg, while those on amphibolite are N limited. We assessed the fungal community in both soil and in-growth mesh bags measuring biomarkers, using in-growth assays and performing community analysis with 454 sequencing of the ITS region. In-growth mesh bags were filled with quartz sand and incubated for two growing seasons in the soil. These mesh bags select for ectomycorrhizal hyphae and were either pure quartz sand or amended with ground apatite (Ca and P source), hornblende (Mg source) or biotite (K source). Ectomycorrhizal growth and community composition were most strongly affected by parent material. The phosphorus-limited site had the lowest tree

  17. Disproportionate abundance between ectomycorrhizal root tips and their associated mycelia

    DEFF Research Database (Denmark)

    Kjøller, Rasmus

    2006-01-01

    Extensive knowledge of various ectomycorrhizal fungal communities has been obtained over the past 10 years based on molecular identification of the fungi colonizing fine roots. In contrast, only limited information exists about the species composition of ectomycorrhizal hyphae in soil. This study...

  18. The effect of ectomycorrhizal fungi and bacteria on pine seedlings

    Directory of Open Access Journals (Sweden)

    Hanna Dahm

    2014-08-01

    Full Text Available The effect of ecomycorrhizal fungi (Hebelon crustuliniforme(Bull.: Fr. Quél. 5392 and Pisolithus tinctorius (Pers. Coker et Couch 5335 and bacteria (Bacillus polymyxa and Azospirillum brasilense. associated with mycorrhizas on the growth of pine seedligs was investigated. In addition the influence of bacteria on fungal biomass production and the relationship between ectomycorrhizal fungi and fungi pathogenic to root of pine seedlings were determined. In general, the shoot/root ratio was higher in plants inoculated with Hebeloma crustuliniforme and bacteria than in the control seedlings (grown only under sterile conditions. In non-sterile substrate the root/shoot ratio of the mycorrhizal seedlings was lower as compared to the control. Similar phenomenon was noted in plants inoculated with the mycorrhizal fungus Pisolithus tinetorius. The bacteria used as well as the time of introduction of these organisms into the cultures of mycorrhiza fungi affected the production of fungal biomass. Hebeloma crustuliniforme and Pisolithus tinctorius inhibited the growth of Rizoctonia solani and Fusarium oxysporum fungi pathogenic to pine seedlings.

  19. The effect of environmental contamination on the community structure and fructification of ectomycorrhizal fungi.

    Science.gov (United States)

    Sun, Qibiao; Liu, Yaping; Yuan, Huatao; Lian, Bin

    2017-02-01

    Ectomycorrhizal fungi are an essential component of forest ecosystems, most of which can form edible and medical fruiting bodies. Although many studies have focused on the fructification of ectomycorrhizal fungi in phenology, the impact of environmental contamination, especially living garbage, on the formation of fruiting body is still unknown. A field investigation, combined with a high-throughput sequencing method, was used to study the effect of living garbage pollution on the fructification and hypogeous community structure of ectomycorrhizal fungi symbiosing with cedar (Cedrus deodara (Roxb.) G. Don). The results showed that garbage significantly altered soil abiotic and biotic properties, increasing soil urease activity, decreasing the soil exchangeable metal content and phosphatase activity, and ultimately inhibiting the formation of fruiting bodies. The pollution of garbage also changed the community structure of hypogeous ectomycorrhizal fungi where ectomycorrhizal ascomycetes dominated. In unpolluted sites, the relative abundance of ectomycorrhizal ascomycetes and basidiomycetes were almost equal. Although no fruiting bodies were observed in that soil polluted by living garbage, the sequencing result showed that various ectomycorrhizal fungi were present underground, suggesting that these taxonomic fungi had the potential to cope with adverse conditions. This study not only provided a deeper understanding of the relationship between ectomycorrhizal fungal communities and prevailing environmental conditions, but provided a new pathway for the excavation and utilization of the resource of antistress ectomycorrhizal fungi. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  20. Environment and host as large-scale controls of ectomycorrhizal fungi.

    Science.gov (United States)

    van der Linde, Sietse; Suz, Laura M; Orme, C David L; Cox, Filipa; Andreae, Henning; Asi, Endla; Atkinson, Bonnie; Benham, Sue; Carroll, Christopher; Cools, Nathalie; De Vos, Bruno; Dietrich, Hans-Peter; Eichhorn, Johannes; Gehrmann, Joachim; Grebenc, Tine; Gweon, Hyun S; Hansen, Karin; Jacob, Frank; Kristöfel, Ferdinand; Lech, Paweł; Manninger, Miklós; Martin, Jan; Meesenburg, Henning; Merilä, Päivi; Nicolas, Manuel; Pavlenda, Pavel; Rautio, Pasi; Schaub, Marcus; Schröck, Hans-Werner; Seidling, Walter; Šrámek, Vít; Thimonier, Anne; Thomsen, Iben Margrete; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Wijk, Sture; Zhang, Yuxin; Žlindra, Daniel; Bidartondo, Martin I

    2018-06-06

    Explaining the large-scale diversity of soil organisms that drive biogeochemical processes-and their responses to environmental change-is critical. However, identifying consistent drivers of belowground diversity and abundance for some soil organisms at large spatial scales remains problematic. Here we investigate a major guild, the ectomycorrhizal fungi, across European forests at a spatial scale and resolution that is-to our knowledge-unprecedented, to explore key biotic and abiotic predictors of ectomycorrhizal diversity and to identify dominant responses and thresholds for change across complex environmental gradients. We show the effect of 38 host, environment, climate and geographical variables on ectomycorrhizal diversity, and define thresholds of community change for key variables. We quantify host specificity and reveal plasticity in functional traits involved in soil foraging across gradients. We conclude that environmental and host factors explain most of the variation in ectomycorrhizal diversity, that the environmental thresholds used as major ecosystem assessment tools need adjustment and that the importance of belowground specificity and plasticity has previously been underappreciated.

  1. Fronteras in biotecnologia y bioingenieria

    OpenAIRE

    Roussos, Sevastianos; Gaime Perraud, Isabelle

    1996-01-01

    Solid state fermentation (SSF) deals with the cultivation of aerobic and anaerobic microorganisms on the surface or inside porous solid matrices. These solid matrices can act as substrates or as inert supports and absorb the components of the culture medium without liquid draining. Filamentous fungi (#Aspergillus$, #Claviceps$, #Penicillium$, #Rhisopus$, #Trichoderma$) are the most adapted microorganisms for SSF. Ectomycorrhizal fungi (#Lactarious$, #Pisolitus$, #Suillus$) as well as saprophy...

  2. Ectomycorrhizal fungal diversity in orchards of cultivated pecan (Carya illinoinensis; Juglandaceae).

    Science.gov (United States)

    Bonito, Gregory; Brenneman, Timothy; Vilgalys, Rytas

    2011-10-01

    Carya illinoinensis (pecan) belongs to the Juglandaceae (walnut family) and is a major economic nut crop in the southern USA. Although evidence suggests that some species in the Juglandaceae are ectomycorrhizal, investigations on their ectomycorrhizal fungal symbionts are quite limited. Here we assessed the ectomycorrhizal fungal diversity in cultivated orchards of C. illinoinensis. Five pecan orchards in southern Georgia, USA, were studied, three of which were known to fruit the native edible truffle species Tuber lyonii. We sequenced rDNA from single ectomycorrhizal root tips sampled from a total of 50 individual trees. Mycorrhizae were identified by ITS and LSU rDNA sequence-based methods. Forty-four distinct ectomycorrhizal taxa were detected. Sequestrate taxa including Tuber and Scleroderma were particularly abundant. The two most abundant sequence types belonged to T. lyonii (17%) and an undescribed Tuber species (~20%). Because of our interest in the ecology of T. lyonii, we also conducted greenhouse studies to determine whether this species would colonize and form ectomycorrhizae on roots of pecan, oak, or pine species endemic to the region. T. lyonii ectomycorrhizae were formed on pecan and oak seedlings, but not pine, when these were inoculated with spores. That oak and pecan seedling roots were receptive to truffle spores indicates that spore slurry inoculation could be a suitable method for commercial use and that, ecologically, T. lyonii may function as a pioneer ectomycorrhizal species for these hosts. © Springer-Verlag 2011

  3. Physiological responses of Pinus sylvestris var. mongolica seedlings to the interaction between Suillus luteus and Trichoderma virens.

    Science.gov (United States)

    Yin, D; Deng, X; Chet, Ilan; Song, R

    2014-09-01

    The effects of the interaction between Suillus luteus (L.) Roussel and Trichoderma virens (J.H. Mill., Giddens & A.A. Foster) Arx on Pinus sylvestris var. mongolica Litv. were studied using plant physiology, mycorrhizal science, forest pathology, and biochemistry. Seedling growth and physiological parameters were determined, including the colonization rate of mycorrhizal fungi, biomass, root activity, photosynthetic pigment content, soluble protein content, antioxidant enzyme activities, rhizosphere soil enzyme activities, and protective enzyme activities. In addition, an optimal resistance system involving T. virens, mycorrhizal fungus (S. luteus), and P. sylvestris var. mongolica seedlings was constructed. Synergies between S. luteus and T. virens were observed, and most of the parameters of P. sylvestris var. mongolica seedlings inoculated with S. luteus 30 days + T. virens were higher than other treatments. After three months, when compared the control, the S. luteus 30 days + T. virens treatment gave increases in height (42.3 %); collar diameter (66.7 %); fresh weight (54 %); dry weight (50 %); soluble protein content (69.86 %); root activity (150 %); chlorophyll a (77.6 %); chlorophyll b (70.5 %); carotenoids (144 %); CAT activity (876.9 %); POD activity (268.3 %); SOD activity (66.18 %); β-1,3-glucanase activity (125.8 %); chitinase activity (40 %); rhizosphere soil catalase activity (97.8 %); and phosphatase activity (266.7 %). These results indicate that there may be a stimulating factor between S. luteus and T. virens when they are inoculated together (S. luteus 30 days + T. virens).

  4. Availability of ectomycorrhizal fungi to black spruce above the present treeline in Eastern Labrador.

    Directory of Open Access Journals (Sweden)

    Laura Reithmeier

    Full Text Available Ectomycorrhizal fungi (ECMF are an important biotic factor in the survival of conifer seedlings under stressful conditions and therefore have the potential to facilitate conifer establishment into alpine and tundra habitats. In order to assess patterns of ectomycorrhizal availability and community structure above treeline, we conducted soil bioassays in which Picea mariana (black spruce seedlings were grown in field-collected soils under controlled conditions. Soils were collected from distinct alpine habitats, each dominated by a different ectomycorrhizal host shrub: Betula glandulosa, Arctostaphylos alpina or Salix herbacaea. Within each habitat, half of the soils collected contained roots of ectomycorrhizal shrubs (host (+ and the other half were free of host plants (host(-. Forest and glacial moraine soils were also included for comparison. Fungi forming ectomycorrhizae during the bioassays were identified by DNA sequencing. Our results indicate that ECMF capable of colonizing black spruce are widespread above the current tree line in Eastern Labrador and that the level of available inoculum has a significant influence on the growth of seedlings under controlled conditions. Many of the host(- soils possessed appreciable levels of ectomycorrhizal inoculum, likely in the form of spore banks. Inoculum levels in these soils may be influenced by spore production from neighboring soils where ectomycorrhizal shrubs are present. Under predicted temperature increases, ectomycorrhizal inoculum in soils with host shrubs as well as in nearby soils without host shrubs have the potential to facilitate conifer establishment above the present tree line.

  5. Availability of ectomycorrhizal fungi to black spruce above the present treeline in Eastern Labrador.

    Science.gov (United States)

    Reithmeier, Laura; Kernaghan, Gavin

    2013-01-01

    Ectomycorrhizal fungi (ECMF) are an important biotic factor in the survival of conifer seedlings under stressful conditions and therefore have the potential to facilitate conifer establishment into alpine and tundra habitats. In order to assess patterns of ectomycorrhizal availability and community structure above treeline, we conducted soil bioassays in which Picea mariana (black spruce) seedlings were grown in field-collected soils under controlled conditions. Soils were collected from distinct alpine habitats, each dominated by a different ectomycorrhizal host shrub: Betula glandulosa, Arctostaphylos alpina or Salix herbacaea. Within each habitat, half of the soils collected contained roots of ectomycorrhizal shrubs (host (+)) and the other half were free of host plants (host(-)). Forest and glacial moraine soils were also included for comparison. Fungi forming ectomycorrhizae during the bioassays were identified by DNA sequencing. Our results indicate that ECMF capable of colonizing black spruce are widespread above the current tree line in Eastern Labrador and that the level of available inoculum has a significant influence on the growth of seedlings under controlled conditions. Many of the host(-) soils possessed appreciable levels of ectomycorrhizal inoculum, likely in the form of spore banks. Inoculum levels in these soils may be influenced by spore production from neighboring soils where ectomycorrhizal shrubs are present. Under predicted temperature increases, ectomycorrhizal inoculum in soils with host shrubs as well as in nearby soils without host shrubs have the potential to facilitate conifer establishment above the present tree line.

  6. Investigations of carotenoids in fungi. III. Fructifications of some species from the genus Suillus

    Directory of Open Access Journals (Sweden)

    Bazyli Czeczuga

    2014-11-01

    Full Text Available Using column and thin-layer chromatography the occurrence of carotenoids and their content was determined in fructifications of 5 species from the genus Suillus. 21 carotenoids were found, among them 3 which had not hitherto been detected in fungi (auroxanthin, 3,4-dihydroxy-α-carotene and myxoxantophyll. Moreover quantitative and qualitative differences were found in the content of carotenoids in fructifications of Boletus luteus which may be of importance in their taxonomy.

  7. Ectomycorrhizal colonization and growth of the hybrid larch F1 under elevated CO2 and O3

    International Nuclear Information System (INIS)

    Wang, Xiaona; Qu, Laiye; Mao, Qiaozhi; Watanabe, Makoto; Hoshika, Yasutomo; Koyama, Akihiro; Kawaguchi, Korin; Tamai, Yutaka; Koike, Takayoshi

    2015-01-01

    We studied the colonization of ectomycorrhizal fungi and species abundance of a hybrid larch (F 1 ) under elevated CO 2 and O 3. Two-year-old seedlings were planted in an Open-Top-Chamber system with treatments: Control (O 3  < 6 nmol/mol), O 3 (60 nmol/mol), CO 2 (600 μmol/mol), and CO 2  + O 3 . After two growing seasons, ectomycorrhiza (ECM) colonization and root biomass increased under elevated CO 2 . Additionally, O 3 impaired ECM colonization and species richness, and reduced stem biomass. However, there was no clear inhibition of photosynthetic capacity by O 3 . Concentrations of Al, Fe, Mo, and P in needles were reduced by O 3 , while K and Mg in the roots increased. This might explain the distinct change in ECM colonization rate and diversity. No effects of combined fumigation were observed in any parameters except the P concentration in needles. The tolerance of F 1 to O 3 might potentially be related to a shift in ECM community structure. - Highlights: • Elevated CO 2 enhanced growth of hybrid larch F 1 (F 1 ). • ECM colonization rate and species richness of ECM were reduced by O 3 . • Species abundance of ECM community differed between O 3 and control. • F 1 potentially resisted O 3 impacts via specific selection of Suillus spp. for element uptake. - Elevated CO 2 moderated the negative effects of O 3 on the growth of hybrid larch F 1 , by stimulating ectomycorrhizas and nutrient uptake

  8. Community structure of ectomycorrhizal fungi in Swedish boreal forests

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Lena [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology

    1998-12-31

    The main aim of this work has been to elucidate the species composition and community structure of ectomycorrhizal fungi associated with mature trees and naturally regenerated seedlings in natural boreal forests in Sweden. Further, the effects of disturbances, such as wildfire and nitrogen inputs, were studied. Sporocarp surveys, morphological stratification and DNA-based analyses of mycorrhizas were used to describe the mycorrhizal fungal communities. In addition, a reference database useful for identifying individual mycorrhizas was developed based on analyses of sporocarp tissue. Overall, the species richness of ectomycorrhizal fungi was at least 30 to 40 times higher than that of their host trees. Naturally regenerated seedlings were colonized by the ectomycorrhizal fungal species present in the mycelial network of the old trees, indicating that the species composition will remain about the same provided that the host does not disappear. Wildfire, disturbing the fungal continuum, caused a shift in the frequencies of ectomycorrhizal fungi rather than a change in species composition. Nitrogen addition did not have any detectable effect on the abundance or species richness of mycorrhizas, but led to a decrease in sporocarp production. In all the studies, there was little resemblance between the species composition of sporocarps and that of mycorrhizas. The ITS-RFLP reference database was very useful in identifying single mycorrhizas, and proved to be a powerful tool for species identification of unknown mycorrhizas 76 refs, 2 figs, 2 tabs

  9. Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots.

    Science.gov (United States)

    Alvarez, Maricel; Huygens, Dries; Fernandez, Carlos; Gacitúa, Yessy; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Infection with ectomycorrhizal fungi can increase the ability of plants to resist drought stress through morphophysiological and biochemical mechanisms. However, the metabolism of antioxidative enzyme activities in the ectomycorrhizal symbiosis remains poorly understood. This study investigated biomass production, reactive oxygen metabolism (hydrogen peroxide and malondialdehyde concentration) and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in pure cultures of the ectomycorrhizal fungi Descolea antartica Sing. and Pisolithus tinctorius (Pers.) Coker & Couch, and non-mycorrhizal and mycorrhizal roots of Nothofagus dombeyi (Mirb.) roots under well-watered conditions and drought conditions (DC). The studied ectomycorrhizal fungi regulated their antioxidative enzyme metabolism differentially in response to drought, resulting in cellular damage in D. antartica but not in P. tinctorius. Ectomycorrhizal inoculation and water treatment had a significant effect on all parameters studied, including relative water content of the plant. As such, N. dombeyi plants in symbiosis experienced a lower oxidative stress effect than non-mycorrhizal plants under DC. Additionally, ectomycorrhizal N. dombeyi roots showed a greater antioxidant enzyme activity relative to non-mycorrhizal roots, an effect which was further expressed under DC. The association between the non-specific P. tinctorius and N. dombeyi had a more effective reactive oxygen species (ROS) metabolism than the specific D. antartica-N. dombeyi symbiosis. We conclude that the combination of effective ROS prevention and ROS detoxification by ectomycorrhizal plants resulted in reduced cellular damage and increased plant growth relative to non-mycorrhizal plants under drought.

  10. Native ectomycorrhizal fungi of limber and whitebark pine: Necessary for forest sustainability?

    Science.gov (United States)

    Cathy L. Cripps; Robert K. Antibus

    2011-01-01

    Ectomycorrhizal fungi are an important component of northern coniferous forests, including those of Pinus flexilis (limber pine) and P. albicaulis (whitebark pine) which are being decimated by white pine blister rust and mountain pine beetles. Ectomycorrhizal fungi are known to promote seedling establishment, tree health, and may play a role in forest sustainability....

  11. Tuberculate ectomycorrhizae of angiosperms: The interaction between Boletus rubropunctus (Boletaceae) and Quercus species (Fagaceae) in the United States and Mexico.

    Science.gov (United States)

    Smith, Matthew E; Pfister, Donald H

    2009-09-01

    Tuberculate ectomycorrhizae (TECM) are unique structures in which aggregates of ectomycorrhizal roots are encased in a covering of fungal hyphae. The function of TECM is unknown, but they probably enhance the nitrogen nutrition and disease resistance of host plants. Trees in the Pinaceae form TECM with species of Rhizopogon and Suillus (Suillineae, Boletales). Similar tubercules are found with diverse angiosperms, but their mycobionts have not been phylogenetically characterized. We collected TECM in Mexico and the USA that were similar to TECM in previous reports. We describe these TECM and identify both the plant and fungal symbionts. Plant DNA confirms that TECM hosts are Quercus species. ITS sequences from tubercules and sclerotia (hyphal aggregations that serve as survival structures) matched sporocarps of Boletus rubropunctus. Phylogenetic analyses confirm that this fungus belongs to the suborder Boletineae (Boletales). This is the first published report of TECM formation in the Boletineae and of sclerotia formation by a Boletus species. Our data suggest that the TECM morphology is an adaptive feature that has evolved separately in two suborders of Boletales (Suillineae and Boletineae) and that TECM formation is controlled by the mycobiont because TECM are found on distantly related angiosperm and gymnosperm host plants.

  12. Root-Associated Fungi Shared Between Arbuscular Mycorrhizal and Ectomycorrhizal Conifers in a Temperate Forest.

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi

    2018-01-01

    Arbuscular mycorrhizal and ectomycorrhizal symbioses are among the most important drivers of terrestrial ecosystem dynamics. Historically, the two types of symbioses have been investigated separately because arbuscular mycorrhizal and ectomycorrhizal plant species are considered to host discrete sets of fungal symbionts (i.e., arbuscular mycorrhizal and ectomycorrhizal fungi, respectively). Nonetheless, recent studies based on high-throughput DNA sequencing technologies have suggested that diverse non-mycorrhizal fungi (e.g., endophytic fungi) with broad host ranges play roles in relationships between arbuscular mycorrhizal and ectomycorrhizal plant species in forest ecosystems. By analyzing an Illumina sequencing dataset of root-associated fungi in a temperate forest in Japan, we statistically examined whether co-occurring arbuscular mycorrhizal ( Chamaecyparis obtusa ) and ectomycorrhizal ( Pinus densiflora ) plant species could share non-mycorrhizal fungal communities. Among the 919 fungal operational taxonomic units (OTUs) detected, OTUs in various taxonomic lineages were statistically designated as "generalists," which associated commonly with both coniferous species. The list of the generalists included fungi in the genera Meliniomyces, Oidiodendron, Cladophialophora, Rhizodermea, Penicillium , and Mortierella . Meanwhile, our statistical analysis also detected fungi preferentially associated with Chamaecyparis (e.g., Pezicula ) or Pinus (e.g., Neolecta ). Overall, this study provides a basis for future studies on how arbuscular mycorrhizal and ectomycorrhizal plant species interactively drive community- or ecosystem-scale processes. The physiological functions of the fungi highlighted in our host-preference analysis deserve intensive investigations for understanding their roles in plant endosphere and rhizosphere.

  13. Contrasting diversity and host association of ectomycorrhizal basidiomycetes versus root-associated ascomycetes in a dipterocarp rainforest.

    Directory of Open Access Journals (Sweden)

    Hirotoshi Sato

    Full Text Available Root-associated fungi, including ectomycorrhizal and root-endophytic fungi, are among the most diverse and important belowground plant symbionts in dipterocarp rainforests. Our study aimed to reveal the biodiversity, host association, and community structure of ectomycorrhizal Basidiomycota and root-associated Ascomycota (including root-endophytic Ascomycota in a lowland dipterocarp rainforest in Southeast Asia. The host plant chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL region and fungal internal transcribed spacer 2 (ITS2 region were sequenced using tag-encoded, massively parallel 454 pyrosequencing to identify host plant and root-associated fungal taxa in root samples. In total, 1245 ascomycetous and 127 putative ectomycorrhizal basidiomycetous taxa were detected from 442 root samples. The putative ectomycorrhizal Basidiomycota were likely to be associated with closely related dipterocarp taxa to greater or lesser extents, whereas host association patterns of the root-associated Ascomycota were much less distinct. The community structure of the putative ectomycorrhizal Basidiomycota was possibly more influenced by host genetic distances than was that of the root-associated Ascomycota. This study also indicated that in dipterocarp rainforests, root-associated Ascomycota were characterized by high biodiversity and indistinct host association patterns, whereas ectomycorrhizal Basidiomycota showed less biodiversity and a strong host phylogenetic preference for dipterocarp trees. Our findings lead to the working hypothesis that root-associated Ascomycota, which might be mainly represented by root-endophytic fungi, have biodiversity hotspots in the tropics, whereas biodiversity of ectomycorrhizal Basidiomycota increases with host genetic diversity.

  14. Nitrogen acquisition, transport and metabolism in intact ectomycorrhizal associations studied by 15N stable isotope techniques

    International Nuclear Information System (INIS)

    Ek, H.

    1993-05-01

    The focus of this thesis is on the external mycelium and its role in nitrogen uptake, assimilation and translocation. Tree seedlings in association with ectomycorrhizal fungi were grown in observation chambers. The fungal mycelium were fed with 15-N ammonium or 15-N nitrate or a combination of both. The effects of Collembola on the ectomycorrhizal symbiosis were also studied. The results demonstrates an important role of the external mycelium of Paxillus involutus not only in the uptake but also in the assimilation of ammonium into a variety of different amino acids, primarily glutamine but also glutamic acid, aspartic acid, and alanine, immediately after uptake. The results indicate that ammonium is assimilated by GS and GOGAT or GDH in the mycelium at the uptake site. When nitrate was added to the mycelium as the sole nitrogen source nitrate was reduced in the mycelium and the product assimilated into amino acids. When ammonium nitrate was supplied to the fungal mycelium nitrate was taken up the fungus and transferred to the plant, however, apparently no assimilation of nitrate occurred in the external mycelium. Ammonium or an assimilation product, such as glutamine, probably represses nitrate reductase (NR) but not nitrate uptake and transfer in P. involutus. P. involutus nitrogen uptake and transfer to the associated mycorrhizal pine was up to 76% higher when low numbers of the Collembola Onychiurus armatus were present compared to when they were completely absent. This was probably an indirect effect as P. involutus hyphal growth rate and extramatrical biomass increased at a low Collembola density. At high Collembola densities P. involutus hyphal growth rate was retarded. (74 refs.)

  15. Diversity and Spatial Structure of Belowground Plant–Fungal Symbiosis in a Mixed Subtropical Forest of Ectomycorrhizal and Arbuscular Mycorrhizal Plants

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi; Tanabe, Akifumi S.

    2014-01-01

    Plant–mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant–fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant–fungal symbiosis in subtropical forests is complex in that it includes “non-typical” plant–fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in

  16. Diversity and spatial structure of belowground plant-fungal symbiosis in a mixed subtropical forest of ectomycorrhizal and arbuscular mycorrhizal plants.

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi; Tanabe, Akifumi S

    2014-01-01

    Plant-mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant-fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant-fungal symbiosis in subtropical forests is complex in that it includes "non-typical" plant-fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in that

  17. Decomposition by ectomycorrhizal fungi alters soil carbon storage in a simulation model

    DEFF Research Database (Denmark)

    Moore, J. A. M.; Jiang, J.; Post, W. M.

    2015-01-01

    Carbon cycle models often lack explicit belowground organism activity, yet belowground organisms regulate carbon storage and release in soil. Ectomycorrhizal fungi are important players in the carbon cycle because they are a conduit into soil for carbon assimilated by the plant. It is hypothesized...... to decompose soil organic matter. Our review highlights evidence demonstrating the potential for ectomycorrhizal fungi to decompose soil organic matter. Our model output suggests that ectomycorrhizal activity accounts for a portion of carbon decomposed in soil, but this portion varied with plant productivity...... and the mycorrhizal carbon uptake strategy simulated. Lower organic matter inputs to soil were largely responsible for reduced soil carbon storage. Using mathematical theory, we demonstrated that biotic interactions affect predictions of ecosystem functions. Specifically, we developed a simple function to model...

  18. Diversity and persistence of ectomycorrhizal fungi and their effect on nursery-inoculated Pinus pinaster in a post-fire plantation in Northern Portugal.

    Science.gov (United States)

    Franco, Albina R; Sousa, Nadine R; Ramos, Miguel A; Oliveira, Rui S; Castro, Paula M L

    2014-11-01

    Ectomycorrhizal fungi (ECMF) play an important role in forest ecosystems, often mitigating stress factors and increasing seedling performance. The aim of this study was to investigate the effects of a nursery inoculation on Pinus pinaster growth and on the fungal communities established when reforesting burned areas. Inoculated P. pinaster saplings showed 1.5-fold higher stem height than the non-inoculated controls after a 5 year growth period, suggesting that fungal inoculation could potentiate tree growth in the field. Ordination analysis revealed the presence of different ECMF communities on both plots. Among the nursery-inoculated fungi, Laccaria sp., Rhizopogon sp., Suillus bovinus and Pisolithus sp. were detected on inoculated Pinus saplings on both sampling periods, indicating that they persisted after field establishment. Other fungi were also detected in the inoculated plants. Phialocephala sp. was found on the first assessment, while Terfezia sp. was detected on both sampling periods. Laccaria sp. and Rhizopogon sp. were identified in the control saplings, belonging however to different species than those found in the inoculated plot. Inocybe sp., Thelephora sp. and Paxillus involutus were present on both sampling periods in the non-inoculated plots. The results suggest that ECMF inoculation at nursery stage can benefit plant growth after transplantation to a post-fire site and that the inoculated fungi can persist in the field. This approach has great potential as a biotechnological tool to aid in the reforestation of burned areas.

  19. Fungi in roots of nursery grown Pinus sylvestris: ectomycorrhizal colonisation, genetic diversity and spatial distribution.

    Science.gov (United States)

    Menkis, Audrius; Vasaitis, Rimvydas

    2011-01-01

    The aims of this study were to investigate patterns of ectomycorrhizal (ECM) colonisation and community structure on nursery grown seedlings of Pinus sylvestris, spatial distribution of ECMs in the nursery plot and genetic diversity of commonly isolated ECM basidiomycete Hebeloma cavipes. One hundred seedlings were sampled in 225 m(2) area using a systematic grid design. For each seedling, 20 individual root tips were randomly collected, morphotyped, and surface sterilised for fungal isolation in pure culture. Results showed that ECM community was comprised of nine distinct morphotypes among which Thelephora terrestris (39.7%), Hebeloma sp. (17.8%) and Suillus luteus (6.1%) were the most abundant. Spatial distribution of ECMs in the nursery plot was determined by their relative abundance: even in common ECMs and random in rare ones. Fungal isolation yielded 606 pure cultures, representing 71 distinct taxa. The most commonly isolated fungi were the ascomycetes Neonectria macrodidyma (20.3%), Phialocephala fortinii (13.5%), Neonectria radicicola (6.3%) and the ECM basidiomycete H. cavipes (4.5%). Intraspecific genetic diversity within 27 H. cavipes isolates was studied using two methods: restriction digestion of the amplified intergenic spacer of nuclear ribosomal DNA and genealogical concordance of five genetic markers. Five and eight genotypes were revealed by each respective method, but both of those were largely consistent, in particular, in determining the largest genotype (A) composed of 18 isolates. Mapping positions for each H. cavipes isolate and genotype in the field showed that isolates of the A genotype covered a large part of the nursery plot. This suggests that H. cavipes is largely disseminated by vegetative means of local genotypes and that nursery cultivation practices are likely to contribute to the dissemination of this species in the forest nursery soils.

  20. Ectomycorrhizal diversity associated with Cedrus deodara and Pinus wallichiana in the Kashmir Himalaya, India.

    Science.gov (United States)

    Itoo, Zahoor Ahmad; Reshi, Zafar A

    2014-01-01

    The present study was undertaken to document the ectomycorrhizal diversity associated with the Cedrus deodara and Pinus wallichiana in the Kashmir Himalaya, India. The extensive field surveys carried out in the Kashmir Himalaya at five study sites resulted in the collection and identification of 76 potential ectomycorrhizal fungal species associated with the Cedrus deodara and Pinus wallichiana. Maximum 32 number of species were found associated with Pinus wallichiana, 19 with Cedrus deodara and 25 species were found growing in association with both the conifers. The present study reveals that Cedrus deodara and Pinus wallichiana in the Kashmir Himalaya, India harbour diverse ectomycorrhizal fungal species.

  1. Genetic variation and phylogenetic relationships of the ectomycorrhizal Floccularia luteovirens on the Qinghai-Tibet Plateau.

    Science.gov (United States)

    Xing, Rui; Gao, Qing-Bo; Zhang, Fa-Qi; Fu, Peng-Cheng; Wang, Jiu-Li; Yan, Hui-Ying; Chen, Shi-Long

    2017-08-01

    Floccularia luteovirens, as an ectomycorrhizal fungus, is widely distributed in the Qinghai-Tibet Plateau. As an edible fungus, it is famous for its unique flavor. Former studies mainly focus on the chemical composition and genetic structure of this species. However, the phylogenetic relationship between genotypes remains unknown. In this study, the genetic variation and phylogenetic relationship between the genotypes of F. luteovirens in Qinghai-Tibet Plateau was estimated through the analysis on two protein-coding genes (rpb1 and ef-1α) from 398 individuals collected from 24 wild populations. The sample covered the entire range of this species during all the growth seasons from 2011 to 2015. 13 genotypes were detected and moderate genetic diversity was revealed. Based on the results of network analysis, the maximum likelihood (ML), maximum parsimony (MP), and Bayesian inference (BI) analyses, the genotypes H-1, H-4, H-6, H-8, H-10, and H-11 were grouped into one clade. Additionally, a relatively higher genotype diversity (average h value is 0.722) and unique genotypes in the northeast edge of Qinghai- Tibet plateau have been found, combined with the results of mismatch analysis and neutrality tests indicated that Southeast Qinghai-Tibet plateau was a refuge for F. luteovirens during the historical geological or climatic events (uplifting of the Qinghai-Tibet Plateau or Last Glacial Maximum). Furthermore, the present distribution of the species on the Qinghai-Tibet plateau has resulted from the recent population expansion. Our findings provide a foundation for the future study of the evolutionary history and the speciation of this species.

  2. Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient

    DEFF Research Database (Denmark)

    Kjøller, Rasmus; Nilsson, Lars Ola; Hansen, Karin

    2012-01-01

    • Nitrogen (N) availability is known to influence ectomycorrhizal fungal components, such as fungal community composition, biomass of root tips and production of mycelia, but effects have never been demonstrated within the same forest. • We measured concurrently the abundance of ectomycorrhizal...... root tips and the production of external mycelia, and explored the changes in the ectomycorrhizal community composition, across a stand-scale N deposition gradient (from 27 to 43 kg N ha¿¹ yr¿¹) at the edge of a spruce forest. The N status was affected along the gradient as shown by a range of N...... availability indices. • Ectomycorrhizal root tip abundance and mycelial production decreased five and 10-fold, respectively, with increasing N deposition. In addition, the ectomycorrhizal fungal community changed and the species richness decreased. The changes were correlated with the measured indices of N...

  3. Identification of some ectomycorrhizal basidiomycetes by PCR amplification of their gpd (glyceraldehyde-3-phosphate dehydrogenase) genes.

    Science.gov (United States)

    Kreuzinger, N; Podeu, R; Gruber, F; Göbl, F; Kubicek, C P

    1996-01-01

    Degenerated oligonucleotide primers designed to flank an approximately 1.2-kb fragment of the gene encoding glyceraldehyde-3-phosphate dehydrogenase (gpd) from ascomycetes and basidiomycetes were used to amplify the corresponding gpd fragments from several species of the ectomycorrhizal fungal taxa Boletus, Amanita, and Lactarius. Those from B. edulis, A. muscaria, and L. deterrimus were cloned and sequenced. The respective nucleotide sequences of these gene fragments showed a moderate degree of similarity (72 to 76%) in the protein-encoding regions and only a low degree of similarity in the introns (56 to 66%). Introns, where present, occurred at conserved positions, but the respective positions and numbers of introns in a given taxon varied. The amplified fragment from a given taxon could be distinguished from that of others by both restriction nuclease cleavage analysis and Southern hybridization. A procedure for labeling DNA probes with fluorescein-12-dUTP by PCR was developed. These probes were used in a nonradioactive hybridization assay, with which the gene could be detected in 2 ng of chromosomal DNA of L. deterrimus on slot blots. Taxon-specific amplification was achieved by the design of specific oligonucleotide primers. The application of the gpd gene for the identification of mycorrhizal fungi under field conditions was demonstrated, with Picea abies (spruce) mycorrhizal roots harvested from a northern alpine forest area as well as from a plant-breeding nursery. The interference by inhibitory substances, which sometimes occurred in the DNA extracted from the root-fungus mixture, could be overcome by using very diluted concentrations of template DNA for a first round of PCR amplification followed by a second round with nested oligonucleotide primers. We conclude that gpd can be used to detect ectomycorrhizal fungi during symbiotic interaction. PMID:8795234

  4. Ectomycorrhizal mats alter forest soil biogeochemistry

    Science.gov (United States)

    Laurel A. Kluber; Kathryn M. Tinnesand; Bruce A. Caldwell; Susie M. Dunham; Rockie R. Yarwood; Peter J. Bottomley; David D. Myrold

    2010-01-01

    Dense hyphal mats formed by ectomycorrhizal (EcM) fungi are prominent features in Douglas-fir forest ecosystems, and have been estimated to cover up to 40% of the soil surface in some forest stands. Two morphotypes of EcM mats have been previously described: rhizomorphic mats, which have thick hyphal rhizomorphs and are found primarily in the organic horizon, and...

  5. Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities.

    Science.gov (United States)

    Alvarez, Maricel; Huygens, Dries; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Drought stress conditions (DC) reduce plant growth and nutrition, restraining the sustainable reestablishment of Nothofagus dombeyi in temperate south Chilean forest ecosystems. Ectomycorrhizal symbioses have been documented to enhance plant nitrogen (N) and phosphorus (P) uptake under drought, but the regulation of involved assimilative enzymes remains unclear. We studied 1-year-old N. dombeyi (Mirb.) Oerst. plants in association with the ectomycorrhizal fungi Pisolithus tinctorius (Pers.) Coker & Couch. and Descolea antartica Sing. In greenhouse experiments, shoot and root dry weights, mycorrhizal colonization, foliar N and P concentrations, and root enzyme activities [glutamate synthase (glutamine oxoglutarate aminotransferase (GOGAT), EC 1.4.1.13-14), glutamine synthetase (GS, EC 6.3.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), nitrate reductase (NR, EC 1.6.6.1), and acid phosphomonoesterase (PME, EC 3.1.3.1-2)] were determined as a function of soil-water content. Inoculation of N. dombeyi with P. tinctorius and D. antartica significantly stimulated plant growth and increased plant foliar N and P concentrations, especially under DC. Ectomycorrhizal inoculation increased the activity of all studied enzymes relative to non-mycorrhizal plants under drought. We speculate that GDH is a key enzyme involved in the enhancement of ectomycorrhizal carbon (C) availability by fuelling the tricarboxylic acid (TCA) cycle under conditions of drought-induced carbon deficit. All studied assimilative enzymes of the ectomycorrhizal associations, involved in C, N, and P transfers, are closely interlinked and interdependent. The up-regulation of assimilative enzyme activities by ectomycorrhizal fungal root colonizers acts as a functional mechanism to increase seedling endurance to drought. We insist upon incorporating ectomycorrhizal inoculation in existing Chilean afforestation programs.

  6. [Nutrient transfer and growth of Pinus greggii Engelm. inoculated with edible ectomycorrhizal mushrooms in two substrates].

    Science.gov (United States)

    Rentería-Chávez, María C; Pérez-Moreno, Jesús; Cetina-Alcalá, Víctor M; Ferrera-Cerrato, Ronald; Xoconostle-Cázares, Beatriz

    An ectomycorrhiza is a mutualistic symbiosis of paramount importance in forestry and tree production. One of the selection criteria of ectomycorrhizal fungi that has currently gained importance is their edibility due to the economic, ecological and cultural relevance of edible ectomycorrhizal mushrooms as a non-timber forest product. The effect of the inoculation with three edible ectomycorrhizal mushrooms: Laccaria laccata, Laccaria bicolor y Hebeloma leucosarx, which are widely sold in Mexico, on the growth and nutrient contents of Pinus greggii grown in an experimental substrate and a commercial substrate enriched with a slow-release fertilizer, was evaluated. Two years after sowing, differences in terms of shoot and root biomass and macro and micronutrient contents between inoculated and non-inoculated plants, were recorded independently of the fungal species and the substrate. Despite the fact that plants grown in the commercial substrate had higher growth and nutrient contents, their ectomycorrhizal colonization percentages were smaller than those of the plants grown in the experimental substrate. The differences in the nutrient transfer to the inoculated plant shoots among the evaluated fungal species were recorded. Ca mobilization by L. laccata, Na by L. bicolor and Mn by H. leucosarx were observed in the plants growing in the experimental substrate. It has been demonstrated that the selection of substrates constitutes an important factor in the production of ectomycorrhizal plants and that the three evaluated species of edible ectomycorrhizal mushrooms have an enormous potential in the controlled mycorrhization of P. greggii. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Visualizing carbon and nitrogen transfer in the tripartite symbiosis of Fagus sylvatica, ectomycorrhizal fungi and soil microorganisms using NanoSIMS

    Science.gov (United States)

    Mayerhofer, Werner; Dietrich, Marlies; Schintlmeister, Arno; Gabriel, Raphael; Gorka, Stefan; Wiesenbauer, Julia; Martin, Victoria; Schweiger, Peter; Reipert, Siegfried; Weidinger, Marieluise; Richter, Andreas; Woebken, Dagmar; Kaiser, Christina

    2016-04-01

    Translocation of recently photoassimilated plant carbon (C) into soil via root exudates or mycorrhizal fungi is key to understand global carbon cycling. Plants support symbiotic fungi and soil microorganisms with recent photosynthates to get access to essential elements, such as nitrogen (N) and phosphorus. While a 'reciprocal reward strategy' (plants trade C in exchange for nutrients from the fungus) has been shown for certain types of mycorrhizal associations, only little is known about the mechanisms of C and N exchange between mycorrhizal fungal hyphae and soil bacteria. Our understanding of the underlying mechanisms is hampered by the fact that C and N transfer between plants, mycorrhizal fungi and soil bacteria takes place at the micrometer scale, which makes it difficult to explore at the macro scale. In this project we intended to analyse carbon and nitrogen flows between roots of beech trees (Fagus sylvatica), their associated ectomycorrhizal fungi and bacterial community. In order to visualize this nutrient flow at a single cell level, we used a stable isotope double labelling (13C and 15N) approach. Young mycorrhizal beech trees were transferred from a forest to split-root boxes, consisting of two compartments separated by a membrane (35 μm mesh size) which was penetrable for hyphae but not for plant roots. After trees and mycorrhizal fungi were allowed to grow for one year in these boxes, 15N-labelled nitrogen solution was added only to the root-free compartment to allow labelled nitrogen supply only through the fungal network. 13C- labelled carbon was applied by exposing the plants to a 13CO2 gas atmosphere for 8 hours. Spatial distribution of the isotopic label was visualised at the microscale in cross sections of mycorrhizal root-tips (the plant/mycorrhizal fungi interface) and within and on the surface of external mycorrhizal hyphae (the fungi/soil bacteria interface) using nanoscale secondary ion mass spectrometry (NanoSIMS). Corresponding

  8. Litter-forager termite mounds enhance the ectomycorrhizal symbiosis between Acacia holosericea A. Cunn. Ex G. Don and Scleroderma dictyosporum isolates.

    Science.gov (United States)

    Duponnois, Robin; Assikbetse, Komi; Ramanankierana, Heriniaina; Kisa, Marija; Thioulouse, Jean; Lepage, Michel

    2006-05-01

    The hypothesis of the present study was that the termite mounds of Macrotermes subhyalinus (MS) (a litter-forager termite) were inhabited by a specific microflora that could enhance with the ectomycorrhizal fungal development. We tested the effect of this feeding group mound material on (i) the ectomycorrhization symbiosis between Acacia holosericea (an Australian Acacia introduced in the sahelian areas) and two ectomycorrhizal fungal isolates of Scleroderma dictyosporum (IR408 and IR412) in greenhouse conditions, (ii) the functional diversity of soil microflora and (iii) the diversity of fluorescent pseudomonads. The results showed that the termite mound amendment significantly increased the ectomycorrhizal expansion. MS mound amendment and ectomycorrhizal inoculation induced strong modifications of the soil functional microbial diversity by promoting the multiplication of carboxylic acid catabolizing microorganisms. The phylogenetic analysis showed that fluorescent pseudomonads mostly belong to the Pseudomonads monteillii species. One of these, P. monteillii isolate KR9, increased the ectomycorrhizal development between S. dictyosporum IR412 and A. holosericea. The occurrence of MS termite mounds could be involved in the expansion of ectomycorrhizal symbiosis and could be implicated in nutrient flow and local diversity.

  9. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors.

    Science.gov (United States)

    Shah, Firoz; Nicolás, César; Bentzer, Johan; Ellström, Magnus; Smits, Mark; Rineau, Francois; Canbäck, Björn; Floudas, Dimitrios; Carleer, Robert; Lackner, Gerald; Braesel, Jana; Hoffmeister, Dirk; Henrissat, Bernard; Ahrén, Dag; Johansson, Tomas; Hibbett, David S; Martin, Francis; Persson, Per; Tunlid, Anders

    2016-03-01

    Ectomycorrhizal fungi are thought to have a key role in mobilizing organic nitrogen that is trapped in soil organic matter (SOM). However, the extent to which ectomycorrhizal fungi decompose SOM and the mechanism by which they do so remain unclear, considering that they have lost many genes encoding lignocellulose-degrading enzymes that are present in their saprotrophic ancestors. Spectroscopic analyses and transcriptome profiling were used to examine the mechanisms by which five species of ectomycorrhizal fungi, representing at least four origins of symbiosis, decompose SOM extracted from forest soils. In the presence of glucose and when acquiring nitrogen, all species converted the organic matter in the SOM extract using oxidative mechanisms. The transcriptome expressed during oxidative decomposition has diverged over evolutionary time. Each species expressed a different set of transcripts encoding proteins associated with oxidation of lignocellulose by saprotrophic fungi. The decomposition 'toolbox' has diverged through differences in the regulation of orthologous genes, the formation of new genes by gene duplications, and the recruitment of genes from diverse but functionally similar enzyme families. The capacity to oxidize SOM appears to be common among ectomycorrhizal fungi. We propose that the ancestral decay mechanisms used primarily to obtain carbon have been adapted in symbiosis to scavenge nutrients instead. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K(+) and phosphorus in the host plant.

    Science.gov (United States)

    Garcia, Kevin; Delteil, Amandine; Conéjéro, Geneviève; Becquer, Adeline; Plassard, Claude; Sentenac, Hervé; Zimmermann, Sabine

    2014-02-01

    Mycorrhizal associations are known to improve the hydro-mineral nutrition of their host plants. However, the importance of mycorrhizal symbiosis for plant potassium nutrition has so far been poorly studied. We therefore investigated the impact of the ectomycorrhizal fungus Hebeloma cylindrosporum on the potassium nutrition of Pinus pinaster and examined the involvement of the fungal potassium transporter HcTrk1. HcTrk1 transcripts and proteins were localized in ectomycorrhizas using in situ hybridization and EGFP translational fusion constructs. Importantly, an overexpression strategy was performed on a H. cylindrosporum endogenous gene in order to dissect the role of this transporter. The potassium nutrition of mycorrhizal pine plants was significantly improved under potassium-limiting conditions. Fungal strains overexpressing HcTrk1 reduced the translocation of potassium and phosphorus from the roots to the shoots of inoculated plants in mycorrhizal experiments. Furthermore, expression of HcTrk1 and the phosphate transporter HcPT1.1 were reciprocally linked to the external inorganic phosphate and potassium availability. The development of these approaches provides a deeper insight into the role of ectomycorrhizal symbiosis on host plant K(+) nutrition and in particular, the K(+) transporter HcTrk1. The work augments our knowledge of the link between potassium and phosphorus nutrition via the mycorrhizal pathway. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. Ectomycorrhizal fungi in Amazonian tropical forests in Colombia

    NARCIS (Netherlands)

    Vasco Palacios, A.M.

    2016-01-01

    The ectomycorrhizal (EcM) symbiosis was assumed to be restricted to the temperate regions where forests are dominated by EcM host plants, and the tropics were supposed to be dominated by endomycorrhizal fungi. However, evidence of the presence of EcM symbiosis in tropical lowland ecosystems has been

  12. Ectomycorrhizal Fungi and Biogeochemical Cycles of Boreal Forests

    NARCIS (Netherlands)

    Smits, M.M.

    2006-01-01

    Inpodzolsin Europe and North America tunnels in weatherable mineral grains were found, presumably created by ectomycorrhizal (EcM) fungi. This finding was the incentive for a research program on rock-eating mycorrhizas, of which this project is part of. The focus of this

  13. Water sources and controls on water-loss rates of epigeous ectomycorrhizal fungal sporocarps during summer drought

    Science.gov (United States)

    Erik A. Lilleskov; Thomas D. Bruns; Todd E. Dawson; Francisco J. Camacho

    2009-01-01

    Access to deeper soil water and water-conserving traits should reduce water stress for ectomycorrhizal fungi, permitting function during drought. Here, we explored whether epigeous fruiting of ectomycorrhizal fungi during drought was facilitated by access to deep soil water, how much water was lost from sporocarps, and how sporocarp surface to volume ratios affected...

  14. Controls of Isotopic Patterns in Saprotrophic and Ectomycorrhizal Fungi

    Science.gov (United States)

    Isotopes of nitrogen (δ15N) and carbon (δ13C) in ectomycorrhizal and saprotrophic fungi contain important information about ecological functioning, but the complexity of physiological and ecosystem processes contributing to fungal carbon and nitrogen dynamics has limited our abil...

  15. Evolution and host specificity in the ectomycorrhizal genus Leccinum

    NARCIS (Netherlands)

    Bakker, den H.C.; Zuccarello, G.C.; Kuyper, T.W.; Noordeloos, M.E.

    2004-01-01

    Species of the ectomycorrhizal genus Leccinum are generally considered to be host specialists. We determined the phylogenetic relationships between species of Leccinum from Europe and North America based on second internal transcribed spacer (ITS2) and glyceraldehyde 3-phosphate dehydrogenase

  16. In vitro inhibitory effects of pulvinic acid derivatives isolated from Chinese edible mushrooms, Boletus calopus and Suillus bovinus, on cytochrome P450 activity.

    Science.gov (United States)

    Huang, Yu-Ting; Onose, Jun-ichi; Abe, Naoki; Yoshikawa, Kunie

    2009-04-23

    Increasing attention has been focused on food-drug interactions. We have investigated the inhibitory effect of Chinese edible mushrooms, Boletus calopus and Suillus bovinus, on cytochrome P450 (CYP) 1A2, 2C9, 2D6, and 3A4, the main drug-metabolizing enzymes. Three pulvinic acid derivatives, atromentic acid (1), variegatic acid (2), and xerocomic acid (3), isolated from Boletus calopus and Suillus bovinus, revealed nonspecific inhibitory effects on all four CYPs. Using these compounds, the maximum IC50 values obtained with CYP3A4 in vitro were atromentic acid (1), 65.1+/-3.9 microM; variegatic acid (2), 2.2+/-0.1 microM; and xerocomic acid (3), 2.4+/-0.1 microM. Variegatic acid (2) and xerocomic acid (3) were effective inhibitors, comparable to cimetidine, dicoumarol, erythromycin, safrole, and uniconazole. Variegatic acid (2) and xerocomic acid (3) efficiently reduced ferryl myoglobin in CYPs. Reduction of ferryl heme to ferric heme is likely the mechanism of the nonspecific inhibitory effects of these compounds on CYPs.

  17. pH measurement of tubular vacuoles of an arbuscular mycorrhizal fungus, Gigaspora margarita.

    Science.gov (United States)

    Funamoto, Rintaro; Saito, Katsuharu; Oyaizu, Hiroshi; Aono, Toshihiro; Saito, Masanori

    2015-01-01

    Arbuscular mycorrhizal fungi play an important role in phosphate supply to the host plants. The fungal hyphae contain tubular vacuoles where phosphate compounds such as polyphosphate are accumulated. Despite their importance for the phosphate storage, little is known about the physiological properties of the tubular vacuoles in arbuscular mycorrhizal fungi. As an indicator of the physiological state in vacuoles, we measured pH of tubular vacuoles in living hyphae of arbuscular mycorrhizal fungus Gigaspora margarita using ratio image analysis with pH-dependent fluorescent probe, 6-carboxyfluorescein. Fluorescent images of the fine tubular vacuoles were obtained using a laser scanning confocal microscope, which enabled calculation of vacuolar pH with high spatial resolution. The tubular vacuoles showed mean pH of 5.6 and a pH range of 5.1-6.3. These results suggest that the tubular vacuoles of arbuscular mycorrhizal fungi have a mildly acidic pH just like vacuoles of other fungal species including yeast and ectomycorrhizal fungi.

  18. Lack of host specificity leads to independent assortment of dipterocarps and ectomycorrhizal fungi across a soil fertility gradient.

    Science.gov (United States)

    Peay, Kabir G; Russo, Sabrina E; McGuire, Krista L; Lim, Zhenyu; Chan, Ju Ping; Tan, Sylvester; Davies, Stuart J

    2015-08-01

    Plants interact with a diversity of microorganisms, and there is often concordance in their community structures. Because most community-level studies are observational, it is unclear if such concordance arises because of host specificity, in which microorganisms or plants limit each other's occurrence. Using a reciprocal transplant experiment, we tested the hypothesis that host specificity between trees and ectomycorrhizal fungi determines patterns of tree and fungal soil specialisation. Seedlings of 13 dipterocarp species with contrasting soil specialisations were seeded into plots crossing soil type and canopy openness. Ectomycorrhizal colonists were identified by DNA sequencing. After 2.5 years, we found no evidence of host specificity. Rather, soil environment was the primary determinant of ectomycorrhizal diversity and composition on seedlings. Despite their close symbiosis, our results show that ectomycorrhizal fungi and tree communities in this Bornean rain forest assemble independently of host-specific interactions, raising questions about how mutualism shapes the realised niche. © 2015 John Wiley & Sons Ltd/CNRS.

  19. Ectomycorrhizal fungal diversity: seperating the wheat from the chaff

    NARCIS (Netherlands)

    Rinaldi, A.C.; Comandini, O.; Kuyper, T.W.

    2008-01-01

    Thousands of ectomycorrhizal (ECM) fungal species exist, but estimates of global species richness of ECM fungi differ widely. Many genera have been proposed as being ECM, but ill a number of studies evidence for the hypothesized ECM habit is lacking. Progress in estimating ECM species richness is

  20. Draft Genome Sequence of the Soil Bacterium Burkholderia terrae Strain BS001, Which Interacts with Fungal Surface Structures

    DEFF Research Database (Denmark)

    Nazir, Rashid; Hansen, Martin A.; Sorensen, Soren

    2012-01-01

    Burkholderia terrae BS001 is a soil bacterium which was originally isolated from the mycosphere of the ectomycorrhizal fungus Laccaria proxima. It exhibits a range of fungus-interacting traits which reveal its propensity to actively interact at fungal interfaces. Here, we present the approximately...

  1. Forests trapped in nitrogen limitation--an ecological market perspective on ectomycorrhizal symbiosis.

    Science.gov (United States)

    Franklin, Oskar; Näsholm, Torgny; Högberg, Peter; Högberg, Mona N

    2014-07-01

    Ectomycorrhizal symbiosis is omnipresent in boreal forests, where it is assumed to benefit plant growth. However, experiments show inconsistent benefits for plants and volatility of individual partnerships, which calls for a re-evaluation of the presumed role of this symbiosis. We reconcile these inconsistencies by developing a model that demonstrates how mycorrhizal networking and market mechanisms shape the strategies of individual plants and fungi to promote symbiotic stability at the ecosystem level. The model predicts that plants switch abruptly from a mixed strategy with both mycorrhizal and nonmycorrhizal roots to a purely mycorrhizal strategy as soil nitrogen availability declines, in agreement with the frequency distribution of ectomycorrhizal colonization intensity across a wide-ranging data set. In line with observations in field-scale isotope labeling experiments, the model explains why ectomycorrhizal symbiosis does not alleviate plant nitrogen limitation. Instead, market mechanisms may generate self-stabilization of the mycorrhizal strategy via nitrogen depletion feedback, even if plant growth is ultimately reduced. We suggest that this feedback mechanism maintains the strong nitrogen limitation ubiquitous in boreal forests. The mechanism may also have the capacity to eliminate or even reverse the expected positive effect of rising CO2 on tree growth in strongly nitrogen-limited boreal forests. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  2. Identification of genes differentially expressed in ectomycorrhizal roots during the Pinus pinaster-Laccaria bicolor interaction.

    Science.gov (United States)

    Flores-Monterroso, Aranzazu; Canales, Javier; de la Torre, Fernando; Ávila, Concepción; Cánovas, Francisco M

    2013-06-01

    Ectomycorrhizal associations are of major ecological importance in temperate and boreal forests. The development of a functional ectomycorrhiza requires many genetic and biochemical changes. In this study, suppressive subtraction hybridization was used to identify differentially expressed genes in the roots of maritime pine (Pinus pinaster Aiton) inoculated with Laccaria bicolor, a mycorrhizal fungus. A total number of 200 unigenes were identified as being differentially regulated in maritime pine roots during the development of mycorrhiza. These unigenes were classified into 10 categories according to the function of their homologues in the GenBank database. Approximately, 40 % of the differentially expressed transcripts were genes that coded for unknown proteins in the databases or that had no homology to known genes. A group of these differentially expressed genes was selected to validate the results using quantitative real-time PCR. The transcript levels of the representative genes were compared between the non-inoculated and inoculated plants at 1, 5, 15 and 30 days after inoculation. The observed expression patterns indicate (1) changes in the composition of the wall cell, (2) tight regulation of defence genes during the development of mycorrhiza and (3) changes in carbon and nitrogen metabolism. Ammonium excess or deficiency dramatically affected the stability of ectomycorrhiza and altered gene expression in maritime pine roots.

  3. Effects of temperature, pH and carbon and nitrogen sources on growth of in vitro cultures of ectomycorrhizal isolates from Pinus heldreichii forest

    Energy Technology Data Exchange (ETDEWEB)

    Lazarević, J.; Stojičić, D.; Keča, N.

    2016-07-01

    Aim of study: This study aims to provide basic information about physiological characteristics of isolates of Lactarius deliciosus (L.) Gray, Russula sanguinaria (Schumach.) Rauschert, Suillus collinitus (Fr) Kuntze, Suillus granulatus (L.) Rousell, Tricholoma batchii Gulden and Tricholoma imbricatum (Fr.) Kumm. Area of study: The isolates are obtained from Pinus heldreichii H. Christ forest in the south-eastern part of Montenegro. Material and methods: The isolates were molecularly characterised by internal transcribed spacer (ITS) sequencing and restriction fragment length polymorphism (RFLP) analysis. The effects of different temperatures (20, 22, 25°C), pHs (4, 4.5, 5.2, 5.8, 6.5, 7.5), and carbon (glucose, sucrose, dextrin, arabinose, xylose and starch) and nitrogen (NH4+, NO3- and protein) sources on their growth were examined under laboratory conditions. Main results: The studied factors established significant differences in the development of isolates. Isolates of R. sanguinaria, L. deliciosus and both Suillus, were characterised by faster growth at 22°C, while Tricholoma isolates grew faster at 25°C. S. granulatus, S. collinitus and T. imbticatum isolates grew well at lower pH values (4 - 5.2), while L. deliciosus, R. sanguinaria and T. bachii exhibited faster growth at pHs between 5.8 and 6.5. The examined isolates were able to utilize various carbohydrates as carbon sources. The biggest mycelial growth was characterised for sucrose, then glucose, dextrin, arabinose, starch and xylose. They grew on all examined nitrogen sources, while the biggest mycelia growth was achieved on ammonium, followed by nitrate and protein. Those characteristics varied amongst the species. Research highlights: Information about physiological characteristics of Tricholoma, Lactarius, Russula, as well as Suillus, are sparse. Hence, the data obtained in this study could contribute to the understanding of their function in ecosystems. (Author)

  4. Tree host range and world distribution of the extomycorrhizal fungus Pisolithus tinctorius.

    Science.gov (United States)

    Marx, D H

    1977-03-01

    The natural occurrence of Pisolithus tinctorius has been confirmed in 33 countries of the world and in 38 states in the United States. This ectomycorrhizal fungus is found associated with various tree species in nurseries, urban areas, orchards, forests, and strip-mined spoils. Experiments have proved that this fungal symbiont forms ectomycorrhizae with Abies procera, Betula pendula, Carya illnoensis, 11 species of Eucalyptus, 30 species of Pinus, Pseudotsuga menziesii var. meniziesii, 2 species of Quercus, and Tsuga heterophylla. Pisolithus has also been reported growing under natural conditions in association with three additional species of Betula, two species of Eucalyptus, nine species of Pinus, and eight species of Quercus, Populus tremuloides, Pseudotsuga grandidenta, and Salix humilis. This fungal symbiont has great potential in forestation efforts because of (1) the availability of practical techniques for artificially introducing in into nursery soils; (2) its ability to improve tree survival and growth in the nursery and the field; (3) its near worldwide distribution on a variety of sites; and (4) its broad host range encompassing many of the world's most important tree species.

  5. Seasonal dynamics of structure and functional activity of ectomycorrhizal roots of the Siberian fir

    Directory of Open Access Journals (Sweden)

    T. A. Sizonenko

    2017-12-01

    Full Text Available The aim of our work was to study seasonal dynamics of the Siberian fir Abies sibirica Ledeb. ectomycorrhizal morpho-anatomical structure, respiration rate and fluorescence. The study was carried out in the bilberry-sphagnum spruce forest in the middle taiga of the Komi Republic, Russia. The morpho-anatomical structure and fluorescence parameters were studied by light and luminescence microscopy. Thin root respiration was studied in intact fine roots in the field using an infrared gas analyzer. 12 subtypes of fungal mantels were revealed in ectomycorrhizal fir roots; their amount and composition demonstrated seasonal dynamic changes. At the beginning vegetation stage, the diversity and proportion of pseudoparenchymatous and double covers were maximal. Plant component of ectomycorrhizae that includes cortical parenchyma and stele had high activity of fluorescence during the entire vegetation period. The dynamics of staining of fungal component (fungal mantel and Hartig net was more contrasting. The highest fluorescence intensity of cortical parenchyma was found in ectomycorrhizae with maximal fungal mantel thickness. High proportion of tannin cells in cortical parenchyma was related with low intensity of fungal mantel and Hartig net fluorescence. During vegetation season, maximal amount of intensively strained ectomycorrhizal elements occurred in July and unstrained – in June and August. Relation between fine roots respiration and an increase of brightly strained ectomycorrhizal structural elements in fir roots was not statistically significant. Root CO2-emission was lower in May and September in comparison with summer months. For respiration rate of fir fine roots we found its strong positive correlation with the litter temperature.

  6. Heavy metal distribution in Suillus luteus mycorrhizas - as revealed by micro-PIXE analysis

    Science.gov (United States)

    Turnau, K.; Przybyłowicz, W. J.; Mesjasz-Przybyłowicz, J.

    2001-07-01

    Suillus luteus/Pinus sylvestris mycorrhizas, collected from zinc wastes in Southern Poland, were selected as potential biofilters on the basis of earlier studies carried out with energy dispersive spectrometry (EDS) microanalytical system coupled to scanning electron microscope (SEM) and transmission electron microscope (TEM). Using the National Accelerator Centre (NAC) nuclear microprobe, elemental concentrations in the ectomycorrhiza parts were for the first time estimated quantitatively. Micro-proton-induced X-ray emission (PIXE) true elemental maps from freeze-dried and chemically fixed mycorrhizas revealed strong accumulation of Ca, Fe, Zn and Pb within the fungal mantle and in the rhizomorph. Vascular tissue was enriched with P, S and K, while high concentrations of Si and Cl were present in the endodermis. Cu was the only element showing elevated concentrations in the cortex region. Elemental losses and redistributions were found in mycorrhizas prepared by chemical fixation. Some problems related to elemental imaging are discussed.

  7. Heavy metal distribution in Suillus luteus mycorrhizas - as revealed by micro-PIXE analysis

    International Nuclear Information System (INIS)

    Turnau, K.; Przybylowicz, W.J.; Mesjasz-Przybylowicz, J.

    2001-01-01

    Suillus luteus/Pinus sylvestris mycorrhizas, collected from zinc wastes in Southern Poland, were selected as potential biofilters on the basis of earlier studies carried out with energy dispersive spectrometry (EDS) microanalytical system coupled to scanning electron microscope (SEM) and transmission electron microscope (TEM). Using the National Accelerator Centre (NAC) nuclear microprobe, elemental concentrations in the ectomycorrhiza parts were for the first time estimated quantitatively. Micro-proton-induced X-ray emission (PIXE) true elemental maps from freeze-dried and chemically fixed mycorrhizas revealed strong accumulation of Ca, Fe, Zn and Pb within the fungal mantle and in the rhizomorph. Vascular tissue was enriched with P, S and K, while high concentrations of Si and Cl were present in the endodermis. Cu was the only element showing elevated concentrations in the cortex region. Elemental losses and redistributions were found in mycorrhizas prepared by chemical fixation. Some problems related to elemental imaging are discussed

  8. Potential link between plant and fungal distributions in a dipterocarp rainforest: community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone.

    Science.gov (United States)

    Peay, Kabir G; Kennedy, Peter G; Davies, Stuart J; Tan, Sylvester; Bruns, Thomas D

    2010-01-01

    *Relatively little is known about diversity or structure of tropical ectomycorrhizal communities or their roles in tropical ecosystem dynamics. In this study, we present one of the largest molecular studies to date of an ectomycorrhizal community in lowland dipterocarp rainforest. *We sampled roots from two 0.4 ha sites located across an ecotone within a 52 ha forest dynamics plot. Our plots contained > 500 tree species and > 40 species of ectomycorrhizal host plants. Fungi were identified by sequencing ribosomal RNA genes. *The community was dominated by the Russulales (30 species), Boletales (17), Agaricales (18), Thelephorales (13) and Cantharellales (12). Total species richness appeared comparable to molecular studies of temperate forests. Community structure changed across the ecotone, although it was not possible to separate the role of environmental factors vs host plant preferences. Phylogenetic analyses were consistent with a model of community assembly where habitat associations are influenced by evolutionary conservatism of functional traits within ectomycorrhizal lineages. *Because changes in the ectomycorrhizal fungal community parallel those of the tree community at this site, this study demonstrates the potential link between the distribution of tropical tree diversity and the distribution of tropical ectomycorrhizal diversity in relation to local-scale edaphic variation.

  9. Forests trapped in nitrogen limitation – an ecological market perspective on ectomycorrhizal symbiosis

    Science.gov (United States)

    Franklin, Oskar; Näsholm, Torgny; Högberg, Peter; Högberg, Mona N

    2014-01-01

    Ectomycorrhizal symbiosis is omnipresent in boreal forests, where it is assumed to benefit plant growth. However, experiments show inconsistent benefits for plants and volatility of individual partnerships, which calls for a re-evaluation of the presumed role of this symbiosis. We reconcile these inconsistencies by developing a model that demonstrates how mycorrhizal networking and market mechanisms shape the strategies of individual plants and fungi to promote symbiotic stability at the ecosystem level. The model predicts that plants switch abruptly from a mixed strategy with both mycorrhizal and nonmycorrhizal roots to a purely mycorrhizal strategy as soil nitrogen availability declines, in agreement with the frequency distribution of ectomycorrhizal colonization intensity across a wide-ranging data set. In line with observations in field-scale isotope labeling experiments, the model explains why ectomycorrhizal symbiosis does not alleviate plant nitrogen limitation. Instead, market mechanisms may generate self-stabilization of the mycorrhizal strategy via nitrogen depletion feedback, even if plant growth is ultimately reduced. We suggest that this feedback mechanism maintains the strong nitrogen limitation ubiquitous in boreal forests. The mechanism may also have the capacity to eliminate or even reverse the expected positive effect of rising CO2 on tree growth in strongly nitrogen-limited boreal forests. PMID:24824576

  10. A new ceramide from Suillus luteus and its cytotoxic activity against human melanoma cells.

    Science.gov (United States)

    León, Francisco; Brouard, Ignacio; Torres, Fernando; Quintana, José; Rivera, Augusto; Estévez, Francisco; Bermejo, Jaime

    2008-01-01

    A new phytosphingosine-type ceramide, suillumide (1), was isolated from the EtOH extract of the basidiomycete Suillus luteus (L.) S. F. Gray, along with ten known compounds: ergosta-4,6,8(14),22-tetraen-3-one, ergosterol, ergosterol peroxide, suillin, (E)-3,4,5-trimethoxycinnamic alcohol, 5 alpha,6 alpha-epoxyergosta-8,22-diene-3beta,7 beta-diol, (R)-1-palmitoylglycerol, ergosta-7,9(11),22-triene-3beta,5 alpha,6 beta-triol, cerevisterol, and 4-hydroxybenzoic acid. The structure of 1 was determined on the basis of spectroscopic and mass-spectrometric analyses, as well as by chemical methods. Compound 1 and its synthetic diacetyl derivative 2 were tested for their cytotoxic activities against the human melanoma cell line SK-MEL-1. Both drugs showed IC(50) values of ca. 10 microM after 72 h of exposure.

  11. 90SR uptake by Pinus ponderosa and Pinus radiata seedlings inoculated with ectomycorrhizal fungi

    International Nuclear Information System (INIS)

    Entry, J.A.; Emmingham, W.H.; Rygiewicz, P.T.

    1994-01-01

    Strontium-90 ( 90 Sr) is a radionuclide characteristic of fallout from nuclear reactor accidents and nuclear weapons testing. Prior studies have shown that Pinus ponderosa and P. radiata seedlings can remove appreciable quantities of 90 Sr from soil and store it in plant tissue. In this study, we inoculated P. ponderosa and P. radiata seedlings with one of five isolates of ectomycorrhizal fungi. Inoculated and noninoculated (control) seedlings were compared for their ability to remove 90 Sr from an organic growth medium. Ectomycorrhizal P. ponderosa and P. radiata seedlings are able to remove 3-5 times more 90 Sr from contaminated soil than seedlings without ectomycorrhizae. (Author)

  12. Assessment of the Effectiveness of Ectomycorrhizal Inocula to Promote Growth and Root Ectomycorrhizal Colonization in Pinus patula Seedlings Using the Most Probable Number Technique

    Directory of Open Access Journals (Sweden)

    Manuel Restrepo-Llano

    2014-01-01

    Full Text Available The aim of this study was to evaluate the response of Pinus patula seedlings to two inocula types: soil from a Pinus plantation (ES and an in vitro produced inoculum (EM. The most probable number method (MPN was used to quantify ectomycorrhizal propagule density (EPD in both inocula in a 7-order dilution series ranging from 100 (undiluted inoculum to 10−6 (the most diluted inoculum. The MPN method allowed establishing differences in the number of infective ectomycorrhizal propagules’ density (EPD (ES=34 per g; EM=156 per g. The results suggest that the EPD of an inoculum may be a key factor that influences the successfulness of the inoculation. The low EPD of the ES inoculum suggests that soil extracted from forest plantations had very low effectiveness for promoting root colonization and plant growth. In contrast, the high EPD found in the formulated inoculum (EM reinforced the idea that it is better to use proven high quality inocula for forest nurseries than using soil from a forestry plantation.

  13. Ectomycorrhizal inoculation with Pisolithus tinctorius reduces stress induced by drought in cork oak.

    Science.gov (United States)

    Sebastiana, Mónica; da Silva, Anabela Bernardes; Matos, Ana Rita; Alcântara, André; Silvestre, Susana; Malhó, Rui

    2018-04-01

    We investigated whether the performance of cork oak under drought could be improved by colonization with the ectomycorrhizal fungus Pisolithus tinctorius. Results show that inoculation alone had a positive effect on plant height, shoot biomass, shoot basal diameter, and root growth. Under drought, root growth of mycorrhizal plants was significantly increased showing that inoculation was effective in increasing tolerance to drought. In accordance, mycorrhizal plants subjected to drought showed less symptoms of stress when compared to non-mycorrhizal plants, such as lower concentration of soluble sugars and starch, increased ability to maintain fatty acid content and composition, and increased unsaturation level of membrane lipids. After testing some of the mechanisms suggested to contribute to the enhanced tolerance of mycorrhizal plants to drought, we could not find any by which Pisolithus tinctorius could benefit cork oak, at least under the drought conditions imposed in our experiment. Inoculation did not increase photosynthesis under drought, suggesting no effect in sustaining stomatal opening at low soil water content. Similarly, plant water status was not affected by inoculation suggesting that P. tinctorius does not contribute to an increased plant water uptake during drought. Inoculation did increase nitrogen concentration in plants but it was independent of the water status. Furthermore, no significant mycorrhizal effect on drought-induced ROS production or osmotic adjustment was detected, suggesting that these factors are not important for the improved drought tolerance triggered by P. tinctorius.

  14. Pure culture response of ectomycorrhizal fungi to imposed water stress

    Science.gov (United States)

    Mark D. Coleman; Caroline S. Bledsoe; William Lopushinsky

    1989-01-01

    The ability of ectomycorrhizal fungal isolates to tolerate imposed water stress in pure culture was examined in 55 isolates of 18 species. Water potential treatments, adjusted with polyethylene glycol, were applied to Petri dish units. These units allowed colony diameter measurements of fungi grown on liquid media. Delayed growth initiation and inhibition of growth...

  15. Bioremediasi Cd dan ketersediaan P batuan fosfat oleh cendawan Ektomikorhiza Pisolithus tinctorius dan Suillus granulatus dalam kultur murni

    Directory of Open Access Journals (Sweden)

    Tini Surtiningsih

    1997-12-01

    Full Text Available Some rock phosphates used as fertilizers or to produce fertilizers which containing very high cadmium and have been suspected to increase trace element content in soild. In order to know if the cadmium can be mobilized, we have studied the bio-remediation of Cd and bio-availibility of P from three rock phosphates (from North Caroline, Togo and Senegal by ectomycorrhyzal fungi (Pisolithus tinctorius and Suillus granulatus in pure culture. In pure culture the fungi accumulated 80-100% Cd soluble. In the experiments, the % bio-accumulation or bio-remediation of Cd was not always correlated with the Cd content of the phosphate nor their hardness.

  16. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Science.gov (United States)

    C. Phillips; L.A. Kluber; J.P. Martin; B.A. Caldwell; B.J. Bond

    2012-01-01

    Distinct aggregations of fungal hyphae and rhizomorphs, or “mats”, formed by some genera of ectomycorrhizal (EcM) fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in western Oregon to investigate whether there was...

  17. Possible role of ectomycorrhizal fungi in cycling of aluminium in podzols

    NARCIS (Netherlands)

    Smits, M.M.; Hoffland, E.

    2009-01-01

    Budget studies in boreal podzols indicate a considerable upward transport of aluminium (Al) from the mineral soil into the organic horizon. In this paper we studied if ectomycorrhizal (EcM) fungi can be involved in this upward transport via their extramatrical hyphae. We tested the use of gallium

  18. Bacterial microbiomes of individual ectomycorrhizal Pinus sylvestris roots are shaped by soil horizon and differentially sensitive to nitrogen addition.

    Science.gov (United States)

    Marupakula, Srisailam; Mahmood, Shahid; Jernberg, Johanna; Nallanchakravarthula, Srivathsa; Fahad, Zaenab A; Finlay, Roger D

    2017-11-01

    Plant roots select non-random communities of fungi and bacteria from the surrounding soil that have effects on their health and growth, but we know little about the factors influencing their composition. We profiled bacterial microbiomes associated with individual ectomycorrhizal Pinus sylvestris roots colonized by different fungi and analyzed differences in microbiome structure related to soils from distinct podzol horizons and effects of short-term additions of N, a growth-limiting nutrient commonly applied as a fertilizer, but known to influence patterns of carbon allocation to roots. Ectomycorrhizal roots growing in soil from different horizons harboured distinct bacterial communities. The fungi colonizing individual roots had a strong effect on the associated bacterial communities. Even closely related species within the same ectomycorrhizal genus had distinct bacterial microbiomes in unfertilized soil, but fertilization removed this specificity. Effects of N were rapid and context dependent, being influenced by both soil type and the particular ectomycorrhizal fungi involved. Fungal community composition changed in soil from all horizons, but bacteria only responded strongly to N in soil from the B horizon where community structure was different and bacterial diversity was significantly reduced, possibly reflecting changed carbon allocation patterns. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. ВПЛИВ ДЖЕРЕЛА НІТРОГЕНУ НА ХIМIЧНЕ ЗВ’ЯЗУВАННЯ КУПРУМУ ЕКТОМIКОРИЗНИМ ГРИБОМ RHIZOPOGON RUBESCENS

    OpenAIRE

    Фомiна, М. О.

    2013-01-01

    Aim. The aim of this work was to study the effects of nitrogen source on the speciation of copper accumulated by fungi and ectomycorrhizas grown in the presence of copper phosphate. Materials and Methods. Ectomycorrhizal fungus Rhizopogon rubescens and its symbiotic ectomycorrhizal association with Scots Pine were grown in the presence of copper phosphate at different nitrogen sources: either ammonium or nitrate. The coordination of copper released from copper phosphate and bioaccumulated by ...

  20. Investigating niche partitioning of ectomycorrhizal fungi in specialized rooting zones of the monodominant leguminous tree Dicymbe corymbosa.

    Science.gov (United States)

    Smith, Matthew E; Henkel, Terry W; Williams, Gwendolyn C; Aime, M Catherine; Fremier, Alexander K; Vilgalys, Rytas

    2017-07-01

    Temperate ectomycorrhizal (ECM) fungi show segregation whereby some species dominate in organic layers and others favor mineral soils. Weak layering in tropical soils is hypothesized to decrease niche space and therefore reduce the diversity of ectomycorrhizal fungi. The Neotropical ECM tree Dicymbe corymbosa forms monodominant stands and has a distinct physiognomy with vertical crown development, adventitious roots and massive root mounds, leading to multi-stemmed trees with spatially segregated rooting environments: aerial litter caches, aerial decayed wood, organic root mounds and mineral soil. We hypothesized that these microhabitats host distinct fungal assemblages and therefore promote diversity. To test our hypothesis, we sampled D. corymbosa ectomycorrhizal root tips from the four microhabitats and analyzed community composition based on pyrosequencing of fungal internal transcribed spacer (ITS) barcode markers. Several dominant fungi were ubiquitous but analyses nonetheless suggested that communities in mineral soil samples were statistically distinct from communities in organic microhabitats. These data indicate that distinctive rooting zones of D. corymbosa contribute to spatial segregation of the fungal community and likely enhance fungal diversity. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. High diverstiy and widespread occurrence of mitotic spore mats in ectomycorrhizal Pezizales

    Science.gov (United States)

    R.A. Healy; M.E. Smith; G.M. Bonito; D.H. Pfister; Z.-W. Ge; G.G. Guevara; G. Williams; K. Stafford; L. Kumar; T. Lee; C. Hobart; J. Trappe; R. Vilgalys; D.J. McLaughlin

    2013-01-01

    Fungal mitospores may function as dispersal units and/ or spermatia and thus play a role in distribution and/or mating of species that produce them. Mitospore production in ectomycorrhizal (EcM) Pezizales is rarely reported, but here we document mitospore production by a high diversity of EcM Pezizales on three continents, in both...

  2. Ectomycorrhizal activity as affected by soil liming

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Solbritt

    1996-05-01

    Acidification of the forest soils in southern Sweden due to atmospheric deposition has become evident during recent decades. To counteract further acidification, liming of forests in the most affected areas has been proposed. Most forest trees in the temperate and boreal forest ecosystems live in symbiosis with ectomycorrhizal fungi, and their uptake of mineral nutrients from the soil is greatly influenced by the symbiosis. In this thesis effects of liming on ectomycorrhiza have been studied in relation to effects on root colonization, fungal growth and nitrogen uptake. In field experiments the effects of liming on ectomycorrhizal colonization of root tips were variable, possibly due to different soil types and climatic variations. However, a changed mycorrhizal community structure could be detected. Laboratory studies also showed that the substrate may influence the outcome of lime applications; the nutrient status of the substrate had a marked effect on how mycelial growth was affected by liming. Under the experimental conditions used in the studies presented in this thesis, liming reduced the uptake of nitrogen and phosphorus by both mycorrhizal and non-mycorrhizal plants. The amount of extractable nitrogen and phosphorus in the peat was also reduced by liming. The latter could be due to either microbial or chemical immobilization. The lime induced decrease in nitrogen uptake was stronger in non-mycorrhizal plants than in mycorrhizal plants. Thus, the mycorrhizal plants had a higher ability to deal with the negative effects of liming on nitrogen availability. This was not the case for phosphorus. The lime induced decrease in phosphorus uptake was stronger for mycorrhizal plants, and in the highest lime treatment there was no significant difference between the mycorrhizal and the non-mycorrhizal spruce plants. 76 refs, 2 figs, 1 tab

  3. New and interesting ectomycorrhizal fungi from Puerto Rico, Mona, and Guana Islands

    Science.gov (United States)

    Orson K. Miller; D. Jean Lodge; Timothy J. Baroni

    2000-01-01

    A report of putative ectomycorrhizal fungi from Puerto Rico, Mona, and Guana Island in the Greater Antilles includes four species of Amanita, three of which are new species; two Lactarius, one is new, and two species of Boletus, one new. In addition, new distribution records of Phlebopus beniensis, Russula littoralis, Lactarius ferrugineus, a new small spored...

  4. Belowground ectomycorrhizal fungal communities respond to liming in three southern Swedish coniferous forest stands

    DEFF Research Database (Denmark)

    Kjøller, Rasmus; Clemmensen, Karina

    2009-01-01

    In this study we report on changes in the belowground ectomycorrhizal fungal communities in southern Swedish coniferous forests as a consequence of liming with 3-7 ton limestone per hectare 16 years prior to the study. A total of 107 ectomycorrhizal fungi were identified from 969 independently...... sampled root tips by sequencing the internal transcribed spacer region of the ribosomal DNA. Forty, 59 and 51 species were identified in three pine and spruce forests. Within all sites only about 25% of the species overlapped between the limed and the reference areas. However, the most abundant species...... were often found in both limed and reference plots and 60-70% of the root tips at each site were colonised by species occurring in both limed and reference plots. Across all three sites, fungal species belonging to the genus Tylospora and the order Pezizales became significantly more frequent in limed...

  5. Ammonia Assimilation in Zea mays L. Infected with a Vesicular-Arbuscular Mycorrhizal Fungus Glomus fasciculatum.

    Science.gov (United States)

    Cliquet, J. B.; Stewart, G. R.

    1993-03-01

    To investigate nitrogen assimilation and translocation in Zea mays L. colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum (Thax. sensu Gerd.), we measured key enzyme activities, 15N incorporation into free amino acids, and 15N translocation from roots to shoots. Glutamine synthetase and nitrate reductase activities were increased in both roots and shoots compared with control plants, and glutamate dehydrogenase activity increased in roots only. In the presence of [15N]ammonium, glutamine amide was the most heavily labeled product. More label was incorporated into amino acids in VAM plants. The kinetics of 15N labeling and effects of methionine sulfoximine on distribution of 15N-labeled products were entirely consistent with the operation of the glutamate synthase cycle. No evidence was found for ammonium assimilation via glutamate dehydrogenase. 15N translocation from roots to shoots through the xylem was higher in VAM plants compared with control plants. These results establish that, in maize, VAM fungi increase ammonium assimilation, glutamine production, and xylem nitrogen translocation. Unlike some ectomycorrhizal fungi, VAM fungi do not appear to alter the pathway of ammonium assimilation in roots of their hosts.

  6. Organic anion exudation by ectomycorrhizal fungi and Pinus sylvestris in response to nutrient deficiences

    NARCIS (Netherlands)

    Schöll, van L.; Hoffland, E.; Breemen, van N.

    2006-01-01

    Low molecular weight organic anions (LMWOA) can enhance weathering of mineral grains. We tested the hypothesis that ectomycorrhizal (EcM) fungi and tree seedlings increase their exudation of LMWOA when supply of magnesium, potassium and phosphorus is low to enhance the mobilization of Mg, K and P

  7. Ectomycorrhizal Communities on the Roots of Two Beech (Fagus sylvatica) Populations from Contrasting Climates Differ in Nitrogen Acquisition in a Common Environment.

    Science.gov (United States)

    Leberecht, Martin; Dannenmann, Michael; Gschwendtner, Silvia; Bilela, Silvija; Meier, Rudolf; Simon, Judy; Rennenberg, Heinz; Schloter, Michael; Polle, Andrea

    2015-09-01

    Beech (Fagus sylvatica), a dominant forest species in Central Europe, competes for nitrogen with soil microbes and suffers from N limitation under dry conditions. We hypothesized that ectomycorrhizal communities and the free-living rhizosphere microbes from beech trees from sites with two contrasting climatic conditions exhibit differences in N acquisition that contribute to differences in host N uptake and are related to differences in host belowground carbon allocation. To test these hypotheses, young trees from the natural regeneration of two genetically similar populations, one from dryer conditions (located in an area with a southwest exposure [SW trees]) and the other from a cooler, moist climate (located in an area with a northeast exposure [NE trees]), were transplanted into a homogeneous substrate in the same environment and labeled with (13)CO2 and (15)NH4 (+). Free-living rhizosphere microbes were characterized by marker genes for the N cycle, but no differences between the rhizospheres of SW or NE trees were found. Lower (15)N enrichment was found in the ectomycorrhizal communities of the NE tree communities than the SW tree communities, whereas no significant differences in (15)N enrichment were observed for nonmycorrhizal root tips of SW and NE trees. Neither the ectomycorrhizal communities nor the nonmycorrhizal root tips originating from NE and SW trees showed differences in (13)C signatures. Because the level of (15)N accumulation in fine roots and the amount transferred to leaves were lower in NE trees than SW trees, our data support the suggestion that the ectomycorrhizal community influences N transfer to its host and demonstrate that the fungal community from the dry condition was more efficient in N acquisition when environmental constraints were relieved. These findings highlight the importance of adapted ectomycorrhizal communities for forest nutrition in a changing climate. Copyright © 2015, American Society for Microbiology. All Rights

  8. Isolation, Identification and Screening of Ectomycorrhizal fungi for reforestation purposes

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, N. R.; Oliveira, R. s.; Castro, P. M. I.

    2009-07-01

    Pinus pinaster occupies almost 30% of Portuguese forest area and fire is one of its major threat. Pinus pinaster is resistant to low fire intensities, however, the frequency and intensity of the current fire regime cuases a disturbing reduction of its area of distribution. Ectomycorrhizal fungi can form symbiotic associations with P. pinaster improving among other factors, plant growth and resistance to biotic and abiotic stresses, which can be a useful tool for an efficient reforestation of burned areas. (Author)

  9. Isolation, Identification and Screening of Ectomycorrhizal fungi for reforestation purposes

    International Nuclear Information System (INIS)

    Sousa, N. R.; Oliveira, R. s.; Castro, P. M. I.

    2009-01-01

    Pinus pinaster occupies almost 30% of Portuguese forest area and fire is one of its major threat. Pinus pinaster is resistant to low fire intensities, however, the frequency and intensity of the current fire regime cuases a disturbing reduction of its area of distribution. Ectomycorrhizal fungi can form symbiotic associations with P. pinaster improving among other factors, plant growth and resistance to biotic and abiotic stresses, which can be a useful tool for an efficient reforestation of burned areas. (Author)

  10. Distinctive fungal and bacterial communities are associated with mats formed by ectomycorrhizal fungi

    Science.gov (United States)

    Laurel A. Kluber; Jane E. Smith; David D. Myrold

    2011-01-01

    The distinct rhizomorphic mats formed by ectomycorrhizal Piloderma fungi are common features of the organic soil horizons of coniferous forests of the Pacific Northwest. These mats have been found to cover 25-40% of the forest floor in some Douglas-fir stands, and are associated with physical and biochemical properties that distinguish them from...

  11. Radiocaesium in fruitbodies and mycorrhizae in ectomycorrhizal fungi

    International Nuclear Information System (INIS)

    Nikolova, Ivanka; Johanson, K.J.; Dahlberg, Anders

    1997-01-01

    Fruitbodies of Suillus variegatus and Lactarius rufus and, at a maximum distance of 50 cm, the corresponding mycorrhizae, were collected on a rocky area in a coniferous forest. The tuberculate mycorrhizae collected close to S. variegatus fruitbodies were identified by the RFLP pattern to be S. variegatus mycorrhizae. In contrast the smooth brown mycorrhizae collected close to fruitbodies of L. rufus were found to be of various species - L. rufus, but also Russula sp. The 137 Cs activity concentrations in fruitbodies and the fungal part of the tuburculate mycorrhizae of S. variegatus were about the same. A local enrichment of 137 Cs within fruitbodies was studied by collecting fruitbodies growing in clusters. Between 13 and 64% of the mean ground 137 Cs deposition of the cluster area (400 or 625 cm 2 ) was found in the fruitbodies. This indicates that there might be an important fungal redistribution of 137 Cs in the forest floor during the production of fruitbodies. The distribution of 137 Cs within the fruitbodies was heterogenous. For example in Cortinarious armillatus, the 137 Cs level in the cap was 2.7 times higher compared to in the stripe. (Author)

  12. Radiocaesium in fruitbodies and mycorrhizae in ectomycorrhizal fungi

    Energy Technology Data Exchange (ETDEWEB)

    Nikolova, Ivanka [N. Pouskharov Inst. of Soil Sciences and Agroecology, Sofia (Bulgaria); Johanson, K.J. [Swedish Univ. of Agricultural Sciences, Radioecology Dept., Uppsala (Sweden); Dahlberg, Anders [Swedish Univ. of Agricultural Sciences, Forest Mycology and Pathology Dept., Uppsala (Sweden)

    1997-12-31

    Fruitbodies of Suillus variegatus and Lactarius rufus and, at a maximum distance of 50 cm, the corresponding mycorrhizae, were collected on a rocky area in a coniferous forest. The tuberculate mycorrhizae collected close to S. variegatus fruitbodies were identified by the RFLP pattern to be S. variegatus mycorrhizae. In contrast the smooth brown mycorrhizae collected close to fruitbodies of L. rufus were found to be of various species - L. rufus, but also Russula sp. The {sup 137}Cs activity concentrations in fruitbodies and the fungal part of the tuburculate mycorrhizae of S. variegatus were about the same. A local enrichment of {sup 137}Cs within fruitbodies was studied by collecting fruitbodies growing in clusters. Between 13 and 64% of the mean ground {sup 137}Cs deposition of the cluster area (400 or 625 cm{sup 2}) was found in the fruitbodies. This indicates that there might be an important fungal redistribution of {sup 137}Cs in the forest floor during the production of fruitbodies. The distribution of {sup 137}Cs within the fruitbodies was heterogenous. For example in Cortinarious armillatus, the {sup 137}Cs level in the cap was 2.7 times higher compared to in the stripe. (Author).

  13. Humic Acid-Like Material from Sewage Sludge Stimulates Culture Growth of Ectomycorrhizal Fungi in Vitro

    Czech Academy of Sciences Publication Activity Database

    Hršelová, Hana; Soukupová, Lucie; Gryndler, Milan

    2007-01-01

    Roč. 52, č. 6 (2007), s. 627-630 ISSN 0015-5632 R&D Projects: GA ČR GA526/06/0540 Institutional research plan: CEZ:AV0Z50200510 Keywords : ectomycorrhizal basidiomycetes * sewage sludge * humic-acid-like materials Subject RIV: EE - Microbiology, Virology Impact factor: 0.989, year: 2007

  14. Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak.

    Science.gov (United States)

    Pec, Gregory J; Karst, Justine; Taylor, D Lee; Cigan, Paul W; Erbilgin, Nadir; Cooke, Janice E K; Simard, Suzanne W; Cahill, James F

    2017-01-01

    Western North American landscapes are rapidly being transformed by forest die-off caused by mountain pine beetle (Dendroctonus ponderosae), with implications for plant and soil communities. The mechanisms that drive changes in soil community structure, particularly for the highly prevalent ectomycorrhizal fungi in pine forests, are complex and intertwined. Critical to enhancing understanding will be disentangling the relative importance of host tree mortality from changes in soil chemistry following tree death. Here, we used a recent bark beetle outbreak in lodgepole pine (Pinus contorta) forests of western Canada to test whether the effects of tree mortality altered the richness and composition of belowground fungal communities, including ectomycorrhizal and saprotrophic fungi. We also determined the effects of environmental factors (i.e. soil nutrients, moisture, and phenolics) and geographical distance, both of which can influence the richness and composition of soil fungi. The richness of both groups of soil fungi declined and the overall composition was altered by beetle-induced tree mortality. Soil nutrients, soil phenolics and geographical distance influenced the community structure of soil fungi; however, the relative importance of these factors differed between ectomycorrhizal and saprotrophic fungi. The independent effects of tree mortality, soil phenolics and geographical distance influenced the community composition of ectomycorrhizal fungi, while the community composition of saprotrophic fungi was weakly but significantly correlated with the geographical distance of plots. Taken together, our results indicate that both deterministic and stochastic processes structure soil fungal communities following landscape-scale insect outbreaks and reflect the independent roles tree mortality, soil chemistry and geographical distance play in regulating the community composition of soil fungi. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  15. Integrated long-term responses of an arctic-alpine willow and associated ectomycorrhizal fungi to an altered environment

    DEFF Research Database (Denmark)

    Clemmensen, Karina Engelbrecht; Michelsen, Anders

    2006-01-01

    We evaluated ectomycorrhizal (ECM) colonization and morphotype community composition together with growth response and biomass distribution in the arctic-alpine, prostrate willow Salix herbacea L. x Salix polaris Wahlenb. after 11 seasons of shading, warming, and fertilization at a fellfield...

  16. Sharing rotting wood in the shade: ectomycorrhizal communities of co-occurring birch and hemlock seedlings

    Science.gov (United States)

    Sarah K. Poznanovic; Erik A. Lilleskov; Christopher R. Webster

    2015-01-01

    Coarse woody debris (CWD) is an important nursery environment for many tree species. Understanding the communities of ectomycorrhizal fungi (ECMF) and the effect of ECMF species on tree seedling condition in CWD will elucidate the potential for ECMF-mediated effects on seedling dynamics. In hemlock-dominated stands, we characterized ECMF communities associated with...

  17. Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae

    Science.gov (United States)

    P. Brandon Matheny; M. Catherine Aime; Neale L. Bougher; Bart Buyck; Dennis E. Desjardin; Egon Horak; Bradley R. Kropp; D. Jean Lodge; Kasem Soytong; James M. Trappe; David S. Hibbett

    2009-01-01

    The ectomycorrhizal (ECM) mushroom family Inocybaceae is widespread in north temperate regions, but more than 150 species are encountered in the tropics and the Southern Hemisphere. The relative roles of recent and ancient biogeographical processes, relationships with plant hosts, and the timing of divergences that have shaped the current geographic distribution of the...

  18. Evaluation of the antioxidant activity of four edible mushrooms from the Central Anatolia, Eskisehir - Turkey: Lactarius deterrimus, Suillus collitinus, Boletus edulis, Xerocomus chrysenteron.

    Science.gov (United States)

    Sarikurkcu, Cengiz; Tepe, Bektas; Yamac, Mustafa

    2008-09-01

    The methanolic extracts of Lactarius deterrimus, Suillus collitinus, Boletus edulis, Xerocomus chrysenteron were analyzed for their antioxidant activities in different test systems namely beta-carotene/linoleic acid, DPPH free radical scavenging, reducing power and metal chelating activities in addition to their total phenolic and flavonoid contents. In beta-carotene/linoleic acid and DPPH systems, L. deterrimus and B. edulis showed the strongest activity patterns. Their activities were as strong as the positive controls. The reducing power of the species was excellent. Chelating capacity of the extracts was increased with the increasing concentration. On the other hand, B. edulis found to have the highest phenolic content. Total flavonoid content of S. collitinus found the superior to the other mushrooms.

  19. Correlation between organic acid exudation and metal uptake by ectomycorrhizal fungi grown on pond ash in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ray, P.; Adholeya, A. [Energy & Resources Institute, New Delhi (India). India Habitat Centre

    2009-04-15

    Experiments were conducted to investigate the effect of coal ash on organic acid exudation and subsequent metal uptake by ectomycorrhizal fungi. Four isolates of ectomycorrhizal fungi namely, Pisolithus tinctorius (EM-1293 and EM-1299), Scleroderma verucosum (EM-1283) and Scleroderma cepa (EM-1233) were grown on pond ash moistened with Modified Melin-Norkans medium in vitro. Exudation of formic acid, malic acid and succinic acid by these fungi were detected by HPLC. Mycelial accumulation of Al, As, Cd, Cr, Ni and Pb by these fungi was assayed by atomic absorption spectrophotometer. Relationship between organic acid exudation and metal uptake was determined using classical multivariate linear regression model. Correlation between organic acid exudation and metal uptake could be substantiated when several metals are considered collectively. The finding supports the widespread role of low molecular weight organic acid as a function of tolerance, when exposed to metals in vitro.

  20. Rock phosphate solubilization by the ectomycorrhizal fungus ...

    African Journals Online (AJOL)

    SAM

    2014-06-18

    Jun 18, 2014 ... phosphate solubilization is accompanied by acid production. Thus, the evidence ..... of organic acids. (Khan et al., 2010) such as acetate, lactate, oxalate, ... (2014) also observed that oxalic acid was secreted by L. fraterna to ...

  1. Rock phosphate solubilization by the ectomycorrhizal fungus ...

    African Journals Online (AJOL)

    SAM

    2014-06-18

    Jun 18, 2014 ... To evaluate phosphate solubilization of ... and MHB had the potential to solubilize these phosphates by decreasing the pH and confirmed that ... Minerals like N, P, K, Ca, S, Zn, Cu and Sr are ... sterile distilled water, chopped, homogenized in 10 ml sterile .... The role of carbon source is important in mineral.

  2. Association of Pinus banksiana Lamb. and Populus tremuloides Michx. seedling fine roots with Sistotrema brinkmannii (Bres.) J. Erikss. (Basidiomycotina).

    Science.gov (United States)

    Potvin, Lynette R; Richter, Dana L; Jurgensen, Martin F; Dumroese, R Kasten

    2012-11-01

    Sistotrema brinkmannii (Bres.) J. Erikss. (Basidiomycotina, Hydanaceae), commonly regarded as a wood decay fungus, was consistently isolated from bareroot nursery Pinus banksiana Lamb. seedlings. S. brinkmannii was found in ectomycorrhizae formed by Thelephora terrestris Ehrh., Laccaria laccata (Scop.) Cooke, and Suillus luteus (L.) Roussel. In pure culture combinations with sterile P. banksiana and Populus tremuloides Michx. seedlings, S. brinkmannii colonized root cortical cells while not killing seedlings. Colonization by S. brinkmannii appeared to be intracellular but typical endo- or ectomycorrhizae were not formed. The fungus did not decay roots, although it was shown to produce cellulase in enzyme tests. Results suggest a unique association between S. brinkmannii and seedling roots that is neither mycorrhizal nor detrimental; its exact function remains to be elucidated.

  3. Soil preparation methods promoting ectomycorrhizal colonization and American chestnut Castanea dentata establishment in coal mine restoration

    Science.gov (United States)

    Jenise M. Bauman; Carolyn H. Keiffer; Shiv Hiremath; Brian C. McCarthy

    2013-01-01

    The objective of this research was to evaluate soil subsurface methods that may aid in seedling establishment and encourage root colonization from a diverse group of ectomycorrhizal (ECM) fungi during restoration projects. American chestnut Castanea dentata Marsh. Borkh. and backcrossed chestnuts seedlings were planted on a reclaimed coal mine site...

  4. The influence of inoculated and native ectomycorrhizal fungi on morphology, physiology and survival of American chestnut

    Science.gov (United States)

    Jenise M. Bauman; Carolyn H. Keiffer; Shiv. Hiremath

    2011-01-01

    The objective of this study was to evaluate the influence of five different species of ectomycorrhizal (ECM) fungi on root colonization of native fungi on putatively blight resistant chestnut hybrids (Castanea dentata x C. mollissima) in a reclaimed mine site in central Ohio. The five species were Hebeloma crustuliniforme, Laccaria bicolor,...

  5. Competition for nitrogen between Pinus sylvestris and ectomycorrhizal fungi generates potential for negative feedback under elevated CO2

    NARCIS (Netherlands)

    Alberton, O.; Kuyper, T.W.; Gorissen, A.

    2007-01-01

    We investigated fungal species-specific responses of ectomycorrhizal (ECM) Scots pine (Pinus sylvestris) seedlings on growth and nutrient acquisition together with mycelial development under ambient and elevated CO2. Each seedling was associated with one of the following ECM species: Hebeloma

  6. Understanding plant cell-wall remodelling during the symbiotic interaction between Tuber melanosporum and Corylus avellana using a carbohydrate microarray.

    Science.gov (United States)

    Sillo, Fabiano; Fangel, Jonatan U; Henrissat, Bernard; Faccio, Antonella; Bonfante, Paola; Martin, Francis; Willats, William G T; Balestrini, Raffaella

    2016-08-01

    A combined approach, using a carbohydrate microarray as a support for genomic data, has revealed subtle plant cell-wall remodelling during Tuber melanosporum and Corylus avellana interaction. Cell walls are involved, to a great extent, in mediating plant-microbe interactions. An important feature of these interactions concerns changes in the cell-wall composition during interaction with other organisms. In ectomycorrhizae, plant and fungal cell walls come into direct contact, and represent the interface between the two partners. However, very little information is available on the re-arrangement that could occur within the plant and fungal cell walls during ectomycorrhizal symbiosis. Taking advantage of the Comprehensive Microarray Polymer Profiling (CoMPP) technology, the current study has had the aim of monitoring the changes that take place in the plant cell wall in Corylus avellana roots during colonization by the ascomycetous ectomycorrhizal fungus T. melanosporum. Additionally, genes encoding putative plant cell-wall degrading enzymes (PCWDEs) have been identified in the T. melanosporum genome, and RT-qPCRs have been performed to verify the expression of selected genes in fully developed C. avellana/T. melanosporum ectomycorrhizae. A localized degradation of pectin seems to occur during fungal colonization, in agreement with the growth of the ectomycorrhizal fungus through the middle lamella and with the fungal gene expression of genes acting on these polysaccharides.

  7. Breaking new ground at the interface of dendroecology and mycology.

    Science.gov (United States)

    Büntgen, Ulf; Egli, Simon

    2014-10-01

    New insight on the mycorrhizal fungus-host association, expected to emerge from combining dendrochronology, wood anatomy and mycology, may help to understanding better and disentangle biotic, abiotic, and combined edaphic factors of the mutualistic relation between ectomycorrhizal fungi and their perennial partners. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Iso-suillin isolated from Suillus luteus, induces G1 phase arrest and apoptosis in human hepatoma SMMC-7721 cells.

    Science.gov (United States)

    Jia, Zhi-Qiang; Chen, Ying; Yan, Yong-Xin; Zhao, Jun-Xia

    2014-01-01

    Iso-suillin, a natural product isolated from Suillus luteus, has been shown to inhibit the growth of some cancer cell lines. However, the molecular mechanisms of action of this compound are poorly understood. The purpose of this study was to investigate how iso-suillin inhibits proliferation and induces apoptosis in a human hepatoma cell line (SMMC-7721). We demonstrated the effects of iso-suillin on cell proliferation and apoptosis in SMMC-7721 cells, with no apparent toxicity in normal human lymphocytes, using colony formation assays and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Western blotting was used to examine the expression of G1 phase-regulated and apoptosis-associated protein levels in iso-suillin treated SMMC-7721 cells. The results indicated that iso-suillin significantly decreased viability, induced G1 phase arrest and triggered apoptosis in SMMC-7721cells. Taken together, these results suggest the potential of iso-suillin as a candidate for liver cancer treatment.

  9. Ectomycorrhizal sporophore distributions in a southeastern Appalachian mixed hardwood/conifer forest with thickets of Rhododendron maximum

    Science.gov (United States)

    John F. Walker; Orson R. Jr. Miller

    2002-01-01

    Sporophore abundance of putatively ectomycorrhizal fungi was compared in a mature mixed hardwood/conifer forest inside of (1) versus outside of (2) Rhododendron maximum thickets (RmT). Experimental blocks (1/4 ha) were established inside of (3) and outside of (3) RmT at the Coweeta Hydrologic Laboratory in Macon County, North Carolina, USA. Litter...

  10. Hongos ectomicorrícicos y la tolerancia a la salinidad en plantas Ectomycorrhizal fungi and tolerance to salinity in plants

    Directory of Open Access Journals (Sweden)

    SELENE AGUILAR-AGUILAR

    2009-03-01

    Full Text Available El proceso de salinización de los suelos constituye un problema generalizado a nivel global. En este sentido, los hongos ectomicorrícicos tienen una importante participación en la recuperación de suelos forestales ya que involucran una serie de mecanismos celulares que pueden contribuir a la tolerancia a la salinidad en plantas que habitan los bosques templados o boreales. La participación de los hongos ectomicorrícicos en la tolerancia a la salinidad involucra la regulación homeostática de los iones, la mejora de captación de agua y la inducción de genes específicos en las raíces colonizadas. Los hongos ectomicorrícicos pueden estimular la presencia de osmolitos como la prolina, azúcares y polioles que contribuyen en la protección de las células vegetales. Además, estos organismos inducen la síntesis de enzimas antioxidantes y glutatión que participan en la disminución de especies reactivas de oxígeno. Esta revisión ofrece una descripción de la participación de los hongos ectomicorrícicos en la tolerancia a la salinidad en plantas.The process of salinization of the soil is a widespread problem at the global level. In this sense, ectomycorrhizal fungi have an important role in the recovery of forest soil, as it involves a number of cellular mechanisms that may contribute to the salinity tolerance in plants that inhabit temperate and boreal forests. The participation of ectomycorrhizal fungi on the salinity tolerance involves the ion-homeostasis regulation, improving uptake water and inducing specific gene in roots colonized. Likewise ectomycorrhizal fungi can stimulate the presence of osmolytes as proline, sugars and polyols that contribute to the protection of plant cells. Additionally, these organisms stimulate the synthesis of glutathione and antioxidant enzymes involved in the decrease of reactive oxygen species. This review provides an overview of participation of ectomycorrhizal fungi in the salinity tolerance in

  11. The Content of 137Cs in SUILLUS LUTEUS in the Territories with Different Levels of Radionuclides Pollution of Soils (Kiev Region)

    International Nuclear Information System (INIS)

    Zarubina, N.E.; Teletskaya, S.V.; Golovach, A.I.

    2006-01-01

    Accumulation of 137 Cs by Suillus luteus passed in two stages. Since 1986 up to the middle of 90-th the annual increase in levels of specific activity of radiocesium was marked; at the second stage (from the middle of 90-th on present time) there is a gradual decrease in the contents of 137 Cs in S. luteus. In the tests selected in the autumn of 1986 on ranges of Kiev region, the content of 137 Cs varied within the limits of 80-800 Bq/kg of fresh weight. In 10 years after accident the disorder of specific activity values of 137 Cs in 'dirty' and rather 'pure' territories has increased up to 2000 times. At the second stage speed of decrease in the contents of 137 Cs in S. luteus is differed for the territories with various level of soil pollution

  12. Hypogeous ectomycorrhizal fungal species on roots and in small mammal diet in a mixed-conifer forest

    Science.gov (United States)

    Antonio D. Izzo; Marc Meyer; James M. Trappe; Malcolm North; Thomas D. Bruns

    2005-01-01

    The purpose of this study was to estimate the portion of an ectomycorrhizal (ECM) fungi root community with a hypogeous fruiting habit. We used molecular methods (DNA sequence analysis of the internally transcribed spacer [ITS] region of rDNA) to compare three viewpoints: ECM fungi on the roots in a southern Sierra Nevada Abies-dominated old-growth...

  13. Ectomycorrhizal fungal diversity and community structure associated with cork oak in different landscapes.

    Science.gov (United States)

    Reis, Francisca; Valdiviesso, Teresa; Varela, Carolina; Tavares, Rui M; Baptista, Paula; Lino-Neto, Teresa

    2018-05-01

    Cork oak (Quercus suber L.) forests play an important ecological and economic role. Ectomycorrhizal fungi (ECMF) are key components for the sustainability and functioning of these ecosystems. The community structure and composition of ECMF associated with Q. suber in different landscapes of distinct Mediterranean bioclimate regions have not previously been compared. In this work, soil samples from cork oak forests residing in different bioclimates (arid, semi-arid, sub-humid, and humid) were collected and surveyed for ectomycorrhizal (ECM) root tips. A global analysis performed on 3565 ECM root tips revealed that the ECMF community is highly enriched in Russula, Tomentella, and Cenoccocum, which correspond to the ECMF genera that mainly contribute to community differences. The ECMF communities from the rainiest and the driest cork oak forests were distinct, with soils from the rainiest climates being more heterogeneous than those from the driest climates. The analyses of several abiotic factors on the ECMF communities revealed that bioclimate, precipitation, soil texture, and forest management strongly influenced ECMF structure. Shifts in ECMF with different hyphal exploration types were also detected among forests, with precipitation, forest system, and soil texture being the main drivers controlling their composition. Understanding the effects of environmental factors on the structuring of ECM communities could be the first step for promoting the sustainability of this threatened ecosystem.

  14. Developing biogeochemical tracers of apatite weathering by ectomycorrhizal fungi

    Science.gov (United States)

    Vadeboncoeur, M. A.; Bryce, J. G.; Hobbie, E. A.; Meana-Prado, M. F.; Blichert-Toft, J.

    2012-12-01

    Chronic acid deposition has depleted calcium (Ca) from many New England forest soils, and intensive harvesting may reduce phosphorus (P) available to future rotations. Thin glacial till soils contain trace amounts of apatite, a primary calcium phosphate mineral, which may be an important long-term source of both P and Ca to ecosystems. The extent to which ECM fungi enhance the weathering rate of primary minerals in soil which contain growth-limiting nutrients remains poorly quantified, in part due to biogeochemical tracers which are subsequently masked by within-plant fractionation. Rare earth elements (REEs) and Pb isotope ratios show some potential for revealing differences in soil apatite weathering rates across forest stands and silvicultural treatments. To test the utility of these tracers, we grew birch seedlings semi-hydroponically under controlled P-limited conditions, supplemented with mesh bags containing granite chips. Our experimental design included nonmycorrhizal (NM) as well as ectomycorrhizal cultures (Cortinarius or Leccinum). Resulting mycorrhizal roots and leachates of granite chips were analyzed for these tracers. REE concentrations in roots were greatly elevated in treatments with granite relative to those without granite, demonstrating uptake of apatite weathering products. Roots with different mycorrhizal fungi accumulated similar concentrations of REEs and were generally elevated compared to the NM cultures. Ammonium chloride leaches of granite chips grown in contact with mycorrhizal hyphae show elevated REE concentrations and significantly radiogenic Pb isotope signatures relative to bulk rock, also supporting enhanced apatite dissolution. Our results in culture are consistent with data from field-collected sporocarps from hardwood stands in the Bartlett Experimental Forest in New Hampshire, in which Cortinarius sporocarp Pb isotope ratios were more radiogenic than those of other ectomycorrhizal sporocarps. Taken together, the experimental

  15. Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs?

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr

    2009-01-01

    Roč. 161, č. 4 (2009), s. 657-660 ISSN 0029-8549 R&D Projects: GA ČR GA526/08/0751; GA MŠk LC06066 Institutional research plan: CEZ:AV0Z50200510 Keywords : Ectomycorrhizal fungi * lignin * Cellulose Subject RIV: EE - Microbiology, Virology Impact factor: 3.129, year: 2009

  16. Microsatellite primers for fungus-growing ants

    DEFF Research Database (Denmark)

    Villesen, Palle; Gertsch, P J; Boomsma, JJ

    2002-01-01

    We isolated five polymorphic microsatellite loci from a library of two thousand recombinant clones of two fungus-growing ant species, Cyphomyrmex longiscapus and Trachymyrmex cf. zeteki. Amplification and heterozygosity were tested in five species of higher attine ants using both the newly...... developed primers and earlier published primers that were developed for fungus-growing ants. A total of 20 variable microsatellite loci, developed for six different species of fungus-growing ants, are now available for studying the population genetics and colony kin-structure of these ants....

  17. Microsatellite Primers for Fungus-Growing Ants

    DEFF Research Database (Denmark)

    Villesen Fredsted, Palle; Gertsch, Pia J.; Boomsma, Jacobus Jan (Koos)

    2002-01-01

    We isolated five polymorphic microsatellite loci from a library of two thousand recombinant clones of two fungus-growing ant species, Cyphomyrmex longiscapus and Trachymyrmex cf. zeteki. Amplification and heterozygosity were tested in five species of higher attine ants using both the newly...... developed primers and earlier published primers that were developed for fungus-growing ants. A total of 20 variable microsatellite loci, developed for six different species of fungus-growing ants, are now available for studying the population genetics and colony kin-structure of these ants....

  18. Ectomycorrhizal Communities Associated with the Legume Acacia spirorbis Growing on Contrasted Edaphic Constraints in New Caledonia.

    Science.gov (United States)

    Houles, Anne; Vincent, Bryan; David, Magali; Ducousso, Marc; Galiana, Antoine; Juillot, Farid; Hannibal, Laure; Carriconde, Fabian; Fritsch, Emmanuel; Jourand, Philippe

    2018-05-01

    This study aims to characterize the ectomycorrhizal (ECM) communities associated with Acacia spirorbis, a legume tree widely spread in New Caledonia that spontaneously grows on contrasted edaphic constraints, i.e. calcareous, ferralitic and volcano-sedimentary soils. Soil geochemical parameters and diversity of ECM communities were assessed in 12 sites representative of the three mains categories of soils. The ectomycorrhizal status of Acacia spirorbis was confirmed in all studied soils, with a fungal community dominated at 92% by Basidiomycota, mostly represented by/tomentella-thelephora (27.6%), /boletus (15.8%), /sebacina (10.5%), /russula-lactarius (10.5%) and /pisolithus-scleroderma (7.9%) lineages. The diversity and the proportion of the ECM lineages were similar for the ferralitic and volcano-sedimentary soils but significantly different for the calcareous soils. These differences in the distribution of the ECM communities were statistically correlated with pH, Ca, P and Al in the calcareous soils and with Co in the ferralitic soils. Altogether, these data suggest a high capacity of A. spirorbis to form ECM symbioses with a large spectrum of fungi regardless the soil categories with contrasted edaphic parameters.

  19. Drought resistance of Pinus sylvestris seedlings conferred by plastic root architecture rather than ectomycorrhizal colonisation

    OpenAIRE

    Moser , Barbara; Kipfer , Tabea; Richter , Sarah; Egli , Simon; Wohlgemuth , Thomas

    2015-01-01

    International audience; Abstract ContextIncreased summer drought is considered as a threat to the regeneration of Pinus sylvestris in the Central Alps. To a certain degree, seedlings are able to mitigate negative effects of drought by altering root/shoot ratios. But, seedlings may also enhance access to water and nutrients by cooperation with ectomycorrhizal fungi. AimsWe tested the importance of both mechanisms for drought resistance of P. sylvestris seedlings during early establishment and ...

  20. Diversity and expression of nitrogenase genes (nifH) from ectomycorrhizas of Corsican pine (Pinus nigra).

    Science.gov (United States)

    Izumi, Hironari; Anderson, Ian C; Alexander, Ian J; Killham, Ken; Moore, Edward R B

    2006-12-01

    The diversity of bacterial nitrogenase genes (nifH) and their mRNA transcription in ectomycorrhizas of Corsican pine (Pinus nigra) were examined. DNA and RNA were extracted from surface-sterilized and non-sterilized Corsican pine roots colonized by the ectomycorrhizal (ECM) fungi, Suillus variegatus and Tomentellopsis submollis. DNA-derived nifH polymerase chain reaction (PCR) products were obtained from all samples, but only a few reverse transcription PCRs for nifH mRNA were successful, suggesting that nitrogenase genes were not always transcribed. Several different nifH sequences were detected and the bacteria actively transcribing nifH were different from those whose genes were detected through DNA-based PCR. Putative nitrogenase amino acid sequences revealed that more than half of the nifH products were derived from methylotrophic bacteria, such as Methylocella spp. The next most frequent sequence types were similar to those from Burkholderia.

  1. Influence of mycorrhizal associations on paper birch and jack pine seedlings when exposed to elevated copper, nickel or aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M.D.; Browning, M.H.R.; Hutchinson, T.C.

    1986-10-01

    Acid deposition may adversely affect northern forest ecosystems by increasing the concentration of metals in the soil solution. This study investigates the effects of ectomycorrhizal fungi on paper birch and jack pine seedlings exposed to elevated Cu, Ni or Al in sand culture. One of four mycorrhizal fungi, Scleroderma flavidum, was able to reduce Ni toxicity to the birch seedlings. It did this by reducing transport of Ni to the stems. None of the fungi affected Cu toxicity in birch. In separate experiments, jack pine seedlings were exposed to combinations of Al and Ca. Infection with Rhizopogon rubescens increased seedling susceptibility to Al. Seedlings inoculated with Suillus tomentosus showed a greater growth stimulation by Ca than uninoculated jack pines. Thus, for both tree species, the mycorrhizal association could alter the response of seedlings to high concentrations of certain metals, although this varied with fungal species. 8 references.

  2. Bioconcentration of zinc and cadmium in ectomycorrhizal fungi and associated aspen trees as affected by level of pollution

    International Nuclear Information System (INIS)

    Krpata, Doris; Fitz, Walter; Peintner, Ursula; Langer, Ingrid; Schweiger, Peter

    2009-01-01

    Concentrations of Zn and Cd were measured in fruitbodies of ectomycorrhizal (ECM) fungi and leaves of co-occurring accumulator aspen. Samples were taken on three metal-polluted sites and one control site. Fungal bioconcentration factors (BCF = fruitbody concentration: soil concentration) were calculated on the basis of total metal concentrations in surface soil horizons (BCF tot ) and NH 4 NO 3 -extractable metal concentrations in mineral soil (BCF lab ). When plotted on log-log scale, values of BCF decreased linearly with increasing soil metal concentrations. BCF lab for both Zn and Cd described the data more closely than BCF tot . Fungal genera differed in ZnBCF but not in CdBCF. The information on differences between fungi with respect to their predominant occurrence in different soil horizons did not improve relations of BCF with soil metal concentrations. Aspen trees accumulated Zn and Cd to similar concentrations as the ECM fungi. Apparently, the fungi did not act as an effective barrier against aspen metal uptake by retaining the metals. - Populus tremula and associated ectomycorrhizal fungi accumulate zinc and cadmium to similar concentrations

  3. EFECTO DEL MEDIO DE CULTIVO EN EL DESARROLLO DE Suillus granulatus (L. Roussel y S. brevipes (Pk. Kuntze

    Directory of Open Access Journals (Sweden)

    Dulce Ma. Murrieta-Hernández

    2014-01-01

    Full Text Available La tasa de crecimiento micelial de los hongos ectomicorrícicos Suillus granulatus y S. brevipes, se evaluó en tres medios de cultivo (PDA, BAF y MNM con dos valores de pH (4.8 y 5.8, con el fin de seleccionar el mejor medio de cultivo. Las cepas se aislaron de esporomas colectados en el bosque de Pinus hartwegii del Parque Nacional Cofre de Perote, Veracruz, México. Se encontraron diferencias significativas (Tukey, P ≤ 0.05 en el área de crecimiento de ambas especies; los valores más altos se registraron en el medio PDA. Respecto a los valores de pH evaluados, no hubo diferencias significativas. Cada uno de los medios evaluados se puede utilizar para el cultivo de las cepas S. granulatus y S. brevipes dependiendo de los objetivos. El medio PDA fue el mejor sustrato para el crecimiento de las cepas. Se sugiere utilizar el medio BAF para la producción masiva de micelio para inóculo y el medio MNM se recomienda ya sea para el mantenimiento de las cepas o para pruebas de micorrización.

  4. Intraspecific variation in 137Cs activity concentration in sporocarps of Suillus variegatus in seven Swedish populations

    International Nuclear Information System (INIS)

    Dahlberg, Anders; Nikolova, Ivanka; Johanson, K.-J.

    1997-01-01

    Following the Chernobyl accident in 1986, sporocarps of Suillus variegatus in Sweden showed a large amount of individual variation in concentration of 137 Cs activity. Our aim was to determine the degrees to which this variability in sporocarp 137 Cs levels could be explained by differences between (i) local populations, (ii) fungal genets and (iii) locations within genets. Five populations in a 100-yr-old Scots pine forest, located within a 1 km 2 area, and two populations in Scots pine/Norway spruce forest, located 40 km north-west of Uppsala, were investigated. In total, 154 sporocarps were analysed to determine their 137 Cs content. Of these, the genetic affiliations of 86 were successfully characterized using somatic incompatibility reactions. Twenty-six genets were found which, on average, consisted of 6.5 sporocarps. The genets averaged 7.5 m in size, measured as the length between the most distant sporocarps. The mean sporocarp 137 Cs level was 67.1 ± 2.8 kBq kgsup(-1) D.W. (range between 13.6 and 182). According to analyses of variance, within-population variation accounted for 60% of the total variation in 137 Cs levels, while 40% was ascribed to variation among populations. Within a population, 137 Cs levels did not generally differ significantly between genets. Plausible reasons for intraspecific variation in radiocaesium content in sporocarps are discussed. (author)

  5. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis

    DEFF Research Database (Denmark)

    Oh, Dong-Chan; Poulsen, Michael; Currie, Cameron R

    2009-01-01

    Fungus-growing ants engage in mutualistic associations with both the fungus they cultivate for food and actinobacteria (Pseudonocardia spp.) that produce selective antibiotics to defend that fungus from specialized fungal parasites. We have analyzed one such system at the molecular level and found...

  6. Proficiency test Plant 6 - determination of As, Cd, Cu, Hg, Pb, Se and Zn in dry mushroom powder (Suillus bovinus)

    International Nuclear Information System (INIS)

    Polkowska-Motrenko, H.; Dudek, J.; Chajduk, E.; Sypula, M.; Sadowska-Bratek, M.

    2006-01-01

    Proficiency testing scheme PLANT 6: Determination of As, Cd, Cu, Hg, Pb, Se and Zn in dry mushroom powder (Suillus bovinus) has been described. The proficiency test has been provided by the Institute of Nuclear Chemistry and Technology (Warsaw) with cooperation with POLLAB-CHEM/EURACHEM-PL and REFMAT Society. Wild mushrooms were collected in the forest in north-west Poland, cleaned, i.e. dust, soil and attached mosses were removed. Mushrooms were cut into smaller parts and air dried in a dryer. Dried mushrooms were milled in a centrifugal mill and sieved. Particles of fraction below 1 mm diameter were collected. Analytical samples of 20 g mass were prepared. The material were then characterized by homogeneity testing and determination of assigned values for concentration of elements in question. The testing samples were sent to the laboratories participating in the proficiency test. The results supplied by the participants were statistically evaluated and the calculated values of z-score and En numbers were used for the evaluation of the participating laboratory competency. (author)

  7. Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300 m) elevation gradient

    OpenAIRE

    Jarvis, Susan G.; Woodward, Steve; Taylor, Andy F.S.

    2015-01-01

    • Changes in species richness and distributions of ectomycorrhizal (ECM) fungal communities along altitudinal gradients have been attributed to changes in both host distributions and abiotic variables. However, few studies have considered altitudinal relationships of ECM fungi associated with a single host to identify the role of abiotic drivers. To address this, ECM fungal communities associated with one host were assessed along five altitudinal transects in Scotland. • Roots of Scots pin...

  8. Mast fruiting of large ectomycorrhizal African rain forest trees: importance of dry season intensity, and the resource-limitation hypothesis.

    Science.gov (United States)

    Newbery, David M; Chuyong, George B; Zimmermann, Lukas

    2006-01-01

    Mast fruiting is a distinctive reproductive trait in trees. This rain forest study, at a nutrient-poor site with a seasonal climate in tropical Africa, provides new insights into the causes of this mode of phenological patterning. At Korup, Cameroon, 150 trees of the large, ectomycorrhizal caesalp, Microberlinia bisulcata, were recorded almost monthly for leafing, flowering and fruiting during 1995-2000. The series was extended to 1988-2004 with less detailed data. Individual transitions in phenology were analysed. Masting occurred when the dry season before fruiting was drier, and the one before that was wetter, than average. Intervals between events were usually 2 or 3 yr. Masting was associated with early leaf exchange, followed by mass flowering, and was highly synchronous in the population. Trees at higher elevation showed more fruiting. Output declined between 1995 and 2000. Mast fruiting in M. bisulcata appears to be driven by climate variation and is regulated by internal tree processes. The resource-limitation hypothesis was supported. An 'alternative bearing' system seems to underlie masting. That ectomycorrhizal habit facilitates masting in trees is strongly implied.

  9. Carbon dioxide sensing in an obligate insect-fungus symbiosis: CO2 preferences of leaf-cutting ants to rear their mutualistic fungus.

    Directory of Open Access Journals (Sweden)

    Daniela Römer

    Full Text Available Defense against biotic or abiotic stresses is one of the benefits of living in symbiosis. Leaf-cutting ants, which live in an obligate mutualism with a fungus, attenuate thermal and desiccation stress of their partner through behavioral responses, by choosing suitable places for fungus-rearing across the soil profile. The underground environment also presents hypoxic (low oxygen and hypercapnic (high carbon dioxide conditions, which can negatively influence the symbiont. Here, we investigated whether workers of the leaf-cutting ant Acromyrmex lundii use the CO2 concentration as an orientation cue when selecting a place to locate their fungus garden, and whether they show preferences for specific CO2 concentrations. We also evaluated whether levels preferred by workers for fungus-rearing differ from those selected for themselves. In the laboratory, CO2 preferences were assessed in binary choices between chambers with different CO2 concentrations, by quantifying number of workers in each chamber and amount of relocated fungus. Leaf-cutting ants used the CO2 concentration as a spatial cue when selecting places for fungus-rearing. A. lundii preferred intermediate CO2 levels, between 1 and 3%, as they would encounter at soil depths where their nest chambers are located. In addition, workers avoided both atmospheric and high CO2 levels as they would occur outside the nest and at deeper soil layers, respectively. In order to prevent fungus desiccation, however, workers relocated fungus to high CO2 levels, which were otherwise avoided. Workers' CO2 preferences for themselves showed no clear-cut pattern. We suggest that workers avoid both atmospheric and high CO2 concentrations not because they are detrimental for themselves, but because of their consequences for the symbiotic partner. Whether the preferred CO2 concentrations are beneficial for symbiont growth remains to be investigated, as well as whether the observed preferences for fungus

  10. DAMPAK PERLAKUAN PEMANASAN INOKULUM TANAH TERHADAP KEMAMPUAN EKTOMIKORIZA UNTUK MENGKOLONISASI AKAR Shorea javanica

    Directory of Open Access Journals (Sweden)

    Melya Riniarti

    2017-05-01

    Full Text Available Shorea javanica was a high dependent plant to ectomycorrhizal symbiosis, dealing with its growth. In Lampung Province, S.javanica standing stock have been hundreds of years, known as repong damar.  It's threatened by some deforestation, such as forest fire.  This study aimed to analyze the impact of heating on the ability of ectomycorrhizal colonization and analyze the effect of ectomycorrhizal inoculation on the growth of S. javanica.  The experiment arranged by randomized complete design with 5 treatments, which were without inoculum, unheated inoculum, soil inoculums heat to 40oC, 70oC and 100°C for 24 hours. Soil inoculums are taken under S. javanica standing, at Krui, Pesisir Barat District, Lampung Province. The result analyzed by ANOVA and continued with LSD test.  The experiment was conducted for four months.  The results show that colonization ectomycorrhiza still existed up to 100oC and ectomycorrhiza could enhance growth variables, including height, leaves number, leaf area, root length and root dry weight. The best colonization and growth were on 100oC heating. The heat treatments seem killed some fungus.  Only a few fungi could resist and colonize S. javanica roots.  Without any competitors, the resist ectomycorrhizal could develop broadly.

  11. Alnus acuminata in dual symbiosis with Frankia and two different ectomycorrhizal fungi (Alpova austroalnicola and Alpova diplophloeus) growing in soilless growth medium

    Science.gov (United States)

    Alejandra G. Becerra; Euginia Menoyo; Irene Lett; Ching Y. Li

    2009-01-01

    In this study we investigated the capacity of Andean alder (Alnus acuminata Kunth), inoculated with Frankia and two ectomycorrhizal fungi (Alpova austroalnicola Dominguez and Alpova diplophloeus [Zeller and Dodge] Trappe and Smith), for nodulation and growth in pots of a soilless medium...

  12. White-Nose Syndrome Fungus (Geomyces destructans) in Bat, France

    Science.gov (United States)

    Puechmaille, Sébastien J.; Verdeyroux, Pascal; Fuller, Hubert; Gouilh, Meriadeg Ar; Bekaert, Michaël

    2010-01-01

    White-nose syndrome is caused by the fungus Geomyces destructans and is responsible for the deaths of >1,000,000 bats since 2006. This disease and fungus had been restricted to the northeastern United States. We detected this fungus in a bat in France and assessed the implications of this finding. PMID:20113562

  13. Growth and mycorrhizal community structure of Pinus sylvestris seedlings following the addition of forest litter.

    Science.gov (United States)

    Aucina, Algis; Rudawska, Maria; Leski, Tomasz; Skridaila, Audrius; Riepsas, Edvardas; Iwanski, Michal

    2007-08-01

    We report the effects of pine and oak litter on species composition and diversity of mycorrhizal fungi colonizing 2-year-old Pinus sylvestris L. seedlings grown in a bare-root nursery in Lithuania. A layer of pine or oak litter was placed on the surface of the nursery bed soil to mimic natural litter cover. Oak litter amendment appeared to be most favorable for seedling survival, with a 73% survival rate, in contrast to the untreated mineral bed soil (44%). The concentrations of total N, P, K, Ca, and Mg were higher in oak growth medium than in pine growth medium. Relative to the control (pH 6.1), the pH was lower in pine growth medium (5.8) and higher in oak growth medium (6.3). There were also twofold and threefold increases in the C content of growth medium with the addition of pine and oak litter, respectively. Among seven mycorrhizal morphotypes, eight different mycorrhizal taxa were identified: Suillus luteus, Suillus variegatus, Wilcoxina mikolae, a Tuber sp., a Tomentella sp., Cenococcum geophilum, Amphinema byssoides, and one unidentified ectomycorrhizal symbiont. Forest litter addition affected the relative abundance of mycorrhizal symbionts more than their overall representation. This was more pronounced for pine litter than for oak litter, with 40% and 25% increases in the abundance of suilloid mycorrhizae, respectively. Our findings provide preliminary evidence that changes in the supply of organic matter through litter manipulation may have far-reaching effects on the chemistry of soil, thus influencing the growth and survival of Scots pine seedlings and their mycorrhizal communities.

  14. Growth and Mycorrhizal Community Structure of Pinus sylvestris Seedlings following the Addition of Forest Litter▿

    Science.gov (United States)

    Aučina, Algis; Rudawska, Maria; Leski, Tomasz; Skridaila, Audrius; Riepšas, Edvardas; Iwanski, Michal

    2007-01-01

    We report the effects of pine and oak litter on species composition and diversity of mycorrhizal fungi colonizing 2-year-old Pinus sylvestris L. seedlings grown in a bare-root nursery in Lithuania. A layer of pine or oak litter was placed on the surface of the nursery bed soil to mimic natural litter cover. Oak litter amendment appeared to be most favorable for seedling survival, with a 73% survival rate, in contrast to the untreated mineral bed soil (44%). The concentrations of total N, P, K, Ca, and Mg were higher in oak growth medium than in pine growth medium. Relative to the control (pH 6.1), the pH was lower in pine growth medium (5.8) and higher in oak growth medium (6.3). There were also twofold and threefold increases in the C content of growth medium with the addition of pine and oak litter, respectively. Among seven mycorrhizal morphotypes, eight different mycorrhizal taxa were identified: Suillus luteus, Suillus variegatus, Wilcoxina mikolae, a Tuber sp., a Tomentella sp., Cenococcum geophilum, Amphinema byssoides, and one unidentified ectomycorrhizal symbiont. Forest litter addition affected the relative abundance of mycorrhizal symbionts more than their overall representation. This was more pronounced for pine litter than for oak litter, with 40% and 25% increases in the abundance of suilloid mycorrhizae, respectively. Our findings provide preliminary evidence that changes in the supply of organic matter through litter manipulation may have far-reaching effects on the chemistry of soil, thus influencing the growth and survival of Scots pine seedlings and their mycorrhizal communities. PMID:17575001

  15. Fungus-insect gall of Phlebopus portentosus.

    Science.gov (United States)

    Zhang, Chun-Xia; He, Ming-Xia; Cao, Yang; Liu, Jing; Gao, Feng; Wang, Wen-Bing; Ji, Kai-Ping; Shao, Shi-Cheng; Wang, Yun

    2015-01-01

    Phlebopus portentosus is a popular edible wild mushroom found in the tropical Yunnan, China, and northern Thailand. In its natural habitats, a gall often has been found on some plant roots, around which fungal fruiting bodies are produced. The galls are different from common insect galls in that their cavity walls are not made from plant tissue but rather from the hyphae of P. portentosus. Therefore we have termed this phenomenon "fungus-insect gall". Thus far six root mealy bug species in the family Pseudococcidae that form fungus-insect galls with P. portentosus have been identified: Formicococcus polysperes, Geococcus satellitum, Planococcus minor, Pseudococcus cryptus, Paraputo banzigeri and Rastrococcus invadens. Fungus-insect galls were found on the roots of more than 21 plant species, including Delonix regia, Citrus maxima, Coffea arabica and Artocarpus heterophyllus. Greenhouse inoculation trials showed that fungus-insect galls were found on the roots of A. heterophyllus 1 mo after inoculation. The galls were subglobose to globose, fulvous when young and became dark brown at maturation. Each gall harbored one or more mealy bugs and had a chimney-like vent for ventilation and access to the gall. The cavity wall had three layers. Various shaped mealy bug wax deposits were found inside the wall. Fungal hyphae invaded the epidermis of plant roots and sometimes even the cortical cells during the late stage of gall development. The identity of the fungus inside the cavity was confirmed by molecular methods. © 2015 by The Mycological Society of America.

  16. DETERMINACIÓN DE ÁCIDOS GRASOS Y COMPUESTOS TRITERPENOIDES DEL CUERPO FRUCTIFERO DE Suillus luteus.

    Directory of Open Access Journals (Sweden)

    Ivonne Nieto

    2009-04-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} Del cuerpo fructífero de Suillus luteus se extrajeron e identificaron, con base en el análisis de sus espectros de masas,  dieciséis compuestos, los cuales corresponden al ácido palmítico, oléico, linolénico y linoléico, octadecanoato de etilo, ergosta-7,22-dien-3β-ol, ergosta-7-en-3β-ol, estigmasterol, ergosta-3,5,7,9(11,22-pentaeno, ergosta-2,5,7,9(11,14,22-hexaeno, 23-metil-estigmast-3,5,7,22-tetraeno, 23-metil-estigmast-3,5,7,9(11,22-pentaeno, ergosta-4,6,15(16,22-tetraen-3-ona,  ergosta-1,5,7,9(11,22-pentaen-3-ona, ergosta-5,7,9(11,22-tetraen-3β-ol y ergosta-5,6,7-trihidroxi-7,22-dien-3β-ol. Siendo este un hongo tan poco estudiado, todos los compuestos, a excepción de los ácidos grasos, se reportan aquí por primera vez.

  17. Optimized integration of T-DNA in the taxol-producing fungus ...

    African Journals Online (AJOL)

    We previously reported a taxol-producing fungus Pestalotiopsis malicola. There, we described the transformation of the fungus mediated by Agrobacterium tumefaciens. T-DNA carrying the selection marker was transferred into the fungus and randomly integrated into the genome as shown by Southern blotting.

  18. Mycorrhizal associations as Salix repens L. communities in succession of dune ecosystems II Mycorrhizal dynamics and interactions of ectomycorrhizal and arbuscular mycorrhizal fungi

    NARCIS (Netherlands)

    Heijden, van der E.W.; Vosatka, M.

    2000-01-01

    Ectomycorrhizal (EcM) and arbuscular mycorrhizal (AM) associations of Salix repens were studied at 16 sites in different successional stages of dune ecosystems (calcareous-acidic, dry-wet) in the Netherlands. High EcM colonization, low AM colonization, and lack of differences between habitats

  19. Towards an integrated understanding of the consequences of fungus domestication on the fungus-growing termite gut microbiota

    DEFF Research Database (Denmark)

    Thomas-Poulsen, Michael

    2015-01-01

    Approximately 30 million years ago (MYA), the subfamily of higher termites Macrotermitinae domesticated a fungus, Termitomyces, as the main plant decomposer and food source for the termite host. The origin of fungiculture shifted the composition of the termite gut microbiota, and some of the func......Approximately 30 million years ago (MYA), the subfamily of higher termites Macrotermitinae domesticated a fungus, Termitomyces, as the main plant decomposer and food source for the termite host. The origin of fungiculture shifted the composition of the termite gut microbiota, and some...... will be powerful, particularly if executed in comparative analyses across the well-established congruent termite-fungus phylogenies. This will allow for testing if gut communities have evolved in parallel with their hosts, with implications for our general understanding of the evolution of gut symbiont communities...

  20. Molecular phylogenetic biodiversity assessment of arctic and boreal ectomycorrhizal Lactarius Pers. (Russulales; Basidiomycota) in Alaska, based on soil and sporocarp DNA

    Science.gov (United States)

    Jozsef Geml; Gary A. Laursen; Ina Timling; Jack M. McFarland; Michael G. Booth; Niall Lennon; Chad Nusbaum; D. Lee. Taylor

    2009-01-01

    Despite the critical roles fungi play in the functioning of ecosystems, especially as symbionts of plants and recyclers of organic matter, their biodiversity is poorly known in high-latitude regions. In this paper, we discuss the molecular diversity of one of the most diverse and abundant groups of ectomycorrhizal fungi: the genus Lactarius Pers....

  1. Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks.

    Science.gov (United States)

    Song, Yuan Yuan; Simard, Suzanne W; Carroll, Allan; Mohn, William W; Zeng, Ren Sen

    2015-02-16

    Extensive regions of interior Douglas-fir (Pseudotsuga menziesii var. glauca, IDF) forests in North America are being damaged by drought and western spruce budworm (Choristoneura occidentalis). This damage is resulting from warmer and drier summers associated with climate change. To test whether defoliated IDF can directly transfer resources to ponderosa pine (Pinus ponderosae) regenerating nearby, thus aiding in forest recovery, we examined photosynthetic carbon transfer and defense enzyme response. We grew pairs of ectomycorrhizal IDF 'donor' and ponderosa pine 'receiver' seedlings in pots and isolated transfer pathways by comparing 35 μm, 0.5 μm and no mesh treatments; we then stressed IDF donors either through manual defoliation or infestation by the budworm. We found that manual defoliation of IDF donors led to transfer of photosynthetic carbon to neighboring receivers through mycorrhizal networks, but not through soil or root pathways. Both manual and insect defoliation of donors led to increased activity of peroxidase, polyphenol oxidase and superoxide dismutase in the ponderosa pine receivers, via a mechanism primarily dependent on the mycorrhizal network. These findings indicate that IDF can transfer resources and stress signals to interspecific neighbors, suggesting ectomycorrhizal networks can serve as agents of interspecific communication facilitating recovery and succession of forests after disturbance.

  2. CHARACTERIZATION OF AN ANAEROBIC FUNGUS FROM LLAMA FECES

    NARCIS (Netherlands)

    MARVINSIKKEMA, FD; LAHPOR, GA; KRAAK, MN; GOTTSCHAL, JC; PRINS, RA

    1992-01-01

    An anaerobic fungus was isolated from Hama faeces. Based on its morphological characteristics, polyflagellated zoospores, extensive rhizoid system and the formation of monocentric colonies, the fungus is assigned to the genus Neocallimastix. Neocallimastix sp. L2 is able to grow on several poly-,

  3. Parapiptadenia rigida MYCORRHIZATION WITH SPORES OF Scleroderma citrinum

    Directory of Open Access Journals (Sweden)

    Gerusa Pauli Kist Steffen

    2017-06-01

    Full Text Available Ectomycorrhizal fungal inoculation in forestry seedlings aids plant establishment and growth in the field. The objectives of this study were: to determine the mycorrhizal capacity of the ectomycorrhizal fungus Scleroderma citrinum in Parapiptadenia rigida (red angico seedlings and to evaluate the viability of a mycorrhizal inoculation technique for forest seedlings involving the use of spores. Mature spores were inoculated in the substrate (75% soil and 25% carbonized rice husk, totaling 1.5 grams of fungal spores per liter of substrate. P. rigida seeds were sown in substrates inoculated or not inoculated with fungal spores in presence or absence of Pinus echinata and Eucalyptus citriodora essential oil: not inoculated (T1, inoculated (T2, inoculated more pine essential oil (T3, inoculated more eucalyptus essential oil (T4. Seedlings of Pinus elliottii were used for a positive control of mycorrhizal inoculation (T5 and not inoculated (T6 with fungal spores. At 90 days after sowing, the base stem diameter, height, fresh and dry weight of shoots and roots, percentage of root colonization and Dickson Index were determined. The presence of fungal structures in P. rigida and P. elliottii roots inoculated with S. citrinum spores was observed, demonstrating the occurrence of an ectomycorrhizal association. The application of pine and eucalyptus essential oils in the substrate increased the percentage of ectomycorrhizal colonization in P. rigida seedlings. The addition of S. citrinum mature spores in the substrate used for seedling production is a viable practice for ectomycorrhizal inoculation and it can be used in forest nurseries in controlled mycorrhization programs.

  4. Survey of ectomycorrhizal, litter-degrading, and wood-degrading Basidiomycetes for dye decolorization and ligninolytic enzyme activity.

    Science.gov (United States)

    Casieri, Leonardo; Anastasi, Antonella; Prigione, Valeria; Varese, Giovanna Cristina

    2010-11-01

    Basidiomycetes are essential in forest ecology, being deeply involved in wood and litter decomposition, humification, and mineralization of soil organic matter. The fungal oxidoreductases involved in these processes are today the focus of much attention with a view to their applications. The ecological role and potential biotechnological applications of 300 isolates of Basidiomycetes were assessed, taking into account the degradation of model dyes in different culture conditions and the production of oxidoreductase enzymes. The tested isolates belong to different ecophysiological groups (wood-degrading, litter-degrading, ectomycorrhizal, and coprophilous fungi) and represent a broad systematic and functional biodiversity among Basidiomycetes occurring in deciduous and evergreen forests of northwest Italy (Piedmont Region). The high number of species tested and the use of different culture conditions allowed the investigation of the degradation activity of several novel species, neglected to date. Oxidative enzyme activities varied widely among all ecophysiological groups and laccases were the most commonly detected enzymes. A large number of isolates (86%), belonging to all ecophysiological groups, were found to be active against at least one model dye; the wood-degrading fungi represented the most efficient group. Noteworthily, also some isolates of litter-degrading and ectomycorrhizal fungi achieved good decolorization yield. The 25 best isolates were then tested against nine industrial dyes commonly employed in textile industries. Three isolates of Bjerkandera adusta efficiently decolorized the dyes on all media and can be considered important candidates for application in textile wastewater treatment.

  5. Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, M. J., E-mail: m.sweet@derby.ac.uk [University of Derby, Environmental Sustainability Research Centre, College of Life and Natural Sciences (United Kingdom); Singleton, I. [Newcastle University, School of Biology (United Kingdom)

    2015-11-15

    Soil contamination by silver nanoparticles (AgNP) is of potential environmental concern but little work has been carried out on the effect of such contamination on ectomycorrhizal fungi (EMF). EMF are essential to forest ecosystem functions as they are known to enhance growth of trees by nutrient transfer. In this study, soil was experimentally contaminated with AgNP (0, 350 and 790 mg Ag/kg) and planted with Bishop pine seedlings. The effect of AgNP was subsequently measured, assessing variation in pine growth and ectomycorrhizal diversity associated with the root system. After only 1 month, the highest AgNP level had significantly reduced the root length of pine seedlings, which in turn had a small effect on above ground plant biomass. However, after 4 months growth, both AgNP levels utilised had significantly reduced both pine root and shoot biomass. For example, even the lower levels of AgNP (350 mg Ag/kg) soil, reduced fresh root biomass by approximately 57 %. The root systems of the plants grown in AgNP-contaminated soils lacked the lateral and fine root development seen in the control plants (no AgNP). Although, only five different genera of EMF were found on roots of the control plants, only one genus Laccaria was found on roots of plants grown in soil containing 350 mg AgNP/kg. At the higher levels of AgNP contamination, no EMF were observed. Furthermore, extractable silver was found in soils containing AgNP, indicating potential dissolution of silver ions (Ag+) from the solid AgNP.

  6. Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots

    International Nuclear Information System (INIS)

    Sweet, M. J.; Singleton, I.

    2015-01-01

    Soil contamination by silver nanoparticles (AgNP) is of potential environmental concern but little work has been carried out on the effect of such contamination on ectomycorrhizal fungi (EMF). EMF are essential to forest ecosystem functions as they are known to enhance growth of trees by nutrient transfer. In this study, soil was experimentally contaminated with AgNP (0, 350 and 790 mg Ag/kg) and planted with Bishop pine seedlings. The effect of AgNP was subsequently measured, assessing variation in pine growth and ectomycorrhizal diversity associated with the root system. After only 1 month, the highest AgNP level had significantly reduced the root length of pine seedlings, which in turn had a small effect on above ground plant biomass. However, after 4 months growth, both AgNP levels utilised had significantly reduced both pine root and shoot biomass. For example, even the lower levels of AgNP (350 mg Ag/kg) soil, reduced fresh root biomass by approximately 57 %. The root systems of the plants grown in AgNP-contaminated soils lacked the lateral and fine root development seen in the control plants (no AgNP). Although, only five different genera of EMF were found on roots of the control plants, only one genus Laccaria was found on roots of plants grown in soil containing 350 mg AgNP/kg. At the higher levels of AgNP contamination, no EMF were observed. Furthermore, extractable silver was found in soils containing AgNP, indicating potential dissolution of silver ions (Ag+) from the solid AgNP

  7. Termite-egg mimicry by a sclerotium-forming fungus.

    Science.gov (United States)

    Matsuura, Kenji

    2006-05-22

    Mimicry has evolved in a wide range of organisms and encompasses diverse tactics for defence, foraging, pollination and social parasitism. Here, I report an extraordinary case of egg mimicry by a fungus, whereby the fungus gains competitor-free habitat in termite nests. Brown fungal balls, called 'termite balls', are frequently found in egg piles of Reticulitermes termites. Phylogenetic analysis illustrated that termite-ball fungi isolated from different hosts (Reticulitermes speratus, Reticulitermes flavipes and Reticulitermes virginicus) were all very similar, with no significant molecular differences among host species or geographical locations. I found no significant effect of termite balls on egg survivorship. The termite-ball fungus rarely kills termite eggs in natural colonies. Even a termite species (Reticulitermes okinawanus) with no natural association with the fungus tended termite balls along with its eggs when it was experimentally provided with termite balls. Dummy-egg bioassays using glass beads showed that both morphological and chemical camouflage were necessary to induce tending by termites. Termites almost exclusively tended termite balls with diameters that exactly matched their egg size. Moreover, scanning electron microscopic observations revealed sophisticated mimicry of the smooth surface texture of eggs. These results provide clear evidence that this interaction is beneficial only for the fungus, i.e. termite balls parasitically mimic termite eggs.

  8. Cd and Zn interactions and toxicity in ectomycorrhizal basidiomycetes in axenic culture

    Directory of Open Access Journals (Sweden)

    Vinicius H. De Oliveira

    2018-03-01

    Full Text Available Background Metal contamination in soils affects both above- and belowground communities, including soil microorganisms. Ectomycorrhizal (ECM fungi are an important component in belowground community and tolerant strains have great potential in enhancing plant-based remediation techniques. We assessed cadmium and zinc toxicity in five ECM species in liquid media (Hebeloma subsaponaceum; H. cylindrosporum; H. crustuliniforme; Scleroderma sp.; Austroboletus occidentalis and investigated the potential of Zn to alleviate Cd toxicity. Due to highly divergent results reported in the literature, liquid and solid media were compared experimentally for the first time in terms of differential toxicity thresholds in Cd and Zn interactions. Methods A wide range of Cd and Zn concentrations were applied to ectomycorrhizal fungi in axenic cultures (in mg L−1: 0; 1; 3; 9; 27; 81; 243 for the Cd treatments, and 0; 1; 30; 90; 270; 810; 2,430 for Zn. Combined Zn and Cd treatments were also applied to H. subsaponaceum and Scleroderma sp. Dry weight was recorded after 30 days, and in case of solid medium treatments, radial growth was also measured. Results and Discussion All species were adversely affected by high levels of Cd and Zn, and A. occidentalis was the most sensitive, with considerable biomass decrease at 1 mg L−1 Cd, while Scleroderma sp. and H. subsaponaceum were the most tolerant, which are species commonly found in highly contaminated sites. Cd was generally 10 times more toxic than Zn, which may explain why Zn had little impact in alleviating Cd effects. In some cases, Cd and Zn interactions led to a synergistic toxicity, depending on the concentrations applied and type of media used. Increased tolerance patterns were detected in fungi grown in solid medium and may be the cause of divergent toxicity thresholds found in the literature. Furthermore, solid medium allows measuring radial growth/mycelial density as endpoints which are informative and in

  9. Mucormycosis (Mucor fungus ball) of the maxillary sinus.

    Science.gov (United States)

    Cho, Hang Sun; Yang, Hoon Shik; Kim, Kyung Soo

    2014-01-01

    A fungus ball is an extramucosal fungal proliferation that completely fills one or more paranasal sinuses and usually occurs as a unilateral infection. It is mainly caused by Aspergillus spp in an immunocompetent host, but some cases of paranasal fungal balls reportedly have been caused by Mucor spp. A Mucor fungus ball is usually found in the maxillary sinus and/or the sphenoid sinus and may be black in color. Patients with mucormycosis, or a Mucor fungal ball infection, usually present with facial pain or headache. On computed tomography, there are no pathognomonic findings that are conclusive for a diagnosis of mucormycosis. In this article we report a case of mucormycosis in a 56-year-old woman and provide a comprehensive review of the literature on the "Mucor fungus ball." To the best of our knowledge, 5 case reports (8 patients) have been published in which the fungus ball was thought to be caused by Mucor spp.

  10. Solubilization of diabase and phonolite dust by filamentous fungus

    Directory of Open Access Journals (Sweden)

    Juliana Andréia Vrba Brandão

    2014-10-01

    Full Text Available The objective of this study was to evaluate the effect of the fungus Aspergillus niger strain CCT4355 in the release of nutrients contained in two types of rock powder (diabase and phonolite by means of in vitro solubilization trials. The experimental design was completely randomized in a 5 x 4 factorial design with three replications. It was evaluated five treatments (phonolite dust + culture medium; phonolite dust + fungus + culture medium; diabase powder + culture medium; diabase powder + fungus + culture medium and fungus + culture medium and four sampling dates (0, 10, 20 and 30 days. Rock dust (0.4% w/v was added to 125 mL Erlenmeyer flasks containing 50 mL of liquid culture medium adapted to A. niger. The flasks were incubated at 30°C for 30 days, and analysis of pH (in water, titratable acidity, and concentrations of soluble potassium, calcium, magnesium, zinc, iron and manganese were made. The fungus A. niger was able to produce organic acids that solubilized ions. This result indicates its potential to alter minerals contained in rock dust, with the ability to interact in different ways with the nutrients. A significant increase in the amount of K was found in the treatment with phonolite dust in the presence of the fungus. The strain CCT4355 of A. niger can solubilize minerals contained in these rocks dust.

  11. Intraspecific variation in {sup 137}Cs activity concentration in sporocarps of Suillus variegatus in seven Swedish populations

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Anders [Swedish Univ. of Agricultural Sciences, Forest Mycology and Pathology Dept., Uppsala (Sweden); Nikolova, Ivanka; Johanson, K.-J. [Swedish Univ. of Agricultural Sciences, Radioecology Dept., Uppsala (Sweden)

    1997-05-01

    Following the Chernobyl accident in 1986, sporocarps of Suillus variegatus in Sweden showed a large amount of individual variation in concentration of {sup 137}Cs activity. Our aim was to determine the degrees to which this variability in sporocarp {sup 137}Cs levels could be explained by differences between (i) local populations, (ii) fungal genets and (iii) locations within genets. Five populations in a 100-yr-old Scots pine forest, located within a 1 km{sup 2} area, and two populations in Scots pine/Norway spruce forest, located 40 km north-west of Uppsala, were investigated. In total, 154 sporocarps were analysed to determine their {sup 137}Cs content. Of these, the genetic affiliations of 86 were successfully characterized using somatic incompatibility reactions. Twenty-six genets were found which, on average, consisted of 6.5 sporocarps. The genets averaged 7.5 m in size, measured as the length between the most distant sporocarps. The mean sporocarp {sup 137}Cs level was 67.1 {+-} 2.8 kBq kgsup(-1) D.W. (range between 13.6 and 182). According to analyses of variance, within-population variation accounted for 60% of the total variation in {sup 137}Cs levels, while 40% was ascribed to variation among populations. Within a population, {sup 137}Cs levels did not generally differ significantly between genets. Plausible reasons for intraspecific variation in radiocaesium content in sporocarps are discussed. (author).

  12. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi

    DEFF Research Database (Denmark)

    Tedersoo, Leho; Bahram, Mohammad; Toots, Märt

    2012-01-01

    Global species richness patterns of soil micro-organisms remain poorly understood compared to macro-organisms. We use a global analysis to disentangle the global determinants of diversity and community composition for ectomycorrhizal (EcM) fungi—microbial symbionts that play key roles in plant...... nutrition in most temperate and many tropical forest ecosystems. Host plant family has the strongest effect on the phylogenetic community composition of fungi, whereas temperature and precipitation mostly affect EcM fungal richness that peaks in the temperate and boreal forest biomes, contrasting...... with latitudinal patterns of macro-organisms. Tropical ecosystems experience rapid turnover of organic material and have weak soil stratification, suggesting that poor habitat conditions may contribute to the relatively low richness of EcM fungi, and perhaps other soil biota, in most tropical ecosystems. For EcM...

  13. Preparative isolation of a cytotoxic principle of a forest mushroom Suillus luteus by sodium dodecyl sulfate based "salting-in" countercurrent chromatography.

    Science.gov (United States)

    Yang, Zhi; Hu, Xueqian; Wu, Shihua

    2016-02-01

    In the course of screening new anticancer natural products, an edible forest mushroom Suillus luteus (L. Ex Franch). Gray was found to have potent cytotoxicity against several human cancer cells. However, the lipophilic sample made some countercurrent chromatography solvent systems emulsify, which caused difficulties in the separation of its cytotoxic components. Here, we found that the addition of an organic salt sodium dodecyl sulfate could efficiently shorten the settling time of the mushroom sample solutions by eliminating the emulsification of two-phase solvent systems. Moreover, we found that sodium dodecyl sulfate could play a new "salting-in" role and made the partition coefficients of the solutes decrease with the increased concentrations. Thus, a sodium dodecyl sulfate based salting-in countercurrent chromatography method has been successfully established for the first time for preparative isolation of a cytotoxic principle of the mushroom. The active component was identified as isosuillin. Whole results indicated that sodium dodecyl sulfate could be used as an efficient salting-in reagent for two-phase solvent system selection and targeted countercurrent chromatography isolation. It is very useful for current natural products isolation and drug discovery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Susceptibility of ectomycorrhizal fungi to soil heating.

    Science.gov (United States)

    Kipfer, Tabea; Egli, Simon; Ghazoul, Jaboury; Moser, Barbara; Wohlgemuth, Thomas

    2010-01-01

    Ectomycorrhizal (EcM) fungi are an important biotic factor for successful tree recruitment because they enhance plant growth and alleviate drought stress of their hosts. Thus, EcM propagules are expected to be a key factor for forest regeneration after major disturbance events such as stand-replacing forest fires. Yet the susceptibility of soil-borne EcM fungi to heat is unclear. In this study, we investigated the heat tolerance of EcM fungi of Scots pine (Pinus sylvestris L., Pinaceae). Soil samples of three soil depths were heated to the temperature of 45, 60 and 70 °C, respectively, and surviving EcM fungi were assessed by a bioassay using Scots pine as an experimental host plant. EcM species were identified by a combination of morphotyping and sequencing of the ITS region. We found that mean number of species per sample was reduced by the 60 and 70 °C treatment, but not by the 45 °C treatment. Species composition changed due to heat. While some EcM fungi species did not survive heating, the majority of species was also found in the heated samples. The most frequent species in the heat treatment were Rhizopogon roseolus, Cenococcum geophilum and several unidentified species. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  15. Effects of warming and drying of soils on the ectomycorrhizal community of a mixed Pinus contorta/Picea engelmannii stand in Yellowstone Park

    Science.gov (United States)

    Cullings, Kenneth; Finley, S. K.; Parker, V. T.; Makhija, S.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Restriction Fragment Length Polymorphisms (RFLPs) analyses were used to determine patterns of change in ectomycorrhizal community structure response to seasonal warming and drying of soils. Soil cores (42 total, 21 from cold and wet soil in early June, and 21 from dry, warm soil in late August) were collected from replicate blocks in a mixed-conifer forest stand in Yellowstone. Results indicated no significant differences in species richness (2.62 species/core, SE 0.2 in June; 3.25, SE 0.2 in August), however there was a significant effect on ectomycorrhizal infection (P<0.05), mean number of EM tips/core was significantly lower in June (185.8, SE 34) than in August (337 SE 78). Data indicated no difference in overall EM fungal species composition, however among system dominants, two species (Cortinarius 9 and Cortinarius 10) were more abundant in August than in June (P<0.02). The remaining dominant fungal species exhibited no differences in relative abundance. Results are discussed in relation to soil fertility and composition.

  16. Elevated CO2 and O3 effects on ectomycorrhizal fungal root tip communities in consideration of a post-agricultural soil nutrient gradient legacy

    Science.gov (United States)

    Carrie Andrew; Erik A. Lilleskov

    2014-01-01

    Despite the critical role of EMF in nutrient and carbon (C) dynamics, combined effects of global atmospheric pollutants on ectomycorrhizal fungi (EMF) are unclear. Here, we present research on EMF root-level community responses to elevated CO2 and O3. We discovered that belowground EMF community richness and similarity were...

  17. Caesium uptake in mushroom. Comparison with coexisting elements and effect of ammonium ion as a competitor, by laboratory experiments using Hebeloma vinosophyllum

    International Nuclear Information System (INIS)

    Ho, Quyen Bao-Thuy; Yoshida, Satoshi; Suzuki, Akira

    2013-01-01

    An ectomycorrhizal ammonia fungus Hebeloma vinosophyllum was cultivated in the Ohta's liquid medium with Cs and different concentrations of NH 4 + . This fungus absorbed caesium and coexisting elements(K, Ca, Mg, Zn, Cu, Fe and P) with the highly transfer factors. The highest translocation from mycelium to fruit body was observed in Cs among 8 analysed elements. The uptake of Cs might have a similar pattern to those of K and P. However, the high concentration of NH 4 + might affect as the competitor to the uptake of both Cs and K, but not to the uptake of P. The addition of NH 4 + affected more the uptake of Cs than that of K. (author)

  18. Isolation and identification of iron ore-solubilising fungus

    Directory of Open Access Journals (Sweden)

    Damase Khasa

    2010-09-01

    Full Text Available Potential mineral-solubilising fungi were successfully isolated from the surfaces of iron ore minerals. Four isolates were obtained and identified by molecular and phylogenetic methods as close relatives of three different genera, namely Penicillium (for isolate FO, Alternaria (for isolates SFC2 and KFC1 and Epicoccum (for isolate SFC2B. The use of tricalcium phosphate (Ca3(PO42in phosphate-solubilising experiments confirmed isolate FO as the only phosphate solubiliser among the isolated fungi. The bioleaching capabilities of both the fungus and its spent liquid medium were tested and compared using two types of iron ore materials, conglomerate and shale, from the Sishen Iron Ore Mine as sources of potassium (K and phosphorus (P. The spent liquid medium removed more K (a maximum of 32.94% removal, from conglomerate, than the fungus (a maximum of 21.36% removal, from shale. However, the fungus removed more P (a maximum of 58.33% removal, from conglomerate than the spent liquid medium (a maximum of 29.25% removal, from conglomerate. The results also indicated a potential relationship between the removal of K or P and the production of organic acids by the fungus. A high production of gluconic acid could be related to the ability of the fungus to reduce K and P. Acetic, citric and maleic acids were also produced by the fungus, but in lower quantities. In addition, particle size and iron ore type were also shown to have significant effects on the removal of potassium and phosphorus from the iron ore minerals. We therefore conclude that the spent liquid medium from the fungal isolate FO can potentially be used for biobeneficiation of iron ore minerals.

  19. Eucalypt NADP-Dependent Isocitrate Dehydrogenase1

    Science.gov (United States)

    Boiffin, Vincent; Hodges, Michael; Gálvez, Susana; Balestrini, Raffaella; Bonfante, Paola; Gadal, Pierre; Martin, Francis

    1998-01-01

    NADP-dependent isocitrate dehydrogenase (NADP-ICDH) activity is increased in roots of Eucalyptus globulus subsp. bicostata ex Maiden Kirkp. during colonization by the ectomycorrhizal fungus Pisolithus tinctorius Coker and Couch. To investigate the regulation of the enzyme expression, a cDNA (EgIcdh) encoding the NADP-ICDH was isolated from a cDNA library of E. globulus-P. tinctorius ectomycorrhizae. The putative polypeptide sequence of EgIcdh showed a high amino acid similarity with plant NADP-ICDHs. Because the deduced EgICDH protein lacks an amino-terminal targeting sequence and shows highest similarity to plant cytosolic ICDHs, it probably represents a cytoplasmic isoform. RNA analysis showed that the steady-state level of EgIcdh transcripts was enhanced nearly 2-fold in ectomycorrhizal roots compared with nonmycorrhizal roots. Increased accumulation of NADP-ICDH transcripts occurred as early as 2 d after contact and likely led to the observed increased enzyme activity. Indirect immunofluorescence microscopy indicated that NADP-ICDH was preferentially accumulated in the epidermis and stele parenchyma of nonmycorrhizal and ectomycorrhizal lateral roots. The putative role of cytosolic NADP-ICDH in ectomycorrhizae is discussed. PMID:9662536

  20. [Mobilization of potassium from soil by ectomycorrhizal fungi].

    Science.gov (United States)

    Zhang, Liang; Wang, Mingxia; Zhang, Wei; Huang, Jianguo; Yuan, Ling

    2014-07-04

    Ectomycorrhizal fungi (ECMF), important components in forest ecosystems, could form symbionts with wooden plant roots and participate in nutrient absorption. Boletnus sp. (Bo 07), Lactarius delicious (Ld 03) and Pisolithus tinctorius (Pt 715) isolated from Southwest China and Cenococcum geophilum (Cg 04) from Daqing Mountain, Inn Mongolia, China, were cultured in liquid Pachlewsk medium at 25 +/- 1 degrees C for 28 days with soil as sole K source. Fungal biomass, K uptake, efflux of protons and organic acids, and changes of soil K pools were measured to study K mobilization from soil by ECMFs. ] The fungal biomass, K concentration and uptake of Bo 07, Ld 03 and Pt 715 were much higher than Cg 04, indicating their strong abilities to absorb K and to adapt low K environment by bio-evolution and selection. K concentrations in culture solution were increased by ECMFs compared to blank control (without ECMF). ECMFs could promote K release from the soil into culture solution. Bo 07, Ld 03 and Pt 715 increased significantly exchangeable K in soils, while structural K in soil was decreased by Bo 07 and Ld 03. They could thus mobilize unavailable K from ECMF isolates could mobilize unavailable K in soils.

  1. The effects of fire severity on ectomycorrhizal colonization and morphometric features in Pinus pinaster Ait. seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Vásquez-Gassibe, P.; Oria-de-Rueda, J.A.; Santos-del-Blanco, L.; Martín-Pinto, P.

    2016-07-01

    Aim of study: Mycorrhizal fungi in Mediterranean forests play a key role in the complex process of recovery after wildfires. A broader understanding of an important pyrophytic species as Pinus pinaster and its fungal symbionts is thus necessary for forest restoration purposes. This study aims to assess the effects of ectomycorrhizal symbiosis on maritime pine seedlings and how fire severity affects fungal colonization ability. Area of study: Central Spain, in a Mediterranean region typically affected by wildfires dominated by Pinus pinaster, a species adapted to fire disturbance. Material and Methods: We studied P. pinaster root apexes from seedlings grown in soils collected one year after fire in undisturbed sites, sites moderately affected by fire and sites highly affected by fire. Natural ectomycorrhization was observed at the whole root system level as well as at two root vertical sections (0-10 cm and 10-20 cm). We also measured several morphometric traits (tap root length, shoot length, dry biomass of shoots and root/shoot ratio), which were used to test the influence of fire severity and soil chemistry upon them. Main results: Ectomycorrhizal colonization in undisturbed soils for total and separated root vertical sections was higher than in soils that had been affected by fire to some degree. Inversely, seedling vegetative size increased according to fire severity. Research highlights: Fire severity affected soil properties and mycorrhizal colonization one year after occurrence, thus affecting plant development. These findings can contribute to a better knowledge of the factors mediating successful establishment of P. pinaster in Mediterranean forests after wildfires. (Author)

  2. Ectomycorrhizal association of three Lactarius species with Carpinus and Quercus trees in a Mexican montane cloud forest.

    Science.gov (United States)

    Lamus, Valentina; Montoya, Leticia; Aguilar, Carlos J; Bandala, Victor M; Ramos, David

    2012-01-01

    Ectomycorrhizal (EM) fungi are being monitored in the Santuario del Bosque de Niebla in the central region of Veracruz (eastern Mexico). Based on the comparison of DNA sequences (ITS rDNA) of spatiotemporally co-occurring basidiomes and EM root tips, we discovered the EM symbiosis of Lactarius indigo, L. areolatus and L. strigosipes with Carpinus caroliniana, Quercus xalapensis and Quercus spp. The host of the EM tips was identified by comparison of the large subunit of the ribulose-bisphosphate carboxylase gene (rbcL). Descriptions coupled with photographs of ectomycorrhizas and basidiomes are presented.

  3. An arctic community of symbiotic fungi assembled by long-distance dispersers: phylogenetic diversity of ectomycorrhizal basidiomycetes in Svalbard based on soil and sporocarp DNA

    Science.gov (United States)

    J. Geml; I. Timling; C.H. Robinson; N. Lennon; H.C. Nusbaum; C. Brochmann; M.E. Noordeloos; D.L. Taylor

    2011-01-01

    Current evidence from temperate studies suggests that ectomycorrhizal (ECM) fungi require overland routes for migration because of their obligate symbiotic associations with woody plants. Despite their key roles in arctic ecosystems, the phylogenetic diversity and phylogeography of arctic ECM fungi remains little known. Here we assess the phylogenetic diversity of ECM...

  4. Various Stages of Pink Fungus (Upasia salmonicolor in Java

    Directory of Open Access Journals (Sweden)

    Ambarwati Harsojo Tjokrosoedarmo

    1995-12-01

    Full Text Available Pink fungus in Java is classified as Upasia salmonicolor (Basidiomycetes: Corticiaceae and its anamorph is Necator decretus. This fungus is a serious pathogen which attacks many woody plants. The pink fungus in Java exhibits five developmental stages on the surface of the host bark: I. An initial cobweb stage as thin, white, cobweb-like hyphal layer, which creeps over the surface of the bark, during which penetration of the host occurs; II. Pseudonodular stage, as conical white pustules occurring only on lenticels or cracks, and only on shady side of branches; III. Teleomorph, occurs as pink incrustation and pink pustules on shady side of branches; IV. Nodular stages, as globose white pustules occurring chiefly on intact bark, but also on the lenticels or cracks, on exposed side of branches; V. Anamorph, as small orange-red sporodochium, on exposed side of branches. Key words: pink fungus, Corticiaceae, Basidiomycetes, Necator

  5. Chemical composition of metapleural gland secretions of fungus-growing and non-fungus-growing ants.

    Science.gov (United States)

    Vieira, Alexsandro S; Morgan, E David; Drijfhout, Falko P; Camargo-Mathias, Maria I

    2012-10-01

    The metapleural gland is exclusive to ants, and unusual among exocrine glands in having no mechanism for closure and retention of secretion. As yet, no clear conclusion has been reached as to the function of metapleural gland secretion. Metapleural gland secretions were investigated for fungus-growing ants representing the derived attines Trachymyrmex fuscus, Atta laevigata, and Acromyrmex coronatus, the basal attines Apterostigma pilosum and Mycetarotes parallelus, and non-fungus-growing ants of the tribes Ectatommini (Ectatomma brunneum) and Myrmicini (Pogonomyrmex naegeli). Our results showed that the secretions of leaf-cutting ants (A. laevigata and A. coronatus) and the derived attine, T. fuscus, contain a greater variety and larger quantities of volatile compounds than those of myrmicine and ectatommine ants. The most abundant compounds found in the metapleural glands of A. laevigata and A. coronatus were hydroxyacids, and phenylacetic acid (only in A. laevigata). Indole was present in all groups examined, while skatole was found in large quantities only in attines. Ketones and aldehydes are present in the secretion of some attines. Esters are present in the metapleural gland secretion of all species examined, although mainly in A. laevigata, A. coronatus, and T. fuscus. Compared with basal attines and non-fungus-growing ants, the metapleural glands of leaf-cutting ants produce more acidic compounds that may have an antibiotic or antifungal function.

  6. The potential of Dark Septate Endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants.

    Directory of Open Access Journals (Sweden)

    Tereza Lukešová

    Full Text Available The unresolved ecophysiological significance of Dark Septate Endophytes (DSE may be in part due to existence of morphologically indistinguishable cryptic species in the most common Phialocephala fortinii s. l.--Acephala applanata species complex (PAC. We inoculated three middle European forest plants (European blueberry, Norway spruce and silver birch with 16 strains of eight PAC cryptic species and other DSE and ectomycorrhizal/ericoid mycorrhizal fungi and focused on intraradical structures possibly representing interfaces for plant-fungus nutrient transfer and on host growth response. The PAC species Acephala applanata simultaneously formed structures resembling ericoid mycorrhiza (ErM and DSE microsclerotia in blueberry. A. macrosclerotiorum, a close relative to PAC, formed ectomycorrhizae with spruce but not with birch, and structures resembling ErM in blueberry. Phialocephala glacialis, another close relative to PAC, formed structures resembling ErM in blueberry. In blueberry, six PAC strains significantly decreased dry shoot biomass compared to ErM control. In birch, one A. macrosclerotiorum strain increased root biomass and the other shoot biomass in comparison with non-inoculated control. The dual mycorrhizal ability of A. macrosclerotiorum suggested that it may form mycorrhizal links between Ericaceae and Pinaceae. However, we were unable to detect this species in Ericaceae roots growing in a forest with presence of A. macrosclerotiorum ectomycorrhizae. Nevertheless, the diversity of Ericaceae mycobionts was high (380 OTUs with individual sites often dominated by hitherto unreported helotialean and chaetothyrialean/verrucarialean species; in contrast, typical ErM fungi were either absent or low in abundance. Some DSE apparently have a potential to form mycorrhizae with typical middle European forest plants. However, except A. applanata, the tested representatives of all hitherto described PAC cryptic species formed typical DSE

  7. Reciprocal genomic evolution in the ant-fungus agricultural symbiosis

    DEFF Research Database (Denmark)

    Nygaard, Sanne; Hu, Haofu; Li, Cai

    2016-01-01

    The attine ant-fungus agricultural symbiosis evolved over tens of millions of years, producing complex societies with industrial-scale farming analogous to that of humans. Here we document reciprocal shifts in the genomes and transcriptomes of seven fungus-farming ant species and their fungal...

  8. Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order-related fine root morphology and biomass?

    OpenAIRE

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2015-01-01

    While most temperate broad-leaved tree species form ectomycorrhizal (EM) symbioses, a few species have arbuscular mycorrhizas (AM). It is not known whether EM and AM tree species differ systematically with respect to fine root morphology, fine root system size and root functioning. In a species-rich temperate mixed forest, we studied the fine root morphology and biomass of three EM and three AM tree species from the genera Acer, Carpinus, Fagus, Fraxinus, and Tilia searching for principal dif...

  9. Comparative studies of the secretome of fungus-growing ants

    DEFF Research Database (Denmark)

    Linde, Tore; Grell, Morten Nedergaard; Schiøtt, Morten

    2009-01-01

    Leafcutter ants of the species Acromyrmex echinatior live in symbiosis with the fungus Leucoagaricus gongylophorus. The ants harvest fragments of leaves and carry them to the nest where they place the material on the fungal colony. The fungus secretes a wide array of proteins to degrade the leaves...... into nutrients that the ants can feed on. The focus of this study is to discover, characterize and compare the secreted proteins. In order to do so cDNA libraries are constructed from mRNA extracted from the fungus material. The most efficient technology to screen cDNA libraries selectively for secreted...

  10. Iso-suillin from Suillus flavus Induces Apoptosis in Human Small Cell Lung Cancer H446 Cell Line.

    Science.gov (United States)

    Zhao, Jun-Xia; Zhang, Qing-Shuang; Chen, Ying; Yao, Sheng-Jie; Yan, Yong-Xin; Wang, Ying; Zhang, Jin-Xiu; Wang, Li-An

    2016-05-20

    The suillin isoform iso-suillin is a natural substance isolated from a petroleum ether extract of the fruiting bodies of the mushroom Suillus flavus. Previous studies have found its inhibition effect on some cancer cells, and we aimed to study its effects on human small cell lung cancer H446 cell line. Cell viability was measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Cellular morphological changes (apoptosis and necrosis) were evaluated using an electron microscope and Hoechst 33258 staining detected by the inverted microscope. Flow cytometry was used to detect cell apoptosis, cell cycle distribution, and mitochondrial membrane potential. Protein expression was determined by Western blotting analysis. Here, we describe the ability of iso-suillin to inhibit the growth of H446 cells in time- and dose-dependent way. Iso-suillin had no obvious impact on normal human lymphocyte proliferation at low concentrations (9.09, 18.17, or 36.35 μmol/L) but promoted lymphocyte proliferation at a high concentration (72.70 μmol/L). After treatment of different concentrations of iso-suillin (6.82, 13.63, or 20.45 μmol/L), the apoptosis rate of H446 cells increased with increasing concentrations of iso-suillin (16.70%, 35.54%, and 49.20%, respectively, all P iso-suillin could induce H446 cell apoptosis through the mitochondrial pathway and the death-receptor pathway. Therefore, iso-suillin might have a potential application as a novel drug for lung cancer treatment.

  11. Antibiotic Resistance and Fungus

    Centers for Disease Control (CDC) Podcasts

    2017-02-28

    Dr. David Denning, President of the Global Action Fund for Fungal Infections and an infectious diseases clinician, discusses antimicrobial resistance and fungus.  Created: 2/28/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/28/2017.

  12. U.S. National Fungus Collections

    Data.gov (United States)

    Department of Agriculture — The U.S. National Fungus Collections (BPI) are the “Smithsonian for fungi” and are the repository for over one million fungal specimens worldwide - the largest such...

  13. Evolutionary patterns of proteinase activity in attine ant fungus gardens

    DEFF Research Database (Denmark)

    Semenova, Tatyana; Hughes, David Peter; Boomsma, Jacobus Jan

    2011-01-01

    hypothesized that fungal proteinase activity may have been under selection for efficiency and that different classes of proteinases might be involved. Results: We determined proteinase activity profiles across a wide pH range for fungus gardens of 14 Panamanian species of fungus-growing ants, representing...... classes. Remarkably, the single symbiont that is shared by species of the crown group of Atta and Acromyrmex leaf-cutting ants mostly showed metalloproteinase activity, suggesting that recurrent changes in enzyme production may have occurred throughout the domestication history of fungus-garden symbionts......Background: Attine ants live in symbiosis with a basidiomycetous fungus that they rear on a substrate of plant material. This indirect herbivory implies that the symbiosis is likely to be nitrogen deprived, so that specific mechanisms may have evolved to enhance protein availability. We therefore...

  14. Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites

    DEFF Research Database (Denmark)

    Visser, Anna A.; Nobre, Tânia; Currie, Cameron R.

    2012-01-01

    In fungus-growing termites, fungi of the subgenus Pseudoxylaria threaten colony health through substrate competition with the termite fungus (Termitomyces). The potential mechanisms with which termites suppress Pseudoxylaria have remained unknown. Here we explore if Actinobacteria potentially play...... a role as defensive symbionts against Pseudoxylaria in fungus-growing termites. We sampled for Actinobacteria from 30 fungus-growing termite colonies, spanning the three main termite genera and two geographically distant sites. Our isolations yielded 360 Actinobacteria, from which we selected subsets...... for morphological (288 isolates, grouped in 44 morphotypes) and for 16S rRNA (35 isolates, spanning the majority of morphotypes) characterisation. Actinobacteria were found throughout all sampled nests and colony parts and, phylogenetically, they are interspersed with Actinobacteria from origins other than fungus...

  15. Phylogenetic and ecological analyses of soil and sporocarp DNA sequences reveal high diversity and strong habitat partitioning in the boreal ectomycorrhizal genus Russula (Russulales; Basidiomycota)

    Science.gov (United States)

    József Geml; Gary A. Laursen; Ian C. Herriott; Jack M. McFarland; Michael G. Booth; Niall Lennon; H. Chad Nusbaum; D. Lee Taylor

    2010-01-01

    Although critical for the functioning of ecosystems, fungi are poorly known in high-latitude regions. Here, we provide the first genetic diversity assessment of one of the most diverse and abundant ectomycorrhizal genera in Alaska: Russula. We analyzed internal transcribed spacer rDNA sequences from sporocarps and soil samples using phylogenetic...

  16. Traumatic cerrebral fungus: Experience from an institution in North East India

    Directory of Open Access Journals (Sweden)

    Binoy Kumar Singh

    2017-01-01

    Full Text Available Background: Traumatic brain fungus is manifestation of neglected head injury. Although rare it is not uncommon. The patients are usually intact with good Glasgow coma (GCS score inspite of complex injuries and exposed brain parenchyma but morbidity and mortality is very high with time if no proper and timely management is offered. There is very less study on traumatic brain fungus with no defined management protocols. So an attempt was made to explain in details the surgical strategies and other management techniques in patients with traumatic brain fungus. Aims: To study and evaluate the pattern of causation, clinical presentations, modalities of management of traumatic brain fungus and outcome after treatment. Methods: All patients with fungus cerebri, admitted to our centre from January 2012 to December 2015 were studied prospectively. All the patients were examined clinically and triaged urgently for surgery. CT head was done in all patients to look for any brain parenchymal injury. All patients were managed surgically. Outcome was assessed as per the Glassgow Outcome Score. Results: Total 10 patients were included in the study. 8 were men and 2 women. The patients' ages ranged from 3-48 years (mean 31.6 years. The interval between initial injury and protrusion ranged from 3 days to 6 days (mean 4.1 days. Mean GCS at the time of presentation was 13.2.60% of the patients (n = 6 sustained moderate head injury. (GCS-9-13. Size of the fungus ranged from 5cm×3cm to 8cm×10cm. Conclusion: Early and proper local wound treatment prevents fungus formation. Pre-emptive antibiotics, AEDs and cerebral decongestants are recommended. Loose water-tight duroplasty prevents CSF leak. But mortality and morbidity can be reduced significantly if brain fungus is managed properly by applying basic surgical principles and antibiotic protocols combined with newer surgical modalities.

  17. ADR: An atypical presentation of rare dematiaceous fungus

    Directory of Open Access Journals (Sweden)

    J Karthika

    2014-01-01

    Full Text Available The association of fungus in allergic fungal rhino sinusitis has been around 200 times in the world literature. As per the available literature, the most common agent identified so far appears to be ASPERGILLUS, though the condition is increasingly associated with Dematiaceous fungi. Here we report for the first time the presence of unusual fungus in allergic rhino sinusitis, which has not been reported so far.

  18. Degradation of Phenanthrene by a chilean white rot fungus Anthracophyllum discolor

    International Nuclear Information System (INIS)

    Acevedo, F.; Cuevas, R.; Rubilar, O.; Tortella, G.; Diez, M. C.

    2009-01-01

    Anthracophyllum discolor, a white rot fungus of southern Chile, has been an efficient degrader of clorophenols and azo dyes. This fungus produces ligninolytic enzymes being manganese peroxidase (Mn)) the major one produced. The main purpose of this study was to evaluate the effect of phenanthrene concentration of ligninolytic activity of A. Discolor measured by poly R-478 decolorazation, and to evaluate the potential of this fungus for degrading phenanthrene in liquid media. (Author)

  19. Degradation of Phenanthrene by a chilean white rot fungus Anthracophyllum discolor

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, F.; Cuevas, R.; Rubilar, O.; Tortella, G.; Diez, M. C.

    2009-07-01

    Anthracophyllum discolor, a white rot fungus of southern Chile, has been an efficient degrader of clorophenols and azo dyes. This fungus produces ligninolytic enzymes being manganese peroxidase (Mn) the major one produced. The main purpose of this study was to evaluate the effect of phenanthrene concentration of ligninolytic activity of A. Discolor measured by poly R-478 decolorazation, and to evaluate the potential of this fungus for degrading phenanthrene in liquid media. (Author)

  20. Patterns of functional enzyme activity in fungus farming ambrosia beetles.

    Science.gov (United States)

    De Fine Licht, Henrik H; Biedermann, Peter H W

    2012-06-06

    In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose components of the ray

  1. Macrofungi in the lateritic scrub jungles of southwestern India

    Directory of Open Access Journals (Sweden)

    A. A. Greeshma

    2015-09-01

    Full Text Available A pilot study on macrofungi in scrub jungles (with and without fire-impact in lateritic region of southwestern coast of India was carried out.  Out of 11 species in 10 genera recovered, six and five species were confined to scrub jungle and fire-impacted scrub jungle, respectively.  An ectomycorrhizal Amanita sp. was the most frequent in scrub jungle associated with exotic (Acacia auriculiformis and A. mangium and plantation (Anacardium occidentale trees.  Based on traditional knowledge, it is a highly edible and nutritional delicacy in the coastal regions.  Astraeus odoratus was another common ectomycorrhizal fungus in native trees Hopea ponga, which was recovered from the fire-impacted scrub jungle and is possibly edible.  Edible termite mound mushroom Termitomyces striatus was also common in the fire-impacted scrub jungle.  Chlorophyllum molybdites was the most frequent mushroom in the fire-impacted scrub jungle.  

  2. The importance of amino sugar turnover to C and N cycling in organic horizons of old-growth Douglas-fir forest soils colonized by ectomycorrhizal mats

    Science.gov (United States)

    L. Zeglin; L.A. Kluber; D.D. Myrold

    2012-01-01

    Amino sugar dynamics represent an important but under-investigated component of the carbon (C) and nitrogen (N) cycles in old-growth Douglas-fir forest soils. Because fungal biomass is high in these soils, particularly in areas colonized by rhizomorphic ectomycorrhizal fungal mats, organic matter derived from chitinous cell wall material (or the monomeric building...

  3. Metacridamides A and B from the biocontrol fungus metarhizium acridum

    Science.gov (United States)

    Metarhizium acridum, an entomopathogenic fungus, has been commercialized and used successfully for biocontrol of grasshopper pests in Africa and Australia. As part of an effort to catalog the secondary metabolites of this fungus we discovered that its conidia produce two novel 17-membered macrocycl...

  4. Quantitative inhibition of soil C and N cycling by ectomycorrhizal fungi under field condition

    Science.gov (United States)

    Averill, C.; Hawkes, C.

    2014-12-01

    Ectomycorrhizal (ECM) ecosystems store more carbon than non-ectomycorrhizal ecosystems at global scale. Recent theoretical and empirical work suggests the presence of ECM fungi allows plants to compete directly with decomposers for soil nitrogen (N) via exo-enzyme synthesis. Experimental ECM exclusion often results in a release from competition of saprotrophic decomposers, allowing for increased C-degrading enzyme production, increased microbial biomass, and eventually declines in soil C stocks. Our knowledge of this phenomenon is limited, however, to the presence or absence of ECM fungi. It remains unknown if competitive repression of saprotrophic microbes and soil C cycling by ECM fungi varies with ECM abundance. This is particularly relevant to global change experiments when manipulations alter plant C allocation to ECM symbionts. To test if variation in ECM abundance alters the competitive inhibition of saprotrophic soil microbes (quantitative inhibition) we established experimental ECM exclusion treatments along an ECM abundance gradient. We dug trenches to experimentally exclude ECM fungi, allowing us to test for competitive release of soil saprotrophs from competition. To control for disturbance we placed in-growth bags both inside and outside of trenches. Consistent with the quantitative inhibition hypothesis, sites with more ECM fungi had significantly less microbial biomass per unit soil C and lower rates of N mineralization. Consistent with a release from competition, C-degrading enzyme activities were higher and gross proteolytic rates were lower per unit microbial biomass inside compared to outside trenches. We interpret this to reflect increased microbial investment in C-acquisition and decreased investment in N-acquisition in the absence of ECM fungi. Furthermore, the increase in C-degrading enzymes per unit microbial biomass was significantly greater in sites with the most abundant ECM fungi. Based on these results, ECM-saprotroph competition does

  5. ( Azadirachta Indica ) Leaf Extracts on the Rot Fungus ( Fusarium ...

    African Journals Online (AJOL)

    The storage lifespan of kola nuts is challenged by the problem of decay of nuts in storage as a result of the attack by the rot fungus (Fusarium spp). The effect of the neem leaf (Azadirachta indica) extracts on the rot fungus was investigated in order to aid extended kola nuts storage. The aqueous and ethanolic leaf extracts of ...

  6. Biosynthesis of size-controlled gold nanoparticles using fungus, Penicillium sp.

    Science.gov (United States)

    Zhang, Xiaorong; He, Xiaoxiao; Wang, Kemin; Wang, Yonghong; Li, Huimin; Tan, Weihong

    2009-10-01

    The unique optoelectronic and physicochemical properties of gold nanoparticles are significantly dependent on the particle size, shape and structure. In this paper, biosynthesis of size-controlled gold nanoparticles using fungus Penicillium sp. is reported. Fungus Penicillium sp. could successfully bioreduce and nucleate AuCl4(-) ions, and lead to the assembly and formation of intracellular Au nanoparticles with spherical morphology and good monodispersity after exposure to HAuCl4 solution. Reaction temperature, as an important physiological parameter for fungus Penicillium sp. growth, could significantly control the size of the biosynthesized Au nanoparticles. The biological compositions and FTIR spectra analysis of fungus Penicillium sp. exposed to HAuCl4 solution indicated the intracellular reducing sugar played an important role in the occurrence of intracellular reduction of AuCl4(-) ions and the growth of gold nanoparticles. Furthermore, the intracellular gold nanoparticles could be easily separated from the fungal cell lysate by ultrasonication and centrifugation.

  7. Biochemical Characterization of Fungus Isolated during In vitro Propagation of Bambusa balcooa.

    Science.gov (United States)

    Tyagi, Bhawna; Tewari, Salil; Dubey, Ashutosh

    2018-01-01

    Bambusa balcooa ( Poaceae: Bambusoideae ) is a multipurpose bamboo species, which is native of the Indian subcontinent. B. balcooa is regarded as one of the best species for scaffolding and building purposes because of its strong culm. Other uses include paper pulp, handicrafts, and products of the wood chip industry. Due to these various uses in industries, this species has been identified as one of the priority bamboos by the National Bamboo Mission. This study is designed to analyze the identification of fungus and develop the strategy to eliminate the contamination during in vitro establishment of B. balcooa through nodal part. Fungus contamination is a problem which is encountered during in vitro establishment of B. balcooa cultures. In the present study, fungus contamination from in vitro cultured plant has been isolated and subjected to partial sequence analysis of the 18S rRNA gene to identify the fungus strain. Experiments were designed to develop a strategy for removal of the fungus contamination with the help of antifungal compounds and commercial antimicrobial supplement supplied by HiMedia. Fusarium equiseti was identified as endophytic fungus. It was observed that antimicrobial supplement at concentration of 500 μl/l was more effective concentration to remove fungus contamination and not showed any detrimental effect on growth parameters of shoot. This experiment would help in identification and to get rid of fungal contamination and improve the in vitro establishment of B. balcooa cultures for large-scale propagation. Endogenous fungus was isolated from contaminated culture of B. balcooa , and it was identified as Fusarium equiseti and submitted to NCBI under accession no. KP274872. The endophytic fungus had shown substantial production of amylase, cellulase, and protease media. Gibberellic acid (GA 3 ) production by F. equiseti was maximum on the 7 th day on inoculation. Abbreviations used: B. balcooa : Bambusa balcooa , F. equiseti : Fusarium

  8. Extreme rainfall affects assembly of the root-associated fungal community

    DEFF Research Database (Denmark)

    Barnes, Christopher James; van der Gast, Christopher J.; McNamara, Niall P.

    2018-01-01

    -associated fungus community of a short rotation coppice willow plantation, and compared community dynamics before and after a once in 100 yr rainfall event that occurred in the UK in 2012. Monitoring of the root-associated fungi was performed over a 3-yr period by metabarcoding the fungal internal transcribed...... yet overlooked determinants of root-associated fungal community assembly. Given the integral role of ectomycorrhizal fungi in biogeochemical cycles, these events may have considerable impacts upon the functioning of terrestrial ecosystems....

  9. Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites.

    Science.gov (United States)

    Visser, Anna A; Nobre, Tânia; Currie, Cameron R; Aanen, Duur K; Poulsen, Michael

    2012-05-01

    In fungus-growing termites, fungi of the subgenus Pseudoxylaria threaten colony health through substrate competition with the termite fungus (Termitomyces). The potential mechanisms with which termites suppress Pseudoxylaria have remained unknown. Here we explore if Actinobacteria potentially play a role as defensive symbionts against Pseudoxylaria in fungus-growing termites. We sampled for Actinobacteria from 30 fungus-growing termite colonies, spanning the three main termite genera and two geographically distant sites. Our isolations yielded 360 Actinobacteria, from which we selected subsets for morphological (288 isolates, grouped in 44 morphotypes) and for 16S rRNA (35 isolates, spanning the majority of morphotypes) characterisation. Actinobacteria were found throughout all sampled nests and colony parts and, phylogenetically, they are interspersed with Actinobacteria from origins other than fungus-growing termites, indicating lack of specificity. Antibiotic-activity screening of 288 isolates against the fungal cultivar and competitor revealed that most of the Actinobacteria-produced molecules with antifungal activity. A more detailed bioassay on 53 isolates, to test the specificity of antibiotics, showed that many Actinobacteria inhibit both Pseudoxylaria and Termitomyces, and that the cultivar fungus generally is more susceptible to inhibition than the competitor. This suggests that either defensive symbionts are not present in the system or that they, if present, represent a subset of the community isolated. If so, the antibiotics must be used in a targeted fashion, being applied to specific areas by the termites. We describe the first discovery of an assembly of antibiotic-producing Actinobacteria occurring in fungus-growing termite nests. However, due to the diversity found, and the lack of both phylogenetic and bioactivity specificity, further work is necessary for a better understanding of the putative role of antibiotic-producing bacteria in the fungus

  10. Patterns of functional enzyme activity in fungus farming ambrosia beetles

    Directory of Open Access Journals (Sweden)

    De Fine Licht Henrik H

    2012-06-01

    Full Text Available Abstract Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae, wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily

  11. Noninvasive medical management of fungus ball uropathy in a premature infant.

    Science.gov (United States)

    Alkalay, A L; Srugo, I; Blifeld, C; Komaiko, M S; Pomerance, J J

    1991-09-01

    Unilateral renal obstruction secondary to fungus balls is described in a premature infant. Noninvasive medical management, which included amphotericin B and 5-flucytosine therapy and forced diuresis, resulted in disappearance of fungus balls and resolution of the obstruction.

  12. The accumulation of radionuclides and heavy metals by mushroom's complex in forestry ecosystems

    International Nuclear Information System (INIS)

    Tsvetnova, O.B.; Shcheglov, A.I.; Shatrova, N.E.

    2001-01-01

    Comprehensive studies of the mycobiota contribution to the biogeochemical migration of heavy metals (HM), radionuclides and their stable isotopic and non-isotopic carriers under native conditions have been carried out in contaminated forests of Russia and Ukraine (1988-2000). It was shown that species is a prime factor of 137 Cs accumulation by the fungi. The so-called 'concentrator' group is now clearly represented by Xerocomus badius, Suillus luteus and Tylopilus felleus. 137 Cs content in the fungus mycelium is close to that in the fruit bodies. No significant difference in 37C s concentration was revealed depending on the fruit body part or age. Spatial variability of '1 37 Cs content in the fungi was considerably higher compared to other radionuclides and HM. The contribution of fungus complex to the biogeochemical migration of the various contaminants depends on both the chemical nature of the contaminant and soil-ecological conditions. The contribution is most manifested for 137 Cs, especially in hydromorphic landscapes (up to 50% of total accumulation in the biota)

  13. Insect symbioses: a case study of past, present, and future fungus-growing ant research

    DEFF Research Database (Denmark)

    Caldera, Eric J; Poulsen, Michael; Suen, Garret

    2009-01-01

    's fungus garden, antibiotic-producing actinobacteria that help protect the fungus garden from the parasite, and a black yeast that parasitizes the ant-actinobacteria mutualism. The fungus-growing ant symbiosis serves as a particularly useful model system for studying insect-microbe symbioses, because...

  14. Phomalactone from a phytopathogenic fungus infecting Zinnia elegans (Asteraceae) leaves

    Science.gov (United States)

    Zinnia elegans plants are infected by a fungus that causes necrosis with dark red spots particularly in late spring to the middle of summer in the Mid-South part of the United States. This fungal disease when untreated causes the leaves to wilt and eventually kills the plant. The fungus was isolated...

  15. Removal of phenanthrene in contaminated soil by combination of alfalfa, white-rot fungus, and earthworms.

    Science.gov (United States)

    Deng, Shuguang; Zeng, Defang

    2017-03-01

    The aim of this study was to investigate the removal of phenanthrene by combination of alfalfa, white-rot fungus, and earthworms in soil. A 60-day experiment was conducted. Inoculation with earthworms and/or white-rot fungus increased alfalfa biomass and phenanthrene accumulation in alfalfa. However, inoculations of alfalfa and white-rot fungus can significantly decrease the accumulation of phenanthrene in earthworms. The removal rates for phenanthrene in soil were 33, 48, 66, 74, 85, and 93% under treatments control, only earthworms, only alfalfa, earthworms + alfalfa, alfalfa + white-rot fungus, and alfalfa + earthworms + white-rot fungus, respectively. The present study demonstrated that the combination of alfalfa, earthworms, and white-rot fungus is an effective way to remove phenanthrene in the soil. The removal is mainly via stimulating both microbial development and soil enzyme activity.

  16. Microbial transformation of (-)-isolongifolol by plant pathogenic fungus Glomerella cingulata.

    Science.gov (United States)

    Miyazawa, Mitsuo; Sakata, Kazuki; Ueda, Masashi

    2010-01-01

    The biotransformation of terpenoids using the plant pathogenic fungus as a biocatalyst to produce useful novel organic compounds was investigated. The biotransformation of sesquiterpen alcohol, (-)-isolongifolol (1) was investigated using plant pathogenic fungus Glomerella cingulata as a biocatalyst. Compound 1 was converted to (-)-(3R)-3-hydroxy-isolongifolol and (-)-(9R)-9-hydroxy-isolongifolol by G. cingulata.

  17. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi

    DEFF Research Database (Denmark)

    Köljalg, U.; Larsson, K.H.; Abarenkov, K.

    2005-01-01

    Identification of ectomycorrhizal (ECM) fungi is often achieved through comparisons of ribosomal DNA internal transcribed spacer (ITS) sequences with accessioned sequences deposited in public databases. A major problem encountered is that annotation of the sequences in these databases is not always....... At present UNITE contains 758 ITS sequences from 455 species and 67 genera of ECM fungi. •  UNITE can be searched by taxon name, via sequence similarity using blastn, and via phylogenetic sequence identification using galaxie. Following implementation, galaxie performs a phylogenetic analysis of the query...... sequence after alignment either to pre-existing generic alignments, or to matches retrieved from a blast search on the UNITE data. It should be noted that the current version of UNITE is dedicated to the reliable identification of ECM fungi. •  The UNITE database is accessible through the URL http://unite.zbi.ee...

  18. The Physiology of Microbial Symbionts in Fungus-Farming Termites

    DEFF Research Database (Denmark)

    Rodrigues da Costa, Rafael

    . The termites provide the fungus with optimal growth conditions (e.g., stable temperature and humidity), as well as with constant inoculation of growth substrate and protection against alien fungi. In reward, the fungus provides the termites with a protein-rich fungal biomass based diet. In addition...... with their symbionts are main decomposer of organic matter in Africa, and this is reflect of a metabolic complementarity to decompose plant biomass in the genome of the three organisms involved in this symbiosis. Many of the physiological aspects of this symbiosis remain obscure, and here I focus on physiology...... of microbial symbionts associated with fungus-growing termites. Firstly, by using a set of enzyme assays, plant biomass compositional analyses, and RNA sequencing we gained deeper understanding on what enzymes are produced and active at different times of the decomposition process. Our results show that enzyme...

  19. Fungus-Growing Termites Originated in African Rain Forest

    DEFF Research Database (Denmark)

    Aanen, Duur Kornelis; Eggleton, Paul

    2005-01-01

    are consumed (cf. [ [1] and [2] ]). Fungus-growing termites are found throughout the Old World tropics, in rain forests and savannas, but are ecologically dominant in savannas [ 3 ]. Here, we reconstruct the ancestral habitat and geographical origin of fungus-growing termites. We used a statistical model...... of habitat switching [ 4 ] repeated over all phylogenetic trees sampled in a Bayesian analysis of molecular data [ 5 ]. Our reconstructions provide strong evidence that termite agriculture originated in African rain forest and that the main radiation leading to the extant genera occurred there. Because...

  20. Co-evolution of enzyme function in the attine ant-fungus symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    Introduction: Fungus-growing ants cultivate specialized fungi in the tribe Leucocoprineae (Lepiotaceae: Basidiomycota) inside their nests. The conspicuous leaf-cutting ants in the genus Atta build huge nests displacing several cubic meters of soil, whereas lower attine genera such as Cyphomyrmex ...... garden. This system can be viewed as ant induced crop optimization similar to human agricultural practices....... have small nests with a fungus garden the size of a table-tennis ball. Only the leaf-cutting ants are specialized on using fresh leaves as substrate for their fungus gardens, whereas the more basal attine genera use substrates such as dry plant material (leaf litter and small twigs) and also insect...... feces and insect carcasses. This diverse array of fungal substrates across the attine lineage implies that the symbiotic fungus needs different enzymes to break down the plant material that the ants provide or different efficiencies of enzyme function. Methods: (1.) We made a literature survey...

  1. Metabolites from marine fungus Aspergillus sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; Rajmanickam, R.; DeSouza, L.

    Chemical examination of a methanolic extract of the marine fungus, Aspergillus sp., isolated from marine grass environment, yielded a steroid, ergosterol peroxide (1), and a mixture of known glyceride esters (2,3) of unsaturated fatty acids...

  2. Host shifts enhance diversification of ectomycorrhizal fungi: diversification rate analysis of the ectomycorrhizal fungal genera Strobilomyces and Afroboletus with an 80-gene phylogeny.

    Science.gov (United States)

    Sato, Hirotoshi; Tanabe, Akifumi S; Toju, Hirokazu

    2017-04-01

    Mutualisms with new host lineages can provide symbionts with novel ecological opportunities to expand their geographical distribution, thereby leading to evolutionary diversification. Because ectomycorrhizal (ECM) fungi provide ideal opportunities to test the relationship between host shifts and diversification, we tested whether mutualism with new host lineages could increase the diversification rates of ECM fungi. Using a Bayesian tree inferred from 23 027-base nucleotide sequences of 80 single-copy genes, we tested whether the diversification rate had changed through host-shift events in the monophyletic clade containing the ECM fungal genera Strobilomyces and Afroboletus. The results indicated that these fungi were initially associated with Caesalpinioideae/Monotoideae in Africa, acquired associations with Dipterocarpoideae in tropical Asia, and then switched to Fagaceae/Pinaceae and Nothofagaceae/Eucalyptus. Fungal lineages associated with Fagaceae/Pinaceae were inferred to have approximately four-fold and two-fold greater diversification rates than those associated with Caesalpinioideae/Monotoideae and Dipterocarpoideae or Nothofagaceae/Eucalyptus, respectively. Moreover, the diversification rate shift was inferred to follow the host shift to Fagaceae/Pinaceae. Our study suggests that host-shift events, particularly those occurring with respect to Fagaceae/Pinaceae, can provide ecological opportunities for the rapid diversification of Strobilomyces-Afroboletus. Although further studies are needed for generalization, we propose a possible diversification scenario of ECM fungi. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  3. Partial resistance of tomatoes against Phytophthora infestans, the late blight fungus

    NARCIS (Netherlands)

    Turkensteen, L.J.

    1973-01-01

    In the Netherlands, the source of inoculum of the late blight fungus on tomatoes is the late blight fungus on potato crops. In regions of Europe mentioned, where tomatoes are grown in the open, P. infestans on tomatoes is the main source of inoculum. Especially in

  4. Factors affecting fungus-induced larval mortality in Anopheles gambiae and Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    Takken Willem

    2010-01-01

    Full Text Available Abstract Background Entomopathogenic fungi have shown great potential for the control of adult malaria vectors. However, their ability to control aquatic stages of anopheline vectors remains largely unexplored. Therefore, how larval characteristics (Anopheles species, age and larval density, fungus (species and concentration and environmental effects (exposure duration and food availability influence larval mortality caused by fungus, was studied. Methods Laboratory bioassays were performed on the larval stages of Anopheles gambiae and Anopheles stephensi with spores of two fungus species, Metarhizium anisopliae and Beauveria bassiana. For various larval and fungal characteristics and environmental effects the time to death was determined and survival curves established. These curves were compared by Kaplan Meier and Cox regression analyses. Results Beauveria bassiana and Metarhizium anisopliae caused high mortality of An. gambiae and An. stephensi larvae. However, Beauveria bassiana was less effective (Hazard ratio (HR Metarhizium anisopliae. Anopheles stephensi and An. gambiae were equally susceptible to each fungus. Older larvae were less likely to die than young larvae (HR Conclusions This study shows that both fungus species have potential to kill mosquitoes in the larval stage, and that mortality rate depends on fungus species itself, larval stage targeted, larval density and amount of nutrients available to the larvae. Increasing the concentration of fungal spores or reducing the exposure time to spores did not show a proportional increase and decrease in mortality rate, respectively, because the spores clumped together. As a result spores did not provide uniform coverage over space and time. It is, therefore, necessary to develop a formulation that allows the spores to spread over the water surface. Apart from formulation appropriate delivery methods are also necessary to avoid exposing non-target organisms to fungus.

  5. White-Nose Syndrome Fungus in a 1918 Bat Specimen from France

    OpenAIRE

    Campana, Michael G.; Kurata, Naoko P.; Foster, Jeffrey T.; Helgen, Lauren E.; Reeder, DeeAnn M.; Fleischer, Robert C.; Helgen, Kristofer M.

    2017-01-01

    White-nose syndrome, first diagnosed in North America in 2006, causes mass deaths among bats in North America. We found the causative fungus, Pseudogymnoascus destructans, in a 1918 sample collected in Europe, where bats have now adapted to the fungus. These results are consistent with a Eurasian origin of the pathogen.

  6. White-Nose Syndrome Fungus in a 1918 Bat Specimen from France.

    Science.gov (United States)

    Campana, Michael G; Kurata, Naoko P; Foster, Jeffrey T; Helgen, Lauren E; Reeder, DeeAnn M; Fleischer, Robert C; Helgen, Kristofer M

    2017-09-01

    White-nose syndrome, first diagnosed in North America in 2006, causes mass deaths among bats in North America. We found the causative fungus, Pseudogymnoascus destructans, in a 1918 sample collected in Europe, where bats have now adapted to the fungus. These results are consistent with a Eurasian origin of the pathogen.

  7. Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus.

    Science.gov (United States)

    Mitchell, Angela M; Strobel, Gary A; Moore, Emily; Robison, Richard; Sears, Joe

    2010-01-01

    Muscodor crispans is a recently described novel endophytic fungus of Ananas ananassoides (wild pineapple) growing in the Bolivian Amazon Basin. The fungus produces a mixture of volatile organic compounds (VOCs); some of the major components of this mixture, as determined by GC/MS, are propanoic acid, 2-methyl-, methyl ester; propanoic acid, 2-methyl-; 1-butanol, 3-methyl-;1-butanol, 3-methyl-, acetate; propanoic acid, 2-methyl-, 2-methylbutyl ester; and ethanol. The fungus does not, however, produce naphthalene or azulene derivatives as has been observed with many other members of the genus Muscodor. The mixture of VOCs produced by M. crispans cultures possesses antibiotic properties, as does an artificial mixture of a majority of the components. The VOCs of the fungus are effective against a wide range of plant pathogens, including the fungi Pythium ultimum, Phytophthora cinnamomi, Sclerotinia sclerotiorum and Mycosphaerella fijiensis (the black sigatoka pathogen of bananas), and the serious bacterial pathogen of citrus, Xanthomonas axonopodis pv. citri. In addition, the VOCs of M. crispans killed several human pathogens, including Yersinia pestis, Mycobacterium tuberculosis and Staphylococcus aureus. Artificial mixtures of the fungal VOCs were both inhibitory and lethal to a number of human and plant pathogens, including three drug-resistant strains of Mycobacterium tuberculosis. The gaseous products of Muscodor crispans potentially could prove to be beneficial in the fields of medicine, agriculture, and industry.

  8. Exploring the Potential for Actinobacteria as Defensive Symbionts in Fungus-Growing Termites

    NARCIS (Netherlands)

    Visser, A.A.; Mesquita Nobre, T.; Currie, C.R.; Aanen, D.K.; Poulsen, M.

    2012-01-01

    In fungus-growing termites, fungi of the subgenus Pseudoxylaria threaten colony health through substrate competition with the termite fungus (Termitomyces). The potential mechanisms with which termites suppress Pseudoxylaria have remained unknown. Here we explore if Actinobacteria potentially play a

  9. Using copper sulfate to control egg fungus at Keo Fish Farm

    Science.gov (United States)

    Keo Fish Farm is the biggest producer of hybrid striped bass fry in the world. The hatchery manager asked about treatments to control fungus on eggs which occurred fairly often. Our lab has been working on gaining FDA-approval to use copper sulfate to control fungus on catfish eggs, so we were con...

  10. Treatment of bark beetle attacked trees with entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin

    OpenAIRE

    Jakuš, Rastislav; Blaženec, Miroslav

    2011-01-01

    We carried out an experiment with using the entomopathogenic fungus Beauveria bassiana (Bals.) Vuill. for sanitation of active infested trees. We used 15 active infested trees from which 5 stems were treated with an insecticide, 5 were treated with solution of the tested entomopathogenic fungus and 5 were left as control. The used insecticide was pyretroid Fury 10 EW. We used a biopreparation based on the entomopathogenic fungus B. bassiana in form of wettable powder. The material was diluted...

  11. Belowground Carbon Allocation to Ectomycorrhizal Fungi Links Biogeochemical Cycles of Boron and Nitrogen

    Science.gov (United States)

    Lucas, R. W.; Högberg, P.; Ingri, J. N.

    2011-12-01

    by the preferential translocation of 10B to their host trees by ectomycorrhizal fungi, while the fungal partner retains the heavier 11B. Repeated fractionation over time leads to progressively larger differences in δ11B in both current tree needles and also fungal tissue, analogous to the repeated fractionation of N isotopes by ectomycorrhizal fungi.

  12. Biotransformation of (+)-cycloisolongifolol by plant pathogenic fungus Glomerella cingulata.

    Science.gov (United States)

    Miyazawa, Mitsuo; Sakata, Kazuki

    2007-05-01

    The biotransformation of terpenoids using the plant pathogenic fungus as a biocatalyst to produce useful novel organic compounds was investigated. The biotransformation of sesquiterpen alcohol, (+)-cycloisolongifolol (1) was investigated using plant pathogenic fungus Glomerella cingulata as a biocatalyst. Compound 1 gave one major metabolic product and a number of minor metabolic products. Major product was dehydration at the C-8 position to (+)-dehydrocycloisolongifolene (2). The structure of the product was determined by their spectroscopic data. Glomerella cingulata gave dehydration in the specifically and over 70% conversion.

  13. First localities in Poland of the recently described fungus Cordyceps bifusispora

    Directory of Open Access Journals (Sweden)

    Anna Bujakiewicz

    2014-08-01

    Full Text Available Two localities of the entomopathogenic fungus Cordyceps bifusispora, hitherto not reported from Poland, are characterised by their site conditions and co-occurring macrofungi during the period of the appearance of its stromata. Description of this fungus culture is given and some remarks on the resemblance of its teleomorphs and anamorphs from different collections are discussed.

  14. Isotopic patterns in caps and stipes in sporocarps reveal patterns of organic nitrogen use by ectomycorrhizal fungi

    Science.gov (United States)

    Hobbie, Erik; Ouimette, Andrew; Chen, Janet

    2016-04-01

    Current ecosystem models use inorganic nitrogen as the currency of nitrogen acquisition by plants. However, many trees may gain access to otherwise unavailable soil resources, such as soil organic nitrogen, through their symbioses with ectomycorrhizal fungi, and this pathway of nitrogen acquisition may therefore be important in understanding plant responses to environmental change. Different functional groups of ectomycorrhizal fungi vary in their ability to enzymatically access protein and other soil resources. Such fungal parameters as hyphal hydrophobicity, the presence of rhizomorphs (long-distance transport structures), and exploration strategies (e.g., short-distance versus long-distance, mat formation) correspond with how fungi interact with and explore the environment, and the proportions of different exploration types present will shift along environmental gradients such as nitrogen availability. Isotopic differences between caps and stipes may provide a means to test for organic nitrogen use, since caps and stipes differ in δ13C and δ15N as a result of variable proportions of protein and other classes of compounds, and protein should differ isotopically among de novo synthesis, litter sources, and soil sources. Here, we propose that (1) isotopic differences between caps and stipes could be related to organic nitrogen uptake and to the δ13C and δ15N values of different pools of soil-derived or de novo-synthesized amino acids; (2) these isotopic differences will reflect greater acquisition of soil-derived organic nitrogen by exploration types of greater enzymatic capabilities to degrade recalcitrant nitrogen forms, specifically long-distance, medium-distance fringe, and medium-distance mat exploration types. To test these hypotheses, we use a dataset of isotopic values, %N, and %C in 208 cap/stipe samples collected from Oregon, western USA. δ13C differences in caps and stipes in a multiple regression model had an adjusted r2 of 0.292 (p Ncap-stipe (20

  15. Nest enlargement in leaf-cutting ants: relocated brood and fungus trigger the excavation of new chambers.

    Directory of Open Access Journals (Sweden)

    Daniela Römer

    Full Text Available During colony growth, leaf-cutting ants enlarge their nests by excavating tunnels and chambers housing their fungus gardens and brood. Workers are expected to excavate new nest chambers at locations across the soil profile that offer suitable environmental conditions for brood and fungus rearing. It is an open question whether new chambers are excavated in advance, or will emerge around brood or fungus initially relocated to a suitable site in a previously-excavated tunnel. In the laboratory, we investigated the mechanisms underlying the excavation of new nest chambers in the leaf-cutting ant Acromyrmex lundi. Specifically, we asked whether workers relocate brood and fungus to suitable nest locations, and to what extent the relocated items trigger the excavation of a nest chamber and influence its shape. When brood and fungus were exposed to unfavorable environmental conditions, either low temperatures or low humidity, both were relocated, but ants clearly preferred to relocate the brood first. Workers relocated fungus to places containing brood, demonstrating that subsequent fungus relocation spatially follows the brood deposition. In addition, more ants aggregated at sites containing brood. When presented with a choice between two otherwise identical digging sites, but one containing brood, ants' excavation activity was higher at this site, and the shape of the excavated cavity was more rounded and chamber-like. The presence of fungus also led to the excavation of rounder shapes, with higher excavation activity at the site that also contained brood. We argue that during colony growth, workers preferentially relocate brood to suitable locations along a tunnel, and that relocated brood spatially guides fungus relocation and leads to increased digging activity around them. We suggest that nest chambers are not excavated in advance, but emerge through a self-organized process resulting from the aggregation of workers and their density

  16. Site properties have a stronger influence than fire severity on ectomycorrhizal fungi and associated N-cycling bacteria in regenerating post-beetle-killed lodgepole pine forests.

    Science.gov (United States)

    Kennedy, Nabla M; Robertson, Susan J; Green, D Scott; Scholefield, Scott R; Arocena, Joselito M; Tackaberry, Linda E; Massicotte, Hugues B; Egger, Keith N

    2015-09-01

    Following a pine beetle epidemic in British Columbia, Canada, we investigated the effect of fire severity on rhizosphere soil chemistry and ectomycorrhizal fungi (ECM) and associated denitrifying and nitrogen (N)-fixing bacteria in the root systems of regenerating lodgepole pine seedlings at two site types (wet and dry) and three fire severities (low, moderate, and high). The site type was found to have a much larger impact on all measurements than fire severity. Wet and dry sites differed significantly for almost all soil properties measured, with higher values identified from wet types, except for pH and percent sand that were greater on dry sites. Fire severity caused few changes in soil chemical status. Generally, bacterial communities differed little, whereas ECM morphotype analysis revealed ectomycorrhizal diversity was lower on dry sites, with a corresponding division in community structure between wet and dry sites. Molecular profiling of the fungal ITS region confirmed these results, with a clear difference in community structure seen between wet and dry sites. The ability of ECM fungi to colonize seedlings growing in both wet and dry soils may positively contribute to subsequent regeneration. We conclude that despite consecutive landscape disturbances (mountain pine beetle infestation followed by wildfire), the "signature" of moisture on chemistry and ECM community structure remained pronounced.

  17. Efficacy of Entomopathogenic Fungus Beauveria Bassiana and Gamma Irradiation Against the Greater Date Moth, Arenipses Sabella

    International Nuclear Information System (INIS)

    Mikhaiel, A.A.; Abul Fadl, H.A.A.

    2011-01-01

    The fungus Beauveria bassiana (Bals.) was isolated locally from dead larvae of the greater date moth, Arenipses sabella (Hampson) (Lepidoptera: Pyralidae). The effect of three exposure methods and two environmental factors (temperature and relative humidity) on pathogenicity of the fungus with different concentrations to A. sabella second instar larvae were examined. The study demonstrated that the entomopathogenic fungus was most efficient in the control of second instar larvae at 25 degree C and 100% humidity and the percent of mortality was increased when increasing the concentration of fungus. The mode of exposure of fungus to larvae directly sprayed, larvae exposed to the treated dates or larvae both sprayed and exposed to the treated dates showed 56.66, 26.66 and 75% mortality, respectively, at concentration 1x10 10 spores/ml and three days post-treatment. The F1 larvae resulting from irradiated male pupae with 150 Gy were more susceptible to pathogenic fungus at low concentration ((1x10 8 spores/ml) than non-irradiated ones. The scanning electron microscope was used to delineate the morphological stages of fungus to the germinated conidia and the hyphae penetrating the larva cuticle.

  18. Entomology: A Bee Farming a Fungus.

    Science.gov (United States)

    Oldroyd, Benjamin P; Aanen, Duur K

    2015-11-16

    Farming is done not only by humans, but also by some ant, beetle and termite species. With the discovery of a stingless bee farming a fungus that provides benefits to its larvae, bees can be added to this list. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Death from Fungus in the Soil

    Centers for Disease Control (CDC) Podcasts

    2012-12-17

    Dr. Shira Shafir, Assistant Professor of Epidemiology at the UCLA Fielding School of Public Health, discusses her study about fungus found in soil.  Created: 12/17/2012 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/18/2012.

  20. Draft Genome Sequence and Gene Annotation of the Entomopathogenic Fungus Verticillium hemipterigenum

    OpenAIRE

    Horn, Fabian; Habel, Andreas; Scharf, Daniel H.; Dworschak, Jan; Brakhage, Axel A.; Guthke, Reinhard; Hertweck, Christian; Linde, J?rg

    2015-01-01

    Verticillium hemipterigenum (anamorph Torrubiella hemipterigena) is an entomopathogenic fungus and produces a broad range of secondary metabolites. Here, we present the draft genome sequence of the fungus, including gene structure and functional annotation. Genes were predicted incorporating RNA-Seq data and functionally annotated to provide the basis for further genome studies.

  1. The nematophagous fungus Monacrosporium thaumasium and its nematicidal activity on Angiostrongylus vasorum.

    Science.gov (United States)

    Soares, Filippe Elias de Freitas; Braga, Fabio Ribeiro; de Araújo, Jackson Victor; Lima, Walter dos Santos; de Queiroz, José Humberto

    2015-01-01

    The dog acts as a reservoir and environmental disseminator of potentially zoonotic parasites. The objective of this work was to study the fungus Monacrosporium thaumasium regarding its nematicidal potential in laboratory trials and its proteolytic profile. The in vitro test was carried out through two assays (A and B). In assay A, conidia of the fungus N34a were added in positive coprocultures for Angiostrongylus vasorum. In assay B, crude extract (treated group) and distilled water (control group) were added to coprocultures. Next, the proteolytic profile of crude extract of the nematophagous fungus M. thaumasium (NF34a) was revealed by performing a zymogram. There was a reduction (p<0.01) in the averages of larvae recovered from the treated groups (conidia and crude extract) in relation to control groups. The zymogram suggested that the nematophagous fungus M. thaumasium produces a protease of approximately 40 kDa. The results of this work confirm that the conidia as well as the crude extract of the fungus M. thaumasium may be used to control A. vasorum L1. The proteolytic profile suggested the presence of one protease (Mt1) of approximately 40 kDa that in the future may be used in biological control of L1 of this nematode. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  2. The yeast spectrum of the 'tea fungus Kombucha'.

    Science.gov (United States)

    Mayser, P; Fromme, S; Leitzmann, C; Gründer, K

    1995-01-01

    The tea fungus 'Kombucha' is a symbiosis of Acetobacter, including Acetobacter xylinum as a characteristic species, and various yeasts. A characteristic yeast species or genus has not yet been identified. Kombucha is mainly cultivated in sugared black tea to produce a slightly acidulous effervescent beverage that is said to have several curative effects. In addition to sugar, the beverage contains small amounts of alcohol and various acids, including acetic acid, gluconic acid and lactic acid, as well as some antibiotic substances. To characterize the yeast spectrum with special consideration given to facultatively pathogenic yeasts, two commercially available specimens of tea fungus and 32 from private households in Germany were analysed by micromorphological and biochemical methods. Yeasts of the genera Brettanomyces, Zygosaccharomyces and Saccharomyces were identified in 56%, 29% and 26% respectively. The species Saccharomycodes ludwigii and Candida kefyr were only demonstrated in isolated cases. Furthermore, the tests revealed pellicle-forming yeasts such as Candida krusei or Issatchenkia orientalis/occidentalis as well as species of the apiculatus yeasts (Kloeckera, Hanseniaspora). Thus, the genus Brettanomyces may be a typical group of yeasts that are especially adapted to the environment of the tea fungus. However, to investigate further the beneficial effects of tea fungus, a spectrum of the other typical genera must be defined. Only three specimens showed definite contaminations. In one case, no yeasts could be isolated because of massive contamination with Penicillium spp. In the remaining two samples (from one household), Candida albicans was demonstrated. The low rate of contamination might be explained by protective mechanisms, such as formation of organic acids and antibiotic substances. Thus, subjects with a healthy metabolism do not need to be advised against cultivating Kombucha. However, those suffering from immunosuppression should preferably

  3. Transcriptome of an entomophthoralean fungus (Pandora formicae) shows molecular machinery adjusted for successful host exploitation and transmission

    DEFF Research Database (Denmark)

    Malagocka, Joanna; Grell, Morten Nedergaard; Lange, Lene

    2015-01-01

    Pandora formicae is an obligate entomopathogenic fungus from the phylum Entomophthoromycota, known to infect only ants from the genus Formica. In the final stages of infection, the fungus induces the so-called summit disease syndrome, manipulating the host to climb up vegetation prior to death......, but the fungus had not grown out through the cuticle and (2) when the fungus was growing out from host cadaver and producing spores. These phases mark the switch from within-host growth to reproduction on the host surface, after fungus outgrowth through host integument. In this first de novo transcriptome...... of an entomophthoralean fungus, we detected expression of many pathogenicity-related genes, including secreted hydrolytic enzymes and genes related to morphological reorganization and nutrition uptake. Differences in expression of genes in these two infection phases were compared and showed a switch in enzyme expression...

  4. Formulation of the endophytic fungus Cladosporium oxysporum Berk.

    Directory of Open Access Journals (Sweden)

    Bensaci Oussama Ali

    2015-01-01

    Full Text Available Two formulations containing culture filtrates and conidial suspensions of the endophytic fungus Cladosporium oxysporum Berk. & M.A. Curtis, isolated previously from stems of Euphorbia bupleuroides subsp. luteola (Kralik Maire, were experimentally tested for their aphicid activity against the black bean aphid Aphis fabae Scop. found in Algeria. It was shown that invert emulsions are more effective against aphids, than using aqueous suspensions. This was especially true for formulations containing culture filtrates. The relatively insignificant mortalities obtained by formulations containing conidial suspensions indicated a low infectious potential towards the aphids. The proteolytic activity seemed to be more important than the chitinolytic activity of the fungus against the black bean aphid A. fabae

  5. Yarsagumba Fungus: Health Problems in the Himalayan Gold Rush.

    Science.gov (United States)

    Koirala, Pranawa; Pandit, Bidur; Phuyal, Pratibha; Zafren, Ken

    2017-09-01

    Seasonal migration of people in search of Yarsagumba fungus creates a population of collectors that faces hardship and health risks in austere high-altitude settings. In 2016, our 4-person team performed a 2-day health-needs survey of people collecting Yarsagumba fungus near the village of Yak Kharka (4020 m) in the Manang District of Nepal. There were approximately 800 people, both male and female, from age 10 to over 60, collecting Yarsagumba fungus. They had paid high prices for permits, hoping to recoup the cost and make a profit by selling specimens of Yarsagumba, but the fungus seemed scarce in 2016, resulting in a bleak economic forecast. Most collectors were living in austere conditions, walking long hours to the collection areas early in the morning and returning in the late afternoon. Most were subsisting on 1 daily meal. Health problems, including acute mountain sickness as well as respiratory and gastrointestinal illnesses, were common. Yarsagumba has become harder to find in recent years, increasing hardships and risk of injury. Medical care was almost nonexistent. As abundance decreases and demand increases, there is increasing pressure on collectors to find Yarsagumba. The collectors are an economically disadvantaged population who live in austere conditions at high altitude with poor shelter and sanitation, strenuous work, and limited availability of food. Health care resources are very limited. There are significant risks of illness, injury, and death. Targeted efforts by government entities and nongovernmental organizations might be beneficial in meeting the health needs. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  6. A Brazilian social bee must cultivate fungus to survive.

    Science.gov (United States)

    Menezes, Cristiano; Vollet-Neto, Ayrton; Marsaioli, Anita Jocelyne; Zampieri, Davila; Fontoura, Isabela Cardoso; Luchessi, Augusto Ducati; Imperatriz-Fonseca, Vera Lucia

    2015-11-02

    The nests of social insects provide suitable microenvironments for many microorganisms as they offer stable environmental conditions and a rich source of food [1-4]. Microorganisms in turn may provide several benefits to their hosts, such as nutrients and protection against pathogens [1, 4-6]. Several examples of symbiosis between social insects and microorganisms have been found in ants and termites. These symbioses have driven the evolution of complex behaviors and nest structures associated with the culturing of the symbiotic microorganisms [5, 7, 8]. However, while much is known about these relationships in many species of ants and termites, symbiotic relationships between microorganisms and social bees have been poorly explored [3, 4, 9, 10]. Here, we report the first case of an obligatory relationship between the Brazilian stingless bee Scaptotrigona depilis and a fungus of the genus Monascus (Ascomycotina). Fungal mycelia growing on the provisioned food inside the brood cell are eaten by the larva. Larvae reared in vitro on sterilized larval food supplemented with fungal mycelia had a much higher survival rate (76%) compared to larvae reared under identical conditions but without fungal mycelia (8% survival). The fungus was found to originate from the material from which the brood cells are made. Since the bees recycle and transport this material between nests, fungus would be transferred to newly built cells and also to newly founded nests. This is the first report of a fungus cultivation mutualism in a social bee. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Ectomycorrhizal fungal communities of native and non-native Pinus and Quercus species in a common garden of 35-year-old trees.

    Science.gov (United States)

    Trocha, Lidia K; Kałucka, Izabela; Stasińska, Małgorzata; Nowak, Witold; Dabert, Mirosława; Leski, Tomasz; Rudawska, Maria; Oleksyn, Jacek

    2012-02-01

    Non-native tree species have been widely planted or have become naturalized in most forested landscapes. It is not clear if native trees species collectively differ in ectomycorrhizal fungal (EMF) diversity and communities from that of non-native tree species. Alternatively, EMF species community similarity may be more determined by host plant phylogeny than by whether the plant is native or non-native. We examined these unknowns by comparing two genera, native and non-native Quercus robur and Quercus rubra and native and non-native Pinus sylvestris and Pinus nigra in a 35-year-old common garden in Poland. Using molecular and morphological approaches, we identified EMF species from ectomycorrhizal root tips and sporocarps collected in the monoculture tree plots. A total of 69 EMF species were found, with 38 species collected only as sporocarps, 18 only as ectomycorrhizas, and 13 both as ectomycorrhizas and sporocarps. The EMF species observed were all native and commonly associated with a Holarctic range in distribution. We found that native Q. robur had ca. 120% higher total EMF species richness than the non-native Q. rubra, while native P. sylvestris had ca. 25% lower total EMF species richness than non-native P. nigra. Thus, across genera, there was no evidence that native species have higher EMF species diversity than exotic species. In addition, we found a higher similarity in EMF communities between the two Pinus species than between the two Quercus species. These results support the naturalization of non-native trees by means of mutualistic associations with cosmopolitan and novel fungi.

  8. Influence of long-term repeated prescribed burning on mycelial communities of ectomycorrhizal fungi.

    Science.gov (United States)

    Bastias, Brigitte A; Xu, Zhihong; Cairney, John W G

    2006-01-01

    To demonstrate the efficacy of direct DNA extraction from hyphal ingrowth bags for community profiling of ectomycorrhizal (ECM) mycelia in soil, we applied the method to investigate the influence of long-term repeated prescribed burning on an ECM fungal community. DNA was extracted from hyphal ingrowth bags buried in forest plots that received different prescribed burning treatments for 30 yr, and denaturing gradient gel electrophoresis (DGGE) profiles of partial fungal rDNA internal transcribed spacer (ITS) regions were compared. Restriction fragment length polymorphism (RFLP) and sequence analyses were also used to compare clone assemblages between the treatments. The majority of sequences derived from the ingrowth bags were apparently those of ECM fungi. DGGE profiles for biennially burned plots were significantly different from those of quadrennially burned and unburned control plots. Analysis of clone assemblages indicated that this reflected altered ECM fungal community composition. The results indicate that hyphal ingrowth bags represent a useful method for investigation of ECM mycelial communities, and that frequent long-term prescribed burning can influence below-ground ECM fungal communities.

  9. Microsatellite variability in the entomopathogenic fungus Paeciolomyces fumosoroseus: genetic diversity and population structure

    Science.gov (United States)

    The hyphomycete Paecilomyces fumosoroseus (Pfr) is a geographically widespread fungus capable of infecting various insect hosts. The fungus has been used for the biological control of several important insect pests of agriculture. However knowledge of the fungus’ genetic diversity and population str...

  10. Establishment of ectomycorrhizal fungal community on isolated Nothofagus cunninghamii seedlings regenerating on dead wood in Australian wet temperate forests: does fruit-body type matter?

    Science.gov (United States)

    Tedersoo, Leho; Gates, Genevieve; Dunk, Chris W; Lebel, Teresa; May, Tom W; Kõljalg, Urmas; Jairus, Teele

    2009-08-01

    Decaying wood provides an important habitat for animals and forms a seed bed for many shade-intolerant, small-seeded plants, particularly Nothofagus. Using morphotyping and rDNA sequence analysis, we compared the ectomycorrhizal fungal community of isolated N. cunninghamii seedlings regenerating in decayed wood against that of mature tree roots in the forest floor soil. The /cortinarius, /russula-lactarius, and /laccaria were the most species-rich and abundant lineages in forest floor soil in Australian sites at Yarra, Victoria and Warra, Tasmania. On root tips of seedlings in dead wood, a subset of the forest floor taxa were prevalent among them species of /laccaria, /tomentella-thelephora, and /descolea, but other forest floor dominants were rare. Statistical analyses suggested that the fungal community differs between forest floor soil and dead wood at the level of both species and phylogenetic lineage. The fungal species colonizing isolated seedlings on decayed wood in austral forests were taxonomically dissimilar to the species dominating in similar habitats in Europe. We conclude that formation of a resupinate fruit body type on the underside of decayed wood is not necessarily related to preferential root colonization in decayed wood. Rather, biogeographic factors as well as differential dispersal and competitive abilities of fungal taxa are likely to play a key role in structuring the ectomycorrhizal fungal community on isolated seedlings in decaying wood.

  11. The dynamics of plant cell-wall polysaccharide decomposition in leaf-cutting ant fungus gardens.

    Directory of Open Access Journals (Sweden)

    Isabel E Moller

    Full Text Available The degradation of live plant biomass in fungus gardens of leaf-cutting ants is poorly characterised but fundamental for understanding the mutual advantages and efficiency of this obligate nutritional symbiosis. Controversies about the extent to which the garden-symbiont Leucocoprinus gongylophorus degrades cellulose have hampered our understanding of the selection forces that induced large scale herbivory and of the ensuing ecological footprint of these ants. Here we use a recently established technique, based on polysaccharide microarrays probed with antibodies and carbohydrate binding modules, to map the occurrence of cell wall polymers in consecutive sections of the fungus garden of the leaf-cutting ant Acromyrmex echinatior. We show that pectin, xyloglucan and some xylan epitopes are degraded, whereas more highly substituted xylan and cellulose epitopes remain as residuals in the waste material that the ants remove from their fungus garden. These results demonstrate that biomass entering leaf-cutting ant fungus gardens is only partially utilized and explain why disproportionally large amounts of plant material are needed to sustain colony growth. They also explain why substantial communities of microbial and invertebrate symbionts have evolved associations with the dump material from leaf-cutting ant nests, to exploit decomposition niches that the ant garden-fungus does not utilize. Our approach thus provides detailed insight into the nutritional benefits and shortcomings associated with fungus-farming in ants.

  12. Experimental study of Aspergillus flavus fungus from uranium mines

    Energy Technology Data Exchange (ETDEWEB)

    Kusak, V. (Ceskoslovenska Akademie Ved, Prague. Ustav Experimentalni Mediciny)

    1982-06-01

    Cultivation is discussed of fungus strain Aspergillus flavus obtained from materials from uranium mines. It was found that an addition of 0.6 g of uranium in form of uranyl acetate or of 0.6 g of thorium in form on thorium nitrate in 1000 ml of the standard medium had stimulating effects on the growth and sporulation of Aspergillus flavus. Irradiating the cultivated fungus through a polyethylene foil did not show a stimulating effect. It is stated that uranium and its daughters must be directly present in the culture medium for their stimulating effect on growth and sporulation to manifest itself.

  13. Datasheet: Pseudogymnoascus destructans (white-nose syndrome fungus)

    Science.gov (United States)

    Blehert, David; Lankau, Emily W.

    2017-01-01

    Pseudogymnoascus destructans is a psychrophilic (cold-loving) fungus that causes white-nose syndrome (WNS), an emerging disease of North American bats that has caused unprecedented population declines. The fungus is believed to have been introduced to North America from Europe or Asia (where it is present but does not cause significant mortality), but the full extent of its native range is unknown. The route of introduction is also unknown. In North America, hibernating bats become infected with P. destructans when body temperature decreases during winter torpor into the range permissive for growth of this fungus. Infected bats may develop visible fungal growth on the nose or wings, awaken more frequently from torpor, and experience a cascade of physiologic changes that result in weight loss, dehydration, electrolyte imbalances, and death. P. destructans persists in the environments of underground bat hibernation sites (hibernacula) and is believed to spread primarily by natural movements of infected bats. The first evidence of WNS in North America is from a photograph of a hibernating bat taken during winter of 2005-2006 in a hibernaculum near Albany, New York. P. destructans subsequently spread rapidly from the northeastern United States throughout much of the eastern portions of the United States and Canada, and most recently (as of May 2017) was detected in Washington State. It has killed millions of bats, threatening some species with regional extirpation and putting at risk the valuable environmental services that bats provide by eating harmful insects.

  14. Multifarious plant growth promotion by an entomopathogenic fungus Lecanicillium psalliotae.

    Science.gov (United States)

    Senthil Kumar, C M; Jacob, T K; Devasahayam, S; Thomas, Stephy; Geethu, C

    2018-03-01

    An entomopathogenic fungus, Lecanicillium psalliotae strain IISR-EPF-02 previously found infectious to cardamom thrips, Sciothrips cardamomi promoted plant growth in cardamom, Elettaria cardamomum. The isolate exhibited direct plant growth promoting traits by production of indole-3-acetic acid and ammonia and by solubilizing inorganic phosphate and zinc. It also showed indirect plant growth promoting traits by producing siderophores and cell wall-degrading enzymes like, α-amylases, cellulases and proteases. In pot culture experiments, application of the fungus at the root zone of cardamom seedlings significantly increased shoot and root length, shoot and root biomass, number of secondary roots and leaves and leaf chlorophyll content compared to untreated plants. This is the first report on the plant growth promoting traits of this fungus. The entomopathogenic and multifarious growth promoting traits of L. psalliotae strain IISR-EPF-02 suggest that it has great potential for exploitation in sustainable agriculture. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Spread of Rare Fungus from Vancouver Island

    Centers for Disease Control (CDC) Podcasts

    Cryptococcus gattii, a rare fungus normally found in the tropics, has infected people and animals on Vancouver Island, Canada. Dr. David Warnock, Director, Division of Foodborne, Bacterial, and Mycotic Diseases, CDC, discusses public health concerns about further spread of this organism

  16. Novel fungus-Fe{sub 3}O{sub 4} bio-nanocomposites as high performance adsorbents for the removal of radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Congcong [Institute of Plasma Physics, Chinese Academy of Science, P.O. Box 1126, Hefei 230031 (China); University of Science and Technology of China, Hefei 230000 (China); Cheng, Wencai [Institute of Plasma Physics, Chinese Academy of Science, P.O. Box 1126, Hefei 230031 (China); Sun, Yubing, E-mail: sunyb@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Science, P.O. Box 1126, Hefei 230031 (China); School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 215123 Suzhou (China); School of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206 (China); Wang, Xiangke, E-mail: xkwang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Science, P.O. Box 1126, Hefei 230031 (China); School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 215123 Suzhou (China); School of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206 (China); Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-09-15

    Highlights: • Fungus was used as a template for the assembly of nano-Fe{sub 3}O{sub 4}. • Fungal template directed the nano-Fe{sub 3}O{sub 4} structure from the micro-scale level. • Fungal template enhanced the dispersity and stability of nano-Fe{sub 3}O{sub 4}. • Fungus-Fe{sub 3}O{sub 4} exhibited high sorption capacity for Sr(II), Th(IV) and U(VI). • Fungus-Fe{sub 3}O{sub 4} possessed satisfactory regeneration performance and reusability. - Abstract: The bio-nanocomposites of fungus-Fe{sub 3}O{sub 4} were successfully synthesized using a low-cost self-assembly technique. SEM images showed uniform decoration of nano-Fe{sub 3}O{sub 4} particles on fungus surface. The FTIR analysis indicated that nano-Fe{sub 3}O{sub 4} was combined to the fungus surface by chemical bonds. The sorption ability of fungus-Fe{sub 3}O{sub 4} toward Sr(II), Th(IV) and U(VI) was evaluated by batch techniques. Radionuclide sorption on fungus-Fe{sub 3}O{sub 4} was independent of ionic strength, indicating that inner-sphere surface complexion dominated their sorption. XPS analysis indicated that the inner-sphere radionuclide complexes were formed by mainly bonding with oxygen-containing functional groups (i.e., alcohol, acetal and carboxyl) of fungus-Fe{sub 3}O{sub 4}. The maximum sorption capacities of fungus-Fe{sub 3}O{sub 4} calculated from Langmuir isotherm model were 100.9, 223.9 and 280.8 mg/g for Sr(II) and U(VI) at pH 5.0, and Th(IV) at pH 3.0, respectively, at 303 K. Fungus-Fe{sub 3}O{sub 4} also exhibited excellent regeneration performance for the preconcentration of radionuclides. The calculated thermodynamic parameters showed that the sorption of radionuclides on fungus-Fe{sub 3}O{sub 4} was a spontaneous and endothermic process. The findings herein highlight the novel synthesis method of fungus-Fe{sub 3}O{sub 4} and its high sorption ability for radionuclides.

  17. The enigmatic truffle Fevansia aurantiaca is an ectomycorrhizal member of the Albatrellus lineage

    Science.gov (United States)

    Matthew E. Smith; Karlee J. Schell; Michael Castellano; Matthew J. Trappe; James M. Trappe

    2013-01-01

    Fevansia aurantiaca is an orange-colored truffle that has been collected infrequently in the Pacific Northwest of the USA. This sequestrate, hypogeous fungus was originally thought to be related to the genera Rhizopogon or Alpova in the Boletales, but the large, inflated cells in the trama and the very pale...

  18. Laser microprobe mass analysis (LAMMA) of aluminum and lead in fine roots and their ectomycorrhizal mantles of Norway spruce (Picea abies (L.) Karst.).

    Science.gov (United States)

    Eeckhaoudt, S; Vandeputte, D; Van Praag, H; Van Grieken, R; Jacob, W

    1992-03-01

    Fine roots and ectomycorrhizal root tips were sampled in a Norway spruce (Picea abies (L.) Karst.) stand in the eastern part of the Belgian Ardennes. The cellular and partly subcellular localizations of aluminum and lead were identified by the micro-analytical laser microprobe mass analysis (LAMMA) technique. In fine roots with secondary structure, localization of aluminum was limited to the peripheral cell layers. Lead was found in the outer layers, and also in the primary phloem. Aluminum penetrated the mycorrhizal mantle, but lead was seldom detected in ectomycorrhizae.

  19. Experimental study of Aspergillus flavus fungus from uranium mines

    International Nuclear Information System (INIS)

    Kusak, V.

    1982-01-01

    Cultivation is discussed of fungus strain Aspergillus flavus obtained from materials from uranium mines. It was found that an addition of 0.6 g of uranium in form of uranyl acetate or of 0.6 g of thorium in form on thorium nitrate in 1000 ml of the standard medium had stimulating effects on the growth and sporulation of Aspergillus flavus. Irradiating the cultivated fungus through a polyethylene foil did not show a stimulating effect. It is stated that uranium and its daughters must be directly present in the culture medium for their stimulating effect on growth and sporulation to manifest itself. (H.S.)

  20. Infection of silkworm larvae by the entomopathogenic fungus Metarhizium anisopliae

    Directory of Open Access Journals (Sweden)

    Lucineia de Fátima Chasko Ribeiro

    Full Text Available ABSTRACT: The isolate E9 of Metarhizium anisopliae was used in commercial hybrids of Bombyx mori larvae to evaluate its biological effect. Symptomatological analyses showed typical signs of fungal infection. Histopathology revealed the presence of large numbers of hemocytes in the hemocoel, and on the sixth dpi the bodies of the insects appeared to be colonised by the fungus. The isolate E9 is pathogenic to larvae B. mori and; therefore, death of the insects was caused by the colonization of fungus in the epidermal and mesodermal tissues.

  1. Does origin of mycorrhizal fungus on mycorrhizal plant influence effectiveness of the mycorrhizal symbiosis?

    NARCIS (Netherlands)

    Heijden, van der E.W.; Kuyper, T.W.

    2001-01-01

    Mycorrhizal effectiveness depends on the compatibility between fungus and plant. Therefore, genetic variation in plant and fungal species affect the effectiveness of the symbiosis. The importance of mycorrhizal plant and mycorrhizal fungus origin was investigated in two experiments. In the first

  2. Ecology of coarse wood decomposition by the saprotrophic fungus Fomes fomentarius.

    Science.gov (United States)

    Větrovský, Tomáš; Voříšková, Jana; Snajdr, Jaroslav; Gabriel, Jiří; Baldrian, Petr

    2011-07-01

    Saprotrophic wood-inhabiting basidiomycetes are the most important decomposers of lignin and cellulose in dead wood and as such they attracted considerable attention. The aims of this work were to quantify the activity and spatial distribution of extracellular enzymes in coarse wood colonised by the white-rot basidiomycete Fomes fomentarius and in adjacent fruitbodies of the fungus and to analyse the diversity of the fungal and bacterial community in a fungus-colonised wood and its potential effect on enzyme production by F. fomentarius. Fungus-colonised wood and fruitbodies were collected in low management intensity forests in the Czech Republic. There were significant differences in enzyme production by F. fomentarius between Betula pendula and Fagus sylvatica wood, the activity of cellulose and xylan-degrading enzymes was significantly higher in beech wood than in birch wood. Spatial analysis of a sample B. pendula log segment proved that F. fomentarius was the single fungal representative found in the log. There was a high level of spatial variability in the amount of fungal biomass detected, but no effects on enzyme activities were observed. Samples from the fruiting body showed high β-glucosidase and chitinase activities compared to wood samples. Significantly higher levels of xylanase and cellobiohydrolase were found in samples located near the fruitbody (proximal), and higher laccase and Mn-peroxidase activities were found in the distal ones. The microbial community in wood was dominated by the fungus (fungal to bacterial DNA ratio of 62-111). Bacterial abundance composition was lower in proximal than distal parts of wood by a factor of 24. These results show a significant level of spatial heterogeneity in coarse wood. One of the explanations may be the successive colonization of wood by the fungus: due to differential enzyme production, the rates of biodegradation of coarse wood are also spatially inhomogeneous.

  3. The fungus gardens of leaf-cutter ants undergo a distinct physiological transition during biomass degradation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Eric L.; Aylward, Frank O.; Kim, Young-Mo; Webb-Robertson, Bobbie-Jo M.; Nicora, Carrie D.; Hu, Zeping; Metz, Thomas O.; Lipton, Mary S.; Smith, Richard D.; Currie, Cameron R.; Burnum-Johnson, Kristin E.

    2014-08-01

    Leaf-cutter ants are dominant herbivores in ecosystems throughout the Neotropics. Rather than directly consuming the fresh foliar biomass they harvest, these ants use it to cultivate specialized fungus gardens. Although recent investigations have shed light on how plant biomass is degraded in fungus gardens, the cycling of nutrients that takes place in these specialized microbial ecosystems is still not well understood. Here, using metametabolomics and metaproteomics techniques, we examine the dynamics of nutrient turnover and biosynthesis in these gardens. Our results reveal that numerous free amino acids and sugars are depleted throughout the process of biomass degradation, indicating that easily accessible nutrients from plant material are readily consumed by microbes in these ecosystems. Accumulation of cellobiose and lignin derivatives near the end of the degradation process is consistent with previous findings of cellulases and laccases produced by Leucoagaricus gongylophorus, the fungus cultivated by leaf-cutter ants. Our results also suggest that ureides may be an important source of nitrogen in fungus gardens, especially during nitrogen-limiting conditions. No free arginine was detected in our metametabolomics experiments despite evidence that the host ants cannot produce this amino acid, suggesting that biosynthesis of this metabolite may be tightly regulated in the fungus garden. These results provide new insights into the dynamics of nutrient cycling that underlie this important ant-fungus symbiosis.

  4. Biodegradation of hazardous waste using white rot fungus: Project planning and concept development document

    International Nuclear Information System (INIS)

    Luey, J.; Brouns, T.M.; Elliott, M.L.

    1990-11-01

    The white rot fungus Phanerochaete chrysosporium has been shown to effectively degrade pollutants such as trichlorophenol, polychlorinated biphenyls (PCBs), dioxins and other halogenated aromatic compounds. These refractory organic compounds and many others have been identified in the tank waste, groundwater and soil of various US Department of Energy (DOE) sites. The treatment of these refractory organic compounds has been identified as a high priority for DOE's Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) waste treatment programs. Unlike many bacteria, the white rot fungus P. chrysosporium is capable of degrading these types of refractory organics and may be valuable for the treatment of wastes containing multiple pollutants. The objectives of this project are to identify DOE waste problems amenable to white rot fungus treatment and to develop and demonstrate white rot fungus treatment process for these hazardous organic compounds. 32 refs., 6 figs., 7 tabs

  5. The ability of fungus Mucor racemosus Fresenius to degrade high concentration of detergent

    Directory of Open Access Journals (Sweden)

    Jakovljević Violeta D.

    2014-01-01

    Full Text Available The ability of fungus Mucor racemosus Fresenius to decompose high concentration of commercial detergent (MERIX, Henkel, Serbia was investigated in this study. Fungus was cultivated in liquid growth medium by Czapek with addition of detergent at concentration 0.5% during 16 days. The biochemical changes of pH, redox potential, amount of free and total organic acids, and activity of alkaline phosphatase were evaluated by analysis of fermentation broth. Simultaneously, biodegradation percentage of anionic surfactant of tested detergent was confirmed by MBAS assay. At the same time, the influence of detergent on fungal growth and total dry weight biomass was determined. Detergent at concentration 0.5% influenced on decreasing of pH value and increasing of redox potential as well as increasing of free and total organic acids. Enzyme activity of alkaline phosphatase was reduced by detergent at concentration 0.5%. The fungus was decomposed about 62% of anionic surfactant during 16 day. Due to fungus was produced higher dry weight biomass (53% in relation to control. [Projekat Ministarstva nauke Republike Srbije, br. III 43004

  6. The Kinome of Edible and Medicinal Fungus Wolfiporia cocos

    Directory of Open Access Journals (Sweden)

    Wei Wei

    2016-09-01

    Full Text Available Wolfiporia cocos is an edible and medicinal fungus that grows in association with pine trees, and its dried sclerotium, known as Fuling in China, has been used as a traditional medicine in East Asian countries for centuries. Nearly 10% of the traditional Chinese medicinal preparations contain W. cocos. Currently, the commercial production of Fuling is limited because of the lack of pine-based substrate and paucity of knowledge about the sclerotial development of the fungus. Since protein kinase (PKs play significant roles in the regulation of growth, development, reproduction and environmental responses in filamentous fungi, the kinome of W. cocos was analyzed by identifying the PKs genes, studying transcript profiles and assigning PKs to orthologous groups. Of the 10 putative PKs, 11 encode atypical PKs, and 13, 10, 2, 22, and 11 could encoded PKs from the AGC, CAMK, CK, CMGC, STE and TLK Groups, respectively. The level of transcripts from PK genes associated with sclerotia formation in the mycelium and sclerotium stages were analyzed by qRT-PCR. Based on the functions of the orthologues in Sclerotinia sclerotiorum (a sclerotia-formation fungus and Saccharomyces cerevisiae, the potential roles of these W. cocos PKs were assigned. To the best of our knowledge, our study is the first identification and functional discussion of the kinome in the edible and medicinal fungus W. cocos. Our study systematically suggests potential roles of W. cocos PKs and provide comprehensive and novel insights into W. cocos sclerotial development and other economically important traits. Additionally, based on our result, genetic engineering can be employed for over expression or interference of some significant PKs genes to promote sclerotial growth and the accumulation of active compounds.

  7. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi.

    Science.gov (United States)

    Kõljalg, Urmas; Larsson, Karl-Henrik; Abarenkov, Kessy; Nilsson, R Henrik; Alexander, Ian J; Eberhardt, Ursula; Erland, Susanne; Høiland, Klaus; Kjøller, Rasmus; Larsson, Ellen; Pennanen, Taina; Sen, Robin; Taylor, Andy F S; Tedersoo, Leho; Vrålstad, Trude; Ursing, Björn M

    2005-06-01

    Identification of ectomycorrhizal (ECM) fungi is often achieved through comparisons of ribosomal DNA internal transcribed spacer (ITS) sequences with accessioned sequences deposited in public databases. A major problem encountered is that annotation of the sequences in these databases is not always complete or trustworthy. In order to overcome this deficiency, we report on UNITE, an open-access database. UNITE comprises well annotated fungal ITS sequences from well defined herbarium specimens that include full herbarium reference identification data, collector/source and ecological data. At present UNITE contains 758 ITS sequences from 455 species and 67 genera of ECM fungi. UNITE can be searched by taxon name, via sequence similarity using blastn, and via phylogenetic sequence identification using galaxie. Following implementation, galaxie performs a phylogenetic analysis of the query sequence after alignment either to pre-existing generic alignments, or to matches retrieved from a blast search on the UNITE data. It should be noted that the current version of UNITE is dedicated to the reliable identification of ECM fungi. The UNITE database is accessible through the URL http://unite.zbi.ee

  8. Detecting the heavy metal tolerance level in ectomycorrhizal fungi in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ray, P.; Tiwari, R.; Reddy, U.G.; Adholeya, A. [India Habitat Center, New Delhi (India). Energy & Resources Institute

    2005-04-01

    Eight isolates of ectomycorrhizal fungi namely, Laccaria fraterna (EM-1083), Laccaria laccata (EM-1191), Pisolithus tinctorius (EM-1081), Pisolithus tinctorius (EM-1293), Scleroderma cepa (EM-1233), Scleroderma flavidum (EM-1235), Scleroderma verucosum, (EM-1283) and Hysterangium incarceratum (EM-1185) were grown on specially designed cocktail media prepared by adding various concentrations of different heavy metals namely Al, As, Cd, Cr, Ni and Pb. The heavy metals were selected keeping in view their relative abundance in coal ash and potential toxicity. The fungal isolates were grown on such designed cocktail media. The colony diameter was used for the measurement of the fungal growth. Total heavy metal accumulated in the mycelia was assayed by atomic absorption spectrophotometry. In relation to metal tolerance ability in general, Hysterangium incarceratum (EM-1185) showed maximum tolerance with respect to growth, Laccaria fraterna (EM-1083) and Pisolithus tinctorius (EM-1293) also showed considerable tolerance to the heavy metals tested. In relation to metal uptake in particular, Pisolithus tinctorius (EM-1293), has reported maximum uptake of Al (34642.58 ppm), Cd (302.12 ppm) and Pb (3501.96 ppm). In Laccaria fraterna (EM-1083), As (130.57 ppm) and Cr (402.38 ppm) uptake was recorded maximum; and Hysterangium incarceratum (EM-1185) has recorded maximum Ni (2648.59 ppm) uptake among the three suitable isolates documented here.

  9. A new taxol-producing fungus ( Pestalotiopsis malicola ) and ...

    African Journals Online (AJOL)

    A new taxol-producing fungus ( Pestalotiopsis malicola ) and evidence for taxol as a transient product in the culture. ... African Journal of Biotechnology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives.

  10. Serpula lacrymans, the dry rot fungus and tolerance towards copper-based wood preservatives

    Science.gov (United States)

    Anne Christine Steenkjaer Hastrup; Frederick Green; Carol Clausen; Bo Jensen

    2005-01-01

    Serpula lacrymans (Wulfen : Fries) Schröter, the dry rot fungus, is considered the most economically important wood decay fungus in temperate regions of the world i.e. northern Europe, Japan and Australia. Previously copper based wood preservatives were the most commonly used preservatives for pressure treatment of wood for building constructions. Because of a...

  11. SnoRNAs from the filamentous fungus Neurospora crassa: structural, functional and evolutionary insights

    Directory of Open Access Journals (Sweden)

    Chen Chun-Long

    2009-11-01

    Full Text Available Abstract Background SnoRNAs represent an excellent model for studying the structural and functional evolution of small non-coding RNAs involved in the post-transcriptional modification machinery for rRNAs and snRNAs in eukaryotic cells. Identification of snoRNAs from Neurospora crassa, an important model organism playing key roles in the development of modern genetics, biochemistry and molecular biology will provide insights into the evolution of snoRNA genes in the fungus kingdom. Results Fifty five box C/D snoRNAs were identified and predicted to guide 71 2'-O-methylated sites including four sites on snRNAs and three sites on tRNAs. Additionally, twenty box H/ACA snoRNAs, which potentially guide 17 pseudouridylations on rRNAs, were also identified. Although not exhaustive, the study provides the first comprehensive list of two major families of snoRNAs from the filamentous fungus N. crassa. The independently transcribed strategy dominates in the expression of box H/ACA snoRNA genes, whereas most of the box C/D snoRNA genes are intron-encoded. This shows that different genomic organizations and expression modes have been adopted by the two major classes of snoRNA genes in N. crassa . Remarkably, five gene clusters represent an outstanding organization of box C/D snoRNA genes, which are well conserved among yeasts and multicellular fungi, implying their functional importance for the fungus cells. Interestingly, alternative splicing events were found in the expression of two polycistronic snoRNA gene hosts that resemble the UHG-like genes in mammals. Phylogenetic analysis further revealed that the extensive separation and recombination of two functional elements of snoRNA genes has occurred during fungus evolution. Conclusion This is the first genome-wide analysis of the filamentous fungus N. crassa snoRNAs that aids in understanding the differences between unicellular fungi and multicellular fungi. As compared with two yeasts, a more complex

  12. Evolutionary transitions in enzyme activity of ant fungus gardens.

    Science.gov (United States)

    De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G; Boomsma, Jacobus J

    2010-07-01

    Fungus-growing (attine) ants and their fungal symbionts passed through several evolutionary transitions during their 50 million year old evolutionary history. The basal attine lineages often shifted between two main cultivar clades, whereas the derived higher-attine lineages maintained an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens are targeted primarily toward partial degradation of plant cell walls, reflecting a plesiomorphic state of nondomesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major breakdown of cell walls. The adaptive significance of the lower-attine symbiont shifts remains unclear. One of these shifts was obligate, but digestive advantages remained ambiguous, whereas the other remained facultative despite providing greater digestive efficiency.

  13. Pigment Production by the Edible Filamentous Fungus Neurospora Intermedia

    Directory of Open Access Journals (Sweden)

    Rebecca Gmoser

    2018-02-01

    Full Text Available The production of pigments by edible filamentous fungi is gaining attention as a result of the increased interest in natural sources with added functionality in the food, feed, cosmetic, pharmaceutical and textile industries. The filamentous fungus Neurospora intermedia, used for production of the Indonesian food “oncom”, is one potential source of pigments. The objective of the study was to evaluate the fungus’ pigment production. The joint effect from different factors (carbon and nitrogen source, ZnCl2, MgCl2 and MnCl2 on pigment production by N. intermedia is reported for the first time. The scale-up to 4.5 L bubble column bioreactors was also performed to investigate the effect of pH and aeration. Pigment production of the fungus was successfully manipulated by varying several factors. The results showed that the formation of pigments was strongly influenced by light, carbon, pH, the co-factor Zn2+ and first- to fourth-order interactions between factors. The highest pigmentation (1.19 ± 0.08 mg carotenoids/g dry weight biomass was achieved in a bubble column reactor. This study provides important insights into pigmentation of this biotechnologically important fungus and lays a foundation for future utilizations of N. intermedia for pigment production.

  14. [Soil propagule bank of ectomycorrhizal fungi in natural forest of Pinus bungeana].

    Science.gov (United States)

    Zhao, Nan Xing; Han, Qi Sheng; Huang, Jian

    2017-12-01

    To conserve and restore the forest of Pinu bungeana, we investigated the soil propagule bank of ectomycorrhizal (ECM) fungi in a severely disturbed natural forest of P. bungeana in Shaanxi Province, China. We used a seedling-bioassay method to bait the ECM fungal propagules in the soils collected from the forest site. ECM was identified by combining morph typing with ITS-PCR-sequencing. We obtained 73 unique sequences from the ECM associated with P. bungeana seedlings, and assigned them into 12 ECM fungal OTUs at the threshold of 97% based on the sequence similarity. Rarefaction curve displayed almost all ECM fungi in the propagule bank were detected. The most frequent OTU (80%) showed poor similarity (75%) with existing sequences in the online database, which suggested it might be a new species. Cenococcum geophilum, Tomentella sp., Tuber sp. were common species in the propagule bank. Although C. geophilum and Tomentella sp. were frequently detected in other soil propagule banks of pine forest, the most frequent OTU was not assigned to known genus or family, which indicated the host-specif of ECM propagule banks associa-ted with P. bungeana. This result confirmed the importance of the special ECM propagule banks associated with P. bungeana for natural forest restoration.

  15. Pan-European distribution of white-nose syndrome fungus (Geomyces destructans not associated with mass mortality.

    Directory of Open Access Journals (Sweden)

    Sébastien J Puechmaille

    Full Text Available BACKGROUND: The dramatic mass mortalities amongst hibernating bats in Northeastern America caused by "white nose-syndrome" (WNS continue to threaten populations of different bat species. The cold-loving fungus, Geomyces destructans, is the most likely causative agent leading to extensive destruction of the skin, particularly the wing membranes. Recent investigations in Europe confirmed the presence of the fungus G. destructans without associated mass mortality in hibernating bats in six countries but its distribution remains poorly known. METHODOLOGY/PRINCIPAL FINDINGS: We collected data on the presence of bats with white fungal growth in 12 countries in Europe between 2003 and 2010 and conducted morphological and genetic analysis to confirm the identity of the fungus as Geomyces destructans. Our results demonstrate the presence of the fungus in eight countries spanning over 2000 km from West to East and provide compelling photographic evidence for its presence in another four countries including Romania, and Turkey. Furthermore, matching prevalence data of a hibernaculum monitored over two consecutive years with data from across Europe show that the temporal occurrence of the fungus, which first becomes visible around February, peaks in March but can still be seen in some torpid bats in May or June, is strikingly similar throughout Europe. Finally, we isolated and cultured G. destructans from a cave wall adjacent to a bat with fungal growth. CONCLUSIONS/SIGNIFICANCE: G. destructans is widely found over large areas of the European continent without associated mass mortalities in bats, suggesting that the fungus is native to Europe. The characterisation of the temporal variation in G. destructans growth on bats provides reference data for studying the spatio-temporal dynamic of the fungus. Finally, the presence of G. destructans spores on cave walls suggests that hibernacula could act as passive vectors and/or reservoirs for G. destructans and

  16. Ectomycorrhizal Fungal Communities in Urban Parks Are Similar to Those in Natural Forests but Shaped by Vegetation and Park Age.

    Science.gov (United States)

    Hui, Nan; Liu, Xinxin; Kotze, D Johan; Jumpponen, Ari; Francini, Gaia; Setälä, Heikki

    2017-12-01

    Ectomycorrhizal (ECM) fungi are important mutualists for the growth and health of most boreal trees. Forest age and its host species composition can impact the composition of ECM fungal communities. Although plentiful empirical data exist for forested environments, the effects of established vegetation and its successional trajectories on ECM fungi in urban greenspaces remain poorly understood. We analyzed ECM fungi in 5 control forests and 41 urban parks of two plant functional groups (conifer and broadleaf trees) and in three age categories (10, ∼50, and >100 years old) in southern Finland. Our results show that although ECM fungal richness was marginally greater in forests than in urban parks, urban parks still hosted rich and diverse ECM fungal communities. ECM fungal community composition differed between the two habitats but was driven by taxon rank order reordering, as key ECM fungal taxa remained largely the same. In parks, the ECM communities differed between conifer and broadleaf trees. The successional trajectories of ECM fungi, as inferred in relation to the time since park construction, differed among the conifers and broadleaf trees: the ECM fungal communities changed over time under the conifers, whereas communities under broadleaf trees provided no evidence for such age-related effects. Our data show that plant-ECM fungus interactions in urban parks, in spite of being constructed environments, are surprisingly similar in richness to those in natural forests. This suggests that the presence of host trees, rather than soil characteristics or even disturbance regime of the system, determine ECM fungal community structure and diversity. IMPORTANCE In urban environments, soil and trees improve environmental quality and provide essential ecosystem services. ECM fungi enhance plant growth and performance, increasing plant nutrient acquisition and protecting plants against toxic compounds. Recent evidence indicates that soil-inhabiting fungal communities

  17. Distribution of ectomycorrhizal and pathogenic fungi in soil along a vegetational change from Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia).

    Science.gov (United States)

    Taniguchi, Takeshi; Kataoka, Ryota; Tamai, Shigenobu; Yamanaka, Norikazu; Futai, Kazuyoshi

    2009-04-01

    The nitrogen-fixing tree black locust (Robinia pseudoacacia L.) seems to affect ectomycorrhizal (ECM) colonization and disease severity of Japanese black pine (Pinus thunbergii Parl.) seedlings. We examined the effect of black locust on the distribution of ECM and pathogenic fungi in soil. DNA was extracted from soil at depths of 0-5 and 5-10 cm, collected from the border between a Japanese black pine- and a black locust-dominated forest, and the distribution of these fungi was investigated by denaturing gradient gel electrophoresis. The effect of soil nutrition and pH on fungal distribution was also examined. Tomentella sp. 1 and Tomentella sp. 2 were not detected from some subplots in the Japanese black pine-dominated forest. Ectomycorrhizas formed by Tomentella spp. were dominant in black locust-dominated subplots and very little in the Japanese black pine-dominated forest. Therefore, the distribution may be influenced by the distribution of inoculum potential, although we could not detect significant relationships between the distribution of Tomentella spp. on pine seedlings and in soils. The other ECM fungi were detected in soils in subplots where the ECM fungi was not detected on pine seedlings, and there was no significant correlation between the distribution of the ECM fungi on pine seedlings and in soils. Therefore, inoculum potential seemed to not always influence the ECM community on roots. The distribution of Lactarius quieticolor and Tomentella sp. 2 in soil at a depth of 0-5 cm positively correlated with soil phosphate (soil P) and that of Tomentella sp. 2 also positively correlated with soil nitrogen (soil N). These results suggest the possibility that the distribution of inoculum potential of the ECM fungi was affected by soil N and soil P. Although the mortality of the pine seedlings was higher in the black locust-dominated area than in the Japanese black pine-dominated area, a pathogenic fungus of pine seedlings, Cylindrocladium pacificum, was

  18. Efficacy of in-house fluorescent stain for fungus

    Directory of Open Access Journals (Sweden)

    K. R. L. Surya Kirani

    2017-01-01

    Full Text Available Context: Mycotic infections are gaining importance in the present day medicine, and definite demonstration of fungus is essential for diagnosis. Small numbers of organisms in the smear can be identified by fluorescence microscopy. Calcofluor white (CFW fluorescent stain is a textile brightener mixed with Evans blue. It is expensive and not easily available. Aims: (1 To assess the efficacy of in-house CFW fluorescent stain for fungus in relation to conventional CFW stain, histopathology, and culture. (2 To determine sensitivity, specificity, negative predictive value (NPV, and positive predictive value (PPV with culture as gold standard. Settings and Design: One hundred cases of suspected dermatophytosis and 15 cases of systemic mycosis were included in the study. Subjects and Methods: The local whitener Ranipal is added with Robin blue, another brightener, and was used to stain teased fungal cultures. Skin, hair, and nails require pretreatment with potassium hydroxide (KOH. Biopsy slides require deparaffinization and pretreatment with KOH before staining. Conventional calcofluor stain, histopathology, and culture were done. Statistical Analysis Used: Statistical analysis was performed using sensitivity, specificity, NPV, and PPV. Results: The results are consistently comparable with conventional stain. The sensitivity was 100%, specificity was 93.3%, NPV was 100%, and PPV was 85.7%. It is also cost effective when compared to commercial stains. Conclusions: In-house stain can be used for screening of fungus in direct samples, biopsies as alternative in resource-constrained laboratories.

  19. Caste-specific symbiont policing by workers of Acromyrmex fungus-growing ants

    DEFF Research Database (Denmark)

    Ivens, Aniek B.F.; Nash, David R.; Poulsen, Michael

    2009-01-01

    The interaction between leaf-cutting ants and their fungus garden mutualists is ideal for studying the evolutionary stability of interspecific cooperation. Although the mutualism has a long history of diffuse coevolution, there is ample potential for conflicts between the partners over the mixing...... and transmission of symbionts. Symbiont transmission is vertical by default, and both the ants and resident fungus actively protect the fungal monoculture growing in their nest against secondary introductions of genetically dissimilar symbionts from other colonies. An earlier study showed that mixtures of major...

  20. Chemically armed mercenary ants protect fungus-farming societies

    DEFF Research Database (Denmark)

    Adams, Rachelle Martha Marie; Liberti, Joanito; Illum, Anders A.

    2013-01-01

    guest ants are sufficient to kill raiders that invariably exterminate host nests without a cohabiting guest ant colony. We also show that the odor of guest ants discourages raider scouts from recruiting nestmates to host colonies. Our results imply that Sericomyrmex fungus-growers obtain a net benefit......The ants are extraordinary in having evolved many lineages that exploit closely related ant societies as social parasites, but social parasitism by distantly related ants is rare. Here we document the interaction dynamics among a Sericomyrmex fungus-growing ant host, a permanently associated...... parasitic guest ant of the genus Megalomyrmex, and a raiding agro-predator of the genus Gnamptogenys. We show experimentally that the guest ants protect their host colonies against agro-predator raids using alkaloid venom that is much more potent than the biting defenses of the host ants. Relatively few...

  1. Nothing special in the specialist? Draft genome sequence of Cryomyces antarcticus, the most extremophilic fungus from Antarctica.

    Directory of Open Access Journals (Sweden)

    Katja Sterflinger

    Full Text Available The draft genome of the Antarctic endemic fungus Cryomyces antarcticus is presented. This rock inhabiting, microcolonial fungus is extremely stress tolerant and it is a model organism for exobiology and studies on stress resistance in Eukaryots. Since this fungus is a specialist in the most extreme environment of the Earth, the analysis of its genome is of important value for the understanding of fungal genome evolution and stress adaptation. A comparison with Neurospora crassa as well as with other microcolonial fungi shows that the fungus has a genome size of 24 Mbp, which is the average in the fungal kingdom. Although sexual reproduction was never observed in this fungus, 34 mating genes are present with protein homologs in the classes Eurotiomycetes, Sordariomycetes and Dothideomycetes. The first analysis of the draft genome did not reveal any significant deviations of this genome from comparative species and mesophilic hyphomycetes.

  2. Entomopathogenicity and Biological Attributes of Himalayan Treasured Fungus Ophiocordyceps sinensis (Yarsagumba)

    Science.gov (United States)

    Baral, Bikash

    2017-01-01

    Members of the entomophagous fungi are considered very crucial in the fungal domain relative to their natural phenomenon and economic perspectives; however, inadequate knowledge of their mechanisms of interaction keeps them lagging behind in parallel studies of fungi associated with agro-ecology, forest pathology and medical biology. Ophiocordyceps sinensis (syn. Cordyceps sinensis), an intricate fungus-caterpillar complex after it parasitizes the larva of the moth, is a highly prized medicinal fungus known widely for ages due to its peculiar biochemical assets. Recent technological innovations have significantly contributed a great deal to profiling the variable clinical importance of this fungus and other related fungi with similar medicinal potential. However, a detailed mechanism behind fungal pathogenicity and fungal-insect interactions seems rather ambiguous and is poorly justified, demanding special attention. The goal of the present review is to divulge an update on the published data and provides promising insights on different biological events that have remained underemphasized in previous reviews on fungal biology with relation to life-history trade-offs, host specialization and selection pressures. The infection of larvae by a fungus is not a unique event in Cordyceps; hence, other fungal species are also reviewed for effective comparison. Conceivably, the rationale and approaches behind the inheritance of pharmacological abilities acquired and stored within the insect framework at a time when they are completely hijacked and consumed by fungal parasites, and the molecular mechanisms involved therein, are clearly documented. PMID:29371523

  3. Rethinking crop-disease management in fungus-growing ants

    NARCIS (Netherlands)

    Boomsma, J.J.; Aanen, D.K.

    2009-01-01

    Ant fungus farming has become a prominent model for studying the evolution of mutualistic cooperation, with recent advances in reconstructing the evolutionary origin and elaborations of the symbiosis (1, 2), discovering additional partners and clarifying their interactions (3, 4), and analyzing

  4. Consistent association of fungus Fusarium mangiferae Britz with ...

    African Journals Online (AJOL)

    Administrator

    2011-06-15

    Jun 15, 2011 ... F. mangiferae proved to be the dominant fungus hosting majority of the malformed tissues. Among the indigenous ... tion amongst fruit crops due to its specific nature, growth pattern and ... It is affected by various animate and ...

  5. Symbiotic Fungus of Marine Sponge Axinella sp. Producing Antibacterial Agent

    Science.gov (United States)

    Trianto, A.; Widyaningsih, S.; Radjasa, OK; Pribadi, R.

    2017-02-01

    The emerging of multidrug resistance pathogenic bacteria cause the treatment of the diseaseshave become ineffective. There for, invention of a new drug with novel mode of action is an essential for curing the disease caused by an MDR pathogen. Marine fungi is prolific source of bioactive compound that has not been well explored. This study aim to obtain the marine sponges-associated fungus that producing anti-MDR bacteria substaces. We collected the sponge from Riung water, NTT, Indonesia. The fungus was isolated with affixed method, followed with purification with streak method. The overlay and disk diffusion agar methods were applied for bioactivity test for the isolate and the extract, respectively. Molecular analysis was employed for identification of the isolate. The sponge was identified based on morphological and spicular analysis. The ovelay test showed that the isolate KN15-3 active against the MDR Staphylococcus aureus and Eschericia coli. The extract of the cultured KN15-3 was also inhibited the S. aureus and E. coli with inhibition zone 2.95 mm and 4.13 mm, respectively. Based on the molecular analysis, the fungus was identified as Aspergillus sydowii. While the sponge was identified as Axinella sp.

  6. Conditions for selective degradation of lignin by the fungus Ganoderma australis

    Energy Technology Data Exchange (ETDEWEB)

    Rios, S.; Eyzaguirre, J. (Universidad Catolica de Chile, Santiago (Chile). Lab. de Bioquimica)

    1992-08-01

    The white-rot fungus Ganoderma australis selectively degrades lignin in the ecosystem 'palo podrido'. Using conditions that simulate those of 'palo podrido' in the laboratory, it was found that low nitrogen content and low O{sub 2} tension stimulate the production of manganese peroxidase and lignin degradation, and depress cellulose degradation and cellulase production. The inverse is found at high nitrogen concentration and high O{sub 2} tension. This agrees with previous results indicating that low O{sub 2} tension and low nitrogen stimulate selective lignin degradation by this fungus. (orig.).

  7. How attractive is the girl next door? An assessment of spatial mate acquisition and paternity in the solitary Cape dune mole-rat, Bathyergus suillus.

    Directory of Open Access Journals (Sweden)

    Timothy C Bray

    Full Text Available Behavioural observations of reproduction and mate choice in wild fossorial rodents are extremely limited and consequently indirect methods are typically used to infer mating strategies. We use a combination of morphological, reproductive, spatial, and genetic data to investigate the reproductive strategy of a solitary endemic species, the Cape dune mole-rat Bathyergus suillus. These data provide the first account on the population dynamics of this species. Marked sexual dimorphism was apparent with males being both significantly larger and heavier than females. Of all females sampled 36% had previously reproduced and 12% were pregnant at the time of capture. Post-partum sex ratio was found to be significantly skewed in favour of females. The paternity of fifteen litters (n = 37 was calculated, with sires assigned to progeny using both categorical and full probability methods, and including a distance function. The maximum distance between progeny and a putative sire was determined as 2149 m with males moving between sub-populations. We suggest that above-ground movement should not be ignored in the consideration of mate acquisition behaviour of subterranean mammals. Estimated levels of multiple paternity were shown to be potentially as high as 26%, as determined using sibship and sire assignment methods. Such high levels of multiple paternity have not been found in other solitary mole-rat species. The data therefore suggest polyandry with no evidence as yet for polygyny.

  8. Effect of coal ash on growth and metal uptake by some selected ectomycorrhizal fungi in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ray, P.; Reddy, U.G.; Lapeyrie, F.; Adholeya, A. [Energy & Resources Institute, New Delhi (India)

    2005-07-01

    Six isolates of ectomycorrhizal fungi namely, Laccaria fraterna (EM-1083), Pisolithus tinctorius (EM-1081), Pisolithus tinctorius (EM-1290), Pisolithus tinctorius (EM-1293), Scleroderma verucosurn (EM-1283), and Scleroderma cepa (EM-1233), were grown on three variants of coal ash, namely electrostatically precipitated (ESP) ash, pond ash, and bottom ash moistened with Modified Melin-Norkans (MMN) medium in vitro. The colony diameter reflected the growth of the isolates on the coal ash. Metal accumulation in the mycelia was assayed by atomic absorption spectrophotometry. Six metals, namely aluminum, cadmium, chromium, iron, lead, and nickel were selected on the basis of their abundance in coal ash and toxicity potential for the present work. Growth of vegetative mycelium on fly ash variants and metal accumulation data indicated that Pisolithus tinctorius (EM-1290) was the most tolerant among the isolates tested for most of the metals. Since this isolate is known to be mycorrhizal with Eucalyptus, it could be used for the reclamation of coal ash over burdened sites.

  9. Lignocellulose pretreatment in a fungus-cultivating termite

    Science.gov (United States)

    Hongjie Li; Daniel J. Yelle; Chang Li; Mengyi Yang; Jing Ke; Ruijuan Zhang; Yu Liu; Na Zhu; Shiyou Liang; Xiaochang Mo; John Ralph; Cameron R. Currie; Jianchu Mo

    2017-01-01

    Depolymerizing lignin, the complex phenolic polymer fortifying plant cell walls, is an essential but challenging starting point for the lignocellulosics industries. The variety of ether– and carbon–carbon interunit linkages produced via radical coupling during lignification limit chemical and biological depolymerization efficiency. In an ancient fungus-cultivating...

  10. Peroxidase Activity in Poplar Inoculated with Compatible and Incompetent Isolates of Paxillus involutus

    Directory of Open Access Journals (Sweden)

    ABDUL GAFUR

    2007-06-01

    Full Text Available Peroxidase activity of the hybrid poplar Populus×canescens (Ait. Sm. (= P. tremula L. × P. alba L. inoculated with compatible and incompetent isolates of Paxillus involutus (Batsch Fr. was investigated. Screening of the ectomycorrhizal fungal isolates was initiated with exploration of mycelial growth characteristics and mycorrhizal ability in vitro with poplar. Both traits varied within the fungus although they did not seem to be genetically correlated. While isolates SCO1, NAU, and 031 grew faster than others, only isolates MAJ, SCO1, and 031 were able to form ectomycorrhiza with poplar. Isolates MAJ (compatible and NAU (incompetent were subsequently selected for further experiments. Activity of peroxidase, one of the defense-related enzymes, was examined in pure culture and short root components of compatible and incompetent interactions between poplar and P. involutus. Peroxidase activities increased significantly in poplar inoculated with incompetent isolate of the fungus compared to control, while induction of the same enzyme was not detected in compatible associations.

  11. Reaction of some soybean mutant lines to natural rust fungus caused by (phakopsora pachyrhizi syd)

    International Nuclear Information System (INIS)

    Ratma, R.

    1988-01-01

    Reaction of some soybean mutant lines to natural rust fungus caused by (phakopsora pachyhizi syd). Eleven soybean mutant lines of orba variety derived from gamma fungus disease in the wet season 1985/86 at the experimental station of Citayam, Bogor. Based on IWGSR rating system, soybean mutant lines No 18/PsJ was moderately resistant to rust fungus disease. The other mutant lines, 14/PsJ, 15/PsJ, 20/PsJ, 102/PsJ, 106/PsJ, 111/PsJ, 118/PsJ, 119/PsJ and 220/PsJ were susceptible. (author). 4 figs.; 8 refs

  12. Casuarina in Africa: distribution, role and importance of arbuscular mycorrhizal, ectomycorrhizal fungi and Frankia on plant development.

    Science.gov (United States)

    Diagne, Nathalie; Diouf, Diegane; Svistoonoff, Sergio; Kane, Aboubacry; Noba, Kandioura; Franche, Claudine; Bogusz, Didier; Duponnois, Robin

    2013-10-15

    Exotic trees were introduced in Africa to rehabilitate degraded ecosystems. Introduced species included several Australian species belonging to the Casuarinaceae family. Casuarinas trees grow very fast and are resistant to drought and high salinity. They are particularly well adapted to poor and disturbed soils thanks to their capacity to establish symbiotic associations with mycorrhizal fungi -both arbuscular and ectomycorrhizal- and with the nitrogen-fixing bacteria Frankia. These trees are now widely distributed in more than 20 African countries. Casuarina are mainly used in forestation programs to rehabilitate degraded or polluted sites, to stabilise sand dunes and to provide fuelwood and charcoal and thus contribute considerably to improving livelihoods and local economies. In this paper, we describe the geographical distribution of Casuarina in Africa, their economic and ecological value and the role of the symbiotic interactions between Casuarina, mycorrhizal fungi and Frankia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Ectomycorrhizal and saprotrophic fungi respond differently to long-term experimentally increased snow depth in the High Arctic

    DEFF Research Database (Denmark)

    Mundra, Sunil; Halvorsen, Rune; Kauserud, Håvard

    2016-01-01

    on the variation in species richness and community structure of ectomycorrhizal (ECM) and saprotrophic fungi. Soil samples were collected weekly from mid-July to mid-September in both control and deep snow plots. Richness of ECM fungi was lower, while saprotrophic fungi was higher in increased snow depth plots...... relative to controls. [Correction added on 23 September 2016 after first online publication: In the preceding sentence, the richness of ECM and saprotrophic fungi were wrongly interchanged and have been fixed in this current version.] ECM fungal richness was related to soil NO3-N, NH4-N, and K......; and saprotrophic fungi to NO3-N and pH. Small but significant changes in the composition of saprotrophic fungi could be attributed to snow treatment and sampling time, but not so for the ECM fungi. Delayed snow melt did not influence the temporal variation in fungal communities between the treatments. Results...

  14. Botrallin from the endophytic fungus Hyalodendriella sp ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... Bioassay-guided fractionation of the crude methanol extract of the mycelia from the endophytic fungus. Hyalodendriella sp. Ponipodef12, associated with the hybrid 'Neva' of Populus deltoides Marsh × P. nigra L., led to the isolation of one compound coded as P12-1 which was identified as botrallin (1,7-.

  15. Medical image of the week: fungus ball

    Directory of Open Access Journals (Sweden)

    Rosen S

    2015-04-01

    Full Text Available No abstract available. Article truncated at 150 words. A 69 year-old Asian woman living in Arizona with a past medical history of nephrotic syndrome on high-dose steroids had worsening pulmonary symptoms. A computed tomography (CT of the chest (Figure 1 showed a 4.7 cm thin walled cavitary lesion in the right middle lobe compatible with mycetoma. She underwent thoracotomy for mycetoma resection. Surgical pathology confirmed an epithelial-lined cavity containing dense mycelia (Figure 2. Given the patient lived in an endemic area; the cavity was thought to be likely due to coccidioidomycosis. However, the mycetoma was of unclear etiology. No spherules were noted on GMS stain and tissue culture was negative. While of unclear clinical significance which fungus colonizes a pre-existing cavity, a Coccidioides PCR was performed and no Coccidioides genes were amplified making a Coccidioides mycetoma very unlikely. Pulmonary mycetoma or “fungus ball” consists of dense fungal elements and amorphous cellular material within a pre-existing pulmonary cavity. Classically ...

  16. Antimicrobial chemical constituents from endophytic fungus Phomasp.

    Institute of Scientific and Technical Information of China (English)

    Hidayat Hussain; Siegfried Draeger; Barbara Schulz; Karsten Krohn; Ines Kock; Ahmed Al-Harrasi; Ahmed Al-Rawahi; Ghulam Abbas; Ivan R Green; Afzal Shah; Amin Badshah; Muhammad Saleem

    2014-01-01

    Objective:To evaluate the antimicrobial potential of different extracts of the endophytic fungus Phomasp. and the tentative identification of their active constituents.Methods:The extract and compounds were screened for antimicrobial activity using theAgarWellDiffusionMethod. Four compounds were purified using column chromatography and their structures were assigned using1H and13CNMR spectra,DEPT,2DCOSY,HMQC andHMBC experiments.Results:The ethyl acetate fraction ofPhomasp. showed good antifungal, antibacterial, and algicidal properties.One new dihydrofuran derivative, named phomafuranol(1), together with three known compounds, phomalacton(2),(3R)-5-hydroxymellein(3) and emodin(4) were isolated from the ethyl acetate fraction ofPhomasp.Preliminary studies indicated that phomalacton(2) displayed strong antibacterial, good antifungal and antialgal activities.Similarly(3R)-5-hydroxymellein (3) and emodin(4) showed good antifungal, antibacterial and algicidal properties.Conclusions:Antimicrobial activities of the ethyl acetate fraction of the endophytic fungusPhomasp. and isolated compounds clearly demonstrate thatPhomasp. and its active compounds represent a great potential for the food, cosmetic and pharmaceutical industries.

  17. The Blast Fungus Decoded: Genomes in Flux

    Directory of Open Access Journals (Sweden)

    Thorsten Langner

    2018-04-01

    Full Text Available Plant disease outbreaks caused by fungi are a chronic threat to global food security. A prime case is blast disease, which is caused by the ascomycete fungus Magnaporthe oryzae (syn. Pyricularia oryzae, which is infamous as the most destructive disease of the staple crop rice. However, despite its Linnaean binomial name, M. oryzae is a multihost pathogen that infects more than 50 species of grasses. A timely study by P. Gladieux and colleagues (mBio 9:e01219-17, 2018, https://doi.org/10.1128/mBio.01219-17 reports the most extensive population genomic analysis of the blast fungus thus far. M. oryzae consists of an assemblage of differentiated lineages that tend to be associated with particular host genera. Nonetheless, there is clear evidence of gene flow between lineages consistent with maintaining M. oryzae as a single species. Here, we discuss these findings with an emphasis on the ecologic and genetic mechanisms underpinning gene flow. This work also bears practical implications for diagnostics, surveillance, and management of blast diseases.

  18. Ribonucleic acids in different tea fungus beverages

    Directory of Open Access Journals (Sweden)

    Malbaša Radomir V.

    2003-01-01

    Full Text Available In human nutrition, nucleic acids have to be balanced and limited up to 2 g/day because purines are degraded to urate, and excessive production of urate is a cause of gout which primarily affects adult males. Tea fungus beverage is a well known drink with high nutritional value and certain curative effects. Its benefits have been proved in a number of studies but it is still necessary to examine some potential harmful effects of this beverage. The aim of this paper was to investigate content of ribonucleic acids (RNA produced during tea fungus fermentation on a usual substrate sweetened black tea, and on Jerusalem artichoke tubers (J.A.T extract using method by Munro and Fleck (1966. pH, ribonucleic acids and also the production of proteins that affect purity of nucleic acids preparations were monitored. A higher value of RNA has been noticed in J.A.T. beverage (0.57 mg/ml and with observation of usual daily dose of the beverage it is completely safe and useful one.

  19. The Blast Fungus Decoded: Genomes in Flux.

    Science.gov (United States)

    Langner, Thorsten; Białas, Aleksandra; Kamoun, Sophien

    2018-04-17

    Plant disease outbreaks caused by fungi are a chronic threat to global food security. A prime case is blast disease, which is caused by the ascomycete fungus Magnaporthe oryzae (syn. Pyricularia oryzae ), which is infamous as the most destructive disease of the staple crop rice. However, despite its Linnaean binomial name, M. oryzae is a multihost pathogen that infects more than 50 species of grasses. A timely study by P. Gladieux and colleagues (mBio 9:e01219-17, 2018, https://doi.org/10.1128/mBio.01219-17) reports the most extensive population genomic analysis of the blast fungus thus far. M. oryzae consists of an assemblage of differentiated lineages that tend to be associated with particular host genera. Nonetheless, there is clear evidence of gene flow between lineages consistent with maintaining M. oryzae as a single species. Here, we discuss these findings with an emphasis on the ecologic and genetic mechanisms underpinning gene flow. This work also bears practical implications for diagnostics, surveillance, and management of blast diseases. Copyright © 2018 Langner et al.

  20. Contribution of arbuscular mycorrhizal fungus to red kidney and ...

    African Journals Online (AJOL)

    ... fungus to red kidney and wheat plants tolerance grown in heavy metal-polluted soil. ... artificially contaminated with high oncentrations of zinc, copper, lead and cadmium. ... strategies of remediation of highly heavy metal contaminated soils.

  1. Ecology of Fungus Gnats (Bradysia spp.) in Greenhouse Production Systems Associated with Disease-Interactions and Alternative Management Strategies.

    Science.gov (United States)

    Cloyd, Raymond A

    2015-04-09

    Fungus gnats (Bradysia spp.) are major insect pests of greenhouse-grown horticultural crops mainly due to the direct feeding damage caused by the larvae, and the ability of larvae to transmit certain soil-borne plant pathogens. Currently, insecticides and biological control agents are being used successively to deal with fungus gnat populations in greenhouse production systems. However, these strategies may only be effective as long as greenhouse producers also implement alternative management strategies such as cultural, physical, and sanitation. This includes elimination of algae, and plant and growing medium debris; placing physical barriers onto the growing medium surface; and using materials that repel fungus gnat adults. This article describes the disease-interactions associated with fungus gnats and foliar and soil-borne diseases, and the alternative management strategies that should be considered by greenhouse producers in order to alleviate problems with fungus gnats in greenhouse production systems.

  2. Ecology of Fungus Gnats (Bradysia spp. in Greenhouse Production Systems Associated with Disease-Interactions and Alternative Management Strategies

    Directory of Open Access Journals (Sweden)

    Raymond A. Cloyd

    2015-04-01

    Full Text Available Fungus gnats (Bradysia spp. are major insect pests of greenhouse-grown horticultural crops mainly due to the direct feeding damage caused by the larvae, and the ability of larvae to transmit certain soil-borne plant pathogens. Currently, insecticides and biological control agents are being used successively to deal with fungus gnat populations in greenhouse production systems. However, these strategies may only be effective as long as greenhouse producers also implement alternative management strategies such as cultural, physical, and sanitation. This includes elimination of algae, and plant and growing medium debris; placing physical barriers onto the growing medium surface; and using materials that repel fungus gnat adults. This article describes the disease-interactions associated with fungus gnats and foliar and soil-borne diseases, and the alternative management strategies that should be considered by greenhouse producers in order to alleviate problems with fungus gnats in greenhouse production systems.

  3. Spread of Rare Fungus from Vancouver Island

    Centers for Disease Control (CDC) Podcasts

    2006-12-20

    Cryptococcus gattii, a rare fungus normally found in the tropics, has infected people and animals on Vancouver Island, Canada. Dr. David Warnock, Director, Division of Foodborne, Bacterial, and Mycotic Diseases, CDC, discusses public health concerns about further spread of this organism.  Created: 12/20/2006 by Emerging Infectious Diseases.   Date Released: 12/29/2006.

  4. EVOLUTIONARY TRANSITIONS IN ENZYME ACTIVITY OF ANT FUNGUS GARDENS

    DEFF Research Database (Denmark)

    De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G

    2010-01-01

    an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across...... the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens...... are targeted primarily towards partial degradation of plant cell walls, reflecting a plesiomorphic state of non-domesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major...

  5. Formation of Ramified Colony of Fungus Aspergillus Oryzae on Agar Media

    Science.gov (United States)

    Matsuura, Shu; Miyazima, Sasuke

    Ramified colonies of fungus Aspergillus oryzae have been found to grow at a low growth rate on "liquid-like" agar media with low concentrations of agar and glucose. Box-counting fractal dimensions of the individual colony branches have been found to decrease with the time of incubation. Addition of glucose solution in the interior of branched colonies has brought about the production of the hyphal filaments almost only at the apical region of the colony branches. Active growth of the ramified colonies is localized in the peripheral zone, and this growth manner implies that the fungus is exhibiting a positive exploitation.

  6. Tea fungus fermentation on a substrate with iron(ii-ions

    Directory of Open Access Journals (Sweden)

    Malbaša Radomir V.

    2002-01-01

    Full Text Available Iron is essential element for human metabolism and it is a constituent of both heme- containing and nonheme proteins. Its deficiency can cause serious diseases, i.e. iron-deficiency anemia, with some fatal consequences. Tea fungus beverage has high nutritional value and some pharmaceutical effects. It is widely consumed allover the world and its benefits were proved a number of times. The aim of this paper was to investigate tea fungus fermentation on a substrate containing iron(II-ions and the possibility of obtaining a beverage enriched with iron. We monitored pH, iron content and also the production of L-ascorbic acid, which is very important for iron absorption in humans.

  7. Utilizing fungus myceliated grain for molt induction and performance in commercial laying hens.

    Science.gov (United States)

    Willis, W L; Isikhuemhen, O S; Allen, J W; Byers, A; King, K; Thomas, C

    2009-10-01

    Molting in poultry is used to rejuvenate hens for a second or third laying cycle. Feed withdrawal was once the most effective method used for molt induction; however, it has being phased out due to food safety and animal welfare concerns. This study evaluated the utilization of fungus myceliated grain as a safe and effective alternative for inducing molt, enhancing immunity, reducing Salmonella growth, and returning to egg production. Laying hens were subjected to 1 of 5 treatments: 1) nonfed (NF), 2) full-fed (FF), 3) fungus myceliated meal (FM), 4) 90% fungus myceliated meal+10% standard layer ration (FM-90), and 5) 90% alfalfa meal+10% fungus myceliated meal (AF-90). Each treatment condition was replicated 9 times during a 9-d molt period. The results revealed that egg production for treatments 1 and 3 ceased completely by d 5, whereas hens in treatments 4 and 5 ceased egg production by d 6. The percentage of BW loss decreased significantly (P<0.05) in treatments 1 (57%), 2 (8%), 3 (35%), 4 (37%), and 5 (44%). Ovary weights of hens fed all molting diets decreased significantly from the full-fed control but did not differ significantly (P<0.05) from each other. Salmonella population in the crop, ovary, and ceca from hens differed significantly (P<0.05) among treatments. Return to egg production differed between treatments with higher production beginning in treatment 3 and ending in treatment 5. Antibody titers did differ (P<0.05) among treatments. From these results, fungus myceliated meal appears to be a viable alternative to conventional feed withdrawal and other methods for the successful induction of molt and retention of postmolt performance.

  8. Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests.

    Science.gov (United States)

    Phillips, Lori A; Ward, Valerie; Jones, Melanie D

    2014-03-01

    Soils of northern temperate and boreal forests represent a large terrestrial carbon (C) sink. The fate of this C under elevated atmospheric CO2 and climate change is still uncertain. A fundamental knowledge gap is the extent to which ectomycorrhizal fungi (EMF) and saprotrophic fungi contribute to C cycling in the systems by soil organic matter (SOM) decomposition. In this study, we used a novel approach to generate and compare enzymatically active EMF hyphae-dominated and saprotrophic hyphae-enriched communities under field conditions. Fermentation-humus (FH)-filled mesh bags, surrounded by a sand barrier, effectively trapped EMF hyphae with a community structure comparable to that found in the surrounding FH layer, at both trophic and taxonomic levels. In contrast, over half the sequences from mesh bags with no sand barrier were identified as belonging to saprotrophic fungi. The EMF hyphae-dominated systems exhibited levels of hydrolytic and oxidative enzyme activities that were comparable to or higher than saprotroph-enriched systems. The enzymes assayed included those associated with both labile and recalcitrant SOM degradation. Our study shows that EMF hyphae are likely important contributors to current SOM turnover in sub-boreal systems. Our results also suggest that any increased EMF biomass that might result from higher below-ground C allocation by trees would not suppress C fluxes from sub-boreal soils.

  9. Control of Root-Knot Nematodes on Tomato by the Endoparasitic Fungus Meria coniospora

    OpenAIRE

    Jansson, Hans-Börje; Jeyaprakash, A.; Zuckerman, Bert M.

    1985-01-01

    The endoparasitic nematophagous fungus Meria coniospora reduced root-knot nematode galling on tomatoes in greenhouse pot trials. The fungus was introduced to pots by addition of conidia at several inoculum levels directly to the soil or addition of nematodes infected with M. coniospora to the soil; both methods reduced root galling by root-knot nematodes. These studies represent a part of a recently initiated effort to evaluate the potential of endoparasitic nematophagous fungi for biocontrol...

  10. Defending against parasites: fungus-growing ants combine specialized behaviours and microbial symbionts to protect their fungus gardens.

    Science.gov (United States)

    Little, Ainslie E F; Murakami, Takahiro; Mueller, Ulrich G; Currie, Cameron R

    2006-03-22

    Parasites influence host biology and population structure, and thus shape the evolution of their hosts. Parasites often accelerate the evolution of host defences, including direct defences such as evasion and sanitation and indirect defences such as the management of beneficial microbes that aid in the suppression or removal of pathogens. Fungus-growing ants are doubly burdened by parasites, needing to protect their crops as well as themselves from infection. We show that parasite removal from fungus gardens is more complex than previously realized. In response to infection of their fungal gardens by a specialized virulent parasite, ants gather and compress parasitic spores and hyphae in their infrabuccal pockets, then deposit the resulting pellet in piles near their gardens. We reveal that the ants' infrabuccal pocket functions as a specialized sterilization device, killing spores of the garden parasite Escovopsis. This is apparently achieved through a symbiotic association with actinomycetous bacteria in the infrabuccal pocket that produce antibiotics which inhibit Escovopsis. The use of the infrabuccal pocket as a receptacle to sequester Escovopsis, and as a location for antibiotic administration by the ants' bacterial mutualist, illustrates how the combination of behaviour and microbial symbionts can be a successful defence strategy for hosts.

  11. The relationship between an endangered North American tree and an endophytic fungus.

    Science.gov (United States)

    Lee, J C; Yang, X; Schwartz, M; Strobel, G; Clardy, J

    1995-11-01

    The Florida torreya (Torreya taxifolia) began a catastrophic decline in the late 1950s and is now the rarest tree in North America for which a full species designation has been established. The trees have common plant disease symptoms, but the reason for the decline has never been identified. T. taxifolia's imminent extinction gains special poignancy through its close relationship to the Pacific yew (Taxus brevifolia), which produces the potent anticancer agent, taxol. An examination of the endophytic fungal communities of wild torreyas consistently found a filamentous fungus, Pestalotiopsis microspora, associated with diseased trees and also with most symptomless trees. P. microspora can be cultured in the laboratory, and when it is introduced into greenhouse-grown torreyas, it causes disease symptoms similar to those seen in the field. The fungus can then be reisolated from these deliberately infected trees. The phytotoxins pestalopyrone, hydroxypestalopyrone and pestaloside have been isolated and characterized from axenic fungal cultures, and both pestalopyrone and hydroxypestalopyrone can be isolated from artificially infected torreyas. In addition, pestaloside has antifungal activity against other fungal endophytes of T. taxifolia. The filamentous fungus, P. microspora, has an endophytic-pathologic relationship with T. taxifolia. The fungus resides in the inner bark of symptomless trees, and physiological or environmental factors could trigger its pathological activity. P. microspora produces the phytotoxins pestalopyrone, hydroxypestalopyrone, and pestaloside which give rise to the disease. Pestaloside, which also has antifungal activity, could reduce competition from other fungal endophytes within the host.

  12. ZnS semiconductor quantum dots production by an endophytic fungus Aspergillus flavus

    Energy Technology Data Exchange (ETDEWEB)

    Uddandarao, Priyanka, E-mail: uddandaraopriyanka@gmail.com; B, Raj Mohan, E-mail: rajmohanbala@gmail.com

    2016-05-15

    Graphical abstract: - Highlights: • Endophytic fungus Aspergillus flavus isolated from a medicinal plant Nothapodytes foetida was used for the synthesis of quantum dots. • Morris-Weber kinetic model and Lagergren's pseudo-first-order rate equation were used to study the biosorption kinetics. • Polycrystalline ZnS quantum dots of 18 nm and 58.9 nm from TEM and DLS, respectively. - Abstract: The development of reliable and eco-friendly processes for the synthesis of metal sulphide quantum dots has been considered as a major challenge in the field of nanotechnology. In the present study, polycrystalline ZnS quantum dots were synthesized from an endophytic fungus Aspergillus flavus. It is noteworthy that apart from being rich sources of bioactive compounds, endophytic fungus also has the ability to mediate the synthesis of nanoparticles. TEM and DLS revealed the formation of spherical particles with an average diameter of about 18 nm and 58.9 nm, respectively. The ZnS quantum dots were further characterized using SEM, EDAX, XRD, UV–visible spectroscopy and FTIR. The obtained results confirmed the synthesis of polycrystalline ZnS quantum dots and these quantum dots are used for studying ROS activity. In addition this paper explains kinetics of metal sorption to study the role of biosorption in synthesis of quantum dots by applying Morris-Weber kinetic model. Since Aspergillus flavus is isolated from a medicinal plant Nothapodytes foetida, quantum dots synthesized from this fungus may have great potential in broad environmental and medical applications.

  13. Consistent association of fungus Fusarium mangiferae Britz with ...

    African Journals Online (AJOL)

    In exotic ones, maximum and minimum infections of 97.33 and 70.67% were noted in the cultivars Sensation and Pop, respectively. Light and transmission electron microscopy proved helpful in investigating the morphological matrix and ultrastructure of the propagules of fungus F. mangiferae. Key words: Mangifera indica, ...

  14. Process for producing ethanol from plant biomass using the fungus Paecilomyces sp

    Science.gov (United States)

    Wu, J.F.

    1985-08-08

    A process for producing ethanol from plant biomass is disclosed. The process includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the fungus Paecilomyces which has the ability to ferment both cellobiose and xylose to ethanol is then selected and isolated. The substrate is inoculated with this fungus, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. Finally, ethanol is recovered from the fermented substrate. 5 figs., 3 tabs.

  15. Screening of potent anticancer drug taxol from Entophytic fungus ...

    African Journals Online (AJOL)

    Muthumary

    2011-02-21

    Feb 21, 2011 ... Isolation and detection of taxol, an anticancer drug produced from ... cancer cell line, taxol produced by the test fungus in MID culture medium was isolated for its .... then plotted on a graph. RESULTS AND ... Wavelength (nm).

  16. Geosmithia-Ophiostoma: a New Fungus-Fungus Association.

    Science.gov (United States)

    Pepori, Alessia L; Bettini, Priscilla P; Comparini, Cecilia; Sarrocco, Sabrina; Bonini, Anna; Frascella, Arcangela; Ghelardini, Luisa; Scala, Aniello; Vannacci, Giovanni; Santini, Alberto

    2018-04-01

    In Europe as in North America, elms are devastated by Dutch elm disease (DED), caused by the alien ascomycete Ophiostoma novo-ulmi. Pathogen dispersal and transmission are ensured by local species of bark beetles, which established a novel association with the fungus. Elm bark beetles also transport the Geosmithia fungi genus that is found in scolytids' galleries colonized by O. novo-ulmi. Widespread horizontal gene transfer between O. novo-ulmi and Geosmithia was recently observed. In order to define the relation between these two fungi in the DED pathosystem, O. novo-ulmi and Geosmithia species from elm, including a GFP-tagged strain, were grown in dual culture and mycelial interactions were observed by light and fluorescence microscopy. Growth and sporulation of O. novo-ulmi in the absence or presence of Geosmithia were compared. The impact of Geosmithia on DED severity was tested in vivo by co-inoculating Geosmithia and O. novo-ulmi in elms. A close and stable relation was observed between the two fungi, which may be classified as mycoparasitism by Geosmithia on O. novo-ulmi. These results prove the existence of a new component in the complex of organisms involved in DED, which might be capable of reducing the disease impact.

  17. Effects of artificial defoliation of pines on the structure and physiology of the soil fungal community of a mixed pine-spruce forest

    Science.gov (United States)

    Cullings, Ken; Raleigh, Christopher; New, Michael H.; Henson, Joan

    2005-01-01

    Loss of photosynthetic area can affect soil microbial communities by altering the availability of fixed carbon. We used denaturing gradient gel electrophoresis (DGGE) and Biolog filamentous-fungus plates to determine the effects of artificial defoliation of pines in a mixed pine-spruce forest on the composition of the fungal community in a forest soil. As measured by DGGE, two fungal species were affected significantly by the defoliation of pines (P the frequency of members of the ectomycorrhizal fungus genus Cenococcum decreased significantly, while the frequency of organisms of an unidentified soil fungus increased. The decrease in the amount of Cenococcum organisms may have occurred because of the formation of extensive hyphal networks by species of this genus, which require more of the carbon fixed by their host, or because this fungus is dependent upon quantitative differences in spruce root exudates. The defoliation of pines did not affect the overall composition of the soil fungal community or fungal-species richness (number of species per core). Biolog filamentous-fungus plate assays indicated a significant increase (P the number of carbon substrates utilized by the soil fungi and the rate at which these substrates were used, which could indicate an increase in fungal-species richness. Thus, either small changes in the soil fungal community give rise to significant increases in physiological capabilities or PCR bias limits the reliability of the DGGE results. These data indicate that combined genetic and physiological assessments of the soil fungal community are needed to accurately assess the effect of disturbance on indigenous microbial systems.

  18. The dynamics of plant cell-wall polysaccharide decomposition in leaf-cutting ant fungus gardens

    DEFF Research Database (Denmark)

    Moller, Isabel Eva; de Fine Licht, Henrik Hjarvard; Harholt, Jesper

    2011-01-01

    communities of microbial and invertebrate symbionts have evolved associations with the dump material from leaf-cutting ant nests, to exploit decomposition niches that the ant garden-fungus does not utilize. Our approach thus provides detailed insight into the nutritional benefits and shortcomings associated......The degradation of live plant biomass in fungus gardens of leaf-cutting ants is poorly characterised but fundamental for understanding the mutual advantages and efficiency of this obligate nutritional symbiosis. Controversies about the extent to which the garden-symbiont Leucocoprinus gongylophorus......, to map the occurrence of cell wall polymers in consecutive sections of the fungus garden of the leaf-cutting ant Acromyrmex echinatior. We show that pectin, xyloglucan and some xylan epitopes are degraded, whereas more highly substituted xylan and cellulose epitopes remain as residuals in the waste...

  19. Greater taxol yield of fungus Pestalotiopsis hainanensis from dermatitic scurf of the giant panda (Ailuropoda melanoleuca).

    Science.gov (United States)

    Gu, Yu; Wang, Yanlin; Ma, Xiaoping; Wang, Chengdong; Yue, Guizhou; Zhang, Yuetian; Zhang, Yunyan; Li, Shanshan; Ling, Shanshan; Liu, Xiaomin; Wen, Xintian; Cao, Sanjie; Huang, Xiaobo; Deng, Junliang; Zuo, Zhicai; Yu, Shumin; Shen, Liuhong; Wu, Rui

    2015-01-01

    While taxol yields of fungi from non-animal sources are still low, whether Pestalotiopsis hainanensis isolated from the scurf of a dermatitic giant panda, Ailuropoda melanoleuca, provides a greater taxol yield remains unknown. The objective of the study was to determine the corresponding taxol yield. The structure of the taxol produced by the fungus was evaluated by thin layer chromatography (TLC), ultraviolet (UV) spectroscopy, high-performance liquid chromatography (HPLC), (1)H and (13)C nuclear magnetic resonance spectroscopy ((1)H-NMR and (13)C-NMR), and time-of-flight mass spectrometry (TOF-MS), with standard taxol as a control. The results demonstrated that the P. hainanensis fungus produced taxol, which had the same structure as the standard taxol and yield of 1,466.87 μg/L. This fungal taxol yield from the dermatitic giant panda was significantly greater than those of fungus from non-animal sources. The taxol-producing fungus may be a potential candidate for the production of taxol on an industrial scale.

  20. Arbuscular mycorrhizal fungus inoculation reduces the drought-resistance advantage of endophyte-infected versus endophyte-free Leymus chinensis.

    Science.gov (United States)

    Liu, Hui; Chen, Wei; Wu, Man; Wu, Rihan; Zhou, Yong; Gao, Yubao; Ren, Anzhi

    2017-11-01

    Grasses can be infected simultaneously by endophytic fungi and arbuscular mycorrhizal (AM) fungi. In this study, we tested the hypothesis that endophyte-associated drought resistance of a native grass was affected by an AM fungus. In a greenhouse experiment, we compared the performance of endophyte-infected (EI) and endophyte-free (EF) Leymus chinensis, a dominant species native to the Inner Mongolia steppe, under altered water and AM fungus availability. The results showed that endophyte infection significantly increased drought resistance of the host grass, but the beneficial effects were reduced by AM fungus inoculation. In the mycorrhizal-non-inoculated (MF) treatment, EI plants accumulated significantly more biomass, had greater proline and total phenolic concentration, and lower malondialdehyde concentration than EF plants. In the mycorrhizal-inoculation (MI) treatment, however, no significant difference occurred in either growth or physiological characters measured between EI and EF plants. AM fungus inoculation enhanced drought resistance of EF plants but had no significant effect on drought resistance of EI plants, thus AM fungus inoculation reduced the difference between EI and EF plants. Our findings highlight the importance of interactions among multiple microorganisms for plant performance under drought stress.

  1. The Hidden Habit of the Entomopathogenic Fungus Beauveria bassiana: First Demonstration of Vertical Plant Transmission

    Science.gov (United States)

    Quesada-Moraga, Enrique; López-Díaz, Cristina; Landa, Blanca Beatriz

    2014-01-01

    Beauveria bassiana strain 04/01-Tip, obtained from a larva of the opium poppy stem gall wasp Iraella luteipes (Hymenoptera; Cynipidae), endophytically colonizes opium poppy (Papaver somniferum L.) plants and protects them against this pest. The goal of this study was to monitor the dynamics of endophytic colonization of opium poppy by B. bassiana after the fungus was applied to the seed and to ascertain whether the fungus is transmitted vertically via seeds. Using a species-specific nested PCR protocol and DNA extracted from surface-sterilised leaf pieces or seeds of B. bassiana-inoculated opium poppy plants, the fungus was detected within the plant beginning at the growth stage of rosette building and them throughout the entire plant growth cycle (about 120–140 days after sowing). The fungus was also detected in seeds from 50% of the capsules sampled. Seeds that showed positive amplification for B. bassiana were planted in sterile soil and the endophyte was again detected in more than 42% of the plants sampled during all plant growth stages. Beauveria bassiana was transmitted to seeds in 25% of the plants from the second generation that formed a mature capsule. These results demonstrate for the first time the vertical transmission of an entomopathogenic fungus from endophytically colonised maternal plants. This information is crucial to better understand the ecological role of entomopathogenic fungi as plant endophytes and may allow development of a sustainable and cost effective strategy for I. luteipes management in P. somniferum. PMID:24551242

  2. The hidden habit of the entomopathogenic fungus Beauveria bassiana: first demonstration of vertical plant transmission.

    Science.gov (United States)

    Quesada-Moraga, Enrique; López-Díaz, Cristina; Landa, Blanca Beatriz

    2014-01-01

    Beauveria bassiana strain 04/01-Tip, obtained from a larva of the opium poppy stem gall wasp Iraella luteipes (Hymenoptera; Cynipidae), endophytically colonizes opium poppy (Papaver somniferum L.) plants and protects them against this pest. The goal of this study was to monitor the dynamics of endophytic colonization of opium poppy by B. bassiana after the fungus was applied to the seed and to ascertain whether the fungus is transmitted vertically via seeds. Using a species-specific nested PCR protocol and DNA extracted from surface-sterilised leaf pieces or seeds of B. bassiana-inoculated opium poppy plants, the fungus was detected within the plant beginning at the growth stage of rosette building and them throughout the entire plant growth cycle (about 120-140 days after sowing). The fungus was also detected in seeds from 50% of the capsules sampled. Seeds that showed positive amplification for B. bassiana were planted in sterile soil and the endophyte was again detected in more than 42% of the plants sampled during all plant growth stages. Beauveria bassiana was transmitted to seeds in 25% of the plants from the second generation that formed a mature capsule. These results demonstrate for the first time the vertical transmission of an entomopathogenic fungus from endophytically colonised maternal plants. This information is crucial to better understand the ecological role of entomopathogenic fungi as plant endophytes and may allow development of a sustainable and cost effective strategy for I. luteipes management in P. somniferum.

  3. Structure, dynamics and domain organization of the repeat protein Cin1 from the apple scab fungus

    NARCIS (Netherlands)

    Mesarich, C.H.; Schmitz, M.; Tremouilhac, P.; McGillivray, D.J.; Templeton, M.D.; Dingley, A.J.

    2012-01-01

    Venturia inaequalis is a hemi-biotrophic fungus that causes scab disease of apple. A recently-identified gene from this fungus, cin1 (cellophane-induced 1), is up-regulated over 1000-fold in planta and considerably on cellophane membranes, and encodes a cysteine-rich secreted protein of 523 residues

  4. Increasing incidence of Geomyces destructans fungus in bats from the Czech Republic and Slovakia.

    Directory of Open Access Journals (Sweden)

    Natália Martínková

    Full Text Available BACKGROUND: White-nose syndrome is a disease of hibernating insectivorous bats associated with the fungus Geomyces destructans. It first appeared in North America in 2006, where over a million bats died since then. In Europe, G. destructans was first identified in France in 2009. Its distribution, infection dynamics, and effects on hibernating bats in Europe are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We screened hibernacula in the Czech Republic and Slovakia for the presence of the fungus during the winter seasons of 2008/2009 and 2009/2010. In winter 2009/2010, we found infected bats in 76 out of 98 surveyed sites, in which the majority had been previously negative. A photographic record of over 6000 hibernating bats, taken since 1994, revealed bats with fungal growths since 1995; however, the incidence of such bats increased in Myotis myotis from 2% in 2007 to 14% by 2010. Microscopic, cultivation and molecular genetic evaluations confirmed the identity of the recently sampled fungus as G. destructans, and demonstrated its continuous distribution in the studied area. At the end of the hibernation season we recorded pathologic changes in the skin of the affected bats, from which the fungus was isolated. We registered no mass mortality caused by the fungus, and the recorded population decline in the last two years of the most affected species, M. myotis, is within the population trend prediction interval. CONCLUSIONS/SIGNIFICANCE: G. destructans was found to be widespread in the Czech Republic and Slovakia, with an epizootic incidence in bats during the most recent years. Further development of the situation urgently requires a detailed pan-European monitoring scheme.

  5. Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus.

    Science.gov (United States)

    Im, Kyung Hoan; Nguyen, Trung Kien; Choi, Jaehyuk; Lee, Tae Soo

    2016-03-01

    Lenzites betulinus, known as gilled polypore belongs to Basidiomycota was isolated from fruiting body on broadleaf dead trees. It was found that the mycelia of white rot fungus Lenzites betulinus IUM 5468 produced ethanol from various sugars, including glucose, mannose, galactose, and cellobiose with a yield of 0.38, 0.26, 0.07, and 0.26 g of ethanol per gram of sugar consumed, respectively. This fungus relatively exhibited a good ethanol production from xylose at 0.26 g of ethanol per gram of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.07 g of ethanol per gram sugar). L. betulinus was capable of producing ethanol directly from rice straw and corn stalks at 0.22 g and 0.16 g of ethanol per gram of substrates, respectively, when this fungus was cultured in a basal medium containing 20 g/L rice straw or corn stalks. These results indicate that L. betulinus can produce ethanol efficiently from glucose, mannose, and cellobiose and produce ethanol very poorly from galactose and arabinose. Therefore, it is suggested that this fungus can ferment ethanol from various sugars and hydrolyze cellulosic materials to sugars and convert them to ethanol simultaneously.

  6. The potential application of fungus Trichoderma harzianum Rifai in biodegradation of detergent and industry

    Directory of Open Access Journals (Sweden)

    Jakovljević Violeta D.

    2015-01-01

    Full Text Available The potential application of fungus Trichoderma harzianum Rifai in biodegradation of commercial detergent (MERIX, Henkel, Serbia was in the focus of this study. The fungus was isolated from wastewater samples of the Rasina River, downstream where the industrial wastewaters of factory Henkel (Krusevac, Serbia discharge into river. The fungus was cultivated in liquid growth medium by Czapek with addition of detergent at a concentration of 0.3% during 16 days. Analysis of fermentation broth evaluated the chemical and biochemical changes of pH, redox potential, activity of alkaline and acid invertase as well as activity of alkaline protease. In addition, the influence of detergent on fungal growth and total dry weight biomass was determined. At the same time, detergent disappearance in terms of methylene blue active substances in the medium was measured. The detergent at a concentration of 0.3% influenced significant decrease of pH value and increase of redox potential. The detergent showed inhibitory effect on acid invertase activity and stimulatory effect on alkaline invertase and protease activity. The fungus decomposed about 74.24% of tested detergent during 16 days, but total dry weight biomass reduced about 20% in relation to control. [Projekat Ministarstva nauke Republike Srbije, br. III 43004

  7. Levels of specificity of Xylaria species associated with fungus-growing termites: a phylogenetic approach

    DEFF Research Database (Denmark)

    Visser, Andre; Ros, V I D; De Beer, Z. W.

    2009-01-01

    of the ascomycete genus Xylaria appear and rapidly cover the fungus garden. This raises the question whether certain Xylaria species are specialised in occupying termite nests or whether they are just occasional visitors. We tested Xylaria specificity at four levels: (1) fungus-growing termites, (2) termite genera...... of the ITS region revealed 16 operational taxonomic units of Xylaria, indicating high levels of Xylaria species richness. Not much of this variation was explained by termite genus, species, or colony; thus, at level 2-4 the specificity is low. Analysis of the large subunit rDNA region, showed that all...... termite-associated Xylaria belong to a single clade, together with only three of the 26 non-termite-associated strains. Termite-associated Xylaria thus show specificity for fungus-growing termites (level 1). We did not find evidence for geographic or temporal structuring in these Xylaria phylogenies...

  8. ESTABELECIMENTO A CAMPO DE MUDAS DE Eucalyptus grandis MICORRIZADAS COM Pisolithus microcarpus (UFSC Pt 116 EM SOLO ARENOSO

    Directory of Open Access Journals (Sweden)

    Andréa Hentz de Mello

    2009-01-01

    Full Text Available The aim of this work was to evaluate the survival and the initial growth of mycorrhizated eucalypts with Pisolithus microcarpus (UFSC Pt 116 ectomycorrhizal fungus, after its transplant to area subject to the arenization process in São Francisco de Assis, RS. The area was divided into four blocks, each one with four treatments (fertile turf with and without mycorrhizae, Quartzarenic Neosoil with and without mycorrhizae. Each parcel was composed of 16 seedlings arranged in four lines in the spacing of 1,5 m x 1,5 m, totalizing in each block 64 seedlings. 90 days after the planting in the field, the eucaliptus seedlings produced in turf with fungus in the fertile substratum presented a survival rate of 100 %, whereas for those produced in fertile turf without fingi, the survival rate was 92 %. The seedlings produced in the Quartzarenic Neosoil with and without mycorrhizae had a survival rate varying around 98 and 89 %, respectively. The produced seedlings with turf and fungus showed significant differences in height and stem diameter. This study showed that the Eucalyptus grandis seedlings produced in substratum fertile turf and inoculated with the Pisolithus microcarpus (UFSC Pt 116 isolated may maintain good development and establishment in the field.

  9. Elevated CO{sub 2} does not ameliorate effects of ozone on carbon allocation in Pinus halepensis and Betula pendula in symbiosis with Paxillus involutus

    Energy Technology Data Exchange (ETDEWEB)

    Kytoeviita, M.M. [Oulu Univ., Dept. of Biology, Oulu (Finland); Pelloux, J.; Fontaine, V.; Botton, B.; Dizengremel, P. [Univ. Henri Poincare-Nancy, Lab. de Biologie Forestiere Associe INRA, Vandoeuvre-les-Nancy (France)

    1999-07-01

    The effect of 700 {mu}mol CO{sub 2} mol{sup -1}, 200 nmol ozone mol{sup -1} and a combination of the two on carbon allocation was examined in Pinus halepensis co-cultured with Betula pendula in symbiosis with the ectomycorrhizal fungus Paxillus involutus. The results show that under low nutrient and ozone levels, elevated CO{sub 2} has no effect on the growth of B. pendula or P. halepensis seedlings nor on net carbon partitioning between plant parts. Elevated CO{sub 2} did not enhance the growth of the fungus in symbiosis with the birch. On the other hand, ozone had a strong negative effect on the growth of the birch, which corresponded with the significantly reduced growth rates of the fungus. Exposure to elevated CO{sub 2} did not ameliorate the negative effects of ozone on birch; in contrast, it acted as an additional stress factor. Neither ozone nor CO{sub 2} had significant effects on biomass accumulation in the pine seedlings. Ozone stimulated the spread of mycorrhizal infection from the birch seedlings to neighbouring pines and had no statistically significant effects on phosphoenolpyruvate carboxylase (PEPC) or ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity in the pine needles or on PEPC activity in pine roots. (au)

  10. Fungus mediated biosynthesis of WO3 nanoparticles using Fusarium solani extract

    Science.gov (United States)

    Kavitha, N. S.; Venkatesh, K. S.; Palani, N. S.; Ilangovan, R.

    2017-05-01

    Currently nanoparticles were synthesized by emphasis bioremediation process due to less hazardous, eco-friendly and imperative applications on biogenic process. Fungus mediated biosynthesis strategy has been developed to prepare tungsten oxide nanoflakes (WO3, NFs) using the plant pathogenic fungus F.solani. The powder XRD pattern revealed the monoclinic crystal structure with improved crystalline nature of the synthesized WO3 nanoparticles. FESEM images showed the flake-like morphology of WO3, with average thickness and length around 40 nm and 300 nm respectively. The Raman spectrum of WO3 NFs showed their characteristic vibration modes that revealed the defect free nature of the WO3 NFs. Further, the elemental analysis indicated the stoichiometric composition of WO3 phase.

  11. Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon.

    Science.gov (United States)

    Wang, J W; Wu, J H; Huang, W Y; Tan, R X

    2006-03-01

    The effects of the carbon and nitrogen sources, initial pH and incubation temperature on laccase production by the endophytic fungus Monotospora sp. were evaluated. The optimal temperature and initial pH for laccase production by Monotospora sp. in submerged culture were found to be 30 degrees C and 8.5, respectively. Maltose (2 g l(-1)) and ammonium tartrate (10 g l(-1)) were the most suitable carbon and nitrogen source for laccase production. Under optimal culture medium, the maximum laccase activity was determined to be 13.55 U ml(-1), which was approximately four times higher than that in basal medium. This is the first report on laccase production by an endophytic fungus.

  12. Ectomycorrhizal Fungal Communities and Enzymatic Activities Vary across an Ecotone between a Forest and Field.

    Science.gov (United States)

    Rúa, Megan A; Moore, Becky; Hergott, Nicole; Van, Lily; Jackson, Colin R; Hoeksema, Jason D

    2015-08-28

    Extracellular enzymes degrade macromolecules into soluble substrates and are important for nutrient cycling in soils, where microorganisms, such as ectomycorrhizal (ECM) fungi, produce these enzymes to obtain nutrients. Ecotones between forests and fields represent intriguing arenas for examining the effect of the environment on ECM community structure and enzyme activity because tree maturity, ECM composition, and environmental variables may all be changing simultaneously. We studied the composition and enzymatic activity of ECM associated with loblolly pine (Pinus taeda) across an ecotone between a forest where P. taeda is established and an old field where P. taeda saplings had been growing for <5 years. ECM community and environmental characteristics influenced enzyme activity in the field, indicating that controls on enzyme activity may be intricately linked to the ECM community, but this was not true in the forest. Members of the Russulaceae were associated with increased phenol oxidase activity and decreased peroxidase activity in the field. Members of the Atheliaceae were particularly susceptible to changes in their abiotic environment, but this did not mediate differences in enzyme activity. These results emphasize the complex nature of factors that dictate the distribution of ECM and activity of their enzymes across a habitat boundary.

  13. Using the fungus Entomophthora muscae (chon Fresenius to eliminate some larval roles of Musca domestica

    Directory of Open Access Journals (Sweden)

    Walaa Yas Lahmood

    2017-07-01

    Full Text Available Studied effect serial concentrations from spores filtrate of fungus Entomophthora muscae on some larval roles of musca domestica in laboratory. Results were made clear that the insect roles are sensitive to fungus, and treated the food larva of musca domestica and sprinkle it by concentration 2.8×106 , 2.8×107, 2.8×108 (spore/ml has led to get rates of destruction of cumulative faculty certified on the concentration and time its magnitude 16.60 , 47.67, 53.30 % respectively , also recorded some phenotypic distortion infected dead larva represent by contraction and blackening body. The treatment of pupael by sprinkling the previous fungus concentration recorded rate of destruction of accumulative faculty its magnitude 13.33, 26.67, 33.33% respectively, also the rates emergence of adults ranged between 66.67 – 86.67 % in comparison with rates of emergence of adults in control treatment 96.67% The results are made clear that adults treatment by sprinkle with last concentration from fungus spore filtrate recorded rates of distraction its magnitude 46.61, 56.67, 70% respectively after one week from treatment .

  14. Leaf-Cutter Ant Fungus Gardens Are Biphasic Mixed Microbial Bioreactors That Convert Plant Biomass to Polyols with Biotechnological Applications

    Science.gov (United States)

    Somera, Alexandre F.; Lima, Adriel M.; dos Santos-Neto, Álvaro J.; Lanças, Fernando M.

    2015-01-01

    Leaf-cutter ants use plant matter to culture the obligate mutualistic basidiomycete Leucoagaricus gongylophorus. This fungus mediates ant nutrition on plant resources. Furthermore, other microbes living in the fungus garden might also contribute to plant digestion. The fungus garden comprises a young sector with recently incorporated leaf fragments and an old sector with partially digested plant matter. Here, we show that the young and old sectors of the grass-cutter Atta bisphaerica fungus garden operate as a biphasic solid-state mixed fermenting system. An initial plant digestion phase occurred in the young sector in the fungus garden periphery, with prevailing hemicellulose and starch degradation into arabinose, mannose, xylose, and glucose. These products support fast microbial growth but were mostly converted into four polyols. Three polyols, mannitol, arabitol, and inositol, were secreted by L. gongylophorus, and a fourth polyol, sorbitol, was likely secreted by another, unidentified, microbe. A second plant digestion phase occurred in the old sector, located in the fungus garden core, comprising stocks of microbial biomass growing slowly on monosaccharides and polyols. This biphasic operation was efficient in mediating symbiotic nutrition on plant matter: the microbes, accounting for 4% of the fungus garden biomass, converted plant matter biomass into monosaccharides and polyols, which were completely consumed by the resident ants and microbes. However, when consumption was inhibited through laboratory manipulation, most of the plant polysaccharides were degraded, products rapidly accumulated, and yields could be preferentially switched between polyols and monosaccharides. This feature might be useful in biotechnology. PMID:25911490

  15. Leucopaxillus lepistoides, a new steppe fungus in Poland

    Directory of Open Access Journals (Sweden)

    Janusz Łuszczyński

    2013-12-01

    Full Text Available The paper presents information on Leucopaxillus lepistoides (Maire Singer, a new species for Poland. This fungus was found in two localities: the neighbourhood of Busko Zdrój and Chęciny (Little Polish Upland, S-Poland. Both localities were in the xerothermic grasslands belonging to the Cirsio-Brachypodion Order, Festuco-Brometea Class.

  16. A new polyoxygenated farnesylcyclohexenone from Fungus Penicillium sp.

    Science.gov (United States)

    Yang, Yabin; Yang, Fangfang; Zhao, Lixing; Duang, Rongting; Chen, Guangyi; Li, Xiaozhan; Li, Qiling; Qin, Shaohuan; Ding, Zhongtao

    2016-01-01

    A new polyoxygenated farnesylcyclohexenone, peniginsengin A (1), was isolated from the fermentation of Penicillium sp. YIM PH30003, an endophytic fungus associated with Panax notoginseng (Burk.) F. H. Chen. The structure was assigned based on a combination of 1 D and 2 D NMR and mass spectral data. The cytotoxicity and antimicrobial activities of compound 1 were investigated.

  17. A Rare Case of Intracavitary Fungus Ball (Aspergilloma in the Old Pulmonary Tuberculosis

    Directory of Open Access Journals (Sweden)

    Majzoobi MM

    2017-06-01

    Full Text Available Introduction: Pulmonary fungus ball is a rare complication in pre-existing pulmonary cavitary lesions, due to some chronic pulmonary diseases including tuberculosis, lung abscess and sarcoidosis. Fungus ball is mostly caused by aspergillus. In many patients, fungus ball is asymptomatic, but in a significant number of them it can develop cough and hemoptysis, which may be massive and fatal. The cornerstone of assessment is chest imaging, along with sputum culture or aspergillus antibody in patient's serum. The purpose of this report is increment in attention to this complication in patients with previous pulmonary tuberculosis (TB. Case Presentation: The patient was a 23-year-old woman with chief complaint of fever, cough and hemoptysis, who was hospitalized in the Infectious Diseases Ward of Farshchian Sina hospital in March 2016. She had a history of anti-TB therapy from two years before. Sputum and bronchoalveolar lavage (BAL were negative for cytology and Mycobacterium tuberculosis, but cultures of both samples were positive for Aspergillus niger. Her lung contrast-enhanced computerized tomography (CECT scan revealed the presence of a fungus ball inside the upper lobe cavity of right lung. After lobectomy, fungal mass was confirmed by histopathology. Conclusions: In patients with pulmonary complaints (especially hemoptysis and history of cavitary pulmonary tuberculosis, the differential diagnosis of community-acquired pneumonia, lung abscess, reactivation of tuberculosis and lung cancer as well as fungal infections should be considered.

  18. Surface-bound phosphatase activity in living hyphae of ectomycorrhizal fungi of Nothofagus obliqua.

    Science.gov (United States)

    Alvarez, Maricel; Godoy, Roberto; Heyser, Wolfgang; Härtel, Steffen

    2004-01-01

    We determined the location and the activity of surface-bound phosphomonoesterase (SBP) of five ectomycorrhizal (EM) fungi of Nothofagus oblique. EM fungal mycelium of Paxillus involutus, Austropaxillus boletinoides, Descolea antartica, Cenococcum geophilum and Pisolithus tinctorius was grown in media with varying concentrations of dissolved phosphorus. SBP activity was detected at different pH values (3-7) under each growth regimen. SBP activity was assessed using a colorimetric method based on the hydrolysis of p-nitrophenyl phosphate (pNPP) to p-nitrophenol phosphate (pNP) + P. A new technique involving confocal laser-scanning microscopy (LSM) was used to locate and quantify SBP activity on the hyphal surface. EM fungi showed two fundamentally different patterns of SBP activity in relation to varying environmental conditions (P-concentrations and pH). In the cases of D. antartica, A. boletinoides and C. geophilum, changes in SBP activity were induced primarily by changes in the number of SBP-active centers on the hyphae. In the cases of P. tinctorius and P. involutus, the number of SBP-active centers per μm hyphal length changed much less than the intensity of the SBP-active centers on the hyphae. Our findings not only contribute to the discussion about the role of SBP-active centers in EM fungi but also introduce LSM as a valuable method for studying EM fungi.

  19. Quercus rubra-associated ectomycorrhizal fungal communities of disturbed urban sites and mature forests.

    Science.gov (United States)

    Karpati, Amy S; Handel, Steven N; Dighton, John; Horton, Thomas R

    2011-08-01

    The presence and quality of the belowground mycorrhizal fungal community could greatly influence plant community structure and host species response. This study tests whether mycorrhizal fungal communities in areas highly impacted by anthropogenic disturbance and urbanization are less species rich or exhibit lower host root colonization rates when compared to those of less disturbed systems. Using a soil bioassay, we sampled the ectomycorrhizal fungal (EMF) communities associating with Quercus rubra (northern red oak) seedlings in soil collected from seven sites: two mature forest reference sites and five urban sites of varying levels of disturbance. Morphological and polymerase chain reaction-restriction fragment length polymorphism analyses of fungi colonizing root tips revealed that colonization rates and fungal species richness were significantly lower on root systems of seedlings grown in disturbed site soils. Analysis of similarity showed that EMF community composition was not significantly different among several urban site soils but did differ significantly between mature forest sites and all but one urban site. We identified a suite of fungal species that occurred across several urban sites. Lack of a diverse community of belowground mutualists could be a constraint on urban plant community development, especially of late-successional woodlands. Analysis of urban EMF communities can add to our understanding of urban plant community structure and should be addressed during ecological assessment before pragmatic decisions to restore habitats are framed.

  20. Seletion of arbuscular mycorrhizal and ectomycorrhizal fungi for efficient symbiosis with Acacia mangium willd

    Directory of Open Access Journals (Sweden)

    Guilherme Augusto Robles Angelini

    2013-12-01

    Full Text Available Acacia mangium forms two kinds of mycorrhizal symbiosis, a arbuscular mycorrhizal fungi (AMFs type and another with ectomycorrhizal fungi (fECTOs. The present study aimed to select different AMFs species and fECTOs isolates for effective symbiosis with A. mangium, which provide seedlings well colonized, nodulated and developed. Experiments were conducted in a greenhouse at Embrapa Agrobiology, one for AMF species selection and another for fECTOs, using a randomized block design with five replicates. Treatments were species AMFs (Acaulospora laevis, Acaulospora morrowiae, Entrophospora colombiana, Entrophospora contigua, Gigaspora margarita, Glomus clarum, Scutellospora calospora, Scutellospora heterogama, Scutellospora gilmorei and Scutellospora pellucida or fECTOs isolated (UFSC Pt116; UFSC Pt24; UFSC Pt193; O 64–ITA6; UFSC Pt187 and O 40–ORS 7870. The AMFs species that promoted greater vegetative growth, mycorrhizal colonization and more effective symbioses were S. calospora, S. heterogama, S. gilmorei e A. morrowiae. The fECTOs not demonstrated effectiveness in promoting growth, but the isolate O64-ITA6 (Pisolithus tinctorius provided greater colonization. Seedlings of A. mangium have high responsiveness to inoculation with AMFs and depends on high root colonization, between 40 and 80%, to obtain relevant benefits from symbiose over nodule formation and growth.

  1. SPATIAL DISTRIBUTION OF SOME ECTOMYCORRHIZAL FUNGI (RUSSULACEAE, FUNGI, BASIDIOMYCOTA IN FOREST HABITATS FROM THE NORTH-EAST REGION (ROMANIA

    Directory of Open Access Journals (Sweden)

    Ovidiu COPOT

    2016-12-01

    Full Text Available Ectomycorrhizal macromycetes are, generally, an important ecological component for forest habitats, and a valuable resource in the context of sustainable development of rural communities in the North-East Region of Romania. The woody species distribution is an extremely important factor for the ECM macromycetes presence. The purpose of this study was to elaborate maps of potential distribution for some ECM edible macromycetes from Russula and Lactarius genera, based on chorological information, ICAS Forest Types Map, vegetation tables and bibliographical sources. These information allowed the elaboration of 15 potential maps of distribution for 15 edible species of Russula and Lactarius. The study was based entirely on the plant – fungal associations. The results highlighted that in the North-East Region of Romania there is a noteworthy potential for Russulaceae species. As expected, there is a large amplitude of species presence in the field depending on the fungal specificity for tree host and tree species distribution.

  2. Diversity and classification of mycorrhizal associations.

    Science.gov (United States)

    Brundrett, Mark

    2004-08-01

    Most mycorrhizas are 'balanced' mutualistic associations in which the fungus and plant exchange commodities required for their growth and survival. Myco-heterotrophic plants have 'exploitative' mycorrhizas where transfer processes apparently benefit only plants. Exploitative associations are symbiotic (in the broad sense), but are not mutualistic. A new definition of mycorrhizas that encompasses all types of these associations while excluding other plant-fungus interactions is provided. This definition recognises the importance of nutrient transfer at an interface resulting from synchronised plant-fungus development. The diversity of interactions between mycorrhizal fungi and plants is considered. Mycorrhizal fungi also function as endophytes, necrotrophs and antagonists of host or non-host plants, with roles that vary during the lifespan of their associations. It is recommended that mycorrhizal associations are defined and classified primarily by anatomical criteria regulated by the host plant. A revised classification scheme for types and categories of mycorrhizal associations defined by these criteria is proposed. The main categories of vesicular-arbuscular mycorrhizal associations (VAM) are 'linear' or 'coiling', and of ectomycorrhizal associations (ECM) are 'epidermal' or 'cortical'. Subcategories of coiling VAM and epidermal ECM occur in certain host plants. Fungus-controlled features result in 'morphotypes' within categories of VAM and ECM. Arbutoid and monotropoid associations should be considered subcategories of epidermal ECM and ectendomycorrhizas should be relegated to an ECM morphotype. Both arbuscules and vesicles define mycorrhizas formed by glomeromycotan fungi. A new classification scheme for categories, subcategories and morphotypes of mycorrhizal associations is provided.

  3. The role of enzymes in fungus-growing ant evolution

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard

    behaviour. Here we report the first large-scale comparative study on fungus garden enzyme profiles and show that various interesting changes can be documented. A more detailed analysis of laccase expression, an enzyme that is believed to oxidize phenols in defensive secondary plant compounds such as tannins...

  4. Leucoagaricus gongylophorus Produces Diverse Enzymes for the Degradation of Recalcitrant Plant Polymers in Leaf-Cutter Ant Fungus Gardens

    Energy Technology Data Exchange (ETDEWEB)

    Aylward, Frank O. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burnum-Johnson, Kristin E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tringe, Susannah G. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Teiling, Clotilde [Roche Diagnostics, Indianapolis, IN (United States); Tremmel, Daniel [Univ. of Wisconsin, Madison, WI (United States); Moeller, Joseph [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scott, Jarrod J. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barry, Kerrie W. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Piehowski, Paul D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nicora, Carrie D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Malfatti, Stephanie [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Monroe, Matthew E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Purvine, Samuel O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Goodwin, Lynne A. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weinstock, George [Washington Univ. School of Medicine, St. Louis, MS (United States); Gerardo, Nicole [Emory Univ., Atlanta, GA (United States); Suen, Garret [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Lipton, Mary S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Currie, Cameron R. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smothsonian Tropical Research Inst., Balboa (Panama)

    2013-06-12

    Plants represent a large reservoir of organic carbon comprised largely of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate fungus gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous symbiont that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and using genomic, metaproteomic, and phylogenetic tools we investigate its role in lignocellulose degradation in the fungus gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in fungus gardens, and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that may be playing an important but previously uncharacterized role in lignocellulose degradation. Our study provides a comprehensive analysis of plant biomass degradation in leaf-cutter ant fungus gardens and provides insight into the molecular dynamics underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.

  5. White-nose syndrome fungus (Geomyces destructans) in bats, Europe

    Science.gov (United States)

    Wibbelt, G.; Kurth, A.; Hellmann, D.; Weishaar, M.; Barlow, A.; Veith, M.; Pruger, J.; Gorfol, T.; Grosche, T.; Bontadina, F.; Zophel, U.; Seidl, Hans-Peter; Cryan, P.M.; Blehert, D.S.

    2010-01-01

    White-nose syndrome is an emerging disease in North America that has caused substantial declines in hibernating bats. A recently identified fungus (Geomyces destructans) causes skin lesions that are characteristic of this disease. Typical signs of this infection were not observed in bats in North America before white-nose syndrome was detected. However, unconfirmed reports from Europe indicated white fungal growth on hibernating bats without associated deaths. To investigate these differences, hibernating bats were sampled in Germany, Switzerland, and Hungary to determine whether G. destructans is present in Europe. Microscopic observations, fungal culture, and genetic analyses of 43 samples from 23 bats indicated that 21 bats of 5 species in 3 countries were colonized by G. destructans. We hypothesize that G. destructans is present throughout Europe and that bats in Europe may be more immunologically or behaviorally resistant to G. destructans than their congeners in North America because they potentially coevolved with the fungus.

  6. White-nose syndrome fungus (Geomyces destructans) in bats, Europe.

    Science.gov (United States)

    Wibbelt, Gudrun; Kurth, Andreas; Hellmann, David; Weishaar, Manfred; Barlow, Alex; Veith, Michael; Prüger, Julia; Görföl, Tamás; Grosche, Lena; Bontadina, Fabio; Zöphel, Ulrich; Seidl, Hans Peter; Seidl, Hans Peter; Blehert, David S

    2010-08-01

    White-nose syndrome is an emerging disease in North America that has caused substantial declines in hibernating bats. A recently identified fungus (Geomyces destructans) causes skin lesions that are characteristic of this disease. Typical signs of this infection were not observed in bats in North America before white-nose syndrome was detected. However, unconfirmed reports from Europe indicated white fungal growth on hibernating bats without associated deaths. To investigate these differences, hibernating bats were sampled in Germany, Switzerland, and Hungary to determine whether G. destructans is present in Europe. Microscopic observations, fungal culture, and genetic analyses of 43 samples from 23 bats indicated that 21 bats of 5 species in 3 countries were colonized by G. destructans. We hypothesize that G. destructans is present throughout Europe and that bats in Europe may be more immunologically or behaviorally resistant to G. destructans than their congeners in North America because they potentially coevolved with the fungus.

  7. Metabolism of carbohydrates in the fungus Aspergillus niger under the action of light

    International Nuclear Information System (INIS)

    Chebotarev, L.N.; Yaremina, Y.A.

    1988-01-01

    Effect of visible light with 410, 520 and 610 nm wave lengths on carbonhydrate transformation and absorption by Aspergillus niger fungus is studied. It is shown that the light stimulates the absorption by the fungus of the medium carbohydrates and their biochemical modifications. This leads to amplification of biomass accumulation and citric acid liberation to the medium. An increase of citric acid content in the cultural liquid is counected either with producer biomass growth or with amplification of biomass unit ability to citrate biosynthesis or with simultaneous realization of the both ways indicated

  8. Bioactive Constituents from an Endophytic Fungus, Penicillium polonicum NFW9, Associated with Taxus fauna.

    Science.gov (United States)

    Fatima, Nighat; Sripisut, Tawanun; Youn, Ui J; Ahmed, Safia; Ul-Haq, Ihsan; Munoz-Acuna, Ulyana; Simmons, Charles J; Qazi, Muneer A; Jadoon, Muniba; Tan, Ghee T; de Blanco, Esperanza J C; Chang, Leng C

    2017-01-01

    Endophytic fungi are being recognized as vital and untapped sources of a variety of structurally novel and unique bioactive secondary metabolites in the field of natural products drug discovery. Herein, this study reports the isolation and characterization of secondary metabolites from an endophytic fungus Penicillium polonicum (NFW9) associated with Taxus fuana. The extracts of the endophytic fungus cultured on potato dextrose agar were purified using several chromatographic techniques. Biological evaluation was performed based on their abilities to inhibit tumor necrosis factor-alpha (TNF-α)-induced nuclear factor-kappa B (NF-κB) and cytotoxicity assays. Bioactivity-directed fractionation of the ethyl acetate extract of a fermentation culture of an endophytic fungus, Penicillium polonicum led to the isolation of a dimeric anthraquinone, (R)- 1,1',3,3',5,5'-hexahydroxy-7,7'-dimethyl[2,2'-bianthracene]-9,9',10,10'-tetraone (1), a steroidal furanoid (-)-wortmannolone (2), along with three other compounds (3-4). Moreover, this is the first report on the isolation of compound 1 from an endophytic fungus. All purified metabolites were characterized by NMR and MS data analyses. The stereo structure of compound 1 was determined by the measurement of specific optical rotation and CD spectrum. The relative stereochemistry of 2 was confirmed by single-crystal X-ray diffraction. Compounds 2-3 showed inhibitory activities in the TNF-α-induced NF-κB assay with IC50 values in the range of 0.47-2.11 µM. Compounds 1, 4 and 5 showed moderate inhibition against NF-κB and cancer cell lines. The endophytic fungus Penicillium polonicum of Taxus fuana is capable of producing biologically active natural compounds. Our results provide a scientific rationale for further chemical investigations into endophyte-producing natural products, drug discovery and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Comparative EST analysis provides insights into the basal aquatic fungus Blastocladiella emersonii

    Directory of Open Access Journals (Sweden)

    Gomes Suely L

    2006-07-01

    Full Text Available Abstract Background Blastocladiella emersonii is an aquatic fungus of the Chytridiomycete class, which is at the base of the fungal phylogenetic tree. In this sense, some ancestral characteristics of fungi and animals or fungi and plants could have been retained in this aquatic fungus and lost in members of late-diverging fungal species. To identify in B. emersonii sequences associated with these ancestral characteristics two approaches were followed: (1 a large-scale comparative analysis between putative unigene sequences (uniseqs from B. emersonii and three databases constructed ad hoc with fungal proteins, animal proteins and plant unigenes deposited in Genbank, and (2 a pairwise comparison between B. emersonii full-length cDNA sequences and their putative orthologues in the ascomycete Neurospora crassa and the basidiomycete Ustilago maydis. Results Comparative analyses of B. emersonii uniseqs with fungi, animal and plant databases through the two approaches mentioned above produced 166 B. emersonii sequences, which were identified as putatively absent from other fungi or not previously described. Through these approaches we found: (1 possible orthologues of genes previously identified as specific to animals and/or plants, and (2 genes conserved in fungi, but with a large difference in divergence rate in B. emersonii. Among these sequences, we observed cDNAs encoding enzymes from coenzyme B12-dependent propionyl-CoA pathway, a metabolic route not previously described in fungi, and validated their expression in Northern blots. Conclusion Using two different approaches involving comparative sequence analyses, we could identify sequences from the early-diverging fungus B. emersonii previously considered specific to animals or plants, and highly divergent sequences from the same fungus relative to other fungi.

  10. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta

    NARCIS (Netherlands)

    Okamoto, Kenji; Nitta, Yasuyuki; Maekawa, Nitaro; Yanase, Hideshi

    2011-01-01

    The white rot fungus Trametes hirsuta produced ethanol from a variety of hexoses: glucose, mannose, cellobiose and maltose, with yields of 0.49. 0.48, 0.47 and 0.47 g/g of ethanol per sugar utilized, respectively. In addition, this fungus showed relatively favorable xylose consumption and ethanol

  11. Meroterpenoids and isoberkedienolactone from endophytic fungus Penicillium sp. associated with Dysosma versipellis.

    Science.gov (United States)

    Li, Jun-Wei; Duan, Rui-Gang; Zou, Jian-Hua; Chen, Ri-Dao; Chen, Xiao-Guang; Dai, Jun-Gui

    2014-06-01

    Seven meroterpenoids and five small-molecular precursors were isolated from Penicillium sp., an endophytic fungus from Dysosma versipellis. The structures of new compounds, 11beta-acetoxyisoaustinone (1) and isoberkedienolactone (2) were elucidated based on analysis of the spectral data, and the absolute configuration of 2 was established by TDDFT ECD calculation with satisfactory match to its experimental ECD data. Meroterpenoids originated tetraketide and pentaketide precursors, resepectively, were found to be simultaneously produced in specific fungus of Penicillium species. These compounds showed weak cytotoxicity in vitro against HCT-116, HepG2, BGC-823, NCI-H1650, and A2780 cell lines with IC 50 > 10 micromol x L(-1).

  12. Pathogenicity of the bioherbicide fungus chondrostereum purpureum to some trees and shrubs of southern Vancouver Island. FRDA report No. 246

    Energy Technology Data Exchange (ETDEWEB)

    Wall, R.E.

    1996-11-01

    Chondrostereum purpureum is a common stem-invading fungus of trees and shrubs. The fungus has attracted interest as a bioherbicide, but a better understanding of its biology is required. This study was undertaken to determine the range of virulence of isolates of C. purpureum from a given region on major hardwood species in British Columbia. The investigators inoculated wounds of stems of standing red alder (Alnus rubra) and bigleaf maple (Acer macrophyllum) saplings with 11 isolates of the fungus and measured the resulting stem cankers as an index of virulence. They also inoculated eight hardwood and shrub species with two isolates to demonstrate the range of susceptibility of species to the fungus, as well as the intraspecific variation.

  13. Fingerprints of a forest fungus: Swiss needle cast, carbon isotopes, carbohydrates, and growth in Douglas-fir

    Science.gov (United States)

    Andrea Watts; Frederick Meinzer; Brandy J. Saffell

    2014-01-01

    Swiss needle cast is caused by a fungus native to the Pacific Northwest. Its host is Douglas-fir, an iconic evergreen tree in the region. The fungus does not kill its host, but it adversely affects the tree's growth. The fungal fruiting bodies block the stomata, small openings on the underside of the needle where carbon dioxide, water vapor, and other gases are...

  14. Hydrophobins in the Life Cycle of the Ectomycorrhizal Basidiomycete Tricholoma vaccinum.

    Directory of Open Access Journals (Sweden)

    Dominik Sammer

    Full Text Available Hydrophobins-secreted small cysteine-rich, amphipathic proteins-foster interactions of fungal hyphae with hydrophobic surfaces, and are involved in the formation of aerial hyphae. Phylogenetic analyses of Tricholoma vaccinum hydrophobins showed a grouping with hydrophobins of other ectomycorrhizal fungi, which might be a result of co-evolution. Further analyses indicate angiosperms as likely host trees for the last common ancestor of the genus Tricholoma. The nine hydrophobin genes in the T. vaccinum genome were investigated to infer their individual roles in different stages of the life cycle, host interaction, asexual and sexual development, and with respect to different stresses. In aerial mycelium, hyd8 was up-regulated. In silico analysis predicted three packing arrangements, i.e., ring-like, plus-like and sheet-like structure for Hyd8; the first two may assemble to rodlets of hydrophobin covering aerial hyphae, whereas the third is expected to be involved in forming a two-dimensional network of hydrophobins. Metal stress induced hydrophobin gene hyd5. In early steps of mycorrhization, induction of hyd4 and hyd5 by plant root exudates and root volatiles could be shown, followed by hyd5 up-regulation during formation of mantle, Hartig' net, and rhizomorphs with concomitant repression of hyd8 and hyd9. During fruiting body formation, mainly hyd3, but also hyd8 were induced. Host preference between the compatible host Picea abies and the low compatibility host Pinus sylvestris could be linked to a stronger induction of hyd4 and hyd5 by the preferred host and a stronger repression of hyd8, whereas the repression of hyd9 was comparable between the two hosts.

  15. The origin of Ceratocystis fagacearum, the oak wilt fungus

    Science.gov (United States)

    Jennifer Juzwik; Thomas C. Harrington; William L. MacDonald; David N. Appel

    2008-01-01

    The oak wilt pathogen, Ceratocystis fagacearum, may be another example of a damaging, exotic species in forest ecosystems in the United States. Though C. fagacearum has received much research attention, the origin of the fungus is unknown. The pathogen may have been endemic at a low incidence until increased disturbances, changes...

  16. Identification of a taxol-producing endophytic fungus EFY-36

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Morphological and molecular methods were used to identify the statues of an isolate, EFY-36, a taxol- ... of the spores. The analysis of endophytic fungus. 18S ribosome RNA sequence used PCR cloning technology. DNA was extracted by the CTAB method. ... of the fungal mycelium (magnification: 400 ×).

  17. Resistance of some early mutant lines of soybean to rust fungus (Phakospora pachyrhizi Syd)

    International Nuclear Information System (INIS)

    Ratma, Rivaie

    1984-01-01

    A trial for resistance to rust fungus (Phakospora pachyrhizi Syd.) was conducted on 11 early mutant lines of soybean M6 (derived from Orba variety with a dose of 0.4 kGy of Co-60) at Citayam Experimental Station, Bogor, in the wet season of 80/81. Based on IWGSR rating system, soybean mutant lines number M6/40/6 was moderately susceptible to rust fungus (Phakospora pachyrhizi Syd). While 10 other soybean mutant lines M6/40/1, M6/40/2, M6/40/3, M6/40/4, M6/40/5, M6/40/7, M6/40/8, M6/40/9, M6/40/10 and M6/40/11 were susceptible to rust fungus. Significant differences in yield were observed between the early mutant lines M6/40/6 (moderate susceptible), 10 other mutant lines (susceptible) and ringgit variety (susceptible). However, a significant lower yield was produced by those mutant lines compared with the yield of orba variety. (author)

  18. Active pharmaceutical ingredient (api) from an estuarine fungus, Microdochium nivale (Fr.)

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosale, S.H.; Patil, K.B.; Parameswaran, P.S.; Jagtap, T.G.

    Various marine habitats sustain variety of bio-sources of ecological and biotech potentials. Pharmaceutical potential compound Cyclosporine A was reported from marine fungus Microdochium nivale associated with Porteresia coarctata, a marine salt...

  19. Antiangiogenic, wound healing and antioxidant activity of Cladosporium cladosporioides (Endophytic Fungus isolated from seaweed (Sargassum wightii

    Directory of Open Access Journals (Sweden)

    Manjunath M. Hulikere

    2016-10-01

    Full Text Available Endophytic fungi from marine seaweeds are the less studied group of organisms with vast medical applications. The aim of the present study was to evaluate antioxidant, antiangiogenic as well as wound healing potential of the endophytic fungus isolated from the seaweed Sargassum wightii. The morphological characters and the rDNA internal transcribed spacer sequence analysis (BLAST search in Gen Bank database was used for the identification of endophytic fungus. The antioxidant potential of the ethyl acetate extract of endophytic fungus was assessed by, 1,1-diphenyl-2-picryl-hydrazyl radical scavenging method. The fungal extract was also analysed for reducing power, total phenolic and flavonoid content. Antiangiogenic activity of the fungal extract was studied in vitro by inhibition of wound healing scratch assay and in vivo by Chick chorioallantoic membrane assay. The endophytic fungus was identified as Cladosporium cladosporioides (Gen Bank ID – KT384175. The ethyl acetate extract of C. cladosporioides showed a significant antioxidant and angiosuppressive activity. The ESI-LC-MS analysis of the extract revealed the presence of wide range of secondary metabolites. Results suggest that C. cladosporioides extract could be exploited as a potential source for angiogenic modulators.

  20. Influence of arbuscular mycorrhizal fungus Glomus intraradices on accumulation of radiocaesium by plant species

    International Nuclear Information System (INIS)

    Dubchak, S.V.

    2012-01-01

    The role of arbuscular mycorrhizal fungus Glomus intraradices in 134 Cs isotope by different plant species is studied. The impact of radiocaesium on mycorrhizal development and functioning of plant photosynthetic apparatus is considered. The possibility of mycorrhizal symbiosis application in phyto remediation of radioactively contaminated areas is analyzed. It is found that colonization pf plants with arbuscular mycorrhizal fungus resulted in significant decrease of radiocesium concentration in their aboveground parts, while it did not have considerable impact on the radionuclide uptake by plant root system

  1. New Cytochalasin from Rosellinia sanctae-cruciana, an Endophytic Fungus of Albizia lebbeck.

    Science.gov (United States)

    Sharma, Nisha; Kushwaha, Manoj; Arora, Divya; Jain, Shreyans; Singamaneni, Venugopal; Sharma, Sonia; Shankar, Ravi; Bhushan, Shashi; Gupta, Prasoon; Jaglan, Sundeep

    2018-03-24

    To explore the potential of Rosellinia sanctae-cruciana an endophytic fungus associated with Albizia lebbeck for pharmaceutically important cytotoxic compounds. One novel cytochalasin, named Jammosporin A (1) and four known analogues (2-5) were isolated from the culture of the endophytic fungus Rosellinia sanctae-cruciana, harbored from the leaves of medicinal plant Albizia lebbeck. Their structures were elucidated by extensive spectroscopic analyses including 1D and 2D NMR data along with MS data and by comparison with literature reports. In preliminary screening the ethyl acetate extract of the fungal culture was tested for the cytotoxic activity against a panel of four cancer cell lines (MOLT-4, A549, MIA PaCa -2 and MDA-MB-231), was found to be active against MOLT-4 with IC 50 value of 10 μg/mL. Owing to the remarkable cytotoxic activity of the extract the isolated compounds (1-5) were evaluated for their cytototoxicity against MOLT-4 cell line by MTT assay. Interestingly, compounds 1-2, 4 and 5 showed considerable cytotoxic potential against the human leukemia cancer cell line (MOLT-4) with IC 50 values of 20.0, 10.0, 8.0 and 6.0 μM, respectively, while compound 3 showed IC 50 value of 25 μM. This is the first report of existence of this class of secondary metabolites in Rosellinia sanctae-cruciana fungus. This study discovered a novel compound, named Jammosporin A, isolated for the first time from Rosellinia sanctae-cruciana, an endophytic fungus of Albizia lebbeck with anticancer activity against MOLT-4 cell line. Rosellinia sanctae-cruciana represents an interesting source of a new compound with bioactive potential as a therapeutic agent against human leukemia cancer cell line (MOLT-4). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Microbial community structure of leaf-cutter ant fungus gardens and refuse dumps.

    Science.gov (United States)

    Scott, Jarrod J; Budsberg, Kevin J; Suen, Garret; Wixon, Devin L; Balser, Teri C; Currie, Cameron R

    2010-03-29

    Leaf-cutter ants use fresh plant material to grow a mutualistic fungus that serves as the ants' primary food source. Within fungus gardens, various plant compounds are metabolized and transformed into nutrients suitable for ant consumption. This symbiotic association produces a large amount of refuse consisting primarily of partly degraded plant material. A leaf-cutter ant colony is thus divided into two spatially and chemically distinct environments that together represent a plant biomass degradation gradient. Little is known about the microbial community structure in gardens and dumps or variation between lab and field colonies. Using microbial membrane lipid analysis and a variety of community metrics, we assessed and compared the microbiota of fungus gardens and refuse dumps from both laboratory-maintained and field-collected colonies. We found that gardens contained a diverse and consistent community of microbes, dominated by Gram-negative bacteria, particularly gamma-Proteobacteria and Bacteroidetes. These findings were consistent across lab and field gardens, as well as host ant taxa. In contrast, dumps were enriched for Gram-positive and anaerobic bacteria. Broad-scale clustering analyses revealed that community relatedness between samples reflected system component (gardens/dumps) rather than colony source (lab/field). At finer scales samples clustered according to colony source. Here we report the first comparative analysis of the microbiota from leaf-cutter ant colonies. Our work reveals the presence of two distinct communities: one in the fungus garden and the other in the refuse dump. Though we find some effect of colony source on community structure, our data indicate the presence of consistently associated microbes within gardens and dumps. Substrate composition and system component appear to be the most important factor in structuring the microbial communities. These results thus suggest that resident communities are shaped by the plant degradation

  3. An entomopathogenic fungus for control of adult African malaria mosquitoes

    NARCIS (Netherlands)

    Scholte, E.J.; Ng'habi, K.R.N.; Kihonda, J.; Takken, W.; Paaijmans, K.P.; Abdulla, S.; Killeen, G.F.; Knols, B.G.J.

    2005-01-01

    Biological control of malaria mosquitoes in Africa has rarely been used in vector control programs. Recent developments in this field show that certain fungi are virulent to adult Anopheles mosquitoes. Practical delivery of an entomopathogenic fungus that infected and killed adult Anopheles gambiae,

  4. Mycelium cultivation, chemical composition and antitumour activity of a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis.

    Science.gov (United States)

    Leung, P H; Zhang, Q X; Wu, J Y

    2006-08-01

    To examine and illustrate the morphological characteristics and growth kinetics of Cs-HK1, a Tolypocladium fungus, isolated from wild Cordyceps sinensis in solid and liquid cultures, and the major chemical constituents and antitumour effects of Cs-HK1 mycelium. The Cs-HK1 fungus was isolated from the fruiting body of a wild C. sinensis and identified as a Tolypocladium sp. fungus. It grew rapidly at 22-25 degrees C on a liquid medium containing glucose, yeast extract, peptone and major inorganic salts, with a specific growth rate of 1.1 day(-1), reaching a cell density of 23.0 g dw l(-1) in 7-9 days. Exopolysaccharides accumulated in the liquid culture to about 0.3 g l(-1) glucose equivalent. In comparison with natural C. sinensis, the fungal mycelium had similar contents of protein (11.7-microg) and carbohydrate (654.6-microg) but much higher contents of polysaccharide (244.2 mg vs 129.5 mg), adenosine (1116.8-microg vs 264.6 microg) and cordycepin (65.7 microg vs 20.8 microg) (per gram dry weight). Cyclosporin A, an antibiotic commonly produced by Tolypocladium sp., was also detected from the mycelium extract. The hot water extract of mycelium showed low cytotoxic effect on B16 melanoma cells in culture (about 25% inhibition) but significant antitumour effect in animal tests, causing 50% inhibition of B16 cell-induced tumour growth in mice. The Tolypocladium sp. fungus, Cs-HK1, can be easily cultivated by liquid fermentation. The mycelium biomass contained the major bioactive compounds of C. sinensis, and the mycelium extract had significant antitumour activity. The Cs-HK1 fungus may be a new and promising medicinal fungus and an effective and economical substitute of the wild C. sinensis for health care.

  5. Comparative nutritional evaluation of fungus and alkali treated rice ...

    African Journals Online (AJOL)

    Feeding trial was conducted with growing white albino rats (Rattus norvegicus) for 56 days to determine whether alkali (NaOH) or fungus (Mushroom) treatment of rice husk would affect rat's performance. The treated rice husk comprised 10% of the rat's diets, the rests of which were 50% maize, 20% soybeans, 19% ...

  6. Ethanol effect on metabolic activity of the ethalogenic fungus Fusarium oxysporum.

    Science.gov (United States)

    Paschos, Thomas; Xiros, Charilaos; Christakopoulos, Paul

    2015-03-12

    Fusarium oxysporum is a filamentous fungus which has attracted a lot of scientific interest not only due to its ability to produce a variety of lignocellulolytic enzymes, but also because it is able to ferment both hexoses and pentoses to ethanol. Although this fungus has been studied a lot as a cell factory, regarding applications for the production of bioethanol and other high added value products, no systematic study has been performed concerning its ethanol tolerance levels. In aerobic conditions it was shown that both the biomass production and the specific growth rate were affected by the presence of ethanol. The maximum allowable ethanol concentration, above which cells could not grow, was predicted to be 72 g/L. Under limited aeration conditions the ethanol-producing capability of the cells was completely inhibited at 50 g/L ethanol. The lignocellulolytic enzymatic activities were affected to a lesser extent by the presence of ethanol, while the ethanol inhibitory effect appears to be more severe at elevated temperatures. Moreover, when the produced ethanol was partially removed from the broth, it led to an increase in fermenting ability of the fungus up to 22.5%. The addition of F. oxysporum's system was shown to increase the fermentation of pretreated wheat straw by 11%, in co-fermentation with Saccharomyces cerevisiae. The assessment of ethanol tolerance levels of F. oxysporum on aerobic growth, on lignocellulolytic activities and on fermentative performance confirmed its biotechnological potential for the production of bioethanol. The cellulolytic and xylanolytic enzymes of this fungus could be exploited within the biorefinery concept as their ethanol resistance is similar to that of the commercial enzymes broadly used in large scale fermentations and therefore, may substantially contribute to a rational design of a bioconversion process involving F. oxysporum. The SSCF experiments on liquefied wheat straw rich in hemicellulose indicated that the

  7. Impact of climate change on potential distribution of Chinese caterpillar fungus (Ophiocordyceps sinensis) in Nepal Himalaya.

    Science.gov (United States)

    Shrestha, Uttam Babu; Bawa, Kamaljit S

    2014-01-01

    Climate change has already impacted ecosystems and species and substantial impacts of climate change in the future are expected. Species distribution modeling is widely used to map the current potential distribution of species as well as to model the impact of future climate change on distribution of species. Mapping current distribution is useful for conservation planning and understanding the change in distribution impacted by climate change is important for mitigation of future biodiversity losses. However, the current distribution of Chinese caterpillar fungus, a flagship species of the Himalaya with very high economic value, is unknown. Nor do we know the potential changes in suitable habitat of Chinese caterpillar fungus caused by future climate change. We used MaxEnt modeling to predict current distribution and changes in the future distributions of Chinese caterpillar fungus in three future climate change trajectories based on representative concentration pathways (RCPs: RCP 2.6, RCP 4.5, and RCP 6.0) in three different time periods (2030, 2050, and 2070) using species occurrence points, bioclimatic variables, and altitude. About 6.02% (8,989 km2) area of the Nepal Himalaya is suitable for Chinese caterpillar fungus habitat. Our model showed that across all future climate change trajectories over three different time periods, the area of predicted suitable habitat of Chinese caterpillar fungus would expand, with 0.11-4.87% expansion over current suitable habitat. Depending upon the representative concentration pathways, we observed both increase and decrease in average elevation of the suitable habitat range of the species.

  8. Contenido de nutrientes e inoculación con hongos ectomicorrízicos comestibles en dos pinos neotropicales Nutrient contents and inoculation with edible ectomycorrhizal fungi on two neotropical pines

    Directory of Open Access Journals (Sweden)

    VIOLETA CARRASCO-HERNÁNDEZ

    2011-03-01

    Full Text Available Un alto porcentaje de mortalidad se presenta en plántulas de pinos que son trasplantados de vivero a campo, debido a que no poseen hongos ectomicorrízicos los cuales forman simbiosis obligada con las plantas de forma natural en los bosques. Estos hongos facilitan la absorción de nutrientes y agua, además de estimular su crecimiento. Debido a la importancia ecológica y fisiológica de los hongos ectomicorrízicos, el presente trabajo evaluó el efecto en crecimiento, peso seco, porcentaje de colonización y contenido de nutrientes de la inoculación de seis especies ectomicorrízicas comestibles de los géneros Lacearía y Hebeloma en Pinus patula Schiede ex Schltdl. & Cham. y P. pseudostrobus Lindl., en condiciones de invernadero. Después de 397 días de la siembra se observó un efecto benéfico en el crecimiento de ambos pinos como resultado de la inoculación en términos de peso seco en parte aérea y radical, así como un mayor contenido de N, P y K. El porcentaje de micorrización en plantas inoculadas con las especies fúngicas varió de 57 % a 90 %. Cuando se efectuó inoculación combinada de especies ectomicorrízicas, se registró dominancia de una de las especies inoculadas, en términos de colonización radical. En estos tratamientos con inoculación simultánea, los efectos benéficos registrados en los hospederos fueron comparables a los observados cuando se inoculó de manera individual a las especies fúngicas dominantes. En función de los resultados encontrados se recomienda en el establecimiento de plantaciones forestales la inoculación de ambas especies de pinos con especies de hongos de los géneros Laccaria y Hebeloma.A high percentage of mortality appears in pine seedlings transplanted from nursery to field, due to the fact that they lack ectomycorrhizal fungi which form obligated symbiosis with plants in natural conditions in the forests. These fungi facilitate the absorption of nutrients and water, and therefore

  9. Fertility-dependent effects of ectomycorrhizal fungal communities on white spruce seedling nutrition.

    Science.gov (United States)

    Smith, Alistair J H; Potvin, Lynette R; Lilleskov, Erik A

    2015-11-01

    Ectomycorrhizal fungi (EcMF) typically colonize nursery seedlings, but nutritional and growth effects of these communities are only partly understood. To examine these effects, Picea glauca seedlings collected from a tree nursery naturally colonized by three dominant EcMF were divided between fertilized and unfertilized treatments. After one growing season seedlings were harvested, ectomycorrhizas identified using DNA sequencing, and seedlings analyzed for leaf nutrient concentration and content, and biomass parameters. EcMF community structure-nutrient interactions were tested using nonmetric multidimensional scaling (NMDS) combined with vector analysis of foliar nutrients and biomass. We identified three dominant species: Amphinema sp., Atheliaceae sp., and Thelephora terrestris. NMDS + envfit revealed significant community effects on seedling nutrition that differed with fertilization treatment. PERMANOVA and regression analyses uncovered significant species effects on host nutrient concentration, content, and stoichiometry. Amphinema sp. had a significant positive effect on phosphorus (P), calcium and zinc concentration, and P content; in contrast, T. terrestris had a negative effect on P concentration. In the unfertilized treatment, percent abundance of the Amphinema sp. negatively affected foliar nitrogen (N) concentration but not content, and reduced foliar N/P. In fertilized seedlings, Amphinema sp. was positively related to foliar concentrations of N, magnesium, and boron, and both concentration and content of manganese, and Atheliaceae sp. had a negative relationship with P content. Findings shed light on the community and species effects on seedling condition, revealing clear functional differences among dominants. The approach used should be scalable to explore function in more complex communities composed of unculturable EcMF.

  10. Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone.

    Science.gov (United States)

    Hubert, Nathaniel A; Gehring, Catherine A

    2008-09-01

    Ectomycorrhizal fungi (EMF) are frequently species rich and functionally diverse; yet, our knowledge of the environmental factors that influence local EMF diversity and species composition remains poor. In particular, little is known about the influence of neighboring plants on EMF community structure. We tested the hypothesis that the EMF of plants with heterospecific neighbors would differ in species richness and community composition from the EMF of plants with conspecific neighbors. We conducted our study at the ecotone between pinyon (Pinus edulis)-juniper (Juniperus monosperma) woodland and ponderosa pine (Pinus ponderosa) forest in northern Arizona, USA where the dominant trees formed associations with either EMF (P. edulis and P. ponderosa) or arbuscular mycorrhizal fungi (AMF; J. monosperma). We also compared the EMF communities of pinyon and ponderosa pines where their rhizospheres overlapped. The EMF community composition, but not species richness of pinyon pines was significantly influenced by neighboring AM juniper, but not by neighboring EM ponderosa pine. Ponderosa pine EMF communities were different in species composition when growing in association with pinyon pine than when growing in association with a conspecific. The EMF communities of pinyon and ponderosa pines were similar where their rhizospheres overlapped consisting of primarily the same species in similar relative abundance. Our findings suggest that neighboring tree species identity shaped EMF community structure, but that these effects were specific to host-neighbor combinations. The overlap in community composition between pinyon pine and ponderosa pine suggests that these tree species may serve as reservoirs of EMF inoculum for one another.

  11. Production of cellulases by a thermophilic fungus, Thermoascus aurantiacus A-131

    Energy Technology Data Exchange (ETDEWEB)

    Kawamori, M; Takayama, K; Takasawa, S

    1987-01-01

    A thermophilic fungus, strain A-131, isolated from a soil sample produced cellulases in the culture fluid. The fungus (strain A-131) was identified as Thermoascus aurantiacus Miehe from its taxonomical characteristics. The cellulases of T. aurantiacus A-131 were produced constitutively without cellulase inducers. Moreover, their production was induced markedly by amorphous polysaccharides containing beta-1, 4 linkages such as alkali-treated bagasse and xylan rather than crystalline cellulose. The cultivation of T. aurantiacus A-131 at 45 degrees C with 4% alkali-treated bagasse led to the production of about 70 U/ml of CMCase after four days. The thermostability of the cellulolytic enzymes of T. aurantiacus A-131 was excellent and virtually no decreases in their activities were seen after preincubation at 60 degrees C for 24 hours. (Refs. 21).

  12. Diversity and community structure of ectomycorrhizal fungi associated with Larix chinensis across the alpine treeline ecotone of Taibai Mountain.

    Science.gov (United States)

    Han, Qisheng; Huang, Jian; Long, Dongfeng; Wang, Xiaobing; Liu, Jianjun

    2017-07-01

    Alpine treeline ecotones represent ecosystems that are vulnerable to climate change. We investigated the ectomycorrhizal (ECM) community, which has potential to stabilize alpine ecosystems. ECM communities associated with Larix chinensis were studied in four zones along a natural ecotone from a mixed forest stand over pure forest stands, the timberline, and eventually, the treeline (3050-3450 m) in Tabai Mountain, China. Sixty operational taxonomic units (OTUs) of ECM fungi were identified by sequencing the rDNA internal transcribed spacer of ECM tips. The richness of ECM species increased with elevation. The soil C/N ratio was the most important factor explaining ECM species richness. The treeline zone harbored some unique ECM fungi whereas no unique genera were observed in the timberline and pure forest zone. Elevation and topography were equally important factors influencing ECM communities in the alpine region. We suggest that a higher diversity of the ECM fungal community associated with L. chinensis in the treeline zone could result from niche differentiation.

  13. Treatment of a Textile Effluent from Dyeing with Cochineal Extracts Using Trametes versicolor Fungus

    Directory of Open Access Journals (Sweden)

    Gabriela Arroyo-Figueroa

    2011-01-01

    Full Text Available Trametes versicolor (Tv fungus can degrade synthetic dyes that contain azo groups, anthraquinone, triphenylmethane polymers, and heterocyclic groups. However, no references have been found related to the degradation of natural dyes, such as the carminic acid that is contained in the cochineal extract. Experiments to determine the decolorization of the effluent used in the cotton dyeing process with cochineal extract by means of Tv fungus were done. Treatments to determine decolorization in the presence or absence of Kirk's medium, glucose, and fungus, with an addition of 50% (v v-1 of nonsterilized effluent were performed. Physicochemical characterization was performed at the start and end of the treatment. Degradation kinetics were determined. A direct relationship was found between the dry weight of fungi, pH, and the decolorization system, with higher decolorization at lower pH levels (pH ~4.3. High decolorization (81% ± 0.09; 88% ± 0.17; and 99% ± 0.04 for three of the eight treatments (Kirk's medium without glucose, Kirk's medium with glucose, and without medium with glucose, respectively was found. Toxicity tests determined an increase in the initial effluent toxicity (7.33 TU compared with the final treatment (47.73 TU in a period of 11 days. For this system, a degradation sequence of the carminic acid structure present in the effluent by the Tv fungus is suggested, in which it is seen that metabolites still containing aromatic structures are generated.

  14. Treatment of a textile effluent from dyeing with cochineal extracts using Trametes versicolor fungus.

    Science.gov (United States)

    Arroyo-Figueroa, Gabriela; Ruiz-Aguilar, Graciela M L; López-Martínez, Leticia; González-Sánchez, Guillermo; Cuevas-Rodríguez, Germán; Rodríguez-Vázquez, Refugio

    2011-05-05

    Trametes versicolor (Tv) fungus can degrade synthetic dyes that contain azo groups, anthraquinone, triphenylmethane polymers, and heterocyclic groups. However, no references have been found related to the degradation of natural dyes, such as the carminic acid that is contained in the cochineal extract. Experiments to determine the decolorization of the effluent used in the cotton dyeing process with cochineal extract by means of Tv fungus were done. Treatments to determine decolorization in the presence or absence of Kirk's medium, glucose, and fungus, with an addition of 50% (v v-1) of nonsterilized effluent were performed. Physicochemical characterization was performed at the start and end of the treatment. Degradation kinetics were determined. A direct relationship was found between the dry weight of fungi, pH, and the decolorization system, with higher decolorization at lower pH levels (pH ~4.3). High decolorization (81% ± 0.09; 88% ± 0.17; and 99% ± 0.04) for three of the eight treatments (Kirk's medium without glucose, Kirk's medium with glucose, and without medium with glucose, respectively) was found. Toxicity tests determined an increase in the initial effluent toxicity (7.33 TU) compared with the final treatment (47.73 TU) in a period of 11 days. For this system, a degradation sequence of the carminic acid structure present in the effluent by the Tv fungus is suggested, in which it is seen that metabolites still containing aromatic structures are generated.

  15. Effect of plant extracts and a disinfectant on biological parameters and pathogenicity of the fungus Beauveria bassiana (Bals. Vuill. (Ascomycota: Cordycipitaceae

    Directory of Open Access Journals (Sweden)

    C. C. Martins

    Full Text Available Abstract The fungus Beauveria bassiana is naturally found in poultry houses and causes high rates of mortality in Alphitobius diaperinus. Laboratory and field experiments have shown the potential of this fungus as an insect control agent. However, in poultry houses, bacteria as Salmonella, can be found and have been studied alternative control methods for this pathogen. Thus, this study aimed to evaluate the effect of plant extracts and a disinfectant on the fungus Beauveria bassiana (strain Unioeste 4. Conidial viability, colony-forming unit (CFU counts, vegetative growth, conidia production, insecticidal activity of the fungus and compatibility were used as parameters in the evaluation of the effect of these products on the fungus. Alcoholic and aqueous extracts of jabuticaba (Myrciaria cauliflora (Mart., guava (Psidium guajava (L., and jambolan (Syzygium cumini (L., at concentrations of 10% as well as the commercial disinfectant, Peroxitane® 1512 AL, were evaluated at the recommended concentrations (RC, 1:200 (RC, 0.5 RC and 2 RC. There was a negative influence of alcoholic and aqueous extracts of jabuticaba, guava and three dilutions of Peroxitane on the viability of conidia. The CFUs and vegetative growth of the fungus were affected only by the Peroxitane (all dilutions. For conidial production, the aqueous extract of guava had a positive effect, increasing production, while the Peroxitane at the R and RC concentrations resulted in a negative influence. The mortality of A. diaperinus, caused by the fungus after exposure to these products, was 60% for the peracetic acid at 0.5 RC, and above 80% for the extracts. Thus, the results showed that all the extracts and Peroxitane at RC 0.5 are compatible with the fungus B. bassiana Unioeste 4, however only the extracts had a low impact on inoculum potential.

  16. Identification and characterization of glucoamylase from the fungus, Thermomyces lanuginosus

    DEFF Research Database (Denmark)

    Thorsen, Thor Seneca; Johnsen, Anders; Josefsen, K.

    2006-01-01

    the thermophilic fungus Talaromyces emersonii. cDNA encoding Thermomyces lanuginosus glucoamylase was expression cloned into Pichia pastoris, producing approximately 7.4 U/ml. It was concluded that alternative mRNA splicing as it might occur in Aspergillus niger glucoamylase is not responsible for the occurrence...

  17. Diversity of Mat-Forming Fungi in Relation to Soil Properties, Disturbance, and Forest Ecotype at Crater Lake National Park, Oregon, USA

    Directory of Open Access Journals (Sweden)

    James M. Trappe

    2012-04-01

    Full Text Available In forest ecosystems, fungal mats are functionally important in nutrient and water uptake in litter and wood decomposition processes, in carbon resource allocation, soil weathering and in cycling of soil resources. Fungal mats can occur abundantly in forests and are widely distributed globally. We sampled ponderosa pine/white fir and mountain hemlock/noble fir communities at Crater Lake National Park for mat-forming soil fungi. Fungus collections were identified by DNA sequencing. Thirty-eight mat-forming genotypes were identified; members of the five most common genera (Gautieria, Lepiota, Piloderma, Ramaria, and Rhizopogon comprised 67% of all collections. The mycorrhizal genera Alpova and Lactarius are newly identified as ectomycorrhizal mat-forming taxa, as are the saprotrophic genera Flavoscypha, Gastropila, Lepiota and Xenasmatella. Twelve typical mat forms are illustrated, representing both ectomycorrhizal and saprotrophic fungi that were found. Abundance of fungal mats was correlated with higher soil carbon to nitrogen ratios, fine woody debris and needle litter mass in both forest ecotypes. Definitions of fungal mats are discussed, along with some of the challenges in defining what comprises a fungal “mat”.

  18. Cyclodepsipeptides, sesquiterpenoids, and other cytotoxic metabolites from the filamentous fungus Trichothecium sp. (MSX 51320).

    Science.gov (United States)

    Sy-Cordero, Arlene A; Graf, Tyler N; Adcock, Audrey F; Kroll, David J; Shen, Qi; Swanson, Steven M; Wani, Mansukh C; Pearce, Cedric J; Oberlies, Nicholas H

    2011-10-28

    Two new cyclodepsipeptides (1 and 2), two new sesquiterpenoids (3 and 4), and the known compounds guangomide A (5), roseotoxin S, and three simple trichothecenes were isolated from the cytotoxic organic extract of a terrestrial filamentous fungus, Trichothecium sp. The structures were determined using NMR spectroscopy and mass spectrometry. Absolute configurations of the cyclodepsipeptides were established by employing chiral HPLC, while the relative configurations of 3 and 4 were determined via NOESY data. The isolation of guangomide A was of particular interest, since it was reported previously from a marine-derived fungus.

  19. Production of cytokinin-like substances and ethylene by the ectomycorrhizal fungus Cantharellus cibarius

    Directory of Open Access Journals (Sweden)

    Edmund Strzelczyk

    2014-08-01

    Full Text Available It was found that the hardwood form of Cantharellus cibarius (strain 5400 produced less cytokinin-like substances than the coniferous form (strain 5410. Among the active substances the following were detected: 2iP, 2iP riboside and zeatin. No significant differences in ethylene production between both strains in the presence or absence of methionine (considered to be the precursor of this gas were noted.

  20. The effects of the fungus Metarhizium anisopliae var. acridum on different stages of Lutzomyia longipalpis (Diptera: Psychodidae).

    Science.gov (United States)

    Amóra, Sthenia Santos Albano; Bevilaqua, Claudia Maria Leal; Feijó, Francisco Marlon Carneiro; Pereira, Romeika Hermínia de Macedo Assunção; Alves, Nilza Dutra; Freire, Fúlvio Aurélio de Morais; Kamimura, Michel Toth; de Oliveira, Diana Magalhães; Luna-Alves Lima, Elza Aurea; Rocha, Marcos Fábio Gadelha

    2010-03-01

    The control of Visceral Leishmaniasis (VL) vector is often based on the application of chemical residual insecticide. However, this strategy has not been effective. The continuing search for an appropriate vector control may include the use of biological control. This study evaluates the effects of the fungus Metarhizium anisopliae var. acridum on Lutzomyia longipalpis. Five concentrations of the fungus were utilized, 1 x 10(4) to 1 x 10(8) conidia/ml, accompanied by controls. The unhatched eggs, larvae and dead adults previously exposed to fungi were sown to reisolate the fungi and analysis of parameters of growth. The fungus was subsequently identified by PCR and DNA sequencing. M. anisopliae var. acridum reduced egg hatching by 40%. The mortality of infected larvae was significant. The longevity of infected adults was lower than that of negative controls. The effects of fungal infection on the hatching of eggs laid by infected females were also significant. With respect to fungal growth parameters post-infection, only vegetative growth was not significantly higher than that of the fungi before infection. The revalidation of the identification of the reisolated fungus was confirmed post-passage only from adult insects. In terms of larvae mortality and the fecundity of infected females, the results were significant, proving that the main vector species of VL is susceptible to infection by this entomopathogenic fungus in the adult stage. Copyright 2009 Elsevier B.V. All rights reserved.

  1. The use of Amazon fungus ( Trametes sp.) in the production of ...

    African Journals Online (AJOL)

    The use of Amazon fungus (Trametes sp.) in the production of cellulase and xylanase. Salony Aquino Pereira, Rafael Lopes e Oliveira, Sergio Duvoisin Jr, Leonor Alves de Oliveira da Silva, Patrícia Melchionna Albuquerque ...

  2. Gamma radiation effects on the frequency of toxigenic fungus on sene (Cassia angustifolia) and green tea (Camelia sinensis) samples

    International Nuclear Information System (INIS)

    Aquino, S.; Villavicencio, A.L.C.H.

    2006-01-01

    The levels of contamination and gamma radiation effects were analyzed in the reduction of toxigenic filamentous fungus in two types of medicinal plants. Aspergillus and Penicillium were the predominant genders and 73,80% of the samples showed high levels of fungus contamination

  3. Ectomycorrhizal impacts on plant nitrogen nutrition: emerging isotopic patterns, latitudinal variation and hidden mechanisms.

    Science.gov (United States)

    Mayor, Jordan; Bahram, Mohammad; Henkel, Terry; Buegger, Franz; Pritsch, Karin; Tedersoo, Leho

    2015-01-01

    Ectomycorrhizal (EcM)-mediated nitrogen (N) acquisition is one main strategy used by terrestrial plants to facilitate growth. Measurements of natural abundance nitrogen isotope ratios (denoted as δ(15)N relative to a standard) increasingly serve as integrative proxies for mycorrhiza-mediated N acquisition due to biological fractionation processes that alter (15)N:(14)N ratios. Current understanding of these processes is based on studies from high-latitude ecosystems where plant productivity is largely limited by N availability. Much less is known about the cause and utility of ecosystem δ(15)N patterns in the tropics. Using structural equation models, model selection and isotope mass balance we assessed relationships among co-occurring soil, mycorrhizal plants and fungal N pools measured from 40 high- and 9 low-latitude ecosystems. At low latitudes (15)N-enrichment caused ecosystem components to significantly deviate from those in higher latitudes. Collectively, δ(15)N patterns suggested reduced N-dependency and unique sources of EcM (15)N-enrichment under conditions of high N availability typical of the tropics. Understanding the role of mycorrhizae in global N cycles will require reevaluation of high-latitude perspectives on fractionation sources that structure ecosystem δ(15)N patterns, as well as better integration of EcM function with biogeochemical theories pertaining to climate-nutrient cycling relationships. © 2014 John Wiley & Sons Ltd/CNRS.

  4. Effects of heavy metals and some biotic factors on ectomycorrhizal Scots pine in northern Finland; Effekter av tungmetaller och naagra biotiska faktorer paa tall och dess ektomykorrhiza i norra Finland

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen-Jonnarth, U.

    1996-04-01

    In this work, nickel and copper exposure on Scots pine (Pinus sylvestris L.) was studied experimentally under field conditions. The significance of some biotic factors was also studied. We wanted to test whether the understorey lichen layer has a protective role against nickel exposure, and whether it has any effects on pine seedlings. Effects of defoliation, simulating sawfly grazing, were also examined, since the reduced photosynthesis can be assumed to affect root growth and ectomycorrhiza negatively. Ectomycorrhizal colonization has been found to decrease in pinyon pine due to defoliation. 19 refs

  5. Copper sulfate controls fungus on mat-spawned largemouth bass eggs

    Science.gov (United States)

    Copper sulfate (CuSO4) is widely used by the catfish and hybrid striped bass industries as an economical treatment to control fungus (Saprolegnia spp.) on eggs; these industries use hatching troughs and McDonald jars, respectively, in moderate alkalinity waters. This study determined the effectivene...

  6. The link between rapid enigmatic amphibian decline and the globally emerging chytrid fungus.

    Science.gov (United States)

    Lötters, Stefan; Kielgast, Jos; Bielby, Jon; Schmidtlein, Sebastian; Bosch, Jaime; Veith, Michael; Walker, Susan F; Fisher, Matthew C; Rödder, Dennis

    2009-09-01

    Amphibians are globally declining and approximately one-third of all species are threatened with extinction. Some of the most severe declines have occurred suddenly and for unknown reasons in apparently pristine habitats. It has been hypothesized that these "rapid enigmatic declines" are the result of a panzootic of the disease chytridiomycosis caused by globally emerging amphibian chytrid fungus. In a Species Distribution Model, we identified the potential distribution of this pathogen. Areas and species from which rapid enigmatic decline are known significantly overlap with those of highest environmental suitability to the chytrid fungus. We confirm the plausibility of a link between rapid enigmatic decline in worldwide amphibian species and epizootic chytridiomycosis.

  7. Maternal parentage influences spore production but not spore pigmentation in the anisogamous and hermaphroditic fungus Neurospora crassa

    DEFF Research Database (Denmark)

    Zimmerman, Kolea; Levitis, Daniel; Pringle, Anne

    2014-01-01

    . In this fungus, pigmented spores are viable and unpigmented spores are inviable. These results show that while both parents influence all these traits, maternal influence is strongest on both fertility and mortality traits until the spores are physiologically independent of the maternal cytoplasm.......In this study, we tested the hypothesis that maternal effects on offspring production and quality are greater than paternal effects in both offspring number (fertility) and offspring viability (mortality). We used the model filamentous fungus Neurospora crassa. This fungus is anisogamous......, and various ascospore characteristics. Mixed effects models of these data show that the female parent accounts for the majority of variation in perithecial production, number of spores produced, and spore germination. Surprisingly, both sexes equally influence the percentage of spores that are pigmented...

  8. Monitoring persistence of the entomopathogenic fungus Metarhizium anisopliae under simulated field conditions with the aim of controlling adult Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Carolino, Aline T; Paula, Adriano R; Silva, Carlos P; Butt, Tariq M; Samuels, Richard I

    2014-04-25

    Entomopathogenic fungi are potential candidates for use in integrated vector management, with recent emphasis aimed at developing adult mosquito control methods. Here we investigated the persistence of the fungus Metarhizium anisopliae when tested against female A. aegypti under field conditions. Black cotton cloths impregnated with M. anisopliae conidia, formulated in vegetable oil + isoparaffin, were maintained on a covered veranda for up to 30 days. At specific times, pieces of the cloths were removed, placed in Tween 80 and the resuspended conidia were sprayed directly onto mosquitoes. The persistence of conidia impregnated on black cloths using three different carriers was evaluated in test rooms. Fifty mosquitoes were released into each room and after a 5 day period, the surviving insects were captured. Another 50 insects were then released into each room. The capacity of the fungus at reducing mosquito survival was evaluated over a total of 35 days. Conidia extracted from cloths maintained on the veranda for 2 to 18 days remained virulent, with 28 to 60% mosquito survival observed. Mosquito survival following exposure to fungus impregnated cloths showed that fungus + Tween caused similar reductions to that of fungus + vegetable oil. Mosquitoes exposed to the formulation fungus + vegetable oil had survival rates of 36% over the first 5 days of the experiment. Following the release of the second cohort of mosquitoes (6-11days), survival increased to 50%. The survival of the 12-17 day cohort (78%) was statistically equal to that of the controls (84%). Formulation of the fungus in vegetable oil + isoparaffin increased the persistence of the fungus, with the 18-23 day cohort (64% survival) still showing statistical differences to that of the controls (87% survival). The potential of entomopathogenic fungi for the control of adult A. aegypti was confirmed under field conditions. Vegetable oil + isoparaffin formulations of M. anisopliae significantly increased the

  9. Identification of a small heat-shock protein associated with a ras-mediated signaling pathway in ectomycorrhizal symbiosis

    Science.gov (United States)

    Shiv Hiremath; Kirsten Lehtoma; Gopi K. Podila

    2009-01-01

    Initiation, development, and establishment of a functional ectomycorrhiza involve a series of biochemical events mediated by a number of genes from the fungus as well as the host plant. We have identified a heat shock protein gene from Laccaria bicolor (Lbhsp) that appears to play a role in these events. The size and...

  10. Mathematical modeling on obligate mutualism: Interactions between leaf-cutter ants and their fungus garden.

    Science.gov (United States)

    Kang, Yun; Clark, Rebecca; Makiyama, Michael; Fewell, Jennifer

    2011-11-21

    We propose a simple mathematical model by applying Michaelis-Menton equations of enzyme kinetics to study the mutualistic interaction between the leaf cutter ant and its fungus garden at the early stage of colony expansion. We derive sufficient conditions on the extinction and coexistence of these two species. In addition, we give a region of initial condition that leads to the extinction of two species when the model has an interior attractor. Our global analysis indicates that the division of labor by worker ants and initial conditions are two important factors that determine whether leaf cutter ants' colonies and their fungus garden can survive and grow or not. We validate the model by comparing model simulations and data on fungal and ant colony growth rates under laboratory conditions. We perform sensitive analysis of the model based on the experimental data to gain more biological insights on ecological interactions between leaf-cutter ants and their fungus garden. Finally, we give conclusions and discuss potential future work. Published by Elsevier Ltd.

  11. Detection of wood discoloration in a canker fungus-inoculated Japanese cedar by neutron radiography

    International Nuclear Information System (INIS)

    Yamada, T.; Aoki, Y.; Yamato, M.; Komatsu, M.; Kusumoto, D.; Suzuki, K.; Nakanishi, T.M.

    2005-01-01

    Neutron radiography (NRG) was applied to trace the development of discolored tissue in the wood of Japanese cedar (Cryptomeria japonica) after being infected with a canker fungus. Japanese cedar seedlings were wound inoculated with a virulent and avirulent isolate of a canker fungus, Guignardia cryptomeriae. Three, 7, 13 and 22 days after the inoculation, the seedlings were irradiated with thermal neutrons. The image on the X-ray film showed that the whiteness in the image corresponded to the water content in the sample. Discolored tissue and surrounding dry zones induced by the fungal inoculation were detected as dark areas, indicating water deficiency with a high resolution. Through image analysis, the dry zones were detected as early as 3 days after inoculation. Neutron images also showed the difference in the size of water deficient parts due to the tissue damage among the treatments. The neutron beam dose used in this experiment had no effect on the growth rate of the fungus on a medium, showing that NRG is an effective method for pathological research of trees. (author)

  12. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus

    Energy Technology Data Exchange (ETDEWEB)

    Wu Naiying [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Department of Chemistry, Shangqiu Normal College, Shangqiu 476000 (China); Huang Honglin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Zhang Shuzhen, E-mail: szzhang@rcees.ac.c [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Zhu Yongguan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Christie, Peter [Agri-Environment Branch, Agriculture Food and Environmental Science Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom); Zhang Yong [State Key Laboratory of Marine Environmental Science, Environmental Science Research Centre, Xiamen University, Xiamen 361005 (China)

    2009-05-15

    Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state {sup 13}C nuclear magnetic resonance spectroscopy ({sup 13}C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants. - Colonization by an arbuscular mycorrhizal fungus promoted root uptake and decreased shoot uptake of phenanthrene by Medicago sativa L.

  13. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus

    International Nuclear Information System (INIS)

    Wu Naiying; Huang Honglin; Zhang Shuzhen; Zhu Yongguan; Christie, Peter; Zhang Yong

    2009-01-01

    Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state 13 C nuclear magnetic resonance spectroscopy ( 13 C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants. - Colonization by an arbuscular mycorrhizal fungus promoted root uptake and decreased shoot uptake of phenanthrene by Medicago sativa L.

  14. Cuticle hydrolysis in four medically important fly species by enzymes of the entomopathogenic fungus Conidiobolus coronatus.

    Science.gov (United States)

    Boguś, M I; Włóka, E; Wrońska, A; Kaczmarek, A; Kazek, M; Zalewska, K; Ligęza-Żuber, M; Gołębiowski, M

    2017-03-01

    Entomopathogenic fungi infect insects via penetration through the cuticle, which varies remarkably in chemical composition across species and life stages. Fungal infection involves the production of enzymes that hydrolyse cuticular proteins, chitin and lipids. Host specificity is associated with fungus-cuticle interactions related to substrate utilization and resistance to host-specific inhibitors. The soil fungus Conidiobolus coronatus (Constantin) (Entomophthorales: Ancylistaceae) shows virulence against susceptible species. The larvae and pupae of Calliphora vicina (Robineau-Desvoidy) (Diptera: Calliphoridae), Calliphora vomitoria (Linnaeus), Lucilia sericata (Meigen) (Diptera: Calliphoridae) and Musca domestica (Linnaeus) (Diptera: Muscidae) are resistant, but adults exposed to C. coronatus quickly perish. Fungus was cultivated for 3 weeks in a minimal medium. Cell-free filtrate, for which activity of elastase, N-acetylglucosaminidase, chitobiosidase and lipase was determined, was used for in vitro hydrolysis of the cuticle from larvae, puparia and adults. Amounts of amino acids, N-glucosamine and fatty acids released were measured after 8 h of incubation. The effectiveness of fungal enzymes was correlated with concentrations of compounds detected in the cuticles of tested insects. Positive correlations suggest compounds used by the fungus as nutrients, whereas negative correlations may indicate compounds responsible for insect resistance. Adult deaths result from the ingestion of conidia or fungal excretions. © 2016 The Royal Entomological Society.

  15. There Is No Structural Relationship between Nasal Septal Deviation, Concha Bullosa, and Paranasal Sinus Fungus Balls

    Directory of Open Access Journals (Sweden)

    Tung-Lung Tsai

    2012-01-01

    Full Text Available This study aims to determine the relationship between nasal septal deviation, concha bullosa, and chronic rhinosinusitis by using a definitive pathological and simplified model. Fifty-two consecutive sinus computed tomography scans were performed on patients who received endoscopic sinus surgery and whose final diagnosis was paranasal sinus fungus balls. The incidences of nasal septal deviation and concha bullosa for patients diagnosed with paranasal sinus fungus balls among the study group were 42.3% and 25%, respectively. About 63.6% sinuses with fungus balls were located on the ipsilateral side of the nasal septal deviation, and 46.2% were located on the ipsilateral side of the concha bullosa. When examined by Pearson’s chi-square test and the chi-squared goodness-of-fit test, no significant statistical difference for the presence of paranasal sinus fungus balls between ipsilateral and contralateral sides of nasal septal deviation and concha bullosa was noted (P=0.292 and P=0.593, resp.. In conclusion, we could not demonstrate any statistically significant correlation between the location of infected paranasal sinus, the direction of nasal septal deviation, and the location of concha bullosa, in location-limited rhinosinusitis lesions such as paranasal sinus fungal balls. We conclude that the anatomical variants discussed herein do not predispose patients to rhinosinusitis.

  16. Enzyme activities at different stages of plant biomass decomposition in three species of fungus-growing termites

    DEFF Research Database (Denmark)

    da Costa, Rafael R.; Hu, Haofu; Pilgaard, Bo

    2018-01-01

    contributing to the success of the termites as the main plant decomposers in the Old World. Here we evaluate which plant polymers are decomposed and which enzymes are active during the decomposition process in two major genera of fungus-growing termites. We find a diversity of active enzymes at different...... stages of decomposition and a consistent decrease in plant components during the decomposition process. Furthermore, our findings are consistent with the hypothesis that termites transport enzymes from the older mature parts of the fungus comb through young worker guts to freshly inoculated plant...... substrate. However, preliminary fungal RNAseq analyses suggest that this likely transport is supplemented with enzymes produced in situ Our findings support that the maintenance of an external fungus comb, inoculated with an optimal mix of plant material, fungal spores, and enzymes, is likely the key...

  17. The genome sequence of the model ascomycete fungus Podospora anserina

    NARCIS (Netherlands)

    Espagne, Eric; Lespinet, Olivier; Malagnac, Fabienne; Da Silva, Corinne; Jaillon, Olivier; Porcel, Betina M; Couloux, Arnaud; Aury, Jean-Marc; Ségurens, Béatrice; Poulain, Julie; Anthouard, Véronique; Grossetete, Sandrine; Khalili, Hamid; Coppin, Evelyne; Déquard-Chablat, Michelle; Picard, Marguerite; Contamine, Véronique; Arnaise, Sylvie; Bourdais, Anne; Berteaux-Lecellier, Véronique; Gautheret, Daniel; de Vries, Ronald P; Battaglia, Evy; Coutinho, Pedro M; Danchin, Etienne Gj; Henrissat, Bernard; Khoury, Riyad El; Sainsard-Chanet, Annie; Boivin, Antoine; Pinan-Lucarré, Bérangère; Sellem, Carole H; Debuchy, Robert; Wincker, Patrick; Weissenbach, Jean; Silar, Philippe

    2008-01-01

    BACKGROUND: The dung-inhabiting ascomycete fungus Podospora anserina is a model used to study various aspects of eukaryotic and fungal biology, such as ageing, prions and sexual development. RESULTS: We present a 10X draft sequence of P. anserina genome, linked to the sequences of a large expressed

  18. [Biochemical basis of tolerance to osmotic stress in phytopathogenic fungus: The case of Macrophomina phaseolina (Tassi) Goid.

    Science.gov (United States)

    Martínez-Villarreal, Rodolfo; Garza-Romero, Tamar S; Moreno-Medina, Víctor R; Hernández-Delgado, Sanjuana; Mayek-Pérez, Netzahualcoyotl

    Fungus Macrophomina phaseolina (Tassi) Goid. is the causative agent of charcoal rot disease which causes significant yield losses in major crops such as maize, sorghum, soybean and common beans in Mexico. This fungus is a facultative parasite which shows broad ability to adapt itself to stressed environments where water deficits and/or high temperature stresses commonly occur. These environmental conditions are common for most cultivable lands throughout Mexico. Here we describe some basic facts related to the etiology and epidemiology of the fungus as well as to the importance of responses to stressed environments, particularly to water deficits, based on morphology and growth traits, as well as on physiology, biochemistry and pathogenicity of fungus M. phaseolina. To conclude, we show some perspectives related to future research into the genus, which emphasize the increasing need to improve the knowledge based on the application of both traditional and biotechnological tools in order to elucidate the mechanisms of resistance to environmental stress which can be extrapolated to other useful organisms to man. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Influence of arbuscular mycorrhizal fungus Glomus intra-radices on accumulation of radiocaesium by plant species

    International Nuclear Information System (INIS)

    Dudchak, S.V.

    2012-01-01

    The role of arbuscular mycorrhizal fungus Glomus intra-radices in 134 Cs isotope uptake by different plant species is studied. The impact of radiocaesium on mycorrhizal development and functioning of plant photosynthetic apparatus is considered. The possibility of mycorrhizal symbiosis application in phytoremediation of radioactively contaminated areas is analyzed.It is found that colonization of plants with arbuscular mycorrhizal fungus resulted in significant decrease of radiocaesium concentration in their aboveground parts, while it did not have considerable impact on the radionuclide uptake by plant root system

  20. Fungal metabolites: Tetrahydroauroglaucin and isodihydroauroglaucin from the marine fungus,iEurotium sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Gawas, D.; PrabhaDevi; Tilvi, S.; Naik, C.G.; Parameswaran, P.S.

    Two poly substituted aromatic compounds: tetrahydroauroglaucin 1 and isodihydroauroglaucin 2 were identified from a marine fungus, Eurotium sp. isolated from leaves of the mangrove, Porteresia coarctata (Roxb). These compounds were reported earlier...

  1. Contributions of Ectomycorrhizal Fungal Mats to Forest Soil Carbon Cycles

    Science.gov (United States)

    Kluber, L. A.; Phillips, C. L.; Myrold, D. D.; Bond, B. J.

    2008-12-01

    Ectomycorrhizal (EM) fungi are a prominent and ubiquitous feature of forest soils, forming symbioses with most tree species, yet little is known about the magnitude of their impact on forest carbon cycles. A subset of EM fungi form dense, perennial aggregations of hyphae, which have elevated respiration rates compared with neighboring non-mat soils. These mats are a foci of EM activity and thereby a natural laboratory for examining how EM fungi impact forest soils. In order to constrain the contributions of EM fungi to forest soil respiration, we quantified the proportion of respiration derived from EM mat soils in an old-growth Douglas-fir stand in western Oregon. One dominant genus of mat-forming fungi, Piloderma, covered 56% of the soil surface area. Piloderma mats were monitored for respiration rates over 15 months and found to have on average 10% higher respiration than non-mat soil. At the stand level, this amounts to roughly 6% of soil respiration due to the presence of Piloderma mats. We calculate that these mats may constitute 27% of autotrophic respiration, based on respiration rates from trenched plots in a neighboring forest stand. Furthermore, enzyme activity and microbial community profiles in mat and non-mat soil provide evidence that specialized communities utilizing chitin contribute to this increased efflux. With 60% higher chitinase activity in mats, the breakdown of chitin is likely an important carbon flux while providing carbon and nitrogen to the microbial communities associated with mats. Quantitative PCR showed similar populations of fungi and bacteria in mat and non-mat soils; however, community analysis revealed distinct fungal and bacterial communities in the two soil types. The higher respiration associated with EM mats does not appear to be due only to a proliferation of EM fungi, but to a shift in overall community composition to organisms that efficiently utilize the unique resources available within the mat, including plant and

  2. Genetic diversity and population structure of Raffaelea quercus-mongolicae, a fungus associated with oak mortality in South Korea

    Science.gov (United States)

    M. -S. Kim; P. A. Hohenlohe; K. -H. Kim; S. -T. Seo; Ned Klopfenstein

    2016-01-01

    Raffaelea quercus-mongolicae is a fungus associated with oak wilt and deemed to cause extensive oak mortality in South Korea. Since the discovery of this fungus on a dead Mongolian oak (Quercus mongolica) in 2004, the mortality continued to spread southwards in South Korea. Despite continued expansion of the disease and associated significant impacts on forest...

  3. A Laboratory Maintenance Regime for a Fungus-Growing Termite Macrotermes gilvus (Blattodea: Termitidae).

    Science.gov (United States)

    Lee, Ching-Chen; Lee, Chow-Yang

    2015-06-01

    The optimum maintenance conditions of the fungus-growing termite, Macrotermes gilvus (Hagen) (Blattodea: Termitidae), in the laboratory were studied. Termites were kept on a matrix of moist sand and with fungus comb as food. The survival of groups of termites was measured when maintained at different population densities by changing group size and container volume. Larger groups (≥0.6 g) were more vigorous and had significant higher survival rates than smaller groups (≤0.3 g). The population density for optimal survival of M. gilvus is 0.0025 g per container volume (ml) or 0.0169 g per matrix volume (cm(3)), i.e., 1.2 g of termites kept in a 480-ml container filled with 71 cm3 of sand. In termite groups of smaller size (i.e., 0.3 g) or groups maintained in smaller container (i.e., 100 ml) the fungus comb was overgrown with Xylaria spp., and subsequently all termites died within the study period. The insufficient number of workers for regulating the growth of unwanted fungi other than Termitomyces spp. in the fungus comb is the most likely reason. Unlike some other mound-building termite species, M. gilvus showed satisfactory survival when maintained in non-nutritious matrix (i.e., sand). There was no significant difference in the survival rate between different colonies of M. gilvus (n=5), with survival in the range of 78.5-84.4% after 4 wk. Advances in the maintenance of Macrotermes will enable researchers to study with more biological relevance many aspects of the biology, behavior, and management of this species. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Rapid shifts in Atta cephalotes fungus-garden enzyme activity after a change in fungal substrate (Attini, Formicidae)

    DEFF Research Database (Denmark)

    Kooij, P W; Schiøtt, M; Boomsma, J J

    2011-01-01

    Fungus gardens of the basidiomycete Leucocoprinus gongylophorus sustain large colonies of leaf-cutting ants by degrading the plant material collected by the ants. Recent studies have shown that enzyme activity in these gardens is primarily targeted toward starch, proteins and the pectin matrix......, we measured the changes in enzyme activity after a controlled shift in fungal substrate offered to six laboratory colonies of Atta cephalotes. An ant diet consisting exclusively of grains of parboiled rice rapidly increased the activity of endo-proteinases and some of the pectinases attacking...... from the rice diet, relative to the leaf diet controls. Enzyme activity in the older, bottom sections of fungus gardens decreased, indicating a faster processing of the rice substrate compared to the leaf diet. These results suggest that leaf-cutting ant fungus gardens can rapidly adjust enzyme...

  5. Structure and phylogenetic diversity of post-fire ectomycorrhizal communities of maritime pine.

    Science.gov (United States)

    Rincón, A; Santamaría, B P; Ocaña, L; Verdú, M

    2014-02-01

    Environmental disturbances define the diversity and assemblage of species, affecting the functioning of ecosystems. Fire is a major disturbance of Mediterranean pine forests. Pines are highly dependent on the ectomycorrhizal (EM) fungal symbiosis, which is critical for tree recruitment under primary succession. To determine the effects of time since fire on the structure and recovery of EM fungal communities, we surveyed the young Pinus pinaster regenerate in three sites differing in the elapsed time after the last fire event. Pine roots were collected, and EM fungi characterized by sequencing the internal transcribed spacer (ITS) and the large subunit (LSU) regions of the nuclear ribosomal (nr)-DNA. The effects of the elapsed time after fire on the EM community structure (richness, presence/absence of fungi, phylogenetic diversity) and on soil properties were analysed.Fungal richness decreased with the elapsed time since the fire; although, the phylogenetic diversity of the EM community increased. Soil properties were different depending on the elapsed time after fire and particularly, the organic matter, carbon-to-nitrogen (C/N) ratio, nitrogen and iron significantly correlated with the assemblage of fungal species. Ascomycetes, particularly Tuberaceae and Pezizales, were significantly over-represented on saplings in the burned site. On seedlings, a significant over-representation of Rhizopogonaceae and Atheliaceae was observed in the most recently burned site, while other fungi (i.e. Cortinariaceae) were significantly under-represented. Our results are consistent with the hypothesis that fire can act as a selective agent by printing a phylogenetic signal on the EM fungal communities associated with naturally regenerated pines, pointing out to some groups as potential fire-adapted fungi.

  6. Caste-specific symbiont policing by workers of Acromyrmex fungus-growing ants

    NARCIS (Netherlands)

    Ivens, Aniek B. F.; Nash, David R.; Poulsen, Michael; Boomsma, Jacobus J.

    2009-01-01

    The interaction between leaf-cutting ants and their fungus garden mutualists is ideal for studying the evolutionary stability of interspecific cooperation. Although the mutualism has a long history of diffuse coevolution, there is ample potential for conflicts between the partners over the mixing

  7. An in vivo transcriptome for entomopathogenic fungus Metarhizium robertsii ARSEF 2575

    Science.gov (United States)

    Molecular mechanisms underlying the pathogenic process of the insect pathogen Metarhizium robertsii ARSEF 2575 in its host are only partially understood. To probe the transcriptional responses of the fungus during the interaction with insects, we have developed a method to specifically recover patho...

  8. Presumptive horizontal symbiont transmission in the fungus-growing termite Macrotermes natalensis

    NARCIS (Netherlands)

    Fine Licht, de H.H.; Boomsma, J.J.; Aanen, D.K.

    2006-01-01

    All colonies of the fungus-growing termite Macrotermes natalensis studied so far are associated with a single genetically variable lineage of Termitomyces symbionts. Such limited genetic variation of symbionts and the absence of sexual fruiting bodies (mushrooms) on M. natalensis mounds would be

  9. The telomerase reverse transcriptase subunit from the dimorphic fungus Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Dolores Bautista-España

    Full Text Available In this study, we investigated the reverse transcriptase subunit of telomerase in the dimorphic fungus Ustilago maydis. This protein (Trt1 contains 1371 amino acids and all of the characteristic TERT motifs. Mutants created by disrupting trt1 had senescent traits, such as delayed growth, low replicative potential, and reduced survival, that were reminiscent of the traits observed in est2 budding yeast mutants. Telomerase activity was observed in wild-type fungus sporidia but not those of the disruption mutant. The introduction of a self-replicating plasmid expressing Trt1 into the mutant strain restored growth proficiency and replicative potential. Analyses of trt1 crosses in planta suggested that Trt1 is necessary for teliospore formation in homozygous disrupted diploids and that telomerase is haploinsufficient in heterozygous diploids. Additionally, terminal restriction fragment analysis in the progeny hinted at alternative survival mechanisms similar to those of budding yeast.

  10. Lead immobilization by geological fluorapatite and fungus Aspergillus niger.

    Science.gov (United States)

    Li, Zhen; Wang, Fuwei; Bai, Tongshuo; Tao, Jinjin; Guo, Jieyun; Yang, Mengying; Wang, Shimei; Hu, Shuijin

    2016-12-15

    Phosphate solubilizing fungi have high ability to secrete organic acids. In this study, fungus Aspergillus niger and geological fluorapatite were applied in lead remediation in aqueous solution. Formation and morphology of the lead minerals, e.g., pyromorphite and lead oxalate, were investigated by SEM, XRD, and ATR-IR. The total quantity of organic acids reached the maximum at the sixth day, which improved the concentration of soluble P up to ∼370mg/L from ∼0.4mg/L. The organic acids, especially the oxalic acid, enhance the solubility of fluorapatite significantly. The stable fluoropyromorphite [Pb 5 (PO 4 ) 3 F] is precipitated with the elevated solubility of fluorapatite in the acidic environment. Furthermore, A. niger grows normally with the presence of lead cations. It is shown that >99% lead cations can be removed from the solution. However, immobilization caused by the precipitation of lead oxalate cannot be ignored if the fungus A. niger was cultured in the Pb solution. This study elucidates the mechanisms of lead immobilization by FAp and A. niger, and sheds its perspective in lead remediation, especially for high Pb concentration solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Preliminary data on growth and enzymatic abilities of soil fungus Humicolopsis cephalosporioides at different incubation temperatures.

    Science.gov (United States)

    Elíades, Lorena Alejandra; Cabello, Marta N; Pancotto, Verónica; Moretto, Alicia; Rago, María Melisa; Saparrat, Mario C N

    2015-01-01

    Nothofagus pumilio (Poepp & Endl.) Krasser, known as "lenga" is the most important timber wood species in southernmost Patagonia (Argentina). Humicolopsis cephalosporioides Cabral & Marchand is a soil fungus associated with Nothofagus pumilio forests, which has outstanding cellulolytic activity. However, there is no information about the ability of this fungus to use organic substrates other than cellulose, and its ability to produce different enzyme systems, as well as its response to temperature. The aim of this study was to examine the role of H. cephalosporioides in degradation processes in N. pumilio forests in detail by evaluating the in vitro ability of four isolates of this fungus to grow and produce different lytic enzyme systems, and their response to incubation temperature. The ability of the fungi to grow and produce enzyme systems was estimated by inoculating them on agar media with specific substrates, and the cultures were incubated at three temperatures. A differential behavior of each strain in levels of growth and enzyme activity was found according to the medium type and/or incubation temperature. A intra-specific variability was found in H. cephalosporioides. Likewise a possible link between the saprotrophic role of this fungus in N. pumilio forests and the degradation of organic matter under stress conditions, such as those from frosty environments, was also discussed. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  12. Effect of the presence of brood and fungus on the nest architecture and digging activity of Acromyrmex subterraneus Forel (Hymenoptera, Formicidae

    Directory of Open Access Journals (Sweden)

    Carlos Magno dos Santos

    Full Text Available ABSTRACT This study investigated the stimuli that trigger digging behavior in Acromyrmex subterraneus during nest building. The hypothesis was that the presence of the fungus garden and/or brood triggers the excavation of tunnels and chambers. For the experiment, the excavation rate of individually marked workers kept in plastic cylinders filled with soil was recorded. Four treatments were applied: (1 30 medium-sized workers, 5 g fungus garden and 30 brood items (larvae and pupae; (2 30 medium-sized workers and 5 g fungus garden; (3 30 medium-sized workers and 30 brood items; (4 30 medium-sized workers without fungus and brood. After 24 h, morphological parameters of nest structure (length and width of the chambers and tunnels in cm and the volume of excavated soil were recorded. In contrast to the expected findings, no change in morphological structure, rate of excavation by workers, or volume of excavated soil was observed between treatments, except for tunnel width, which was greater, when no brood or fungus garden was present. Thus, the results do not support the hypothesis that the fungus garden and/or brood are local stimuli for nest excavation or that they mold the internal architecture of the nest. Although this hypothesis was confirmed for Acromyrmex lundii and Atta sexdens rubropilosa, the same does not apply to A. subterraneus. The digging behavior of workers is probably the result of adaptation during nest building in different habitats.

  13. Soil spore bank communities of ectomycorrhizal fungi in endangered Chinese Douglas-fir forests.

    Science.gov (United States)

    Wen, Zhugui; Shi, Liang; Tang, Yangze; Hong, Lizhou; Xue, Jiawang; Xing, Jincheng; Chen, Yahua; Nara, Kazuhide

    2018-01-01

    Chinese Douglas-fir (Pseudotsuga sinensis) is an endangered Pinaceae species found in several isolated regions of China. Although soil spore banks of ectomycorrhizal (ECM) fungi can play an important role in seedling establishment after disturbance, such as in the well-known North American relative (Pseudotsuga menziesii), we have no information about soil spore bank communities in relict forests of Chinese Douglas-fir. We conducted bioassays of 73 soil samples collected from three Chinese Douglas-fir forests, using North American Douglas-fir as bait seedlings, and identified 19 species of ECM fungi. The observed spore bank communities were significantly different from those found in ECM fungi on the roots of resident trees at the same sites (p = 0.02). The levels of potassium (K), nitrogen (N), organic matter, and the pH of soil were the dominant factors shaping spore bank community structure. A new Rhizopogon species was the most dominant species in the spore banks. Specifically, at a site on Sanqing Mountain, 22 of the 57 surviving bioassay seedlings (representing 21 of the 23 soil samples) were colonized by this species. ECM fungal richness significantly affected the growth of bioassay seedlings (R 2  = 0.20, p = 0.007). Growth was significantly improved in seedlings colonized by Rhizopogon or Meliniomyces species compared with uncolonized seedlings. Considering its specificity to Chinese Douglas-fir, predominance in the soil spore banks, and positive effect on host growth, this new Rhizopogon species could play critical roles in seedling establishment and forest regeneration of endangered Chinese Douglas-fir.

  14. Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium

    KAUST Repository

    Espinosa-Ortiz, Erika J.; Gonzalez-Gil, Graciela; Saikaly, Pascal; van Hullebusch, Eric D.; Lens, Piet N L

    2014-01-01

    and substrate consumption when supplied at 10 mg L−1 in the growth medium, whereas selenate did not have such a strong influence on the fungus. Biological removal of selenite was achieved under semi-acidic conditions (pH 4.5) with about 40 % removal efficiency

  15. Secretome analysis of the fungus Trichoderma harzianum grown on cellulose.

    Science.gov (United States)

    Do Vale, Luis H F; Gómez-Mendoza, Diana P; Kim, Min-Sik; Pandey, Akhilesh; Ricart, Carlos A O; Ximenes F Filho, Edivaldo; Sousa, Marcelo V

    2012-08-01

    Trichoderma harzianum is a mycoparasitic filamentous fungus that produces and secretes a wide range of extracellular hydrolytic enzymes used in cell wall degradation. Due to its potential in biomass conversion, T. harzianum draws great attention from biofuel and biocontrol industries and research. Here, we report an extensive secretome analysis of T. harzianum. The fungus was grown on cellulose medium, and its secretome was analyzed by a combination of enzymology, 2DE, MALDI-MS and -MS/MS (Autoflex II), and LC-MS/MS (LTQ-Orbitrap XL). A total of 56 proteins were identified using high-resolution MS. Interestingly, although cellulases were found, the major hydrolytic enzymes secreted in the cellulose medium were chitinases and endochitinases, which may reflect the biocontrol feature of T. harzianum. The glycoside hydrolase family, including chitinases (EC 3.2.1.14), endo-N-acetylglucosaminidases (EC 3.2.1.96), hexosaminidases (EC 3.2.1.52), galactosidases (EC 3.2.1.23), xylanases (EC 3.2.1.8), exo-1,3-glucanases (EC 3.2.1.58), endoglucanases (EC 3.2.1.4), xylosidases (EC 3.2.1.37), α-L-arabinofuranosidase (EC 3.2.1.55), N-acetylhexosaminidases (EC 3.2.1.52), and other enzymes represented 51.36% of the total secretome. Few representatives were classified in the protease family (8.90%). Others (17.60%) are mostly intracellular proteins. A considerable part of the secretome was composed of hypothetical proteins (22.14%), probably because of the absence of an annotated T. harzianum genome. The T. harzianum secretome composition highlights the importance of this fungus as a rich source of hydrolytic enzymes for bioconversion and biocontrol applications. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Identification and sequence determination of a new chrysovirus infecting the entomopathogenic fungus Isaria javanica.

    Science.gov (United States)

    Herrero, Noemi

    2017-04-01

    A new double-stranded RNA (dsRNA) mycovirus has been identified in the isolate NB IFR-19 of the entomopathogenic fungus Isaria javanica. Isaria javanica chrysovirus-1 (IjCV-1) constitutes a new member of the Chrysoviridae family, and its genome is made up of four dsRNA elements designated dsRNA1, 2, 3 and 4 from largest to smallest. dsRNA1 and dsRNA2 encode an RNA-dependent RNA polymerase (RdRp) and a coat protein (CP), respectively. dsRNA3 and 4 encode hypothetical proteins of unknown function. IjCV-1 constitutes the first report of a chrysovirus infecting the entomopathogenic fungus Isaria javanica.

  17. Draft genome sequence of the fungus associated with oak-wilt mortality in South Korea, Raffaelea quercus-mongolicae KACC44405

    Science.gov (United States)

    Jongbum Jeon; Ki-Tae Kim; Hyeunjeong Song; Gir-Won Lee; Kyeongchae Cheong; Hyunbin Kim; Gobong Choi; Yong-Hwan Lee; Jane E. Stewart; Ned B. Klopfenstein; Mee-Sook Kim

    2017-01-01

    The fungus Raffaelea quercus-mongolicae is the causal agent of Korean oak wilt, a disease associated with mass mortality of oak trees (e.g., Quercus spp.). The fungus is vectored and dispersed by the ambrosia beetle, Platypus koryoensis. Here, we present the 27.0-Mb draft genome sequence of R. quercus-mongolicae strain KACC44405.

  18. Fabrication of a superhydrophobic surface with fungus-cleaning properties on brazed aluminum for industrial application in heat exchangers

    Science.gov (United States)

    Lee, Jeong-Won; Hwang, Woonbong

    2018-06-01

    Extensive research has been carried out concerning the application of superhydrophobic coating in heat exchangers, but little is known about the application of this technique to brazed aluminum heat exchangers (BAHEs). In this work, we describe a new superhydrophobic coating method, which is suitable for BAHE use on an industrial scale. We first render the BAHE superhydrophobic by fabricating micro/nanostructures using solution dipping followed by fluorination. After the complete removal of the silicon residue, we verify using surface analysis that the BAHE surface is perfectly superhydrophobic. We also studied the fungus-cleaning properties of the superhydrophobic surface by growing fungus for 4 weeks in a moist environment on BAHE fins with and without superhydrophobic coating. We observed that, whereas the fungus grown on the untreated fins is extremely difficult to remove, the fungus on the fins with the superhydrophobic coating can be removed easily with only a modest amount of water. We also found that the coated BAHE fins exhibit excellent resistance to moisture. The superhydrophobic coating method that we propose is therefore expected to have a major impact in the heating, ventilating and air conditioning industry market.

  19. Abscisic acid negatively regulates post-penetration resistance of Arabidopsis to the biotrophic powdery mildew fungus.

    Science.gov (United States)

    Xiao, Xiang; Cheng, Xi; Yin, Kangquan; Li, Huali; Qiu, Jin-Long

    2017-08-01

    Pytohormone abscisic acid (ABA) plays important roles in defense responses. Nonetheless, how ABA regulates plant resistance to biotrophic fungi remains largely unknown. Arabidopsis ABA-deficient mutants, aba2-1 and aba3-1, displayed enhanced resistance to the biotrophic powdery mildew fungus Golovinomyces cichoracearum. Moreover, exogenously administered ABA increased the susceptibility of Arabidopsis to G. cichoracearum. Arabidopsis ABA perception components mutants, abi1-1 and abi2-1, also displayed similar phenotypes to ABA-deficient mutants in resistance to G. cichoracearum. However, the resistance to G. cichoracearum is not changed in downstream ABA signaling transduction mutants, abi3-1, abi4-1, and abi5-1. Microscopic examination revealed that hyphal growth and conidiophore production of G. cichoracearum were compromised in the ABA deficient mutants, even though pre-penetration and penetration growth of the fungus were not affected. In addition, salicylic acid (SA) and MPK3 are found to be involved in ABA-regulated resistance to G. cichoracearum. Our work demonstrates that ABA negatively regulates post-penetration resistance of Arabidopsis to powdery mildew fungus G. cichoracearum, probably through antagonizing the function of SA.

  20. Soil propagule banks of ectomycorrhizal fungi share many common species along an elevation gradient.

    Science.gov (United States)

    Miyamoto, Yumiko; Nara, Kazuhide

    2016-04-01

    We conducted bioassay experiments to investigate the soil propagule banks of ectomycorrhizal (EM) fungi in old-growth forests along an elevation gradient and compared the elevation pattern with the composition of EM fungi on existing roots in the field. In total, 150 soil cores were collected from three forests on Mt. Ishizuchi, western Japan, and subjected to bioassays using Pinus densiflora and Betula maximowicziana. Using molecular analyses, we recorded 23 EM fungal species in the assayed propagule banks. Eight species (34.8 %) were shared across the three sites, which ranged from a warm-temperate evergreen mixed forest to a subalpine conifer forest. The elevation pattern of the assayed propagule banks differed dramatically from that of EM fungi on existing roots along the same gradient, where only a small proportion of EM fungal species (3.5 %) were shared across sites. The EM fungal species found in the assayed propagule banks included many pioneer fungal species and composition differed significantly from that on existing roots. Furthermore, only 4 of 23 species were shared between the two host species, indicating a strong effect of bioassay host identity in determining the propagule banks of EM fungi. These results imply that the assayed propagule bank is less affected by climate compared to EM fungal communities on existing roots. The dominance of disturbance-dependent fungal species in the assayed propagule banks may result in higher ecosystem resilience to disturbance even in old-growth temperate forests.

  1. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot.

    Science.gov (United States)

    Glassman, Sydney I; Levine, Carrie R; DiRocco, Angela M; Battles, John J; Bruns, Thomas D

    2016-05-01

    After severe wildfires, pine recovery depends on ectomycorrhizal (ECM) fungal spores surviving and serving as partners for regenerating forest trees. We took advantage of a large, severe natural forest fire that burned our long-term study plots to test the response of ECM fungi to fire. We sampled the ECM spore bank using pine seedling bioassays and high-throughput sequencing before and after the California Rim Fire. We found that ECM spore bank fungi survived the fire and dominated the colonization of in situ and bioassay seedlings, but there were specific fire adapted fungi such as Rhizopogon olivaceotinctus that increased in abundance after the fire. The frequency of ECM fungal species colonizing pre-fire bioassay seedlings, post-fire bioassay seedlings and in situ seedlings were strongly positively correlated. However, fire reduced the ECM spore bank richness by eliminating some of the rare species, and the density of the spore bank was reduced as evidenced by a larger number of soil samples that yielded uncolonized seedlings. Our results show that although there is a reduction in ECM inoculum, the ECM spore bank community largely remains intact, even after a high-intensity fire. We used advanced techniques for data quality control with Illumina and found consistent results among varying methods. Furthermore, simple greenhouse bioassays can be used to determine which fungi will colonize after fires. Similar to plant seed banks, a specific suite of ruderal, spore bank fungi take advantage of open niche space after fires.

  2. Effects of Management Practices and Topography on Ectomycorrhizal Fungi of Maritime Pine during Seedling Recruitment

    Directory of Open Access Journals (Sweden)

    Arthur Guignabert

    2018-05-01

    Full Text Available Symbiosis with ectomycorrhizal (ECM fungi can be important for regeneration success. In a context of increasing regeneration failures in the coastal forest of maritime pine in Southwest France, we tried to identity whether differences in ECM communities could partly explain the variation of regeneration success and how they are influenced by forest practices and stand characteristics. In particular, we focused on the effects of harvesting methods (comparing mature forest with seed-tree regeneration and clear-cuts and topography (bottom-, mid-, and top positions. Five field trials (two in regeneration failure areas and three in successful areas were used to sample 450 one-year-old seedlings. Assessments of ECM of seedling nutrient concentrations and of seedling growth based on exploration types were made. ECM root colonisation was similar in all harvesting treatments, suggesting that enough inoculum remained alive after logging. Harvesting-induced effects modifying soil properties and light availability respectively impacted ECM composition and seedling growth. Topography-induced variations in water and nutrient availability led to changes in ECM composition, but had little impact on seedling growth. Contact, short-distance, and long-distance exploration types improved the nutritional status of seedlings (Ca, K, and N, showing that mycorrhization could play an important role in seedling vitality. However, neither ECM root colonisation nor exploration types could be related to regeneration failures.

  3. Retention of seed trees fails to lifeboat ectomycorrhizal fungal diversity in harvested Scots pine forests.

    Science.gov (United States)

    Varenius, Kerstin; Lindahl, Björn D; Dahlberg, Anders

    2017-09-01

    Fennoscandian forestry has in the past decades changed from natural regeneration of forests towards replantation of clear-cuts, which negatively impacts ectomycorrhizal fungal (EMF) diversity. Retention of trees during harvesting enables EMF survival, and we therefore expected EMF communities to be more similar to those in old natural stands after forest regeneration using seed trees compared to full clear-cutting and replanting. We sequenced fungal internal transcribed spacer 2 (ITS2) amplicons to assess EMF communities in 10- to 60-year-old Scots pine stands regenerated either using seed trees or through replanting of clear-cuts with old natural stands as reference. We also investigated local EMF communities around retained old trees. We found that retention of seed trees failed to mitigate the impact of harvesting on EMF community composition and diversity. With increasing stand age, EMF communities became increasingly similar to those in old natural stands and permanently retained trees maintained EMF locally. From our observations, we conclude that EMF communities, at least common species, post-harvest are more influenced by environmental filtering, resulting from environmental changes induced by harvest, than by the continuity of trees. These results suggest that retention of intact forest patches is a more efficient way to conserve EMF diversity than retaining dispersed single trees. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Pycnoscelus surinamensis cockroach gut microbiota respond consistently to a fungal diet without mirroring those of fungus-farming termites.

    Directory of Open Access Journals (Sweden)

    Callum Richards

    Full Text Available The gut microbiotas of cockroaches and termites play important roles in the symbiotic digestion of dietary components, such as lignocellulose. Diet has been proposed as a primary determinant of community structure within the gut, acting as a selection force to shape the diversity observed within this "bioreactor", and as a key factor for the divergence of the termite gut microbiota from the omnivorous cockroach ancestor. The gut microbiota in most termites supports primarily the breakdown of lignocellulose, but the fungus-farming sub-family of higher termites has become similar in gut microbiota to the ancestral omnivorous cockroaches. To assess the importance of a fungus diet as a driver of community structure, we compare community compositions in the guts of experimentally manipulated Pycnoscelus surinamensis cockroaches fed on fungus cultivated by fungus-farming termites. MiSeq amplicon analysis of gut microbiotas from 49 gut samples showed a step-wise gradient pattern in community similarity that correlated with an increase in the proportion of fungal material provided to the cockroaches. Comparison of the taxonomic composition of manipulated communities to that of gut communities of a fungus-feeding termite species showed that although some bacteria OTUs shared by P. surinamensis and the farming termites increased in the guts of cockroaches on a fungal diet, cockroach communities remained distinct from those of termites. These results demonstrate that a fungal diet can play a role in structuring gut community composition, but at the same time exemplifies how original community compositions constrain the magnitude of such change.

  5. Ethidium bromide stimulated hyper laccase production from bird's nest fungus Cyathus bulleri.

    Science.gov (United States)

    Dhawan, S; Lal, R; Kuhad, R C

    2003-01-01

    Effect of ethidium bromide, a DNA intercalating agent, on laccase production from Cyathus bulleri was studied. The bird's nest fungus, Cyathus bulleri was grown on 2% (w/v) malt extract agar (MEA) supplemented with 1.5 microg ml(-1) of the phenanthridine dye ethidium bromide (EtBr) for 7 d and when grown subsequently in malt extract broth (MEB), produced a 4.2-fold increase in laccase production as compared to the untreated fungus. The fungal cultures following a single EtBr treatment, when regrown on MEA devoid of EtBr, produced a sixfold increase in laccase in MEB. However, on subsequent culturing on MEA in the absence of EtBr, only a 2.5-fold increase in laccase production could be maintained. In another attempt, the initial EtBr-treated cultures, when subjected to a second EtBr treatment (1.5 microg ml(-1)) on MEA for 7 d, produced a 1.4-fold increase in laccase production in MEB. The white-rot fungus Cyathus bulleri, when treated with EtBr at a concentration of 1.5 microg ml(-1) and regrown on MEA devoid of EtBr, produced a sixfold increase in laccase production in MEB. The variable form of C. bulleri capable of hyper laccase production can improve the economic feasibility of environmentally benign processes involving use of fungal laccases in cosmetics (including hair dyes), food and beverages, clinical diagnostics, pulp and paper industry, industrial effluent treatment, animal biotechnology and biotransformations.

  6. Penicillosides A and B: new cerebrosides from the marine-derived fungus Penicillium species

    Directory of Open Access Journals (Sweden)

    Samar S.A. Murshid

    Full Text Available Abstract In the course of our ongoing effort to identify bioactive compounds from marine-derived fungi, the marine fungus, Penicillium species was isolated from the Red Sea tunicate, Didemnum species. Two new cerebrosides, penicillosides A and B were isolated from the marine-derived fungus, Penicillium species using different chromatographic methods. Their structures were established by different spectroscopic data including 1D (1H NMR and 13C NMR and 2D NMR (COSY, HSQC, and HMBC studies as well as high-resolution mass spectral data. Penicilloside A displayed antifungal activity against Candida albicans while penicilloside B illustrated antibacterial activities against Staphylococcus aureus and Escherichia coli in the agar diffusion assay. Additionally, both compounds showed weak activity against HeLa cells.

  7. An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin.

    Science.gov (United States)

    Kusari, Souvik; Verma, Vijay C; Lamshoeft, Marc; Spiteller, Michael

    2012-03-01

    Azadirachtin A and its structural analogues are a well-known class of natural insecticides having antifeedant and insect growth-regulating properties. These compounds are exclusive to the neem tree, Azadirachta indica A. Juss, from where they are currently sourced. Here we report for the first time, the isolation and characterization of a novel endophytic fungus from A. indica, which produces azadirachtin A and B in rich mycological medium (Sabouraud dextrose broth), under shake-flask fermentation conditions. The fungus was identified as Eupenicillium parvum by ITS analysis (ITS1 and ITS2 regions and the intervening 5.8S rDNA region). Azadirachtin A and B were identified and quantified by LC-HRMS and LC-HRMS(2), and by comparison with the authentic reference standards. The biosynthesis of azadirachtin A and B by the cultured endophyte, which is also produced by the host neem plant, provides an exciting platform for further scientific exploration within both the ecological and biochemical contexts.

  8. Two New Alkaloids from a Marine-derived Fungus Neosartorya fischeri

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2015-04-01

    Full Text Available Investigation of EtOAc extract from the fermentation broth of the fungus Neosartorya fischeri led to the isolation of two novel alkaloids and one known compound with antitumor activity against HL-60 cell lines. Their structures were elucidated mainly by NMR and HR-TOF-MS, as well as on comparison with the reported data.

  9. Biscogniauxone, a New Isopyrrolonaphthoquinone Compound from the Fungus Biscogniauxia mediterranea Isolated from Deep-Sea Sediments

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2016-11-01

    Full Text Available The properties and the production of new metabolites from the fungal strain LF657 isolated from the Herodotes Deep (2800 m depth in the Mediterranean Sea are reported in this study. The new isolate was identified as Biscogniauxia mediterranea based on ITS1-5.8S-ITS2 and 28S rRNA gene sequences. A new isopyrrolonaphthoquinone with inhibitory activity against glycogen synthase kinase (GSK-3β was isolated from this fungus. This is the first report of this class of compounds from a fungus isolated from a deep-sea sediment, as well as from a Biscogniauxia species.

  10. Factors affecting fungus-induced larval mortality in Anopheles gambiae and Anopheles stephensi

    NARCIS (Netherlands)

    Bukhari, S.T.; Middelman, A.; Koenraadt, C.J.M.; Takken, W.; Knols, B.G.J.

    2010-01-01

    Background Entomopathogenic fungi have shown great potential for the control of adult malaria vectors. However, their ability to control aquatic stages of anopheline vectors remains largely unexplored. Therefore, how larval characteristics (Anopheles species, age and larval density), fungus (species

  11. Convergent coevolution in the domestication of coral mushrooms by fungus-growing ants

    DEFF Research Database (Denmark)

    Munkacsi, A B; Nees, Jan Pan; Villesen, Palle

    2004-01-01

    Comparisons of phylogenetic patterns between coevolving symbionts can reveal rich details about the evolutionary history of symbioses. The ancient symbiosis between fungus-growing ants, their fungal cultivars, antibiotic-producing bacteria and cultivar-infecting parasites is dominated by a patter...

  12. White-Nose Syndrome Fungus (Geomyces destructans) in Bats, Europe

    OpenAIRE

    Wibbelt, Gudrun; Kurth, Andreas; Hellmann, David; Weishaar, Manfred; Barlow, Alex; Veith, Michael; Prüger, Julia; Görföl, Tamás; Grosche, Lena; Bontadina, Fabio; Zöphel, Ulrich; Seidl, Hans-Peter; Cryan, Paul M.; Blehert, David S.

    2010-01-01

    White-nose syndrome is an emerging disease in North America that has caused substantial declines in hibernating bats. A recently identified fungus (Geomyces destructans) causes skin lesions that are characteristic of this disease. Typical signs of this infection were not observed in bats in North America before white-nose syndrome was detected. However, unconfirmed reports from Europe indicated white fungal growth on hibernating bats without associated deaths. To investigate these differences...

  13. Temperature determines symbiont abundance in a multipartite bark beetle-fungus ectosymbiosis

    Science.gov (United States)

    D. L. Six; B. J. Bentz

    2007-01-01

    In this study, we report evidence that temperature plays a key role in determining the relative abundance of two mutualistic fungi associated with an economically and ecologically important bark beetle, Dendroctonus ponderosae. The symbiotic fungi possess different optimal temperature ranges. These differences determine which fungus is vectored by...

  14. Dynamic disease management in trachymyrmex fungus-growing ants (Attini: Formicidae)

    DEFF Research Database (Denmark)

    Fernández-Marín, Hermógenes; Bruner, Gaspar; Gomez, Ernesto B.

    2013-01-01

    Abstract Multipartner mutualisms have potentially complex dynamics, with compensatory responses when one partner is lost or relegated to a minor role. Fungus-growing ants (Attini) are mutualistic associates of basidiomycete fungi and antibiotic-producing actinomycete bacteria; the former are atta...

  15. Volatile emissions from an epiphytic fungus are semiochemicals for eusocial wasps.

    Science.gov (United States)

    Davis, Thomas Seth; Boundy-Mills, Kyria; Landolt, Peter J

    2012-11-01

    Microbes are ubiquitous on plant surfaces. However, interactions between epiphytic microbes and arthropods are rarely considered as a factor that affects arthropod behaviors. Here, volatile emissions from an epiphytic fungus were investigated as semiochemical attractants for two eusocial wasps. The fungus Aureobasidium pullulans was isolated from apples, and the volatile compounds emitted by fungal colonies were quantified. The attractiveness of fungal colonies and fungal volatiles to social wasps (Vespula spp.) were experimentally tested in the field. Three important findings emerged: (1) traps baited with A. pullulans caught 2750 % more wasps on average than unbaited control traps; (2) the major headspace volatiles emitted by A. pullulans were 2-methyl-1-butanol, 3-methyl-1-butanol, and 2-phenylethyl alcohol; and (3) a synthetic blend of fungal volatiles attracted 4,933 % more wasps on average than unbaited controls. Wasps were most attracted to 2-methyl-1-butanol. The primary wasp species attracted to fungal volatiles were the western yellowjacket (Vespula pensylvanica) and the German yellowjacket (V. germanica), and both species externally vectored A. pullulans. This is the first study to link microbial volatile emissions with eusocial wasp behaviors, and these experiments indicate that volatile compounds emitted by an epiphytic fungus can be responsible for wasp attraction. This work implicates epiphytic microbes as important components in the community ecology of some eusocial hymenopterans, and fungal emissions may signal suitable nutrient sources to foraging wasps. Our experiments are suggestive of a potential symbiosis, but additional studies are needed to determine if eusocial wasp-fungal associations are widespread, and whether these associations are incidental, facultative, or obligate.

  16. Unique phylogenetic position of the African truffle-like fungus, Octaviania ivoryana (Boletaceae, Boletales), and the proposal of a new genus, Afrocastellanoa.

    Science.gov (United States)

    Orihara, Takamichi; Smith, Matthew E

    2017-01-01

    The sequestrate (truffle-like) basidiomycete Octaviania ivoryana was originally described based on collections from Zimbabwe, Kenya, Guinea, and Senegal. This species has basidiomes that stain blue-green and basidiospores with crowded spines that are characteristic of the genus Octaviania. However, O. ivoryana is the only Octaviania species described from sub-Saharan Africa, and the phylogenetic relationship of the species to other species of Octaviania sensu stricto has not been previously investigated. We examined the phylogenetic position of the isotype and paratype specimens of O. ivoryana based on two nuc rDNA loci-ITS1-5.8S-ITS2 (internal transcribed spacer [ITS]) and partial 28S-and the translation elongation factor 1-α gene. The resultant phylogenies indicate that O. ivoryana does not belong to Octaviania s. s. but instead forms a clade with the epigeous bolete genus, Porphyrellus sensu stricto (i.e., P. porphyrosporus and allies). The internal transcribed spacer phylogeny also recovers a monophyletic clade that includes sequences from O. ivoryana basidiomes as well as sequences from ectomycorrhizal root tips of Uapaca, Anthonotha, and assorted ectomycorrhizal Fabaceae species, suggesting that there is likely additional undescribed diversity within the lineage. We accordingly propose a new genus, Afrocastellanoa M.E. Sm. & Orihara, to accommodate the species O. ivoryana. Afrocastellanoa is morphologically distinct from Octaviania in the combination of a solid gleba, multilayered peridium, and the lack of distinct hymenium within the gleba. Our data suggest that the genus Afrocastellanoa is a unique sequestrate lineage with one described species and several undescribed species, all of which likely form ectomycorrhizas with African trees.

  17. No sex in fungus-farming ants or their crops.

    Science.gov (United States)

    Himler, Anna G; Caldera, Eric J; Baer, Boris C; Fernández-Marín, Hermógenes; Mueller, Ulrich G

    2009-07-22

    Asexual reproduction imposes evolutionary handicaps on asexual species, rendering them prone to extinction, because asexual reproduction generates novel genotypes and purges deleterious mutations at lower rates than sexual reproduction. Here, we report the first case of complete asexuality in ants, the fungus-growing ant Mycocepurus smithii, where queens reproduce asexually but workers are sterile, which is doubly enigmatic because the clonal colonies of M. smithii also depend on clonal fungi for food. Degenerate female mating anatomy, extensive field and laboratory surveys, and DNA fingerprinting implicate complete asexuality in this widespread ant species. Maternally inherited bacteria (e.g. Wolbachia, Cardinium) and the fungal cultivars can be ruled out as agents inducing asexuality. M. smithii societies of clonal females provide a unique system to test theories of parent-offspring conflict and reproductive policing in social insects. Asexuality of both ant farmer and fungal crop challenges traditional views proposing that sexual farmer ants outpace coevolving sexual crop pathogens, and thus compensate for vulnerabilities of their asexual crops. Either the double asexuality of both farmer and crop may permit the host to fully exploit advantages of asexuality for unknown reasons or frequent switching between crops (symbiont reassociation) generates novel ant-fungus combinations, which may compensate for any evolutionary handicaps of asexuality in M. smithii.

  18. Cytotoxic acyl amides from the soil fungus Gymnascella dankaliensis.

    Science.gov (United States)

    Hammerschmidt, Lena; Aly, Amal H; Abdel-Aziz, Mohammed; Müller, Werner E G; Lin, Wenhan; Daletos, Georgios; Proksch, Peter

    2015-02-15

    The soil fungus Gymnascella dankaliensis was collected in the vicinity of the Giza pyramids, Egypt. When grown on solid rice medium the fungus yielded four new compounds including 11'-carboxygymnastatin N (1), gymnastatin S (2), dankamide (3), and aranorosin-2-methylether (4), the latter having been reported previously only as a semisynthetic compound. In addition, six known metabolites (5-10) were isolated. Addition of NaCl or KBr to the rice medium resulted in the accumulation of chlorinated or brominated compounds as indicated by LC-MS analysis due to the characteristic isotope patterns observed. From the rice medium spiked with 3.5% NaCl the known chlorinated compounds gymnastatin A (11) and gymnastatin B (12) were obtained. All isolated compounds were unambiguously structurally elucidated on the basis of comprehensive spectral analysis (1D and 2D NMR, and mass spectrometry), as well as by comparison with the literature. Compounds 4, 7 and 11 showed potent cytotoxicity against the murine lymphoma cell line L5178Y (IC50 values 0.44, 0.58 and 0.64μM, respectively), whereas 12 exhibited moderate activity with an IC50 value of 5.80μM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Detection of Phakopsora pachyrhizi fungus by Polymerase Chain Reaction technique (PCR) after soy grains treatment by electron beams

    International Nuclear Information System (INIS)

    Fanaro, G.B.; Aquino, S.; Guedes, R.L.; Crede, R.G.; Sabundjian, I.T.; Ruiz, M.O.; Villavicencio, A.L.C.H.

    2005-01-01

    Today Brazil, as the largest soy exporter in the world, has undergone the consequences of the contamination of these crops by the Asian dust fungus, being harmed since the plantation up to the harvest, with losses in its productivity ranging 10-80%. As it is a new disease in the Americas, there are not any resistant species to this fungus attack. The grains contamination harms the exportation for countries which do not want to have their crops contaminated, affecting therefore the international commerce and agro-business relationship with those countries Brazil has trade with. The Asian dust is caused by the fungus Phakopsora pachyrhizi and its dissemination is of difficult control, since occurs through the wind dispersion. The P. pachyrhizi is an Asian fungus and was recently found in South Africa, Paraguay, Argentina and Brazil. As an alternative process to minimize these losses is the process to preserve the grains by radiation, the use of the electron accelerator was indicated, since its advantage for the grains exportation industry is fundamental. Besides the possibility of being disconnected when not in use, this source does not need to be recharged, is easily available and has high dose rate, streamlining the process and reducing logistics costs. The present work aims to identify, by the Polymerase Chain Reaction technique (PCR), the P. pachyrhizi fungus presence in the irradiated soy grains, at doses 1 and 2 kGy, at the IPEN-CNEN electron Accelerator, a Dynamitron Machine (Radiation Dynamics Co. model JOB, New York, USA), with 1.5 MeV power and 2.5 mA electrical current. (author)

  20. Morphological and molecular characterizations of psychrophilic fungus Geomyces destructans from New York bats with White Nose Syndrome (WNS).

    Science.gov (United States)

    Chaturvedi, Vishnu; Springer, Deborah J; Behr, Melissa J; Ramani, Rama; Li, Xiaojiang; Peck, Marcia K; Ren, Ping; Bopp, Dianna J; Wood, Britta; Samsonoff, William A; Butchkoski, Calvin M; Hicks, Alan C; Stone, Ward B; Rudd, Robert J; Chaturvedi, Sudha

    2010-05-24

    Massive die-offs of little brown bats (Myotis lucifugus) have been occurring since 2006 in hibernation sites around Albany, New York, and this problem has spread to other States in the Northeastern United States. White cottony fungal growth is seen on the snouts of affected animals, a prominent sign of White Nose Syndrome (WNS). A previous report described the involvement of the fungus Geomyces destructans in WNS, but an identical fungus was recently isolated in France from a bat that was evidently healthy. The fungus has been recovered sparsely despite plentiful availability of afflicted animals. We have investigated 100 bat and environmental samples from eight affected sites in 2008. Our findings provide strong evidence for an etiologic role of G. destructans in bat WNS. (i) Direct smears from bat snouts, Periodic Acid Schiff-stained tissue sections from infected tissues, and scanning electron micrographs of bat tissues all showed fungal structures similar to those of G. destructans. (ii) G. destructans DNA was directly amplified from infected bat tissues, (iii) Isolations of G. destructans in cultures from infected bat tissues showed 100% DNA match with the fungus present in positive tissue samples. (iv) RAPD patterns for all G. destructans cultures isolated from two sites were indistinguishable. (v) The fungal isolates showed psychrophilic growth. (vi) We identified in vitro proteolytic activities suggestive of known fungal pathogenic traits in G. destructans. Further studies are needed to understand whether G. destructans WNS is a symptom or a trigger for bat mass mortality. The availability of well-characterized G. destructans strains should promote an understanding of bat-fungus relationships, and should aid in the screening of biological and chemical control agents.