Sample records for ecosystem co2 production

  1. Positive feedback between increasing atmospheric CO2 and ecosystem productivity (United States)

    Gelfand, I.; Hamilton, S. K.; Robertson, G. P.


    Increasing atmospheric CO2 will likely affect both the hydrologic cycle and ecosystem productivity. Current assumptions that increasing CO2 will lead to increased ecosystem productivity and plant water use efficiency (WUE) are driving optimistic predictions of higher crop yields as well as greater availability of freshwater resources due to a decrease in evapotranspiration. The plant physiological response that drives these effects is believed to be an increase in carbon uptake either by (a) stronger CO2 gradient between the stomata and the atmosphere, or by (b) reduced CO2 limitation of enzymatic carboxylation within the leaf. The (a) scenario will lead to increased water use efficiency (WUE) in plants. However, evidence for increased WUE is mostly based on modeling studies, and experiments producing a short duration or step-wise increase in CO2 concentration (e.g. free-air CO2 enrichment). We hypothesize that the increase in atmospheric CO2 concentration is having a positive effect on ecosystem productivity and WUE. To investigate this hypothesis, we analyzed meteorological, ANPP, and soil CO2 flux datasets together with carbon isotopic ratio (13C/12C) of archived plant samples from the long term ecological research (LTER) program at Kellogg Biological Station. The datasets were collected between 1989 and 2007 (corresponding to an increase in atmospheric CO2 concentration of ~33 ppmv at Mauna Loa). Wheat (Triticum aestivum) samples taken from 1989 and 2007 show a significant decrease in the C isotope discrimination factor (Δ) over time. Stomatal conductance is directly related to Δ, and thus Δ is inversely related to plant intrinsic WUE (iWUE). Historical changes in the 13C/12C ratio (δ13C) in samples of a perennial forb, Canada goldenrod (Solidago canadensis), taken from adjacent successional fields, indicate changes in Δ upon uptake of CO2 as well. These temporal trends in Δ suggest a positive feedback between the increasing CO2 concentration in the

  2. Constraining Ecosystem Gross Primary Production and Transpiration with Measurements of Photosynthetic 13CO2 Discrimination (United States)

    Blonquist, J. M.; Wingate, L.; Ogeé, J.; Bowling, D. R.


    The stable carbon isotope composition of atmospheric CO2 (δ13Ca) can provide useful information on water use efficiency (WUE) dynamics of terrestrial ecosystems and potentially constrain models of CO2 and water fluxes at the land surface. This is due to the leaf-level relationship between photosynthetic 13CO2 discrimination (Δ), which influences δ13Ca, and the ratio of leaf intercellular to atmospheric CO2 mole fractions (Ci / Ca), which is related to WUE and is determined by the balance between C assimilation (CO2 demand) and stomatal conductance (CO2 supply). We used branch-scale Δ derived from tunable diode laser absorption spectroscopy measurements collected in a Maritime pine forest to estimate Ci / Ca variations over an entire growing season. We combined Ci / Ca estimates with rates of gross primary production (GPP) derived from eddy covariance (EC) to estimate canopy-scale stomatal conductance (Gs) and transpiration (T). Estimates of T were highly correlated to T estimates derived from sapflow data (y = 1.22x + 0.08; r2 = 0.61; slope P MuSICA) (y = 0.88x - 0.05; r2 = 0.64; slope P MuSICA (y = 1.10 + 0.42; r2 = 0.50; slope P < 0.001). Results demonstrate that the leaf-level relationship between Δ and Ci / Ca can be extended to the canopy-scale and that Δ measurements have utility for partitioning ecosystem-scale CO2 and water fluxes.

  3. Ecosystem CO2 production during winter in a Swedish subarctic region: the relative importance of climate and vegetation type

    DEFF Research Database (Denmark)

    Grogan, Paul; Jonasson, Sven Evert


    General circulation models consistently predict that regional warming will be most rapid in the Arctic, that this warming will be predominantly in the winter season, and that it will often be accompanied by increasing snowfall. Paradoxically, despite the strong cold season emphasis in these predi...... will respond to climate change during winter because they indicate a threshold (~1 m) above which there would be little effect of increased snow accumulation on wintertime biogeochemical cycling....... in these predictions, we know relatively little about the plot and landscape-level controls on tundra biogeochemical cycling in wintertime as compared to summertime. We investigated the relative influence of vegetation type and climate on CO2 production rates and total wintertime CO2 release in the Scandinavian...... subarctic. Ecosystem respiration rates and a wide range of associated environmental and substrate pool size variables were measured in the two most common vegetation types of the region (birch understorey and heath tundra) at four paired sites along a 50 km transect through a strong snow depth gradient...

  4. Emergent climate and CO2 sensitivities of net primary productivity in ecosystem models do not agree with empirical data in temperate forests of eastern North America. (United States)

    Rollinson, Christine R; Liu, Yao; Raiho, Ann; Moore, David J P; McLachlan, Jason; Bishop, Daniel A; Dye, Alex; Matthes, Jaclyn H; Hessl, Amy; Hickler, Thomas; Pederson, Neil; Poulter, Benjamin; Quaife, Tristan; Schaefer, Kevin; Steinkamp, Jörg; Dietze, Michael C


    Ecosystem models show divergent responses of the terrestrial carbon cycle to global change over the next century. Individual model evaluation and multimodel comparisons with data have largely focused on individual processes at subannual to decadal scales. Thus far, data-based evaluations of emergent ecosystem responses to climate and CO 2 at multidecadal and centennial timescales have been rare. We compared the sensitivity of net primary productivity (NPP) to temperature, precipitation, and CO 2 in ten ecosystem models with the sensitivities found in tree-ring reconstructions of NPP and raw ring-width series at six temperate forest sites. These model-data comparisons were evaluated at three temporal extents to determine whether the rapid, directional changes in temperature and CO 2 in the recent past skew our observed responses to multiple drivers of change. All models tested here were more sensitive to low growing season precipitation than tree-ring NPP and ring widths in the past 30 years, although some model precipitation responses were more consistent with tree rings when evaluated over a full century. Similarly, all models had negative or no response to warm-growing season temperatures, while tree-ring data showed consistently positive effects of temperature. Although precipitation responses were least consistent among models, differences among models to CO 2 drive divergence and ensemble uncertainty in relative change in NPP over the past century. Changes in forest composition within models had no effect on climate or CO 2 sensitivity. Fire in model simulations reduced model sensitivity to climate and CO 2 , but only over the course of multiple centuries. Formal evaluation of emergent model behavior at multidecadal and multicentennial timescales is essential to reconciling model projections with observed ecosystem responses to past climate change. Future evaluation should focus on improved representation of disturbance and biomass change as well as the

  5. Soil CO2 dynamics and fluxes as affected by tree harvest in an experimental sand ecosystem. (United States)

    C.K. Keller; T.M. White; R. O' Brien; J.L. Smith


    Soil CO2 production is a key process in ecosystem C exchange, and global change predictions require understanding of how ecosystem disturbance affects this process. We monitored CO2 levels in soil gas and as bicarbonate in drainage from an experimental red pine ecosystem, for 1 year before and 3 years after its aboveground...

  6. Anomalous CO2 Emissions in Different Ecosystems Around the World (United States)

    Sanchez-Canete, E. P.; Moya Jiménez, M. R.; Kowalski, A. S.; Serrano-Ortiz, P.; López-Ballesteros, A.; Oyonarte, C.; Domingo, F.


    As an important tool for understanding and monitoring ecosystem dynamics at ecosystem level, the eddy covariance (EC) technique allows the assessment of the diurnal and seasonal variation of the net ecosystem exchange (NEE). Despite the high temporal resolution data available, there are still many processes (in addition to photosynthesis and respiration) that, although they are being monitored, have been neglected. Only a few authors have studied anomalous CO2 emissions (non biological), and have related them to soil ventilation, photodegradation or geochemical processes. The aim of this study is: 1) to identify anomalous short term CO2 emissions in different ecosystems distributed around the world, 2) to determine the meteorological variables that are influencing these emissions, and 3) to explore the potential processes that can be involved. We have studied EC data together with other meteorological ancillary variables obtained from the FLUXNET database (version 2015) and have found more than 50 sites with anomalous CO2 emissions in different ecosystem types such as grasslands, croplands or savannas. Data were filtered according to the FLUXNET quality control flags (only data with quality control flag equal to 0 was used) and correlation analysis were performed with NEE and ancillary data. Preliminary results showed strong and highly significant correlations between meteorological variables and anomalous CO2 emissions. Correlation results showed clear differing behaviors between ecosystems types, which could be related to the different processes involved in the anomalous CO2 emissions. We suggest that anomalous CO2 emissions are happening globally and therefore, their contribution to the global net ecosystem carbon balance requires further investigation in order to better understand its drivers.

  7. [Effects of drip irrigation with plastic mulching on the net primary productivity, soil heterotrophic respiration, and net CO2 exchange flux of cotton field ecosystem in Xinjiang, Northwest China]. (United States)

    Li, Zhi-Guo; Zhang, Run-Hua; Lai, Dong-Mei; Yan, Zheng-Yue; Jiang, Li; Tian, Chang-Yan


    In April-October, 2009, a field experiment was conducted to study the effects of drip irrigation with plastic mulching (MD) on the net primary productivity (NPP), soil heterotrophic respiration (Rh) , and net CO2 exchange flux (NEF(CO2)) of cotton field ecosystem in Xinjiang, taking the traditional flood irrigation with no mulching (NF) as the control. With the increasing time, the NPP, Rh, and NEF(CO2) in treatments MD and NF all presented a trend of increasing first and decreased then. As compared with NF, MD increased the aboveground and belowground biomass and the NPP of cotton, and decreased the Rh. Over the whole growth period, the Rh in treatment MD (214 g C x m(-2)) was smaller than that in treatment NF (317 g C x m(-2)), but the NEF(CO2) in treatment MD (1030 g C x m(-2)) was higher than that in treatment NF (649 g C x m(-2)). Treatment MD could fix the atmospheric CO2 approximately 479 g C x m(-2) higher than treatment NF. Drip irrigation with plastic mulching could promote crop productivity while decreasing soil CO2 emission, being an important agricultural measure for the carbon sequestration and emission reduction of cropland ecosystems in arid area.

  8. Ecosystem Warming Affects CO2 Flux in an Agricultural Soil (United States)

    Global warming seems likely based on present-day climate predictions. Our objective was to characterize and quantify the interactive effects of ecosystem warming (i.e., canopy temperature, TS), soil moisture content ('S) and microbial biomass (BM: bacteria, fungi) on the intra-row soil CO2 flux (FS)...

  9. Impacts of elevated atmospheric CO2 on forest trees and forest ecosystems: knowledge gaps

    International Nuclear Information System (INIS)

    Karnosky, D.F.


    Atmospheric CO 2 is rising rapidly, and options for slowing the CO 2 rise are politically charged as they largely require reductions in industrial CO 2 emissions for most developed countries. As forests cover some 43% of the Earth's surface, account for some 70% of terrestrial net primary production (NPP), and are being bartered for carbon mitigation, it is critically important that we continue to reduce the uncertainties about the impacts of elevated atmospheric CO 2 on forest tree growth, productivity, and forest ecosystem function. In this paper, 1 review knowledge gaps and research needs on the effects of elevated atmospheric CO 2 on forest above- and below-ground growth and productivity, carbon sequestration, nutrient cycling, water relations, wood quality, phonology, community dynamics and biodiversity, antioxidants and stress tolerance, interactions with air pollutants, heterotrophic interactions, and ecosystem functioning. Finally, 1 discuss research needs regarding modelling of the impacts of elevated atmospheric CO 2 on forests. Even though there has been a tremendous amount of research done with elevated CO 2 and forest trees, it remains difficult to predict future forest growth and productivity under elevated atmospheric CO 2 . Likewise, it is not easy to predict how forest ecosystem processes will respond to enriched CO 2 . The more we study the impacts of increasing CO 2 , the more we realize that tree and forest responses are yet largely uncertain due to differences in responsiveness by species, genotype, and functional group, and the complex interactions of elevated atmospheric CO 2 with soil fertility, drought, pests, and co-occurring atmospheric pollutants such as nitrogen deposition and O 3 . Furthermore, it is impossible to predict ecosystem-level responses based on short-term studies of young trees grown without interacting stresses and in small spaces without the element of competition. Long-term studies using free-air CO 2 enrichment (FACE

  10. Net ecosystem CO2 exchange of a primary tropical peat swamp forest in Sarawak, Malaysia (United States)

    Tang Che Ing, A.; Stoy, P. C.; Melling, L.


    Tropical peat swamp forests are widely recognized as one of the world's most efficient ecosystems for the sequestration and storage of carbon through both their aboveground biomass and underlying thick deposits of peat. As the peat characteristics exhibit high spatial and temporal variability as well as the structural and functional complexity of forests, tropical peat ecosystems can act naturally as both carbon sinks and sources over their life cycles. Nonetheless, few reports of studies on the ecosystem-scale CO2 exchange of tropical peat swamp forests are available to-date and their present roles in the global carbon cycle remain uncertain. To quantify CO2 exchange and unravel the prevailing factors and potential underlying mechanism regulating net CO2 fluxes, an eddy covariance tower was erected in a tropical peat swamp forest in Sarawak, Malaysia. We observed that the diurnal and seasonal patterns of net ecosystem CO2 exchange (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (RE)) varied between seasons and years. Rates of NEE declined in the wet season relative to the dry season. Conversely, both the gross primary productivity (GPP) and ecosystem respiration (RE) were found to be higher during the wet season than the dry season, in which GPP was strongly negatively correlated with NEE. The average annual NEE was 385 ± 74 g C m-2 yr-1, indicating the primary peat swamp forest functioned as net source of CO2 to the atmosphere over the observation period.

  11. Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K J; Richardson, S J; Miles, N L


    Inversions of atmospheric CO2 mixing ratio measurements to determine CO2 sources and sinks are typically limited to coarse spatial and temporal resolution. This limits our ability to evaluate efforts to upscale chamber- and stand-level CO2 flux measurements to regional scales, where coherent climate and ecosystem mechanisms govern the carbon cycle. As a step towards the goal of implementing atmospheric budget or inversion methodology on a regional scale, a network of five relatively inexpensive CO2 mixing ratio measurement systems was deployed on towers in northern Wisconsin. Four systems were distributed on a circle of roughly 150-km radius, surrounding one centrally located system at the WLEF tower near Park Falls, WI. All measurements were taken at a height of 76 m AGL. The systems used single-cell infrared CO2 analyzers (Licor, model LI-820) rather than the siginificantly more costly two-cell models, and were calibrated every two hours using four samples known to within ± 0.2 ppm CO2. Tests prior to deployment in which the systems sampled the same air indicate the precision of the systems to be better than ± 0.3 ppm and the accuracy, based on the difference between the daily mean of one system and a co-located NOAA-ESRL system, is consistently better than ± 0.3 ppm. We demonstrate the utility of the network in two ways. We interpret regional CO2 differences using a Lagrangian parcel approach. The difference in the CO2 mixing ratios across the network is at least 2-3 ppm, which is large compared to the accuracy and precision of the systems. Fluxes estimated assuming Lagrangian parcel transport are of the same sign and magnitude as eddy-covariance flux measurements at the centrally-located WLEF tower. These results indicate that the network will be useful in a full inversion model. Second, we present a case study involving a frontal passage through the region. The progression of a front across the network is evident; changes as large as four ppm in one minute

  12. Variability in soil CO2 production and surface CO2 efflux across riparian-hillslope transitions (United States)

    Vincent Jerald. Pacific


    The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as an outstanding gap in our understanding of carbon cycling. I investigated both the spatial and temporal variability of soil CO2 concentrations and surface CO2 efflux across eight topographically distinct riparian-hillslope transitions in the ~300 ha subalpine upper-...

  13. Primary producers may ameliorate impacts of daytime CO2 addition in a coastal marine ecosystem. (United States)

    Bracken, Matthew E S; Silbiger, Nyssa J; Bernatchez, Genevieve; Sorte, Cascade J B


    Predicting the impacts of ocean acidification in coastal habitats is complicated by bio-physical feedbacks between organisms and carbonate chemistry. Daily changes in pH and other carbonate parameters in coastal ecosystems, associated with processes such as photosynthesis and respiration, often greatly exceed global mean predicted changes over the next century. We assessed the strength of these feedbacks under projected elevated CO 2 levels by conducting a field experiment in 10 macrophyte-dominated tide pools on the coast of California, USA. We evaluated changes in carbonate parameters over time and found that under ambient conditions, daytime changes in pH, p CO 2 , net ecosystem calcification ( NEC ), and O 2 concentrations were strongly related to rates of net community production ( NCP ). CO 2 was added to pools during daytime low tides, which should have reduced pH and enhanced p CO 2 . However, photosynthesis rapidly reduced p CO 2 and increased pH, so effects of CO 2 addition were not apparent unless we accounted for seaweed and surfgrass abundances. In the absence of macrophytes, CO 2 addition caused pH to decline by ∼0.6 units and p CO 2 to increase by ∼487 µatm over 6 hr during the daytime low tide. As macrophyte abundances increased, the impacts of CO 2 addition declined because more CO 2 was absorbed due to photosynthesis. Effects of CO 2 addition were, therefore, modified by feedbacks between NCP , pH, p CO 2 , and NEC . Our results underscore the potential importance of coastal macrophytes in ameliorating impacts of ocean acidification.

  14. Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Melling, Lulie; Hatano, Ryusuke


    Soil CO 2 flux was measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The soil CO 2 flux ranged from 100 to 533 mg C/m 2 /h for the forest ecosystem, 63 to 245 mg C/m 2 /h for the sago and 46 to 335 mg C/m 2 /h for the oil palm. Based on principal component analysis (PCA), the environmental variables over all sites could be classified into three components, namely, climate, soil moisture and soil bulk density, which accounted for 86% of the seasonal variability. A regression tree approach showed that CO 2 flux in each ecosystem was related to different underlying environmental factors. They were relative humidity for forest, soil temperature at 5 cm for sago and water-filled pore space for oil palm. On an annual basis, the soil CO 2 flux was highest in the forest ecosystem with an estimated production of 2.1 kg C/m 2 /yr followed by oil palm at 1.5 kg C/m 2 /yr and sago at 1.1 kg C/m 2 /yr. The different dominant controlling factors in CO 2 flux among the studied ecosystems suggested that land use affected the exchange of CO 2 between tropical peatland and the atmosphere

  15. Quantifying Direct and Indirect Effects of Elevated CO2 on Ecosystem Response (United States)

    Fatichi, S.; Leuzinger, S.; Paschalis, A.; Donnellan-Barraclough, A.; Hovenden, M. J.; Langley, J. A.


    Increasing concentrations of atmospheric carbon dioxide are expected to affect carbon assimilation, evapotranspiration (ET) and ultimately plant growth. Direct leaf biochemical effects have been widely investigated, while indirect effects, although documented, are very difficult to quantify in experiments. We hypothesize that the interaction of direct and indirect effects is a possible reason for conflicting results concerning the magnitude of CO2 fertilization effects across different climates and ecosystems. A mechanistic ecohydrological model (Tethys-Chloris) is used to investigate the relative contribution of direct (through plant physiology) and indirect (via stomatal closure and thus soil moisture, and changes in Leaf Area Index, LAI) effects of elevated CO2 across a number of ecosystems. We specifically ask in which ecosystems and climate indirect effects are expected to be largest. Data and boundary conditions from flux-towers and free air CO2 enrichment (FACE) experiments are used to force the model and evaluate its performance. Numerical results suggest that indirect effects of elevated CO2, through water savings and increased LAI, are very significant and sometimes larger than direct effects. Indirect effects tend to be considerably larger in water-limited ecosystems, while direct effects correlate positively with mean air temperature. Increasing CO2 from 375 to 550 ppm causes a total effect on Net Primary Production in the order of 15 to 40% and on ET from 0 to -8%, depending on climate and ecosystem type. The total CO2 effect has a significant negative correlation with the wetness index and positive correlation with vapor pressure deficit. These results provide a more general mechanistic understanding of relatively short-term (less than 20 years) implications of elevated CO2 on ecosystem response and suggest plausible magnitudes for the expected changes.

  16. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance (United States)

    Connell, Sean D.; Kroeker, Kristy J.; Fabricius, Katharina E.; Kline, David I.; Russell, Bayden D.


    Predictions concerning the consequences of the oceanic uptake of increasing atmospheric carbon dioxide (CO2) have been primarily occupied with the effects of ocean acidification on calcifying organisms, particularly those critical to the formation of habitats (e.g. coral reefs) or their maintenance (e.g. grazing echinoderms). This focus overlooks direct and indirect effects of CO2 on non-calcareous taxa that play critical roles in ecosystem shifts (e.g. competitors). We present the model that future atmospheric [CO2] may act as a resource for mat-forming algae, a diverse and widespread group known to reduce the resilience of kelp forests and coral reefs. We test this hypothesis by combining laboratory and field CO2 experiments and data from ‘natural’ volcanic CO2 vents. We show that mats have enhanced productivity in experiments and more expansive covers in situ under projected near-future CO2 conditions both in temperate and tropical conditions. The benefits of CO2 are likely to vary among species of producers, potentially leading to shifts in species dominance in a high CO2 world. We explore how ocean acidification combines with other environmental changes across a number of scales, and raise awareness of CO2 as a resource whose change in availability could have wide-ranging community consequences beyond its direct effects. PMID:23980244

  17. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. (United States)

    Connell, Sean D; Kroeker, Kristy J; Fabricius, Katharina E; Kline, David I; Russell, Bayden D


    Predictions concerning the consequences of the oceanic uptake of increasing atmospheric carbon dioxide (CO2) have been primarily occupied with the effects of ocean acidification on calcifying organisms, particularly those critical to the formation of habitats (e.g. coral reefs) or their maintenance (e.g. grazing echinoderms). This focus overlooks direct and indirect effects of CO2 on non-calcareous taxa that play critical roles in ecosystem shifts (e.g. competitors). We present the model that future atmospheric [CO2] may act as a resource for mat-forming algae, a diverse and widespread group known to reduce the resilience of kelp forests and coral reefs. We test this hypothesis by combining laboratory and field CO2 experiments and data from 'natural' volcanic CO2 vents. We show that mats have enhanced productivity in experiments and more expansive covers in situ under projected near-future CO2 conditions both in temperate and tropical conditions. The benefits of CO2 are likely to vary among species of producers, potentially leading to shifts in species dominance in a high CO2 world. We explore how ocean acidification combines with other environmental changes across a number of scales, and raise awareness of CO2 as a resource whose change in availability could have wide-ranging community consequences beyond its direct effects.

  18. Effects of elevated CO2 and nitrogen deposition on ecosystem carbon fluxes on the Sanjiang plain wetland in Northeast China. (United States)

    Wang, Jianbo; Zhu, Tingcheng; Ni, Hongwei; Zhong, Haixiu; Fu, Xiaoling; Wang, Jifeng


    Increasing atmospheric CO2 and nitrogen (N) deposition across the globe may affect ecosystem CO2 exchanges and ecosystem carbon cycles. Additionally, it remains unknown how increased N deposition and N addition will alter the effects of elevated CO2 on wetland ecosystem carbon fluxes. Beginning in 2010, a paired, nested manipulative experimental design was used in a temperate wetland of northeastern China. The primary factor was elevated CO2, accomplished using Open Top Chambers, and N supplied as NH4NO3 was the secondary factor. Gross primary productivity (GPP) was higher than ecosystem respiration (ER), leading to net carbon uptake (measured by net ecosystem CO2 exchange, or NEE) in all four treatments over the growing season. However, their magnitude had interannual variations, which coincided with air temperature in the early growing season, with the soil temperature and with the vegetation cover. Elevated CO2 significantly enhanced GPP and ER but overall reduced NEE because the stimulation caused by the elevated CO2 had a greater impact on ER than on GPP. The addition of N stimulated ecosystem C fluxes in both years and ameliorated the negative impact of elevated CO2 on NEE. In this ecosystem, future elevated CO2 may favor carbon sequestration when coupled with increasing nitrogen deposition.

  19. Effects of elevated CO2 and nitrogen deposition on ecosystem carbon fluxes on the Sanjiang plain wetland in Northeast China.

    Directory of Open Access Journals (Sweden)

    Jianbo Wang

    Full Text Available BACKGROUND: Increasing atmospheric CO2 and nitrogen (N deposition across the globe may affect ecosystem CO2 exchanges and ecosystem carbon cycles. Additionally, it remains unknown how increased N deposition and N addition will alter the effects of elevated CO2 on wetland ecosystem carbon fluxes. METHODOLOGY/PRINCIPAL FINDINGS: Beginning in 2010, a paired, nested manipulative experimental design was used in a temperate wetland of northeastern China. The primary factor was elevated CO2, accomplished using Open Top Chambers, and N supplied as NH4NO3 was the secondary factor. Gross primary productivity (GPP was higher than ecosystem respiration (ER, leading to net carbon uptake (measured by net ecosystem CO2 exchange, or NEE in all four treatments over the growing season. However, their magnitude had interannual variations, which coincided with air temperature in the early growing season, with the soil temperature and with the vegetation cover. Elevated CO2 significantly enhanced GPP and ER but overall reduced NEE because the stimulation caused by the elevated CO2 had a greater impact on ER than on GPP. The addition of N stimulated ecosystem C fluxes in both years and ameliorated the negative impact of elevated CO2 on NEE. CONCLUSION/SIGNIFICANCE: In this ecosystem, future elevated CO2 may favor carbon sequestration when coupled with increasing nitrogen deposition.

  20. Global CO2 emissions from cement production (United States)

    Andrew, Robbie M.


    The global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The required data for estimating emissions from global cement production are poor, and it has been recognised that some global estimates are significantly inflated. Here we assemble a large variety of available datasets and prioritise official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. We show that global process emissions in 2016 were 1.45±0.20 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2016 were 39.3±2.4 Gt CO2, 66 % of which have occurred since 1990. Emissions in 2015 were 30 % lower than those recently reported by the Global Carbon Project. The data associated with this article can be found at

  1. [Effect of air temperature and rainfall on wetland ecosystem CO2 exchange in China]. (United States)

    Chu, Xiao-jing; Han, Guang-xuan


    Wetland can be a potential efficient sink to reduce global warming due to its higher primary productivity and lower carbon decomposition rate. While there has been a series progress on the influence mechanism of ecosystem CO2 exchange over China' s wetlands, a systematic metaanalysis of data still needs to be improved. We compiled data of ecosystem CO2 exchange of 21 typical wetland vegetation types in China from 29 papers and carried out an integrated analysis of air temperature and precipitation effects on net ecosystem CO2 exchange (NEE), ecosystem respiration (Reco), gross primary productivity (GPP), the response of NEE to PAR, and the response of Reco to temperature. The results showed that there were significant responses (P0.05). Across different Chinese wetlands, both precipitation and temperature had no significant effect on apparent quantum yield (α) or ecosystem respiration in the daytime (Reco,day, P>0.05). The maximum photosynthesis rate (Amax) was remarkably correlated with precipitation (P 0.05). Precipitation was negatively correlated with temperature sensitivity of Reco (Q10, P<0.05). Furthermore, temperature accounted for 35% and 46% of the variations in temperature sensitivity of Reco (Q10) and basal respiration (Rref P<0.05), respectively.

  2. CO2 and nutrient-driven changes across multiple levels of organization in Zostera noltii ecosystems (United States)

    Martínez-Crego, B.; Olivé, I.; Santos, R.


    Increasing evidence emphasizes that the effects of human impacts on ecosystems must be investigated using designs that incorporate the responses across levels of biological organization as well as the effects of multiple stressors. Here we implemented a mesocosm experiment to investigate how the individual and interactive effects of CO2 enrichment and eutrophication scale-up from changes in primary producers at the individual (biochemistry) or population level (production, reproduction, and/or abundance) to higher levels of community (macroalgae abundance, herbivory, and global metabolism), and ecosystem organization (detritus release and carbon sink capacity). The responses of Zostera noltii seagrass meadows growing in low- and high-nutrient field conditions were compared. In both meadows, the expected CO2 benefits on Z. noltii leaf production were suppressed by epiphyte overgrowth, with no direct CO2 effect on plant biochemistry or population-level traits. Multi-level meadow response to nutrients was faster and stronger than to CO2. Nutrient enrichment promoted the nutritional quality of Z. noltii (high N, low C : N and phenolics), the growth of epiphytic pennate diatoms and purple bacteria, and shoot mortality. In the low-nutrient meadow, individual effects of CO2 and nutrients separately resulted in reduced carbon storage in the sediment, probably due to enhanced microbial degradation of more labile organic matter. These changes, however, had no effect on herbivory or on community metabolism. Interestingly, individual effects of CO2 or nutrient addition on epiphytes, shoot mortality, and carbon storage were attenuated when nutrients and CO2 acted simultaneously. This suggests CO2-induced benefits on eutrophic meadows. In the high-nutrient meadow, a striking shoot decline caused by amphipod overgrazing masked the response to CO2 and nutrient additions. Our results reveal that under future scenarios of CO2, the responses of seagrass ecosystems will be complex and

  3. CO2 flux measurement in four different ecosystems

    Czech Academy of Sciences Publication Activity Database

    Taufarová, Klára; Havránková, Kateřina; Czerný, Radek; Janouš, Dalibor


    Roč. 37, č. 2 (2007), s. 141-151 ISSN 1335-2806 R&D Projects: GA ČR GD526/03/H036; GA MŽP SM/640/18/03 Institutional research plan: CEZ:AV0Z60870520 Keywords : eddy covariance * net ecosystem production * forest * grassland * wetland * cropland Subject RIV: GK - Forestry

  4. Trends in land surface phenology and atmospheric CO2 seasonality in the Northern Hemisphere terrestrial ecosystems (United States)

    Gonsamo, A.; Chen, J. M.


    Northern terrestrial ecosystems have shown global warming-induced advances in start, delays in end, and thus increased lengths of growing season and gross photosynthesis in recent decades. The tradeoffs between seasonal dynamics of two opposing fluxes, CO2 uptake through photosynthesis and release through respiration, determine the influence of the terrestrial ecosystems on the atmospheric CO2 concentration and 13C/12C isotope ratio seasonality. Atmospheric CO2 and 13C/12C seasonality is controlled by vegetation phenology, but is not identical because growth will typically commence some time before and terminate some time after the net carbon exchange changes sign in spring and autumn, respectively. Here, we use 34-year satellite normalized difference vegetation index (NDVI) observations to determine how changes in vegetation productivity and phenology affect both the atmospheric CO2 and 13C/12C seasonality. Differences and similarities in recent trends of CO2 and 13C/12C seasonality and vegetation phenology will be discussed. Furthermore, we use the NDVI observations, and atmospheric CO2 and 13C/12C data to show the trends and variability of the timing of peak season plant activity. Preliminary results show that the peak season plant activity of the Northern Hemisphere extra-tropical terrestrial ecosystems is shifting towards spring, largely in response to the warming-induced advance of the start of growing season. Besides, the spring-ward shift of the peak plant activity is contributing the most to the increasing peak season productivity. In other words, earlier start of growing season is highly linked to earlier arrival of peak of season and higher NDVI. Changes in the timing of peak season plant activity are expected to disrupt the synchrony of biotic interaction and exert strong biophysical feedbacks on climate by modifying the surface albedo and energy budget.

  5. Forest ecosystem as a source of CO2 during growing season: relation to weather conditions

    Czech Academy of Sciences Publication Activity Database

    Taufarová, Klára; Havránková, Kateřina; Dvorská, Alice; Pavelka, Marian; Urbaniak, M.; Janouš, Dalibor


    Roč. 28, č. 2 (2014), s. 239-249 ISSN 0236-8722 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) EE2.4.31.0056; GA MŠk(CZ) LM2010007 Institutional support: RVO:67179843 Keywords : net ecosystem production * CO2 source days * eddy covariance * weather conditions * Norway spruce Subject RIV: EH - Ecology, Behaviour Impact factor: 1.117, year: 2014

  6. Comparison of regional and ecosystem CO2 fluxes

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Søgaard, Henrik; Batchvarova, Ekaterina


    A budget method to derive the regional surface flux of CO2 from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO2 concentrations by i.e. an airplane, successive radio-soundings......A budget method to derive the regional surface flux of CO2 from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO2 concentrations by i.e. an airplane, successive radio...

  7. Interannual variability of Net Ecosystem CO2 Exchange and its component fluxes in a subalpine Mediterranean ecosystem (SE Spain) (United States)

    Chamizo, Sonia; Serrano-Ortiz, Penélope; Sánchez-Cañete, Enrique P.; Domingo, Francisco; Arnau-Rosalén, Eva; Oyonarte, Cecilio; Pérez-Priego, Óscar; López-Ballesteros, Ana; Kowalski, Andrew S.


    Recent decades under climate change have seen increasing interest in quantifying the carbon (C) balance of different terrestrial ecosystems, and their behavior as sources or sinks of C. Both CO2 exchange between terrestrial ecosystems and the atmosphere and identification of its drivers are key to understanding land-surface feedbacks to climate change. The eddy covariance (EC) technique allows measurements of net ecosystem C exchange (NEE) from short to long time scales. In addition, flux partitioning models can extract the components of net CO2 fluxes, including both biological processes of photosynthesis or gross primary production (GPP) and respiration (Reco), and also abiotic drivers like subsoil CO2 ventilation (VE), which is of particular relevance in semiarid environments. The importance of abiotic processes together with the strong interannual variability of precipitation, which strongly affects CO2 fluxes, complicates the accurate characterization of the C balance in semiarid landscapes. In this study, we examine 10 years of interannual variability of NEE and its components at a subalpine karstic plateau, El Llano de los Juanes, in the Sierra de Gádor (Almería, SE Spain). Results show annual NEE ranging from 55 g C m-2 (net emission) to -54 g C m-2 (net uptake). Among C flux components, GPP was the greatest contributing 42-57% of summed component magnitudes, while contributions by Reco and VE ranged from 27 to 46% and from 3 to 18%, respectively. Annual precipitation during the studied period exhibited high interannual variability, ranging from 210 mm to 1374 mm. Annual precipitation explained 50% of the variance in Reco, 59% of that in GPP, and 56% for VE. While Reco and GPP were positively correlated with annual precipitation (correlation coefficient, R, of 0.71 and 0.77, respectively), VE showed negative correlation with this driver (R = -0.74). During the driest year (2004-2005), annual GPP and Reco reached their lowest values, while contribution of

  8. Effect of climate warming on the annual terrestrial net ecosystem CO2 exchange globally in the boreal and temperate regions. (United States)

    Zhang, Zhiyuan; Zhang, Renduo; Cescatti, Alessandro; Wohlfahrt, Georg; Buchmann, Nina; Zhu, Juan; Chen, Guanhong; Moyano, Fernando; Pumpanen, Jukka; Hirano, Takashi; Takagi, Kentaro; Merbold, Lutz


    The net ecosystem CO 2 exchange is the result of the imbalance between the assimilation process (gross primary production, GPP) and ecosystem respiration (RE). The aim of this study was to investigate temperature sensitivities of these processes and the effect of climate warming on the annual terrestrial net ecosystem CO 2 exchange globally in the boreal and temperate regions. A database of 403 site-years of ecosystem flux data at 101 sites in the world was collected and analyzed. Temperature sensitivities of rates of RE and GPP were quantified with Q 10 , defined as the increase of RE (or GPP) rates with a temperature rise of 10 °C. Results showed that on the annual time scale, the intrinsic temperature sensitivity of GPP (Q 10sG ) was higher than or equivalent to the intrinsic temperature sensitivity of RE (Q 10sR ). Q 10sG was negatively correlated to the mean annual temperature (MAT), whereas Q 10sR was independent of MAT. The analysis of the current temperature sensitivities and net ecosystem production suggested that temperature rise might enhance the CO 2 sink of terrestrial ecosystems both in the boreal and temperate regions. In addition, ecosystems in these regions with different plant functional types should sequester more CO 2 with climate warming.

  9. Ventilation of subterranean CO2 and Eddy covariance incongruities over carbonate ecosystems

    Directory of Open Access Journals (Sweden)

    F. Domingo


    Full Text Available Measurements of CO2 fluxes with Eddy Covariance (EC systems are ongoing over different ecosystems around the world, through different measuring networks, in order to assess the carbon balance of these ecosystems. In carbonate ecosystems, characterized by the presence of subterranean pores and cavities, ventilation of the CO2 accumulated in these cavities and pores can act as an extra source of CO2 exchange between the ecosystem and the atmosphere. In this work we analyse the effect of the subterranean heterogeneity of a carbonate ecosystem on measurements of CO2 fluxes by comparing measurements from two EC systems with distinct footprints. Results showed that both EC systems agreed for measurements of evapotranspiration and of CO2 in periods when respiratory and photosynthetic processes were dominant (biological periods, with a regression slope of 0.99 and 0.97, respectively. However, in periods when the main source of CO2 comes from the ventilation of subterranean pores and cavities (abiotic periods agreement is not good, with a regression slope of 0.6. Ground-penetrating radar measurements of the sub-surface confirmed the existence of high sub-surface heterogeneity that, combined with different footprints, lead to differences in the measurements of the two EC systems. These results show that measurements of CO2 fluxes with Eddy covariance systems over carbonate ecosystems must be taken carefully, as they may not be representative of the ecosystem under consideration.

  10. Year-round Regional CO2 Fluxes from Boreal and Tundra Ecosystems in Alaska (United States)

    Commane, R.; Lindaas, J.; Benmergui, J. S.; Luus, K. A.; Chang, R. Y. W.; Daube, B. C.; Euskirchen, E. S.; Henderson, J.; Karion, A.; Miller, J. B.; Miller, S. M.; Parazoo, N.; Randerson, J. T.; Sweeney, C.; Tans, P. P.; Thoning, K. W.; Veraverbeke, S.; Miller, C. E.; Wofsy, S. C.


    High-latitude ecosystems could release large amounts of carbon dioxide (CO2) to the atmosphere in a warmer climate. We derive temporally and spatially resolved year-round CO2 fluxes in Alaska from a synthesis of airborne and tower CO2 observations in 2012-2014. We find that tundra ecosystems were net sources of atmospheric CO2. We discuss these flux estimates in the context of long-term CO2 measurements at Barrow, AK, to asses the long term trend in carbon fluxes in the Arctic. Many Earth System Models incorrectly simulate net carbon uptake in Alaska presently. Our results imply that annual net emission of CO2 to the atmosphere may have increased markedly in this region of the Arctic in response to warming climate, supporting the view that climate-carbon feedback is strongly positive in the high Arctic.

  11. Interannual Variability In the Atmospheric CO2 Rectification Over Boreal Forests Based On A Coupled Ecosystem-Atmosphere Model (United States)

    Chen, B.; Chen, J. M.; Worthy, D.


    Ecosystem CO2 exchange and the planetary boundary layer (PBL) are correlated diurnally and seasonally. The simulation of this atmospheric rectifier effect is important in understanding the global CO2 distribution pattern. A 12-year (1990-1996, 1999-2003), continuous CO2 measurement record from Fraserdale, Ontario (located ~150 km north of Timmons), along with a coupled Vertical Diffusion Scheme (VDS) and ecosystem model (Boreal Ecosystem Productivity Simulator, BEPS), is used to investigate the interannual variability in this effect over a boreal forest region. The coupled model performed well in simulating CO2 vertical diffusion processes. Simulated annual atmospheric rectifier effects, (including seasonal and diurnal), quantified as the variation in the mean CO2 concentration from the surface to the top of the PBL, varied from 2.8 to 4.1 ppm, even though the modeled seasonal variations in the PBL depth were similar throughout the 12-year period. The differences in the interannual rectifier effect primarily resulted from changes in the biospheric CO2 uptake and heterotrophic respiration. Correlations in the year-to year variations of the CO2 rectification were found with mean annual air temperatures, simulated gross primary productivity (GPP) and heterotrophic respiration (Rh) (r2=0.5, 0.46, 0.42, respectively). A small increasing trend in the CO2 rectification was also observed. The year-to-year variation in the vertical distribution of the monthly mean CO2 mixing ratios (reflecting differences in the diurnal rectifier effect) was related to interannual climate variability, however, the seasonal rectifier effects were found to be more sensitive to climate variability than the diurnal rectifier effects.

  12. Net Ecosystem Exchange of CO2 with Rapidly Changing High Arctic Landscapes (United States)

    Emmerton, C. A.


    High Arctic landscapes are expansive and changing rapidly. However our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest-latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near zero sink of atmospheric CO2 (NEE: -0.3±13.5 g C m-2). A nearby meadow wetland accumulated over two magnitudes more carbon (NEE: -79.3±20.0 g C m-2) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southern latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely-detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote-sensing, however high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases substantially, climate-related changes of dry high Arctic landscapes may be restricted by poor soil moisture retention, and therefore have some inertia against

  13. Final Report on "Rising CO2 and Long-term Carbon Storage in Terrestrial Ecosystems: An Empirical Carbon Budget Validation"

    Energy Technology Data Exchange (ETDEWEB)

    J. Patrick Megonigal; Bert G. Drake


    The primary goal of this report is to report the results of Grant DE-FG02-97ER62458, which began in 1997 as Grant DOE-98-59-MP-4 funded through the TECO program. However, this project has a longer history because DOE also funded this study from its inception in 1985 through 1997. The original grant was focused on plant responses to elevated CO2 in an intact ecosystem, while the latter grant was focused on belowground responses. Here we summarize the major findings across the 25 years this study has operated, and note that the experiment will continue to run through 2020 with NSF support. The major conclusions of the study to date are: (1 Elevated CO2 stimulated plant productivity in the C3 plant community by ~30% during the 25 year study. The magnitude of the increase in productivity varied interannually and was sometime absent altogether. There is some evidence of down-regulation at the ecosystem level across the 25 year record that may be due to interactions with other factors such as sea-level rise or long-term changes in N supply; (2) Elevated CO2 stimulated C4 productivity by <10%, perhaps due to more efficient water use, but C3 plants at elevated CO2 did not displace C4 plants as predicted; (3) Increased primary production caused a general stimulation of microbial processes, but there were both increases and decreases in activity depending on the specific organisms considered. An increase in methanogenesis and methane emissions implies elevated CO2 may amplify radiative forcing in the case of wetland ecosystems; (4) Elevated CO2 stimulated soil carbon sequestration in the form of an increase in elevation. The increase in elevation is 50-100% of the increase in net ecosystem production caused by elevated CO2 (still under analysis). The increase in soil elevation suggests the elevated CO2 may have a positive outcome for the ability of coastal wetlands to persist despite accelerated sea level rise; (5) Crossing elevated CO2 with elevated N causes the elevated CO

  14. Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP). (United States)

    Pan, Yude; Melillo, Jerry M; McGuire, A David; Kicklighter, David W; Pitelka, Louis F; Hibbard, Kathy; Pierce, Lars L; Running, Steven W; Ojima, Dennis S; Parton, William J; Schimel, David S


    Although there is a great deal of information concerning responses to increases in atmospheric CO 2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO 2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO 2 . In this study, we analyze the responses of net primary production (NPP) to doubled CO 2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO 2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO 2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO 2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO 2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO 2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO 2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which

  15. Response of CO2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development (United States)

    Jason Vogel; Edward A.G. Schuur; Christian Trucco; Hanna. Lee


    Climate change in high latitudes can lead to permafrost thaw, which in ice-rich soils can result in ground subsidence, or thermokarst. In interior Alaska, we examined seasonal and annual ecosystem CO2 exchange using static and automatic chamber measurements in three areas of a moist acidic tundra ecosystem undergoing varying degrees of permafrost...

  16. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. (United States)

    Morgan, J A; Pataki, D E; Körner, C; Clark, H; Del Grosso, S J; Grünzweig, J M; Knapp, A K; Mosier, A R; Newton, P C D; Niklaus, P A; Nippert, J B; Nowak, R S; Parton, W J; Polley, H W; Shaw, M R


    Atmospheric CO2 enrichment may stimulate plant growth directly through (1) enhanced photosynthesis or indirectly, through (2) reduced plant water consumption and hence slower soil moisture depletion, or the combination of both. Herein we describe gas exchange, plant biomass and species responses of five native or semi-native temperate and Mediterranean grasslands and three semi-arid systems to CO2 enrichment, with an emphasis on water relations. Increasing CO2 led to decreased leaf conductance for water vapor, improved plant water status, altered seasonal evapotranspiration dynamics, and in most cases, periodic increases in soil water content. The extent, timing and duration of these responses varied among ecosystems, species and years. Across the grasslands of the Kansas tallgrass prairie, Colorado shortgrass steppe and Swiss calcareous grassland, increases in aboveground biomass from CO2 enrichment were relatively greater in dry years. In contrast, CO2-induced aboveground biomass increases in the Texas C3/C4 grassland and the New Zealand pasture seemed little or only marginally influenced by yearly variation in soil water, while plant growth in the Mojave Desert was stimulated by CO2 in a relatively wet year. Mediterranean grasslands sometimes failed to respond to CO2-related increased late-season water, whereas semiarid Negev grassland assemblages profited. Vegetative and reproductive responses to CO2 were highly varied among species and ecosystems, and did not generally follow any predictable pattern in regard to functional groups. Results suggest that the indirect effects of CO2 on plant and soil water relations may contribute substantially to experimentally induced CO2-effects, and also reflect local humidity conditions. For landscape scale predictions, this analysis calls for a clear distinction between biomass responses due to direct CO2 effects on photosynthesis and those indirect CO2 effects via soil moisture as documented here.

  17. Toward solar biodiesel production from CO2 using engineered cyanobacteria. (United States)

    Woo, Han Min; Lee, Hyun Jeong


    Metabolic engineering of cyanobacteria has received attention as a sustainable strategy to convert carbon dioxide to various biochemicals including fatty acid-derived biodiesel. Recently, Synechococcus elongatus PCC 7942, a model cyanobacterium, has been engineered to convert CO2 to fatty acid ethyl esters (FAEEs) as biodiesel. Modular pathway has been constructed for FAEE production. Several metabolic engineering strategies were discussed to improve the production levels of FAEEs, including host engineering by improving CO2 fixation rate and photosynthetic efficiency. In addition, protein engineering of key enzyme in S. elongatus PCC 7942 was implemented to address issues on FAEE secretions toward sustainable FAEE production from CO2. Finally, advanced metabolic engineering will promote developing biosolar cell factories to convert CO2 to feasible amount of FAEEs toward solar biodiesel. © FEMS 2017. All rights reserved. For permissions, please e-mail:

  18. Model-experiment synthesis at two FACE sites in the southeastern US. Forest ecosystem responses to elevated CO[2]. (Invited) (United States)

    Walker, A. P.; Zaehle, S.; De Kauwe, M. G.; Medlyn, B. E.; Dietze, M.; Hickler, T.; Iversen, C. M.; Jain, A. K.; Luo, Y.; McCarthy, H. R.; Parton, W. J.; Prentice, C.; Thornton, P. E.; Wang, S.; Wang, Y.; Warlind, D.; Warren, J.; Weng, E.; Hanson, P. J.; Oren, R.; Norby, R. J.


    Ecosystem observations from two long-term Free-Air CO[2] Enrichment (FACE) experiments (Duke forest and Oak Ridge forest) were used to evaluate the assumptions of 11 terrestrial ecosystem models and the consequences of those assumptions for the responses of ecosystem water, carbon (C) and nitrogen (N) fluxes to elevated CO[2] (eCO[2]). Nitrogen dynamics were the main constraint on simulated productivity responses to eCO[2]. At Oak Ridge some models reproduced the declining response of C and N fluxes, while at Duke none of the models were able to maintain the observed sustained responses. C and N cycles are coupled through a number of complex interactions, which causes uncertainty in model simulations in multiple ways. Nonetheless, the major difference between models and experiments was a larger than observed increase in N-use efficiency and lower than observed response of N uptake. The results indicate that at Duke there were mechanisms by which trees accessed additional N in response to eCO[2] that were not represented in the ecosystem models, and which did not operate with the same efficiency at Oak Ridge. Sequestration of the additional productivity under eCO[2] into forest biomass depended largely on C allocation. Allocation assumptions were classified into three main categories--fixed partitioning coefficients, functional relationships and a partial (leaf allocation only) optimisation. The assumption which best constrained model results was a functional relationship between leaf area and sapwood area (pipe-model) and increased root allocation when nitrogen or water were limiting. Both, productivity and allocation responses to eCO[2] determined the ecosystem-level response of LAI, which together with the response of stomatal conductance (and hence water-use efficiency; WUE) determined the ecosystem response of transpiration. Differences in the WUE response across models were related to the representation of the relationship of stomatal conductance to CO[2] and

  19. Net ecosystem CO2 exchange over a larch forest in Hokkaido, Japan

    International Nuclear Information System (INIS)

    Huimin Wang; Saigusa, Nobuko; Yamamoto, Susumu; Kondo, Hiroaki; Hirano, Takashi; Toriyama, Atsushi; Fujinuma, Yasumi


    Larch forests are distributed extensively in the east Eurasian continent and are expected to play a significant role in the terrestrial ecosystem carbon cycling process. In view of the fact that studies on carbon exchange for this important biome have been very limited, we have initiated a long-term flux observation in a larch forest ecosystem in Hokkaido in northern Japan since 2000. The net ecosystem CO 2 exchange (NEE) showed large seasonal and diurnal variation. Generally, the larch forest ecosystem released CO 2 in nighttime and assimilated CO 2 in daytime during the growing season from May to October. The ecosystem started to become a net carbon sink in May, reaching a maximum carbon uptake as high as 186 g C m -2 month -1 in June. With the yellowing, senescing and leaf fall, the ecosystem turned into a carbon source in November. During the non-growing season, the larch forest ecosystem became a net source of CO 2 , releasing an average of 16.7 g C m -2 month -1 . Overall, the ecosystem sequestered 141-240 g C m -2 yr -1 in 2001. The NEE was significantly influenced by environmental factors. Respiration of the ecosystem, for example, was exponentially dependent on air temperature, while photosynthesis was related to the incident PAR in a manner consistent with the Michaelis-Menten model. Although the vapor pressure deficit (VPD) was scarcely higher than 15 hPa, the CO 2 uptake rate was also depressed when VPD surpassed 10 hPa (Author)

  20. Investigating effect of environmental controls on dynamics of CO2 budget in a subtropical estuarial marsh wetland ecosystem (United States)

    Lee, Sung-Ching; Fan, Chao-Jung; Wu, Zih-Yi; Juang, Jehn-Yih


    In this study, we quantified the ecosystem-scale CO2 exchange of two different but typical low-latitude vegetation types, para grass and reed, in a subtropical wetland ecosystem by integrating flux observation with the parameterization of environmental variables. In addition, we explored how seasonal dynamics of environmental factors affected variations in CO2 budget. The results suggest that gross primary production (GPP, in the order of 1700 gC m-2 yr-1) of CO2 was higher in this site than in previous studies of northern peatlands and estuarial wetlands because of the direct effect of environmental factors. Temperature and radiation had a larger effect than water status (soil moisture content and vapor pressure deficit) on GPP for the two low-latitude ecosystems, which differ from the results for high-latitude regions. Environmental variables had a strong but different impact on the CO2 budget for para grass and reed areas. This diversity led to different potential shifts and trends of biomass accumulation and distribution of these two typical low-latitude vegetation types under different scenarios of environmental change. The findings from this study can sufficiently provide quantitative understanding of CO2 budgets in low-latitude wetlands.

  1. CO2 balance in production of energy based on biogas

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts; Holm-Nielsen, J.B.


    Biogas is an essential biomass source for achieving a reduction of CO2 emission by 50% in year 2030 in Denmark. The physical potential for biogas production in Denmark is more than 10 times the present biogas production in Denmark. In Denmark the largest part of the biogas production is produced...... of increased transportation distances at large biogas plants on the total CO2 balance of the biogas plant. The advantage of constructing large biogas plants is the cost-effective possibility of using industrial organic waste to increase biogas production. In some cases co-fermentation increases biogas...... production up 100%. The present study evaluate optimal transportation strategies for biogas plants taking CO2 balances into account....

  2. Effects of Recent Regional Soil Moisture Variability on Global Net Ecosystem CO2 Exchange (United States)

    Jones, L. A.; Madani, N.; Kimball, J. S.; Reichle, R. H.; Colliander, A.


    Soil moisture exerts a major regional control on the inter-annual variability of the global land sink for atmospheric CO2. In semi-arid regions, annual biomass production is closely coupled to variability in soil moisture availability, while in cold-season-affected regions, summer drought offsets the effects of advancing spring phenology. Availability of satellite solar-induced fluorescence (SIF) observations and improvements in atmospheric inversions has led to unprecedented ability to monitor atmospheric sink strength. However, discrepancies still exist between such top-down estimates as atmospheric inversion and bottom-up process and satellite driven models, indicating that relative strength, mechanisms, and interaction of driving factors remain poorly understood. We use soil moisture fields informed by Soil Moisture Active Passive Mission (SMAP) observations to compare recent (2015-2017) and historic (2000-2014) variability in net ecosystem land-atmosphere CO2 exchange (NEE). The operational SMAP Level 4 Carbon (L4C) product relates ground-based flux tower measurements to other bottom-up and global top-down estimates to underlying soil moisture and other driving conditions using data-assimilation-based SMAP Level 4 Soil Moisture (L4SM). Droughts in coastal Brazil, South Africa, Eastern Africa, and an anomalous wet period in Eastern Australia were observed by L4C. A seasonal seesaw pattern of below-normal sink strength at high latitudes relative to slightly above-normal sink strength for mid-latitudes was also observed. Whereas SMAP-based soil moisture is relatively informative for short-term temporal variability, soil moisture biases that vary in space and with season constrain the ability of the L4C estimates to accurately resolve NEE. Such biases might be caused by irrigation and plant-accessible ground-water. Nevertheless, SMAP L4C daily NEE estimates connect top-down estimates to variability of effective driving factors for accurate estimates of regional

  3. Gross primary production controls the subsequent winter CO2 exchange in a boreal peatland. (United States)

    Zhao, Junbin; Peichl, Matthias; Öquist, Mats; Nilsson, Mats B


    In high-latitude regions, carbon dioxide (CO 2 ) emissions during the winter represent an important component of the annual ecosystem carbon budget; however, the mechanisms that control the winter CO 2 emissions are currently not well understood. It has been suggested that substrate availability from soil labile carbon pools is a main driver of winter CO 2 emissions. In ecosystems that are dominated by annual herbaceous plants, much of the biomass produced during the summer is likely to contribute to the soil labile carbon pool through litter fall and root senescence in the autumn. Thus, the summer carbon uptake in the ecosystem may have a significant influence on the subsequent winter CO 2 emissions. To test this hypothesis, we conducted a plot-scale shading experiment in a boreal peatland to reduce the gross primary production (GPP) during the growing season. At the growing season peak, vascular plant biomass in the shaded plots was half that in the control plots. During the subsequent winter, the mean CO 2 emission rates were 21% lower in the shaded plots than in the control plots. In addition, long-term (2001-2012) eddy covariance data from the same site showed a strong correlation between the GPP (particularly the late summer and autumn GPP) and the subsequent winter net ecosystem CO 2 exchange (NEE). In contrast, abiotic factors during the winter could not explain the interannual variation in the cumulative winter NEE. Our study demonstrates the presence of a cross-seasonal link between the growing season biotic processes and winter CO 2 emissions, which has important implications for predicting winter CO 2 emission dynamics in response to future climate change. © 2016 John Wiley & Sons Ltd.

  4. Effects of CO2 gas as leaks from geological storage sites on agro-ecosystems

    DEFF Research Database (Denmark)

    Patil, Ravi; Colls, Jeremy J; Steven, Michael D


    Carbon capture and storage in geological formations has potential risks in the long-term safety because of the possibility of CO2 leakage. Effects of leaking gas, therefore, on vegetation, soil, and soil-inhabiting organisms are critical to understand. An artificial soil gassing and response...... detection field facility developed at the University of Nottingham was used to inject CO2 gas at a controlled flow rate (1 l min-1) into soil to simulate build-up of soil CO2 concentrations and surface fluxes from two land use types: pasture grassland, and fallow followed by winter bean. Mean soil CO2....... This study showed adverse effects of CO2 gas on agro-ecosystem in case of leakage from storage sites to surface....

  5. Effects of CO2 gas as leaks from geological storage sites on agro-ecosystems

    International Nuclear Information System (INIS)

    Patil, Ravi H.; Colls, Jeremy J.; Steven, Michael D.


    Carbon capture and storage in geological formations has potential risks in the long-term safety because of the possibility of CO 2 leakage. Effects of leaking gas, therefore, on vegetation, soil, and soil-inhabiting organisms are critical to understand. An artificial soil gassing and response detection field facility developed at the University of Nottingham was used to inject CO 2 gas at a controlled flow rate (1 l min -1 ) into soil to simulate build-up of soil CO 2 concentrations and surface fluxes from two land use types: pasture grassland, and fallow followed by winter bean. Mean soil CO 2 concentrations was significantly higher in gassed pasture plots than in gassed fallow plots. Germination of winter bean sown in gassed fallow plots was severely hindered and the final crop stand was reduced to half. Pasture grass showed stress symptoms and above-ground biomass was significantly reduced compared to control plot. A negative correlation (r = -0.95) between soil CO 2 and O 2 concentrations indicated that injected CO 2 displaced O 2 from soil. Gassing CO 2 reduced soil pH both in grass and fallow plots (p = 0.012). The number of earthworm castings was twice as much in gassed plots than in control plots. This study showed adverse effects of CO 2 gas on agro-ecosystem in case of leakage from storage sites to surface.

  6. Root dynamics in an artificially constructed regenerating longleaf pine ecosystem are affected by atmospheric CO(2) enrichment. (United States)

    Pritchard, S G.; Davis, M A.; Mitchell, R J.; Prior, S A.; Boykin, D L.; Rogers, H H.; Runion, G B.


    Differential responses to elevated atmospheric CO(2) concentration exhibited by different plant functional types may alter competition for above- and belowground resources in a higher CO(2) world. Because C allocation to roots is often favored over C allocation to shoots in plants grown with CO(2) enrichment, belowground function of forest ecosystems may change significantly. We established an outdoor facility to examine the effects of elevated CO(2) on root dynamics in artificially constructed communities of five early successional forest species: (1) a C(3) evergreen conifer (longleaf pine, Pinus palustris Mill.); (2) a C(4) monocotyledonous bunch grass (wiregrass, Aristida stricta Michx.); (3) a C(3) broadleaf tree (sand post oak, Quercus margaretta); (4) a C(3) perennial herbaceous legume (rattlebox, Crotalaria rotundifolia Walt. ex Gemel); and (5) an herbaceous C(3) dicotyledonous perennial (butterfly weed, Asclepias tuberosa L.). These species are common associates in early successional longleaf pine savannahs throughout the southeastern USA and represent species that differ in life-form, growth habit, physiology, and symbiotic relationships. A combination of minirhizotrons and soil coring was used to examine temporal and spatial rooting dynamics from October 1998 to October 1999. CO(2)-enriched plots exhibited 35% higher standing root crop length, 37% greater root length production per day, and 47% greater root length mortality per day. These variables, however, were enhanced by CO(2) enrichment only at the 10-30 cm depth. Relative root turnover (flux/standing crop) was unchanged by elevated CO(2). Sixteen months after planting, root biomass of pine was 62% higher in elevated compared to ambient CO(2) plots. Conversely, the combined biomass of rattlebox, wiregrass, and butterfly weed was 28% greater in ambient compared to high CO(2) plots. There was no difference in root biomass of oaks after 16 months of exposure to elevated CO(2). Using root and shoot

  7. Responses of CO2 Fluxes to Arctic Browning Events in a Range of High Latitude, Shrub-Dominated Ecosystems (United States)

    Phoenix, G. K.; Treharne, R.; Emberson, L.; Tømmervik, H. A.; Bjerke, J. W.


    Climatic and biotic extreme events can result in considerable damage to arctic vegetation, often at landscape and larger scale. These acute events therefore contribute to the browning observed in some arctic regions. It is of considerable concern, therefore, that such extreme events are increasing in frequency as part of climate change. However, despite the increasing importance of browning events, and the considerable impact they can have on ecosystems, to date there is little understanding of their impacts on ecosystem carbon fluxes. To address this, the impacts of a number of different, commonly occurring, extreme events and their subsequent browning (vegetation damage) on key ecosystem CO2 fluxes were assessed during the growing season at a range of event damaged sites of shrub dominated vegetation. Sites were located from the boreal to High Arctic (64˚N-79˚N) and had been previously been damaged by events of frost-drought, extreme winter warming, ground icing and caterpillar (Epirrita autumnata) outbreaks. Plot-level CO2 fluxes of Ecosystem Exchange (NEE), Gross Primary Productivity (GPP) and Ecosystem Respiration (Reco) were assessed using vegetation chambers. At a sub-set of sites, NDVI (greenness) in flux plots was also assessed by hand-held proximal sensor, allowing the relationship between NDVI of damage plots to CO2 flux to be calculated. Despite the contrasting sites and drivers, damage had consistent, major impacts on all fluxes. All sites showed reductions in GPP and NEE with increasing damage, despite efflux from Reco also declining with damage. When scaled to site-level, reductions of up to 81% of NEE, 51% of GPP and 37% of Reco were observed. In the plot-level NDVI-flux relationship, NDVI was shown to explain up to 91% of variation in GPP, and therefore supports the use of NDVI for estimating changes in ecosystem CO2 flux at larger scales in regions where browning has been driven by extreme events. This work is the first attempt to quantify the

  8. A multi-biome gap in understanding of crop and ecosystem responses to elevated CO2. (United States)

    Leakey, Andrew D B; Bishop, Kristen A; Ainsworth, Elizabeth A


    A key finding from elevated [CO(2)] field experiments is that the impact of elevated [CO(2)] on plant and ecosystem function is highly dependent upon other environmental conditions, namely temperature and the availability of nutrients and soil moisture. In addition, there is significant variation in the response to elevated [CO(2)] among plant functional types, species and crop varieties. However, experimental data on plant and ecosystem responses to elevated [CO(2)] are strongly biased to economically and ecologically important systems in the temperate zone. There is a multi-biome gap in experimental data that is most severe in the tropics and subtropics, but also includes high latitudes. Physiological understanding of the environmental conditions and species found at high and low latitudes suggest they may respond differently to elevated [CO(2)] than well-studied temperate systems. Addressing this knowledge gap should be a high priority as it is vital to understanding 21st century food supply and ecosystem feedbacks on climate change. Published by Elsevier Ltd.

  9. The CO2-tax and its ability to reduce CO2 emissions related to oil and gas production in Norway

    International Nuclear Information System (INIS)

    Roemo, F.; Lund, M.W.


    The primary ambition of the paper is to illustrate some relevant effects of the CO 2 -tax, and draw the line from company adaptation via national ambitions and goals to global emission consequences. The CO 2 -tax is a success for oil and gas production only to the extent that the CO 2 emission per produced unit oil/gas is reduced as a consequence of the tax. If not, the CO 2 -tax is a pure fiscal tax and has no qualitative impact on the CO 2 emissions. The reduction potential is then isolated to the fact that some marginal fields will not be developed, and the accelerated close down of fields in production. The paper indicates that a significant replacement of older gas turbines at a certain level of the CO 2 -tax could be profitable for the companies. This is dependent on change in turbine energy utilization, and the investment cost. The CO 2 -tax is a political success for the nation if it is a significant contributor to achieve national emission goals. Furthermore, is the CO 2 -tax an environmental success only to the extent it contributes to reductions in the CO 2 emissions globally. The paper indicates that there are possibilities for major suboptimal adaptations in connection with national CO 2 -taxation of the oil and gas production. 13 refs., 6 figs

  10. Community-level sensitivity of a calcifying ecosystem to acute in situ CO2 enrichment

    KAUST Repository

    Burdett, HL


    The rate of change in ocean carbonate chemistry is a vital determinant in the magnitude of effects observed. Benthic marine ecosystems are facing an increasing risk of acute CO2 exposure that may be natural or anthropogenically derived (e.g. engineering and industrial activities). However, our understanding of how acute CO2 events impact marine life is restricted to individual organisms, with little understanding for how this manifests at the community level. Here, we investigated in situ the effect of acute CO2 enrichment on the coralline algal ecosystem—a globally ubiquitous, ecologically and economically important habitat, but one which is likely to be sensitive to CO2 enrichment due to its highly calcified reef-like structures engineered by coralline algae. Most notably, we observed a rapid community-level shift to favour net dissolution rather than net calcification. Smaller changes from net respiration to net photosynthesis were also observed. There was no effect on the net flux of DMS/DMSP (algal secondary metabolites), nor on the nutrients nitrate and phosphate. Following return to ambient CO2 levels, only a partial recovery was seen within the monitoring timeframe. This study highlights the sensitivity of biogenic carbonate marine communities to acute CO2 enrichment and raises concerns over the capacity for the system to ‘bounce back’ if subjected to repeated acute high-CO2 events.

  11. Reconciling top-down and bottom-up estimates of CO2 fluxes to understand increased seasonal exchange in Northern ecosystems (United States)

    Bastos, A.; Ciais, P.; Zhu, D.; Maignan, F.; Wang, X.; Chevallier, F.; Ballantyne, A.


    Continuous atmospheric CO2 monitoring data indicate enhanced seasonal exchange in the high-latitudes in the Northern Hemisphere (above 40oN), mainly attributed to terrestrial ecosystems. Whether this enhancement is mostly explained by increased vegetation growth due to CO2 fertilization and warming, or by changes in land-use and land-management practices is still an unsettled question (e.g. Forkel et al. (2016) and Zeng et al. (2013)). Previous studies have shown that models present variable performance in capturing trends in CO2 amplitude at CO2 monitoring sites, and that Earth System Models present large spread in their estimates of such trends. Here we integrate data of atmospheric CO2 exchange in terrestrial ecosystems by a set of atmospheric CO2 inversions and a range of land-surface models to evaluate the ability of models to reproduce changes in CO2 seasonal exchange within the observation uncertainty. We then analyze the factors that explain the model spread to understand if the trend in seasonal CO2 amplitude may indeed be a useful metric to constrain future changes in terrestrial photosynthesis (Wenzel et al., 2016). We then compare model simulations with satellite and other observation-based datasets of vegetation productivity, biomass stocks and land-cover change to test the contribution of natural (CO2 fertilization, climate) and human (land-use change) factors to the increasing trend in seasonal CO2 amplitude. Forkel, Matthias, et al. "Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems." Science 351.6274 (2016): 696-699. Wenzel, Sabrina, et al. "Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2." Nature 538, no. 7626 (2016): 499-501.Zeng, Ning, et al. "Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude." Nature 515.7527 (2014): 394.

  12. Emission of CO2 from energy crop production

    International Nuclear Information System (INIS)

    Turhollow, A.F.


    The production of cellulosic energy crops (e.g., short rotation woody crops and herbaceous crops) make a net contribution of CO 2 to the atmosphere to the extent that fossil-fuel based inputs are used in their production. The CO 2 released from the use of the biomass is merely CO 2 that has recently been removed from the atmosphere by the plant growth process. Fossil inputs used in the production of energy corps include energy invested in fertilizers and pesticides, and petroleum fuels used for machinery operation such as site preparation, weed control, harvesting, and hauling. Fossil inputs used come from petroleum, natural gas, and electricity derived from fossil sources. No fossil inputs for the capital used to produce fertilizers, pesticides, or machinery is calculated in this analysis. In this paper calculations are made for the short rotation woody crop hybrid poplar (Populus spp.), the annual herbaceous crop sorghum (Sorghum biocolor [L.] Moench), and the perennial herbaceous crop switchgrass (Panicum virgatum L.). For comparison purposes, emissions of CO 2 from corn (Zea mays L.) are calculated

  13. Elevated CO2 and temperature increase soil C losses from a soybean-maize ecosystem. (United States)

    Black, Christopher K; Davis, Sarah C; Hudiburg, Tara W; Bernacchi, Carl J; DeLucia, Evan H


    Warming temperatures and increasing CO 2 are likely to have large effects on the amount of carbon stored in soil, but predictions of these effects are poorly constrained. We elevated temperature (canopy: +2.8 °C; soil growing season: +1.8 °C; soil fallow: +2.3 °C) for 3 years within the 9th-11th years of an elevated CO 2 (+200 ppm) experiment on a maize-soybean agroecosystem, measured respiration by roots and soil microbes, and then used a process-based ecosystem model (DayCent) to simulate the decadal effects of warming and CO 2 enrichment on soil C. Both heating and elevated CO 2 increased respiration from soil microbes by ~20%, but heating reduced respiration from roots and rhizosphere by ~25%. The effects were additive, with no heat × CO 2 interactions. Particulate organic matter and total soil C declined over time in all treatments and were lower in elevated CO 2 plots than in ambient plots, but did not differ between heat treatments. We speculate that these declines indicate a priming effect, with increased C inputs under elevated CO 2 fueling a loss of old soil carbon. Model simulations of heated plots agreed with our observations and predicted loss of ~15% of soil organic C after 100 years of heating, but simulations of elevated CO 2 failed to predict the observed C losses and instead predicted a ~4% gain in soil organic C under any heating conditions. Despite model uncertainty, our empirical results suggest that combined, elevated CO 2 and temperature will lead to long-term declines in the amount of carbon stored in agricultural soils. © 2016 John Wiley & Sons Ltd.

  14. Impact of elevated CO2 on a Florida Scrub-oak Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Bert G


    Since May of 1996, we have conducted an experiment in Florida Scrub Oak to determine the impact of elevated atmospheric CO2 and climate change on carbon, water, and nutrient cycling in this important terrestrial ecosystem. Florida scrub oak is the name for a collective of species occupying much of the Florida peninsula. The dominant tree species are oaks and the dwarf structure of this community makes it an excellent system in which to test hypotheses regarding the potential capacity of woody ecosystems to assimilate and sequester anthropogenic carbon. Scrub oak is fire dependent with a return cycle of 10-15 years, a time which would permit an experiment to follow the entire cycle. Our site is located on Cape Canaveral at the Kennedy Space Center, Florida. After burning in 1995, we built 16 open top chambers, half of which have been fumigated with pure CO2 sufficient to raise the concentration around the plants to 350 ppm above ambient. In the intervening 10 years we have non destructively measured biomass of shoots and roots, ecosystem gas exchange using chambers and eddy flux, leaf photosynthesis and respiration, soil respiration, and relevant environmental factors such as soil water availability, temperature, light, etc. The overwhelming result from analysis of our extensive data base is that elevated CO2 has had a profound impact on this ecosystem that, overall, has resulted in increased carbon accumulation in plant shoots, roots and litter. Our measurements of net ecosystem gas exchange also indicate that the ecosystem has accumulated carbon much in excess of the increased biomass or soil carbon suggesting a substantial export of carbon through the porous, sandy soil into the water table several meters below the surface. A major discovery is the powerful interaction between the stimulation of growth, photosynthesis, and respiration by elevated CO2 and other environmental factors particularly precipitation and nitrogen. Our measurements focused attention on

  15. Net ecosystem CO2 exchange of a cutover peatland rehabilitated with a transplanted acrotelm

    International Nuclear Information System (INIS)

    Cagampan, J.P.; Waddington, J.M.


    Peatlands are an important long-term sink for atmospheric carbon dioxide (CO 2 ). The storage function of peatland ecosystems is significantly impacted by drainage and extraction processes, which can result in the release of significant amounts of CO 2 . This paper investigated the net ecosystem CO 2 exchange of a newly developed extraction-restoration technique that preserved the acrotelm and replaced it directly on the cut surface of the peatlands. The technique used a modified block-cut method with a back-hoe to create a drainage ditch. Actrotelm and surface vegetation were removed and placed to one side, and the peat was mechanically removed. The acrotelm was then transplanted over the older and more decomposed catotelm peat to create a trench topography in which the natural peatland was higher than the extracted zone. Air temperatures, water table levels, and volumetric moisture content levels were measured throughout the experiment. Measurements of CO 2 exchange were taken for the duration of a Spring and summer growing season at 12 sampling locations. Results of the experiment showed that the technique was successful in maintaining moisture conditions similar to those observed in the natural peatlands. However, the peatlands where the technique was used were still net emitters of CO 2 . Recommendations for improving the technique included using more care when removing upper peat layers; limiting surface damage; and reducing spaces and gaps between the transplanted acrotelm. 34 refs., 8 figs

  16. Blue water tradeoffs with ecosystems in a CO2-enriched climate (United States)

    Mankin, J. S.; Smerdon, J. E.; Cook, B. I.; Williams, A. P.; Seager, R.


    Present and future freshwater availability and drought risks are physically tied to the competing responses of surface vegetation to increasing CO2, which includes radiative and plant physiological forcing, as well as their consequences for plant phenology, water use efficiency, and CO2 fertilization. Because Earth system models (ESMs) have increased their sophistication in representing the coupling among biogeochemical and biogeophysical processes at the land surface, projected linkages among ecosystem responses to CO2 and blue water (runoff) can be explored. A detailed analysis of the Western US demonstrates that CO2- and radiatively-induced vegetation growth drives projected decreases in soil moisture and runoff in the NCAR CESM LENS, creating a curious pattern of colocated 'greening' and 'drying.' Here we explore these responses at the global-scale and the consequences of such vegetation-driven drying on blue water availability for people. We present a simple metric that quantifies the tradeoff that occurs between ecosystems and blue water and link their occurrence to changes in daily-scale precipitation extremes, plant functional types, and changes in leaf areas. These results have implications for blue water availability for people and raise important questions about model representations of vegetation-water responses to high CO2.

  17. Drought effects on ecosystem functioning and interactions with CO2 and warming - results from CLIMAITE (United States)

    Beier, Claus; Ibrom, Andreas; Linden, Leon G.; Selsted, Merete B.; Albert, Kristian R.; Kongstad, Jane; Andresen, Louise C.


    Current predictions indicate that, unless greenhouse gas emissions are significantly curtailed, atmospheric CO2 concentrations will double during the present century inducing an additional 1.4 to 5.8oC increase in mean global temperature, alterations in global and regional precipitation patterns, and increase the frequency and magnitude of severe weather events (e.g. droughts and floods). Such changes will have strong effects on the terrestrial ecosystems as CO2, temperature and water are main drivers in ecosystem processes. There is growing concern that climate driven changes in precipitation patterns and water availability will have significant effects on ecosystem processes and functioning, and in some regions may be the most influential climate change factor. Yet, it has received much less attention in recent climate change research relative to elevated CO2 and temperature. Furthermore, most precipitation experiments have focussed on water alone despite the fact that at least CO2 and temperature will change simultaneously and both of these factors will have direct or indirect effects on water status and use in the ecosystem. In the CLIMAITE project a Danish heathland has been exposed since 2005 to elevated CO2, temperature and extended drought in a full factorial experiment (Mikkelsen et al., 2008). The CO2 concentration in the canopy level is elevated by 50% by the Free Air Carbon Enrichment (FACE) technique, temperature is elevated by 1-2 °C by the passive night time warming technique and summer drought is extended for 4-6 weeks by rain out shelters. The full factor combination mimics recent climate projections for Denmark 2075. Following the experiments, responses of major ecosystem processes and functioning is recorded. Drought generally leads to hypothesised reductions in most ecosystem processes during and shortly after the drought but on the short term, many of these processes also show a strong potential to recover during rewetting. Drought reduces

  18. Nitrogen and Carbon Cycling in a Grassland Community Ecosystem as Affected by Elevated Atmospheric CO2

    Directory of Open Access Journals (Sweden)

    H. A. Torbert


    Full Text Available Increasing global atmospheric carbon dioxide (CO2 concentration has led to concerns regarding its potential effects on terrestrial ecosystems and the long-term storage of carbon (C and nitrogen (N in soil. This study examined responses to elevated CO2 in a grass ecosystem invaded with a leguminous shrub Acacia farnesiana (L. Willd (Huisache. Seedlings of Acacia along with grass species were grown for 13 months at CO2 concentrations of 385 (ambient, 690, and 980 μmol mol−1. Elevated CO2 increased both C and N inputs from plant growth which would result in higher soil C from litter fall, root turnover, and excretions. Results from the incubation indicated an initial (20 days decrease in N mineralization which resulted in no change in C mineralization. However, after 40 and 60 days, an increase in both C and N mineralization was observed. These increases would indicate that increases in soil C storage may not occur in grass ecosystems that are invaded with Acacia over the long term.

  19. Biotic, abiotic, and management controls on the net ecosystem CO2 exchange of European mountain grassland ecosystems

    DEFF Research Database (Denmark)

    Wohlfahrt, Georg; Anderson-Dunn, Margaret; Bahn, Michael


    The net ecosystem carbon dioxide (CO2) exchange (NEE) of nine European mountain grassland ecosystems was measured during 2002-2004 using the eddy covariance method. Overall, the availability of photosynthetically active radiation (PPFD) was the single most important abiotic influence factor for NEE....... Its role changed markedly during the course of the season, PPFD being a better predictor for NEE during periods favorable for CO2 uptake, which was spring and autumn for the sites characterized by summer droughts (southern sites) and (peak) summer for the Alpine and northern study sites. This general...... pattern was interrupted by grassland management practices, that is, mowing and grazing, when the variability in NEE explained by PPFD decreased in concert with the amount of aboveground biomass (BMag). Temperature was the abiotic influence factor that explained most of the variability in ecosystem...

  20. Soil microbial metabolic quotient (qCO2) of twelve ecosystems of Mt. Kilimanjaro (United States)

    Pabst, Holger; Gerschlauer, Friederike; Kiese, Ralf; Kuzyakov, Yakov


    Soil organic carbon, microbial biomass carbon (MBC) and the metabolic quotient qCO2 - as sensitive and important parameters for soil fertility and C turnover - are strongly affected by land-use changes all over the world. These effects are particularly distinct upon conversion of natural to agricultural ecosystems due to very fast carbon (C) and nutrient cycles and high vulnerability, especially in the tropics. In this study, we used an elevational gradient on Mt. Kilimanjaro to investigate the effects of land-use change and elevation on Corg, MBC and qCO2. Down to a soil depth of 18 cm we compared 4 natural (Helichrysum, Erica forest, Podocarpus forest, Ocotea forest), 5 seminatural (disturbed Podocarpus forest, disturbed Ocotea forest, lower montane forest, grassland, savannah), 1 sustainably used (homegarden) and 2 intensively used ecosystems (coffee plantation, maize field) on an elevation gradient from 950 to 3880 m a.s.l.. Using an incubation device, soil CO2-efflux of 18 cm deep soil cores was measured under field moist conditions and mean annual temperature. MBC to Corg ratios varied between 0.7 and 2.3%. qCO2 increased with magnitude of the disturbance, albeit this effect decreased with elevation. Following the annual precipitation of the ecosystems, both, Corg and MBC showed a hum-shaped distribution with elevation, whereas their maxima were between 2500 and 3000 m a.s.l.. Additionaly, Corg and MBC contents were significantly reduced in intensively used agricultural systems. We conclude that the soil microbial biomass and its activity in Mt. Kilimanjaro ecosystems are strongly altered by land-use. This effect is more distinct in lower than in higher elevated ecosystems and strongly dependent on the magnitude of disturbance.

  1. Nitrogen Availability Dampens the Positive Impacts of CO2 Fertilization on Terrestrial Ecosystem Carbon and Water Cycles (United States)

    He, Liming; Chen, Jing M.; Croft, Holly; Gonsamo, Alemu; Luo, Xiangzhong; Liu, Jane; Zheng, Ting; Liu, Ronggao; Liu, Yang


    The magnitude and variability of the terrestrial CO2 sink remain uncertain, partly due to limited global information on ecosystem nitrogen (N) and its cycle. Without N constraint in ecosystem models, the simulated benefits from CO2 fertilization and CO2-induced increases in water use efficiency (WUE) may be overestimated. In this study, satellite observations of a relative measure of chlorophyll content are used as a proxy for leaf photosynthetic N content globally for 2003-2011. Global gross primary productivity (GPP) and evapotranspiration are estimated under elevated CO2 and N-constrained model scenarios. Results suggest that the rate of global GPP increase is overestimated by 85% during 2000-2015 without N limitation. This limitation is found to occur in many tropical and boreal forests, where a negative leaf N trend indicates a reduction in photosynthetic capacity, thereby suppressing the positive vegetation response to enhanced CO2 fertilization. Based on our carbon-water coupled simulations, enhanced CO2 concentration decreased stomatal conductance and hence increased WUE by 10% globally over the 1982 to 2015 time frame. Due to increased anthropogenic N application, GPP in croplands continues to grow and offset the weak negative trend in forests due to N limitation. Our results also show that the improved WUE is unlikely to ease regional droughts in croplands because of increases in evapotranspiration, which are associated with the enhanced GPP. Although the N limitation on GPP increase is large, its associated confidence interval is still wide, suggesting an urgent need for better understanding and quantification of N limitation from satellite observations.

  2. Geospatial variability of soil CO2-C exchange in the main terrestrial ecosystems of Keller Peninsula, Maritime Antarctica. (United States)

    Thomazini, A; Francelino, M R; Pereira, A B; Schünemann, A L; Mendonça, E S; Almeida, P H A; Schaefer, C E G R


    Soils and vegetation play an important role in the carbon exchange in Maritime Antarctica but little is known on the spatial variability of carbon processes in Antarctic terrestrial environments. The objective of the current study was to investigate (i) the soil development and (ii) spatial variability of ecosystem respiration (ER), net ecosystem CO2 exchange (NEE), gross primary production (GPP), soil temperature (ST) and soil moisture (SM) under four distinct vegetation types and a bare soil in Keller Peninsula, King George Island, Maritime Antarctica, as follows: site 1: moss-turf community; site 2: moss-carpet community; site 3: phanerogamic antarctic community; site 4: moss-carpet community (predominantly colonized by Sanionia uncinata); site 5: bare soil. Soils were sampled at different layers. A regular 40-point (5×8 m) grid, with a minimum separation distance of 1m, was installed at each site to quantify the spatial variability of carbon exchange, soil moisture and temperature. Vegetation characteristics showed closer relation with soil development across the studied sites. ER reached 2.26μmolCO2m(-2)s(-1) in site 3, where ST was higher (7.53°C). A greater sink effect was revealed in site 4 (net uptake of 1.54μmolCO2m(-2)s(-1)) associated with higher SM (0.32m(3)m(-3)). Spherical models were fitted to describe all experimental semivariograms. Results indicate that ST and SM are directly related to the spatial variability of CO2 exchange. Heterogeneous vegetation patches showed smaller range values. Overall, poorly drained terrestrial ecosystems act as CO2 sink. Conversely, where ER is more pronounced, they are associated with intense soil carbon mineralization. The formations of new ice-free areas, depending on the local soil drainage condition, have an important effect on CO2 exchange. With increasing ice/snow melting, and resulting widespread waterlogging, increasing CO2 sink in terrestrial ecosystems is expected for Maritime Antarctica. Copyright

  3. Understorey productivity in temperate grassy woodland responds to soil water availability but not to elevated [CO2 ]. (United States)

    Collins, Luke; Bradstock, Ross A; Resco de Dios, Victor; Duursma, Remko A; Velasco, Sabrina; Boer, Matthias M


    Rising atmospheric [CO 2 ] and associated climate change are expected to modify primary productivity across a range of ecosystems globally. Increasing aridity is predicted to reduce grassland productivity, although rising [CO 2 ] and associated increases in plant water use efficiency may partially offset the effect of drying on growth. Difficulties arise in predicting the direction and magnitude of future changes in ecosystem productivity, due to limited field experimentation investigating climate and CO 2 interactions. We use repeat near-surface digital photography to quantify the effects of water availability and experimentally manipulated elevated [CO 2 ] (eCO 2 ) on understorey live foliage cover and biomass over three growing seasons in a temperate grassy woodland in south-eastern Australia. We hypothesised that (i) understorey herbaceous productivity is dependent upon soil water availability, and (ii) that eCO 2 will increase productivity, with greatest stimulation occurring under conditions of low water availability. Soil volumetric water content (VWC) determined foliage cover and growth rates over the length of the growing season (August to March), with low VWC (productivity. However, eCO 2 did not increase herbaceous cover and biomass over the duration of the experiment, or mitigate the effects of low water availability on understorey growth rates and cover. Our findings suggest that projected increases in aridity in temperate woodlands are likely to lead to reduced understorey productivity, with little scope for eCO 2 to offset these changes. © 2018 John Wiley & Sons Ltd.

  4. Grazing effects on ecosystem CO2 fluxes differ among temperate steppe types in Eurasia. (United States)

    Hou, Longyu; Liu, Yan; Du, Jiancai; Wang, Mingya; Wang, Hui; Mao, Peisheng


    Grassland ecosystems play a critical role in regulating CO2 fluxes into and out of the Earth's surface. Whereas previous studies have often addressed single fluxes of CO2 separately, few have addressed the relation among and controls of multiple CO2 sub-fluxes simultaneously. In this study, we examined the relation among and controls of individual CO2 fluxes (i.e., GEP, NEP, SR, ER, CR) in three contrasting temperate steppes of north China, as affected by livestock grazing. Our findings show that climatic controls of the seasonal patterns in CO2 fluxes were both individual flux- and steppe type-specific, with significant grazing impacts observed for canopy respiration only. In contrast, climatic controls of the annual patterns were only individual flux-specific, with minor grazing impacts on the individual fluxes. Grazing significantly reduced the mean annual soil respiration rate in the typical and desert steppes, but significantly enhanced both soil and canopy respiration in the meadow steppe. Our study suggests that a reassessment of the role of livestock grazing in regulating GHG exchanges is imperative in future studies.

  5. Global Monthly CO2 Flux Inversion Based on Results of Terrestrial Ecosystem Modeling (United States)

    Deng, F.; Chen, J.; Peters, W.; Krol, M.


    Most of our understanding of the sources and sinks of atmospheric CO2 has come from inverse studies of atmospheric CO2 concentration measurements. However, the number of currently available observation stations and our ability to simulate the diurnal planetary boundary layer evolution over continental regions essentially limit the number of regions that can be reliably inverted globally, especially over continental areas. In order to overcome these restrictions, a nested inverse modeling system was developed based on the Bayesian principle for estimating carbon fluxes of 30 regions in North America and 20 regions for the rest of the globe. Inverse modeling was conducted in monthly steps using CO2 concentration measurements of 5 years (2000 - 2005) with the following two models: (a) An atmospheric transport model (TM5) is used to generate the transport matrix where the diurnal variation n of atmospheric CO2 concentration is considered to enhance the use of the afternoon-hour average CO2 concentration measurements over the continental sites. (b) A process-based terrestrial ecosystem model (BEPS) is used to produce hourly step carbon fluxes, which could minimize the limitation due to our inability to solve the inverse problem in a high resolution, as the background of our inversion. We will present our recent results achieved through a combination of the bottom-up modeling with BEPS and the top-down modeling based on TM5 driven by offline meteorological fields generated by the European Centre for Medium Range Weather Forecast (ECMFW).

  6. Modelling the diurnal and seasonal dynamics of soil CO2 exchange in a semiarid ecosystem with high plant–interspace heterogeneity

    Directory of Open Access Journals (Sweden)

    J. Gong


    Full Text Available We used process-based modelling to investigate the roles of carbon-flux (C-flux components and plant–interspace heterogeneities in regulating soil CO2 exchanges (FS in a dryland ecosystem with sparse vegetation. To simulate the diurnal and seasonal dynamics of FS, the modelling considered simultaneously the CO2 production, transport and surface exchanges (e.g. biocrust photosynthesis, respiration and photodegradation. The model was parameterized and validated with multivariate data measured during the years 2013–2014 in a semiarid shrubland ecosystem in Yanchi, northwestern China. The model simulation showed that soil rewetting could enhance CO2 dissolution and delay the emission of CO2 produced from rooting zone. In addition, an ineligible fraction of respired CO2 might be removed from soil volumes under respiration chambers by lateral water flows and root uptakes. During rewetting, the lichen-crusted soil could shift temporally from net CO2 source to sink due to the activated photosynthesis of biocrust but the restricted CO2 emissions from subsoil. The presence of plant cover could decrease the root-zone CO2 production and biocrust C sequestration but increase the temperature sensitivities of these fluxes. On the other hand, the sensitivities of root-zone emissions to water content were lower under canopy, which may be due to the advection of water flows from the interspace to canopy. To conclude, the complexity and plant–interspace heterogeneities of soil C processes should be carefully considered to extrapolate findings from chamber to ecosystem scales and to predict the ecosystem responses to climate change and extreme climatic events. Our model can serve as a useful tool to simulate the soil CO2 efflux dynamics in dryland ecosystems.

  7. Modelling the diurnal and seasonal dynamics of soil CO2 exchange in a semiarid ecosystem with high plant-interspace heterogeneity (United States)

    Gong, Jinnan; Wang, Ben; Jia, Xin; Feng, Wei; Zha, Tianshan; Kellomäki, Seppo; Peltola, Heli


    We used process-based modelling to investigate the roles of carbon-flux (C-flux) components and plant-interspace heterogeneities in regulating soil CO2 exchanges (FS) in a dryland ecosystem with sparse vegetation. To simulate the diurnal and seasonal dynamics of FS, the modelling considered simultaneously the CO2 production, transport and surface exchanges (e.g. biocrust photosynthesis, respiration and photodegradation). The model was parameterized and validated with multivariate data measured during the years 2013-2014 in a semiarid shrubland ecosystem in Yanchi, northwestern China. The model simulation showed that soil rewetting could enhance CO2 dissolution and delay the emission of CO2 produced from rooting zone. In addition, an ineligible fraction of respired CO2 might be removed from soil volumes under respiration chambers by lateral water flows and root uptakes. During rewetting, the lichen-crusted soil could shift temporally from net CO2 source to sink due to the activated photosynthesis of biocrust but the restricted CO2 emissions from subsoil. The presence of plant cover could decrease the root-zone CO2 production and biocrust C sequestration but increase the temperature sensitivities of these fluxes. On the other hand, the sensitivities of root-zone emissions to water content were lower under canopy, which may be due to the advection of water flows from the interspace to canopy. To conclude, the complexity and plant-interspace heterogeneities of soil C processes should be carefully considered to extrapolate findings from chamber to ecosystem scales and to predict the ecosystem responses to climate change and extreme climatic events. Our model can serve as a useful tool to simulate the soil CO2 efflux dynamics in dryland ecosystems.

  8. Modeling Root Exudation, Priming and Protection in Soil Carbon Responses to Elevated CO2 from Ecosystem to Global Scales (United States)

    Sulman, B. N.; Phillips, R.; Shevliakova, E.; Oishi, A. C.; Pacala, S. W.


    The sensitivity of soil organic carbon (SOC) to changing environmental conditions represents a critical uncertainty in coupled carbon cycle-climate models. Much of this uncertainty arises from our limited understanding of the extent to which plants induce SOC losses (through accelerated decomposition or "priming") or promote SOC gains (via stabilization through physico-chemical protection). We developed a new SOC model, "Carbon, Organisms, Rhizosphere and Protection in the Soil Environment" (CORPSE), to examine the net effect of priming and protection in response to rising atmospheric CO2, and conducted simulations of rhizosphere priming effects at both ecosystem and global scales. At the ecosystem scale, the model successfully captured and explained disparate SOC responses at the Duke and Oak Ridge free-air CO2 enrichment (FACE) experiments. We show that stabilization of "new" carbon in protected SOC pools may equal or exceed microbial priming of "old" SOC in ecosystems with readily decomposable litter (e.g. Oak Ridge). In contrast, carbon losses owing to priming dominate the net SOC response in ecosystems with more resistant litters (e.g. Duke). For global simulations, the model was fully integrated into the Geophysical Fluid Dynamics Laboratory (GFDL) land model LM3. Globally, priming effects driven by enhanced root exudation and expansion of the rhizosphere reduced SOC storage in the majority of terrestrial areas, partially counterbalancing SOC gains from the enhanced ecosystem productivity driven by CO2 fertilization. Collectively, our results suggest that SOC stocks globally depend not only on temperature and moisture, but also on vegetation responses to environmental changes, and that protected C may provide an important constraint on priming effects.

  9. Engineering cyanobacteria for direct biofuel production from CO2. (United States)

    Savakis, Philipp; Hellingwerf, Klaas J


    For a sustainable future of our society it is essential to close the global carbon cycle. Oxidised forms of carbon, in particular CO2, can be used to synthesise energy-rich organic molecules. Engineered cyanobacteria have attracted attention as catalysts for the direct conversion of CO2 into reduced fuel compounds. Proof of principle for this approach has been provided for a vast range of commodity chemicals, mostly energy carriers, such as short chain and medium chain alcohols. More recently, research has focused on the photosynthetic production of compounds with higher added value, most notably terpenoids. Below we review the recent developments that have improved the state-of-the-art of this approach and speculate on future developments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Net ecosystem exchange of CO2 and carbon balance for eight temperate organic soils under agricultural management

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Görres, C.-M.; Hoffmann, Carl Christian


    This study presents the first annual estimates of net ecosystem exchange (NEE) of CO2 and net ecosystem carbon balances (NECB) of contrasting Danish agricultural peatlands. Studies were done at eight sites representing permanent grasslands (PG) and rotational (RT) arable soils cropped to barley......, potato or forage grasses in three geo-regional settings. Using an advanced flux-chamber technique, NEE was derived from modelling of ecosystem respiration (ER) and gross primary production (GPP) with temperature and photosynthetically active radiation as driving variables. At PG (n = 3) and RT (n = 5......) sites, NEE (mean ± standard error, SE) was 5.1 ± 0.9 and 8.6 ± 2.0 Mg C ha−1 yr−1, respectively, but with the overall lowest value observed for potato cropping (3.5 Mg C ha−1 yr−1). This was partly attributed to a short-duration vegetation period and drying of the soil especially in potato ridges. NECB...

  11. Empirically constrained estimates of Alaskan regional Net Ecosystem Exchange of CO2, 2012-2014 (United States)

    Commane, R.; Lindaas, J.; Benmergui, J. S.; Luus, K. A.; Chang, R. Y. W.; Miller, S. M.; Henderson, J.; Karion, A.; Miller, J. B.; Sweeney, C.; Miller, C. E.; Lin, J. C.; Oechel, W. C.; Zona, D.; Euskirchen, E. S.; Iwata, H.; Ueyama, M.; Harazono, Y.; Veraverbeke, S.; Randerson, J. T.; Daube, B. C.; Pittman, J. V.; Wofsy, S. C.


    We present data-driven estimates of the regional net ecosystem exchange of CO2 across Alaska for three years (2012-2014) derived from CARVE (Carbon in the Arctic Reservoirs Vulnerability Experiment) aircraft measurements. Integrating optimized estimates of annual NEE, we find that the Alaskan region was a small sink of CO2 during 2012 and 2014, but a significant source of CO2 in 2013, even before including emissions from the large forest fire season during 2013. We investigate the drivers of this interannual variability, and the larger spring and fall emissions of CO2 in 2013. To determine the optimized fluxes, we couple the Polar Weather Research and Forecasting (PWRF) model with the Stochastic Time-Inverted Lagrangian Transport (STILT) model, to produce footprints of surface influence that we convolve with a remote-sensing driven model of NEE across Alaska, the Polar Vegetation Photosynthesis and Respiration Model (Polar-VPRM). For each month we calculate a spatially explicit additive flux (ΔF) by minimizing the difference between the measured profiles of the aircraft CO2 data and the modeled profiles, using a framework that combines a uniform correction at regional scales and a Bayesian inversion of residuals at smaller scales. A rigorous estimate of total uncertainty (including atmospheric transport, measurement error, etc.) was made with a combination of maximum likelihood estimation and Monte Carlo error propagation. Our optimized fluxes are consistent with other measurements on multiple spatial scales, including CO2 mixing ratios from the CARVE Tower near Fairbanks and eddy covariance flux towers in both boreal and tundra ecosystems across Alaska. For times outside the aircraft observations (Dec-April) we use the un-optimized polar-VPRM, which has shown good agreement with both tall towers and eddy flux data outside the growing season. This approach allows us to robustly estimate the annual CO2 budget for Alaska and investigate the drivers of both the

  12. Regional inversion of CO2 ecosystem fluxes from atmospheric measurements. Reliability of the uncertainty estimates

    Energy Technology Data Exchange (ETDEWEB)

    Broquet, G.; Chevallier, F.; Breon, F.M.; Yver, C.; Ciais, P.; Ramonet, M.; Schmidt, M. [Laboratoire des Sciences du Climat et de l' Environnement, CEA-CNRS-UVSQ, UMR8212, IPSL, Gif-sur-Yvette (France); Alemanno, M. [Servizio Meteorologico dell' Aeronautica Militare Italiana, Centro Aeronautica Militare di Montagna, Monte Cimone/Sestola (Italy); Apadula, F. [Research on Energy Systems, RSE, Environment and Sustainable Development Department, Milano (Italy); Hammer, S. [Universitaet Heidelberg, Institut fuer Umweltphysik, Heidelberg (Germany); Haszpra, L. [Hungarian Meteorological Service, Budapest (Hungary); Meinhardt, F. [Federal Environmental Agency, Kirchzarten (Germany); Necki, J. [AGH University of Science and Technology, Krakow (Poland); Piacentino, S. [ENEA, Laboratory for Earth Observations and Analyses, Palermo (Italy); Thompson, R.L. [Max Planck Institute for Biogeochemistry, Jena (Germany); Vermeulen, A.T. [Energy research Centre of the Netherlands ECN, EEE-EA, Petten (Netherlands)


    The Bayesian framework of CO2 flux inversions permits estimates of the retrieved flux uncertainties. Here, the reliability of these theoretical estimates is studied through a comparison against the misfits between the inverted fluxes and independent measurements of the CO2 Net Ecosystem Exchange (NEE) made by the eddy covariance technique at local (few hectares) scale. Regional inversions at 0.5{sup 0} resolution are applied for the western European domain where {approx}50 eddy covariance sites are operated. These inversions are conducted for the period 2002-2007. They use a mesoscale atmospheric transport model, a prior estimate of the NEE from a terrestrial ecosystem model and rely on the variational assimilation of in situ continuous measurements of CO2 atmospheric mole fractions. Averaged over monthly periods and over the whole domain, the misfits are in good agreement with the theoretical uncertainties for prior and inverted NEE, and pass the chi-square test for the variance at the 30% and 5% significance levels respectively, despite the scale mismatch and the independence between the prior (respectively inverted) NEE and the flux measurements. The theoretical uncertainty reduction for the monthly NEE at the measurement sites is 53% while the inversion decreases the standard deviation of the misfits by 38 %. These results build confidence in the NEE estimates at the European/monthly scales and in their theoretical uncertainty from the regional inverse modelling system. However, the uncertainties at the monthly (respectively annual) scale remain larger than the amplitude of the inter-annual variability of monthly (respectively annual) fluxes, so that this study does not engender confidence in the inter-annual variations. The uncertainties at the monthly scale are significantly smaller than the seasonal variations. The seasonal cycle of the inverted fluxes is thus reliable. In particular, the CO2 sink period over the European continent likely ends later than

  13. Catalytic conversion of CO2 into valuable products

    International Nuclear Information System (INIS)

    Pham-Huu, C.; Ledoux, M.J.


    Complete text of publication follows: Synthesis gas, a mixture of H 2 and CO, is an important feed-stock for several chemical processes operated in the production of methanol and synthetic fuels through a Fischer- Tropsch synthesis. Synthesis gas is produced via an endothermic steam reforming of methane (CH 4 + H 2 O → CO + 3H 2 , ΔH = +225.4 kJ.mol -1 ), catalytic or direct partial oxidation of methane (CH 4 + (1/2)O 2 → CO + 2H 2 , ΔH -38 kJ.mol -1 ) and CO 2 reforming of methane (CH 4 + CO 2 → 2CO + 2H 2 , ΔH= +247 kJ.mol -1 ). The main disadvantage of these processes is the high coke formation, essentially in the nano-filament form, which may cause severe deactivation of the catalyst by pore or active site blocking and sometimes, physical disintegration of the catalyst body causing a high pressure drop along the catalyst bed and even, in some cases, inducing damage to the reactor itself. Previous results obtained in the catalytic partial oxidation of methane have shown that due to the hot spot and carbon nano-filaments formation, especially in the case of the CO 2 reforming, the alumina-based catalyst in an extrudate form was broken into powder which induces a significant pressure drop across the catalytic bed. In the case of endothermic reactions, steam and CO 2 reforming, the temperature drop within the catalyst bed could also modified the activity of the catalyst. Silicon carbide (SiC) exhibits a high thermal conductivity, a high resistance towards oxidation, a high mechanical strength, and chemical inertness, all of which make it a good candidate for use as catalyst support in several endothermic and exothermic reactions such as dehydrogenation, selective partial oxidation, and Fischer-Tropsch synthesis. The gas-solid reaction allows the preparation of SiC with medium surface area, i.e. 10 to 40 m 2 .g -1 , and controlled macroscopic shape, i.e. grains, extrudates or foam, for it subsequence use as catalyst support. In addition, due to its chemical

  14. Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland (United States)

    Hungate, Bruce A; Dijkstra, Paul; Wu, Zhuoting; Duval, Benjamin D; Day, Frank P; Johnson, Dale W; Megonigal, J Patrick; Brown, Alisha L P; Garland, Jay L


    Summary Rising atmospheric carbon dioxide (CO2) could alter the carbon (C) and nitrogen (N) content of ecosystems, yet the magnitude of these effects are not well known. We examined C and N budgets of a subtropical woodland after 11 yr of exposure to elevated CO2. We used open-top chambers to manipulate CO2 during regrowth after fire, and measured C, N and tracer 15N in ecosystem components throughout the experiment. Elevated CO2 increased plant C and tended to increase plant N but did not significantly increase whole-system C or N. Elevated CO2 increased soil microbial activity and labile soil C, but more slowly cycling soil C pools tended to decline. Recovery of a long-term 15N tracer indicated that CO2 exposure increased N losses and altered N distribution, with no effect on N inputs. Increased plant C accrual was accompanied by higher soil microbial activity and increased C losses from soil, yielding no statistically detectable effect of elevated CO2 on net ecosystem C uptake. These findings challenge the treatment of terrestrial ecosystems responses to elevated CO2 in current biogeochemical models, where the effect of elevated CO2 on ecosystem C balance is described as enhanced photosynthesis and plant growth with decomposition as a first-order response. PMID:23718224

  15. Possible use of Fe/CO2 fuel cells for CO2 mitigation plus H2 and electricity production

    International Nuclear Information System (INIS)

    Rau, Greg H.


    The continuous oxidation of scrap iron in the presence of a constant CO 2 -rich waste gas stream and water is evaluated as a means of sequestering anthropogenic CO 2 as well as generating hydrogen gas and electricity. The stoichiometry of the net reaction, Fe 0 + CO 2 + H 2 O → FeCO 3 + H 2 , and assumptions about reaction rates, reactant and product prices/values and overhead costs suggest that CO 2 might be mitigated at a net profit in excess of $30/tonne CO 2 . The principle profit center of the process would be hydrogen production, alone providing a gross income of >$160/tonne CO 2 reacted. However, the realization of such fuel cell economics depends on a number of parameters including: (1) the rate at which the reaction can be sustained, (2) the areal and volumetric density with which H 2 and electricity can be produced, (3) the purity of the H 2 produced, (4) the transportation costs of the reactants (Fe, CO 2 and H 2 O) and products (FeCO 3 or Fe(HCO 3 ) 2 ) to/from the cells and (5) the cost/benefit trade-offs of optimizing the preceding variables in a given market and regulatory environment. Because of the carbon intensity of conventional iron metal production, a net carbon sequestration benefit for the process can be realized only when waste (rather than new) iron and steel are used as electrodes and/or when Fe(HCO 3 ) 2 is the end product. The used electrolyte could also provide a free source of Fe 2+ ions for enhancing iron-limited marine photosynthesis and, thus, greatly increasing the CO 2 sequestration potential of the process. Alternatively, the reaction of naturally occurring iron oxides (iron ore) with CO 2 can be considered for FeCO 3 formation and sequestration, but this foregoes the benefits of hydrogen and electricity production. Use of Fe/CO 2 fuel cells would appear to be particularly relevant for fossil fuel gasification/steam reforming systems given the highly concentrated CO 2 they generate and given the existing infrastructure they

  16. Microalgal CO2 sequestering – Modeling microalgae production costs

    International Nuclear Information System (INIS)

    Bilanovic, Dragoljub; Holland, Mark; Armon, Robert


    Highlights: ► Microalgae production costs were modeled as a function of specific expenses. ► The effects of uncontrollable expenses/factors were incorporated into the model. ► Modeled microalgae production costs were in the range $102–1503 t −1 ha −1 y −1 . - Abstract: Microalgae CO 2 sequestering facilities might become an industrial reality if microalgae biomass could be produced at cost below $500.00 t −1 . We develop a model for estimation of total production costs of microalgae as a function of known production-specific expenses, and incorporate into the model the effects of uncontrollable factors which affect known production-specific expenses. Random fluctuations were intentionally incorporated into the model, consequently into generated cost/technology scenarios, because each and every logically interconnected equipment/operation that is used in design/construction/operation/maintenance of a production process is inevitably subject to random cost/price fluctuations which can neither be eliminated nor a priori controlled. A total of 152 costs/technology scenarios were evaluated to find 44 scenarios in which predicted total production costs of microalgae (PTPCM) was in the range $200–500 t −1 ha −1 y −1 . An additional 24 scenarios were found with PTCPM in the range of $102–200 t −1 ha −1 y −1 . These findings suggest that microalgae CO 2 sequestering and the production of commercial compounds from microalgal biomass can be economically viable venture even today when microalgae production technology is still far from its optimum.

  17. A Review of the Role of Vegetal Ecosystems in CO2 Capture

    Directory of Open Access Journals (Sweden)

    Giuseppe Di Vita


    Full Text Available The reduction of carbon emissions is a worldwide global challenge and represents the objective of many scientists that are trying to modify the role of carbon, turning a problem into an opportunity. The potential of CO2 capture and storage by vegetal species is significant because of their capacity to absorb exceeding carbon emission. The purpose of the present paper is to draw a picture of the role of vegetal ecosystems on carbon fixation by identifying the most significant scientific contributions related to the absorption by vegetal species. In particular the aim of this paper is to examine different forms of CO2 sequestration made by plants and crops involved in reducing greenhouse gas (GHG emission. Results highlight the important role played by agricultural soils, forests, perennial plants, and algae, looking at the overall reduction of carbon emissions. In addition, results show that some bioenergy crops allow substantial storage of carbon dioxide, providing a significant contribution to climate change mitigation.

  18. Comprehensive ecosystem model-data synthesis using multiple data sets at two temperate forest free-air CO2 enrichment experiments: Model performance at ambient CO2 concentration (United States)

    Walker, Anthony P.; Hanson, Paul J.; De Kauwe, Martin G.; Medlyn, Belinda E.; Zaehle, Sönke; Asao, Shinichi; Dietze, Michael; Hickler, Thomas; Huntingford, Chris; Iversen, Colleen M.; Jain, Atul; Lomas, Mark; Luo, Yiqi; McCarthy, Heather; Parton, William J.; Prentice, I. Colin; Thornton, Peter E.; Wang, Shusen; Wang, Ying-Ping; Warlind, David; Weng, Ensheng; Warren, Jeffrey M.; Woodward, F. Ian; Oren, Ram; Norby, Richard J.


    Free-air CO2 enrichment (FACE) experiments provide a remarkable wealth of data which can be used to evaluate and improve terrestrial ecosystem models (TEMs). In the FACE model-data synthesis project, 11 TEMs were applied to two decadelong FACE experiments in temperate forests of the southeastern U.S.—the evergreen Duke Forest and the deciduous Oak Ridge Forest. In this baseline paper, we demonstrate our approach to model-data synthesis by evaluating the models' ability to reproduce observed net primary productivity (NPP), transpiration, and leaf area index (LAI) in ambient CO2 treatments. Model outputs were compared against observations using a range of goodness-of-fit statistics. Many models simulated annual NPP and transpiration within observed uncertainty. We demonstrate, however, that high goodness-of-fit values do not necessarily indicate a successful model, because simulation accuracy may be achieved through compensating biases in component variables. For example, transpiration accuracy was sometimes achieved with compensating biases in leaf area index and transpiration per unit leaf area. Our approach to model-data synthesis therefore goes beyond goodness-of-fit to investigate the success of alternative representations of component processes. Here we demonstrate this approach by comparing competing model hypotheses determining peak LAI. Of three alternative hypotheses—(1) optimization to maximize carbon export, (2) increasing specific leaf area with canopy depth, and (3) the pipe model—the pipe model produced peak LAI closest to the observations. This example illustrates how data sets from intensive field experiments such as FACE can be used to reduce model uncertainty despite compensating biases by evaluating individual model assumptions.

  19. Can observed ecosystem responses to elevated CO2 and N fertilisation be explained by optimal plant C allocation? (United States)

    Stocker, Benjamin; Prentice, I. Colin


    The degree to which nitrogen availability limits the terrestrial C sink under rising CO2 is a key uncertainty in carbon cycle and climate change projections. Results from ecosystem manipulation studies and meta-analyses suggest that plant C allocation to roots adjusts dynamically under varying degrees of nitrogen availability and other soil fertility parameters. In addition, the ratio of biomass production to GPP appears to decline under nutrient scarcity. This reflects increasing plant C export into the soil and to symbionts (Cex) with decreasing nutrient availability. Cex is consumed by an array of soil organisms and may imply an improvement of nutrient availability to the plant. These concepts are left unaccounted for in Earth system models. We present a model for the coupled cycles of C and N in grassland ecosystems to explore optimal plant C allocation under rising CO2 and its implications for the ecosystem C balance. The model follows a balanced growth approach, accounting for the trade-offs between leaf versus root growth and Cex in balancing C fixation and N uptake. We further model a plant-controlled rate of biological N fixation (BNF) by assuming that Cex is consumed by N2-fixing processes if the ratio of Nup:Cex falls below the inverse of the C cost of N2-fixation. The model is applied at two temperate grassland sites (SwissFACE and BioCON), subjected to factorial treatments of elevated CO2 (FACE) and N fertilization. Preliminary simulation results indicate initially increased N limitation, evident by increased relative allocation to roots and Cex. Depending on the initial state of N availability, this implies a varying degree of aboveground growth enhancement, generally consistent with observed responses. On a longer time scale, ecosystems are progressively released from N limitation due tighter N cycling. Allowing for plant-controlled BNF implies a quicker release from N limitation and an adjustment to more open N cycling. In both cases, optimal plant

  20. Antecedent moisture and temperature conditions modulate the response of ecosystem respiration to elevated CO2 and warming (United States)

    Terrestrial plant and soil respiration, or ecosystem respiration (Reco), represents a major CO2 flux in the global carbon cycle. However, there is disagreement in how Reco will respond to future global changes, such as elevated atmosphere CO2 and warming. To address this, we synthesized six years (2...

  1. A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations (United States)

    Treat, C.C.; Natali, Susan M.; Ernakovich, Jessica; Iverson, Colleen M.; Lupasco, Massimo; McGuire, A. David; Norby, Richard J.; Roy Chowdhury, Taniya; Richter, Andreas; Šantrůčková, Hana; Schädel, C.; Schuur, Edward A.G.; Sloan, Victoria L.; Turetsky, Merritt R.; Waldrop, Mark P.


    Permafrost thaw can alter the soil environment through changes in soil moisture, frequently resulting in soil saturation, a shift to anaerobic decomposition, and changes in the plant community. These changes, along with thawing of previously frozen organic material, can alter the form and magnitude of greenhouse gas production from permafrost ecosystems. We synthesized existing methane (CH4) and carbon dioxide (CO2) production measurements from anaerobic incubations of boreal and tundra soils from the geographic permafrost region to evaluate large-scale controls of anaerobic CO2 and CH4 production and compare the relative importance of landscape-level factors (e.g., vegetation type and landscape position), soil properties (e.g., pH, depth, and soil type), and soil environmental conditions (e.g., temperature and relative water table position). We found fivefold higher maximum CH4 production per gram soil carbon from organic soils than mineral soils. Maximum CH4 production from soils in the active layer (ground that thaws and refreezes annually) was nearly four times that of permafrost per gram soil carbon, and CH4 production per gram soil carbon was two times greater from sites without permafrost than sites with permafrost. Maximum CH4 and median anaerobic CO2 production decreased with depth, while CO2:CH4 production increased with depth. Maximum CH4 production was highest in soils with herbaceous vegetation and soils that were either consistently or periodically inundated. This synthesis identifies the need to consider biome, landscape position, and vascular/moss vegetation types when modeling CH4 production in permafrost ecosystems and suggests the need for longer-term anaerobic incubations to fully capture CH4 dynamics. Our results demonstrate that as climate warms in arctic and boreal regions, rates of anaerobic CO2 and CH4 production will increase, not only as a result of increased temperature, but also from shifts in vegetation and increased

  2. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review (United States)

    Riitta Hyvönen; Göran I. Ågren; Sune Linder; Tryggve Persson; M. Francesca Cotrufo; Alf Ekblad; Michael Freeman; Achim Grelle; Ivan A. Janssens; Paul G. Jarvis; Seppo Kellomäki; Anders Lindroth; Denis Loustau; Tomas Lundmark; Richard J. Norby; Ram Oren; Kim Pilegaard; Michael G. Ryan; Bjarni D. Sigurdsson; Monika Strömgren; Marcel van Oijen; Göran Wallin


    Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic...

  3. Inferring CO2 Fluxes from OCO-2 for Assimilation into Land Surface Models to Calculate Net Ecosystem Exchange (United States)

    Prouty, R.; Radov, A.; Halem, M.; Nearing, G. S.


    Investigations of mid to high latitude atmospheric CO2 show a growing seasonal amplitude. Land surface models poorly predict net ecosystem exchange (NEE) and are unable to substantiate these sporadic observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. A global, seasonal investigation of CO2-flux is then necessary in order to assimilate into land surface models for improving the prediction of annual NEE. The Atmospheric Radiation Measurement program (ARM) of DOE collects CO2-flux measurements (in addition to CO2 concentration and various other meteorological quantities) at several towers located around the globe at half hour temporal frequencies. CO2-fluxes are calculated via the eddy covariance technique, which utilizes CO2-densities and wind velocities to calculate CO2-fluxes. The global coverage of CO2 concentrations as provided by the Orbiting Carbon Observatory (OCO-2) provide satellite-derived CO2 concentrations all over the globe. A framework relating the satellite-inferred CO2 concentrations collocated with the ground-based ARM as well as Ameriflux stations would enable calculations of CO2-fluxes far from the station sites around the entire globe. Regression techniques utilizing deep-learning neural networks may provide such a framework. Additionally, meteorological reanalysis allows for the replacement of the ARM multivariable meteorological variables needed to infer the CO2-fluxes. We present the results of inferring CO2-fluxes from OCO-2 CO2 concentrations for a two year period, Sept. 2014- Sept. 2016 at the ARM station located near Oklahoma City. A feed-forward neural network (FFNN) is used to infer relationships between the following data sets: F([ARM CO2-density], [ARM Meteorological Data]) = [ARM CO2-Flux] F([OCO-2 CO2-density],[ARM Meteorological Data]) = [ARM CO2-Flux] F([ARM CO2-density],[Meteorological Reanalysis]) = [ARM CO2-Flux

  4. Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush-steppe ecosystem (United States)

    Wylie, B.K.; Johnson, D.A.; Laca, Emilio; Saliendra, Nicanor Z.; Gilmanov, T.G.; Reed, B.C.; Tieszen, L.L.; Worstell, B.B.


    The net ecosystem exchange (NEE) of carbon flux can be partitioned into gross primary productivity (GPP) and respiration (R). The contribution of remote sensing and modeling holds the potential to predict these components and map them spatially and temporally. This has obvious utility to quantify carbon sink and source relationships and to identify improved land management strategies for optimizing carbon sequestration. The objective of our study was to evaluate prediction of 14-day average daytime CO2 fluxes (Fday) and nighttime CO2 fluxes (Rn) using remote sensing and other data. Fday and Rn were measured with a Bowen ratio-energy balance (BREB) technique in a sagebrush (Artemisia spp.)-steppe ecosystem in northeast Idaho, USA, during 1996-1999. Micrometeorological variables aggregated across 14-day periods and time-integrated Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (iNDVI) were determined during four growing seasons (1996-1999) and used to predict Fday and Rn. We found that iNDVI was a strong predictor of Fday (R2 = 0.79, n = 66, P improved predictions of Fday (R2= 0.82, n = 66, P management strategies, carbon certification, and validation and calibration of carbon flux models. ?? 2003 Elsevier Science Inc. All rights reserved.

  5. Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush–steppe ecosystem (United States)

    Wylie, Bruce K.; Johnson, Douglas A.; Laca, Emilio; Saliendra, Nicanor Z.; Gilmanov, Tagir G.; Reed, Bradley C.; Tieszen, Larry L.; Worstell, Bruce B.


    The net ecosystem exchange (NEE) of carbon flux can be partitioned into gross primary productivity (GPP) and respiration (R). The contribution of remote sensing and modeling holds the potential to predict these components and map them spatially and temporally. This has obvious utility to quantify carbon sink and source relationships and to identify improved land management strategies for optimizing carbon sequestration. The objective of our study was to evaluate prediction of 14-day average daytime CO2 fluxes (Fday) and nighttime CO2 fluxes (Rn) using remote sensing and other data. Fday and Rnwere measured with a Bowen ratio–energy balance (BREB) technique in a sagebrush (Artemisia spp.)–steppe ecosystem in northeast Idaho, USA, during 1996–1999. Micrometeorological variables aggregated across 14-day periods and time-integrated Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (iNDVI) were determined during four growing seasons (1996–1999) and used to predict Fday and Rn. We found that iNDVI was a strong predictor of Fday(R2=0.79, n=66, Pimproved predictions of Fday (R2=0.82, n=66, Pmanagement strategies, carbon certification, and validation and calibration of carbon flux models.

  6. Syngas Production from CO2 Reforming and CO2-steam Reforming of Methane over Ni/Ce-SBA-15 Catalyst (United States)

    Tan, J. S.; Danh, H. T.; Singh, S.; Truong, Q. D.; Setiabudi, H. D.; Vo, D.-V. N.


    This study compares the catalytic performance of mesoporous 10 Ni/Ce-SBA-15 catalyst for CO2 reforming and CO2-steam reforming of methane reactions in syngas production. The catalytic performance of 10 Ni/Ce-SBA-15 catalyst for CO2 reforming and CO2-steam reforming of methane was evaluated in a temperature-controlled tubular fixed-bed reactor at stoichiometric feed composition, 1023 K and atmospheric pressure for 12 h on-stream with gas hourly space velocity (GHSV) of 36 L gcat -1 h-1. The 10 Ni/Ce-SBA-15 catalyst possessed a high specific BET surface area and average pore volume of 595.04 m2 g-1. The XRD measurement revealed the presence of NiO phase with crystallite dimension of about 13.60 nm whilst H2-TPR result indicates that NiO phase was completely reduced to metallic Ni0 phase at temperature beyond 800 K and the reduction temperature relied on different degrees of metal-support interaction associated with the location and size of NiO particles. The catalytic reactivity was significantly enhanced with increasing H2O/CO2 feed ratio. Interestingly, the H2/CO ratio for CO2-steam reforming of methane varied between 1 and 3 indicated the occurrence of parallel reactions, i.e., CH4 steam reforming giving a H2/CO of 3 whilst reverse water-gas shift (RWGS) reaction consuming H2 to produce CO gaseous product.

  7. Engineering cyanobacteria for direct biofuel production from CO2

    NARCIS (Netherlands)

    Savakis, P.; Hellingwerf, K.J.


    For a sustainable future of our society it is essential to close the global carbon cycle. Oxidised forms of carbon, in particular CO2, can be used to synthesise energy-rich organic molecules. Engineered cyanobacteria have attracted attention as catalysts for the direct conversion of CO2 into reduced

  8. Changes in Soil Organic Matter Abundance, Molecular Composition, and Diversity in an Arid Ecosystem in Response to Long-term Elevated CO2 Manipulation. (United States)

    Hess, N. J.; Tfaily, M.; Evans, R. D.; Koyama, A.


    Little is known about how soils in arid ecosystems will respond to rising atmospheric CO2 concentration yet arid and semi-arid ecosystems cover more than 40% of Earth's land surface. Previous work in the Mojave Desert (Evans et al., 2014 Nature Climate Change) reported higher soil organic carbon (SOC) and total nitrogen (N) concentrations following 10 years exposure to elevated atmospheric CO2 at the Nevada Desert Free-Air-Carbon dioxide-Enrichment (FACE) Facility (NDFF). In this study, we investigated potential mechanisms that resulted in increased SOC and total N accumulation and stabilization using high resolution mass spectrometry at the NDFF site. Samples were collected from soil profiles to 1 m in depth with a 0.2 m a increment under the dominant evergreen shrub Larrea tridentata. The differences in the molecular composition and diversity of soil organic matter (SOM) were more evident in surface soils and declined with depth, and were consistent with higher SOC and total N concentrations under elevated than ambient CO2. Our molecular analysis also suggested increased root exudation and/or microbial necromass from stabilization of labile C and N contributed to SOM and N stocks. Increased microbial activity and metabolism under elevated CO2 compared to ambient plots suggested that elevated CO2 altered microbial carbon (C) use patterns, reflecting changes in the quality and quantity of SOC inputs. We found that plant-derived compounds were primary substrates for microbial activity under elevated CO2 and microbial products were the main constituents of stabilized SOM. Our results suggest that arid ecosystems are a potential large C sink under elevated CO2, give the extensive coverage of the land surface, and that labile compounds are transformed to stable SOM via microbial processes. Arid systems are limited by water, and thus may have a different C storage potential under changing climates than other ecosystems that are limited by nitrogen or phosphorus.

  9. Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India. (United States)

    Ahirwal, Jitendra; Maiti, Subodh Kumar; Singh, Ashok Kumar


    Open strip mining of coal results in loss of natural carbon (C) sink and increased emission of CO 2 into the atmosphere. A field study was carried out at five revegetated coal mine lands (7, 8, 9, 10 and 11years) to assess the impact of the reclamation on soil properties, accretion of soil organic C (SOC) and nitrogen (N) stock, changes in ecosystem C pool and soil CO 2 flux. We estimated the presence of C in the tree biomass, soils, litter and microbial biomass to determine the total C sequestration potential of the post mining reclaimed land. To determine the C sequestration of the reclaimed ecosystem, soil CO 2 flux was measured along with the CO 2 sequestration. Reclaimed mine soil (RMS) fertility increased along the age of reclamation and decreases with the soil depths that may be attributed to the change in mine soils characteristics and plant growth. After 7 to 11years of reclamation, SOC and N stocks increased two times. SOC sequestration (1.71MgCha -1 year -1 ) and total ecosystem C pool (3.72MgCha -1 year -1 ) increased with the age of reclamation (CO 2 equivalent: 13.63MgCO 2 ha -1 year -1 ). After 11years of reclamation, soil CO 2 flux (2.36±0.95μmolm -2 s -1 ) was found four times higher than the natural forest soils (Shorea robusta Gaertn. F). The study shows that reclaimed mine land can act as a source/sink of CO 2 in the terrestrial ecosystem and plays an important role to offset increased emission of CO 2 in the atmosphere. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Element Pool Changes within a Scrub-Oak Ecosystem after 11 Years of Exposure to Elevated CO2 (United States)

    Duval, Benjamin D.; Dijkstra, Paul; Drake, Bert G.; Johnson, Dale W.; Ketterer, Michael E.; Megonigal, J. Patrick; Hungate, Bruce A.


    The effects of elevated CO2 on ecosystem element stocks are equivocal, in part because cumulative effects of CO2 on element pools are difficult to detect. We conducted a complete above and belowground inventory of non-nitrogen macro- and micronutrient stocks in a subtropical woodland exposed to twice-ambient CO2 concentrations for 11 years. We analyzed a suite of nutrient elements and metals important for nutrient cycling in soils to a depth of ∼2 m, in leaves and stems of the dominant oaks, in fine and coarse roots, and in litter. In conjunction with large biomass stimulation, elevated CO2 increased oak stem stocks of Na, Mg, P, K, V, Zn and Mo, and the aboveground pool of K and S. Elevated CO2 increased root pools of most elements, except Zn. CO2-stimulation of plant Ca was larger than the decline in the extractable Ca pool in soils, whereas for other elements, increased plant uptake matched the decline in the extractable pool in soil. We conclude that elevated CO2 caused a net transfer of a subset of nutrients from soil to plants, suggesting that ecosystems with a positive plant growth response under high CO2 will likely cause mobilization of elements from soil pools to plant biomass. PMID:23717607

  11. Effects of increasing UV-B radiation and atmospheric CO2 on photosynthesis and growth: implications for terrestrial ecosystems

    International Nuclear Information System (INIS)

    Sullivan, J.H.


    Increases in UV-B radiation reaching the earth as a result of stratospheric ozone depletion will most likely accompany increases in atmospheric CO 2 concentrations. Many studies have examined the effects of each factor independently, but few have evaluated the combined effects of both UV-B radiation and elevated CO 2 . In general the results of such studies have shown independent effects on growth or seed yield. Although interspecific variation is large, high levels of UV-B radiation tends to reduce plant growth in sensitive species, while CO 2 enrichment tends to promote growth in most C 3 species. However, most previous studies have not looked at temporal effects or at the relationship between photosynthetic acclimation to CO 2 and possible photosynthetic limitations imposed by UV-B radiation. Elevated CO 2 may provide some protection against UV-B for some species. In contrast, UV-B radiation may limit the ability to exploit elevated CO 2 in other species. Interactions between the effects of CO 2 enrichment and UV-B radiation exposure have also been shown for biomass allocation. Effects on both biomass allocation and photosynthetic acclimation may be important to ecosystem structure in terms of seedling establishment, competition and reproductive output. Few studies have evaluated ecosystem processes such as decomposition or nutrient cycling. Interactive effects may be subtle and species specific but should not be ignored in the assessment of the potential impacts of increases in CO 2 and UV-B radiation on plants. (author)

  12. Potential for CO2 sequestration and enhanced coalbed methane production in the Netherlands

    NARCIS (Netherlands)

    Hamelinck, C.N.; Schreurs, H.; Faaij, A.P.C.; Ruijg, G.J.; Jansen, Daan; Pagnier, H.; Bergen, F. van; Wolf, K.-H.; Barzandji, O.; Bruining, H.


    This study investigated the technical and economic feasibility of using CO2 for the enhanced production of coal bed methane (ECBM) in the Netherlands. This concept could lead to both CO2 storage by adsorbing CO2 in deep coal layers that are not suitable for mining, as well as production of methane.

  13. Responses of soil CO2 fluxes to short-term experimental warming in alpine steppe ecosystem, Northern Tibet. (United States)

    Lu, Xuyang; Fan, Jihui; Yan, Yan; Wang, Xiaodan


    Soil carbon dioxide (CO2) emission is one of the largest fluxes in the global carbon cycle. Therefore small changes in the size of this flux can have a large effect on atmospheric CO2 concentrations and potentially constitute a powerful positive feedback to the climate system. Soil CO2 fluxes in the alpine steppe ecosystem of Northern Tibet and their responses to short-term experimental warming were investigated during the growing season in 2011. The results showed that the total soil CO2 emission fluxes during the entire growing season were 55.82 and 104.31 g C m(-2) for the control and warming plots, respectively. Thus, the soil CO2 emission fluxes increased 86.86% with the air temperature increasing 3.74°C. Moreover, the temperature sensitivity coefficient (Q 10) of the control and warming plots were 2.10 and 1.41, respectively. The soil temperature and soil moisture could partially explain the temporal variations of soil CO2 fluxes. The relationship between the temporal variation of soil CO2 fluxes and the soil temperature can be described by exponential equation. These results suggest that warming significantly promoted soil CO2 emission in the alpine steppe ecosystem of Northern Tibet and indicate that this alpine ecosystem is very vulnerable to climate change. In addition, soil temperature and soil moisture are the key factors that controls soil organic matter decomposition and soil CO2 emission, but temperature sensitivity significantly decreases due to the rise in temperature.

  14. Development of sustainable CO2 conversion processes for the methanol production

    DEFF Research Database (Denmark)

    Roh, Kosan; Nguyen, Tuan B.H.; Suriyapraphadilok, Uthaiporn


    reforming process has to be integrated with the existing conventional methanol plant to obtain a reduced CO2 emission as well as lowered production costs. On the other hand, the CO2 hydrogenation based methanol plant could achieve a reduction of net CO2 emission at a reasonable production cost only......Utilization of CO2 feedstock through CO2 conversion for producing valuable chemicals as an alternative to sequestration of the captured CO2 is attracting increasing attention in recent studies. Indeed, the methanol production process via thermochemical CO2 conversion reactions is considered a prime...... candidate for commercialization. The aim of this study is to examine two different options for a sustainable methanol plant employing the combined reforming and CO2 hydrogenation reactions, respectively. In addition, process improvement strategies for the implementation of the developed processes are also...

  15. A comprehensive data acquisition and management system for an ecosystem-scale peatland warming and elevated CO2 experiment (United States)

    Krassovski, M. B.; Riggs, J. S.; Hook, L. A.; Nettles, W. R.; Hanson, P. J.; Boden, T. A.


    Ecosystem-scale manipulation experiments represent large science investments that require well-designed data acquisition and management systems to provide reliable, accurate information to project participants and third party users. The SPRUCE project (Spruce and Peatland Responses Under Climatic and Environmental Change, is such an experiment funded by the Department of Energy's (DOE), Office of Science, Terrestrial Ecosystem Science (TES) Program. The SPRUCE experimental mission is to assess ecosystem-level biological responses of vulnerable, high carbon terrestrial ecosystems to a range of climate warming manipulations and an elevated CO2 atmosphere. SPRUCE provides a platform for testing mechanisms controlling the vulnerability of organisms, biogeochemical processes, and ecosystems to climatic change (e.g., thresholds for organism decline or mortality, limitations to regeneration, biogeochemical limitations to productivity, and the cycling and release of CO2 and CH4 to the atmosphere). The SPRUCE experiment will generate a wide range of continuous and discrete measurements. To successfully manage SPRUCE data collection, achieve SPRUCE science objectives, and support broader climate change research, the research staff has designed a flexible data system using proven network technologies and software components. The primary SPRUCE data system components are the following: 1. data acquisition and control system - set of hardware and software to retrieve biological and engineering data from sensors, collect sensor status information, and distribute feedback to control components; 2. data collection system - set of hardware and software to deliver data to a central depository for storage and further processing; 3. data management plan - set of plans, policies, and practices to control consistency, protect data integrity, and deliver data. This publication presents our approach to meeting the challenges of designing and constructing an

  16. Effects of winter temperature and summer drought on net ecosystem exchange of CO2 in a temperate peatland (United States)

    Helfter, Carole; Campbell, Claire; Dinsmore, Kerry; Drewer, Julia; Coyle, Mhairi; Anderson, Margaret; Skiba, Ute; Nemitz, Eiko; Billett, Michael; Sutton, Mark


    Northern peatlands are one of the most important global sinks of atmospheric carbon dioxide (CO2); their ability to sequester C is a natural feedback mechanism controlled by climatic variables such as precipitation, temperature, length of growing season and period of snow cover. In the UK it has been predicted that peatlands could become a net source of carbon in response to climate change with climate models predicting a rise in global temperature of ca. 3oC between 1961-1990 and 2100. Land-atmosphere exchange of CO2in peatlands exhibits marked seasonal and inter-annual variations, which have significant short- and long-term effects on carbon sink strength. Net ecosystem exchange (NEE) of CO2 has been measured continuously by eddy-covariance (EC) at Auchencorth Moss (55° 47'32 N, 3° 14'35 W, 267 m a.s.l.), a temperate peatland in central Scotland, since 2002. Auchencorth Moss is a low-lying, ombrotrophic peatland situated ca. 20 km south-west of Edinburgh. Peat depth ranges from 5 m and the site has a mean annual precipitation of 1155 mm. The vegetation present within the flux measurement footprint comprises mixed grass species, heather and substantial areas of moss species (Sphagnum spp. and Polytrichum spp.). The EC system consists of a LiCOR 7000 closed-path infrared gas analyser for the simultaneous measurement of CO2 and water vapour and of a Gill Windmaster Pro ultrasonic anemometer. Over the 10 year period, the site was a consistent yet variable sink of CO2 ranging from -34.1 to -135.9 g CO2-C m-2 yr-1 (mean of -69.1 ± 33.6 g CO2-C m-2 yr-1). Inter-annual variability in NEE was positively correlated to the length of the growing seasons and mean winter air temperature explained 93% of the variability in summertime sink strength, indicating a phenological memory-effect. Plant development and productivity were stunted by colder winters causing a net reduction in the annual carbon sink strength of this peatland where autotrophic processes are thought to be

  17. Production of solar fuels by CO2 plasmolysis

    Directory of Open Access Journals (Sweden)

    Goede Adelbert P.H.


    Full Text Available A storage scheme for Renewable Energy (RE based on the plasmolysis of CO2into CO and O2 has been experimentally investigated, demonstrating high energy efficiency (>50% combined with high energy density, rapid start-stop and no use of scarce materials. The key parameter controlling energy efficiency has been identified as the reduced electric field. Basic plasma parameters including density and temperature are derived from a simple particle and energy balance model, allowing parameter specification of an upscale 100 kW reactor. With RE powered plasmolysis as the critical element, a CO2 neutral energy system becomes feasible when complemented by effective capture of CO2 at the input and separation of CO from the output gas stream followed by downstream chemical processing into hydrocarbon fuels.

  18. Inversely estimating the vertical profile of the soil CO2 production rate in a deciduous broadleaf forest using a particle filtering method. (United States)

    Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki


    Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the "actual" values by decreasing the variance of the posterior distribution of the values.

  19. Comparative methane estimation from cattle based on total CO2 production using different techniques

    Directory of Open Access Journals (Sweden)

    Md N. Haque


    Full Text Available The objective of this study was to compare the precision of CH4 estimates using calculated CO2 (HP by the CO2 method (CO2T and measured CO2 in the respiration chamber (CO2R. The CO2R and CO2T study was conducted as a 3 × 3 Latin square design where 3 Dexter heifers were allocated to metabolic cages for 3 periods. Each period consisted of 2 weeks of adaptation followed by 1 week of measurement with the CO2R and CO2T. The average body weight of the heifer was 226 ± 11 kg (means ± SD. They were fed a total mixed ration, twice daily, with 1 of 3 supplements: wheat (W, molasses (M, or molasses mixed with sodium bicarbonate (Mbic. The dry mater intake (DMI; kg/day was significantly greater (P < 0.001 in the metabolic cage compared with that in the respiration chamber. The daily CH4 (L/day emission was strongly correlated (r = 0.78 between CO2T and CO2R. The daily CH4 (L/kg DMI emission by the CO2T was in the same magnitude as by the CO2R. The measured CO2 (L/day production in the respiration chamber was not different (P = 0.39 from the calculated CO2 production using the CO2T. This result concludes a reasonable accuracy and precision of CH4 estimation by the CO2T compared with the CO2R.

  20. Increase of atmospheric CO2 promotes phytoplankton productivity

    NARCIS (Netherlands)

    Schippers, P.; Lürling, M.F.L.L.W.; Scheffer, M.


    It is usually thought that unlike terrestrial plants, phytoplankton will not show a significant response to an increase of atmospheric CO2. Here we suggest that this view may be biased by a neglect of the effects of carbon (C) assimilation on the pH and the dissociation of the C species. We show

  1. Meteorological and small scale internal ecosystem variability characterize the uncertainty of ecosystem level responses to elevated CO2. Insights from the Duke Forest FACE experiment (United States)

    Paschalis, A.; Katul, G. G.; Fatichi, S.; Palmroth, S.; Way, D.


    One of the open questions in climate change research is the pathway by which elevated atmospheric CO2 concentration impacts the biogeochemical and hydrological cycles at the ecosystem scale. This impact leads to significant changes in long-term carbon stocks and the potential of ecosystems to sequester CO2, partially mitigating anthropogenic emissions. While the significance of elevated atmospheric CO2 concentration on instantaneous leaf-level processes such as photosynthesis and transpiration is rarely disputed, its integrated effect at the ecosystem level and at long-time scales remains a subject of debate. This debate has taken on some urgency as illustrated by differences arising between ecosystem modelling studies, and data-model comparisons using Free Air CO2 Enrichment (FACE) sites around the world. Inherent leaf-to-leaf variability in gas exchange rates can generate such inconsistencies. This inherent variability arises from the combined effect of meteorological "temporal" variability and the "spatial" variability of the biochemical parameters regulating vegetation carbon uptake. This combined variability leads to a non-straightforward scaling of ecosystem fluxes from the leaf to ecosystems. To illustrate this scaling behaviour, we used 10 years of leaf gas exchange measurements collected at the Duke Forest FACE experiment. The internal variability of the ecosystem parameters are first quantified and then combined with three different leaf-scale stomatal conductance models and an ecosystem model. The main results are: (a) Variability of the leaf level fluxes is dependent on both the meteorological drivers and differences in leaf age, position within the canopy, nitrogen and CO2 fertilization, which can be accommodated in model parameters; (b) Meteorological variability plays the dominant role at short temporal scales while parameter variability is significant at longer temporal scales. (c) Leaf level results do not necessarily translate to similar ecosystem

  2. Whole-body CO2 production as an index of the metabolic response to sepsis (United States)

    Whole-body carbon dioxide (CO2) production (RaCO2) is an index of substrate oxidation and energy expenditure; therefore, it may provide information about the metabolic response to sepsis. Using stable isotope techniques, we determined RaCO2 and its relationship to protein and glucose metabolism in m...

  3. Characterization of a microalgal mutant for CO_2 biofixation and biofuel production

    International Nuclear Information System (INIS)

    Qi, Feng; Pei, Haiyan; Hu, Wenrong; Mu, Ruimin; Zhang, Shuo


    Highlights: • Combination of the isolation using 96-well microplates and traditional UV mutagenesis for screening HCT mutant. • Microalgal mutant Chlorella vulgaris SDEC-3M was screened out by modified UV mutagenesis. • SDEC-3M showed high CO_2 tolerance, high CO_2 requiring and relevant genetic stability. • LCE and carbohydrate content of SDEC-3M were significantly elevated. • SDEC-3M offers a strong candidature as CO_2 biofixation and biofuel production. - Abstract: In the present work, a Chlorella vulgaris mutant, named as SDEC-3M, was screened out through the combination of the isolation using 96-well microplates and traditional UV mutagenesis. Compared with its parent (wild type), the growth of SDEC-3M preferred higher CO_2 (15% v/v) environment to ambient air (0.038% CO_2 (v/v)), indicating that the mutant qualified with good tolerance and growth potential under high level CO_2 (high CO_2 tolerance) but was defective in directly utilizing the low level CO_2 (high CO_2 requiring). The genetic stability under ambient air and high level CO_2 was confirmed by a continuous cultivation for five generations. Higher light conversion efficiency (14.52%) and richer total carbohydrate content (42.48%) demonstrated that both solar energy and CO_2 were more effectively productively fixed into carbohydrates for bioethanol production than the parent strain. The mutant would benefit CO_2 biofixation from industrial exhaust gas to mitigate of global warming and promote biofuel production to relieve energy shortage.

  4. Bacterial Community Profiling of H2/CO2 or Formate-Utilizing Acetogens Enriched from Diverse Ecosystems (United States)

    Han, R.; Zhang, L.; Fu, B.; Liu, H.


    Synthetic gases are usually generated from either cellulosic agricultural waste combustion or industrial release and could be subsequently transformed into acetate, ethanol, and/or butyrate by homoacetogenic bacteria, which commonly possess reductive acetyl-CoA synthesis pathway. Homoacetogen-based syngas fermentation technology provides an alternative solution to link greenhouse gas emission control and cellulosic solid waste treatment with biofuels production. The objective of our current project is to hunt for homoacetogens with capabilities of highly efficiently converting syngases to chemical solvents. In this study, we evaluated homoacetogens population dynamics during enrichments and pinpointed dominant homoacetogens representing diverse ecosystems enriched by different substrates. We enriched homoacetogens from four different samples including waste activate sludge, freshwater sediment, anaerobic methanogenic sludge, and cow manure using H2/CO2 (4:1) or formate as substrate for homoacetogen enrichment. Along with the formyltetrahydrofolate synthetase (FTHFS) gene (fhs gene)-specific real time qPCR assay and Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis, 16S rRNA based 454 high-throughput pyrosequencing was applied to reveal the population dynamic and community structure during enrichment from different origins. Enrichment of homoacetogenic populations coincided with accumulations of short chain fatty acids such as acetate and butyrate. 454 high-throughput pyrosequencing revealed Firmicutes and Spirochaetes populations became dominant while the overall microbial diversity decreased after enrichment. The most abundant sequences among the four origins belonged to the following phyla: Firmicutes, Spirochaetes, Proteobacteria, and Bacteroidetes, accounting for 62.1%-99.1% of the total reads. The major putative homoacetogenic species enriched on H2/CO2 or formate belonged to Clostridium spp., Acetobacterium spp., Acetoanaerobium spp

  5. Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem. (United States)

    He, Zhili; Xiong, Jinbo; Kent, Angela D; Deng, Ye; Xue, Kai; Wang, Gejiao; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong


    The concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have been rising due to human activities. However, little is known about how such increases influence soil microbial communities. We hypothesized that elevated CO2 (eCO2) and elevated O3 (eO3) would significantly affect the functional composition, structure and metabolic potential of soil microbial communities, and that various functional groups would respond to such atmospheric changes differentially. To test these hypotheses, we analyzed 96 soil samples from a soybean free-air CO2 enrichment (SoyFACE) experimental site using a comprehensive functional gene microarray (GeoChip 3.0). The results showed the overall functional composition and structure of soil microbial communities shifted under eCO2, eO3 or eCO2+eO3. Key functional genes involved in carbon fixation and degradation, nitrogen fixation, denitrification and methane metabolism were stimulated under eCO2, whereas those involved in N fixation, denitrification and N mineralization were suppressed under eO3, resulting in the fact that the abundance of some eO3-supressed genes was promoted to ambient, or eCO2-induced levels by the interaction of eCO2+eO3. Such effects appeared distinct for each treatment and significantly correlated with soil properties and soybean yield. Overall, our analysis suggests possible mechanisms of microbial responses to global atmospheric change factors through the stimulation of C and N cycling by eCO2, the inhibition of N functional processes by eO3 and the interaction by eCO2 and eO3. This study provides new insights into our understanding of microbial functional processes in response to global atmospheric change in soybean agro-ecosystems.

  6. High-frequency productivity estimates for a lake from free-water CO2 concentration measurements (United States)

    Provenzale, Maria; Ojala, Anne; Heiskanen, Jouni; Erkkilä, Kukka-Maaria; Mammarella, Ivan; Hari, Pertti; Vesala, Timo


    Lakes are important actors in biogeochemical cycles and a powerful natural source of CO2. However, they are not yet fully integrated in carbon global budgets, and the carbon cycle in the water is still poorly understood. In freshwater ecosystems, productivity studies have usually been carried out with traditional methods (bottle incubations, 14C technique), which are imprecise and have a poor temporal resolution. Consequently, our ability to quantify and predict the net ecosystem productivity (NEP) is limited: the estimates are prone to errors and the NEP cannot be parameterised from environmental variables. Here we expand the testing of a free-water method based on the direct measurement of the CO2 concentration in the water. The approach was first proposed in 2008, but was tested on a very short data set (3 days) under specific conditions (autumn turnover); despite showing promising results, this method has been neglected by the scientific community. We tested the method under different conditions (summer stratification, typical summer conditions for boreal dark-water lakes) and on a much longer data set (40 days), and quantitatively validated it comparing our data and productivity models. We were able to evaluate the NEP with a high temporal resolution (minutes) and found a very good agreement (R2 ≥ 0.71) with the models. We also estimated the parameters of the productivity-irradiance (PI) curves that allow the calculation of the NEP from irradiance and water temperature. Overall, our work shows that the approach is suitable for productivity studies under a wider range of conditions, and is an important step towards developing this method so that it becomes more widely used.

  7. Response of net ecosystem CO2 exchange and evapotranspiration of boreal forest ecosystems to projected future climate changes: results of a modeling study (United States)

    Olchev, Alexander; Kurbatova, Julia


    It is presented the modeling results describing the possible response of net ecosystem exchange of CO2 (NEE), gross (GPP) and net (NPP) primary production, as well as evapotranspiration (ET) of spruce forest ecosystems situated at central part of European part of Russia at the southern boundary of boreal forest community to projected future changes of climatic conditions and forest species composition. A process-based MixFor-SVAT model (Olchev et al 2002, 2008, 2009) has been used to describe the CO2 and H2O fluxes under present and projected future climate conditions. The main advantage of MixFor-SVAT is its ability not only to describe seasonal and daily dynamics of total CO2 and H2O fluxes at an ecosystem level, but also to adequately estimate the contributions of soil, forest understorey, and various tree species in overstorey into total ecosystem fluxes taking into account their individual responses to changes in environmental conditions as well as the differences in structure and biophysical properties. Results of modeling experiments showed that projected changes of climate conditions (moderate scenario A1B IPCC) and forest species composition at the end of 21 century can lead to small increase of annual evapotranspiration as well as to growth of NEE, GPP and NPP of the forests in case if the projected increase in temperature and elevated CO2 in the atmosphere in future will be strictly balanced with growth of available nutrients and water in plant and soil. It is obvious that any deficit of e.g. nitrogen in leaves (due to reduced transpiration, nitrogen availability in soil, etc.) may lead to decreases in the photosynthesis and respiration rates of trees and, as a consequence, to decreases in the GPP and NEE of entire forest ecosystem. Conducted modeling experiments have demonstrated that a 20% reduction of available nitrogen in tree leaves in a monospesific spruce forest stand may result in a 14% decrease in NEE, a 8% decrease in NPP, and a 4% decrease in

  8. Potential for CO2 sequestration and enhanced coalbed methane production in the Netherlands


    Hamelinck, C.N.; Schreurs, H.; Faaij, A.P.C.; Ruijg, G.J.; Jansen, Daan; Pagnier, H.; Bergen, F. van; Wolf, K.-H.; Barzandji, O.; Bruining, H.


    This study investigated the technical and economic feasibility of using CO2 for the enhanced production of coal bed methane (ECBM) in the Netherlands. This concept could lead to both CO2 storage by adsorbing CO2 in deep coal layers that are not suitable for mining, as well as production of methane. For every two molecules of CO2 injected, roughly one molecule of methane is produced. The work included an investigation of the potential CBM reserves in the Dutch underground and the related CO2 s...

  9. High-frequency productivity estimates for a lake from free-water CO2 concentration measurements

    Directory of Open Access Journals (Sweden)

    M. Provenzale


    Full Text Available Lakes are important actors in biogeochemical cycles and a powerful natural source of CO2. However, they are not yet fully integrated in carbon global budgets, and the carbon cycle in the water is still poorly understood. In freshwater ecosystems, productivity studies have usually been carried out with traditional methods (bottle incubations, 14C technique, which are imprecise and have a poor temporal resolution. Consequently, our ability to quantify and predict the net ecosystem productivity (NEP is limited: the estimates are prone to errors and the NEP cannot be parameterised from environmental variables. Here we expand the testing of a free-water method based on the direct measurement of the CO2 concentration in the water. The approach was first proposed in 2008, but was tested on a very short data set (3 days under specific conditions (autumn turnover; despite showing promising results, this method has been neglected by the scientific community. We tested the method under different conditions (summer stratification, typical summer conditions for boreal dark-water lakes and on a much longer data set (40 days, and quantitatively validated it comparing our data and productivity models. We were able to evaluate the NEP with a high temporal resolution (minutes and found a very good agreement (R2 ≥ 0.71 with the models. We also estimated the parameters of the productivity–irradiance (PI curves that allow the calculation of the NEP from irradiance and water temperature. Overall, our work shows that the approach is suitable for productivity studies under a wider range of conditions, and is an important step towards developing this method so that it becomes more widely used.

  10. Optimal scheduling for enhanced coal bed methane production through CO2 injection

    International Nuclear Information System (INIS)

    Huang, Yuping; Zheng, Qipeng P.; Fan, Neng; Aminian, Kashy


    Highlights: • A novel deterministic optimization model for CO 2 -ECBM production scheduling. • Maximize the total profit from both sales of natural gas and CO 2 credits trading in the carbon market. • A stochastic model incorporating uncertainties and dynamics of NG price and CO 2 credit. - Abstract: Enhanced coal bed methane production with CO 2 injection (CO 2 -ECBM) is an effective technology for accessing the natural gas embedded in the traditionally unmineable coal seams. The revenue via this production process is generated not only by the sales of coal bed methane, but also by trading CO 2 credits in the carbon market. As the technology of CO 2 -ECBM becomes mature, its commercialization opportunities are also springing up. This paper proposes applicable mathematical models for CO 2 -ECBM production and compares the impacts of their production schedules on the total profit. A novel basic deterministic model for CO 2 -ECBM production including the technical and chemical details is proposed and then a multistage stochastic programming model is formulated in order to address uncertainties of natural gas price and CO 2 credit. Both models are nonlinear programming problems, which are solved by commercial nonlinear programming software BARON via GAMS. Numerical experiments show the benefits (e.g., expected profit gain) of using stochastic models versus deterministic models


    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Robert S.


    Increases in atmospheric CO{sub 2} concentration during the last 250 years are unequivocal, and CO{sub 2} will continue to increase at least for the next several decades (Houghton et al. 2001, Keeling & Whorf 2002). Arid ecosystems are some of the most important biomes globally on a land surface area basis, are increasing in area at an alarming pace (Dregne 1991), and have a strong coupling with regional climate (Asner & Heidebrecht 2005). These water-limited ecosystems also are predicted to be the most sensitive to elevated CO{sub 2}, in part because they are stressful environments where plant responses to elevated CO{sub 2} may be amplified (Strain & Bazzaz 1983). Indeed, all C{sub 3} species examined at the Nevada Desert FACE Facility (NDFF) have shown increased A{sub net} under elevated CO{sub 2} (Ellsworth et al. 2004, Naumburg et al. 2003, Nowak et al. 2004). Furthermore, increased shoot growth for individual species under elevated CO{sub 2} was spectacular in a very wet year (Smith et al. 2000), although the response in low to average precipitation years has been smaller (Housman et al. 2006). Increases in perennial cover and biomass at the NDFF are consistent with long term trends in the Mojave Desert and elsewhere in the Southwest, indicating C sequestration in woody biomass (Potter et al. 2006). Elevated CO{sub 2} also increases belowground net primary production (BNPP), with average increases of 70%, 21%, and 11% for forests, bogs, and grasslands, respectively (Nowak et al. 2004). Although detailed studies of elevated CO{sub 2} responses for desert root systems were virtually non-existent prior to our research, we anticipated that C sequestration may occur by desert root systems for several reasons. First, desert ecosystems exhibit increases in net photosynthesis and primary production at elevated CO{sub 2}. If large quantities of root litter enter the ecosystem at a time when most decomposers are inactive, significant quantities of carbon may be stored

  12. Evaluation of hydrogen production from CO2 corrosion of steel drums in SFR, Part 2

    International Nuclear Information System (INIS)

    Dugstad, A.; Videm, K.


    An experimental program has been carried out for the investigation of the hydrogen formation due to corrosion of steel by water containing CO 2 produced by microbiologic decomposition of paper in waste drums. The hydrogen production will be limited by a limited rate of CO 2 production, as CO 2 is consumed by corrosive reactions producing carbonate containing corrosion products. Experiments indicated that also iron oxide and hydroxides were formed together with FeCO 3 at low CO 2 partial pressures but at a rate which leads to a rather slow increase in hydrogen production. Hydrogen evaluation has been overestimated in previous reports on this subject. (authors)

  13. Productivity and CO2 exchange of Great Plains ecoregions. I. Shortgrass steppe: Flux tower estimates (United States)

    Gilmanov, Tagir G.; Morgan, Jack A.; Hanan, Niall P.; Wylie, Bruce K.; Rajan, Nithya; Smith, David P.; Howard, Daniel M.


    The shortgrass steppe (SGS) occupies the southwestern part of the Great Plains. Half of the land is cultivated, but significant areas remain under natural vegetation. Despite previous studies of the SGS carbon cycle, not all aspects have been completely addressed, including gross productivity, ecosystem respiration, and ecophysiological parameters. Our analysis of 1998 − 2007 flux tower measurements at five Bowen ratio–energy balance (BREB) and three eddy covariance (EC) sites characterized seasonal and interannual variability of gross photosynthesis and ecosystem respiration. Identification of the nonrectangular hyperbolic equation for the diurnal CO2 exchange, with vapor pressure deficit (VPD) limitation and exponential temperature response, quantified quantum yield α, photosynthetic capacity Amax, and respiration rate rd with variation ranges (19 \\production from − 900 to + 700 g CO2 m− 2 yr− 1, indicating that SGS may switch from a sink to a source depending on weather. Comparison of the 2004 − 2006 measurements at two BREB and two parallel EC flux towers located at comparable SGS sites showed moderately higher photosynthesis, lower respiration, and higher net production at the BREB than EC sites. However, the difference was not related only to methodologies, as the normalized difference vegetation index at the BREB sites was higher than at the EC sites. Overall magnitudes and seasonal patterns at the BREB and the EC sites during the 3-yr period were similar, with trajectories within the ± 1.5 standard deviation around the mean of the four sites and mostly reflecting the effects of meteorology.

  14. CO2 dynamics on three habitats of mangrove ecosystem in Bintan Island, Indonesia (United States)

    Dharmawan, I. W. E.


    Atmospheric carbon dioxide (CO2) has increased over time, implied on global warming and climate change. Blue carbon is one of interesting options to reduce CO2 concentration in the atmosphere. Indonesia has the largest mangrove area in the world which would be potential to mitigate elevated CO2 concentrations. A quantitative study on CO2 dynamic was conducted in the habitat-variable and pristine mangrove of Bintan island. The study was aimed to estimate CO2 flux on three different mangrove habitats, i.e., lagoon, oceanic and riverine. Even though all habitats were dominated by Rhizophora sp, they were significantly differed one another by species composition, density, and soil characteristics. Averagely, CO2 dynamics had the positive budget by ∼0.668 Mmol/ha (82.47%) which consisted of sequestration, decomposition, and soil efflux at 0.810 Mmol/ha/y, -0.125 Mmol/ha/y and -0.017 Mmol/ha/y, respectively. The study found that the fringing habitat had the highest CO2 capturing rate and the lowest rate of litter decomposition which was contrast to the riverine site. Therefore, oceanic mangrove was more efficient in controlling CO2 dynamics due to higher carbon storage on their biomass. A recent study also found that soil density and organic matter had a significant impact on CO2 dynamics.

  15. Lessons from simultaneous measurements of soil respiration and net ecosystem exchange of CO2 in temperate forests (United States)

    Renchon, A.; Pendall, E.


    Land-surface exchanges of CO2 play a key role in ameliorating or exacerbating climate change. The eddy-covariance method allows direct measurement of net ecosystem-atmosphere exchange of CO2 (NEE), but partitioning daytime NEE into its components - gross primary productivity (GPP) and ecosystem respiration (RE) - remains challenging. Continuous measurements of soil respiration (RS), along with flux towers, have the potential to better constrain data and models of RE and GPP. We use simultaneous half-hourly NEE and RS data to: (1) compare the short-term (fortnightly) apparent temperature sensitivity (Q10) of nighttime RS and RE; (2) assess whether daytime RS can be estimated using nighttime response functions; and (3) compare the long-term (annual) responses of nighttime RS and nighttime RE to interacting soil moisture and soil temperature. We found that nighttime RS has a lower short-term Q10 than nighttime RE. This suggests that the Q10 of nighttime RE is strongly influenced by the Q10 of nighttime above-ground respiration, or possibly by a bias in RE measurements. The short-term Q10 of RS and RE decreased with increasing temperature. In general, daytime RS could be estimated using nighttime RS temperature and soil moisture (r2 = 0.9). However, this results from little to no diurnal variation in RS, and estimating daytime RS as the average of nighttime RS gave similar results (r2 = 0.9). Furthermore, we observed a day-night hysteresis of RS response to temperature, especially when using air temperature and sometimes when using soil temperature at 5cm depth. In fact, during some months, soil respiration observations were lower during daytime compared to nighttime, despite higher temperature in daytime. Therefore, daytime RS modelled from nighttime RS temperature response was overestimated during these periods. RS and RE responses to the combination of soil moisture and soil temperature were similar, and consistent with the DAMM model of soil-C decomposition. These

  16. Evaluating the effects of future climate change and elevated CO2 on the water use efficiency in terrestrial ecosystems of China (United States)

    Zhu, Q.; Jiang, H.; Peng, C.; Liu, J.; Wei, X.; Fang, X.; Liu, S.; Zhou, G.; Yu, S.


    Water use efficiency (WUE) is an important variable used in climate change and hydrological studies in relation to how it links ecosystem carbon cycles and hydrological cycles together. However, obtaining reliable WUE results based on site-level flux data remains a great challenge when scaling up to larger regional zones. Biophysical, process-based ecosystem models are powerful tools to study WUE at large spatial and temporal scales. The Integrated BIosphere Simulator (IBIS) was used to evaluate the effects of climate change and elevated CO2 concentrations on ecosystem-level WUE (defined as the ratio of gross primary production (GPP) to evapotranspiration (ET)) in relation to terrestrial ecosystems in China for 2009–2099. Climate scenario data (IPCC SRES A2 and SRES B1) generated from the Third Generation Coupled Global Climate Model (CGCM3) was used in the simulations. Seven simulations were implemented according to the assemblage of different elevated CO2 concentrations scenarios and different climate change scenarios. Analysis suggests that (1) further elevated CO2concentrations will significantly enhance the WUE over China by the end of the twenty-first century, especially in forest areas; (2) effects of climate change on WUE will vary for different geographical regions in China with negative effects occurring primarily in southern regions and positive effects occurring primarily in high latitude and altitude regions (Tibetan Plateau); (3) WUE will maintain the current levels for 2009–2099 under the constant climate scenario (i.e. using mean climate condition of 1951–2006 and CO2concentrations of the 2008 level); and (4) WUE will decrease with the increase of water resource restriction (expressed as evaporation ratio) among different ecosystems.

  17. Diurnal sampling reveals significant variation in CO2 emission from a tropical productive lake. (United States)

    Reis, P C J; Barbosa, F A R


    It is well accepted in the literature that lakes are generally net heterotrophic and supersaturated with CO2 because they receive allochthonous carbon inputs. However, autotrophy and CO2 undersaturation may happen for at least part of the time, especially in productive lakes. Since diurnal scale is particularly important to tropical lakes dynamics, we evaluated diurnal changes in pCO2 and CO2 flux across the air-water interface in a tropical productive lake in southeastern Brazil (Lake Carioca) over two consecutive days. Both pCO2 and CO2 flux were significantly different between day (9:00 to 17:00) and night (21:00 to 5:00) confirming the importance of this scale for CO2 dynamics in tropical lakes. Net heterotrophy and CO2 outgassing from the lake were registered only at night, while significant CO2 emission did not happen during the day. Dissolved oxygen concentration and temperature trends over the diurnal cycle indicated the dependence of CO2 dynamics on lake metabolism (respiration and photosynthesis). This study indicates the importance of considering the diurnal scale when examining CO2 emissions from tropical lakes.

  18. Production of nanostructured molecular liquids by supercritical CO2 processing

    Directory of Open Access Journals (Sweden)

    Sudhir Kumar Sharma


    Full Text Available Stable molecular clusters of ibuprofen and naproxen were prepared in dry ice, by supersonic jet expansion of their supercritical CO2 drug formulations into a liquid nitrogen cooled collection vessel, with up to 80% yield. Mixing the “dry ice” in water, resulted in the solubilization of the clusters and in the case of ibuprofen, we were able to create solutions, with concentrations of up to 6 mg/ml, a 300-fold increase over previously reported values. Drop casting and ambient drying of these solutions on silicon substrate resulted in a stable, viscous liquid film, referred to as nanostructured molecular liquids. These liquids exhibited a highly aligned, fine (self-assembled super lattice features. In vitro cancer cell viability studies of these formulations exhibited similar cytotoxicity to that of the original raw materials, thus retaining their original potency. Besides its scientific importance, this invention is expected to open up new drug delivery platforms.

  19. Carbon recycling by cyanobacteria: improving CO2 fixation through chemical production. (United States)

    Zhang, Angela; Carroll, Austin L; Atsumi, Shota


    Atmospheric CO2 levels have reached an alarming level due to industrialization and the burning of fossil fuels. In order to lower the level of atmospheric carbon, strategies to sequester excess carbon need to be implemented. The CO2-fixing mechanism in photosynthetic organisms enables integration of atmospheric CO2 into biomass. Additionally, through exogenous metabolic pathways in these photosynthetic organisms, fixed CO2 can be routed to produce various commodity chemicals that are currently produced from petroleum. This review will highlight studies and modifications to different components of cyanobacterial CO2-fixing systems, as well as the application of these systems toward CO2-derived chemical production. 2,3-Butanediol is given particular focus as one of the most thoroughly studied systems for conversion of CO2 to a bioproduct. © FEMS 2017. All rights reserved. For permissions, please e-mail:

  20. Evaluating CO2 and CH4 dynamics of Alaskan ecosystems during the Holocene Thermal Maximum (United States)

    He, Yujie; Jones, Miriam C.; Zhuang, Qianlai; Bochicchio, Christopher; Felzer, B. S.; Mason, Erik; Yu, Zicheng


    The Arctic has experienced much greater warming than the global average in recent decades due to polar amplification. Warming has induced ecological changes that have impacted climate carbon-cycle feedbacks, making it important to understand the climate and vegetation controls on carbon (C) dynamics. Here we used the Holocene Thermal Maximum (HTM, 11–9 ka BP, 1 ka BP = 1000 cal yr before present) in Alaska as a case study to examine how ecosystem Cdynamics responded to the past warming climate using an integrated approach of combining paleoecological reconstructions and ecosystem modeling. Our paleoecological synthesis showed expansion of deciduous broadleaf forest (dominated by Populus) into tundra and the establishment of boreal evergreen needleleaf and mixed forest during the second half of the HTM under a warmer- and wetter-than-before climate, coincident with the occurrence of the highest net primary productivity, cumulative net ecosystem productivity, soil C accumulation and CH4 emissions. These series of ecological and biogeochemical shifts mirrored the solar insolation and subsequent temperature and precipitation patterns during HTM, indicating the importance of climate controls on C dynamics. Our simulated regional estimate of CH4 emission rates from Alaska during the HTM ranged from 3.5 to 6.4 Tg CH4 yr−1 and highest annual NPP of 470 Tg C yr−1, significantly higher than previously reported modern estimates. Our results show that the differences in static vegetation distribution maps used in simulations of different time slices have greater influence on modeled C dynamics than climatic fields within each time slice, highlighting the importance of incorporating vegetation community dynamics and their responses to climatic conditions in long-term biogeochemical modeling.

  1. Comparative energetic assessment of methanol production from CO_2: Chemical versus electrochemical process

    International Nuclear Information System (INIS)

    Al-Kalbani, Haitham; Xuan, Jin; García, Susana; Wang, Huizhi


    Highlights: • We model two emission-to-fuel processes which convert CO_2 to fuels. • We optimize the heat exchanger networks for the two processes. • We compare the two processes in terms of energy requirement and climate impact. • The process based on CO_2 electrolysis is more energy efficient. • Both of the processes can reduce CO_2 emissions if renewable energies are used. - Abstract: Emerging emission-to-liquid (eTL) technologies that produce liquid fuels from CO_2 are a possible solution for both the global issues of greenhouse gas emissions and fossil fuel depletion. Among those technologies, CO_2 hydrogenation and high-temperature CO_2 electrolysis are two promising options suitable for large-scale applications. In this study, two CO_2-to-methanol conversion processes, i.e., production of methanol by CO_2 hydrogenation and production of methanol based on high-temperature CO_2 electrolysis, are simulated using Aspen HYSYS. With Aspen Energy Analyzer, heat exchanger networks are optimized and minimal energy requirements are determined for the two different processes. The two processes are compared in terms of energy requirement and climate impact. It is found that the methanol production based on CO_2 electrolysis has an energy efficiency of 41%, almost double that of the CO_2 hydrogenation process provided that the required hydrogen is sourced from water electrolysis. The hydrogenation process produces more CO_2 when fossil fuel energy sources are used, but can result in more negative CO_2 emissions with renewable energies. The study reveals that both of the eTL processes can outperform the conventional fossil-fuel-based methanol production process in climate impacts as long as the renewable energy sources are implemented.

  2. Ecosystem-atmosphere exchange of CO2 in a temperate herbaceous peatland in the Sanjiang Plain of northeast China (United States)

    Zhu, Xiaoyan; Song, Changchun; Swarzenski, Christopher M.; Guo, Yuedong; Zhang, Xinhow; Wang, Jiaoyue


    Northern peatlands contain a considerable share of the terrestrial carbon pool, which will be affected by future climatic variability. Using the static chamber technique, we investigated ecosystem respiration and soil respiration over two growing seasons (2012 and 2013) in a Carex lasiocarpa-dominated peatland in the Sanjiang Plain in China. We synchronously monitored the environmental factors controlling CO2 fluxes. Ecosystem respiration during these two growing seasons ranged from 33.3 to 506.7 mg CO2–C m−2 h−1. Through step-wise regression, variations in soil temperature at 10 cm depth alone explained 73.7% of the observed variance in log10(ER). The mean Q10 values ranged from 2.1 to 2.9 depending on the choice of depth where soil temperature was measured. The Q10 value at the 10 cm depth (2.9) appears to be a good representation for herbaceous peatland in the Sanjiang Plain when applying field-estimation based Q10values to current terrestrial ecosystem models due to the most optimized regression coefficient (63.2%). Soil respiration amounted to 57% of ecosystem respiration and played a major role in peatland carbon balance in our study. Emphasis on ecosystem respiration from temperate peatlands in the Sanjiang Plain will improve our basic understanding of carbon exchange between peatland ecosystem and the atmosphere.

  3. Seasonal & Daily Amazon Column CO2 & CO Observations from Ground & Space Used to Evaluate Tropical Ecosystem Models (United States)

    Dubey, M. K.; Parker, H. A.; Wennberg, P. O.; Wunch, D.; Jacobson, A. R.; Kawa, S. R.; Keppel-Aleks, G.; Basu, S.; O'Dell, C.; Frankenberg, C.; Michalak, A. M.; Baker, D. F.; Christofferson, B.; Restrepo-Coupe, N.; Saleska, S. R.; De Araujo, A. C.; Miller, J. B.


    The Amazon basin stores 150-200 PgC, exchanges 18 PgC with the atmosphere every year and has taken up 0.42-0.65 PgC/y over the past two decades. Despite its global significance, the response of the tropical carbon cycle to climate variability and change is ill constrained as evidenced by the large negative and positive feedbacks in future climate simulations. The complex interplay of radiation, water and ecosystem phenology remains unresolved in current tropical ecosystem models. We use high frequency regional scale TCCON observations of column CO2, CO and CH4 near Manaus, Brazil that began in October 2014 to understand the aforementioned interplay of processes in regulating biosphere-atmosphere exchange. We observe a robust daily column CO2 uptake of about 2 ppm (4 ppm to 0.5 ppm) over 8 hours and evaluate how it changes as we transition to the dry season. Back-trajectory calculations show that the daily CO2 uptake footprint is terrestrial and influenced by the heterogeneity of the Amazon rain forests. The column CO falls from above 120 ppb to below 80 ppb as we transition from the biomass burning to wet seasons. The daily mean column CO2 rises by 3 ppm from October through June. Removal of biomass burning, secular CO2 increase and variations from transport (by Carbon tracker simulations) implies an increase of 2.3 ppm results from tropical biospheric processes (respiration and photosynthesis). This is consistent with ground-based remote sensing and eddy flux observations that indicate that leaf development and demography drives the tropical carbon cycle in regions that are not water limited and is not considered in current models. We compare our observations with output from 7 CO2 inversion transport models with assimilated meteorology and find that while 5 models reproduce the CO2 seasonal cycle all of them under predict the daily drawdown of CO2 by a factor of 3. This indicates that the CO2 flux partitioning between photosynthesis and respiration is incorrect

  4. Spatial and temporal performance of the miniface (free air CO2 enrichment) system on bog ecosystems in northern and central Europe

    NARCIS (Netherlands)

    Miglietta, F.; Hoosbeek, M.R.; Foot, J.; Gigon, F.; Hassinen, A.; Heijmans, M.; Peressotti, A.; Saarinen, T.; Breemen, van N.; Wallen, B.


    The Bog Ecosystem Research Initiative (BERI) project was initiated to investigate, at five climatically different sites across Europe, the effects of elevated CO2 and N deposition on the net exchange of CO2 and CH4 between bogs and the atmosphere, and to study the effects of elevated CO2 and N

  5. Current net ecosystem exchange of CO2 in a young mixed forest: any heritage from the previous ecosystem? (United States)

    Violette, Aurélie; Heinesch, Bernard; Erpicum, Michel; Carnol, Monique; Aubinet, Marc; François, Louis


    For 15 years, networks of flux towers have been developed to determine accurate carbon balance with the eddy-covariance method and determine if forests are sink or source of carbon. However, for prediction of the evolution of carbon cycle and climate, major uncertainties remain on the ecosystem respiration (Reco, which includes the respiration of above ground part of trees, roots respiration and mineralization of the soil organic matter), the gross primary productivity (GPP) and their difference, the net ecosystem exchange (NEE) of forests. These uncertainties are consequences of spatial and inter-annual variability, driven by previous and current climatic conditions, as well as by the particular history of the site (management, diseases, etc.). In this study we focus on the carbon cycle in two mixed forests in the Belgian Ardennes. The first site, Vielsalm, is a mature stand mostly composed of beeches (Fagus sylvatica) and douglas fir (Pseudotsuga menziesii) from 80 to 100 years old. The second site, La Robinette, was covered before 1995 with spruces. After an important windfall and a clear cutting, the site was replanted, between 1995 and 2000, with spruces (Piceas abies) and deciduous species (mostly Betula pendula, Aulnus glutinosa and Salix aurita). The challenge here is to highlight how initial conditions can influence the current behavior of the carbon cycle in a growing stand compared to a mature one, where initial conditions are supposed to be forgotten. A modeling approach suits particularly well for sensitivity tests and estimation of the temporal lag between an event and the ecosystem response. We use the forest ecosystem model ASPECTS (Rasse et al., Ecological Modelling 141, 35-52, 2001). This model predicts long-term forest growth by calculating, over time, hourly NEE. It was developed and already validated on the Vielsalm forest. Modelling results are confronted to eddy-covariance data on both sites from 2006 to 2011. The main difference between both

  6. Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent. (United States)

    Apostolaki, Eugenia T; Vizzini, Salvatrice; Hendriks, Iris E; Olsen, Ylva S


    We examined the long-term effect of naturally acidified water on a Cymodocea nodosa meadow growing at a shallow volcanic CO2 vent in Vulcano Island (Italy). Seagrass and adjacent unvegetated habitats growing at a low pH station (pH = 7.65 ± 0.02) were compared with corresponding habitats at a control station (pH = 8.01 ± 0.01). Density and biomass showed a clear decreasing trend at the low pH station and the below- to above-ground biomass ratio was more than 10 times lower compared to the control. C content and δ(13)C of leaves and epiphytes were significantly lower at the low pH station. Photosynthetic activity of C. nodosa was stimulated by low pH as seen by the significant increase in Chla content of leaves, maximum electron transport rate and compensation irradiance. Seagrass community metabolism was intense at the low pH station, with significantly higher net community production, respiration and gross primary production than the control community, whereas metabolism of the unvegetated community did not differ between stations. Productivity was promoted by the low pH, but this was not translated into biomass, probably due to nutrient limitation, grazing or poor environmental conditions. The results indicate that seagrass response in naturally acidified conditions is dependable upon species and geochemical characteristics of the site and highlight the need for a better understanding of complex interactions in these environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Production of Microalgal Lipids as Biodiesel Feedstock with Fixation of CO2 by Chlorella vulgaris


    Qiao Hu; Sen-Xiang Zhang; Zhong-Hua Yang; Hao Huang; Rong Zeng


    The global warming and shortage of energy are two critical problems for human social development. CO2 mitigation and replacing conventional diesel with biodiesel are effective routes to reduce these problems. Production of microalgal lipids as biodiesel feedstock by a freshwater microalga, Chlorella vulgaris, with the ability to fixate CO2 is studied in this work. The results show that nitrogen deficiency, CO2 volume fraction and photoperiod are the key factors responsible for the lipid accum...

  8. BASIN TCP Stable Isotope Composition of CO2 in Terrestrial Ecosystems (United States)

    National Aeronautics and Space Administration — This data set reports stable isotope ratio data of CO2 (13C/12C and 18O/16O) associated with photosynthetic and respiratory exchanges across the biosphere-atmosphere...

  9. BASIN TCP Stable Isotope Composition of CO2 in Terrestrial Ecosystems (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports stable isotope ratio data of CO2 (13C/12C and 18O/16O) associated with photosynthetic and respiratory exchanges across the...

  10. Interactive effects of fire, soil climate, and moss on CO2 fluxes in black spruce ecosystems of interior Alaska (United States)

    O'Donnell, Jonathan A.; Turetsky, Merritt R.; Harden, Jennifer W.; Manies, Kristen L.; Pruett, L.E.; Shetler, Gordon; Neff, Jason C.


    Fire is an important control on the carbon (C) balance of the boreal forest region. Here, we present findings from two complementary studies that examine how fire modifies soil organic matter properties, and how these modifications influence rates of decomposition and C exchange in black spruce (Picea mariana) ecosystems of interior Alaska. First, we used laboratory incubations to explore soil temperature, moisture, and vegetation effects on CO2 and DOC production rates in burned and unburned soils from three study regions in interior Alaska. Second, at one of the study regions used in the incubation experiments, we conducted intensive field measurements of net ecosystem exchange (NEE) and ecosystem respiration (ER) across an unreplicated factorial design of burning (2 year post-fire versus unburned sites) and drainage class (upland forest versus peatland sites). Our laboratory study showed that burning reduced the sensitivity of decomposition to increased temperature, most likely by inducing moisture or substrate quality limitations on decomposition rates. Burning also reduced the decomposability of Sphagnum-derived organic matter, increased the hydrophobicity of feather moss-derived organic matter, and increased the ratio of dissolved organic carbon (DOC) to total dissolved nitrogen (TDN) in both the upland and peatland sites. At the ecosystem scale, our field measurements indicate that the surface organic soil was generally wetter in burned than in unburned sites, whereas soil temperature was not different between the burned and unburned sites. Analysis of variance results showed that ER varied with soil drainage class but not by burn status, averaging 0.9 ± 0.1 and 1.4 ± 0.1 g C m−2 d−1 in the upland and peatland sites, respectively. However, a more complex general linear model showed that ER was controlled by an interaction between soil temperature, moisture, and burn status, and in general was less variable over time in the burned than in the

  11. CO2 emission costs and Gas/Coal competition for power production

    International Nuclear Information System (INIS)

    Santi, Federico


    This paper demonstrates how a CO 2 emission reduction programme can change the competition between the two power production technologies which will probably dominate the future of the Italian power industry: the coal fired USC steam power plant and the natural gas fired CCGT power plant. An economic value of the CO 2 emission is calculated, in order to make the short-run-marginal-cost (or the long-run-marginal-cost). equal for both technologies, under a CO 2 emission trading scheme and following a single-plant specific CO 2 emission homogenizing approach [it

  12. Membrane-assisted CO2 liquefaction: performance modelling of CO2 capture from flue gas in cement production

    NARCIS (Netherlands)

    Bouma, R.H.B.; Vercauteren, F.F.; Os, P.J. van; Goetheer, E.L.V.; Berstad, D.; Anantharaman, R.


    CEMCAP is an international R&D project under the Horizon 2020 Programme preparing the ground for the large-scale implementation of CO2 capture in the European cement industry. This paper concerns the performance modeling of membraneassisted CO2 liquefaction as a possible retrofit application for

  13. Determination of microbial versus root-produced CO2 in an agricultural ecosystem by means of δ13CO2 measurements in soil air

    NARCIS (Netherlands)

    Schüßler, Wolfram; Neubert, Rolf; Levin, Ingeborg; Fischer, Natalie; Sonntag, Christian


    The amounts of microbial and root-respired CO2 in a maize/winter wheat agricultural system in south western Germany were investigated by measurements of the CO2 mixing ratio and the 13C/12C ratio in soil air. CO2 fluxes at the soil surface for the period of investigation (1993–1995) were also

  14. Implications of CO2 pooling on δ13C of ecosystem respiration and leaves in Amazonian forest (United States)

    de Araújo, A. C.; Ometto, J. P. H. B.; Dolman, A. J.; Kruijt, B.; Waterloo, M. J.; Ehleringer, J. R.


    The carbon isotope of a leaf (δ13Cleaf) is generally more negative in riparian zones than in areas with low soil moisture content or rainfall input. In Central Amazonia, the small-scale topography is composed of plateaus and valleys, with plateaus generally being drier than the valley edges in the dry season. The nocturnal accumulation of CO2 is higher in the valleys than on the plateaus in the dry season. The CO2 stored in the valleys takes longer to be released than that on the plateaus, and sometimes the atmospheric CO2 concentration (ca) does not drop to the same level as on the plateaus at any time during the day. Samples of sunlit leaves and atmospheric air were collected along a topographical gradient to test whether the δ13Cleaf of sunlit leaves and the carbon isotope ratio of ecosystem respired CO2 (δ13CR) may be more negative in the valley than those on the plateau. The δ13Cleaf was significantly more negative in the valley than on the plateau. Factors considered to be driving the observed variability in δ13Cleaf were: leaf nitrogen concentration, leaf mass per unit area (LMA), soil moisture availability, more negative carbon isotope ratio of atmospheric CO2 (δ13Ca) in the valleys during daytime hours, and leaf discrimination (Δleaf). The observed pattern of δ13Cleaf suggests that water-use efficiency (WUE) may be higher on the plateaus than in the valleys. The ;13CR was more negative in the valleys than on the plateaus on some nights, whereas in others it was not. It is likely that lateral drainage of CO2 enriched in 13C from upslope areas might have happened when the nights were less stable. Biotic factors such as soil CO2 efflux (Rsoil) and the responses of plants to environmental variables such as vapor pressure deficit (D) may also play a role.

  15. Flooding-related increases in CO2 and N2O emissions from a temperate coastal grassland ecosystem (United States)

    Gebremichael, Amanuel W.; Osborne, Bruce; Orr, Patrick


    Given their increasing trend in Europe, an understanding of the role that flooding events play in carbon (C) and nitrogen (N) cycling and greenhouse gas (GHG) emissions will be important for improved assessments of local and regional GHG budgets. This study presents the results of an analysis of the CO2 and N2O fluxes from a coastal grassland ecosystem affected by episodic flooding that was of either a relatively short (SFS) or long (LFS) duration. Compared to the SFS, the annual CO2 and N2O emissions were 1.4 and 1.3 times higher at the LFS, respectively. Mean CO2 emissions during the period of standing water were 144 ± 18.18 and 111 ± 9.51 mg CO2-C m-2 h-1, respectively, for the LFS and SFS sites. During the growing season, when there was no standing water, the CO2 emissions were significantly larger from the LFS (244 ± 24.88 mg CO2-C m-2 h-1) than the SFS (183 ± 14.90 mg CO2-C m-2 h-1). Fluxes of N2O ranged from -0.37 to 0.65 mg N2O-N m-2 h-1 at the LFS and from -0.50 to 0.55 mg N2O-N m-2 h-1 at the SFS, with the larger emissions associated with the presence of standing water at the LFS but during the growing season at the SFS. Overall, soil temperature and moisture were identified as the main drivers of the seasonal changes in CO2 fluxes, but neither adequately explained the variations in N2O fluxes. Analysis of total C, N, microbial biomass and Q10 values indicated that the higher CO2 emissions from the LFS were linked to the flooding-associated influx of nutrients and alterations in soil microbial populations. These results demonstrate that annual CO2 and N2O emissions can be higher in longer-term flooded sites that receive significant amounts of nutrients, although this may depend on the restriction of diffusional limitations due to the presence of standing water to periods of the year when the potential for gaseous emissions are low.


    Energy Technology Data Exchange (ETDEWEB)

    Burton, Andrew J. [Michigan Technological University; Zak, Donald R. [University of Michigan; Kubiske, Mark E. [USDA Forest Service; Pregitzer, Kurt S. [University of Idaho


    Two of the most important and pervasive greenhouse gases driving global change and impacting forests in the U.S. and around the world are atmospheric CO2 and tropospheric O3. As the only free air, large-scale manipulative experiment studying the interaction of elevated CO2 and O3 on forests, the Aspen FACE experiment was uniquely designed to address the long-term ecosystem level impacts of these two greenhouse gases on aspen-birch-maple forests, which dominate the richly forested Lake States region. The project was established in 1997 to address the overarching scientific question: “What are the effects of elevated [CO2] and [O3], alone and in combination, on the structure and functioning of northern hardwood forest ecosystems?” From 1998 through the middle of the 2009 growing season, we examined the interacting effects of elevated CO2 and O3 on ecosystem processes in an aggrading northern forest ecosystem to compare the responses of early-successional, rapid-growing shade intolerant trembling aspen and paper birch to those of a late successional, slower growing shade tolerant sugar maple. Fumigations with elevated CO2 (560 ppm during daylight hours) and O3 (approximately 1.5 x ambient) were conducted during the growing season from 1998 to 2008, and in 2009 through harvest date. Response variables quantified during the experiment included growth, competitive interactions and stand dynamics, physiological processes, plant nutrient status and uptake, tissue biochemistry, litter quality and decomposition rates, hydrology, soil respiration, microbial community composition and respiration, VOC production, treatment-pest interactions, and treatment-phenology interactions. In 2009, we conducted a detailed harvest of the site. The harvest included detailed sampling of a subset of trees by component (leaves and buds, fine branches, coarse branches and stem, coarse roots, fine roots) and excavation of soil to a depth of 1 m. Throughout the experiment, aspen and birch

  17. Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels

    Energy Technology Data Exchange (ETDEWEB)

    University of Central Florida


    The main objective of this project is the development of an economically viable thermocatalytic process for production of hydrogen and carbon from natural gas or other hydrocarbon fuels with minimal environmental impact. The three major technical goals of this project are: (1) to accomplish efficient production of hydrogen and carbon via sustainable catalytic decomposition of methane or other hydrocarbons using inexpensive and durable carbon catalysts, (2) to obviate the concurrent production of CO/CO{sub 2} byproducts and drastically reduce CO{sub 2} emissions from the process, and (3) to produce valuable carbon products in order to reduce the cost of hydrogen production The important feature of the process is that the reaction is catalyzed by carbon particulates produced in the process, so no external catalyst is required (except for the start-up operation). This results in the following advantages: (1) no CO/CO{sub 2} byproducts are generated during hydrocarbon decomposition stage, (2) no expensive catalysts are used in the process, (3) several valuable forms of carbon can be produced in the process depending on the process conditions (e.g., turbostratic carbon, pyrolytic graphite, spherical carbon particles, carbon filaments etc.), and (4) CO{sub 2} emissions could be drastically reduced (compared to conventional processes).

  18. Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Ro-Poulsen, H.; Mikkelsen, Teis Nørgaard


    The impact of elevated CO2, periodic drought and warming on photosynthesis and leaf characteristics of the evergreen dwarf shrub Calluna vulgaris in a temperate heath ecosystem was investigated. Photosynthesis was reduced by drought in midsummer and increased by elevated CO2 throughout the growing...... season, whereas warming only stimulated photosynthesis early in the year. At the beginning and end of the growing season, a T × CO2 interaction synergistically stimulated plant carbon uptake in the combination of warming and elevated CO2. At peak drought, the D × CO2 interaction antagonistically down......-regulated photosynthesis, suggesting a limited ability of elevated CO2 to counteract the negative effect of drought. The response of photosynthesis in the full factorial combination (TDCO2) could be explained by the main effect of experimental treatments (T, D, CO2) and the two-factor interactions (D × CO2, T × CO2...

  19. An inverse analysis reveals limitations of the soil-CO2 profile method to calculate CO2 production and efflux for well-structured soils

    Directory of Open Access Journals (Sweden)

    M. D. Corre


    Full Text Available Soil respiration is the second largest flux in the global carbon cycle, yet the underlying below-ground process, carbon dioxide (CO2 production, is not well understood because it can not be measured in the field. CO2 production has frequently been calculated from the vertical CO2 diffusive flux divergence, known as "soil-CO2 profile method". This relatively simple model requires knowledge of soil CO2 concentration profiles and soil diffusive properties. Application of the method for a tropical lowland forest soil in Panama gave inconsistent results when using diffusion coefficients (D calculated based on relationships with soil porosity and moisture ("physically modeled" D. Our objective was to investigate whether these inconsistencies were related to (1 the applied interpolation and solution methods and/or (2 uncertainties in the physically modeled profile of D. First, we show that the calculated CO2 production strongly depends on the function used to interpolate between measured CO2 concentrations. Secondly, using an inverse analysis of the soil-CO2 profile method, we deduce which D would be required to explain the observed CO2 concentrations, assuming the model perception is valid. In the top soil, this inversely modeled D closely resembled the physically modeled D. In the deep soil, however, the inversely modeled D increased sharply while the physically modeled D did not. When imposing a constraint during the fit parameter optimization, a solution could be found where this deviation between the physically and inversely modeled D disappeared. A radon (Rn mass balance model, in which diffusion was calculated based on the physically modeled or constrained inversely modeled D, simulated observed Rn profiles reasonably well. However, the CO2 concentrations which corresponded to the constrained inversely modeled D were too small compared to the measurements. We suggest that, in well-structured soils, a missing description of steady state CO2

  20. Long-Term Drainage Reduces CO2 Uptake and CH4 Emissions in a Siberian Permafrost Ecosystem (United States)

    Kittler, Fanny; Heimann, Martin; Kolle, Olaf; Zimov, Nikita; Zimov, Sergei; Göckede, Mathias


    Permafrost landscapes in northern high latitudes with their massive organic carbon stocks are an important, poorly known, component of the global carbon cycle. However, in light of future Arctic warming, the sustainability of these carbon pools is uncertain. To a large part, this is due to a limited understanding of the carbon cycle processes because of sparse observations in Arctic permafrost ecosystems. Here we present an eddy covariance data set covering more than 3 years of continuous CO2 and CH4 flux observations within a moist tussock tundra ecosystem near Chersky in north-eastern Siberia. Through parallel observations of a disturbed (drained) area and a control area nearby, we aim to evaluate the long-term effects of a persistently lowered water table on the net vertical carbon exchange budgets and the dominating biogeochemical mechanisms. Persistently drier soils trigger systematic shifts in the tundra ecosystem carbon cycle patterns. Both, uptake rates of CO2 and emissions of CH4 decreased. Year-round measurements emphasize the importance of the non-growing season—in particular the "zero-curtain" period in the fall—to the annual budget. Approximately 60% of the CO2 uptake in the growing season is lost during the cold seasons, while CH4 emissions during the non-growing season account for 30% of the annual budget. Year-to-year variability in temperature conditions during the late growing season was identified as the primary control of the interannual variability observed in the CO2 and CH4 fluxes.

  1. Energy resources, CO2 production and energy conservation

    International Nuclear Information System (INIS)

    O'Callaghan, P.W.


    World fossil fuel reserves, historical and current rates of consumption are reviewed and estimates of indigeneous lives in geographical regions are made. Rates of production and accumulations of carbon dioxide and other greenhouse gases in the atmosphere are calculated and correlations made with measured global mean temperatures and concomitant sea-level rises. It is concluded that, if present rates of global fossil-fuel consumptions continue unabated, the world's fossil-fuel store will be depleted by the year 2050. This would be accompanied by a substantial rise in global mean temperature. The effects of various protocols for the reductions of emissions are examined. It is concluded that there is no alternative than to cease the production and release into the atmosphere of the more damaging man-made greenhouse gases as soon as is practicably possible and to seek a sustained reduction in the rates of combustion of fossil fuels world-wide via energy management and conservation. (author)

  2. Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and a central Siberian bog II. Interseasonal and interannual variability of CO2 fluxes

    International Nuclear Information System (INIS)

    Arneth, A.; Kolle, O.; Lloyd, J.; Schulze, E.D.; Kurbatova, J.; Vygodskaya, N.N.


    Net ecosystem-atmosphere exchange of CO 2 (NEE) was measured in two boreal bogs during the snow-free periods of 1998, 1999 and 2000. The two sites were located in European Russia (Fyodorovskoye), and in central Siberia (Zotino). Climate at both sites was generally continental but with more extreme summer-winter gradients in temperature at the more eastern site Zotino. The snow-free period in Fyodorovskoye exceeded the snow-free period at Zotino by several weeks. Marked seasonal and interannual differences in NEE were observed at both locations, with contrasting rates and patterns. Amongst the most important contrasts were: (1) Ecosystem respiration at a reference soil temperature was higher at Fyodorovskoye than at Zotino. (2) The diurnal amplitude of summer NEE was larger at Fyodorovskoye than at Zotino. (3) There was a modest tendency for maximum 24 h NEE during average rainfall years to be more negative at Zotino (-0.17 versus -0.15 mol/m 2 /d), suggesting a higher productivity during the summer months. (4) Cumulative net uptake of CO 2 during the snow-free period was strongly related to climatic differences between years. In Zotino the interannual variability in climate, and also in the CO 2 balance during the snow-free period, was small. However, at Fyodorovskoye the bog was a significant carbon sink in one season and a substantial source for CO 2 -C in the next, which was below-average dry. Total snow-free uptake and annual estimates of net CO 2 -C uptake are discussed, including associated uncertainties

  3. Organic reactions for the electrochemical and photochemical production of chemical fuels from CO2--The reduction chemistry of carboxylic acids and derivatives as bent CO2 surrogates. (United States)

    Luca, Oana R; Fenwick, Aidan Q


    The present review covers organic transformations involved in the reduction of CO2 to chemical fuels. In particular, we focus on reactions of CO2 with organic molecules to yield carboxylic acid derivatives as a first step in CO2 reduction reaction sequences. These biomimetic initial steps create opportunities for tandem electrochemical/chemical reductions. We draw parallels between long-standing knowledge of CO2 reactivity from organic chemistry, organocatalysis, surface science and electrocatalysis. We point out some possible non-faradaic chemical reactions that may contribute to product distributions in the production of solar fuels from CO2. These reactions may be accelerated by thermal effects such as resistive heating and illumination. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Soil CO2 efflux in three wet meadow ecosystems with different C and N status

    Czech Academy of Sciences Publication Activity Database

    Zemanová, K.; Čížková, Hana; Šantrůčková, H.

    Suppl.S, č. 9 (2008), s. 49-55 ISSN 1585-8553 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z60660521 Keywords : wet meadow * soil CO2 efflux * eutrophication Subject RIV: EH - Ecology, Behaviour Impact factor: 0.898, year: 2008

  5. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere (United States)

    Ram Oren; David S. Ellsworth; Kurt H. Johnsen; Nathan Phillips; Brent E. Ewers; Chris Maier; Karina V.R. Schafer; Heather McCarthy; George Hendrey; Steven G. McNulty; Gabriel G. Katul


    Northern mid-latitude forests are a large terrestrial carbon sink. Ignoring nutrient limitations, large increases in carbon sequestration from carbon dioxide (CO2) fertilization are expected in these forests. Yet, forests are usually relegated to sites of moderate to poor fertility, where tree growth is often limited by nutrient supply, in...

  6. UU* filtering of nighttime net ecosystem CO2 exchange flux over forest canopy under strong wind in wintertime

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Junhui


    [1]Aubinet, M., Heinesch, B., Longdoz, B., Estimation of the carbon sequestration by a heterogeneous forest: night flux corrections,heterogeneity of the site and inter-annual variability, Global Change Biology, 2002, 8:1053-1071.[2]Charlotte, L.R., Nigel, T.R., Seasonal contribution of CO2 fluxes in the annual C budget of a northern bog, Global Biogeochemical Cycles, 2003, 171029, doi: 10.1029/20029B001889.[3]Baldocchi, D.D., Hicks, B.B., Meyers, T. P., Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods, Ecology, 1988, 69:1331-1340.[4]Baldocchi, D.D., Assessing ecosystem carbon balance: problems and prospects of the eddy covariance technique, Global change biology, 2003, 9: 478-492.[5]Canadell, J. G., Mooney, H. A., Baldocchi, D. D. et al., Carbon metabolism of the terrestrial biosphere: A multi technique approach for improved understanding, Ecosystems, 2000, 3:115-130.[6]Schmid, H. P., Footprint modeling for vegetation atmosphere exchange studies: a review and perspective, Agricultural and Forest Meteorology, 2002, 113: 159-183.[7]Wofsy, S. C., Goulden, M. L., Munger, J. W. et al., Net exchange on CO2 in a mid-latitude forest, Science, 1993, 260: 1314-1317.[8]Massman, W. J., Lee, X. H., Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges,Agricultural and Forest Meteorology, 2002, 113: 121-144.[9]Baldocchi, D. D., Finnigan, J., Wilson, K. et al., On measuring net ecosystem carbon exchange over tall vegetation on complex terrain, Boundary-Layer Meteorology, 2000, 96: 257-291.[10]Anthoni, P. M., Unsworth, M. H., Law, B. E. et al., Seasonal differences in carbon and water vapor exchange in young and old-growth ponderosa pine ecosystems, Agricultural and Forest Meteorology, 2002, 111: 203-222.[11]Paw U, K. T., Baldocchi, D. D., Meyers, T. P. et al., Correction of eddy-covariance measurements incorporating both advective

  7. Temperature versus plant effects on diel dynamics of soil CO2 production and efflux: a controlled environment study (United States)

    Reinthaler, David; Roy, Jacques; Landais, Damien; Piel, Clement; Resco de Dios, Victor; Bahn, Michael


    Soil respiration (Rs) is the biggest source of CO2 emitted from terrestrial ecosystems to the atmosphere. Therefore the understanding of its drivers is of major importance for models of carbon cycling. Next to temperature as a major abiotic factor, photosynthesis has been suggested as an important driver influencing diel patterns in Rs. Under natural conditions it is difficult to disentangle abiotic and biotic effects on soil CO2 production, as fluctuating light intensity affects both photosynthetic activity and soil temperature. To analyse individual and combined effects of soil temperature and light on the dynamics of soil CO2 production and efflux, we performed a controlled environment study at the ECOTRON facility in Montpellier. The study manipulated temperature and photosynthetically active radiation independently and was carried out in large macrocosms, hosting canopies of either a woody (cotton) or a herbaceous (bean) crop. In each macrocosm membrane tubes had been installed across the soil profile for continuous measurement of soil CO2 concentrations. In addition, an automated soil respiration system was installed in each macrocosm, whose data were also used for validating a model of soil CO2 production and transport based on the concentration profiles. Both for cotton and for bean canopies, under conditions of naturally fluctuating temperature and light conditions, soil CO2 production and efflux followed a clear diel pattern. Under constantly dark conditions (excluding immediate effects of photosynthesis) and constant temperature, no significant diel changes in Rs could be observed. Furthermore, soil CO2 production and efflux did not increase significantly upon exposure of previously darkened macrocosms to light. Under constant temperature and fluctuating light conditions, we observed a dampened diel pattern of Rs, which did not match diurnal solar cycles. A detailed residual analysis accounting for temporal trends in soil moisture suggested a significant

  8. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration

    KAUST Repository

    Zhu, Xiuping; Logan, Bruce E.


    Mineral carbonation can be used for CO2 sequestration, but the reaction rate is slow. In order to accelerate mineral carbonation, acid generated in a microbial electrolysis desalination and chemical-production cell (MEDCC) was examined to dissolve

  9. Decentralized production of hydrogen from hydrocarbons with reduced CO2 emission

    International Nuclear Information System (INIS)

    Nazim Muradov; Franklyn Smith; Cunping Huang; Ali T-Raissi


    Currently, most of the industrial hydrogen production is based on steam methane reforming process that releases significant amount of CO 2 into the atmosphere. CO 2 sequestration is one approach to solving the CO 2 emission problem for large centralized hydrogen plants, but it would be impractical for decentralized H 2 production units. The objective of this paper is to explore new routes to hydrogen production from natural gas without (or drastically reduced) CO 2 emissions. One approach analyzed in this paper is based on thermo-catalytic decomposition (TCD) of hydrocarbons (e.g., methane) to hydrogen gas and elemental carbon. The paper discusses some technological aspects of the TCD process development: (1) thermodynamic analysis of TCD using AspenPlus chemical process simulator, (2) heat input options to the endothermic process, (3) catalyst activity issues, etc. Production of hydrogen and carbon via TCD of methane was experimentally verified using carbon-based catalysts. (authors)

  10. Does export product quality matter for CO2 emissions? Evidence from China. (United States)

    Gozgor, Giray; Can, Muhlis


    This paper re-estimates the environmental Kuznets curve (EKC) in China. To this end, it uses the unit root tests with structural breaks and the autoregressive-distributed lag (ARDL) estimations over the period 1971-2010. The special role is given to the impact of export product quality on CO 2 emissions in the empirical models. The paper finds that the EKC hypothesis is applicable in China. It also observes the positive effect from energy consumption to CO 2 emissions. In addition, it finds that the export product quality is negatively associated with CO 2 emissions. The paper also argues potential implications.

  11. Production of Excess CO2 relative to methane in peatlands: a new H2 sink (United States)

    Wilson, R.; Woodcroft, B. J.; Varner, R. K.; Tyson, G. W.; Tfaily, M. M.; Sebestyen, S.; Saleska, S. R.; Rogers, K.; Rich, V. I.; McFarlane, K. J.; Kostka, J. E.; Kolka, R. K.; Keller, J.; Iversen, C. M.; Hodgkins, S. B.; Hanson, P. J.; Guilderson, T. P.; Griffiths, N.; de La Cruz, F.; Crill, P. M.; Chanton, J.; Bridgham, S. D.; Barlaz, M.


    Methane is generated as the end product of anaerobic organic matter degradation following a series of reaction pathways including fermentation and syntrophy. Along with acetate and CO2, syntrophic reactions generate H2 and are only thermodynamically feasible when coupled to an exothermic reaction that consumes H2. The usual model of organic matter degradation in peatlands has assumed that methanogenesis is that exothermic H2-consuming reaction. If correct, this paradigm should ultimately result in equimolar production of CO2 and methane from the degradation of the model organic compound cellulose: i.e. C6H12O6 à 3CO2 + 3CH4. However, dissolved gas measurement and modeling results from field and incubation experiments spanning peatlands across the northern hemisphere have failed to demonstrate equimolar production of CO2 and methane. Instead, in a flagrant violation of thermodynamics, these studies show a large bias favoring CO2 production over methane generation. In this talk, we will use an array of complementary analytical techniques including FT-IR, cellulose and lignin measurements, 13C-NMR, fluorescence spectroscopy, and ultra-high resolution mass spectrometry to describe organic matter degradation within a peat column and identify the important degradation mechanisms. Hydrogenation was the most common transformation observed in the ultra-high resolution mass spectrometry data. From these results we propose a new mechanism for consuming H2 generated during CO2 production, without concomitant methane formation, consistent with observed high CO2/CH4 ratios. While homoacetogenesis is a known sink for H2 in these systems, this process also consumes CO2 and therefore does not explain the excess CO2 measured in field and incubation samples. Not only does the newly proposed mechanism consume H2 without generating methane, but it also yields enough energy to balance the coupled syntrophic reactions, thereby restoring thermodynamic order. Schematic of organic matter

  12. Optimal production resource reallocation for CO2 emissions reduction in manufacturing sectors


    Fujii, Hidemichi; Managi, Shunsuke


    To mitigate the effects of climate change, countries worldwide are advancing technologies to reduce greenhouse gas emissions. This paper proposes and measures optimal production resource reallocation using data envelopment analysis. This research attempts to clarify the effect of optimal production resource reallocation on CO2 emissions reduction, focusing on regional and industrial characteristics. We use finance, energy, and CO2 emissions data from 13 industrial sectors in 39 countries from...

  13. Estimating noctural ecosystem respiration from the vertical turbulent flux and change in storange of CO2

    NARCIS (Netherlands)

    Gorsel, van E.; Delpierre, N.; Leuning, R.; Black, A.; Munger, J.W.; Wofsy, S.; Aubinet, M.; Feigenwinter, C.; Beringer, J.; Bonal, D.; Chen, B.; Chen, J.; Clement, R.; Davis, K.J.; Desai, A.R.; Dragoni, D.; Etzold, S.; Grünwald, T.; Gu, L.; Heinesch, B.; Hutyra, L.R.; Jans, W.W.P.; Kutsch, W.; Law, B.E.; Leclerc, Y.; Mammarella, I.; Montagnani, L.; Noormets, A.; Rebmann, C.; Wharton, S.


    Micrometeorological measurements of nighttime ecosystem respiration can be systematically biased when stable atmospheric conditions lead to drainage flows associated with decoupling of air flow above and within plant canopies. The associated horizontal and vertical advective fluxes cannot be

  14. CO2 Fluxes from Different Vegetation Communities on a Peatland Ecosystem

    Czech Academy of Sciences Publication Activity Database

    Acosta, Manuel; Juszczak, R.; Chojnicki, B. H.; Pavelka, Marian; Havránková, Kateřina; Leśny, J.; Krupková, Lenka; Urbaniak, M.; Macháčová, Kateřina; Olejnik, Janusz


    Roč. 37, č. 3 (2017), s. 423-435 ISSN 0277-5212 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Chamber method * Ecosystem respiration * Net ecosystem exchange * Q10 – temperature sensitivity * LAI – leaf area index Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 1.573, year: 2016

  15. Thermodynamic analysis on the CO2 conversion processes of methane dry reforming for hydrogen production and CO2 hydrogenation to dimethyl ether (United States)

    He, Xinyi; Liu, Liping


    Based on the principle of Gibbs free energy minimization, the thermodynamic analysis on the CO2 conversion processes of dry reforming of methane for H2 and CO2 hydrogenation to dimethyl ether was carried out. The composition of the reaction system was determined on the basis of reaction mechanism. The effects of reaction temperature, pressure and raw material composition on the equilibrium conversion and the selectivity of products were analyzed. The results show that high temperature, low pressure, CO2/CH4 molar ratio of 1.0-1.5 and appropriate amount of oxygen are beneficial to the dry reforming of methane. For CO2 hydrogenation to dimethyl ether, low temperature, high pressure, the appropriate H2/CO2 and the proper CO addition in feed are favorable. The calculated results are compared with the relevant studies, indicating that industrial catalytic technology needs further improvement.

  16. Potential for CO2 sequestration and Enhanced Coalbed Methane production in the Netherlands

    International Nuclear Information System (INIS)

    Hamelinck, C.N.; Faaij, A.P.C.; Ruijg, G.J.; Jansen, D.; Pagnier, H.; Van Bergen, F.; Wolf, K.H.; Barzandji, O.; Bruining, H.; Schreurs, H.


    The technical and economic feasibility of ECBM (Enhanced Coal Bed Methane) in the Netherlands are explored. The potential and the economic performance are worked out for several ECBM recovery concepts and technological issues are outlined. The research includes the following main activities: Inventory of CO2 sources in the Netherlands and techno-economic analysis of CO2 removal and transport. Several scenarios for CO2 transport of different capacities and distances will be assessed. ECBM production locations are determined by analysis of coal reserves and their characteristics. Four potential areas are assessed: one in eastern Gelderland, two in Limburg and one in Zeeland. Description of ECBM theory and production technology resulting in a time dependent model for ECBM production and CO2 injection. Selection and description of various ECBM production/CO2 sequestration systems. Systems considered include direct delivery of methane to the natural gas grid, production of power (on various scales) and hydrogen. Information from the location assessment is combined with modelling results. Costs of CO2 sequestration are calculated for various scales and configurations. Evaluation of main uncertainties, environmental impacts and sensitivity analyses. Comparison of CBM production systems with reference systems and exploration of potential implementation schemes in the Dutch context. 72 refs

  17. Impacts of CO2 Enrichment on Productivity and Light Requirements of Eelgrass. (United States)

    Zimmerman, R. C.; Kohrs, D. G.; Steller, D. L.; Alberte, R. S.


    Seagrasses, although well adapted for submerged existence, are CO2-limited and photosynthetically inefficient in seawater. This leads to high light requirements for growth and survival and makes seagrasses vulnerable to light limitation. We explored the long-term impact of increased CO2 availability on light requirements, productivity, and C allocation in eelgrass (Zostera marina L.). Enrichment of seawater CO2 increased photosynthesis 3-fold, but had no long-term impact on respiration. By tripling the rate of light-saturated photosynthesis, CO2 enrichment reduced the daily period of irradiance-saturated photosynthesis (Hsat) that is required for the maintenance of positive whole-plant C balance from 7 to 2.7 h, allowing plants maintained under 4 h of Hsat to perform like plants growing in unenriched seawater with 12 h of Hsat. Eelgrass grown under 4 h of Hsat without added CO2 consumed internal C reserves as photosynthesis rates and chlorophyll levels dropped. Growth ceased after 30 d. Leaf photosynthesis, respiration, chlorophyll, and sucrose-phosphate synthase activity of CO2-enriched plants showed no acclimation to prolonged enrichment. Thus, the CO2-stimulated improvement in photosynthesis reduced light requirements in the long term, suggesting that globally increasing CO2 may enhance seagrass survival in eutrophic coastal waters, where populations have been devastated by algal proliferation and reduced water-column light transparency.

  18. CO2 and temperature effects on leaf area production in two annual plant species

    International Nuclear Information System (INIS)

    Ackerly, D.D.; Coleman, J.S.; Morse, S.R.; Bazzaz, F.A.


    The authors studied leaf area production in two annual plant species, Abutilon theophrasti and Amaranthus retroflexus, under three day/night temperature regimes and two concentrations of carbon dioxide. The production of whole-plant leaf area during the first 30 d of growth was analyzed in terms of the leaf initiation rate, leaf expansion, individual leaf area, and, in Amaranthus, production of branch leaves. Temperature and CO 2 influenced leaf area production through effects on the rate of development, determined by the production of nodes on the main stem, and through shifts in the relationship between whole-plant leaf area and the number of main stem nodes. In Abutilon, leaf initiation rate was highest at 38 degree, but area of individual leaves was greatest at 28 degree. Total leaf area was greatly reduced at 18 degree due to slow leaf initiation rates. Elevated CO 2 concentration increased leaf initiation rate at 28 degree, resulting in an increase in whole-part leaf area. In Amaranthus, leaf initiation rate increased with temperature, and was increased by elevated CO 2 at 28 degree. Individual leaf area was greatest at 28 degree, and was increased by elevated CO 2 at 28 degree but decreased at 38 degree. Branch leaf area displayed a similar response to CO 2 , butt was greater at 38 degree. Overall, wholeplant leaf area was slightly increased at 38 degree relative to 28 degree, and elevated CO 2 levels resulted in increased leaf area at 28 degree but decreased leaf area at 38 degree

  19. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean

    KAUST Repository

    Holding, J. M.


    The Arctic Ocean is warming at two to three times the global rate1 and is perceived to be a bellwether for ocean acidification2, 3. Increased CO2 concentrations are expected to have a fertilization effect on marine autotrophs4, and higher temperatures should lead to increased rates of planktonic primary production5. Yet, simultaneous assessment of warming and increased CO2 on primary production in the Arctic has not been conducted. Here we test the expectation that CO2-enhanced gross primary production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range of 145–2,099 μatm; however, the greatest effects are observed only at lower temperatures and are constrained by nutrient and light availability to the spring period. The temperature dependence of CO2-enhanced primary production has significant implications for metabolic balance in a warmer, CO2-enriched Arctic Ocean in the future. In particular, it indicates that a twofold increase in primary production during the spring is likely in the Arctic.

  20. Validation of the HTO-18 method for determination of CO2 production of lizards (genus Sceloporus)

    International Nuclear Information System (INIS)

    Congdon, J.D.; King, W.W.; Nagy, K.A.


    The accuracy of doubly-labeled water measurements of CO 2 production in lizards of the genus Sceloporus was assessed by comparison of CO 2 production rates determined simultaneously by labeled water and gas chromatography. Five lizards were weighed and given intraperitoneal injections of 55 μl of water containing 10 microcuries of tritium as HTO and 50 atom % oxygen-18 as H 2 18 O. Initial blood samples were taken from the infraorbital sinus ten hours later, and the lizards were placed in sealed metabolism chambers kept at 28 C. After 179 h the lizards were weighed and blood samples taken. Blood samples were microdistilled, assayed for tritium activity and for oxygen-18 content. Isotope measurements were used to calculate rates of CO 2 production. Gas samples were withdrawn from each chamber after 18, 63, 109, and 179 h and measured against 0.5 and 1.0% CO 2 standards with a Beckman GC-55 gas chromatograph fitted with silica gel 42-60 mesh column. These results were used to calculate rates of CO 2 production. Results supported the conclusion that the doubly-labeled water method accurately measured rates of CO 2 production in Sceloporus lizards, and could therefore be a valuable technique in field studies of lizard energetics

  1. Productivity responses of Acer rubrum and Taxodium distichum seedlings to elevated CO2 and flooding (United States)

    Vann, C.D.; Megonigal, J.P.


    Elevated levels of atmospheric CO2 are expected to increase photosynthetic rates of C3 tree species, but it is uncertain whether this will result in an increase in wetland seedling productivity. Separate short-term experiments (12 and 17 weeks) were performed on two wetland tree species, Taxodium distichum and Acer rubrum, to determine if elevated CO2 would influence the biomass responses of seedlings to flooding. T. distichum were grown in replicate glasshouses (n = 2) at CO2 concentrations of 350 or 700 ppm, and A. rubrum were grown in growth chambers at CO2 concentrations of 422 or 722 ppm. Both species were grown from seed. The elevated CO2 treatment was crossed with two water table treatments, flooded and non-flooded. Elevated CO2 increased leaf-level photosynthesis, whole-plant photosynthesis, and trunk diameter of T. distichum in both flooding treatments, but did not increase biomass of T. distichum or A. rubrum. Flooding severely reduced biomass, height, and leaf area of both T. distichum and A. rubrum. Our results suggest that the absence of a CO2-induced increase in growth may have been due to an O2 limitation on root production even though there was a relatively deep (??? 10 cm) aerobic soil surface in the non-flooded treatment. ?? 2001 Elsevier Science Ltd. All rights reserved.

  2. Effect of ecosystems substitutions and CO2 increase of the atmosphere on the microbial ecosystems of forests

    International Nuclear Information System (INIS)

    Martin, F.


    Biological diversity is often exclusively considered at the level of plants and animals, whereas the bulk of global biodiversity is in fact at the microbial level. Although it is clear that the ecology of our planet is driven by microbial ecosystems, we are severely hampered by our limited understanding of the diversity and function of such microbial ecosystems. In the present project, teams in the disciplines of geochemistry, soil microbiology, genomics and ecosystem processes are assembled to study the relationship between environmental change, land use changes, biodiversity, and functioning of forest ecosystems. The network has a strong focus on developing and applying biochemical and genotyping methodologies to address key scientific issues in soil microbial ecology. These include assessing the impact of environmental- and land use changes on microbial diversity and function and exploring the evolutionary and mechanistic links between biological diversity and ecosystem function. In the present study, we have shown that: (1) The native mixed forest showed the highest microbial diversity (2) The mono specific plantations of tree species (e.g., oak, beech, pine, spruce) strikingly alter genetic and functional diversities of soil bacterial and fungal species. (3) Bacterial denitrification rates were dramatically modified by the planted species. Only by taking into account the impact of forest management on below-ground microbial diversity can one hope to get a full ecosystem-based understanding, and this must be addressed via modelling in order to provide relevant and useful information for conservation and policy making. (author)

  3. CO2 production in animals: analysis of potential errors in the doubly labeled water method

    International Nuclear Information System (INIS)

    Nagy, K.A.


    Laboratory validation studies indicate that doubly labeled water ( 3 HH 18 O and 2 HH 18 O) measurements of CO 2 production are accurate to within +-9% in nine species of mammals and reptiles, a bird, and an insect. However, in field studies, errors can be much larger under certain circumstances. Isotopic fraction of labeled water can cause large errors in animals whose evaporative water loss comprises a major proportion of total water efflux. Input of CO 2 across lungs and skin caused errors exceeding +80% in kangaroo rats exposed to air containing 3.4% unlabeled CO 2 . Analytical errors of +-1% in isotope concentrations can cause calculated rates of CO 2 production to contain errors exceeding +-70% in some circumstances. These occur: 1) when little decline in isotope concentractions has occured during the measurement period; 2) when final isotope concentrations closely approach background levels; and 3) when the rate of water flux in an animal is high relative to its rate of CO 2 production. The following sources of error are probably negligible in most situations: 1) use of an inappropriate equation for calculating CO 2 production, 2) variations in rates of water or CO 2 flux through time, 3) use of H 2 O-18 dilution space as a measure of body water volume, 4) exchange of 0-18 between water and nonaqueous compounds in animals (including excrement), 5) incomplete mixing of isotopes in the animal, and 6) input of unlabeled water via lungs and skin. Errors in field measurements of CO 2 production can be reduced to acceptable levels (< 10%) by appropriate selection of study subjects and recapture intervals

  4. Sequestering CO2 by mineralization into useful nesquehonite-based products

    Directory of Open Access Journals (Sweden)

    Fredrik Paul Glasser


    Full Text Available The precipitation of magnesium hydroxy-carbonate hydrates has been suggested as a route to sequester CO2 into solids. We report the development of self-cementing compositions based on nesquehonite, MgCO3·3H2O, that are made from CO2-containing gas streams, the CO2 being separated from other gases by its high solubility in alkaline water, while magnesium is typically provided by waste desalination brines. Precipitation conditions are adjusted to optimize the formation of nesquehonite and the crystalline solid can readily be washed free of chloride. Products can be prepared to achieve self-cementation following two routes: (i thermal activation of the nesquehonite then rehydration of the precursor or (ii direct curing of a slurry of nesquehonite. The products thus obtained contain ~ 30 wt% CO2 and could form the basis for a new generation of lightweight, thermally insulating boards, blocks and panels, with sufficient strength for general construction.

  5. Response of Nodularia spumigena to pCO2 – Part 1: Growth, production and nitrogen cycling

    Directory of Open Access Journals (Sweden)

    M. Nausch


    Full Text Available Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea and contribute substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem when inorganic nitrogen concentration in summer is low. Thus, it is of ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO2 concentrations and what consequences there might arise for cycling of organic matter in the Baltic Sea. Here, we determined carbon (C and dinitrogen (N2 fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover in batch cultures of the heterocystous cyanobacterium Nodularia spumigena under low (median 315 μatm, mid (median 353 μatm, and high (median 548 μatm CO2 concentrations. Our results demonstrate an overall stimulating effect of rising pCO2 on C and N2 fixation, as well as on cell growth. An increase in pCO2 during incubation days 0 to 9 resulted in an elevation in growth rate by 84 ± 38% (low vs. high pCO2 and 40 ± 25% (mid vs. high pCO2, as well as in N2 fixation by 93 ± 35% and 38 ± 1%, respectively. C uptake rates showed high standard deviations within treatments and in between sampling days. Nevertheless, C fixation in the high pCO2 treatment was elevated compared to the other two treatments by 97% (high vs. low and 44% (high vs. mid at day 0 and day 3, but this effect diminished afterwards. Additionally, elevation in carbon to nitrogen and nitrogen to phosphorus ratios of the particulate biomass formed (POC : POP and PON : POP was observed at high pCO2. Our findings suggest that rising pCO2 stimulates the growth of heterocystous diazotrophic cyanobacteria, in a similar way as reported for the non-heterocystous diazotroph Trichodesmium. Implications for biogeochemical cycling and food web dynamics, as well as ecological and socio-economical aspects in the

  6. Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean (United States)

    Gray, William R.; Rae, James W. B.; Wills, Robert C. J.; Shevenell, Amelia E.; Taylor, Ben; Burke, Andrea; Foster, Gavin L.; Lear, Caroline H.


    The interplay between ocean circulation and biological productivity affects atmospheric CO2 levels and marine oxygen concentrations. During the warming of the last deglaciation, the North Pacific experienced a peak in productivity and widespread hypoxia, with changes in circulation, iron supply and light limitation all proposed as potential drivers. Here we use the boron-isotope composition of planktic foraminifera from a sediment core in the western North Pacific to reconstruct pH and dissolved CO2 concentrations from 24,000 to 8,000 years ago. We find that the productivity peak during the Bølling-Allerød warm interval, 14,700 to 12,900 years ago, was associated with a decrease in near-surface pH and an increase in pCO2, and must therefore have been driven by increased supply of nutrient- and CO2-rich waters. In a climate model ensemble (PMIP3), the presence of large ice sheets over North America results in high rates of wind-driven upwelling within the subpolar North Pacific. We suggest that this process, combined with collapse of North Pacific Intermediate Water formation at the onset of the Bølling-Allerød, led to high rates of upwelling of water rich in nutrients and CO2, and supported the peak in productivity. The respiration of this organic matter, along with poor ventilation, probably caused the regional hypoxia. We suggest that CO2 outgassing from the North Pacific helped to maintain high atmospheric CO2 concentrations during the Bølling-Allerød and contributed to the deglacial CO2 rise.

  7. Archaeal Diversity and CO2 Fixers in Carbonate-/Siliciclastic-Rock Groundwater Ecosystems

    Directory of Open Access Journals (Sweden)

    Cassandre Sara Lazar


    Full Text Available Groundwater environments provide habitats for diverse microbial communities, and although Archaea usually represent a minor fraction of communities, they are involved in key biogeochemical cycles. We analysed the archaeal diversity within a mixed carbonate-rock/siliciclastic-rock aquifer system, vertically from surface soils to subsurface groundwater including aquifer and aquitard rocks. Archaeal diversity was also characterized along a monitoring well transect that spanned surface land uses from forest/woodland to grassland and cropland. Sequencing of 16S rRNA genes showed that only a few surface soil-inhabiting Archaea were present in the groundwater suggesting a restricted input from the surface. Dominant groups in the groundwater belonged to the marine group I (MG-I Thaumarchaeota and the Woesearchaeota. Most of the groups detected in the aquitard and aquifer rock samples belonged to either cultured or predicted lithoautotrophs (e.g., Thaumarchaeota or Hadesarchaea. Furthermore, to target autotrophs, a series of 13CO2 stable isotope-probing experiments were conducted using filter pieces obtained after filtration of 10,000 L of groundwater to concentrate cells. These incubations identified the SAGMCG Thaumarchaeota and Bathyarchaeota as groundwater autotrophs. Overall, the results suggest that the majority of Archaea on rocks are fixing CO2, while archaeal autotrophy seems to be limited in the groundwater.

  8. Moisture effects on temperature sensitivity of CO2 exchange in a subarctic heath ecosystem

    DEFF Research Database (Denmark)

    Illeris, Lotte; Christensen, TR; Mastepanov, M


    Carbon fluxes between natural ecosystems and the atmosphere have received increased attention in recent years due to the impact they have on climate. In order to investigate independently how soil moisture and temperature control carbon fluxes into and out of a dry subarctic dwarf shrub dominated...

  9. Effects of elevated atmospheric CO2 on soil organic carbon dynamics in a mediterranean forest ecosystem

    NARCIS (Netherlands)

    Gahrooee, F.R.


    Elevated atmospheric CO 2 has the potential to change the composition and dynamics of soil organic matter (SOM) and consequently C and N cycling in terrestrial ecosystems. Because of the long-lived nature of SOM, long-lasting experiments are required for studying the

  10. Synthetic gas production from dry black liquor gasification process using direct causticization with CO2 capture

    International Nuclear Information System (INIS)

    Naqvi, Muhammad; Yan, Jinyue; Dahlquist, Erik


    Highlights: ► We study synthetic gas production from dry black liquor gasification system. ► Direct causticization eliminates energy intensive lime kiln reducing biomass use. ► Results show large SNG production potential at significant energy efficiency (58%). ► Substantial CO 2 capture potential plus CO 2 reductions from natural gas replacement. ► Significant transport fuel replacement especially in Sweden and Europe. -- Abstract: Synthetic natural gas (SNG) production from dry black liquor gasification (DBLG) system is an attractive option to reduce CO 2 emissions replacing natural gas. This article evaluates the energy conversion performance of SNG production from oxygen blown circulating fluidized bed (CFB) black liquor gasification process with direct causticization by investigating system integration with a reference pulp mill producing 1000 air dried tonnes (ADt) of pulp per day. The direct causticization process eliminates use of energy intensive lime kiln that is a main component required in the conventional black liquor recovery cycle with the recovery boiler. The paper has estimated SNG production potential, the process energy ratio of black liquor (BL) conversion to SNG, and quantified the potential CO 2 abatement. Based on reference pulp mill capacity, the results indicate a large potential of SNG production (about 162 MW) from black liquor but at a cost of additional biomass import (36.7 MW) to compensate the total energy deficit. The process shows cold gas energy efficiency of about 58% considering black liquor and biomass import as major energy inputs. About 700 ktonnes per year of CO 2 abatement i.e. both possible CO 2 capture and CO 2 offset from bio-fuel use replacing natural gas, is estimated. Moreover, the SNG production offers a significant fuel replacement in transport sector especially in countries with large pulp and paper industry e.g. in Sweden, about 72% of motor gasoline and 40% of total motor fuel could be replaced.

  11. Combining Microbial Enzyme Kinetics Models with Light Use Efficiency Models to Predict CO2 and CH4 Ecosystem Exchange from Flooded and Drained Peatland Systems (United States)

    Oikawa, P. Y.; Jenerette, D.; Knox, S. H.; Sturtevant, C. S.; Verfaillie, J. G.; Baldocchi, D. D.


    Under California's Cap-and-Trade program, companies are looking to invest in land-use practices that will reduce greenhouse gas (GHG) emissions. The Sacramento-San Joaquin River Delta is a drained cultivated peatland system and a large source of CO2. To slow soil subsidence and reduce CO2 emissions, there is growing interest in converting drained peatlands to wetlands. However, wetlands are large sources of CH4 that could offset CO2-based GHG reductions. The goal of our research is to provide accurate measurements and model predictions of the changes in GHG budgets that occur when drained peatlands are restored to wetland conditions. We have installed a network of eddy covariance towers across multiple land use types in the Delta and have been measuring CO2 and CH4 ecosystem exchange for multiple years. In order to upscale these measurements through space and time we are using these data to parameterize and validate a process-based biogeochemical model. To predict gross primary productivity (GPP), we are using a simple light use efficiency (LUE) model which requires estimates of light, leaf area index and air temperature and can explain 90% of the observed variation in GPP in a mature wetland. To predict ecosystem respiration we have adapted the Dual Arrhenius Michaelis-Menten (DAMM) model. The LUE-DAMM model allows accurate simulation of half-hourly net ecosystem exchange (NEE) in a mature wetland (r2=0.85). We are working to expand the model to pasture, rice and alfalfa systems in the Delta. To predict methanogenesis, we again apply a modified DAMM model, using simple enzyme kinetics. However CH4 exchange is complex and we have thus expanded the model to predict not only microbial CH4 production, but also CH4 oxidation, CH4 storage and the physical processes regulating the release of CH4 to the atmosphere. The CH4-DAMM model allows accurate simulation of daily CH4 ecosystem exchange in a mature wetland (r2=0.55) and robust estimates of annual CH4 budgets. The LUE

  12. H2 production by reforming route in reducing CO2 emissions

    International Nuclear Information System (INIS)

    Raphaelle Imbault


    Nowadays the most common way to produce hydrogen is the Steam Methane Reforming route from natural gas. With the pressure of new environmental rules, reducing CO 2 emissions becomes a key issue. The European project Ulcos (Ultra Low CO 2 Steelmaking) has targeted to reduce of at least 50% the CO 2 emissions in steelmaking. The H 2 route (and in particular the reforming process) is one of the solutions which have been explored. The results of this study have shown that the two main ways (which can be combined) of limiting CO 2 emissions in H 2 production are to improve the energetic efficiency of the plant or to capture CO 2 . With the first way, a reduction of 20% of emissions compared to conventional plant can be reached. The second one enables to achieve a decrease of 90%. However the CO 2 capture is much more expensive and this kind of solution can be economically competitive only if high CO 2 taxes are implemented (≥40 Euros/ton). (author)

  13. Impacts of elevated atmospheric CO2 on litter quality, litter decomposability and nitrogen turnover rate of two oak species in a Mediterranean forest ecosystem

    NARCIS (Netherlands)

    Fayez Raiesi Gahrooee,


    Elevated CO2 may affect litter quality of plants, and subsequently C and N cycling in terrestrial ecosystems, but changes in litter quality associated with elevated CO2 are poorly known. Abscised leaf litter of two oak species (Quercus cerris L., and Q. pubescens Willd.) exposed to long-term

  14. Individual and interacting effects of pCO2 and temperature on Emiliania huxleyi calcification: study of the calcite production, the coccolith morphology and the coccosphere size

    Directory of Open Access Journals (Sweden)

    K. Sabbe


    Full Text Available The impact of ocean acidification and increased water temperature on marine ecosystems, in particular those involving calcifying organisms, has been gradually recognised. We examined the individual and combined effects of increased pCO2 (180 ppmV CO2, 380 ppmV CO2 and 750 ppmV CO2 corresponding to past, present and future CO2 conditions, respectively and temperature (13 °C and 18 °C during the exponential growth phase of the coccolithophore E. huxleyi using batch culture experiments. We showed that cellular production rate of Particulate Organic Carbon (POC increased from the present to the future CO2 treatments at 13 °C. A significant effect of pCO2 and of temperature on calcification was found, manifesting itself in a lower cellular production rate of Particulate Inorganic Carbon (PIC as well as a lower PIC:POC ratio at future CO2 levels and at 18 °C. Coccosphere-sized particles showed a size reduction with both increasing temperature and CO2 concentration. The influence of the different treatments on coccolith morphology was studied by categorizing SEM coccolith micrographs. The number of well-formed coccoliths decreased with increasing pCO2 while temperature did not have a significant impact on coccolith morphology. No interacting effects of pCO2 and temperature were observed on calcite production, coccolith morphology or on coccosphere size. Finally, our results suggest that ocean acidification might have a larger adverse impact on coccolithophorid calcification than surface water warming.

  15. Water and CO2 fluxes over semiarid alpine steppe and humid alpine meadow ecosystems on the Tibetan Plateau (United States)

    Wang, Lei; Liu, Huizhi; Shao, Yaping; Liu, Yang; Sun, Jihua


    Based on eddy covariance flux data from July 15, 2014, to December 31, 2015, the water and CO2 fluxes were compared over a semiarid alpine steppe (Bange, Tibetan Plateau) and a humid alpine meadow (Lijiang, Yunnan) on the Tibetan Plateau and its surrounding region. During the wet season, the evaporative fraction (EF) was strongly and linearly correlated with the soil water content (SWC) at Bange because of its sparse green grass cover. In contrast, the correlation between the EF at Lijiang and the SWC and the normalized difference vegetation index (NDVI) was very low because the atmosphere was close to saturation and the EF was relatively constant. In the dry season, the EF at both sites decreased with the SWC. The net ecosystem exchange (NEE) at Bange was largely depressed at noon, while this phenomenon did not occur at Lijiang. The saturated NEE at Bange was 24% of that at Lijiang. The temperature sensitivity coefficient of ecosystem respiration at Bange (1.7) was also much lower than that at Lijiang (3.4). The annual total NEE in 2015 was 21.8 and -230.0 g C m-2 yr-1 at Bange and Lijiang, respectively, and the NEE was tightly controlled by the NDVI at the two sites. The distinct differences in the water and CO2 fluxes at Bange and Lijiang are attributed to the large SWC difference and its effect on vegetation growth.

  16. Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO2 Reduction. (United States)

    Huo, Shengjuan; Weng, Zhe; Wu, Zishan; Zhong, Yiren; Wu, Yueshen; Fang, Jianhui; Wang, Hailiang


    One major challenge to the electrochemical conversion of CO 2 to useful fuels and chemical products is the lack of efficient catalysts that can selectively direct the reaction to one desirable product and avoid the other possible side products. Making use of strong metal/oxide interactions has recently been demonstrated to be effective in enhancing electrocatalysis in the liquid phase. Here, we report one of the first systematic studies on composition-dependent influences of metal/oxide interactions on electrocatalytic CO 2 reduction, utilizing Cu/SnO x heterostructured nanoparticles supported on carbon nanotubes (CNTs) as a model catalyst system. By adjusting the Cu/Sn ratio in the catalyst material structure, we can tune the products of the CO 2 electrocatalytic reduction reaction from hydrocarbon-favorable to CO-selective to formic acid-dominant. In the Cu-rich regime, SnO x dramatically alters the catalytic behavior of Cu. The Cu/SnO x -CNT catalyst containing 6.2% of SnO x converts CO 2 to CO with a high faradaic efficiency (FE) of 89% and a j CO of 11.3 mA·cm -2 at -0.99 V versus reversible hydrogen electrode, in stark contrast to the Cu-CNT catalyst on which ethylene and methane are the main products for CO 2 reduction. In the Sn-rich regime, Cu modifies the catalytic properties of SnO x . The Cu/SnO x -CNT catalyst containing 30.2% of SnO x reduces CO 2 to formic acid with an FE of 77% and a j HCOOH of 4.0 mA·cm -2 at -0.99 V, outperforming the SnO x -CNT catalyst which only converts CO 2 to formic acid in an FE of 48%.

  17. The effect of CO2 regulations on the cost of corn ethanol production (United States)

    Plevin, R. J.; Mueller, S.


    To explore the effect of CO2 price on the effective cost of ethanol production we have developed a model that integrates financial and emissions accounting for dry-mill corn ethanol plants. Three policy options are modeled: (1) a charge per unit of life cycle CO2 emissions, (2) a charge per unit of direct biorefinery emissions only, and (3) a low carbon fuel standard (LCFS). A CO2 charge on life cycle emissions increases production costs by between 0.005 and 0.008 l-1 per 10 Mg-1 CO2 price increment, across all modeled plant energy systems, with increases under direct emissions somewhat lower in all cases. In contrast, a LCFS increases the cost of production for selected plant energy systems only: a LCFS requiring reductions in average fuel global warming intensity (GWI) with a target of 10% below the 2005 baseline increases the production costs for coal-fired plants only. For all other plant types, the LCFS operates as a subsidy. The findings depend strongly on the magnitude of a land use change adder. Some land use change adders currently discussed in the literature will push the GWI of all modeled production systems above the LCFS target, flipping the CO2 price from a subsidy to a tax.

  18. Vegetative biomass predicts inflorescence production along a CO2 concentration gradient in mesic grassland (United States)

    Fay, P. A.; Collins, H.; Polley, W.


    Atmospheric CO2 concentration will likely exceed 500 µL L-1 by 2050, often increasing plant community productivity in part by increasing abundance of species favored by increased CA . Whether increased abundance translates to increased inflorescence production is poorly understood, and is important because it indicates the potential effects of CO2 enrichment on genetic variability and the potential for evolutionary change in future generations. We examined whether the responses of inflorescence production to CO2 enrichment in four C4 grasses and a C3 forb were predicted their vegetative biomass, and by soil moisture, soil nitrogen, or light availability. Inflorescence production was studied in a long-term CO2 concentration gradient spanning pre-industrial to anticipated mid-21st century values (250 - 500 µL L-1) maintained on clay, silty clay and sandy loam soils common in the U.S. Southern Plains. We expected that CO2 enrichment would increase inflorescence production, and more so with higher water, nitrogen, or light availability. However, structural equation modeling revealed that vegetative biomass was the single consistent direct predictor of flowering for all species (p grass) and Solidago canadensis (C3 forb), direct CO2 effects on flowering were only weakly mediated by indirect effects of soil water content and soil NO3-N availability. For the decreasing species (Bouteloua curtipendula, C4 grass), the negative CO2-flowering relationship was cancelled (p = 0.39) by indirect effects of increased SWC and NO3-N on clay and silty clay soils. For the species with no CO2 response, inflorescence production was predicted only by direct water content (p grass) or vegetative biomass (p = 0.0009, Tridens albescens, C4 grass) effects. Light availability was unrelated to inflorescence production. Changes in inflorescence production are thus closely tied to direct and indirect effects of CO2 enrichment on vegetative biomass, and may either increase, decrease, or leave

  19. Implications of CO2 pooling on delta13C of ecosystem respiration and leaves in Amazonian forest (United States)

    de Araújo, A. C.; Ometto, J. P. H. B.; Dolman, A. J.; Kruijt, B.; Waterloo, M. J.; Ehleringer, J. R.


    The carbon isotope of a leaf (δ13Cleaf) is generally more negative in riparian zones than in areas with low soil moisture content or rainfall input. In Central Amazonia, the small-scale topography is composed of plateaus and valleys, with plateaus generally having a lower soil moisture status than the valley edges in the dry season. Yet in the dry season, the nocturnal accumulation of CO2 is higher in the valleys than on the plateaus. Samples of sunlit leaves and atmospheric air were collected along a topographical gradient in the dry season to test whether the δ13Cleaf of sunlit leaves and the carbon isotope ratio of ecosystem respired CO2 (δ13CReco) may be more negative in the valley than those on the plateau. The δ13Cleaf was significantly more negative in the valley than on the plateau. Factors considered to be driving the observed variability in δ13Cleaf were: leaf nitrogen concentration, leaf mass per unit area (LMA), soil moisture availability, more negative carbon isotope ratio of atmospheric CO2 (δ13Ca) in the valleys during daytime hours, and leaf discrimination (Δleaf). The observed pattern of δ13Cleaf might suggest that water-use efficiency (WUE) is higher on the plateaus than in the valleys. However, there was no full supporting evidence for this because it remains unclear how much of the difference in δ13Cleaf was driven by physiology or &delta13Ca. The δ13CReco was more negative in the valleys than on the plateaus on some nights, whereas in others it was not. It is likely that lateral drainage of CO2 enriched in 13C from upslope areas might have happened when the nights were less stable. Biotic factors such as soil CO2 efflux (Rsoil) and the responses of plants to environmental variables such as vapor pressure deficit (D) may also play a role. The preferential pooling of CO2 in the low-lying areas of this landscape may confound the interpretation of δ13Cleaf and δ13CReco.

  20. Implications of CO2 pooling on δ13C of ecosystem respiration and leaves in Amazonian forest

    Directory of Open Access Journals (Sweden)

    M. J. Waterloo


    Full Text Available The carbon isotope of a leaf (δ13Cleaf is generally more negative in riparian zones than in areas with low soil moisture content or rainfall input. In Central Amazonia, the small-scale topography is composed of plateaus and valleys, with plateaus generally having a lower soil moisture status than the valley edges in the dry season. Yet in the dry season, the nocturnal accumulation of CO2 is higher in the valleys than on the plateaus. Samples of sunlit leaves and atmospheric air were collected along a topographical gradient in the dry season to test whether the δ13Cleaf of sunlit leaves and the carbon isotope ratio of ecosystem respired CO2 (δ13CReco may be more negative in the valley than those on the plateau. The δ13Cleaf was significantly more negative in the valley than on the plateau. Factors considered to be driving the observed variability in δ13Cleaf were: leaf nitrogen concentration, leaf mass per unit area (LMA, soil moisture availability, more negative carbon isotope ratio of atmospheric CO2 (δ13Ca in the valleys during daytime hours, and leaf discrimination (Δleaf. The observed pattern of δ13Cleaf might suggest that water-use efficiency (WUE is higher on the plateaus than in the valleys. However, there was no full supporting evidence for this because it remains unclear how much of the difference in δ13Cleaf was driven by physiology or &delta13Ca. The δ13CReco was more negative in the valleys than on the plateaus on some nights, whereas in others it was not. It is likely that lateral drainage of CO2 enriched in 13C from upslope areas might have happened when the nights were less stable. Biotic factors such as soil CO2 efflux (Rsoil and the responses of plants to environmental variables such as vapor pressure deficit (D may also play a role. The preferential pooling of CO2 in the low-lying areas of this landscape may confound the interpretation of δ13Cleaf and δ13CReco.

  1. Climatic and management drivers of CO2 exchanges by a production crop: analysis over three successive 4-year cycles. (United States)

    Buysse, Pauline; Moureaux, Christine; Bodson, Bernard; Aubinet, Marc


    Carbon dioxide (CO2) exchanges between crops and the atmosphere are influenced by both climatic and crop management drivers. The investigated crop, situated at the Lonzée Terrestrial Observatory (candidate ICOS site) in the Hesbaye region in Belgium and managed for more than 70 years using conventional farming practices, was monitored over three complete sugar beet/winter wheat/potato/winter wheat rotation cycles from 2004 to 2016. Eddy covariance, automatic and manual soil chambers, leaf diffusion and biomass measurements were performed continuously in order to obtain the daily and seasonal Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP), total Ecosystem Respiration (TER), Net Primary Productivity (NPP), autotrophic respiration, heterotrophic respiration and Net Biome Production (NBP). Meteorological data and crop management practices were also recorded. Climatic and seasonal evolutions of the carbon balance components were studied and crop carbon budgets were computed both at the yearly and crop rotation cycle scales. On average over the 12 years, NEE was negative but NBP was positive, i.e. as far as carbon exportation by harvest are included in the budget, the site behaved as a carbon source. Impacts of both meteorological drivers and crop management operations on CO2 exchanges were analyzed and compared between crop types, years, and rotation cycles. The uncertainties associated to the carbon fluxes were also evaluated and discussed.

  2. Production of Microalgal Lipids as Biodiesel Feedstock with Fixation of CO2 by Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Qiao Hu


    Full Text Available The global warming and shortage of energy are two critical problems for human social development. CO2 mitigation and replacing conventional diesel with biodiesel are effective routes to reduce these problems. Production of microalgal lipids as biodiesel feedstock by a freshwater microalga, Chlorella vulgaris, with the ability to fixate CO2 is studied in this work. The results show that nitrogen deficiency, CO2 volume fraction and photoperiod are the key factors responsible for the lipid accumulation in C. vulgaris. With 5 % CO2, 0.75 g/L of NaNO3 and 18:6 h of light/dark cycle, the lipid content and overall lipid productivity reached 14.5 % and 33.2 mg/(L·day, respectively. Furthermore, we proposed a technique to enhance the microalgal lipid productivity by activating acetyl-CoA carboxylase (ACCase with an enzyme activator. Citric acid and Mg2+ were found to be efficient enzyme activators of ACCase. With the addition of 150 mg/L of citric acid or 1.5 mmol/L of MgCl2, the lipid productivity reached 39.1 and 38.0 mg/(L·day, respectively, which was almost twofold of the control. This work shows that it is practicable to produce lipids by freshwater microalgae that can fixate CO2, and provides a potential route to solving the global warming and energy shortage problems.

  3. Vegetative biomass predicts inflorescence production along a CO2 concentration gradient in mesic grassland (United States)

    Atmospheric CO2 concentration will likely exceed 500 uL L-1 by 2050, often increasing plant community productivity in part by increasing abundance of species favored by increased CA. Whether increased abundance translates to increased inflorescence production is poorly understood, and is important ...

  4. Optimization of Terrestrial Ecosystem Model Parameters Using Atmospheric CO2 Concentration Data With the Global Carbon Assimilation System (GCAS) (United States)

    Chen, Zhuoqi; Chen, Jing M.; Zhang, Shupeng; Zheng, Xiaogu; Ju, Weiming; Mo, Gang; Lu, Xiaoliang


    The Global Carbon Assimilation System that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25°C (Vmax25), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1° resolution for the period from 2002 to 2008. The results indicate that vegetation from tropical zones has lower Vmax25 values than vegetation in temperate regions. Relatively high values of Q10 are derived over high/midlatitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at middle-high latitudes. The maxima in Vmax25 occur during growing seasons, while the minima appear during nongrowing seasons. Q10 values decrease with increasing temperature. The seasonal variabilities of Vmax25 and Q10 are larger at higher latitudes. Optimized Vmax25 and Q10 show little seasonal variabilities at tropical regions. The seasonal variabilities of Vmax25 are consistent with the variabilities of LAI for evergreen conifers and broadleaf evergreen forests. Variations in leaf nitrogen and leaf chlorophyll contents may partly explain the variations in Vmax25. The spatial distribution of the total soil carbon pool size after optimization is compared favorably with the gridded Global Soil Data Set for Earth System. The results also suggest that atmospheric CO2 data are a source of information that can be tapped to gain spatially and temporally meaningful information for key ecosystem parameters that are representative at the regional and global scales.

  5. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria (United States)

    Kanno, Masahiro; Carroll, Austin L.; Atsumi, Shota


    Cyanobacteria have attracted much attention as hosts to recycle CO2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO2 and glucose, and produces 12.6 g l-1 of 2,3-butanediol with a rate of 1.1 g l-1 d-1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.

  6. Automatic measurement and analysis of neonatal O2 consumption and CO2 production (United States)

    Chang, Jyh-Liang; Luo, Ching-Hsing; Yeh, Tsu-Fuh


    It is difficult to estimate daily energy expenditure unless continuous O2 consumption (VO2) and CO2 production (VCO2) can be measured. This study describes a simple method for calculating daily and interim changes in O2 consumption and CO2 production for neonates, especially for premature infants. Oxygen consumption and CO2 production are measured using a flow-through technique in which the total VO2 and VCO2 over a given period of time are determined through a computerized system. This system can automatically calculate VO2 and VCO2 not only minute to minute but also over a period of time, e.g., 24 h. As a result, it provides a better indirect reflection of the accurate energy expenditure in an infant's daily life and can be used at the bedside of infants during their ongoing nursery care.

  7. Production of H2 from aluminium/water reaction and its potential for CO2 methanation (United States)

    Khai Phung, Khor; Sethupathi, Sumathi; Siang Piao, Chai


    Carbon dioxide (CO2) is a natural gas that presents in excess in the atmosphere. Owing to its ability to cause global warming, capturing and conversion of CO2 have attracted much attention worldwide. CO2 methanation using hydrogen (H2) is believed to be a promising route for CO2 removal. In the present work, H2 is produced using aluminum-water reaction and tested for its ability to convert CO2 to methane (CH4). Different type of water i.e. tap water, distilled water, deionized water and ultrapure water, concentration of sodium hydroxide (NaOH) (0.2 M to 1.0 M) and particle size of aluminum (45 m to 500 μm) were varied as parameter study. It was found that the highest yield of H2 was obtained using distilled water, 1.0 M of NaOH and 45μm particle size of aluminium. However, the highest yield of methane was achieved using a moderate and progressive H2 production (distilled water, 0.6 M of NaOH and 45 μm particle size of aluminium) which allowed sufficient time for H2 to react with CO2. It was concluded that 1130 ml of H2 can produce about 560 ppm of CH4 within 25 min of batch reaction using nickel catalyst.

  8. Monthly CO2 at A4HDYD station in a productive shallow marginal sea (Yellow Sea) with a seasonal thermocline: Controlling processes (United States)

    Xu, Xuemei; Zang, Kunpeng; Zhao, Huade; Zheng, Nan; Huo, Cheng; Wang, Juying


    Based upon 21 field surveys conducted from March 2011 to November 2013, monthly variation of carbon dioxide partial pressure (pCO2) and other carbon system parameters were investigated for the first time (to our knowledge) at A4HDYD station (38°40‧N, 122°10‧E) located in the North Yellow Sea, a region with a seasonal thermocline. Surface pCO2 was undersaturated from March to May and nearly in equilibrium with the atmosphere from June to August. During September and November, pCO2 declined to a lower level than that from June to August, but reached the highest level in December. In contrast, pCO2 declined to atmospheric CO2 levels in February. Overall, the study area was a net CO2 sink at a rate of 0.85 ± 0.59 mol C m- 2 yr- 1. The underlying processes governing the variation of pCO2 were also examined. In general, temperature had an important influence on the monthly variation of pCO2, but its effect was counterbalanced by biological production in spring and vertical mixing in early winter. Our study indicated that dynamic mechanism studies based on high temporal resolution observations are urgently needed to understand the complexity of the carbon cycle and detect biogeochemical changes or ecosystem responses to climate change on continental margins.

  9. Effects of enhanced ultraviolet-B radiation on terrestrial subarctic ecosystems and implications for interactions with increased atmospheric CO2

    International Nuclear Information System (INIS)

    Gehrke, C.; Johanson, U.; Bjoern, L.O.; Gwynn-Jones, D.; Callaghan, T.V.; Lee, J.A.


    Two predominating types of ecosystems in the Subarctic were exposed to simulated environmental perturbations. A heathland ecosystem was exposed to enhanced UV-B (corresponding to 15% ozone depletion) combined with either increased CO 2 (600 ppm) or additional watering. An ombrotrophic peatland ecosystem was exposed to only enhanced UV-B. Responses both at a plant species level, including different growth forms and life strategies, and at a trophic level (decomposition of organic matter) were studied. There were differences both in the magnitude and direction of plant responses to enhanced UV-B. The four dwarf shrub species in the heathland developed shorter stems, though not at a significant level in the two deciduous species. The leaves of the evergreen, thick-leaved V. vitus-idaea grew thicker under enhanced UV-B, while leaves of the two deciduous species V. myrtillus and V. uliginosum grew thinner. The heathland moss H. splendens showed reduced growth after two and three years under enhanced UV-B but when water was applied simultaneously growth was stimulated by enhanced UV-B. The peat moss S. fuscum had 20% less height increment during the first growing season under enhanced UV-B. Mosses tended to respond quicker to a change in UV-B regime than long-lived dwarf shrubs did. They responded in growth and phenological development already after a few weeks of treatment. Enhanced UV-B in the heathland affected decomposition of organic matter. It had direct negative effects on decomposer community function and structure and indirect negative effects on turnover of V. uliginosum leaf litter by changing the tissue quality of the litter. This was confirmed by studies in the field with another deciduous dwarf shrub (V. myrtillus). Increased growth due to enhanced CO 2 was recorded in V. myrtillus during the first growing season. No change in growth was apparent in any of the dwarf shrubs on a longer-term perspective but the number of flowers and berries were increased in

  10. Elevated CO_2 levels increase the toxicity of ZnO nanoparticles to goldfish (Carassius auratus) in a water-sediment ecosystem

    International Nuclear Information System (INIS)

    Yin, Ying; Hu, Zhengxue; Du, Wenchao; Ai, Fuxun; Ji, Rong; Gardea-Torresdey, Jorge L.; Guo, Hongyan


    Highlights: • Elevated CO_2 increased the Zn content in suspension by reducing pH value. • Elevated CO_2 led to higher Zn accumulation in fish tissues. • Elevated CO_2 also intensified the oxidative damage to fish induced by nZnO. - Abstract: Concerns about the environmental safety of metal-based nanoparticles (MNPs) in aquatic ecosystems are increasing. Simultaneously, elevated atmospheric CO_2 levels are a serious problem worldwide, making it possible for the combined exposure of MNPs and elevated CO_2 to the ecosystem. Here we studied the toxicity of nZnO to goldfish in a water-sediment ecosystem using open-top chambers flushed with ambient (400 ± 10 μL/L) or elevated (600 ± 10 μL/L) CO_2 for 30 days. We measured the content of Zn in suspension and fish, and analyzed physiological and biochemical changes in fish tissues. Results showed that elevated CO_2 increased the Zn content in suspension by reducing the pH value of water and consequently enhanced the bioavailability and toxicity of nZnO. Elevated CO_2 led to higher accumulation of Zn in fish tissues (increased by 43.3%, 86.4% and 22.5% in liver, brain and muscle, respectively) when compared to ambient. Elevated CO_2 also intensified the oxidative damage to fish induced by nZnO, resulting in higher ROS intensity, greater contents of MDA and MT and lower GSH content in liver and brain. Our results suggest that more studies in natural ecosystems are needed to better understand the fate and toxicity of nanoparticles in future CO_2 levels.

  11. Utilization of CO2 in High Performance Building and Infrastructure Products

    Energy Technology Data Exchange (ETDEWEB)

    DeCristofaro, Nicholas [Solidia Technologies Inc., Piscataway, NJ (United States)


    The overall objective of DE-FE0004222 was to demonstrate that calcium silicate phases, in the form of either naturally-occuring minerals or synthetic compounds, could replace Portland cement in concrete manufacturing. The calcium silicate phases would be reacted with gaseous CO2 to create a carbonated concrete end-product. If successful, the project would offer a pathway to a significant reduction in the carbon footprint associated with the manufacture of cement and its use in concrete (approximately 816 kg of CO2 is emitted in the production of one tonne of Portland cement). In the initial phases of the Technical Evaluation, Rutgers University teamed with Solidia Technologies to demonstrate that natural wollastonite (CaSiO3), milled to a particle size distribution consistent with that of Portland cement, could indeed fit this bill. The use of mineral wollastonite as a cementitious material would potentially eliminate the CO2 emitted during cement production altogether, and store an additional 250 kg of CO2 during concrete curing. However, it was recognized that mineral wollastonite was not available in volumes that could meaningfully impact the carbon footprint associated with the cement and concrete industries. At this crucial juncture, DE-FE0004222 was redirected to use a synthetic version of wollastonite, hereafter referred to as Solidia Cement™, which could be manufactured in conventional cement making facilities. This approach enables the new cementitious material to be made using existing cement industry raw material supply chains, capital equipment, and distribution channels. It would also offer faster and more complete access to the concrete marketplace. The latter phases of the Technical Evaluation, conducted with Solidia Cement made in research rotary kilns, would demonstrate that industrially viable CO2-curing practices were possible. Prototypes of full-scale precast concrete products such as pavers, concrete masonry units, railroad ties, hollow

  12. Effect of headspace CO2 concentration on toxin production by Clostridium botulinum in MAP, irradiated fresh pork

    International Nuclear Information System (INIS)

    Lambert, A.D.; Smith, J.P.; Dodds, K.L.


    The effects of five initial levels of CO2 (15, 30, 45, 60, and 75%) and three irradiation doses (0, 0.5, and 1.0 kGy) on toxin production by Clostridium botulinum in inoculated fresh pork were studied using factorial design experiments. Headspace CO2 levels increased in all samples during storage at 15 degrees C. In most treatments, spoilage preceded toxigenesis. Toxin production occurred faster in samples initially packaged with 15 to 30% of CO2 while higher levels of CO2 (45-75%) delayed toxin production. Low-dose irradiation delayed toxin production at all levels of CO2 in the package headspace. Contrary to expectations, including a CO2 absorbent in the package enhanced toxin production by C. botulinum. This was attributed to production of H2 by the CO2 absorbent, possibly resulting in a decrease in the oxido-reduction potential of the meat

  13. A review on optimization production and upgrading biogas through CO2 removal using various techniques. (United States)

    Andriani, Dian; Wresta, Arini; Atmaja, Tinton Dwi; Saepudin, Aep


    Biogas from anaerobic digestion of organic materials is a renewable energy resource that consists mainly of CH4 and CO2. Trace components that are often present in biogas are water vapor, hydrogen sulfide, siloxanes, hydrocarbons, ammonia, oxygen, carbon monoxide, and nitrogen. Considering the biogas is a clean and renewable form of energy that could well substitute the conventional source of energy (fossil fuels), the optimization of this type of energy becomes substantial. Various optimization techniques in biogas production process had been developed, including pretreatment, biotechnological approaches, co-digestion as well as the use of serial digester. For some application, the certain purity degree of biogas is needed. The presence of CO2 and other trace components in biogas could affect engine performance adversely. Reducing CO2 content will significantly upgrade the quality of biogas and enhancing the calorific value. Upgrading is generally performed in order to meet the standards for use as vehicle fuel or for injection in the natural gas grid. Different methods for biogas upgrading are used. They differ in functioning, the necessary quality conditions of the incoming gas, and the efficiency. Biogas can be purified from CO2 using pressure swing adsorption, membrane separation, physical or chemical CO2 absorption. This paper reviews the various techniques, which could be used to optimize the biogas production as well as to upgrade the biogas quality.

  14. The Potential for Electrofuels Production in Sweden Utilizing Fossil and Biogenic CO2 Point Sources

    International Nuclear Information System (INIS)

    Hansson, Julia; Hackl, Roman; Taljegard, Maria; Brynolf, Selma; Grahn, Maria


    This paper maps, categorizes, and quantifies all major point sources of carbon dioxide (CO 2 ) emissions from industrial and combustion processes in Sweden. The paper also estimates the Swedish technical potential for electrofuels (power-to-gas/fuels) based on carbon capture and utilization. With our bottom-up approach using European databases, we find that Sweden emits approximately 50 million metric tons of CO 2 per year from different types of point sources, with 65% (or about 32 million tons) from biogenic sources. The major sources are the pulp and paper industry (46%), heat and power production (23%), and waste treatment and incineration (8%). Most of the CO 2 is emitted at low concentrations (<15%) from sources in the southern part of Sweden where power demand generally exceeds in-region supply. The potentially recoverable emissions from all the included point sources amount to 45 million tons. If all the recoverable CO 2 were used to produce electrofuels, the yield would correspond to 2–3 times the current Swedish demand for transportation fuels. The electricity required would correspond to about 3 times the current Swedish electricity supply. The current relatively few emission sources with high concentrations of CO 2 (>90%, biofuel operations) would yield electrofuels corresponding to approximately 2% of the current demand for transportation fuels (corresponding to 1.5–2 TWh/year). In a 2030 scenario with large-scale biofuels operations based on lignocellulosic feedstocks, the potential for electrofuels production from high-concentration sources increases to 8–11 TWh/year. Finally, renewable electricity and production costs, rather than CO 2 supply, limit the potential for production of electrofuels in Sweden.

  15. Estimation of CO2 emissions from China’s cement production: Methodologies and uncertainties

    International Nuclear Information System (INIS)

    Ke, Jing; McNeil, Michael; Price, Lynn; Khanna, Nina Zheng; Zhou, Nan


    In 2010, China’s cement output was 1.9 Gt, which accounted for 56% of world cement production. Total carbon dioxide (CO 2 ) emissions from Chinese cement production could therefore exceed 1.2 Gt. The magnitude of emissions from this single industrial sector in one country underscores the need to understand the uncertainty of current estimates of cement emissions in China. This paper compares several methodologies for calculating CO 2 emissions from cement production, including the three main components of emissions: direct emissions from the calcination process for clinker production, direct emissions from fossil fuel combustion and indirect emissions from electricity consumption. This paper examines in detail the differences between common methodologies for each emission component, and considers their effect on total emissions. We then evaluate the overall level of uncertainty implied by the differences among methodologies according to recommendations of the Joint Committee for Guides in Metrology. We find a relative uncertainty in China’s cement-related emissions in the range of 10 to 18%. This result highlights the importance of understanding and refining methods of estimating emissions in this important industrial sector. - Highlights: ► CO 2 emission estimates are critical given China’s cement production scale. ► Methodological differences for emission components are compared. ► Results show relative uncertainty in China’s cement-related emissions of about 10%. ► IPCC Guidelines and CSI Cement CO 2 and Energy Protocol are recommended

  16. Atmospheric CO2 concentration effects on rice water use and biomass production.

    Directory of Open Access Journals (Sweden)

    Uttam Kumar

    Full Text Available Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv. Crop geometry and management emulated field conditions. In two wet (WS and two dry (DS seasons, final aboveground dry weight (agdw was measured. At 390 ppmv [CO2] (current ambient level, agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE, increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv, 719 mm (390 ppmv, 928 mm (780 ppmv and 803 mm (1560 ppmv. With increasing [CO2], crop water use efficiency (WUE gradually increased from 1.59 g kg-1 (195 ppmv to 2.88 g kg-1 (1560 ppmv. Transpiration efficiency (TE measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability

  17. Effect of gas field production and CO2 injection on brine flow and salt precipitation

    NARCIS (Netherlands)

    Loeve, D.; Tambach, T.J.; Hofstee, C.; Plug, W.J.; Maas, J.


    This paper reports modeling of gas field produc-tion and CO2 injection from a theoretical reser-voir based on characteristics of the P18 gas field in the Dutch offshore, which consists of four geological deposits with different petrophysical properties. We especially focus on the brine flow during

  18. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean

    KAUST Repository

    Holding, J. M.; Duarte, Carlos M.; Sanz-Martí n, M.; Mesa, E.; Arrieta, J M; Chierici, M.; Hendriks, I.  E.; Garcí a-Corral, L. S.; Regaudie-de-Gioux, A.; Delgado, A.; Reigstad, M.; Wassmann, P.; Agusti, Susana


    production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range

  19. Biogeochemical controls on microbial CH4 and CO2 production in Arctic polygon tundra (United States)

    Zheng, J.


    Accurately simulating methane (CH4) and carbon dioxide (CO2) emissions from high latitude soils is critically important for reducing uncertainties in soil carbon-climate feedback predictions. The signature polygonal ground of Arctic tundra generates high level of heterogeneity in soil thermal regime, hydrology and oxygen availability, which limits the application of current land surface models with simple moisture response functions. We synthesized CH4 and CO2 production measurements from soil microcosm experiments across a wet-to dry permafrost degradation gradient from low-centered (LCP) to flat-centered (FCP), and high-centered polygons (HCP) to evaluate the relative importance of biogeochemical processes and their response to warming. More degraded polygon (HCP) showed much less carbon loss as CO2 or CH4, while the total CO2 production from FCP is comparable to that from LCP. Maximum CH4 production from the active layer of LCP was nearly 10 times that of permafrost and FCP. Multivariate analyses identifies gravimetric water content and organic carbon content as key predictors for CH4 production, and iron reduction as a key regulator of pH. The synthesized data are used to validate the geochemical model PHREEQC with extended anaerobic organic substrate turnover, fermentation, iron reduction, and methanogenesis reactions. Sensitivity analyses demonstrate that better representations of anaerobic processes and their pH dependency could significantly improve estimates of CH4 and CO2 production. The synthesized data suggest local decreases in CH4 production along the polygon degradation gradient, which is consistent with previous surface flux measurements. Methane oxidation occurring through the soil column of degraded polygons contributes to their low CH4 emissions as well.

  20. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations


    Santos, Roberta Machado; Voltolini, Tadeu Vinhas; Angelotti, Francislene; Aidar, Saulo de Tarso; Chaves, Agnaldo Rodrigues de Melo


    The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian) were compared. Cultivars were grown in growth chambers at three temperatures (day/night): 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × ...

  1. Supersaturation of dissolved H(2) and CO (2) during fermentative hydrogen production with N(2) sparging. (United States)

    Kraemer, Jeremy T; Bagley, David M


    Dissolved H(2) and CO(2) were measured by an improved manual headspace-gas chromatographic method during fermentative H(2) production with N(2) sparging. Sparging increased the yield from 1.3 to 1.8 mol H(2)/mol glucose converted, although H(2) and CO(2) were still supersaturated regardless of sparging. The common assumption that sparging increases the H(2) yield because of lower dissolved H(2) concentrations may be incorrect, because H(2) was not lowered into the range necessary to affect the relevant enzymes. More likely, N(2) sparging decreased the rate of H(2) consumption via lower substrate concentrations.

  2. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration

    KAUST Repository

    Zhu, Xiuping


    Mineral carbonation can be used for CO2 sequestration, but the reaction rate is slow. In order to accelerate mineral carbonation, acid generated in a microbial electrolysis desalination and chemical-production cell (MEDCC) was examined to dissolve natural minerals rich in magnesium/calcium silicates (serpentine), and the alkali generated by the same process was used to absorb CO2 and precipitate magnesium/calcium carbonates. The concentrations of Mg2+ and Ca2+ dissolved from serpentine increased 20 and 145 times by using the acid solution. Under optimal conditions, 24mg of CO2 was absorbed into the alkaline solution and 13mg of CO2 was precipitated as magnesium/calcium carbonates over a fed-batch cycle (24h). Additionally, the MEDCC removed 94% of the COD (initially 822mg/L) and achieved 22% desalination (initially 35g/L NaCl). These results demonstrate the viability of this process for effective CO2 sequestration using renewable organic matter and natural minerals. © 2014 Elsevier Ltd.

  3. Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective. (United States)

    García-Palacios, Pablo; Vandegehuchte, Martijn L; Shaw, E Ashley; Dam, Marie; Post, Keith H; Ramirez, Kelly S; Sylvain, Zachary A; de Tomasel, Cecilia Milano; Wall, Diana H


    In recent years, there has been an increase in research to understand how global changes' impacts on soil biota translate into altered ecosystem functioning. However, results vary between global change effects, soil taxa, and ecosystem processes studied, and a synthesis of relationships is lacking. Therefore, here we initiate such a synthesis to assess whether the effect size of global change drivers (elevated CO2, N deposition, and warming) on soil microbial abundance is related with the effect size of these drivers on ecosystem functioning (plant biomass, soil C cycle, and soil N cycle) using meta-analysis and structural equation modeling. For N deposition and warming, the global change effect size on soil microbes was positively associated with the global change effect size on ecosystem functioning, and these relationships were consistent across taxa and ecosystem processes. However, for elevated CO2, such links were more taxon and ecosystem process specific. For example, fungal abundance responses to elevated CO2 were positively correlated with those of plant biomass but negatively with those of the N cycle. Our results go beyond previous assessments of the sensitivity of soil microbes and ecosystem processes to global change, and demonstrate the existence of general links between the responses of soil microbial abundance and ecosystem functioning. Further we identify critical areas for future research, specifically altered precipitation, soil fauna, soil community composition, and litter decomposition, that are need to better quantify the ecosystem consequences of global change impacts on soil biodiversity. © 2014 John Wiley & Sons Ltd.

  4. Membraneless laminar flow cell for electrocatalytic CO2 reduction with liquid product separation

    International Nuclear Information System (INIS)

    Monroe, Morgan M; Lobaccaro, Peter; Lum, Yanwei; Ager, Joel W


    The production of liquid fuel products via electrochemical reduction of CO 2 is a potential path to produce sustainable fuels. However, to be practical, a separation strategy is required to isolate the fuel-containing electrolyte produced at the cathode from the anode and also prevent the oxidation products (i.e. O 2 ) from reaching the cathode. Ion-conducting membranes have been applied in CO 2 reduction reactors to achieve this separation, but they represent an efficiency loss and can be permeable to some product species. An alternative membraneless approach is developed here to maintain product separation through the use of a laminar flow cell. Computational modelling shows that near-unity separation efficiencies are possible at current densities achievable now with metal cathodes via optimization of the spacing between the electrodes and the electrolyte flow rate. Laminar flow reactor prototypes were fabricated with a range of channel widths by 3D printing. CO 2 reduction to formic acid on Sn electrodes was used as the liquid product forming reaction, and the separation efficiency for the dissolved product was evaluated with high performance liquid chromatography. Trends in product separation efficiency with channel width and flow rate were in qualitative agreement with the model, but the separation efficiency was lower, with a maximum value of 90% achieved. (paper)

  5. Carbon Dioxide Production Responsibility on the Basis of comparing in Situ and mean CO2 Atmosphere Concentration Data


    Mavrodiev, S. Cht.; Pekevski, L.; Vachev, B.


    The method is proposed for estimation of regional CO2 and other greenhouses and pollutants production responcibility. The comparison of CO2 local emissions reduction data with world CO2 atmosphere data will permit easy to judge for overall effect in curbing not only global warming but also chemical polution.

  6. CO2 emissions from the production and combustion of fuel ethanol from corn

    International Nuclear Information System (INIS)

    Marland, G.; Turhollow, A.F.


    This paper deals with the carbon dioxide fluxes associated with the use of one biomass fuel, ethanol derived from corn. In a sustainable agricultural system, there is no net CO 2 flux to the atmosphere from the corn itself but there is a net CO 2 flux due to the fossil-fuel supplements currently used to produce and process corn. A comparison between ethanol from corn and gasoline from crude oil becomes very complex because of the variability of corn yield, the lack of available data on corn processing, and the complexity of treating the multiple products from corn processing. When the comparison is made on an energy content basis only, with no consideration of how the products are to be used, and at the margin of the current U.S. energy system, it appears that there is a net CO 2 saving associated with ethanol from corn. This net saving in CO 2 emissions may be as large as 40% or as small as 20%, depending on how one chooses to evaluate the by-product credits. This analysis also demonstrates that the frequently posed question, whether the energy inputs to ethanol exceed the energy outputs, would not be an over-riding consideration even if it were true, because most of the inputs are as coal and natural gas, whereas the output is as a high-quality liquid fuel. (author)

  7. Closing CO2 Loop in Biogas Production: Recycling Ammonia As Fertilizer. (United States)

    He, Qingyao; Yu, Ge; Tu, Te; Yan, Shuiping; Zhang, Yanlin; Zhao, Shuaifei


    We propose and demonstrate a novel system for simultaneous ammonia recovery, carbon capture, biogas upgrading, and fertilizer production in biogas production. Biogas slurry pretreatment (adjusting the solution pH, turbidity, and chemical oxygen demand) plays an important role in the system as it significantly affects the performance of ammonia recovery. Vacuum membrane distillation is used to recover ammonia from biogas slurry at various conditions. The ammonia removal efficiency in vacuum membrane distillation is around 75% regardless of the ammonia concentration of the biogas slurry. The recovered ammonia is used for CO 2 absorption to realize simultaneous biogas upgrading and fertilizer generation. CO 2 absorption performance of the recovered ammonia (absorption capacity and rate) is compared with a conventional model absorbent. Theoretical results on biogas upgrading are also provided. After ammonia recovery, the treated biogas slurry has significantly reduced phytotoxicity, improving the applicability for agricultural irrigation. The novel concept demonstrated in this study shows great potential in closing the CO 2 loop in biogas production by recycling ammonia as an absorbent for CO 2 absorption associated with producing fertilizers.

  8. Reduce, reuse, recycle: Acceptance of CO_2-utilization for plastic products

    International Nuclear Information System (INIS)

    Heek, Julia van; Arning, Katrin; Ziefle, Martina


    Global warming is a central threat for today's society caused by greenhouse gas emissions, mostly carbon dioxide emissions. Carbon dioxide capture and utilization (CCU) is a promising approach to reduce emissions and the use of expensive and limited fossil resources. Applying CCU, carbon dioxide (CO_2) can be incorporated as raw material during the manufacture of plastic products. While most of the studies address technical feasibilities, hardly any systematic research on public perception and acceptance of those specific products exists so far. This study empirically investigates the acceptance of CCU plastic products (mattress as example). First, interviews with experts and lay people revealed critical acceptance factors (CO_2 proportion, saving of fossil resources, disposal conditions, perceived health complaints). Their relative importance was detailed in two consecutive conjoint studies. Study 1 revealed disposal conditions and saving of fossil resources as essential for product selection, while the products’ CO_2 proportion was less important. In study 2, potential health complaints were integrated as well as individual levels of domain knowledge and risk perception, which significantly affected acceptance of CCU products. Recommendations concerning communication strategies for policy and industry were derived. - Highlights: • Study provides insights into the acceptance of specific CCU products. • Disposal conditions and savings of fossil resource are main drivers of acceptance. • Concerns about potential health effects act as major barrier especially for laypeople. • Perceived knowledge and risk perception affect CCU product acceptance. • Communication strategy recommendations for policy and industry are derived.

  9. High temporal resolution ecosystem CH4, CO2 and H2O flux data measured with a novel chamber technique (United States)

    Steenberg Larsen, Klaus; Riis Christiansen, Jesper


    switching automatically between transparent and darkened mode enabling for separation of light-sensitive and light-indifferent processes in chambers. In a pilot study we measured hourly fluxes of CO2, H2O and CH4 continuously for two weeks in Danish Calluna vulgaris (common heather) heathland (Larsen et al. 2011). We will present an analysis of the novel, high-frequency data of CH4 fluxes under light and dark conditions, assess the advantages and limitations of the experimental setup and recommend future improvements of the technology involved. References: Carter, M.S., Larsen, K.S., et al. 2012. Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands: responses to climatic and environmental changes. Biogeosciences 3739-3755. Christiansen, J.R., Korhonen, J.F.J., et al. 2011. Assessing the effects of chamber placement, manual sampling and headspace mixing on CH4 fluxes in a laboratory experiment. Plant and Soil 343, 171-185. Christiansen, J.R., Outhwaite, J., et al. 2015. Comparison of CO2, CH4 and N2O soil-atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography. Agricultural and Forest Meteorology 211-212, 48-57. Creelman, C., Nickerson, N., Risk, D., 2013. Quantifying Lateral Diffusion Error in Soil Carbon Dioxide Respiration Estimates using Numerical Modeling. Soil Science Society of America Journal 77, 699-708. Larsen, K.S., Andresen, L.C., et al. 2011. Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments. Global Change Biology 17, 1884-1899. Pihlatie, M.K., Christiansen, J.R., et al. 2013. Comparison of static chambers to measure CH4 emissions from soils. Agricultural and Forest Meteorology 171-172, 124-136.

  10. Temperature dependence of bioelectrochemical CO2 conversion and methane production with a mixed-culture biocathode. (United States)

    Yang, Hou-Yun; Bao, Bai-Ling; Liu, Jing; Qin, Yuan; Wang, Yi-Ran; Su, Kui-Zu; Han, Jun-Cheng; Mu, Yang


    This study evaluated the effect of temperature on methane production by CO 2 reduction during microbial electrosynthesis (MES) with a mixed-culture biocathode. Reactor performance, in terms of the amount and rate of methane production, current density, and coulombic efficiency, was compared at different temperatures. The microbial properties of the biocathode at each temperature were also analyzed by 16S rRNA gene sequencing. The results showed that the optimum temperature for methane production from CO 2 reduction in MES with a mixed-culture cathode was 50°C, with the highest amount and rate of methane production of 2.06±0.13mmol and 0.094±0.01mmolh -1 , respectively. In the mixed-culture biocathode MES, the coulombic efficiency of methane formation was within a range of 19.15±2.31% to 73.94±2.18% due to by-product formation at the cathode, including volatile fatty acids and hydrogen. Microbial analysis demonstrated that temperature had an impact on the diversity of microbial communities in the biofilm that formed on the MES cathode. Specifically, the hydrogenotrophic methanogen Methanobacterium became the predominant archaea for methane production from CO 2 reduction, while the abundance of the aceticlastic methanogen Methanosaeta decreased with increased temperature. Copyright © 2017. Published by Elsevier B.V.

  11. Artificial versus Natural Reuse of CO2 for DME Production: Are We Any Closer?

    Directory of Open Access Journals (Sweden)

    Mariano Martín


    Full Text Available This work uses a mathematical optimization approach to analyze and compare facilities that either capture carbon dioxide (CO2 artificially or use naturally captured CO2 in the form of lignocellulosic biomass toward the production of the same product, dimethyl ether (DME. In nature, plants capture CO2 via photosynthesis in order to grow. The design of the first process discussed here is based on a superstructure optimization approach in order to select technologies that transform lignocellulosic biomass into DME. Biomass is gasified; next, the raw syngas must be purified using reforming, scrubbing, and carbon capture technologies before it can be used to directly produce DME. Alternatively, CO2 can be captured and used to produce DME via hydrogenation. Hydrogen (H2 is produced by splitting water using solar energy. Facilities based on both photovoltaic (PV solar or concentrated solar power (CSP technologies have been designed; their monthly operation, which is based on solar availability, is determined using a multi-period approach. The current level of technological development gives biomass an advantage as a carbon capture technology, since both water consumption and economic parameters are in its favor. However, due to the area required for growing biomass and the total amount of water consumed (if plant growing is also accounted for, the decision to use biomass is not a straightforward one.

  12. Reducing CO2 Emissions in the Production of Porous Fired Clay Bricksks

    Directory of Open Access Journals (Sweden)

    Mikuláš ŠVEDA


    Full Text Available A plan to reduce CO2 emissions is a priority these days. Brick industry contributes to the increase of these emissions mainly through the use of combustible pore-forming agents such as sawdust, cellulose, and coal sludge. These agents are used to improve the thermal insulation properties of brick products, and the suppliers regularly increase the prices of these agents based on their high consumption. Therefore, in an effort to reduce raw material expenses and CO2 emissions, brick manufacturers are looking for new possibilities while maintaining the quality of their products. This article discusses the possibility of using industrially manufactured product Vuppor as an additive as a replacement for combustible pore-forming agents. The presence of this additive in the fired clay body increases the proportion of pores, especially with a size range between 0.1 and 5 µm, having a positive impact on the reduction of its thermal conductivity. With a 0.5 wt.% dose of Vuppor additive, the brick production costs and thermal conductivity can be reduced by 20 % and 12 %, respectively, while also achieving reductions in CO2 emissions over 60 %. Consequently, the combustible pore-forming agents can be used in a more environmentally friendly manner, for example in the furniture industry, the biogas production, and the like.DOI:

  13. Modelling global nitrogen export to ground and surface water from natural ecosystems: impact of N deposition, climate, and CO2 concentration (United States)

    Braakhekke, Maarten; Rebel, Karin; Dekker, Stefan; van Beek, Rens; Bierkens, Marc; Smith, Ben; Wassen, Martin


    For large regions in the world strong increases in atmospheric nitrogen (N) deposition are predicted as a result of emissions from fossil fuel combustion and food production. This will cause many previously N limited ecosystems to become N saturated, leading to increased export to ground and surface water and negative impacts on the environment and human health. However, precise N export fluxes are difficult to predict. Due to its strong link to carbon, N in vegetation and soil is also determined by productivity, as affected by rising atmospheric CO2 concentration and temperature, and denitrification. Furthermore, the N concentration of water delivered to streams depends strongly on local hydrological conditions. We aim to study how N delivery to ground and surface water is affected by changes in environmental factors. To this end we are developing a global dynamic modelling system that integrates representations of N cycling in vegetation and soil, and N delivery to ground and surface water. This will be achieved by coupling the dynamic global vegetation model LPJ-GUESS, which includes representations of N cycling, as well as croplands and pasture, to the global water balance model PCR-GLOBWB, which simulates surface runoff, interflow, groundwater recharge, and baseflow. This coupling will allow us to trace N across different systems and estimate the input of N into the riverine system which can be used as input for river biogeochemical models. We will present large scale estimates of N leaching and transport to ground and surface water for natural ecosystems in different biomes, based on a loose coupling of the two models. Furthermore, by means of a factorial model experiment we will explore how these fluxes are influenced by N deposition, temperature, and CO2 concentration.

  14. Biogeochemical modeling of CO2 and CH4 production in anoxic Arctic soil microcosms (United States)

    Tang, Guoping; Zheng, Jianqiu; Xu, Xiaofeng; Yang, Ziming; Graham, David E.; Gu, Baohua; Painter, Scott L.; Thornton, Peter E.


    Soil organic carbon turnover to CO2 and CH4 is sensitive to soil redox potential and pH conditions. However, land surface models do not consider redox and pH in the aqueous phase explicitly, thereby limiting their use for making predictions in anoxic environments. Using recent data from incubations of Arctic soils, we extend the Community Land Model with coupled carbon and nitrogen (CLM-CN) decomposition cascade to include simple organic substrate turnover, fermentation, Fe(III) reduction, and methanogenesis reactions, and assess the efficacy of various temperature and pH response functions. Incorporating the Windermere Humic Aqueous Model (WHAM) enables us to approximately describe the observed pH evolution without additional parameterization. Although Fe(III) reduction is normally assumed to compete with methanogenesis, the model predicts that Fe(III) reduction raises the pH from acidic to neutral, thereby reducing environmental stress to methanogens and accelerating methane production when substrates are not limiting. The equilibrium speciation predicts a substantial increase in CO2 solubility as pH increases, and taking into account CO2 adsorption to surface sites of metal oxides further decreases the predicted headspace gas-phase fraction at low pH. Without adequate representation of these speciation reactions, as well as the impacts of pH, temperature, and pressure, the CO2 production from closed microcosms can be substantially underestimated based on headspace CO2 measurements only. Our results demonstrate the efficacy of geochemical models for simulating soil biogeochemistry and provide predictive understanding and mechanistic representations that can be incorporated into land surface models to improve climate predictions.

  15. On the mechanism of high product selectivity for HCOOH using Pb in CO2 electroreduction. (United States)

    Back, Seoin; Kim, Jun-Hyuk; Kim, Yong-Tae; Jung, Yousung


    While achieving high product selectivity is one of the major challenges of the CO2 electroreduction technology in general, Pb is one of the few examples with high selectivity that produces formic acid almost exclusively (versus H2, CO, or other byproducts). In this work, we study the mechanism of CO2 electroreduction reactions using Pb to understand the origin of high formic acid selectivity. In particular, we first assess the proton-assisted mechanism proposed in the literature using density functional calculations and find that it cannot fully explain the previous selectivity experiments for the Pb electrode. We then suggest an alternative proton-coupled-electron-transfer mechanism consistent with existing observations, and further validate a new mechanism by experimentally measuring and comparing the onset potentials for CO2 reduction vs. H2 production. We find that the origin of a high selectivity of the Pb catalyst for HCOOH production over CO and H2 lies in the strong O-affinitive and weak C-, H-affinitive characteristics of Pb, leading to the involvement of the *OCHO species as a key intermediate to produce HCOOH exclusively and preventing unwanted H2 production at the same time.

  16. Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization

    DEFF Research Database (Denmark)

    Pan, Xiaofang; Angelidaki, Irini; Alvarado-Morales, Merlin


    For evaluating the methanogenesis from typical methanogenic precursors (formate, acetate and H-2/CO2), CH4 production kinetics were investigated at 37 +/- 1 degrees C in batch anaerobic digestion tests and stimulated by modified Gompertz model. The results showed that maximum methanation rate from...... formate, acetate and H-2/CO2 were 19.58 +/- 0.49, 42.65 +/- 1.17 and 314.64 +/- 3.58 N mL/gVS/d in digested manure system and 6.53 +/- 0.31, 132.04 +/- 3.96 and 640.16 +/- 19.92 N mL/gVS/d in sewage sludge system during second generation incubation. Meanwhile the model could not fit well in granular...... sludge system, while the rate of formate methanation was faster than from H-2/CO2 and acetate. Considering both the kinetic results and microbial assay we could conclude that H-2/CO2 methanation was the fastest methanogenic step in digested manure and sewage sludge system with Methanomicrobiales...

  17. Gross primary production of a semiarid grassland is enhanced by six years of exposure to elevated atmospheric CO2, warming, and irrigation. (United States)

    Ryan, E.; Ogle, K.; Peltier, D.; Williams, D. G.; Pendall, E.


    The goal of this study was to quantify interannual variation of gross primary production (GPP) and evaluate potential drivers of GPP with global change using the Prairie Heating and CO2 Enrichment (PHACE) experiment in semiarid grassland in southeastern Wyoming. PHACE consists of the treatments: control, warming only, elevated CO2 (eCO2) only, eCO2 and warming, and irrigation only. We expected that GPP would be most strongly influenced by interannual variability in precipitation under all PHACE treatments, soil water availability under eCO2, and nitrogen availability. GPP data were obtained from paired measurements of net ecosystem exchange (NEE) and ecosystem respiration (Reco; GPP = Reco - NEE) made on 2-4 week intervals over six growing seasons (2007-2012). Soil temperature (T), soil water content (SWC), vapor pressure deficit (VPD), and photosynthetically active radiation (PAR) were continuously recorded at the plot (T, SWC) and site (VPD, PAR) scales. Annual, plot-level aboveground plant nitrogen content (N) was measured during peak biomass. We fit a non-linear light-response model to the GPP data within a Bayesian framework, and modeled the maximum GPP rate (Gmax) and canopy light-use efficiency (Q) as functions of N and current and antecedent SWC, T, and VPD. The model fit the GPP data well (R2 = 0.64), and regardless of the PHACE treatment the most important drivers of GPP were N (for Gmax), VPD (Gmax and Q), antecedent T (Gmax), and antecedent VPD (Q). Model simulations predicted that annual GPP increased on average by about 16% with eCO2, 14% with warming, 12% with eCO2 and warming, and 23% with irrigation. For four of the six years, annual GPP was significantly affected by either eCO2 alone or when combined with warming. The increase in annual GPP under irrigation was similar to the increase under eCO2 during a dry year (2012), but irrigation stimulated GPP to a greater degree than eCO2 during wet years (2008, 2009). Hence, increases in GPP under eCO2

  18. Amazon forest ecosystem responses to elevated atmospheric CO2 and alterations in nutrient availability: filling the gaps with model-experiment integration

    Directory of Open Access Journals (Sweden)

    Florian eHofhansl


    Full Text Available The impacts of elevated CO2 (eCO2 and alterations in nutrient availability on the carbon (C storage capacity and resilience of the Amazon forest remain highly uncertain. Carbon dynamics are controlled by multiple eco-physiological processes responding to environmental change, but we lack solid experimental evidence, hampering theory development and thus representation in ecosystem models. Here, we present two ecosystem-scale manipulation experiments, to be carried out in the Amazon, that examine tropical ecosystem responses to eCO2 and nutrient addition and thus will elucidate the representation of crucial ecological processes by ecosystem models. We highlight current gaps in our understanding of tropical ecosystem responses to projected global changes in light of the eco-physiological assumptions considered by current ecosystem models. We conclude that a more detailed process-based representation of the spatial (e.g. soil type; plant functional type and temporal (seasonal and inter-annual variation diversity of tropical forests is needed to enhance model predictions of ecosystem responses to projected global environmental change.

  19. BioCO2 - a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. (United States)

    Skjånes, Kari; Lindblad, Peter; Muller, Jiri


    Many areas of algae technology have developed over the last decades, and there is an established market for products derived from algae, dominated by health food and aquaculture. In addition, the interest for active biomolecules from algae is increasing rapidly. The need for CO(2) management, in particular capture and storage is currently an important technological, economical and global political issue and will continue to be so until alternative energy sources and energy carriers diminish the need for fossil fuels. This review summarizes in an integrated manner different technologies for use of algae, demonstrating the possibility of combining different areas of algae technology to capture CO(2) and using the obtained algal biomass for various industrial applications thus bringing added value to the capturing and storage processes. Furthermore, we emphasize the use of algae in a novel biological process which produces H(2) directly from solar energy in contrast to the conventional CO(2) neutral biological methods. This biological process is a part of the proposed integrated CO(2) management scheme.

  20. Production of [11C]CO2 with gas target at low proton energies

    International Nuclear Information System (INIS)

    Sansaloni, Francesc; Lagares, Juan Ignacio; Llop, Jordi; Arce, Pedro; Díaz, Carlos; Pérez-Morales, José Manuel


    Nowadays the demand and the installation of self-shielded low-energy cyclotrons is growing, allowing the use of 11 C in many more centers. The aim of this study was the design of a new target and the evaluation of the production of 11 C as [ 11 C]CO 2 at low proton energies. The target was coupled to an IBA Cyclone-18/9 and the energy was decreased to 4–16 MeV. The newly designed target allowed the production of [ 11 C]CO 2 at different proton energies, and the results suggest that the cyclotron energy of Cyclone-18/9 is slightly higher than the nominal 18 MeV

  1. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux (United States)

    A. Christopher Oishi; Sari Palmroth; Kurt H. Johnsen; Heather R. McCarthy; Ram. Oren


    Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity,...

  2. Caprock Integrity during Hydrocarbon Production and CO2 Injection in the Goldeneye Reservoir (United States)

    Salimzadeh, Saeed; Paluszny, Adriana; Zimmerman, Robert


    Carbon Capture and Storage (CCS) is a key technology for addressing climate change and maintaining security of energy supplies, while potentially offering important economic benefits. UK offshore, depleted hydrocarbon reservoirs have the potential capacity to store significant quantities of carbon dioxide, produced during power generation from fossil fuels. The Goldeneye depleted gas condensate field, located offshore in the UK North Sea at a depth of ~ 2600 m, is a candidate for the storage of at least 10 million tons of CO2. In this research, a fully coupled, full-scale model (50×20×8 km), based on the Goldeneye reservoir, is built and used for hydro-carbon production and CO2 injection simulations. The model accounts for fluid flow, heat transfer, and deformation of the fractured reservoir. Flow through fractures is defined as two-dimensional laminar flow within the three-dimensional poroelastic medium. The local thermal non-equilibrium between injected CO2 and host reservoir has been considered with convective (conduction and advection) heat transfer. The numerical model has been developed using standard finite element method with Galerkin spatial discretisation, and finite difference temporal discretisation. The geomechanical model has been implemented into the object-oriented Imperial College Geomechanics Toolkit, in close interaction with the Complex Systems Modelling Platform (CSMP), and validated with several benchmark examples. Fifteen major faults are mapped from the Goldeneye field into the model. Modal stress intensity factors, for the three modes of fracture opening during hydrocarbon production and CO2 injection phases, are computed at the tips of the faults by computing the I-Integral over a virtual disk. Contact stresses -normal and shear- on the fault surfaces are iteratively computed using a gap-based augmented Lagrangian-Uzawa method. Results show fault activation during the production phase that may affect the fault's hydraulic conductivity

  3. CO2 Energy Reactor - Integrated Mineral Carbonation: Perspectives on Lab-Scale Investigation and Products Valorization


    Rafael M Santos; Pol CM Knops; Keesjan L Rijnsburger; Yi Wai eChiang


    To overcome the challenges of mineral CO2 sequestration, Innovation Concepts B.V. is developing a unique proprietary gravity pressure vessel (GPV) reactor technology and has focussed on generating reaction products of high economic value. The GPV provides intense process conditions through hydrostatic pressurization and heat exchange integration that harvests exothermic reaction energy, thereby reducing energy demand of conventional reactor designs, in addition to offering other benefits. In ...

  4. Long-term effects of elevated atmospheric CO2 on species composition and productivity of a southern African C4 dominated grassland in the vicinity of a CO2 exhalation.

    NARCIS (Netherlands)

    Stock, W.D.; Ludwig, F.; Morrow, C.; Midgley, G.F.; Wand, S.J.E.; Allsopp, N.; Bell, T.L.


    We describe the long-term effects of a CO2 exhalation, created more than 70 years ago, on a natural C4 dominated sub-tropical grassland in terms of ecosystem structure and functioning. We tested whether long-term CO2 enrichment changes the competitive balance between plants with C3 and C4

  5. Production of hydrogen through the carbonation-calcination reaction applied to CH4/CO2 mixtures

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Corradetti, A.; Desideri, U.


    The production of hydrogen combined with carbon capture represents a possible option for reducing CO 2 emissions in atmosphere and anthropogenic greenhouse effect. Nowadays the worldwide hydrogen production is based mainly on natural gas reforming, but the attention of the scientific community is focused also on other gas mixtures with significant methane content. In particular mixtures constituted mainly by methane and carbon dioxide are extensively used in energy conversion applications, as they include land-fill gas, digester gas and natural gas. The present paper addresses the development of an innovative system for hydrogen production and CO 2 capture starting from these mixtures. The plant is based on steam methane reforming, coupled with the carbonation and calcination reactions for CO 2 absorption and desorption, respectively. A thermodynamic approach is proposed to investigate the plant performance in relation to the CH 4 content in the feeding gas. The results suggest that, in order to optimize the hydrogen purity and the efficiency, two different methodologies can be adopted involving both the system layout and operating parameters. In particular such methodologies are suitable for a methane content, respectively, higher and lower than 65%

  6. Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: effects of climate and management. (United States)

    Wohlfahrt, Georg; Hammerle, Albin; Haslwanter, Alois; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander


    The role and relative importance of climate and cutting for the seasonal and inter-annual variability of the net ecosystem CO 2 (NEE) of a temperate mountain grassland was investigated. Eddy covariance CO 2 flux data and associated measurements of the green area index and the major environmental driving forces acquired during 2001-2006 at the study site Neustift (Austria) were analyzed. Driven by three cutting events per year which kept the investigated grassland in a stage of vigorous growth, the seasonal variability of NEE was primarily modulated by gross primary productivity (GPP). The role of environmental parameters in modulating the seasonal variability of NEE was obscured by the strong response of GPP to changes in the amount of green area, as well as the cutting-mediated decoupling of phenological development and the seasonal course of climate drivers. None of the climate and management metrics examined was able to explain the inter-annual variability of annual NEE. This is thought to result from (1) a high covariance between GPP and ecosystem respiration (R eco ) at the annual time scale which results in a comparatively small inter-annual variation of NEE, (2) compensating effects between carbon exchange during and outside the management period, and (3) changes in the biotic response to rather than the climate variables per se. GPP was more important in modulating inter-annual variations in NEE in spring and before the first and second cut, while R eco explained a larger fraction of the inter-annual variability of NEE during the remaining, in particular the post-cut, periods.

  7. Comprehensive ecosystem model-experiment synthesis using multiple datasets at two temperate forest free-air CO2 enrichment experiments: model performance and compensating biases

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Anthony P [ORNL; Hanson, Paul J [ORNL; DeKauwe, Martin G [Macquarie University; Medlyn, Belinda [Macquarie University; Zaehle, S [Max Planck Institute for Biogeochemistry; Asao, Shinichi [Colorado State University, Fort Collins; Dietze, Michael [University of Illinois, Urbana-Champaign; Hickler, Thomas [Goethe University, Frankfurt, Germany; Huntinford, Chris [Centre for Ecology and Hydrology, Wallingford, United Kingdom; Iversen, Colleen M [ORNL; Jain, Atul [University of Illinois, Urbana-Champaign; Lomas, Mark [University of Sheffield; Luo, Yiqi [University of Oklahoma; McCarthy, Heather R [Duke University; Parton, William [Colorado State University, Fort Collins; Prentice, I. Collin [Macquarie University; Thornton, Peter E [ORNL; Wang, Shusen [Canada Centre for Remote Sensing (CCRS); Wang, Yingping [CSIRO Marine and Atmospheric Research; Warlind, David [Lund University, Sweden; Weng, Ensheng [University of Oklahoma, Norman; Warren, Jeffrey [ORNL; Woodward, F. Ian [University of Sheffield; Oren, Ram [Duke University; Norby, Richard J [ORNL


    Free Air CO2 Enrichment (FACE) experiments provide a remarkable wealth of data to test the sensitivities of terrestrial ecosystem models (TEMs). In this study, a broad set of 11 TEMs were compared to 22 years of data from two contrasting FACE experiments in temperate forests of the south eastern US the evergreen Duke Forest and the deciduous Oak Ridge forest. We evaluated the models' ability to reproduce observed net primary productivity (NPP), transpiration and Leaf Area index (LAI) in ambient CO2 treatments. Encouragingly, many models simulated annual NPP and transpiration within observed uncertainty. Daily transpiration model errors were often related to errors in leaf area phenology and peak LAI. Our analysis demonstrates that the simulation of LAI often drives the simulation of transpiration and hence there is a need to adopt the most appropriate of hypothesis driven methods to simulate and predict LAI. Of the three competing hypotheses determining peak LAI (1) optimisation to maximise carbon export, (2) increasing SLA with canopy depth and (3) the pipe model the pipe model produced LAI closest to the observations. Modelled phenology was either prescribed or based on broader empirical calibrations to climate. In some cases, simulation accuracy was achieved through compensating biases in component variables. For example, NPP accuracy was sometimes achieved with counter-balancing biases in nitrogen use efficiency and nitrogen uptake. Combined analysis of parallel measurements aides the identification of offsetting biases; without which over-confidence in model abilities to predict ecosystem function may emerge, potentially leading to erroneous predictions of change under future climates.

  8. Oxygen isotope anomaly in tropospheric CO2 and implications for CO2 residence time in the atmosphere and gross primary productivity. (United States)

    Liang, Mao-Chang; Mahata, Sasadhar; Laskar, Amzad H; Thiemens, Mark H; Newman, Sally


    The abundance variations of near surface atmospheric CO 2 isotopologues (primarily 16 O 12 C 16 O, 16 O 13 C 16 O, 17 O 12 C 16 O, and 18 O 12 C 16 O) represent an integrated signal from anthropogenic/biogeochemical processes, including fossil fuel burning, biospheric photosynthesis and respiration, hydrospheric isotope exchange with water, and stratospheric photochemistry. Oxygen isotopes, in particular, are affected by the carbon and water cycles. Being a useful tracer that directly probes governing processes in CO 2 biogeochemical cycles, Δ 17 O (=ln(1 + δ 17 O) - 0.516 × ln(1 + δ 18 O)) provides an alternative constraint on the strengths of the associated cycles involving CO 2 . Here, we analyze Δ 17 O data from four places (Taipei, Taiwan; South China Sea; La Jolla, United States; Jerusalem, Israel) in the northern hemisphere (with a total of 455 measurements) and find a rather narrow range (0.326 ± 0.005‰). A conservative estimate places a lower limit of 345 ± 70 PgC year -1 on the cycling flux between the terrestrial biosphere and atmosphere and infers a residence time of CO 2 of 1.9 ± 0.3 years (upper limit) in the atmosphere. A Monte Carlo simulation that takes various plant uptake scenarios into account yields a terrestrial gross primary productivity of 120 ± 30 PgC year -1 and soil invasion of 110 ± 30 PgC year -1 , providing a quantitative assessment utilizing the oxygen isotope anomaly for quantifying CO 2 cycling.

  9. Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO2 (United States)

    Donald R. Zak; Kurt S. Pregitzer; Mark E. Kubiske; Andrew J. Burton


    The accumulation of anthropogenic CO2 in the Earth's atmosphere, and hence the rate of climate warming, is sensitive to stimulation of plant growth by higher concentrations of atmospheric CO2. Here, we synthesise data from a field experiment in which three developing northern forest communities have been exposed to...

  10. Abiotic and seasonal control of soil-produced CO2 efflux in karstic ecosystems located in Oceanic and Mediterranean climates (United States)

    Garcia-Anton, Elena; Cuezva, Soledad; Fernandez-Cortes, Angel; Alvarez-Gallego, Miriam; Pla, Concepcion; Benavente, David; Cañaveras, Juan Carlos; Sanchez-Moral, Sergio


    This study characterizes the processes involved in seasonal CO2 exchange between soils and shallow underground systems and explores the contribution of the different biotic and abiotic sources as a function of changing weather conditions. We spatially and temporally investigated five karstic caves across the Iberian Peninsula, which presented different microclimatic, geologic and geomorphologic features. The locations present Mediterranean and Oceanic climates. Spot air sampling of CO2 (g) and δ13CO2 in the caves, soils and outside atmospheric air was periodically conducted. The isotopic ratio of the source contribution enhancing the CO2 concentration was calculated using the Keeling model. We compared the isotopic ratio of the source in the soil (δ13Cs-soil) with that in the soil-underground system (δ13Cs-system). Although the studied field sites have different features, we found common seasonal trends in their values, which suggests a climatic control over the soil air CO2 and the δ13CO2 of the sources of CO2 in the soil (δ13Cs-soil) and the system (δ13Cs-system). The roots respiration and soil organic matter degradation are the main source of CO2 in underground environments, and the inlet of the gas is mainly driven by diffusion and advection. Drier and warmer conditions enhance soil-exterior CO2 interchange, reducing the CO2 concentration and increasing the δ13CO2 of the soil air. Moreover, the isotopic ratio of the source of CO2 in both the soil and the system tends to heavier values throughout the dry and warm season. We conclude that seasonal variations of soil CO2 concentration and its 13C/12C isotopic ratio are mainly regulated by thermo-hygrometric conditions. In cold and wet seasons, the increase of soil moisture reduces soil diffusivity and allows the storage of CO2 in the subsoil. During dry and warm seasons, the evaporation of soil water favours diffusive and advective transport of soil-derived CO2 to the atmosphere. The soil CO2 diffusion is

  11. Products of Dark CO2 Fixation in Pea Root Nodules Support Bacteroid Metabolism 1 (United States)

    Rosendahl, Lis; Vance, Carroll P.; Pedersen, Walther B.


    Products of the nodule cytosol in vivo dark [14C]CO2 fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv “Bodil”) nodules. The distribution of the metabolites of the dark CO2 fixation products was compared in effective (fix+) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix−) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The 14C incorporation from [14C]CO2 was about threefold greater in the wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the 14C label in the cytosol was found in organic acids in both symbioses. Malate comprised about half of the total cytosol organic acid content on a molar basis, and more than 70% of the cytosol radioactivity in the organic acid fraction was detected in malate in both symbioses. Most of the remaining 14C was contained in the amino acid fraction of the cytosol in both symbioses. More than 70% of the 14C label found in the amino acids of the cytosol was incorporated in aspartate, which on a molar basis comprised only about 1% of the total amino acid pool in the cytosol. The extensive 14C labeling of malate and aspartate from nodule dark [14C]CO2 fixation is consistent with the role of phosphoenolpyruvate carboxlase in nodule dark CO2 fixation. Bacteroids from the effective wild-type symbiosis accumulated sevenfold more 14C than did the dicarboxylic acid transport defective bacteroids. The bacteroids of the effective MNF 300 symbiosis contained the largest proportion of the incorporated 14C in the organic acids, whereas ineffective MNF 3080 bacteroids mainly contained 14C in the amino acid fraction. In both symbioses a larger proportion of the bacteroid 14C label was detected in malate and aspartate

  12. Spectral Analysis of CO2 Corrosion Product Scales on 13Cr Tubing Steel

    International Nuclear Information System (INIS)

    Guan-fa, Lin; Zhen-quan, Bai; Yao-rong, Feng; Xun-yuan, Xu


    CO 2 corrosion product scales formed on 13 Cr tubing steel in autoclave and in the simulated corrosion environment of oil field are investigated in the paper. The surface and cross-section profiles of the scales were observed by scanning electron microscopy (SEM), the chemical compositions of the scales were analyzed using energy dispersion analyzer of X-ray (EDAX), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to confirm the corrosion mechanism of the 13 Cr steel in the simulated CO 2 corrosion environment. The results show that the corrosion scales are formed by the way of fashion corrosion, consist mainly of four elements, i.e. Fe, Cr, C and O, and with a double-layer structure, in which the surface layer is constituted of bulky and incompact crystals of FeCO 3 , and the inner layer is composed of compact fine FeCO 3 crystals and amorphous Cr(OH) 3 . Because of the characteristics of compactness and ionic permeating selectivity of the inner layer of the corrosion product scales, 13 Cr steel is more resistant in CO 2 corrosion environment

  13. Production of activated carbons from coffee endocarp by CO2 and steam activation

    International Nuclear Information System (INIS)

    Nabais, Joao M. Valente; Nunes, Pedro; Carrott, Peter J.M.; Ribeiro Carrott, M. Manuela L.; Garcia, A. Macias; Diaz-Diez, M.A.


    In this work the use of coffee endocarp as precursor for the production of activated carbons by steam and CO 2 was studied. Activation by both methods produces activated carbons with small external areas and microporous structures having very similar mean pore widths. The activation produces mainly primary micropores and only a small volume of larger micropores. The CO 2 activation leads to samples with higher BET surface areas and pore volumes when compared with samples produced by steam activation and with similar burn-off value. All the activated carbons produced have basic characteristics with point of zero charge between 10 and 12. By FTIR it was possible to identify the formation on the activated carbon's surface of several functional groups, namely ether, quinones, lactones, ketones, hydroxyls (free and phenol); pyrones and Si-H bonds. (author)

  14. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Roberta Machado Santos


    Full Text Available The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian were compared. Cultivars were grown in growth chambers at three temperatures (day/night: 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × 2 factorial arrangement with three replications. There were interactions between buffel grass cultivars and air temperatures on leaf elongation rate (LER, leaf appearance rate (LAR, leaf lifespan (LL and senescence rate (SR, whereas cultivars vs. carbon dioxide concentration affected forage mass (FM, root mass (RM, shoot/root ratio, LL and SR. Leaf elongation rate and SR were higher as the air temperature was raised. Increasing air temperature also promoted an increase in LAR, except for West Australian. High CO2 concentration provided greater SR of plants, except for Biloela. Cultivar West Australian had higher FM in relation to Biloela and Aridus when the CO2 concentration was increased to 550 µmol mol-1. West Australian was the only cultivar that responded with more forage mass when it was exposed to higher carbon dioxide concentrations, whereas Aridus had depression in forage mass. The increase in air temperatures affects morphogenetic responses of buffel grass, accelerating its vegetative development without increasing forage mass. Elevated carbon dioxide concentration changes productive responses of buffel grass.

  15. Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H2 Production and CO2 Sequestration.

    KAUST Repository

    Zhu, Xiuping; Hatzell, Marta C; Logan, Bruce E


    Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H2 gas using only renewable energy sources (organic matter and salinity gradient). Using acetate (0.82 g/L) as a fuel for microorganisms to generate electricity in the anode chamber (liquid volume of 28 mL), 0.45 mmol of acid and 1.09 mmol of alkali were produced at production efficiencies of 35% and 86%, respectively, along with 10 mL of H2 gas. Serpentine dissolution was enhanced 17-87-fold using the acid solution, with approximately 9 mL of CO2 absorbed and 4 mg of CO2 fixed as magnesium or calcium carbonates. The operational costs, based on mineral digging and grinding, and water pumping, were estimated to be only $25/metric ton of CO2 fixed as insoluble carbonates. Considering the additional economic benefits of H2 generation and possible wastewater treatment, this method may be a cost-effective and environmentally friendly method for CO2 sequestration.

  16. Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H2 Production and CO2 Sequestration.

    KAUST Repository

    Zhu, Xiuping


    Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H2 gas using only renewable energy sources (organic matter and salinity gradient). Using acetate (0.82 g/L) as a fuel for microorganisms to generate electricity in the anode chamber (liquid volume of 28 mL), 0.45 mmol of acid and 1.09 mmol of alkali were produced at production efficiencies of 35% and 86%, respectively, along with 10 mL of H2 gas. Serpentine dissolution was enhanced 17-87-fold using the acid solution, with approximately 9 mL of CO2 absorbed and 4 mg of CO2 fixed as magnesium or calcium carbonates. The operational costs, based on mineral digging and grinding, and water pumping, were estimated to be only $25/metric ton of CO2 fixed as insoluble carbonates. Considering the additional economic benefits of H2 generation and possible wastewater treatment, this method may be a cost-effective and environmentally friendly method for CO2 sequestration.


    Energy Technology Data Exchange (ETDEWEB)

    C. Henry Copeland; Paul Pier; Samantha Whitehead; Paul Enlow; Richard Strickland; David Behel


    This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented. Algal growth can be limited by several factors, including the level of bicarbonate available for photosynthesis, the pH of the growth solution, nutrient levels, and the size of the cell population, which determines the available space for additional growth. In order to supply additional CO2 to increase photosynthesis and algal biomass production, fly ash reactor has been demonstrated to increase the available CO2 in solution above the limits that are achievable with dissolved gas alone. The amount of dissolved CO2 can be used to control pH for optimum growth. Periodic harvesting of algae can be used to maintain algae in the exponential, rapid growth phase. An 800 liter scale up demonstrated that larger scale production is possible. The larger experiment demonstrated that indirect addition of CO2 is feasible and produces significantly less stress on the algal system. With better harvesting methods, nutrient management, and carbon dioxide management, an annual biomass harvest of about 9,000 metric tons per square kilometer (36 MT per acre) appears to be feasible. To sequester carbon, the algal biomass needs to be placed in a permanent location. If drying is undesirable, the biomass will eventually begin to aerobically decompose. It was demonstrated that algal biomass is a suitable feed to an anaerobic digester to produce methane

  18. Net ecosystem exchange of CO2 and H2O fluxes from irrigated grain sorghum and maize in the Texas High Plains (United States)

    Net ecosystem exchange (NEE) of carbon dioxide (CO2) and water vapor (H2O) fluxes from irrigated grain sorghum (Sorghum bicolor L. Moench) and maize (Zea mays L.) fields in the Texas High Plains were quantified using the eddy covariance (EC) technique during 2014-2016 growing seasons and examined in...

  19. Steelmaking plants: towards lower energy consumption and lower CO2 production using more electricity

    International Nuclear Information System (INIS)

    Nicolle, R.


    Production processes of integrated steel plants, mostly based on coal as an energy source, produce about 2 tons of CO 2 per ton of steel. As specific CO 2 production has to be decreased by 20% in the mid-term (2020), immediate action is required to further decrease the specific energy consumption. The integrated plant is not energy self-sufficient as extra electricity must be bought from outside, but on the other hand, produces an excess of process gas that has to be used within the plant. Optimisation of the use of the internally produced gases is a key issue as either they are burned at the power plant with a conversion yield to electricity of about 40% and often much lower, or might be valued in the plant internal heat exchangers with a much higher efficiency such as ∼90% in the hot stoves or ∼65% or more in the present reheating furnaces. This paper shows that using the high-value coke oven gas as a chemical reactant (for DRI production) leads to significant extra metal production. From a global viewpoint, this extra metal production is almost carbon-free, as it requires only electricity for its manufacture. (author)

  20. Growing season variability of net ecosystem CO2 exchange and evapotranspiration of a sphagnum mire in the broad-leaved forest zone of European Russia

    International Nuclear Information System (INIS)

    Olchev, A; Volkova, E; Karataeva, T; Novenko, E


    The spatial and temporal variability of net ecosystem exchange (NEE) of CO 2 and evapotranspiration (ET) of a karst-hole sphagnum peat mire situated at the boundary between broad-leaved and forest–steppe zones in the central part of European Russia in the Tula region was described using results from field measurements. NEE and ET were measured using a portable measuring system consisting of a transparent ventilated chamber combined with an infrared CO 2 /H 2 O analyzer, LI-840A (Li-Cor, USA) along a transect from the southern peripheral part of the mire to its center under sunny clear-sky weather conditions in the period from May to September of 2012 and in May 2013. The results of the field measurements showed significant spatial and temporal variability of NEE and ET that was mainly influenced by incoming solar radiation and ground water level. The seasonal patterns of NEE and ET within the mire were quite different. During the entire growing season the central part of the mire was a sink of CO 2 for the atmosphere. NEE reached maximal values in June–July (−6.8 ± 4.2 μmol m −2 s −1 ). The southern peripheral part of the mire, due to strong shading by the surrounding forest, was a sink of CO 2 for the atmosphere in June–July only. ET reached maximal values in the well-lighted central parts of the mire in May (0.34 ± 0.20 mm h −1 ) mainly because of high air and surface temperatures and the very wet upper peat horizon and sphagnum moss. Herbaceous species made the maximum contribution to the total gross primary production (GPP) in both the central and the peripheral parts of the mire. The contribution of sphagnum to the total GPP of these plant communities was relatively small and ranged on sunny days of July–August from −1.1 ± 1.1 mgC g −1 of dry weight (DW) per hour in the peripheral zone of the mire to −0.6 ± 0.2 mgC g −1 DW h −1 at the mire center. The sphagnum layer made the maximum contribution to total ET at the mire center (0

  1. Increasing summer net CO2 uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI

    Directory of Open Access Journals (Sweden)

    L. R. Welp


    Full Text Available Warmer temperatures and elevated atmospheric CO2 concentrations over the last several decades have been credited with increasing vegetation activity and photosynthetic uptake of CO2 from the atmosphere in the high northern latitude ecosystems: the boreal forest and arctic tundra. At the same time, soils in the region have been warming, permafrost is melting, fire frequency and severity are increasing, and some regions of the boreal forest are showing signs of stress due to drought or insect disturbance. The recent trends in net carbon balance of these ecosystems, across heterogeneous disturbance patterns, and the future implications of these changes are unclear. Here, we examine CO2 fluxes from northern boreal and tundra regions from 1985 to 2012, estimated from two atmospheric inversions (RIGC and Jena. Both used measured atmospheric CO2 concentrations and wind fields from interannually variable climate reanalysis. In the arctic zone, the latitude region above 60° N excluding Europe (10° W–63° E, neither inversion finds a significant long-term trend in annual CO2 balance. The boreal zone, the latitude region from approximately 50–60° N, again excluding Europe, showed a trend of 8–11 Tg C yr−2 over the common period of validity from 1986 to 2006, resulting in an annual CO2 sink in 2006 that was 170–230 Tg C yr−1 larger than in 1986. This trend appears to continue through 2012 in the Jena inversion as well. In both latitudinal zones, the seasonal amplitude of monthly CO2 fluxes increased due to increased uptake in summer, and in the arctic zone also due to increased fall CO2 release. These findings suggest that the boreal zone has been maintaining and likely increasing CO2 sink strength over this period, despite browning trends in some regions and changes in fire frequency and land use. Meanwhile, the arctic zone shows that increased summer CO2 uptake, consistent with strong greening trends, is offset by

  2. Long-term CO2 fertilization increases vegetation productivity and has little effect on hydrological partitioning in tropical rainforests (United States)

    Yang, Yuting; Donohue, Randall J.; McVicar, Tim R.; Roderick, Michael L.; Beck, Hylke E.


    Understanding how tropical rainforests respond to elevated atmospheric CO2 concentration (eCO2) is essential for predicting Earth's carbon, water, and energy budgets under future climate change. Here we use long-term (1982-2010) precipitation (P) and runoff (Q) measurements to infer runoff coefficient (Q/P) and evapotranspiration (E) trends across 18 unimpaired tropical rainforest catchments. We complement that analysis by using satellite observations coupled with ecosystem process modeling (using both "top-down" and "bottom-up" perspectives) to examine trends in carbon uptake and relate that to the observed changes in Q/P and E. Our results show there have been only minor changes in the satellite-observed canopy leaf area over 1982-2010, suggesting that eCO2 has not increased vegetation leaf area in tropical rainforests and therefore any plant response to eCO2 occurs at the leaf level. Meanwhile, observed Q/P and E also remained relatively constant in the 18 catchments, implying an unchanged hydrological partitioning and thus approximately conserved transpiration under eCO2. For the same period, using a top-down model based on gas exchange theory, we predict increases in plant assimilation (A) and light use efficiency (ɛ) at the leaf level under eCO2, the magnitude of which is essentially that of eCO2 (i.e., 12% over 1982-2010). Simulations from 10 state-of-the-art bottom-up ecosystem models over the same catchments also show that the direct effect of eCO2 is to mostly increase A and ɛ with little impact on E. Our findings add to the current limited pool of knowledge regarding the long-term eCO2 impacts in tropical rainforests.

  3. Climate dependence of the CO2 fertilization effect on terrestrial net primary production

    International Nuclear Information System (INIS)

    Alexandrov, G.A.; Yamagata, Y.; Oikawa, T.


    The quantitative formulation of the fertilization effect of CO 2 enrichment on net primary production (NPP) introduced by Keeling and Bacastow in 1970s (known as Keeling's formula) has been recognized as a summary of experimental data and has been used in various assessments of the industrial impact on atmospheric chemistry. Nevertheless, the magnitude of the formula's key coefficient, the so-called growth factor, has remained open to question. Some of the global carbon cycle modelers avoid this question by tuning growth factor and choosing the value that fits the observed course of atmospheric CO 2 changes. However, for mapping terrestrial sinks induced by the CO 2 fertilization effect one needs a geographical pattern of the growth factor rather than its globally averaged value. The earlier approach to this problem involved formulating the climate dependence of the growth factor and the derivation of its global pattern from climatic variables (whose geographical distribution is known). We use a process-based model (TsuBiMo) for this purpose and derive the values of growth factor for major biomes for comparison our approach with the earlier studies. Contrary to the earlier prevailing opinion, TsuBiMo predicts that these values decrease with mean annual temperature (excluding biomes of limited water supply). We attribute this result to the effect of light limitation caused by mutual shading inside a canopy, which was considered earlier as unimportant, and conclude that current hypotheses about CO 2 fertilization effect (and thus projections of the related carbon sink) are very sensitive to the choice of driving forces taken into account

  4. Hydrogen production from food wastes and gas post-treatment by CO2 adsorption

    International Nuclear Information System (INIS)

    Redondas, V.; Gómez, X.; García, S.; Pevida, C.; Rubiera, F.; Morán, A.; Pis, J.J.


    Highlights: ► The dark fermentation process of food wastes was studied over an extended period. ► Decreasing the HRT of the process negatively affected the specific gas production. ► Adsorption of CO 2 was successfully attained using a biomass type activated carbon. ► H 2 concentration in the range of 85–95% was obtained for the treated gas-stream. - Abstract: The production of H 2 by biological means, although still far from being a commercially viable proposition, offers great promise for the future. Purification of the biogas obtained may lead to the production of highly concentrated H 2 streams appropriate for industrial application. This research work evaluates the dark fermentation of food wastes and assesses the possibility of adsorbing CO 2 from the gas stream by means of a low cost biomass-based adsorbent. The reactor used was a completely stirred tank reactor run at different hydraulic retention times (HRTs) while the concentration of solids of the feeding stream was kept constant. The results obtained demonstrate that the H 2 yields from the fermentation of food wastes were affected by modifications in the hydraulic retention time (HRT) due to incomplete hydrolysis. The decrease in the duration of fermentation had a negative effect on the conversion of the substrate into soluble products. This resulted in a lower amount of soluble substrate being available for metabolisation by H 2 producing microflora leading to a reduction in specific H 2 production. Adsorption of CO 2 from a gas stream generated from the dark fermentation process was successfully carried out. The data obtained demonstrate that the column filled with biomass-derived activated carbon resulted in a high degree of hydrogen purification. Co-adsorption of H 2 S onto the activated carbon also took place, there being no evidence of H 2 S present in the bio-H 2 exiting the column. Nevertheless, the concentration of H 2 S was very low, and this co-adsorption did not affect the CO 2

  5. Does Export Product Quality Matter for CO2 Emissions? Evidence from China


    Gozgor, Giray; Can, Muhlis


    This paper re-estimates the environmental Kuznets curve over the period 1971–2010 in China. To this end, it uses the unit root tests with one structural break and the autoregressive-distributed lag (ARDL) estimations. The special role is given to the impacts of export product quality and energy consumption on CO2 emissions in the empirical models. The paper finds that the environmental Kuznets curve hypothesis is valid in China. It also observes the positive effect from energy consumption to ...

  6. Highly efficient photochemical HCOOH production from CO2 and water using an inorganic system

    Directory of Open Access Journals (Sweden)

    Satoshi Yotsuhashi


    Full Text Available We have constructed a system that uses solar energy to react CO2 with water to generate formic acid (HCOOH at an energy conversion efficiency of 0.15%. It consists of an AlGaN/GaN anode photoelectrode and indium (In cathode that are electrically connected outside of the reactor cell. High energy conversion efficiency is realized due to a high quantum efficiency of 28% at 300 nm, attributable to efficient electron-hole separation in the semiconductor's heterostructure. The efficiency is close to that of natural photosynthesis in plants, and what is more, the reaction product (HCOOH can be used as a renewable energy source.

  7. [Effects of drying and wetting cycles induced by tides on net ecosystem exchange of CO2 over a salt marsh in the Yellow River Delta, China. (United States)

    He, Wen Jun; Han, Guang Xuan; Xu, Yan Ning; Zhang, Xi Tao; Wang, An Dong; Che, Chun Guang; Sun, Bao Yu; Zhang, Xiao Shuai


    As a unique hydrological characteristic, the tidal action can strongly affect carbon balance in a salt marsh despite their short duration. Using the eddy covariance technique, we measured the net ecosystem CO 2 exchange (NEE) and its environmental factors and tidal change over a salt marsh in the Yellow River Delta. It aimed to investigate the effect of tidal process and drying and wetting cycles induced by tides on NEE. The results showed that the tidal process promoted the daytime CO 2 uptake, but it didn't clearly affect the nighttime CO 2 release. Tidal inundation was a major factor influencing daytime NEE. The diurnal change of NEE showed a distinct U-shaped curve on both drought and wet stages, but not with substantial variation in its amplitude during the drought stage. The drying and wetting cycles enhanced the absorption of daytime CO 2 . Under drought stage, the mean of the maximum photosynthetic rate (A max ), apparent quantum yield (α) and ecosystem respiration (R eco ) were higher than those in wet stage. In addition, the drying and wetting cycles suppressed the nighttime CO 2 release from the salt marsh but increased its temperature sensitivity.

  8. Yeast cell metabolism investigated by CO{_2} production and soft X-ray irradiation (United States)

    Masini, A.; Batani, D.; Previdi, F.; Milani, M.; Pozzi, A.; Turcu, E.; Huntington, S.; Takeyasu, H.


    Results obtained using a new technique for studying cell metabolism are presented. The technique, consisting in CO2 production monitoring, has been applied to Saccharomyces cerevisiae yeast cells. Also the cells were irradiated using the soft X-ray laser-plasma source at Rutherford Appleton Laboratory with the aim of producing a damage of metabolic processes at the wall level, responsible for fermentation, without great interference with respiration, taking place in mitochondria, and DNA activity. The source was calibrated with PIN diodes and X-ray spectrometers and used Teflon stripes as target, emitting X-rays at about 0.9 keV, with a very low penetration in biological material. X-ray doses delivered to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. Immediately after irradiation, the damage to metabolic activity was measured again by monitoring CO2 production. Results showed a general reduction in gas production by irradiated samples, together with non-linear and non-monotone response to dose. There was also evidence of oscillations in cell metabolic activity and of X-ray induced changes in oscillation frequency.

  9. Relative estimates of TCA cycle pool size from 14CO2 production profiles

    International Nuclear Information System (INIS)

    Kelleher, J.K.; Cesta, M.L.; Holleran, A.L.


    In metabolic and isotopic steady state, the rate of 14 CO 2 production by TCA cycle intermediates labeled at different positions is linear. However, before the system reaches isotopic steady state, the rate of 14 CO 2 production is non-linear. The x-intercept extrapolated from the linear phase indicates the turnover rate of all metabolic pools the tracer must pass through. By exposing identical systems to 14 C succinate labeled in different positions, the contribution of TCA cycle pools to the non-linear phase may be considered. Specifically, the extrapolated x-intercept for [2,3 14 C] succinate will be greater than the x-intercept for [1,4 14 C] succinate if the TCA cycle pools are a contributing factor to the non-linear phase. The authors have used this method to analyze pyruvate oxidation in AS 30D hepatoma cells. They found that the extrapolated x-intercepts for the two tracers were identical. This indicates that the non-linear phase resulted from equilibration of the tracer with pools prior to entering the TCA cycle, i.e. lactate. Using this technique, it may be possible to estimate the variations in TCA cycle pool sizes in vivo

  10. Production of CO2 in crude oil bioremediation in clay soil

    Directory of Open Access Journals (Sweden)

    Sandro José Baptista


    Full Text Available The aim of the present work was to evaluate the biodegradation of petroleum hydrocarbons in clay soil a 45-days experiment. The experiment was conducted using an aerobic fixed bed reactor, containing 300g of contaminated soil at room temperature with an air rate of 6 L/h. The growth medium was supplemented with 2.5% (w/w (NH42SO4 and 0.035% (w/w KH2PO4. Biodegradation of the crude oil in the contaminated clay soil was monitored by measuring CO2 production and removal of organic matter (OM, oil and grease (OandG, and total petroleum hydrocarbons (TPH, measured before and after the 45-days experiment, together with total heterotrophic and hydrocarbon-degrading bacterial count. The best removals of OM (50%, OandG (37% and TPH (45% were obtained in the bioreactors in which the highest CO2 production was achieved.O objetivo do trabalho foi avaliar a biodegradação de petróleo em solo argiloso durante 45 dias de ensaios. Os ensaios de biodegradação foram conduzidos em biorreatores aeróbios de leito fixo, com 300 g de solo contaminado, à temperatura ambiente e com uma vazão de ar de 6 L/h. As deficiências nutricionais foram corrigidas com 2,5% (p/p (NH42SO4 e com 0,035% (p/p KH2PO4. O monitoramento foi realizado em função da produção de CO2, da remoção de matéria orgânica (OM, de óleos e graxas (OandG e de hidrocarbonetos totais de petróleo (TPH, além bactérias heterotróficas totais (BHT e hidrocarbonoclásticas (BHc, no início e após 45 dias. Nos biorreatores onde houve maior crescimento de bactérias hidrocarbonoclásticas e maior produção de CO2, obteve-se os melhores percentuais de remoções de MO (50%, OandG (37% e TPH (45%.

  11. Novel CO2 Separation and Methanation for Oxygen and Fuel Production, Phase I (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes a novel efficient, compact, and lightweight MicrolithREG-based CO2 separator and methanation reactor to separate CO2 from...

  12. Evaluation of the influence of CO2 on hydrogen production by Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Willquist, K.; Claassen, P.A.M.; Niel, van E.W.J.


    Stripping gas is generally used to improve hydrogen yields in fermentations. Since CO2 is relatively easy to separate from hydrogen it could be an interesting stripping gas. However, a higher partial CO2 pressure is accompanied with an increased CO2 uptake in the liquid, where it hydrolyses and

  13. Modeling soil CO2 production and transport to investigate the intra-day variability of surface efflux and soil CO2 concentration measurements in a scots pine forest (Pinus Sylvestris, L.)


    Goffin, Stéphanie; Wylock, Christophe; Haut, Benoît; Maier, Martin; Longdoz, Bernard; Aubinet, Marc


    Aimed:The main aim of this study is to improve the mechanistic understanding of soil CO2 efflux (Fs), especially its temporal variation at short-time scales, by investigating, through modeling, which underlying process among CO2 production and its transport up to the atmosphere is responsible for observed intra-day variation of Fs and soil CO2 concentration [CO2].Methods:In this study, a measurement campaign of Fs and vertical soil [CO2] profiles was conducted in a Scots Pine Forest soil in H...

  14. Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Ro-Poulsen, H.; Mikkelsen, Teis Nørgaard


    Global change factors affect plant carbon uptake in concert. In order to investigate the response directions and potential interactive effects, and to understand the underlying mechanisms, multifactor experiments are needed. The focus of this study was on the photosynthetic response to elevated CO2...... not decrease gs, but stimulated Pn via increased Ci. The T×CO2 synergistically increased plant carbon uptake via photosynthetic capacity up-regulation in early season and by better access to water after rewetting. The effects of the combination of drought and elevated CO2 depended on soil water availability......, with additive effects when the soil water content was low and D×CO2 synergistic stimulation of Pn after rewetting. The photosynthetic responses appeared to be highly influenced by growth pattern. The grass has opportunistic water consumption, and a biphasic growth pattern allowing for leaf dieback at low soil...

  15. Effects of climate change, CO2 and O3 on wheat productivity in Eastern China, singly and in combination (United States)

    Tao, Fulu; Feng, Zhaozhong; Tang, Haoye; Chen, Yi; Kobayashi, Kazuhiko


    Air pollution and climate change are increasing threats to agricultural production and food security. Extensive studies have focused on the effect of climate change, but the interactive effects of multiple global change factors are poorly understood. Here, we incorporate the interactions between climate change, carbon dioxide (CO2) and ozone (O3) into an eco-physiological mechanistic model based on three years of O3 Free-Air Concentration Elevation (O3-FACE) experiments. We then investigate the effects of climate change, elevated CO2 concentration ([CO2]) and rising O3 concentration ([O3]) on wheat growth and productivity in eastern China in 1996-2005 (2000s) and 2016-2025 (2020s) under two climate change scenarios, singly and in combination. We find the interactive effects of climate change, CO2 and O3 on wheat productivity have spatially explicit patterns; the effect of climate change dominates the general pattern, which is however subject to the large uncertainties of climate change scenarios. Wheat productivity is estimated to increase by 2.8-9.0% due to elevated [CO2] however decline by 2.8-11.7% due to rising [O3] in the 2020s, relative to the 2000s. The combined effects of CO2 and O3 are less than that of O3 only, on average by 4.6-5.2%, however with O3 damage outweighing CO2 benefit in most of the region. This study demonstrates a more biologically meaningful and appropriate approach for assessing the interactive effects of climate change, CO2 and O3 on crop growth and productivity. Our findings promote the understanding on the interactive effects of multiple global change factors across contrasting climate conditions, cast doubt on the potential of CO2 fertilization effect in offsetting possible negative effect of climate change on crop productivity as suggested by many previous studies.

  16. Production of Polystyrene Open-celled Microcellular Foam in Batch Process by Super Critical CO2

    Directory of Open Access Journals (Sweden)

    M.S. Enayati


    Full Text Available Open-celled foams are capable to allow the passage of fluids through their structure, because of interconnections between the open cells or bubbles and therefore these structures can be used as a membrane and filter. In thiswork, we have studied the production of polystyrene open-celled microcellular foam by using CO2 as blowing agent. To achieve such structures, it is necessary to control the stages of growth in such a way that the cells would connect to each other through the pores without any coalescence. The required processing condition to achieve open-celled structures is predictable by a model theory of opened-cell. This model suggests that at least a 130 bar saturation pressure and foaming time between 9 and 58 s are required for this system. The temperature range has been selected for to be both higher than polymer glass transition temperature and facilitating the foaming process. Experimental results in the batch foaming process has verified the model quite well. The SEM and mercury porousimetry tests show the presence of pores between the cells with open-celled structure. Experimental results show that by increasing the saturation pressure and the foaming temperature, there is a drop in the time required for open-celled structure formation. A 130 bar saturation pressure, 150o C foaming temperature and 60 s foaming time, suggest the attainment of open-celled microcellular foam based on polystyrene/CO2 system in the batch process.

  17. Coastal ecosystems, productivity and ecosystem protection: Coastal ecosystem management

    International Nuclear Information System (INIS)

    Ngoile, M.A.K.; Horrill, C.J.


    The coastal zone is a complex ecosystem under the influence of physical, chemical and biological processes. Under natural conditions these processes interact and maintain an equilibrium in the coastal ecosystem. Man makes a variety of important uses of coastal resources, ranging from harvesting of living resources, extraction of nonliving resources, and recreation, to the disposal of wastes. Man's extensive use of the oceans introduces factors which bring about an imbalance in the natural processes, and may result in harmful and hazardous effects to life hindering further use. Man's pressure on the resources of the coastal zone is already manifest and will increase manifold. This calls for an immediate solution to the protection and sustainable use of coastal resources. The current sectorized approach to the management of human activities will not solve the problem because the different resources of the coastal zone interact in such a manner that disturbances in one cause imbalance in the others. This is further complicated by the sectorized approach to research and limited communication between policy makers, managers, and scientists. This paper discusses strategies for managing coastal-resources use through an integrated approach. The coastal zone is presented as a unified ecosystem in equilibrium and shows that man's extensive use of the coastal resources destabilizes this equilibrium. Examples from the East Africa Region are presented. 15 refs, 2 figs, 3 tabs

  18. Relating Nimbus-7 37 GHz data to global land-surface evaporation, primary productivity and the atmospheric CO2 concentration (United States)

    Choudhury, B. J.


    Global observations at 37 GHz by the Nimbus-7 SMMR are related to zonal variations of land surface evaporation and primary productivity, as well as to temporal variations of atmospheric CO2 concentration. The temporal variation of CO2 concentration and the zonal variations of evaporation and primary productivity are shown to be highly correlated with the satellite sensor data. The potential usefulness of the 37-GHz data for global biospheric and climate studies is noted.

  19. Enhanced simulations of CH4 and CO2 production in permafrost-affected soils address soil moisture controls on anaerobic decomposition (United States)

    Graham, D. E.; Zheng, J.; Moon, J. W.; Painter, S. L.; Thornton, P. E.; Gu, B.; Wullschleger, S. D.


    Rapid warming of Arctic ecosystems exposes soil organic carbon (SOC) to accelerated microbial decomposition, leading to increased emissions of carbon dioxide (CO2) and methane (CH4) that have a positive feedback on global warming. The magnitude, timing, and form of carbon release will depend not only on changes in temperature, but also on biogeochemical and hydrological properties of soils. In this synthesis study, we assessed the decomposability of thawed organic carbon from active layer soils and permafrost from the Barrow Environmental Observatory across different microtopographic positions under anoxic conditions. The main objectives of this study were to (i) examine environmental conditions and soil properties that control anaerobic carbon decomposition and carbon release (as both CO2 and CH4); (ii) develop a common set of parameters to simulate anaerobic CO2 and CH4 production; and (iii) evaluate uncertainties generated from representations of pH and temperature effects in the current model framework. A newly developed anaerobic carbon decomposition framework simulated incubation experiment results across a range of soil water contents. Anaerobic CO2 and CH4 production have different temperature and pH sensitivities, which are not well represented in current biogeochemical models. Distinct dynamics of CH4 production at -2° C suggest methanogen biomass and growth rate limit activity in these near-frozen soils, compared to warmer temperatures. Anaerobic CO2 production is well constrained by the model using data-informed labile carbon pool and fermentation rate initialization to accurately simulate its temperature sensitivity. On the other hand, CH4 production is controlled by water content, methanogenesis biomass, and the presence of alternative electron acceptors, producing a high temperature sensitivity with large uncertainties for methanogenesis. This set of environmental constraints to methanogenesis is likely to undergo drastic changes due to permafrost

  20. Effect of different CO2 concentrations on biomass, pigment content, and lipid production of the marine diatom Thalassiosira pseudonana. (United States)

    Sabia, Alessandra; Clavero, Esther; Pancaldi, Simonetta; Salvadó Rovira, Joan


    The marine diatom Thalassiosira pseudonana grown under air (0.04% CO 2 ) and 1 and 5% CO 2 concentrations was evaluated to determine its potential for CO 2 mitigation coupled with biodiesel production. Results indicated that the diatom cultures grown at 1 and 5% CO 2 showed higher growth rates (1.14 and 1.29 div day -1 , respectively) and biomass productivities (44 and 48 mg AFDW L -1  day -1 ) than air grown cultures (with 1.13 div day -1 and 26 mg AFDW L -1  day -1 ). The increase of CO 2 resulted in higher cell volume and pigment content per cell of T. pseudonana. Interestingly, lipid content doubled when air was enriched with 1-5% CO 2 . Moreover, the analysis of the fatty acid composition of T. pseudonana revealed the predominance of monounsaturated acids (palmitoleic-16:1 and oleic-18:1) and a decrease of the saturated myristic acid-14:0 and polyunsaturated fatty acids under high CO 2 levels. These results suggested that T. pseudonana seems to be an ideal candidate for biodiesel production using flue gases.

  1. CO_2 emissions reduction of Chinese light manufacturing industries: A novel RAM-based global Malmquist–Luenberger productivity index

    International Nuclear Information System (INIS)

    Emrouznejad, Ali; Yang, Guo-liang


    Climate change has become one of the most challenging issues facing the world. Chinese government has realized the importance of energy conservation and prevention of the climate changes for sustainable development of China's economy and set targets for CO_2 emissions reduction in China. In China industry contributes 84.2% of the total CO_2 emissions, especially manufacturing industries. Data envelopment analysis (DEA) and Malmquist productivity (MP) index are the widely used mathematical techniques to address the relative efficiency and productivity of a group of homogenous decision making units, e.g. industries or countries. However, in many real applications, especially those related to energy efficiency, there are often undesirable outputs, e.g. the pollutions, waste and CO_2 emissions, which are produced inevitably with desirable outputs in the production. This paper introduces a novel Malmquist–Luenberger productivity (MLP) index based on directional distance function (DDF) to address the issue of productivity evolution of DMUs in the presence of undesirable outputs. The new RAM (Range-adjusted measure)-based global MLP index has been applied to evaluate CO_2 emissions reduction in Chinese light manufacturing industries. Recommendations for policy makers have been discussed. - Highlights: •CO_2 emissions reduction in Chinese light manufacturing industries are measured. •A novel RAM based Malmquist–Luenberger productivity index has been developed. •Recommendation to policy makers for reducing CO_2 reduction in China are given.

  2. Thermodynamic stability and guest distribution of CH4/N2/CO2 mixed hydrates for methane hydrate production using N2/CO2 injection

    International Nuclear Information System (INIS)

    Lim, Dongwook; Ro, Hyeyoon; Seo, Yongwon; Seo, Young-ju; Lee, Joo Yong; Kim, Se-Joon; Lee, Jaehyoung; Lee, Huen


    Highlights: • We examine the thermodynamic stability and guest distribution of CH 4 /N 2 /CO 2 mixed hydrates. • Phase equilibria of the CH 4 /N 2 /CO 2 mixed hydrates were measured to determine the thermodynamic stability. • The N 2 /CO 2 ratio of the hydrate phase is almost constant despite the enrichment of CO 2 in the hydrate phase. • 13 C NMR results indicate the preferential occupation of N 2 and CO 2 in the small and large cages of sI hydrates, respectively. - Abstract: In this study, thermodynamic stability and cage occupation behavior in the CH 4 – CO 2 replacement, which occurs in natural gas hydrate reservoirs by injecting flue gas, were investigated with a primary focus on phase equilibria and composition analysis. The phase equilibria of CH 4 /N 2 /CO 2 mixed hydrates with various compositions were measured to determine the thermodynamic stability of gas hydrate deposits replaced by N 2 /CO 2 gas mixtures. The fractional experimental pressure differences (Δp/p) with respect to the CSMGem predictions were found to range from −0.11 to −0.02. The composition analysis for various feed gas mixtures with a fixed N 2 /CO 2 ratio (4.0) shows that CO 2 is enriched in the hydrate phase, and the N 2 /CO 2 ratio in the hydrate phase is independent of the feed CH 4 fractions. Moreover, 13 C NMR measurements indicate that N 2 molecules preferentially occupy the small 5 12 cages of sI hydrates while the CO 2 molecules preferentially occupy the large 5 12 6 2 cages, resulting in an almost constant area ratio of CH 4 molecules in the large to small cages of the CH 4 /N 2 /CO 2 mixed hydrates. The overall experimental results provide a better understanding of stability conditions and guest distributions in natural gas hydrate deposits during CH 4 – flue gas replacement.

  3. A CO2 laser based system for the production of nanoscaled powders

    International Nuclear Information System (INIS)

    Kurland, H.-D.; Schindler, K.; Staupendahl, G.; Oestreich, Ch.; Loogk, M.; Mueller, E.


    Nowadays the world-wide industrial competition is increasingly determined by the use of new materials which allow optimised and in part totally new qualities of products or the production of more compact components. Thereby the importance of ultrafine ceramic powders with grain sizes of only a few nanometers rises rapidly. These powders show some interesting physical and chemical features which result from the extremely small dimensions of their particles, for example very high specific surfaces, high surface energy or special behaviour in the phase transformation. Their thermodynamic and kinetic (short diffusion lengths) parameters are mirrored in high sintering activities and hence relatively low sintering temperatures as well as very special properties of the sintered materials, especially the possibility of super plasticity. Nanoscaled powders also have a broad potential for the production of thin layers for example in the electronics industry or as part of composite materials with components of lower thermal stability. At present different technologies for the manufacturing of nanoscaled powders are intensively used and developed. In this paper a technique for the production of ceramic nanopowders by evaporation of solid starting materials with CO 2 laser radiation is presented

  4. Assessing the techno-environmental performance of CO2 utilization via dry reforming of methane for the production of dimethyl ether

    NARCIS (Netherlands)

    Schakel, Wouter|info:eu-repo/dai/nl/369280784; Oreggioni, Gabriel; Singh, Bhawna; Strømman, Anders; Ramírez, Andrea|info:eu-repo/dai/nl/284852414


    Abstract CO2 utilization is gaining attention as a greenhouse gas abatement strategy complementary to CO2 storage. This study explores the techno-environmental performance of CO2 utilization trough dry reforming of methane into syngas for the production of dimethyl ether (DME). The CO2 source is a

  5. The effect of methyl jasmonate on ethylene production and CO2 evolution in Jonagold apples

    Directory of Open Access Journals (Sweden)

    Artur Miszczak


    Full Text Available Apples cv. Jonagold were harvested at the beginning of October and stored at 0°C until treatment between the beginning of December and the end of January. Methyl jasmonate (JA-Me at the concentration of l,0, 0,5, 0,1, 0,05, and 0,01% in lanolin paste were applied to the surface ofintact apples. During five days from treatment, samples of cortex with skin (area about 2,0 cm2 were cut off at a depth of about 2 mm and used for determination of ethylene production, ACC oxidase activity and respiration determined as CO2 evolution. The production of endogenous ethylene was highest at mid-January ( 100, 280, and 250 nl/g*h at December, mid-January, and the end of January, respectively. During December and at the beginning of January, JA-Me initially ( 1 -2 days after treatment stimulated ethylene production and then the production was inhibited. The lower concentration of JA-Me caused initially the greater stimulation and then Iower inhibition of ethylene production. However, at the time of maximum production of endogenous ethylene (mid-January and later. stimulatory effect of JA-Me disappeared. The effect of various concentrations and time of application of JA-Me on ACC oxidase activity had similar trend as endogenous ethylene production. Methyl jasmonate stimulated respiration and this effect was dependent on JA-Me concentration and independent on time of application. The metabolic significance of these findings is discussed.

  6. Future production and utilisation of biomass in Sweden: potentials and CO2 mitigation

    International Nuclear Information System (INIS)

    Boerjesson, P.; Gustavsson, L.; Christersson, L.; Linder, S.


    Swedish biomass production potential could be increased significantly if new production methods, such as optimised fertilisation, were to be used. Optimised fertilisation on 25% of Swedish forest land and the use of stem wood could almost double the biomass potential from forestry compared with no fertilisation, as both logging residues and large quantities of excess stem wood not needed for industrial purposes could be used for energy purposes. Together with energy crops and straw from agriculture, the total Swedish biomass potential would be about 230 TWh/yr or half the current Swedish energy supply if the demand for stem wood for building and industrial purposes were the same as today. The new production methods are assumed not to cause any significant negative impact on the local environment. The cost of utilising stem wood produced with optimised fertilisation for energy purposes has not been analysed and needs further investigation. Besides replacing fossil fuels and, thus, reducing current Swedish CO 2 emissions by about 65%, this amount of biomass is enough to produce electricity equivalent to 20% of current power production. Biomass-based electricity is produced preferably through co-generation using district heating systems in densely populated regions, and pulp industries in forest regions. Alcohols for transportation and stand-alone power production are preferably produced in less densely populated regions with excess biomass. A high intensity in biomass production would reduce biomass transportation demands. There are uncertainties regarding the future demand for stem wood for building and industrial purposes, the amount of arable land available for energy crop production and future yields. These factors will influence Swedish biomass potential and earlier estimates of the potential vary from 15 to 125 TWh/yr. (author)

  7. Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem

    DEFF Research Database (Denmark)

    Arndal, M. F.; Schmidt, I. K.; Kongstad, J.


    growth would be matched by an increase in root nutrient uptake of NH4+-N and NO3- -N. Root growth was significantly increased by elevated CO2. The roots, however, did not fully compensate for the higher growth with a similar increase in nitrogen uptake per unit of root mass. Hence the nitrogen...... concentration in roots was decreased in elevated CO2, whereas the biomass N pool was unchanged or even increased. The higher net root production in elevated CO2 might be a strategy for the plants to cope with increased nutrient demand leading to a long-term increase in N uptake on a whole-plant basis. Drought...... reduced grass root biomass and N uptake, especially when combined with warming, but CO2 was the most pronounced main factor effect. Several significant interactions of the treatments were found, which indicates that the responses were nonadditive and that changes to multiple environmental changes cannot...

  8. Estimation of daytime net ecosystem CO2 exchange over balsam fir forests in eastern Canada : combining averaged tower-based flux measurements with remotely sensed MODIS data

    International Nuclear Information System (INIS)

    Hassan, Q.K.; Bourque, C.P.A.; Meng, F-R.


    Considerable attention has been placed on the unprecedented increases in atmospheric carbon dioxide (CO 2 ) emissions and associated changes in global climate change. This article developed a practical approach for estimating daytime net CO 2 fluxes generated over balsam fir dominated forest ecosystems in the Atlantic Maritime ecozone of eastern Canada. The study objectives were to characterize the light use efficiency and ecosystem respiration for young to intermediate-aged balsam fir forest ecosystems in New Brunswick; relate tower-based measurements of daytime net ecosystem exchange (NEE) to absorbed photosynthetically active radiation (APAR); use a digital elevation model of the province to enhance spatial calculations of daily photosynthetically active radiation and APAR under cloud-free conditions; and generate a spatial calculation of daytime NEE for a balsam fir dominated region in northwestern New Brunswick. The article identified the study area and presented the data requirements and methodology. It was shown that the seasonally averaged daytime NEE and APAR values are strongly correlated. 36 refs., 2 tabs., 10 figs

  9. Microbial Community Pathways for the Production of Volatile Fatty Acids From CO2 and Electricity

    Directory of Open Access Journals (Sweden)

    Jorge Wenzel


    Full Text Available This study aims at elucidating the metabolic pathways involved in the production of volatile fatty acids from CO2 and electricity. Two bioelectrochemical systems (BES were fed with pure CO2 (cells A and B. The cathode potential was first poised at −574 mV vs. standard hydrogen electrode (SHE and then at −756 mV vs. SHE in order to ensure the required reducing power. Despite applying similar operation conditions to both BES, they responded differently. A mixture of organic compounds (1.87 mM acetic acid, 2.30 mM formic acid, 0.43 mM propionic acid, 0.15 mM butyric acid, 0.55 mM valeric acid, and 0.62 mM ethanol was produced in cell A while mainly 1.82 mM acetic acid and 0.23 mM propionic acid were produced in cell B. The microbial community analysis performed by 16S rRNA gene pyrosequencing showed a predominance of Clostridium sp. and Serratia sp. in cell A whereas Burkholderia sp. and Xanthobacter sp. predominated in cell B. The coexistence of three metabolic pathways involved in carbon fixation was predicted. Calvin cycle was predicted in both cells during the whole experiment while Wood-Ljungdahl and Arnon-Buchanan pathways predominated in the period with higher coulombic efficiency. Metabolic pathways which transform organic acids into anabolic intermediaries were also predicted, indicating the occurrence of complex trophic interactions. These results further complicate the understanding of these mixed culture microbial processes but also expand the expectation of compounds that could potentially be produced with this technology.

  10. Effects of seawater pCO2 and temperature on calcification and productivity in the coral genus Porites spp.: an exploration of potential interaction mechanisms (United States)

    Cole, C.; Finch, A. A.; Hintz, C.; Hintz, K.; Allison, N.


    Understanding how rising seawater pCO2 and temperatures impact coral aragonite accretion is essential for predicting the future of reef ecosystems. Here, we report 2 long-term (10-11 month) studies assessing the effects of temperature (25 and 28 °C) and both high and low seawater pCO2 (180-750 μatm) on the calcification, photosynthesis and respiration of individual massive Porites spp. genotypes. Calcification rates were highly variable between genotypes, but high seawater pCO2 reduced calcification significantly in 4 of 7 genotypes cultured at 25 °C but in only 1 of 4 genotypes cultured at 28 °C. Increasing seawater temperature enhanced calcification in almost all corals, but the magnitude of this effect was seawater pCO2 dependent. The 3 °C temperature increase enhanced calcification rate on average by 3% at 180 μatm, by 35% at 260 μatm and by > 300% at 750 μatm. The rate increase at high seawater pCO2 exceeds that observed in inorganic aragonites. Responses of gross/net photosynthesis and respiration to temperature and seawater pCO2 varied between genotypes, but rates of all these processes were reduced at the higher seawater temperature. Increases in seawater temperature, below the thermal stress threshold, may mitigate against ocean acidification in this coral genus, but this moderation is not mediated by an increase in net photosynthesis. The response of coral calcification to temperature cannot be explained by symbiont productivity or by thermodynamic and kinetic influences on aragonite formation.

  11. The fate of pelagic CaCO3 production in a high CO2 ocean: a model study

    Directory of Open Access Journals (Sweden)

    C. Ethe


    Full Text Available This model study addresses the change in pelagic calcium carbonate production (CaCO3, as calcite in the model and dissolution in response to rising atmospheric CO2. The parameterization of CaCO3 production includes a dependency on the saturation state of seawater with respect to calcite. It was derived from laboratory and mesocosm studies on particulate organic and inorganic carbon production in Emiliania huxleyi as a function of pCO2. The model predicts values of CaCO3 production and dissolution in line with recent estimates. The effect of rising pCO2 on CaCO3 production and dissolution was quantified by means of model simulations forced with atmospheric CO2 increasing at a rate of 1% per year from 286 ppm to 1144 ppm over a 140 year time-period. The simulation predicts a decrease of CaCO3 production by 27%. The combined change in production and dissolution of CaCO3 yields an excess uptake of CO2 from the atmosphere by the ocean of 5.9 GtC over the period of 140 years.

  12. Peatland Woody Plant Growth Responses to Warming and Elevated CO2 in a Southern-boreal Raised Bog Ecosystem (United States)

    Phillips, J. R.; Hanson, P. J.; Warren, J.; Ward, E. J.; Brice, D. J.; Graham, J.


    Spruce and Peatland Responses Under Changing Environments (SPRUCE) is an in situ warming by elevated CO2 manipulation located in a high-carbon, spruce peatland in northern Minnesota. Warming treatments combined a 12-m diameter open topped chamber with internally recirculating warm air and soil deep heating to simulate a broad range of future warming treatments. Deep below ground soil warming rates are 0, +2.25, +4.5, +6.75, and +9 °C. Deep belowground warming was initiated in June 2014 followed by air warming in August 2015. In June 2016, elevated CO2 atmospheres (eCO2 at + 500 ppm) were added to half of the warming treatments in a regression design. Our objective was to track long-term vegetation responses to warming and eCO2. Annual tree growth is based on winter measurement of circumference of all Picea mariana and Larix laricina trees within each 113 m2 plot, automated dendrometers, terrestrial LIDAR scanning of tree heights and canopy volumes, and destructive allometry. Annual shrub growth is measured in late summer by destructive clipping in two 0.25 m2 sub-plots and separation of the current year tissues. During the first year of warming, tree basal area growth was reduced for Picea, but not Larix trees. Growth responses for the woody shrub vegetation remains highly variable with a trend towards increasing growth with warming. Elevated CO2 enhancements of growth are not yet evident in the data. Second-year results will also be reported. Long-term hypotheses for increased woody plant growth under warming include potential enhancements driven by increased nutrient availability from warming induced decomposition of surface peats.

  13. Response of potato gas exchange and productivity to phosphorus deficiency and CO2 enrichment (United States)

    The degree to which crops respond to atmospheric carbon dioxide enrichment (CO2) may be influenced by their nutrition level. While the majority of CO2 and plant nutrition studies focus on nitrogen, phosphorus (P) is also required in relatively high amounts for important crops such as potato. To de...

  14. Forest response to elevated CO2 is conserved across a broad range of productivity (United States)

    R. Norby; E. DeLucia; B. Gielen; C. Calfapietra; C. Giardina; J. King; J. Ledford; H. McCarthy; D. Moore; R. Ceulemans; P. De Angelis; A. C. Finzi; D. F. Karnosky; M. E. Kubiske; M. Lukac; K. S. Pregitzer; G. E. Scarascia-Mugnozza; W. Schlesinger and R. Oren.


    Climate change predictions derived from coupled carbon-climate models are highly dependent on assumptions about feedbacks between the biosphere and atmosphere. One critical feedback occurs if C uptake by the biosphere increases in response to the fossil-fuel driven increase in atmospheric [CO2] ("CO2 fertilization...

  15. Isolating and Quantifying the Effects of Climate and CO2 Changes (1980–2014 on the Net Primary Productivity in Arid and Semiarid China

    Directory of Open Access Journals (Sweden)

    Xia Fang


    Full Text Available Although the net primary productivity (NPP of arid/semiarid ecosystem is generally thought to be controlled by precipitation, other factors like CO2 fertilization effect and temperature change may also have important impacts, especially in the cold temperate areas of the northern China, where significant warming was reported in the recent decades. However, the impacts of climate and atmospheric CO2 changes to the NPP dynamics in the arid and semiarid areas of China (ASA-China is still unclear, hindering the development of climate adaptation strategy. Based on numeric experiments and factorial analysis, this study isolated and quantified the effects of climate and CO2 changes between 1980–2014 on ASA-China’s NPP, using the Arid Ecosystem Model (AEM that performed well in predicting ecosystems’ responses to climate/CO2 change according to our evaluation based on 21 field experiments. Our results showed that the annual variation in NPP was dominated by changes in precipitation, which reduced the regional NPP by 10.9 g·C/(m2·year. The precipitation-induced loss, however, has been compensated by the CO2 fertilization effect that increased the regional NPP by 14.9 g·C/(m2·year. The CO2 fertilization effect particularly benefited the extensive croplands in the Northern China Plain, but was weakened in the dry grassland of the central Tibetan Plateau due to suppressed plant activity as induced by a drier climate. Our study showed that the climate change in ASA-China and the ecosystem’s responses were highly heterogeneous in space and time. There were complex interactive effects among the climate factors, and different plant functional types (e.g., phreatophyte vs. non-phreatophyte could have distinct responses to similar climate change. Therefore, effective climate-adaptive strategies should be based on careful analysis of local climate pattern and understanding of the characteristic responses of the dominant species. Particularly, China

  16. Ecosystem service impacts of future changes in CO2, climate, and land use as simulated by a coupled vegetation/land-use model system (United States)

    Rabin, S. S.; Alexander, P.; Henry, R.; Anthoni, P.; Pugh, T.; Rounsevell, M.; Arneth, A.


    In a future of increasing atmospheric carbon dioxide (CO2) concentrations, changing climate, increasing human populations, and changing socioeconomic dynamics, the global agricultural system will need to adapt in order to feed the world. Global modeling can help to explore what these adaptations will look like, and their potential impacts on ecosystem services. To do so, however, the complex interconnections among the atmosphere, terrestrial ecosystems, and society mean that these various parts of the Earth system must be examined as an interconnected whole. With the goal of answering these questions, a model system has been developed that couples a biologically-representative global vegetation model, LPJ-GUESS, with the PLUMv2 land use model. LPJ-GUESS first simulates—at 0.5º resolution across the world—the potential yield of various crops and pasture under a range of management intensities for a time step given its atmospheric CO2 level and climatic forcings. These potential yield simulations are fed into PLUMv2, which uses them in conjunction with endogenous agricultural commodity demand and prices to produce land use and management inputs (fertilizer and irrigation water) at a sub-national level for the next time step. This process is performed through 2100 for a range of future climate and societal scenarios—the Representative Concentration Pathways (RCPs) and the Shared Socioeconomic Pathways (SSPs), respectively—providing a thorough exploration of possible trajectories of land use and land cover change. The land use projections produced by PLUMv2 are fed back into LPJ-GUESS to simulate the future impacts of land use change, along with increasing CO2 and climate change, on terrestrial ecosystems. This integrated analysis examines the resulting impacts on regulating and provisioning ecosystem services affecting biophysics (albedo); carbon, nitrogen, and water cycling; and the emission of biogenic volatile organic compounds (BVOCs).

  17. Hopewell Beneficial CO2 Capture for Production of Fuels, Fertilizer and Energy

    Energy Technology Data Exchange (ETDEWEB)

    UOP; Honeywell Resins & Chemicals; Honeywell Process Solutions; Aquaflow Bionomics Ltd


    For Phase 1 of this project, the Hopewell team developed a detailed design for the Small Scale Pilot-Scale Algal CO2 Sequestration System. This pilot consisted of six (6) x 135 gallon cultivation tanks including systems for CO2 delivery and control, algal cultivation, and algal harvesting. A feed tank supplied Hopewell wastewater to the tanks and a receiver tank collected the effluent from the algal cultivation system. The effect of environmental parameters and nutrient loading on CO2 uptake and sequestration into biomass were determined. Additionally the cost of capturing CO2 from an industrial stack emission at both pilot and full-scale was determined. The engineering estimate evaluated Amine Guard technology for capture of pure CO2 and direct stack gas capture and compression. The study concluded that Amine Guard technology has lower lifecycle cost at commercial scale, although the cost of direct stack gas capture is lower at the pilot scale. Experiments conducted under high concentrations of dissolved CO2 did not demonstrate enhanced algae growth rate. This result suggests that the dissolved CO2 concentration at neutral pH was already above the limiting value. Even though dissolved CO2 did not show a positive effect on biomass growth, controlling its value at a constant set-point during daylight hours can be beneficial in an algae cultivation stage with high algae biomass concentration to maximize the rate of CO2 uptake. The limited enhancement of algal growth by CO2 addition to Hopewell wastewater was due at least in part to the high endogenous CO2 evolution from bacterial degradation of dissolved organic carbon present at high levels in the wastewater. It was found that the high level of bacterial activity was somewhat inhibitory to algal growth in the Hopewell wastewater. The project demonstrated that the Honeywell automation and control system, in combination with the accuracy of the online pH, dissolved O2, dissolved CO2, turbidity, Chlorophyll A and

  18. Prediction of the viscosity reduction due to dissolved CO2 of and an elementary approach in the supercritical CO2 assisted continuous particle production of a polyester resin

    NARCIS (Netherlands)

    Nalawade, Sameer P.; Nieborg, Vincent H. J.; Picchioni, Francesco; Janssen, L. P. B. M.


    The dissolution of CO2 in a polymer causes plasticization of the polymer and hence, its viscosity is reduced. A model based on the free volume theory has been used for a polyester resin, which shows a considerable reduction in the viscosity due to dissolved M. Therefore, superctitical CO2 has been

  19. Application of a terrestrial ecosystem model (ORCHIDEE-STICS) in simulating energy and CO2 fluxes in Asian rice croplands (United States)

    Wang, X.; Piao, S.; Ciais, P.; Vuichard, N.


    Process-based terrestrial ecosystem models have shown great potentials in predicting the response of managed ecosystems to environmental changes. However, the simulated water and carbon fluxes over rice ecosystems in tropical Asia are still subject to large uncertainties, partly due to poorly constrained parameters in the models. Here, a terrestrial ecosystem model incorporating a more realistic crop module (ORCHIDEE-STICS) was calibrated against in-situ flux data and observed and remotely sensed leaf area indexes over rice ecosystems in Asia. The key parameters adjusted include maximum photosynthetic carboxylation rate (Vcmax) and electron transport rate (Vjmax), temperature sensitivity of heterotrophic respiration (Q10) and a series of critical thresholds for different crop development stages. Compared with the observations, the calibrated model more realistically simulated the seasonal and year-to-year variation of the observed water and carbon fluxes with reductions in the root mean square difference and better timing in the crop development stages. Sensitivity tests further reveal that management practices like the timing of transplanting and draining could affect the seasonal and inter-annual variation of the net carbon exchange, suggesting that the absence of explicit accounting the change of management practices in the terrestrial ecosystem models may induce large uncertainties in predicting cropland ecosystem response to future climate change.

  20. Hydrothermal Valorization of Steel Slags—Part I: Coupled H2 Production and CO2 Mineral Sequestration

    Directory of Open Access Journals (Sweden)

    Camille Crouzet


    Full Text Available A new process route for the valorization of BOF steel slags combining H2 production and CO2 mineral sequestration is investigated at 300°C (HT under hydrothermal conditions. A BOF steel slag stored several weeks outdoor on the production site was used as starting material. To serve as a reference, room temperature (RT carbonation of the same BOF steel slag has been monitored with in situ Raman spectroscopy and by measuring pH and PCO2 on a time-resolved basis. CO2 uptake under RT and HT are, respectively, 243 and 327 kg CO2/t of fresh steel slag, which add up with the 63 kg of atmospheric CO2 per ton already uptaken by the starting steel slag on the storage site. The CO2 gained by the sample at HT is bounded to the carbonation of brownmillerite. H2 yield decreased by about 30% in comparison to the same experiment performed without added CO2, due to sequestration of ferrous iron in a Mg-rich siderite phase. Ferric iron, initially present in brownmillerite, is partitioned between an Fe-rich clay mineral of saponite type and metastable hematite. Saponite is likely stabilized by the presence of Al, whereas hematite may represent a metastable product of brownmillerite carbonation. Mg-rich wüstite is involved in at least two competing reactions, i.e., oxidation into magnetite and carbonation into siderite. Results of both water-slag and water-CO2-slag experiments after 72 h are consistent with a kinetics enhancement of the former reaction when a CO2 partial pressure imposes a pH between 5 and 6. Three possible valorization routes, (1 RT carbonation prior to hydrothermal oxidation, (2 RT carbonation after hydrothermal treatment, and (3 combined HT carbonation and oxidation are discussed in light of the present results and literature data.

  1. Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity (United States)

    Deppeler, Stacy; Petrou, Katherina; Schulz, Kai G.; Westwood, Karen; Pearce, Imojen; McKinlay, John; Davidson, Andrew


    High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm) to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a) and particulate organic matter (POM) in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C), causing significant reductions in gross primary production (GPP14C), Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs) and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments ≥ 953 µatm (days 3-5), yet gross bacterial production (GBP14C) remained unchanged and cell-specific bacterial productivity (csBP14C) was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON) combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative effects on the Antarctic food web and the

  2. Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity

    Directory of Open Access Journals (Sweden)

    S. Deppeler


    Full Text Available High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a and particulate organic matter (POM in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels  ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C, causing significant reductions in gross primary production (GPP14C, Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments  ≥ 953 µatm (days 3–5, yet gross bacterial production (GBP14C remained unchanged and cell-specific bacterial productivity (csBP14C was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative

  3. Testing simulations of intra- and inter-annual variation in the plant production response to elevated CO(2) against measurements from an 11-year FACE experiment on grazed pasture. (United States)

    Li, Frank Yonghong; Newton, Paul C D; Lieffering, Mark


    Ecosystem models play a crucial role in understanding and evaluating the combined impacts of rising atmospheric CO2 concentration and changing climate on terrestrial ecosystems. However, we are not aware of any studies where the capacity of models to simulate intra- and inter-annual variation in responses to elevated CO2 has been tested against long-term experimental data. Here we tested how well the ecosystem model APSIM/AgPasture was able to simulate the results from a free air carbon dioxide enrichment (FACE) experiment on grazed pasture. At this FACE site, during 11 years of CO2 enrichment, a wide range in annual plant production response to CO2 (-6 to +28%) was observed. As well as running the full model, which includes three plant CO2 response functions (plant photosynthesis, nitrogen (N) demand and stomatal conductance), we also tested the influence of these three functions on model predictions. Model/data comparisons showed that: (i) overall the model over-predicted the mean annual plant production response to CO2 (18.5% cf 13.1%) largely because years with small or negative responses to CO2 were not well simulated; (ii) in general seasonal and inter-annual variation in plant production responses to elevated CO2 were well represented by the model; (iii) the observed CO2 enhancement in overall mean legume content was well simulated but year-to-year variation in legume content was poorly captured by the model; (iv) the best fit of the model to the data required all three CO2 response functions to be invoked; (v) using actual legume content and reduced N fixation rate under elevated CO2 in the model provided the best fit to the experimental data. We conclude that in temperate grasslands the N dynamics (particularly the legume content and N fixation activity) play a critical role in pasture production responses to elevated CO2 , and are processes for model improvement. © 2013 John Wiley & Sons Ltd.

  4. [Responses of Pinus tabulaeformis forest ecosystem in North China to climate change and elevated CO2: a simulation based on BIOME-BGC model and tree-ring data]. (United States)

    He, Jun-Jie; Peng, Xing-Yuan; Chen, Zhen-Ju; Cui, Ming-Xing; Zhang, Xian-Liang; Zhou, Chang-Hong


    Based on BIOME-BGC model and tree-ring data, a modeling study was conducted to estimate the dynamic changes of the net primary productivity (NPP) of Pinus tabulaeformis forest ecosystem in North China in 1952-2008, and explore the responses of the radial growth and NPP to regional climate warming as well as the dynamics of the NPP in the future climate change scenarios. The simulation results indicated the annual NPP of the P. tabulaeformis ecosystem in 1952-2008 fluctuated from 244.12 to 645.31 g C x m(-2) x a(-1), with a mean value of 418.6 g C x m(-2) x a(-1) The mean air temperature in May-June and the precipitation from previous August to current July were the main factors limiting the radial growth of P. tabulaeformis and the NPP of P. tabulaeformis ecosystem. In the study period, both the radial growth and the NPP presented a decreasing trend due to the regional warming and drying climate condition. In the future climate scenarios, the NPP would have positive responses to the increase of air temperature, precipitation, and their combination. The elevated CO2 would benefit the increase of the NPP, and the increment would be about 16.1% due to the CO2 fertilization. At both ecosystem and regional scales, the tree-ring data would be an ideal proxy to predict the ecosystem dynamic change, and could be used to validate and calibrate the process-based ecosystem models including BIOME-BGC.

  5. The response of soil CO2 fluxes to progressively excluding vertebrate and invertebrate herbivores depends on ecosystem type (United States)

    Anita C. Risch; Alan G. Haynes; Matt D. Busse; Flurin Filli; Martin Schütz


    Grasslands support large populations of herbivores and store up to 30% of the world’s soil carbon (C). Thus, herbivores likely play an important role in the global C cycle. However, most studies on how herbivory impacts the largest source of C released from grassland soils—soil carbon dioxide (CO2) emissions—only considered the role of large...

  6. Effect of elevated [CO2] and nutrient management on wet and dry season rice production in subtropical India

    Institute of Scientific and Technical Information of China (English)

    Sushree Sagarika Satapathy; Dillip Kumar Swain; Surendranath Pasupalak; Pratap Bhanu Singh Bhadoria


    The present experiment was conducted to evaluate the effect of elevated [CO2] with varying nutrient management on rice–rice production system. The experiment was conducted in the open field and inside open-top chambers (OTCs) of ambient [CO2] (≈390μmol L−1) and elevated [CO2] environment (25%above ambient) during wet and dry seasons in 2011–2013 at Kharagpur, India. The nutrient management included recommended doses of N, P, and K as chemical fertilizer (CF), integration of chemical and organic sources, and application of increased (25%higher) doses of CF. The higher [CO2] level in the OTC increased aboveground biomass but marginally decreased filled grains per panicle and grain yield of rice, compared to the ambient environment. However, crop root biomass was increased significantly under elevated [CO2]. With respect to nutrient management, increasing the dose of CF increased grain yield significantly in both seasons. At the recommended dose of nutrients, integrated nutrient management was comparable to CF in the wet season, but significantly inferior in the dry season, in its effect on growth and yield of rice. The [CO2] elevation in OTC led to a marginal increase in organic C and available P content of soil, but a decrease in available N content. It was concluded that increased doses of nutrients via integration of chemical and organic sources in the wet season and chemical sources alone in the dry season will minimize the adverse effect of future climate on rice production in subtropical India.

  7. Realizing CO2 emission reduction through industrial symbiosis: A cement production case study for Kawasaki


    Hashimoto, Shizuka; Fujita, Tsuyoshi; Geng, Yong; Nagasawa, Emiri


    This article is one effort to examine the present and potential performances of CO2 emission reduction though industrial symbiosis by employing a case study approach and life cycle CO2 analysis for alternative industrial symbiosis scenarios. As one of the first and the best-known eco-town projects, Kawasaki Eco-town was chosen as a case study area. First, the current industrial symbiosis practices in this area are introduced. To evaluate the potential of reducing the total CO2 emission throug...

  8. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh Iyer; Shwetha Ramkumar; Liang-Shih Fan


    Enhancement in the production of high purity hydrogen from fuel gas, obtained from coal gasification, is limited by thermodynamics of the Water Gas Shift Reaction. However, this constraint can be overcome by concurrent water-gas shift (WGS) and carbonation reactions to enhance H{sub 2} production by incessantly driving the equilibrium-limited WGS reaction forward and in-situ removing the CO2 product from the gas mixture. The spent sorbent is then regenerated by calcining it to produce a pure stream of CO{sub 2} and CaO which can be reused. However while performing the cyclic carbonation and calcination it was observed that the CO{sub 2} released during the in-situ calcination causes the deactivation of the iron oxide WGS catalyst. Detailed understanding of the iron oxide phase diagram helped in developing a catalyst pretreatment procedure using a H{sub 2}/H{sub 2}O system to convert the deactivated catalyst back to its active magnetite (Fe{sub 3}O{sub 4}) form. The water gas shift reaction was studied at different temperatures, different steam to carbon monoxide ratios (S/C) 3:1, 2:1, 1:1 and different total pressures ranging from 0-300 psig. The combined water gas shift and carbonation reaction was investigated at temperatures ranging from 600-700C, S/C ratio of 3:1 to 1:1 and at different pressures of 0-300 psig and the calcium looping process was found to produce high purity hydrogen with in-situ CO{sub 2} capture.

  9. Aboveground net primary productivity and rainfall use efficiency of grassland on three soils after two years of exposure to a subambient to superambient CO2 gradient. (United States)

    Fay, P. A.; Polley, H. W.; Jin, V. L.


    Atmospheric CO2 concentrations (CA) have increased by about 100 μL L-1 over the last 250 years to ~ 380 μL L-1, the highest values in the last half-million years, and CA is expected to continue to increase to greater than 500 μL L-1 by 2100. CO2 enrichment has been shown to affect many ecosystem processes, but experiments typically examine only two or a few levels of CA, and are typically constrained to one soil type. However, soil hydrologic properties differ across the landscape. Therefore, variation in the impacts of increasing CA on ecosystem function on different soil types must be understood to model and forecast ecosystem function under future CA and climate scenarios. Here we evaluate the aboveground net primary productivity (ANPP) of grassland plots receiving equal rainfall inputs (from irrigation) and exposed to a continuous gradient (250 to 500 μL L-1) of CA in the Lysimeter CO2 Gradient Experiment in central Texas, USA. Sixty intact soil monoliths (1 m2 x 1.5 m deep) taken from three soil types (Austin silty clay, Bastrop sandy loam, Houston clay) and planted to seven native tallgrass prairie grasses and forbs were exposed to the CA gradient beginning in 2006. Aboveground net primary productivity was assessed by end of season (November) harvest of each species in each monolith. Total ANPP of all species was 35 to 50% greater on Bastrop and Houston soils compared to Austin soils in both years (p Solidago canadensis strongly increased with increasing CA, with S. nutans responding more strongly on Bastrop and Houston soils (p = 0.053), indicating that increased greater rainfall use efficiency at high CA on these productive soils was associated with increased dominance by these species. In contrast, the grass Bouteloua curtipendula decreased in biomass with increasing CA, especially on Austin and Bastrop soils. The least productive species were the grass Tridens albescens, the legume Desmanthus illinoensis, and the forb Salvia azurea, and these showed

  10. Hydrogenation of organic matter as a terminal electron sink sustains high CO 2 :CH 4 production ratios during anaerobic decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Rachel M.; Tfaily, Malak M.; Rich, Virginia I.; Keller, Jason K.; Bridgham, Scott D.; Zalman, Cassandra Medvedeff; Meredith, Laura; Hanson, Paul J.; Hines, Mark; Pfeifer-Meister, Laurel; Saleska, Scott R.; Crill, Patrick; Cooper, William T.; Chanton, Jeff P.; Kostka, Joel E.


    Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has an oxidation state of +4, if CH4 (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO2:CH4 >1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. This mechanism for CO2 generation without concomitant CH4 production has the potential to regulate the global warming potential of peatlands by elevating CO2:CH4 production ratios.

  11. Plasma production and heating by a laser TEA-CO2

    International Nuclear Information System (INIS)

    Goes, L.C.S.; Sudano, J.P.; Rodrigues, N.A.S.


    Preliminary experiments of plasma production and heating by laser irradiation of gases and solid targets have been performed with a laser TEA-CO 2 (1 MW, 80 ns, monomode), developed and built at the IEAv/Laser Laboratory. The laser beam was focused in the interior of a vacuum chamber (100 1) with a base pressure of 10 1 torr, and recolimated by a system of confocal lenses. The breakdown theresholds for nitrogen gas was investigated by varying the laser power, the neutral gas density and the focal lenght of the lenses. Plasma breakdown observed in the range of pressures between 100-720 torr was in good agreement with calculations of cascade ionization theory and classical absorption by inverse-Bremsstrahlung. The laser absorption was inferred by measuring the power transmitted in the presence and absence of plasma. The light emitted by the plasma was detected by a fast photo-diode, indicating that the plasma expansion phase lasted for several microseconds. These investigations have been applied in the development of plasma shutters for laser pulse compression. (author) [pt

  12. Aspen-associated mycorrhizal fungal production and respiration as a function of changing CO2, O3 and climatic variables (United States)

    Carrie J. Andrew; Linda T.A. van Diepen; R. Michael Miller; Erik A. Lilleskov


    The relationships of mycorrhizal fungal respiration and productivity to climate and atmospheric chemistry remain under characterized. We quantified mycorrhizal sporocarp and hyphal respiration, as well as growing season net hyphal production, under ambient and elevated carbon dioxide (CO2) and ozone (O3) in relation to...

  13. Diurnal and Seasonal Variations in the Net Ecosystem CO2 Exchange of a Pasture in the Three-River Source Region of the Qinghai-Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Bin Wang

    Full Text Available Carbon dioxide (CO2 exchange between the atmosphere and grassland ecosystems is very important for the global carbon balance. To assess the CO2 flux and its relationship to environmental factors, the eddy covariance method was used to evaluate the diurnal cycle and seasonal pattern of the net ecosystem CO2 exchange (NEE of a cultivated pasture in the Three-River Source Region (TRSR on the Qinghai-Tibetan Plateau from January 1 to December 31, 2008. The diurnal variations in the NEE and ecosystem respiration (Re during the growing season exhibited single-peak patterns, the maximum and minimum CO2 uptake observed during the noon hours and night; and the maximum and minimum Re took place in the afternoon and early morning, respectively. The minimum hourly NEE rate and the maximum hourly Re rate were -7.89 and 5.03 μmol CO2 m-2 s-1, respectively. The NEE and Re showed clear seasonal variations, with lower values in winter and higher values in the peak growth period. The highest daily values for C uptake and Re were observed on August 12 (-2.91 g C m-2 d-1 and July 28 (5.04 g C m-2 day-1, respectively. The annual total NEE and Re were -140.01 and 403.57 g C m-2 year-1, respectively. The apparent quantum yield (α was -0.0275 μmol μmol-1 for the entire growing period, and the α values for the pasture's light response curve varied with the leaf area index (LAI, air temperature (Ta, soil water content (SWC and vapor pressure deficit (VPD. Piecewise regression results indicated that the optimum Ta and VPD for the daytime NEE were 14.1°C and 0.65 kPa, respectively. The daytime NEE decreased with increasing SWC, and the temperature sensitivity of respiration (Q10 was 3.0 during the growing season, which was controlled by the SWC conditions. Path analysis suggested that the soil temperature at a depth of 5 cm (Tsoil was the most important environmental factor affecting daily variations in NEE during the growing season, and the photosynthetic photon

  14. Impact of the evolution of petroleum products demand on the energy consumption and CO2 emissions of refineries

    International Nuclear Information System (INIS)

    Tehrani Nejad Moghaddam, A.


    The French refining industry is in a paradoxical situation. Although the energy efficiency of the refineries have been significantly improved their CO 2 emissions are continuously increasing and this trend will be kept in future. The origin of this paradox steams in the profound modification in the demand structure (in terms of quantity and quality) of the oil products. The objective of this dissertation is to provide answers to these paradoxical questions. This objective is achieved and can be summarized in three points: (1) the introduction of linear programming to the prospective and retrospective life cycle assessment analysis (2) the evaluation of the impact of tightening the sulfur specification on the marginal cost and marginal CO 2 contribution of oil products (3) the assessment of the average CO 2 coefficients for oil products useful in the life cycle assessment studies. (author)

  15. Unravelling ecosystem functions at the Amazonia-Cerrado transition: II. Carbon stocks and CO2 soil efflux in cerradão forest undergoing ecological succession (United States)

    Peixoto, Karine S.; Marimon-Junior, Ben Hur; Marimon, Beatriz S.; Elias, Fernando; de Farias, Josenilton; Freitag, Renata; Mews, Henrique A.; das Neves, Eder C.; Prestes, Nayane Cristina C. S.; Malhi, Yadvinder


    The transition region between two major South American biomes, the Amazon forest and the Cerrado (Brazilian savanna), has been substantially converted into human-modified ecosystems. Nevertheless, the recovery dynamics of ecosystem functions in this important zone of (ecological) tension (ZOT) remain poorly understood. In this study, we compared two areas of cerradão (a forest-woodland of the Brazilian savanna; Portuguese augmentative of cerrado), one in secondary succession (SC) and one adjacent and well preserved (PC), to test whether the ecosystem functions lost after conversion to pasture were restored after 22 years of regeneration. We tested the hypothesis that the increase in annual aboveground biomass in the SC would be greater than that in the PC because of anticipated successional gains. We also investigated soil CO2 efflux, litter layer content, and fine root biomass in both the SC and PC. In terms of biomass recovery our hypothesis was not supported: the biomass did not increase in the successional area over the study period, which suggested limited capacity for recovery in this key ecosystem compartment. By contrast, the structure and function of the litter layer and root mat were largely reconstituted in the secondary vegetation. Overall, we provide evidence that 22 years of secondary succession were not sufficient for these short and open forests (e.g., cerradão) in the ZOT to recover ecosystem functions to the levels observed in preserved vegetation of identical physiognomy.

  16. Partitioning net ecosystem carbon exchange into net assimilation and respiration using 13CO2 measurements: A cost-effective sampling strategy (United States)

    OgéE, J.; Peylin, P.; Ciais, P.; Bariac, T.; Brunet, Y.; Berbigier, P.; Roche, C.; Richard, P.; Bardoux, G.; Bonnefond, J.-M.


    The current emphasis on global climate studies has led the scientific community to set up a number of sites for measuring the long-term biosphere-atmosphere net CO2 exchange (net ecosystem exchange, NEE). Partitioning this flux into its elementary components, net assimilation (FA), and respiration (FR), remains necessary in order to get a better understanding of biosphere functioning and design better surface exchange models. Noting that FR and FA have different isotopic signatures, we evaluate the potential of isotopic 13CO2 measurements in the air (combined with CO2 flux and concentration measurements) to partition NEE into FR and FA on a routine basis. The study is conducted at a temperate coniferous forest where intensive isotopic measurements in air, soil, and biomass were performed in summer 1997. The multilayer soil-vegetation-atmosphere transfer model MuSICA is adapted to compute 13CO2 flux and concentration profiles. Using MuSICA as a "perfect" simulator and taking advantage of the very dense spatiotemporal resolution of the isotopic data set (341 flasks over a 24-hour period) enable us to test each hypothesis and estimate the performance of the method. The partitioning works better in midafternoon when isotopic disequilibrium is strong. With only 15 flasks, i.e., two 13CO2 nighttime profiles (to estimate the isotopic signature of FR) and five daytime measurements (to perform the partitioning) we get mean daily estimates of FR and FA that agree with the model within 15-20%. However, knowledge of the mesophyll conductance seems crucial and may be a limitation to the method.

  17. A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part B: Chain analysis of promising CCS options

    NARCIS (Netherlands)

    Damen, K.J.; van Troost, M.M.; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X; Turkenburg, W.C.|info:eu-repo/dai/nl/073416355


    Promising electricity and hydrogen production chains with CO2 capture, transport and storage (CCS) and energy carrier transmission, distribution and end-use are analysed to assess (avoided) CO2 emissions, energy production costs and CO2 mitigation costs. For electricity chains, the performance is

  18. Emissions of Non-CO2 Greenhouse Gases From the Production and Use of Transportation Fuels and Electricity


    Delucchi, Mark


    The use of energy accounts for a major fraction of all anthropogenic emissions of greenhouse gases (IPCC, 1995) , and in most industrialized countries the use of transportation fuels and electricity accounts for a major fraction of all energy-related emissions. In the transportation sector alone, emissions of carbon dioxide (CO2) from the production and use of motor-vehicle fuels account for as much as 30% of CO2 emissions from the use of all fossil fuels (DeLuchi, 1991). The production and...

  19. New Technologies for Dealing with CO2 Emission and Carbonate Discharge Control Issues Associated with Energy Production (United States)

    Tuwati, Abdulwahab

    Carbonates and bicarbonates as two water contaminants and CO2 as an air pollutant are the byproducts of a number of fossil fuel based energy production processes. It is well known that the eco-environmental impacts of the carbon based compounds are rather negative. Discharge of co-produced waters containing carbonates and bicarbonates can lead to the significant increase of alkalinity and sodicity and eventual degradation of the quality of soils. In addition, many studies have indicated that huge CO2 emission into the atmosphere can result in disastrous climate changes in the future. Therefore, people are increasingly interested in controlling these carbon compounds. A number of technologies such as ion exchange and electrodialysis have been developed for removal of carbonates and bicarbonates from co-produced waters. However, they are too expensive to be widely used by energy producers, farmers and ranchers. Although many approaches including membrane filtration have been explored for CO2 emission control, their costs are not acceptable to fossil fuel generating companies at all. Therefore, searching cost-effective methods for control of the carbon compounds have attracted many researchers' attentions. New technologies have been developed in this research to overcome the abovementioned challenges. For example, a regenerable solid sorbent (KTi) synthesized with K2CO3 and nanoporous TiO(OH)2 can be used to capture CO2. The CO2 sorption capacity of KTi is about 36 times higher than that of conventional K2CO3. The highest CO2 sorption capacity achieved with KTi is 1.69 mmol-CO2/g-KTi. It should be noted that the theoretical sorption capacity of the KTi can be as high as 3.32 mmol-CO 2/g-KTi. Therefore, the potential and improvement in CO2 sorption capacity with the use of nanoporous TiO(OH)2 is significant. Moreover, nanostructured KTi based CO2 separation (from flue gas) does not need additional high specific-heat capacity and high vaporization-enthalpy H2O. This

  20. Regional Disparities in the Beneficial Effects of Rising CO2 Emissions on Crop Water Productivity (United States)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Meuller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; hide


    Rising atmospheric carbon dioxide concentrations are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated carbon dioxide and associated climate change projected for a high-end greenhouse gas emissions scenario. We find carbon dioxide effects increase global CWP by 10[0;47]%-27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rain fed wheat). If realized in the fields, the effects of elevated carbon dioxide could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modeling the effects of rising carbon dioxide across crop and hydrological modeling communities.

  1. Depth-Dependent Mineral Soil CO2 Production Processes: Sensitivity to Harvesting-Induced Changes in Soil Climate. (United States)

    Kellman, Lisa; Myette, Amy; Beltrami, Hugo


    Forest harvesting induces a step change in the climatic variables (temperature and moisture), that control carbon dioxide (CO2) production arising from soil organic matter decomposition within soils. Efforts to examine these vertically complex relationships in situ within soil profiles are lacking. In this study we examined how the climatic controls on CO2 production change within vertically distinct layers of the soil profile in intact and clearcut forest soils of a humid temperate forest system of Atlantic Canada. We measured mineral soil temperature (0, 5, 10, 20, 50 and 100 cm depth) and moisture (0-15 cm and 30-60 cm depth), along with CO2 surface efflux and subsurface concentrations (0, 2.5, 5, 10, 20, 35, 50, 75 and 100 cm depth) in 1 m deep soil pits at 4 sites represented by two forest-clearcut pairs over a complete annual cycle. We examined relationships between surface efflux at each site, and soil heat, moisture, and mineral soil CO2 production. Following clearcut harvesting we observed increases in temperature through depth (1-2°C annually; often in excess of 4°C in summer and spring), alongside increases in soil moisture (30%). We observed a systematic breakdown in the expected exponential relationship between CO2 production and heat with mineral soil depth, consistent with an increase in the role moisture plays in constraining CO2 production. These findings should be considered in efforts to model and characterize mineral soil organic matter decomposition in harvested forest soils.

  2. Monoterpene emissions in response to long-term night-time warming, elevated CO2 and extended summer drought in a temperate heath ecosystem

    DEFF Research Database (Denmark)

    Tiiva, Päivi; Tang, Jing; Michelsen, Anders


    Monoterpenes emitted from plants have an important role in atmospheric chemistry through changing atmospheric oxidative capacity, forming new particles and secondary organic aerosols. The emission rates and patterns can be affected by changing climate. In this study, emission responses to six years...... of climatic manipulations (elevated CO2, extended summer drought and night-time warming) were investigated in a temperate semi-natural heath ecosystem. Samples for monoterpene analysis were collected in seven campaigns during an entire growing season (April-November, 2011). The results showed...... that the temperate heath ecosystem was a considerable source of monoterpenes to the atmosphere, with the emission averaged over the 8month measurement period of 21.7±6.8μgm(-2)groundareah(-1) for the untreated heath. Altogether, 16 monoterpenes were detected, of which the most abundant were α-pinene, δ-3-carene...

  3. Elevated atmospheric CO2 affected photosynthetic products in wheat seedlings and biological activity in rhizosphere soil under cadmium stress. (United States)

    Jia, Xia; Liu, Tuo; Zhao, Yonghua; He, Yunhua; Yang, Mingyan


    The objective of this study was to investigate the effects of elevated CO2 (700 ± 23 μmol mol(-1)) on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated CO2 was associated with decreased quantities of reducing sugars, starch, and soluble amino acids, and with increased quantities of soluble sugars, total sugars, and soluble proteins in wheat seedlings under Cd stress. The contents of total soluble sugars, total free amino acids, total soluble phenolic acids, and total organic acids in the rhizosphere soil under Cd stress were improved by elevated CO2. Compared to Cd stress alone, the activity of amylase, phenol oxidase, urease, L-asparaginase, β-glucosidase, neutral phosphatase, and fluorescein diacetate increased under elevated CO2 in combination with Cd stress; only cellulase activity decreased. Bacterial abundance in rhizosphere soil was stimulated by elevated CO2 at low Cd concentrations (1.31-5.31 mg Cd kg(-1) dry soil). Actinomycetes, total microbial abundance, and fungi decreased under the combined conditions at 5.31-10.31 mg Cd kg(-1) dry soil. In conclusion, increased production of soluble sugars, total sugars, and proteins in wheat seedlings under elevated CO2 + Cd stress led to greater quantities of organic compounds in the rhizosphere soil relative to seedlings grown under Cd stress only. Elevated CO2 concentrations could moderate the effects of heavy metal pollution on enzyme activity and microorganism abundance in rhizosphere soils, thus improving soil fertility and the microecological rhizosphere environment of wheat under Cd stress.

  4. Improved understanding of drought controls on seasonal variation in Mediterranean forest canopy CO2 and water fluxes through combined in situ measurements and ecosystem modelling

    Directory of Open Access Journals (Sweden)

    S. Sabate


    Full Text Available Water stress is a defining characteristic of Mediterranean ecosystems, and is likely to become more severe in the coming decades. Simulation models are key tools for making predictions, but our current understanding of how soil moisture controls ecosystem functioning is not sufficient to adequately constrain parameterisations. Canopy-scale flux data from four forest ecosystems with Mediterranean-type climates were used in order to analyse the physiological controls on carbon and water flues through the year. Significant non-stomatal limitations on photosynthesis were detected, along with lesser changes in the conductance-assimilation relationship. New model parameterisations were derived and implemented in two contrasting modelling approaches. The effectiveness of two models, one a dynamic global vegetation model ("ORCHIDEE", and the other a forest growth model particularly developed for Mediterranean simulations ("GOTILWA+", was assessed and modelled canopy responses to seasonal changes in soil moisture were analysed in comparison with in situ flux measurements. In contrast to commonly held assumptions, we find that changing the ratio of conductance to assimilation under natural, seasonally-developing, soil moisture stress is not sufficient to reproduce forest canopy CO2 and water fluxes. However, accurate predictions of both CO2 and water fluxes under all soil moisture levels encountered in the field are obtained if photosynthetic capacity is assumed to vary with soil moisture. This new parameterisation has important consequences for simulated responses of carbon and water fluxes to seasonal soil moisture stress, and should greatly improve our ability to anticipate future impacts of climate changes on the functioning of ecosystems in Mediterranean-type climates.

  5. Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms. (United States)

    González-López, C V; Acién Fernández, F G; Fernández-Sevilla, J M; Sánchez Fernández, J F; Molina Grima, E


    A new methodology to use efficiently flue gases as CO(2) source in the production of photosynthetic microorganisms is proposed. The CO(2) is absorbed in an aqueous phase that is then regenerated by microalgae. Carbonated solutions could absorb up to 80% of the CO(2) from diluted gas reaching total inorganic carbon (TIC) concentrations up to 2.0 g/L. The pH of the solution was maintained at 8.0-10.0 by the bicarbonate/carbonate buffer, so it is compatible with biological regeneration. The absorption process was modeled and the kinetic parameters were determined. Anabaena sp. demonstrated to tolerate pH (8.0-10.0) and TIC (up to 2.0 g/L) conditions imposed by the absorption step. Experiments of regeneration of the liquid phase demonstrated the feasibility of the overall process, converting CO(2) into organic matter. The developed process avoids heating to regenerate the liquid whereas maximizing the efficiency of CO(2) use, which is relevant to achieve the commercial production of biofuels from microalgae. Copyright © 2012 Wiley Periodicals, Inc.

  6. Tail gas treatment of sour-SEWGS CO2 product. Public version

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, H.A.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)


    This literature review covers the technologies suitable for the CO2-H2S separation within the context of CO2 purification of a pre-combustion captured stream intended for storage or reuse. The technologies considered cover existing industrially applied processes, emerging processes as well as processes in development. Several technologies capable of achieving the desired CO2-H2S separation were identified. Among them are liquid scrubbing processes Thiopaq and CrystaSulf producing elemental sulphur, selective oxidation to elemental sulphur such as MODOP or based on novel catalysts and sorbent-based (reactive) separations using low-, medium- or high-temperature (reactive) sorbents. SEWGS stands for Sorption Enhanced Water Gas Shift process.

  7. Natural bog pine ecosystem in southern Germany is a steady and robust sink of CO2 but a minor source of CH4 (United States)

    Hommeltenberg, Janina; Schmid, Hans Peter; Droesler, Matthias; Werle, Peter


    Natural peatland ecosystems sequester carbon dioxide. They do this slowly but steadily, but also emit methane in small rates. Thus peatlands have both positive and negative greenhouse gas balance impacts on the climate system due to their influence on atmospheric CO2 and CH4 concentration. We present data of net ecosystem CO2 exchange (NEE) of almost three years (July 2010 to March 2013) and of methane fluxes over a period of nine months (July 2012 to March 2013), measured by eddy covariance technique in the bog forest "Schechenfilz". The site (47°48' N; 11°19' E, 590 m a.s.l.) is an ICOS-ecosystems associate site, located in the pre-alpine region of southern Germany, where a natural Pinus mugo rotundata forest grows on an undisturbed, almost 6 m thick peat layer. The slow growing bog pines and their low rates of carbon sequestration, in combination with high water table and thus low availability of oxygen, lead to low carbon dioxide fluxes. Photosynthesis as well as soil respiration are considerably attenuated compared to upland sites. Additionally, the high soil water content is damping the impact of dry and hot periods on CO2 exchange. Thus the CO2 balance is very robust to changing environmental parameters. While the CO2 exchange is clearly related to soil temperature and photosynthetic active radiation, we have not yet identified a parameter that governs variations in methane exchange. Various environmental parameters appear to be related to methane emissions (including soil moisture, soil and air temperature and wind direction), but the scatter with respect to half hourly methane fluxes is too large to be useful for gap modeling. Analysis of daily averages reduces the scatter, but since methane exchange exhibits considerable daily variation, daily averages are not useful to fill data gaps of half hourly fluxes. In consequence, as the daily course is the summary result of all environmental parameters having influence on the methane exchange at the half

  8. Determination of the equation parameters of carbon flow curves and estimated carbon flow and CO2 emissions from broiler production. (United States)

    Henn, J D; Bockor, L; Borille, R; Coldebella, A; Ribeiro, A M L; Kessler, A M


    The objective of this study was to determine the equation parameters of carbon (i.e., C) flow curves and to estimate C flow and carbon dioxide (i.e., CO2) emissions from the production of 1- to 49-day-old broilers from different genetic strains. In total, 384 1-day-old chicks were used, distributed into 4 groups: high-performance males (Cobb-M) and females (Cobb-F), and intermediate-performance males (C44-M) and females (C44-F), with 6 replicates/treatment according to a completely randomized study design. Carbon intake and retention were calculated based on diet and body C composition, and expired C was stoichiometrically estimated as digestible C intake-C retention-C in the urine. Litter C emission was estimated as initial litter C+C in the excreta-final litter C. Carbon flow curves were determined fitting data by nonlinear regression using the Gompertz function. Expired CO2 was calculated based on expired C. The applied nonlinear model presented goodness-of-fit for all responses (R2>0.99). Carbon dioxide production was highly correlated with growth rate. At 42 d age, CO2 expiration (g/bird) was 3,384.4 for Cobb-M, 2,947.9 for Cobb-F, 2,512.5 for C44-M, and 2185.1 for C44-F. Age also significantly affected CO2 production: to achieve 2.0 kg BW, CO2 expiration (g/bird) was 1,794.3 for Cobb-M, 2,016.5 for Cobb-F, 2617.7 for C44-M, and 3,092.3 for C44-F. The obtained equations present high predictability to estimate individual CO2 emissions in strains of Cobb and C44 broilers of any weight, or age, reared between 1 and 49 d age. © 2015 Poultry Science Association Inc.

  9. Taxes for energy products, electricity and CO2. Consequences of the revision of the Energy Taxation Directive for the Netherlands

    International Nuclear Information System (INIS)

    Blom, M.J.; Schroten, A.; Geurts, F.


    Taxes on energy products, electricity and CO2 are compared for a number of EU countries (Germany, Belgium, Denmark, United Kingdom, France, Luxembourg, Spain, Sweden and the Netherlands) with special focus on the fiscal, economic and environmental impacts of the revision of the European Energy Directive for the Netherlands. [nl

  10. Cofactor and CO2 donor regulation involved in reductive routes for polymalic acid production by Aureobasidium pullulans CCTCC M2012223. (United States)

    Zou, Xiang; Tu, Guangwei; Zan, Zhanquan


    Polymalic acid (PMA) is a water-soluble polyester with many attractive properties for biomedical application. Its monomer L-malic acid is widely used in the food industry and also a potential C4 platform chemical. Cofactor and CO2 donor involved in the reductive routes were investigated for PMA production by Aureobasidium pullulans. Biotin as the key cofactor of pyruvate carboxylase was favor for the PMA biosynthesis. Na2CO3 as CO2 donor can obviously improved PMA titer when compared with no CO2 supplier NaOH, and also exhibit more advantages than the other donor CaCO3 because of its water-soluble characteristic. A combinational process with addition of biotin 70 mg/L and Na2CO3 as the CO2 donor was scaled-up in 50 L fermentor, achieving the high product 34.3 g/L of PMA and productivity of 0.41 g/L h. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application.

  11. Closing carbon cycles : Evaluating the performance of multi-product CO2 utilisation and storage configurations in a refinery

    NARCIS (Netherlands)

    Fernández-Dacosta, Cora; Stojcheva, Viktorija; Ramirez, Andrea


    Carbon capture and utilisation (CCU) has the potential to provide business cases as CO2 waste streams are turned into feedstock for the synthesis of marketable products. Although CCU could reduce fossil resource demand, its capability as a climate change mitigation option is under debate. In

  12. Explaining global increases in water use efficiency: why have we overestimated responses to rising atmospheric CO(2 in natural forest ecosystems?

    Directory of Open Access Journals (Sweden)

    Lucas C R Silva

    Full Text Available The analysis of tree-ring carbon isotope composition (δ(13C has been widely used to estimate spatio-temporal variations in intrinsic water use efficiency (iWUE of tree species. Numerous studies have reported widespread increases in iWUE coinciding with rising atmospheric CO(2 over the past century. While this could represent a coherent global response, the fact that increases of similar magnitude were observed across biomes with no apparent effect on tree growth raises the question of whether iWUE calculations reflect actual physiological responses to elevated CO(2 levels.Here we use Monte Carlo simulations to test if an artifact of calculation could explain observed increases in iWUE. We show that highly significant positive relationships between iWUE and CO(2 occur even when simulated data (randomized δ(13C values spanning the observed range are used in place of actual tree-ring δ(13C measurements. From simulated data sets we calculated non-physiological changes in iWUE from 1900 to present and across a 4000 m altitudinal range. This generated results strikingly similar to those reported in recent studies encompassing 22 species from tropical, subtropical, temperate, boreal and mediterranean ecosystems. Only 6 of 49 surveyed case studies showed increases in iWUE significantly higher than predicted from random values.Our results reveal that increases in iWUE estimated from tree-ring δ(13C occur independently of changes in (13C discrimination that characterize physiological responses to elevated CO(2. Due to a correlation with CO(2 concentration, which is used as an independent factor in the iWUE calculation, any tree-ring δ(13C data set would inevitably generate increasing iWUE over time. Therefore, although consistent, previously reported trends in iWUE do not necessarily reflect a coherent global response to rising atmospheric CO(2. We discuss the significance of these findings and suggest ways to distinguish real from artificial

  13. Steam cracking and methane to olefins: Energy use, CO2 emissions and production costs

    NARCIS (Netherlands)

    Ren, T.; Patel, M.K.|info:eu-repo/dai/nl/18988097X; Blok, K.|info:eu-repo/dai/nl/07170275X


    While most olefins (e.g., ethylene and propylene) are currently produced through steam cracking routes, they can also possibly be produced from natural gas (i.e., methane) via methanol and oxidative coupling routes. We reviewed recent data in the literature and then compared the energy use, CO2

  14. Carbonation of steel slag for CO2 sequestration: Leaching of products and reaction mechanisms

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Comans, R.N.J.


    Carbonation of industrial alkaline residues can be used as a CO2 sequestration technology to reduce carbon dioxide emissions. In this study, steel slag samples were carbonated to a varying extent. Leaching experiments and geochemical modeling were used to identify solubility-controlling processes of

  15. Techno-economic evaluation of different CO2-based processes for dimethyl carbonate production

    DEFF Research Database (Denmark)

    Kongpanna, Pichayapan; Pavarajarn, Varong; Gani, Rafiqul


    carbonate route is found to give the best performance in terms of energy consumption (11.4% improvement), net CO2 emission (13.4% improvement), in global warming potential (58.6% improvement) and in human toxicity-carcinogenic (99.9% improvement) compared to the BAYER process. Also, the ethylene carbonate...

  16. Soil CO2 production in upland tundra where permafrost is thawing (United States)

    Hanna Lee; Edward A.G. Schuur; Jason G. Vogel


    Permafrost soils store nearly half of global soil carbon (C), and therefore permafrost thawing could lead to large amounts of greenhouse gas emissions via decomposition of soil organic matter. When ice-rich permafrost thaws, it creates a localized surface subsidence called thermokarst terrain, which changes the soil microenvironment. We used soil profile CO2...

  17. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes

    KAUST Repository

    Álvarez, Andrea


    The recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to formate/formic acid, methanol, and dimethyl ether are thoroughly reviewed, with special emphasis on thermodynamics and catalyst design considerations. After introducing the main motivation for the development of such processes, we first summarize the most important aspects of CO2 capture and green routes to produce H2. Once the scene in terms of feedstocks is introduced, we carefully summarize the state of the art in the development of heterogeneous catalysts for these important hydrogenation reactions. Finally, in an attempt to give an order of magnitude regarding CO2 valorization, we critically assess economical aspects of the production of methanol and DME and outline future research and development directions.

  18. The influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exhanges

    Energy Technology Data Exchange (ETDEWEB)

    Still, C.J.; Riley, W.J.; Biraud, S.C.; Noone, D.C.; Buenning, N.H.; Randerson, J.T.; Torn, M.S.; Welker, J.; White, J.W.C.; Vachon, R.; Farquhar, G.D.; Berry, J.A.


    This study evaluates the potential impact of clouds on ecosystem CO{sub 2} and CO{sub 2} isotope fluxes ('isofluxes') in two contrasting ecosystems (a broadleaf deciduous forest and a C{sub 4} grassland), in a region for which cloud cover, meteorological, and isotope data are available for driving the isotope-enabled land surface model, ISOLSM. Our model results indicate a large impact of clouds on ecosystem CO{sub 2} fluxes and isofluxes. Despite lower irradiance on partly cloudy and cloudy days, predicted forest canopy photosynthesis was substantially higher than on clear, sunny days, and the highest carbon uptake was achieved on the cloudiest day. This effect was driven by a large increase in light-limited shade leaf photosynthesis following an increase in the diffuse fraction of irradiance. Photosynthetic isofluxes, by contrast, were largest on partly cloudy days, as leaf water isotopic composition was only slightly depleted and photosynthesis was enhanced, as compared to adjacent clear sky days. On the cloudiest day, the forest exhibited intermediate isofluxes: although photosynthesis was highest on this day, leaf-to-atmosphere isofluxes were reduced from a feedback of transpiration on canopy relative humidity and leaf water. Photosynthesis and isofluxes were both reduced in the C{sub 4} grass canopy with increasing cloud cover and diffuse fraction as a result of near-constant light limitation of photosynthesis. These results suggest that some of the unexplained variation in global mean {delta}{sup 18}O of CO{sub 2} may be driven by large-scale changes in clouds and aerosols and their impacts on diffuse radiation, photosynthesis, and relative humidity.

  19. Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 world

    NARCIS (Netherlands)

    Liberloo, M.; Calfapietra, C.; Lukac, M.; Godbold, D.; Luos, Z.B.; Polles, A.; Hoosbeek, M.R.; Kull, O.; Marek, M.; Rianes, Chr.; Rubino, M.; Taylors, G.; Scarascia-Mugnozza, G.; Ceulemans, R.


    The quickly rising atmospheric carbon dioxide (CO2)-levels, justify the need to explore all carbon (C) sequestration possibilities that might mitigate the current CO2 increase. Here, we report the likely impact of future increases in atmospheric CO2 on woody biomass production of three poplar

  20. Effect of elevated [CO2] and nutrient management on wet and dry season rice production in subtropical India

    Institute of Scientific and Technical Information of China (English)

    Sushree Sagarika Satapathy; Dillip Kumar Swain; Surendranath Pasupalak; Pratap Bhanu Singh Bhadoria


    The present experiment was conducted to evaluate the effect of elevated [CO2] with varying nutrient management on rice–rice production system. The experiment was conducted in the open field and inside open-top chambers(OTCs) of ambient [CO2](≈ 390 μmol L-1) and elevated [CO2] environment(25% above ambient) during wet and dry seasons in 2011–2013at Kharagpur, India. The nutrient management included recommended doses of N, P, and K as chemical fertilizer(CF), integration of chemical and organic sources, and application of increased(25% higher) doses of CF. The higher [CO2] level in the OTC increased aboveground biomass but marginally decreased filled grains per panicle and grain yield of rice, compared to the ambient environment. However, crop root biomass was increased significantly under elevated [CO2]. With respect to nutrient management, increasing the dose of CF increased grain yield significantly in both seasons. At the recommended dose of nutrients, integrated nutrient management was comparable to CF in the wet season, but significantly inferior in the dry season, in its effect on growth and yield of rice. The [CO2] elevation in OTC led to a marginal increase in organic C and available P content of soil, but a decrease in available N content. It was concluded that increased doses of nutrients via integration of chemical and organic sources in the wet season and chemical sources alone in the dry season will minimize the adverse effect of future climate on rice production in subtropical India.

  1. Dynamics of soil CO2 efflux under varying atmospheric CO2 concentrations reveal dominance of slow processes. (United States)

    Kim, Dohyoung; Oren, Ram; Clark, James S; Palmroth, Sari; Oishi, A Christopher; McCarthy, Heather R; Maier, Chris A; Johnsen, Kurt


    We evaluated the effect on soil CO 2 efflux (F CO 2 ) of sudden changes in photosynthetic rates by altering CO 2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO 2 (eCO 2 ) ranging 1.0-1.8 times ambient did not affect F CO 2 . F CO 2 did not decrease until 4 months after termination of the long-term eCO 2 treatment, longer than the 10 days observed for decrease of F CO 2 after experimental blocking of C flow to belowground, but shorter than the ~13 months it took for increase of F CO 2 following the initiation of eCO 2 . The reduction of F CO 2 upon termination of enrichment (~35%) cannot be explained by the reduction of leaf area (~15%) and associated carbohydrate production and allocation, suggesting a disproportionate contraction of the belowground ecosystem components; this was consistent with the reductions in base respiration and F CO 2 -temperature sensitivity. These asymmetric responses pose a tractable challenge to process-based models attempting to isolate the effect of individual processes on F CO2 . © 2017 John Wiley & Sons Ltd.

  2. Final Technical Report: Response of Mediterranean-Type Ecosystems to Elevated Atmospheric CO2 and Associated Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, Walter C


    This research incorporated an integrated hierarchical approach in space, time, and levels of biological/ecological organization to help understand and predict ecosystem response to elevated CO{sub 2} and concomitant environmental change. The research utilized a number of different approaches, and collaboration of both PER and non-PER investigators to arrive at a comprehensive, integrative understanding. Central to the work were the CO{sub 2}-controlled, ambient Lit, Temperature controlled (CO{sub 2}LT) null-balance chambers originally developed in the arctic tundra, which were re-engineered for the chaparral with treatment CO{sub 2} concentrations of from 250 to 750 ppm CO{sub 2} in 100 ppm increments, replicated twice to allow for a regression analysis. Each chamber was 2 meters on a side and 2 meters tall, which were installed over an individual shrub reprouting after a fire. This manipulation allowed study of the response of native chaparral to varying levels of CO{sub 2}, while regenerating from an experimental burn. Results from these highly-controlled manipulations were compared against Free Air CO{sub 2} Enrichment (FACE) manipulations, in an area adjacent to the CO{sub 2}LT null balance greenhouses. These relatively short-term results (5-7 years) were compared to long-term results from Mediterranean-type ecosystems (MTEs) surrounding natural CO{sub 2} springs in northern Italy, near Laiatico, Italy. The springs lack the controlled experimental rigor of our CO{sub 2}LT and FACE manipulation, but provide invaluable validation of our long-term predictions.

  3. The role of iron and reactive oxygen species in the production of CO2 in arctic soil waters (United States)

    Trusiak, Adrianna; Treibergs, Lija A.; Kling, George W.; Cory, Rose M.


    Hydroxyl radical (radOH) is a highly reactive oxidant of dissolved organic carbon (DOC) in the environment. radOH production in the dark was observed through iron and DOC mediated Fenton reactions in natural environments. Specifically, when dissolved oxygen (O2) was added to low oxygen and anoxic soil waters in arctic Alaska, radOH was produced in proportion to the concentrations of reduced iron (Fe(II)) and DOC. Here we demonstrate that Fe(II) was the main electron donor to O2 to produce radOH. In addition to quantifying radOH production, hydrogen peroxide (H2O2) was detected in soil waters as a likely intermediate in radOH production from oxidation of Fe(II). For the first time in natural systems we detected carbon dioxide (CO2) production from radOH oxidation of DOC. More than half of the arctic soil waters tested showed production of CO2 under conditions conducive for production of radOH. Findings from this study strongly suggest that DOC is the main sink for radOH, and that radOH can oxidize DOC to yield CO2. Thus, this iron-mediated, dark chemical oxidation of DOC may be an important component of the arctic carbon cycle.

  4. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China. (United States)

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C; Sang, Weiguo


    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  5. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China (United States)

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo


    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  6. Engineering management of gas turbine power plant co2 for microalgae biofuel production


    Mathew, Domoyi; Pilidis, Pericles; Di Lorenzo, Giuseppina


    Fossil fuel accounts for over 80% of the world`s primary energy, particularly in areas of transportation, manufacturing and domestic heating. However, depletion of fossil reserves, frequent threats to the security of fossil fuel supply, coupled with concerns over emissions of greenhouse gases associated with fossil fuel use has motivated research towards developing renewable and sustainable sources for energy fuels. Consequently, the use of microalgae culture to convert CO2 from power plants ...

  7. Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China (United States)

    Tang, X.; Liu, S.; Zhou, G.; Zhang, Dongxiao; Zhou, C.


    The magnitude, temporal, and spatial patterns of soil-atmospheric greenhouse gas (hereafter referred to as GHG) exchanges in forests near the Tropic of Cancer are still highly uncertain. To contribute towards an improvement of actual estimates, soil-atmospheric CO2, CH4, and N2O fluxes were measured in three successional subtropical forests at the Dinghushan Nature Reserve (hereafter referred to as DNR) in southern China. Soils in DNR forests behaved as N2O sources and CH4 sinks. Annual mean CO2, N2O, and CH4 fluxes (mean ?? SD) were 7.7 ?? 4.6MgCO2-Cha-1 yr-1, 3.2 ?? 1.2 kg N2ONha-1 yr-1, and 3.4 ?? 0.9 kgCH4-Cha-1 yr-1, respectively. The climate was warm and wet from April through September 2003 (the hot-humid season) and became cool and dry from October 2003 through March 2004 (the cool-dry season). The seasonality of soil CO2 emission coincided with the seasonal climate pattern, with high CO2 emission rates in the hot-humid season and low rates in the cool-dry season. In contrast, seasonal patterns of CH4 and N2O fluxes were not clear, although higher CH4 uptake rates were often observed in the cool-dry season and higher N2O emission rates were often observed in the hot-humid season. GHG fluxes measured at these three sites showed a clear increasing trend with the progressive succession. If this trend is representative at the regional scale, CO2 and N2O emissions and CH4 uptake in southern China may increase in the future in light of the projected change in forest age structure. Removal of surface litter reduced soil CO2 effluxes by 17-44% in the three forests but had no significant effect on CH4 absorption and N2O emission rates. This suggests that microbial CH4 uptake and N2O production was mainly related to the mineral soil rather than in the surface litter layer. ?? 2006 Blackwell Publishing Ltd.

  8. CO2 storage in Sweden

    International Nuclear Information System (INIS)

    Ekstroem, Clas; Andersson, Annika; Kling, Aasa; Bernstone, Christian; Carlsson, Anders; Liljemark, Stefan; Wall, Caroline; Erstedt, Thomas; Lindroth, Maria; Tengborg, Per; Edstroem, Mikael


    This study considers options, that could be feasible for Sweden, to transport and geologically store CO 2 , providing that technology for electricity production with CO 2 capture will be available in the future and also acceptable from cost- and reliability point of view. As a starting point, it is assumed that a new 600-1000 MW power plant, fired with coal or natural gas, will be constructed with CO 2 capture and localised to the Stockholm, Malmoe or Goeteborg areas. Of vital importance for storage of carbon dioxide in a reservoir is the possibility to monitor its distribution, i.e. its migration within the reservoir. It has been shown in the SACS-project that the distribution of carbon dioxide within the reservoir can be monitored successfully, mainly by seismic methods. Suitable geologic conditions and a large storage potential seems to exist mainly in South West Scania, where additional knowledge on geology/hydrogeology has been obtained since the year 2000 in connection to geothermal energy projects, and in the Eastern part of Denmark, bordering on South West Scania. Storage of carbon dioxide from the Stockholm area should not be excluded, but more studies are needed to clarify the storage options within this area. The possibilities to use CO 2 for enhanced oil recovery, EOR, in i.a. the North Sea should be investigated, in order to receive incomes from the CO 2 and shared costs for infrastructure, and by this also make the CO 2 regarded as a trading commodity, and thereby achieving a more favourable position concerning acceptance, legal issues and regulations. The dimensions of CO 2 -pipelines should be similar to those for natural natural gas, although regarding some aspects they have different design and construction prerequisites. To obtain cost efficiency, the transport distances should be kept short, and possibilities for co-ordinated networks with short distribution pipelines connected to common main pipelines, should be searched for. Also, synergies

  9. Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content (United States)

    Diego A. Riveros-Iregui; Ryan E. Emanuel; Daniel J. Muth; L. McGlynn Brian; Howard E. Epstein; Daniel L. Welsch; Vincent J. Pacific; Jon M. Wraith


    Recent years have seen a growing interest in measuring and modeling soil CO2 efflux, as this flux represents a large component of ecosystem respiration and is a key determinant of ecosystem carbon balance. Process-based models of soil CO2 production and efflux, commonly based on soil temperature, are limited by nonlinearities such as the observed diurnal hysteresis...

  10. Use of MgO to mitigate the effect of microbial CO2 production in the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Wang, Y.; Brush, L.H.


    The Waste Isolation Pilot Plant (WIPP), located in a salt bed in southern New Mexico, is designed by US Department of Energy to demonstrate the safe and permanent disposal of design-basis transuranic waste. WIPP performance assessment requires consideration of radionuclide release in brines in the event of inadvertent human intrusion. The mobility of radionuclides depends on chemical factors such as brine pmH (-log molality of H + ) and CO 2 fugacity. According to current waste inventory estimates, a large quantity (∼ 10 9 moles C) of organic materials will be emplaced in the WIPP. Those organic material will potentially be degraded by halophilic or halotolerant microorganisms in the presence of liquid water in the repository, especially if a large volume of brine is introduced into the repository by human intrusions. Organic material biodegradation will produce a large amount of CO 2 , which will acidify the WIPP brine and thus significantly increase the mobility of actinides. This communication addresses (1) the rate of organic material biodegradation and the quantity of CO 2 to be possibly generated, (2) the effect of microbial CO 2 production on overall WIPP performance, and (3) the mechanism of using MgO to mitigate this effect

  11. NREL's Cyanobacteria Engineering Shortens Biofuel Production Process, Captures CO2

    Energy Technology Data Exchange (ETDEWEB)


    This highlight describes NREL's work to systematically analyze the flow of energy in a photosynthetic microbe and show how the organism adjusts its metabolism to meet the increased energy demand for making ethylene. This work successfully demonstrates that the organism could cooperate by stimulating photosynthesis. The results encourage further genetic engineering for the conversion of CO2 to biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting. biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting.

  12. Primary production of tropical marine ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattathiri, P.M.A.

    Among tropical marine ecosystems estuaries are one of the highly productive areas and act as a nursery to large number of organisms. The primary production in most of the estuaries is less during the monsoon period. Post-monsoon period shows...

  13. A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2. (United States)

    Yadav, Rajesh K; Baeg, Jin-Ook; Oh, Gyu Hwan; Park, No-Joong; Kong, Ki-jeong; Kim, Jinheung; Hwang, Dong Won; Biswas, Soumya K


    The photocatalyst-enzyme coupled system for artificial photosynthesis process is one of the most promising methods of solar energy conversion for the synthesis of organic chemicals or fuel. Here we report the synthesis of a novel graphene-based visible light active photocatalyst which covalently bonded the chromophore, such as multianthraquinone substituted porphyrin with the chemically converted graphene as a photocatalyst of the artificial photosynthesis system for an efficient photosynthetic production of formic acid from CO(2). The results not only show a benchmark example of the graphene-based material used as a photocatalyst in general artificial photosynthesis but also the benchmark example of the selective production system of solar chemicals/solar fuel directly from CO(2).

  14. Energy conversion performance of black liquor gasification to hydrogen production using direct causticization with CO(2) capture. (United States)

    Naqvi, M; Yan, J; Dahlquist, E


    This paper estimates potential hydrogen production via dry black liquor gasification system with direct causticization integrated with a reference pulp mill. The advantage of using direct causticization is elimination of energy intensive lime kiln. Pressure swing adsorption is integrated in the carbon capture process for hydrogen upgrading. The energy conversion performance of the integrated system is compared with other bio-fuel alternatives and evaluated based on system performance indicators. The results indicated a significant hydrogen production potential (about 141MW) with an energy ratio of about 0.74 from the reference black liquor capacity (about 243.5MW) and extra biomass import (about 50MW) to compensate total energy deficit. About 867,000tonnes of CO(2) abatement per year is estimated i.e. combining CO(2) capture and CO(2) offset from hydrogen replacing motor gasoline. The hydrogen production offers a substantial motor fuel replacement especially in regions with large pulp and paper industry e.g. about 63% of domestic gasoline replacement in Sweden. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Ecophysiology at SPRUCE: Impacts of whole ecosystem warming and elevated CO2 on leaf-level photosynthesis and respiration of two ericaceous shrubs in a boreal peatland (United States)

    Ward, E. J.; Dusenge, M. E.; Warren, J.; Murphy, B. K.; Way, D.; King, A. W.; McLennan, D.; Montgomery, R.; Stefanski, A.; Reich, P. B.; Cruz Aguilar, M.; Wullschleger, S.; Bermudez Villanueva, R.; Hanson, P. J.


    The Spruce and Peatland Responses Under Changing Environments (SPRUCE) project is a large-scale, long-term experiment investigating the effects of warming and elevated CO2 on an ombrotrophic bog in Minnesota, USA. SPRUCE uses 10 large (12.8-m diameter) enclosures to increase air and soil temperatures to a range of targets (+0 °C, +2.25 °C, +4.5 °C, +6.75 °C, +9 °C) under both ambient and elevated (+500 ppm) CO2 concentrations. Whole-ecosystem-warming treatments began in August 2015 and elevated CO2 treatments began in June 2016. This talk will address the photosynthetic and respiratory responses of vascular plants to the treatments as measured with a variety of in-situ and ex-situ measurements conducted throughout the 2016 and 2017 growing seasons. We will focus on the responses of two dominant ericaceous shrubs (Rhododendron groenlandicum and Chamaedaphne calyculata), which account for more 80% of the understory biomass of this open-canopy forest. Such physiological changes are not only leading indicators of changes in plant growth and community structure, but are crucial to understanding carbon cycling of raised bogs and representing boreal peatlands in global dynamic vegetation models. Pre-treatment data collected at this site indicate that the physiologically active season typically begins in late May and extends into the fall until freezing nighttime temperatures are consistently reached, typically in October. Post-treatment measurements made during seasonal transitions indicate a longer active physiological season in warmer treatments. Results from 2016 measurements show some degree of thermal acclimation of photosynthesis in R. groenlandicum and of respiration in both species in the early growing season, but not late season. Late season measurements show a down-regulation of photosynthesis in both shrub species grown under elevated CO2. Taken as a whole, these results indicate complex interactions between phenological changes and treatment effects on

  16. Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2/H2O medium. (United States)

    Gao, Hanyang; Xue, Chen; Hu, Guoxin; Zhu, Kunxu


    In this research, three kinds of graphene quantum dots (GQDs)-pristine graphene quantum dots (PGQDs), expanded graphene quantum dots (EGQDs) and graphene oxide quantum dots (GOQDs)-were produced from natural graphite, expanded graphite, and oxide graphite respectively in an ultrasound-assisted supercritical CO 2 (scCO 2 )/H 2 O system. The effects of aqueous solution content ratio, system pressure, and ultrasonic power on the yields of different kinds of GQDs were investigated. According to these experiment results, the combination of the intense knocking force generated from high-pressure acoustic cavitation in a scCO 2 /H 2 O system and the superior penetration ability of scCO 2 was considered to be the key to the successful exfoliation of such tiny pieces from bulk graphite. An interesting result was found that, contrary to common experience, the yield of PGQDs from natural graphite was much higher than that of GOQDs from graphite oxide. Based on the experimental analysis, the larger interlayer resistance of natural graphite, which hindered the insertion of scCO 2 molecules, and the hydrophobic property of natural graphite surface, which made the planar more susceptible to the attack of ultrasonic collapsing bubbles, were deduced to be the two main reasons for this result. The differences in characteristics among the three kinds of GQDs were also studied and compared in this research. In our opinion, this low-cost and time-saving method may provide an alternative green route for the production of various kinds of GQDs, especially PGQDs. Copyright © 2017 Elsevier B.V. All rights reserved.


    We investigated the effects of elevated atmospheric CO2 and air temperature on C cycling in trees and associated soil system, focusing on canopy CO2 assimilation (Asys) and system CO2 loss through respiration (Rsys). We hypothesized that both elevated CO2 and elevated temperature...

  18. Utilization of spent dregs for the production of activated carbon for CO2 adsorption

    Directory of Open Access Journals (Sweden)

    Serafin Jarosław


    Full Text Available The objective of this work was preparation of activated carbon from spent dregs for carbon dioxide adsorption. A saturated solution of KOH was used as an activating agent. Samples were carbonized in the furnace at the temperature of 550°C. Textural properties of activated carbons were obtained based on the adsorption-desorption isotherms of nitrogen at −196°C and carbon dioxide at 0°C. The specific surface areas of activated carbons were calculated by the Brunauer – Emmett – Teller equation. The volumes of micropores were obtained by density functional theory method. The highest CO2 adsorption was 9.54 mmol/cm3 at 0°C – and 8.50 mmol/cm3 at 25°C.

  19. The effects of acute and long-term exposure to CO 2 on the respiratory physiology and production performance of Atlantic salmon ( Salmo salar ) in freshwater

    DEFF Research Database (Denmark)

    Khan, Javed Rafiq; Johansen, D.; Skov, Peter Vilhelm


    of recovery from stress. They also show that these effects are driven primarily by CO2 exposure, and to a much lesser extent by the associated reduction in pH. Growth and feed conversion experiments during chronic exposure suggest that there is no CO2 concentration where production performance is unaffected.......A high-level of free CO2 is a prevalent feature of intensive RAS and chronic exposure is common for most species during the production process. Currently, standard operating procedures, regulations and “safe” levels of CO2 are based on values that do not necessarily represent a point at, up...... the effects of both; acute increases in dissolved CO2 on the physiological capacity of Atlantic salmon, as well the effects of chronic exposure to different CO2 concentrations on production in freshwater. Results show that acute exposure (up to 40 mg L−1) significantly reduces aerobic capacity and the rate...

  20. Changing Arctic Ecosystems: Updated forecast: Reducing carbon dioxide (CO2) emissions required to improve polar bear outlook (United States)

    Oakley, Karen L.; Atwood, Todd C.; Mugel, Douglas N.; Rode, Karyn D.; Whalen, Mary E.


    The Arctic is warming faster than other regions of the world due to the loss of snow and ice, which increases the amount of solar energy absorbed by the region. The most visible consequence has been the rapid decline in sea ice over the last 3 decades-a decline projected to bring long ice-free summers if greenhouse gas (GHG) emissions are not significantly reduced. The polar bear (Ursus maritimus) depends on sea ice over the biologically productive continental shelves of the Arctic Ocean as a platform for hunting seals. In 2008, the U.S. Fish and Wildlife Service listed the polar bear as threatened under the Endangered Species Act (ESA) due to the threat posed by sea ice loss. The polar bear was the first species to be listed due to forecasted population declines from climate change.

  1. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux. (United States)

    Oishi, A Christopher; Palmroth, Sari; Johnsen, Kurt H; McCarthy, Heather R; Oren, Ram


    Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free-Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values - estimated based on temperature alone assuming nonlimiting soil water content - by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil , showing a decrease of ca. 114 g C m(-2) yr(-1) per 1 g m(-2) increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and

  2. Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO2 in a tropical coastal lagoon (Chilka Lake, India)

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, G.V.M.; Sarma, V.V.S.S.; Robin, R.S.; Raman, A.V.; JaiKumar, M.; Rakesh, M.; Subramanian, B.R.

    in monsoon was contributed by its supply from rivers and the rest was contributed by in situ heterotrophic activity. Based on oxygen and total carbon mass balance, net ecosystem production (NEP) of lake (- 308 mmolC m sup(-2) d sup(-1) approx. equal to - 3...

  3. Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942. (United States)

    Lan, Ethan I; Chuang, Derrick S; Shen, Claire R; Lee, Annabel M; Ro, Soo Y; Liao, James C


    Photosynthetic conversion of CO2 to chemicals using cyanobacteria is an attractive approach for direct recycling of CO2 to useful products. 3-Hydroxypropionic acid (3 HP) is a valuable chemical for the synthesis of polymers and serves as a precursor to many other chemicals such as acrylic acid. 3 HP is naturally produced through glycerol metabolism. However, cyanobacteria do not possess pathways for synthesizing glycerol and converting glycerol to 3 HP. Furthermore, the latter pathway requires coenzyme B12, or an oxygen sensitive, coenzyme B12-independent enzyme. These characteristics present major challenges for production of 3 HP using cyanobacteria. To overcome such difficulties, we constructed two alternative pathways in Synechococcus elongatus PCC 7942: a malonyl-CoA dependent pathway and a β-alanine dependent pathway. Expression of the malonyl-CoA dependent pathway genes (malonyl-CoA reductase and malonate semialdehyde reductase) enabled S. elongatus to synthesize 3 HP to a final titer of 665 mg/L. β-Alanine dependent pathway expressing S. elongatus produced 3H P to final titer of 186 mg/L. These results demonstrated the feasibility of converting CO2 into 3 HP using cyanobacteria. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. A Data Base of Nutrient Use, Water Use, CO2 Exchange, and Ethylene Production by Soybeans in a Controlled Environment (United States)

    Wheeler, R. M.; Mackowiak, C. L.; Peterson, B. V.; Sager, J. C.; Knott, W. M.; Berry, W. L.; Sharifi, M. R.


    A data set is given describing daily nutrient and water uptake, carbon dioxide (CO2) exchange, ethylene production, and carbon and nutrient partitioning from a 20 sq m stand of soybeans (Glycine max (L.) Merr. cv. McCall] for use in bioregenerative life support systems. Stand CO2 exchange rates were determined from nocturnal increases in CO2 (respiration) and morning drawdowns (net photosynthesis) to a set point of 1000 micromol/ mol each day (i.e., a closed system approach). Atmospheric samples were analyzed throughout growth for ethylene using gas chromatography with photoionization detection (GC/PH)). Water use was monitored by condensate production from the humidity control system, as well as water uptake from the nutrient solution reservoirs each day. Nutrient uptake data were determined from daily additions of stock solution and acid to maintain an EC of 0.12 S/m and pH of 5.8. Dry mass yields of seeds, pods (without seeds), leaves, stems, and roots are provided, as well as elemental and proximate nutritional compositions of the tissues. A methods section is included to qualify any assumptions that might be required for the use of the data in plant growth models, along with a daily event calendar documenting set point adjustments and the occasional equipment or sensor failure.

  5. Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems (United States)

    Brandt, L. A.; Bohnet, C.; King, J. Y.


    We investigated the potential for abiotic mineralization to carbon dioxide (CO2) via photodegradation to account for carbon (C) loss from plant litter under conditions typical of arid ecosystems. We exposed five species of grass and oak litter collected from arid and mesic sites to a factorial design of ultraviolet (UV) radiation (UV pass, UV block), and sterilization under dry conditions in the laboratory. UV pass treatments produced 10 times the amount of CO2 produced in UV block treatments. CO2 production rates were unaffected by litter chemistry or sterilization. We also exposed litter to natural solar radiation outdoors on clear, sunny days close to the summer solstice at midlatitudes and found that UV radiation (280-400 nm) accounted for 55% of photochemically induced CO2 production, while shortwave visible radiation (400-500 nm) accounted for 45% of CO2 production. Rates of photochemically induced CO2 production on a per-unit-mass basis decreased with litter density, indicating that rates depend on litter surface area. We found no evidence for leaching, methane production, or facilitation of microbial decomposition as alternative mechanisms for significant photochemically induced C loss from litter. We conclude that abiotic mineralization to CO2 is the primary mechanism by which C is lost from litter during photodegradation. We estimate that CO2 production via photodegradation could be between 1 and 4 g C m-2 a-1 in arid ecosystems in the southwestern United States. Taken together with low levels of litter production in arid systems, photochemical mineralization to CO2 could account for a significant proportion of annual carbon loss from litter in arid ecosystems.

  6. Techno-economic assessment of membrane assisted fluidized bed reactors for pure H_2 production with CO_2 capture

    International Nuclear Information System (INIS)

    Spallina, V.; Pandolfo, D.; Battistella, A.; Romano, M.C.; Van Sint Annaland, M.; Gallucci, F.


    Highlights: • Membrane reactors improve the overall efficiency of H_2 production up to 20%. • Respect to conventional reforming, the H_2 yield increases from 12% to 20%. • The COH is reduced of at least 220% using membrane reactors. • FBMR capture 72% of CO_2 with a specific cost of 8 eur/tonn_C_O_2_. • MA-CLR can reach 90% of CO_2 avoided with same cost of FTR. - Abstract: This paper addresses the techno-economic assessment of two membrane-based technologies for H_2 production from natural gas, fully integrated with CO_2 capture. In the first configuration, a fluidized bed membrane reactor (FBMR) is integrated in the H_2 plant: the natural gas reacts with steam in the catalytic bed and H_2 is simultaneously separated using Pd-based membranes, and the heat of reaction is provided to the system by feeding air as reactive sweep gas in part of the membranes and by burning part of the permeated H_2 (in order to avoid CO_2 emissions for heat supply). In the second system, named membrane assisted chemical looping reforming (MA-CLR), natural gas is converted in the fuel rector by reaction with steam and an oxygen carrier (chemical looping reforming), and the produced H_2 permeates through the membranes. The oxygen carrier is re-oxidized in a separate air reactor with air, which also provides the heat required for the endothermic reactions in the fuel reactor. The plants are optimized by varying the operating conditions of the reactors such as temperature, pressures (both at feed and permeate side), steam-to-carbon ratio and the heat recovery configuration. The plant design is carried out using Aspen Simulation, while the novel reactor concepts have been designed and their performance have been studied with a dedicated phenomenological model in Matlab. Both configurations have been designed and compared with reference technologies for H_2 production based on conventional fired tubular reforming (FTR) with and without CO_2 capture. The results of the analysis show

  7. Rangeland -- plant response to elevated CO2

    International Nuclear Information System (INIS)

    Owensby, C.E.; Coyne, P.I.; Ham, J.M.; Parton, W.; Rice, C.; Auen, L.M.; Adam, N.


    Plots of a tallgrass prairie ecosystem were exposed to ambient and twice-ambient CO 2 concentrations in open-top chambers and compared to unchambered ambient CO 2 plots during the entire growing season from 1989 through 1992. Relative root production among treatments was estimated using root ingrowth bags which remained in place throughout the growing season. Latent heat flux was simulated with and without water stress. Botanical composition was estimated annuallyin all treatments. Open-top chambers appeared to reduce latent heat flux and increase water use efficiency similar to elevated CO 2 when water stress was not severe, but under severe water stress, chamber effect on water use efficiency was limited. In natural ecosystems with periodic moisture stress, increased water use efficiency under elevated CO 2 apparently would have a greater impact on productivity than photosynthetic pathway. Root ingrowth biomass was greater in 1990 and 1991 on elevated CO 2 plots compared to ambient or chambered-ambient plots. In 1992, there was no difference in root ingrowth biomass among treatments

  8. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products (United States)

    Kley, Christopher S.; Li, Yifan; Yang, Peidong


    Direct conversion of carbon dioxide to multicarbon products remains as a grand challenge in electrochemical CO2 reduction. Various forms of oxidized copper have been demonstrated as electrocatalysts that still require large overpotentials. Here, we show that an ensemble of Cu nanoparticles (NPs) enables selective formation of C2–C3 products at low overpotentials. Densely packed Cu NP ensembles underwent structural transformation during electrolysis into electrocatalytically active cube-like particles intermixed with smaller nanoparticles. Ethylene, ethanol, and n-propanol are the major C2–C3 products with onset potential at −0.53 V (vs. reversible hydrogen electrode, RHE) and C2–C3 faradaic efficiency (FE) reaching 50% at only −0.75 V. Thus, the catalyst exhibits selective generation of C2–C3 hydrocarbons and oxygenates at considerably lowered overpotentials in neutral pH aqueous media. In addition, this approach suggests new opportunities in realizing multicarbon product formation from CO2, where the majority of efforts has been to use oxidized copper-based materials. Robust catalytic performance is demonstrated by 10 h of stable operation with C2–C3 current density 10 mA/cm2 (at −0.75 V), rendering it attractive for solar-to-fuel applications. Tafel analysis suggests reductive CO coupling as a rate determining step for C2 products, while n-propanol (C3) production seems to have a discrete pathway. PMID:28923930

  9. Joint optimization of preventive maintenance and spare parts inventory for an optimal production plan with consideration of CO_2 emission

    International Nuclear Information System (INIS)

    Ba, Kader; Dellagi, Sofiene; Rezg, Nidhal; Erray, Walid


    This article presents a joint optimization of spare parts inventory and preventive maintenance. While minimizing CO_2 emissions, this approach is based on an optimal production plan achieved thanks to the HMMS model. The process which is studied in this paper only manufactures one type of product. The purpose of the paper is to determine for a random demand over a given period, a cost-effective production plan and a maintenance policy which integrates a spare parts strategy in accordance with environmental requirements and regulations. Our green spare parts management can be defined as a set of actions that are applied in order to decrease the spare parts footprint in its lifetime (Ba et al., 2015) [1]. Indeed, we take into account the spare parts characteristics (new or used) which will be used during maintenance actions (preventive or corrective) to preserve the environment. Consequently, we set up analytical models based on the effect of the production rate on the system deterioration so as to substantially cut the maintenance costs, production costs and CO_2 emissions. To evaluate the performance of our models, we give some illustrative examples. - Highlights: • Establishment of an optimal production plan for a manufacturing process. • Cost-effective maintenance strategy with a green spare parts strategy. • Possibility to choose between used and new spare parts to execute maintenance action.

  10. Comparative study of Fischer–Tropsch production and post-combustion CO2 capture at an oil refinery: Economic evaluation and GHG (greenhouse gas emissions) balances

    International Nuclear Information System (INIS)

    Johansson, Daniella; Franck, Per-Åke; Pettersson, Karin; Berntsson, Thore


    The impact on CO 2 emissions of integrating new technologies (a biomass-to-Fischer–Tropsch fuel plant and a post-combustion CO 2 capture plant) with a complex refinery has previously been investigated separately by the authors. In the present study these designs are integrated with a refinery and evaluated from the point-of-view of economics and GHG (greenhouse gas emissions) emissions and are compared to a reference refinery. Stand-alone Fischer–Tropsch fuel production is included for comparison. To account for uncertainties in the future energy market, the assessment has been conducted for different future energy market conditions. For the post-combustion CO 2 capture process to be profitable, the present study stresses the importance of a high charge for CO 2 emission. A policy support for biofuels is essential for the biomass-to-Fischer–Tropsch fuel production to be profitable. The level of the support, however, differs depending on scenario. In general, a high charge for CO 2 economically favours Fischer–Tropsch fuel production, while a low charge for CO 2 economically favours Fischer–Tropsch fuel production. Integrated Fischer–Tropsch fuel production is most profitable in scenarios with a low wood fuel price. The stand-alone alternative shows no profitability in any of the studied scenarios. Moreover, the high investment costs make all the studied cases sensitive to variations in capital costs. - Highlights: • Comparison of Fischer–Tropsch (FT) fuel production and CO 2 capture at a refinery. • Subsidies for renewable fuels are essential for FT fuel production to be profitable. • A high charge for CO 2 is essential for post-combustion CO 2 capture to be profitable. • A low charge for CO 2 economically favours FT fuel production. • Of the studied cases, CO 2 capture shows the greatest reduction in GHG emissions

  11. [Spatial temporal differentiation of product-based and consumption-based CO2 emissions and balance in the Beijing-Tianjin-Hebei region: an economic input- output analysis]. (United States)

    Wang, Hao; Chen, Cao-cao; Pan, Tao; Liu, Chun-lan; Chen, Long; Sun, Li


    Distinguishing product-based and consumption-based CO2 emissions in the open economic region is the basis for differentiating the emission responsibility, which is attracting increasing attention of decision-makers'attention. The spatial and temporal characteristics of product-based and consumption-based CO2 emissions, as well as carbon balance, in 1997, 2002 and 2007 of JING- JIN-JI region were analyzed by the Economic Input-Output-Life Cycle Assessment model. The results revealed that both the product- based and consumption-based CO2 emissions in the region have been increased by about 4% annually. The percentage of CO2 emissions embodied in trade was 30% -83% , to which the domestic trading added the most. The territorial and consumption-based CO2 emissions in Hebei province were the predominant emission in JING-JIN-JI region, and the increasing speed and emission intensity were stronger than those of Beijing and Tianjin. JING-JIN-JI region was a net inflow region of CO2 emissions, and parts of the emission responsibility were transferred. Beijing and Tianjin were the net importers of CO2 emissions, and Hebei was a net outflow area of CO2 emissions. The key CO2 emission departments in the region were concentrated, and the similarity was great. The inter-regional mechanisms could be set up for joint prevention and control work. - Production and distribution of electricity, gas and water and smelting and pressing of metals had the highest reliability on CO2 emissions, and took on the responsibility of other departments. The EIO-LCA model could be used to analyze the product-based and consumption-based CO2 emissions, which is helpful for the delicate management of regional CO2 emissions reduction and policies making, and stimulating the reduction cooperation at regional scale.

  12. Partitioning of the net CO2 exchange using an automated chamber system reveals plant phenology as key control of production and respiration fluxes in a boreal peatland. (United States)

    Järveoja, Järvi; Nilsson, Mats B; Gažovič, Michal; Crill, Patrick M; Peichl, Matthias


    The net ecosystem CO 2 exchange (NEE) drives the carbon (C) sink-source strength of northern peatlands. Since NEE represents a balance between various production and respiration fluxes, accurate predictions of its response to global changes require an in depth understanding of these underlying processes. Currently, however, detailed information of the temporal dynamics as well as the separate biotic and abiotic controls of the NEE component fluxes is lacking in peatland ecosystems. In this study, we address this knowledge gap by using an automated chamber system established across natural and trenching-/vegetation removal plots to partition NEE into its production (i.e. gross and net primary production; GPP and NPP) and respiration (i.e. ecosystem, heterotrophic and autotrophic respiration; ER, Rh and Ra) fluxes in a boreal peatland in northern Sweden. Our results showed that daily NEE patterns were driven by GPP while variations in ER were governed by Ra rather than Rh. Moreover, we observed pronounced seasonal shifts in the Ra/Rh and above-/belowground NPP ratios throughout the main phenological phases. Generalized linear model analysis revealed that the greenness index derived from digital images (as a proxy for plant phenology) was the strongest control of NEE, GPP and NPP while explaining considerable fractions also in the variations of ER and Ra. In addition, our data exposed greater temperature sensitivity of NPP compared to Rh resulting in enhanced C sequestration with increasing temperature. Overall, our study suggests that the temporal patterns in NEE and its component fluxes are tightly coupled to vegetation dynamics in boreal peatlands and thus challenges previous studies that commonly identify abiotic factors as key drivers. These findings further emphasize the need for integrating detailed information on plant phenology into process-based models to improve predictions of global change impacts on the peatland C cycle. This article is protected by

  13. Production and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO2 and nitrogen fertilization. (United States)

    Ekblad, Alf; Mikusinska, Anna; Ågren, Göran I; Menichetti, Lorenzo; Wallander, Håkan; Vilgalys, Rytas; Bahr, Adam; Eriksson, Ulrika


    Extramatrical mycelia (EMM) of ectomycorrhizal fungi are important in carbon (C) and nitrogen (N) cycling in forests, but poor knowledge about EMM biomass and necromass turnovers makes the quantification of their role problematic. We studied the impacts of elevated CO2 and N fertilization on EMM production and turnover in a Pinus taeda forest. EMM C was determined by the analysis of ergosterol (biomass), chitin (total bio- and necromass) and total organic C (TOC) of sand-filled mycelium in-growth bags. The production and turnover of EMM bio- and necromass and total C were estimated by modelling. N fertilization reduced the standing EMM biomass C to 57% and its production to 51% of the control (from 238 to 122 kg C ha(-1)  yr(-1) ), whereas elevated CO2 had no detectable effects. Biomass turnover was high (˜13 yr(-1) ) and unchanged by the treatments. Necromass turnover was slow and was reduced from 1.5 yr(-1) in the control to 0.65 yr(-1) in the N-fertilized treatment. However, TOC data did not support an N effect on necromass turnover. An estimated EMM production ranging from 2.5 to 6% of net primary production stresses the importance of its inclusion in C models. A slow EMM necromass turnover indicates an importance in building up forest humus. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Combined production of synthetic liquid fuel and electricity from coal using H2S and CO2 removal systems

    Directory of Open Access Journals (Sweden)

    Elina A. Tyurina


    Full Text Available The main aim of the research is to continue the studies on promising technologies of coal conversion into synthetic liquid fuel (methanol. The object of study is the plants for combined production of electricity and synthetic liquid fuel (PCPs, which are eco-friendly and more efficient as compared to the plants for separate production. The previous studies on PCPs consider the systems for fine cleaning of gasification products in a simplified way. This study presents the detailed mathematical modeling of the aforementioned systems and determines the values of energy consumption and investment in them. The obtained values are used to carry out the optimization studies and find the optimal parameters of PCPs with different degree of CO2 removal from gasification products providing fine cleaning of gasification products from H2S.

  15. Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation

    NARCIS (Netherlands)

    Calfapietra, C.; Gielen, B.; Galema, A.N.J.; Lukac, M.; Angelis, de P.; Moscatelli, M.C.; Ceulemans, R.; Scarascia-Mugnozza, G.


    This paper investigates the possible contribution of Short Rotation Cultures (SRC) to carbon sequestration in both current and elevated atmospheric CO2 concentrations ([CO2]). A dense poplar plantation (1 x 1 m) was exposed to a [CO2] of 550 ppm in Central Italy using the free-air CO2 enrichment

  16. CO2 Enhanced Oil Recovery from the Residual Zone - A Sustainable Vision for North Sea Oil Production (United States)

    Stewart, Jamie; Haszeldine, Stuart; Wilkinson, Mark; Johnson, Gareth


    This paper presents a 'new vision for North Sea oil production' where previously unattainable residual oil can be produced with the injection of CO2 that has been captured at power stations or other large industrial emitters. Not only could this process produce incremental oil from a maturing basin, reducing imports, it also has the capability to store large volumes of CO2 which can offset the emissions of additional carbon produced. Around the world oil production from mature basins is in decline and production from UK oil fields peaked in 1998. Other basins around the world have a similar story. Although in the UK a number of tax regimes, such as 'brown field allowances' and 'new field allowances' have been put in place to re-encourage investment, it is recognised that the majority of large discoveries have already been made. However, as a nation our demand for oil remains high and in the last decade imports of crude oil have been steadily increasing. The UK is dependent on crude oil for transport and feedstock for chemical and plastics production. Combined with the necessity to provide energy security, there is a demand to re-assess the potential for CO2 Enhanced Oil Recovery (CO2-EOR) in the UK offshore. Residual oil zones (ROZ) exist where one of a number of natural conditions beyond normal capillary forces have caused the geometry of a field's oil column to be altered after filling [1]. When this re-structuring happens the primary interest to the hydrocarbon industry has in the past been in where the mobile oil has migrated to. However it is now considered that significant oil resource may exist in the residual zone play where the main oil column has been displaced. Saturations within this play are predominantly close to residual saturation (Sr) and would be similar to that of a water-flooded field [2]. Evidence from a number of hydrocarbon fairways shows that, under certain circumstances, these residual zones in US fields are comparable in thickness to the

  17. Optimization of hydrogen production with CO_2 capture by autothermal chemical-looping reforming using different bioethanol purities

    International Nuclear Information System (INIS)

    García-Díez, E.; García-Labiano, F.; De Diego, L.F.; Abad, A.; Gayán, P.; Adánez, J.; Ruíz, J.A.C.


    Highlights: • Autothermal-CLR and WGS have been considered for H_2 production with CO_2 capture. • Bioethanol was used as renewable fuel. • Mass and heat balances allow process optimization. • The use of diluted bioethanol implies energy saves in the bioethanol production. • The use of diluted bioethanol (52 vol.%) produces 4.62 mol H_2/mol ethanol. - Abstract: Autothermal Chemical-Looping Reforming (a-CLR) is a process which allows hydrogen production avoiding the environmental penalty of CO_2 emission typically produced in other processes. The major advantage of this technology is that the heat needed for syngas production is generated by the process itself. The heat necessary for the endothermic reactions is supplied by a Ni-based oxygen-carrier (OC) circulating between two reactors: the air reactor (AR), where the OC is oxidized by air, and the fuel reactor (FR), where the fuel is converted to syngas. Other important advantage is that this process also allows the production of pure N_2 in the AR outlet stream. A renewable fuel such as bioethanol was chosen in this work due to their increasing worldwide production and the current excess of this fuel presented by different countries. In this work, mass and heat balances were done to determine the auto-thermal conditions that maximize H_2 production, assuming that the product gas was in thermodynamic equilibrium. Three different types of bioethanol has been considered according to their ethanol purity; Dehydrated ethanol (≈100 vol.%), hydrated ethanol (≈96 vol.%), and diluted ethanol (≈52 vol.%). It has been observed that the higher H_2 production (4.62 mol of H_2 per mol of EtOH) has been obtained with the use of diluted ethanol and the surplus energy needed could be compensated by the energy save achieved during the purification of ethanol in the production process.

  18. Global Warming Can Negate the Expected CO2 Stimulation in Photosynthesis and Productivity for Soybean Grown in the Midwestern United States1[W][OA (United States)

    Ruiz-Vera, Ursula M.; Siebers, Matthew; Gray, Sharon B.; Drag, David W.; Rosenthal, David M.; Kimball, Bruce A.; Ort, Donald R.; Bernacchi, Carl J.


    Extensive evidence shows that increasing carbon dioxide concentration ([CO2]) stimulates, and increasing temperature decreases, both net photosynthetic carbon assimilation (A) and biomass production for C3 plants. However the [CO2]-induced stimulation in A is projected to increase further with warmer temperature. While the influence of increasing temperature and [CO2], independent of each other, on A and biomass production have been widely investigated, the interaction between these two major global changes has not been tested on field-grown crops. Here, the interactive effect of both elevated [CO2] (approximately 585 μmol mol−1) and temperature (+3.5°C) on soybean (Glycine max) A, biomass, and yield were tested over two growing seasons in the Temperature by Free-Air CO2 Enrichment experiment at the Soybean Free Air CO2 Enrichment facility. Measurements of A, stomatal conductance, and intercellular [CO2] were collected along with meteorological, water potential, and growth data. Elevated temperatures caused lower A, which was largely attributed to declines in stomatal conductance and intercellular [CO2] and led in turn to lower yields. Increasing both [CO2] and temperature stimulated A relative to elevated [CO2] alone on only two sampling days during 2009 and on no days in 2011. In 2011, the warmer of the two years, there were no observed increases in yield in the elevated temperature plots regardless of whether [CO2] was elevated. All treatments lowered the harvest index for soybean, although the effect of elevated [CO2] in 2011 was not statistically significant. These results provide a better understanding of the physiological responses of soybean to future climate change conditions and suggest that the potential is limited for elevated [CO2] to mitigate the influence of rising temperatures on photosynthesis, growth, and yields of C3 crops. PMID:23512883

  19. Hydro-geomechanical behaviour of gas-hydrate bearing soils during gas production through depressurization and CO2 injection (United States)

    Deusner, C.; Gupta, S.; Kossel, E.; Bigalke, N.; Haeckel, M.


    Results from recent field trials suggest that natural gas could be produced from marine gas hydrate reservoirs at compatible yields and rates. It appears, from a current perspective, that gas production would essentially be based on depressurization and, when facing suitable conditions, be assisted by local thermal stimulation or gas hydrate conversion after injection of CO2-rich fluids. Both field trials, onshore in the Alaska permafrost and in the Nankai Trough offshore Japan, were accompanied by different technical issues, the most striking problems resulting from un-predicted geomechanical behaviour, sediment destabilization and catastrophic sand production. So far, there is a lack of experimental data which could help to understand relevant mechanisms and triggers for potential soil failure in gas hydrate production, to guide model development for simulation of soil behaviour in large-scale production, and to identify processes which drive or, further, mitigate sand production. We use high-pressure flow-through systems in combination with different online and in situ monitoring tools (e.g. Raman microscopy, MRI) to simulate relevant gas hydrate production scenarios. Key components for soil mechanical studies are triaxial systems with ERT (Electric resistivity tomography) and high-resolution local strain analysis. Sand production control and management is studied in a novel hollow-cylinder-type triaxial setup with a miniaturized borehole which allows fluid and particle transport at different fluid injection and flow conditions. Further, the development of a large-scale high-pressure flow-through triaxial test system equipped with μ-CT is ongoing. We will present results from high-pressure flow-through experiments on gas production through depressurization and injection of CO2-rich fluids. Experimental data are used to develop and parametrize numerical models which can simulate coupled process dynamics during gas-hydrate formation and gas production.

  20. Outsourcing CO2 Emissions (United States)

    Davis, S. J.; Caldeira, K. G.


    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with consumption of goods and services in each country. This consumption-based emissions inventory differs from the production-based inventory because of imports and exports of goods and services that, either directly or indirectly, involved CO2 emissions. Using the latest available data and reasonable assumptions regarding trans-shipment of embodied carbon through third-party countries, we developed a global consumption-based CO2 emissions inventory and have calculated associated consumption-based energy and carbon intensities. We find that, in 2004, 24% of CO2 emissions are effectively outsourced to other countries, with much of the developed world outsourcing CO2 emissions to emerging markets, principally China. Some wealthy countries, including Switzerland and Sweden, outsource over half of their consumption-based emissions, with many northern Europeans outsourcing more than three tons of emissions per person per year. The United States is both a big importer and exporter of emissions embodied in trade, outsourcing >2.6 tons of CO2 per person and at the same time as >2.0 tons of CO2 per person are outsourced to the United States. These large flows indicate that CO2 emissions embodied in trade must be taken into consideration when considering responsibility for increasing atmospheric greenhouse gas concentrations.

  1. Produção de pimenta tabasco com aplicação de CO2, utilizando-se irrigação por gotejamento = Tabasco pepper production with CO2 application using drip irrigation

    Directory of Open Access Journals (Sweden)

    Fabiana Luiza Matielo de Paula


    Full Text Available A aplicação de CO2 via água de irrigação produz o rebaixamento do pH da solução do solo, causando variações na mobilidade dos nutrientes e consequentes efeitos na absorção. O objetivo deste trabalho foi analisar os efeitos de doses de dióxido de carbono (CO2, aplicadas via irrigação por gotejamento, na produção da pimenta Tabasco. O delineamento experimental foi o de blocos casualizados com quatro tratamentos e oito repetições. Os tratamentos foram quatro doses de CO2: 0 (T1, 451,95 (T2; 677,93 (T3 e 903,92 (T4 kg ha-1. Os frutos foram pesados e contados; o comprimento e o diâmetro de frutos foram obtidos com a média de 20 frutos por planta. Ocorreu efeito quadrático (p Application of CO2 through water reduces the soil solution pH, causing variations in nutrient mobility and consequent effects on the absorption. The objective of this study was to analyze the effects of carbon dioxide rates supplied by drip irrigation in the production of Capsicum frutescens L. crop. A randomized block design with four treatments and eight replications was used. The treatments were four rates of CO2: 0 (T1, 451.95 (T2; 677.93 (T3 and 903.92 (T4 kg ha-1. The fruits were counted and weighed; the length and the diameter were obtained from an average of 20 fruits per plant, randomly taken, from each treatment in the plot. The quadratic effect (p < 0.01 occurred for CO2 on the yield and there was quadratic effect (p < 0.05 of the rates on the number of fruits. There were no effects of CO2 rates on the green matter, dry matter and fruit length and diameter. The T2 treatment provided greater yield and higher number of fruits per plant with an increase of 16 and 26%, respectively in relation to T1 (without CO2. CO2 application favored the increase in the yield because of the greater number of fruits per plant in the Tabasco pepper crop.

  2. Isostructural and cage-specific replacement occurring in sII hydrate with external CO2/N2 gas and its implications for natural gas production and CO2 storage

    International Nuclear Information System (INIS)

    Seo, Young-ju; Park, Seongmin; Kang, Hyery; Ahn, Yun-Ho; Lim, Dongwook; Kim, Se-Joon; Lee, Jaehyoung; Lee, Joo Yong; Ahn, Taewoong; Seo, Yongwon; Lee, Huen


    structural sustainability and cage-specific replacement observed in the C 3 H 8 + CH 4 hydrate with external CO 2 /N 2 gas will have significant implications for suggesting target gas hydrate reservoirs and understanding the precise nature of guest exchange in gas hydrates for both safe natural gas production and long-term CO 2 sequestration.

  3. Light intensity as major factor to maximize biomass and lipid productivity of Ettlia sp. in CO2-controlled photoautotrophic chemostat. (United States)

    Seo, Seong-Hyun; Ha, Ji-San; Yoo, Chan; Srivastava, Ankita; Ahn, Chi-Yong; Cho, Dae-Hyun; La, Hyun-Joon; Han, Myung-Soo; Oh, Hee-Mock


    The optimal culture conditions are critical factors for high microalgal biomass and lipid productivity. To optimize the photoautotrophic culture conditions, combination of the pH (regulated by CO 2 supply), dilution rate, and light intensity was systematically investigated for Ettlia sp. YC001 cultivation in a chemostat during 143days. The biomass productivity increased with the increase in dilution rate and light intensity, but decreased with increasing pH. The average lipid content was 19.8% and statistically non-variable among the tested conditions. The highest biomass and lipid productivities were 1.48gL -1 d -1 and 291.4mgL -1 d -1 with a pH of 6.5, dilution rate of 0.78d -1 , and light intensity of 1500μmolphotonsm -2 s -1 . With a sufficient supply of CO 2 and nutrients, the light intensity was the main determinant of the photosynthetic rate. Therefore, the surface-to-volume ratio of a photobioreactor should enable efficient light distribution to enhance microalgal growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Non-CO2 greenhouse gas emissions associated with food production: methane (CH4) and nitrous oxide (N2O)

    International Nuclear Information System (INIS)

    Carlsson-Kanyama, Annika


    It is well known that the agriculture and livestock sectors are large contributors of N 2 O and CH 4 emissions in countries with agricultural activities and that remedial measures are needed in these sectors in order to curb contributions to global warming. This study examines non- CO 2 greenhouse gas emissions associated with the production of food. Methane (CH 4 ) and nitrous oxide (N 2 O) are the most relevant greenhouse gases in this category, and they are emitted mainly in the agricultural sector. These greenhouse gases have a Global Warming Potential much higher than CO 2 itself (25- and 298-fold higher, respectively, in a 100-year perspective). Emission intensities and the corresponding uncertainties were calculated based on the latest procedures and data published by the Intergovernmental Panel on Climate Change and used to facilitate calculations comparing greenhouse gas emissions for food products and diets. When the proposed emission intensities were applied to agricultural production, the results showed products of animal origin and the cultivation of rice under water to have high emissions compared with products of vegetable origin cultivated on upland soils, such as wheat and beans. In animal production the main source of greenhouse gas emissions was methane from enteric fermentation, while emissions of nitrous oxides from fertilisers were the main sources of greenhouse gas emissions for cereal and legume cultivation. For rice cultivation, methane emissions from flooded rice fields contributed most. Other significant sources of greenhouse gas emissions during animal production were manure storage and management. We suggest that the proposed emission factors, together with the associated uncertainties, can be a tool for better understanding the potential to mitigate emissions of greenhouse gases through changes in the diet

  5. Renewable and non-renewable exergy costs and CO2 emissions in the production of fuels for Brazilian transportation sector

    International Nuclear Information System (INIS)

    Flórez-Orrego, Daniel; Silva, Julio A.M. da; Velásquez, Héctor; Oliveira, Silvio de


    An exergy and environmental comparison between the fuel production routes for Brazilian transportation sector, including fossil fuels (natural gas, oil-derived products and hydrogen), biofuels (ethanol and biodiesel) and electricity is performed, and the percentage distribution of exergy destruction in the different units of the processing plants is characterized. An exergoeconomy methodology is developed and applied to properly allocate the renewable and non-renewable exergy costs and CO 2 emission cost among the different products of multiproduct plants. Since Brazilian electricity is consumed in the upstream processing stages of the fuels used in the generation thereof, an iterative calculation is used. The electricity mix comprises thermal (coal, natural gas and oil-fired), nuclear, wind and hydroelectric power plants, as well as bagasse-fired mills, which, besides exporting surplus electricity, also produce sugar and bioethanol. Oil and natural gas-derived fuels production and biodiesel fatty acid methyl-esters (FAME) derived from palm oil are also analyzed. It was found that in spite of the highest total unit exergy costs correspond to the production of biofuels and electricity, the ratio between the renewable to non-renewable invested exergy (cR/cNR) for those fuels is 2.69 for biodiesel, 4.39 for electricity, and 15.96 for ethanol, whereas for fossil fuels is almost negligible. - Highlights: • Total and non-renewable exergy costs of Brazilian transportation fuels are evaluated. • Specific CO 2 emissions in the production of Brazilian transportation fuels are determined. • Representative production routes for fossil fuels, biofuels and electricity are reviewed. • Exergoeconomy is used to distribute costs and emissions in multiproduct processes

  6. Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2 (United States)

    John S. King; Mark E. Kubiske; Kurt S. Pregitzer; George R. Hendrey; Evan P. McDonald; Christian P. Giardina; Vanessa S. Quinn; David F. Karnosky


    Concentrations of atmospheric CO2 and tropospheric ozone (O3) are rising concurrently in the atmosphere, with potentially antagonistic effects on forest net primary production (NPP) and implications for terrestrial carbon sequestration. Using free-air CO2 enrichment (FACE) technology, we exposed north...

  7. Effects of climate change on productivity of cereals and legumes; model evaluation of observed year-to-year variability of the CO2 response.

    NARCIS (Netherlands)

    Grashoff, C.; Dijkstra, P.; Nonhebel, S.; Schapendonk, A.H.C.M.; Geijn, van de S.C.


    The effect of elevated [CO2] on the productivity of spring wheat, winter wheat and faba bean was studied in experiments in climatized crop enclosures in the Wageningen Rhizolab in 1991–93. Simulation models for crop growth were used to explore possible causes for the observed differences in the CO2

  8. Green remediation of contaminated sediment by stabilization/solidification with industrial by-products and CO2 utilization. (United States)

    Wang, Lei; Chen, Liang; Tsang, Daniel C W; Li, Jiang-Shan; Yeung, Tiffany L Y; Ding, Shiming; Poon, Chi Sun


    Navigational dredging is an excavation of marine/freshwater sediment to maintain channels of sufficient depth for shipping safety. Due to historical inputs of anthropogenic contaminants, sediments are often contaminated by metals/metalloids, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other contaminants. Its disposal can present significant environmental and financial burdens. This study developed a novel and green remediation method for contaminated sediment using stabilization/solidification with calcium-rich/low-calcium industrial by-products and CO 2 utilization. The hydration products were evaluated by quantitative X-ray diffraction analysis and thermogravimetric analysis. The incorporation of calcium carbide residue (CCR) facilitated hydration reaction and provided relatively high 7-d strength. In contrast, the addition of Class-F pulverized fly ash (PFA) and ground granulated blast furnace slag (GGBS) was beneficial to the 28-d strength development due to supplementary pozzolanic and hydration reactions. The employment of 1-d CO 2 curing was found to promote strength development (98%) and carbon sequestration (4.3wt%), while additional 7-d air curing facilitated cement rehydration and further carbonation in the sediment blocks. The leachability tests indicated that all studied binders, especially CCR binder, effectively immobilized contaminants in the sediments. The calcium-rich CCR and GGBS were regarded as promising candidates for augmenting the efficacy of CO 2 curing, whereas GGBS samples could be applicable as eco-paving blocks in view of their superior 28-d strength. This study presents a new and sustainable way to transform contaminated sediment into value-added materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Application of microbial photosynthesis to energy production and CO2 fixation

    International Nuclear Information System (INIS)

    Asada, Y.; Miyake, J.


    This paper presents different applications of microbial photosynthesis for energy production and carbon dioxide fixation. The authors discuss about energetic aspects of photosynthesis and features of biological way for solar energy conversion. (TEC). 4 figs., 12 refs

  10. Soil and Plant Water Relations Determine Photosynthetic Responses of C3 and C4 Grasses in a Semi‐arid Ecosystem under Elevated CO2




    To model the effect of increasing atmospheric CO2 on semi‐arid grasslands, the gas exchange responses of leaves to seasonal changes in soil water, and how they are modified by CO2, must be understood for C3 and C4 species that grow in the same area. In this study, open‐top chambers were used to investigate the photosynthetic and stomatal responses of Pascopyrum smithii (C3) and Bouteloua gracilis (C4) grown at 360 (ambient CO2) and 720 µmol mol–1 CO2 (elevated CO2) in a semi‐arid shortgrass s...

  11. Engineering of cyanobacteria for the photosynthetic production of limonene from CO2. (United States)

    Kiyota, Hiroshi; Okuda, Yukiko; Ito, Michiho; Hirai, Masami Yokota; Ikeuchi, Masahiko


    Isoprenoids, major secondary metabolites in many organisms, are utilized in various applications. We constructed a model photosynthetic production system for limonene, a volatile isoprenoid, using a unicellular cyanobacterium that expresses the plant limonene synthase. This system produces limonene photosynthetically at a nearly constant rate and that can be efficiently recovered using a gas-stripping method. This production does not affect the growth of the cyanobacteria and is markedly enhanced by overexpression of three enzymes in the intrinsic pathway to provide the precursor of limonene, geranyl pyrophosphate. The photosynthetic production of limonene in our system is more or less sustained from the linear to stationary phase of cyanobacterial growth for up to 1 month. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Neutralization of acid mine drainage using the final product from CO2 emissions capture with alkaline paper mill waste

    International Nuclear Information System (INIS)

    Perez-Lopez, Rafael; Castillo, Julio; Quispe, Dino; Nieto, Jose Miguel


    In this study, experiments were conducted to investigate the applicability of low-cost alkaline paper mill wastes as acidity neutralizing agents for treatment of acid mine drainage (AMD). Paper wastes include a calcium mud by-product from kraft pulping, and a calcite powder from a previous study focused on sequestering CO 2 by carbonation of calcium mud. The neutralization process consisted of increase of pH by alkaline additive dissolution, decrease of metals solubility and precipitation of gypsum and poorly crystallized Fe-Al oxy-hydroxides/oxy-hydroxysulphates, which acted as a sink for trace elements to that extent that solutions reached the pre-potability requirements of water for human consumption. This improvement was supported by geochemical modelling of solutions using PHREEQC software, and observations by scanning electron microscope and X-ray diffraction of reaction products. According to PHREEQC simulations, the annual amount of alkaline additive is able to treat AMD (pH 3.63, sulphate 3800 mg L -1 , iron 348 mg L -1 ) with an average discharge of about 114 and 40 L s -1 for calcium mud and calcite powder, respectively. Likewise, given the high potential of calcium mud to sequester CO 2 and of resulting calcite powder to neutralize AMD, paper wastes could be a promising solution for facing this double environmental problem.

  13. Will Global Change Effect Primary Productivity in Coastal Ecosystems? (United States)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)


    Algae are the base of coastal food webs because they provide the source of organic carbon for the remaining members of the community. Thus, the rate that they produce organic carbon to a large extent controls the productivity of the entire ecosystem. Factors that control algal productivity range from the physical (e.g., temperature, light), chemical (e.g., nutrient levels) to the biological (e.g., grazing). Currently, levels of atmospheric carbon dioxide surficial fluxes of ultraviolet radiation are rising. Both of these environmental variables can have a profound effect on algal productivity. Atmospheric carbon dioxide may increase surficial levels of dissolved inorganic carbon. Our laboratory and field studies of algal mats and phytoplankton cultures under ambient and elevated levels of pCO2 show that elevated levels of inorganic carbon can cause an increase in photosynthetic rates. In some cases, this increase will cause an increase in phytoplankton numbers. There may be an increase in the excretion of fixed carbon, which in turn may enhance bacterial productivity. Alternatively, in analogy with studies on the effect of elevated pCO2 on plants, the phytoplankton could change their carbon to nitrogen ratios, which will effect the feeding of the planktonic grazers. The seasonal depletion of stratospheric ozone has resulted in elevated fluxes of UVB radiation superimposed on the normal seasonal variation. Present surface UV fluxes have a significant impact on phytoplankton physiology, including the inhibition of the light and dark reactions of photosynthesis, inhibition of nitrogenase activity, inhibition of heterocyst formation, reduction in motility, increased synthesis of the UV-screening pigment scytonemin, and mutation. After reviewing these issues, recent work in our lab on measuring the effect of UV radiation on phytoplankton in the San Francisco Bay Estuary will be presented.

  14. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh Iyer; Himanshu Gupta; Danny Wong; Liang-Shih Fan


    Hydrogen production from coal gasification can be enhanced by driving the equilibrium limited Water Gas Shift reaction forward by incessantly removing the CO{sub 2} by-product via the carbonation of calcium oxide. This project aims at using the OSU patented high-reactivity mesoporous precipitated calcium carbonate sorbent for removing the CO{sub 2} product. Preliminary experiments demonstrate the show the superior performance of the PCC sorbent over other naturally occurring calcium sorbents. Gas composition analyses show the formation of 100% pure hydrogen. Novel calcination techniques could lead to smaller reactor footprint and single-stage reactors that can achieve maximum theoretical H{sub 2} production for multicyclic applications. Sub-atmospheric calcination studies reveal the effect of vacuum level, diluent gas flow rate, thermal properties of the diluent gas and the sorbent loading on the calcination kinetics which play an important role on the sorbent morphology. Steam, which can be easily separated from CO{sub 2}, is envisioned to be a potential diluent gas due to its enhanced thermal properties. Steam calcination studies at 700-850 C reveal improved sorbent morphology over regular nitrogen calcination. A mixture of 80% steam and 20% CO{sub 2} at ambient pressure was used to calcine the spent sorbent at 820 C thus lowering the calcination temperature. Regeneration of calcium sulfide to calcium carbonate was achieved by carbonating the calcium sulfide slurry by bubbling CO{sub 2} gas at room temperature.

  15. Transport of CO2 and other combustion products in soils during slash-pile burns [Presentation (United States)

    W. J. Massman; M. M. Nobles; G. Butters; S. J. Mooney


    The most obvious indication of transport of mass during a fire is flames and smoke. Furthermore it is well known that localized heating during the fire creates 3-D convective currents in the atmosphere and that these currents carry the combustion products away from the fire.

  16. Impact of organic pig production systems on CO2 emission, C sequestration and nitrate pollution

    DEFF Research Database (Denmark)

    Halberg, Niels; Hermansen, John Erik; Kristensen, Ib Sillebak


    Organic rules for grazing and access to outdoor areas in pig production may be met in different ways, which express compromises between considerations for animal welfare, feed self-reliance and negative environmental impact such as greenhouse gas emissions and nitrate pollution. This article...

  17. Stem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperature. (United States)

    Vu, Joseph C V; Allen, Leon H


    Two cultivars of sugarcane (Saccharum officinarum cv. CP73-1547 and CP88-1508) were grown for 3 months in paired-companion, temperature-gradient, sunlit greenhouses under daytime [CO2] of 360 (ambient) and 720 (double ambient) micromol mol(-1) and at temperatures of 1.5 degrees C (near ambient) and 6.0 degrees C higher than outside ambient temperature. Leaf area and biomass, stem biomass and juice and CO2 exchange rate (CER) and activities of ribulose bisphosphate carboxylase-oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) of fully developed leaves were measured at harvest. On a main stem basis, leaf area, leaf dry weight, stem dry weight and stem juice volume were increased by growth at doubled [CO2] or high temperature. Such increases were even greater under combination of doubled [CO2]/high temperature. Plants grown at doubled [CO2]/high temperature combination averaged 50%, 26%, 84% and 124% greater in leaf area, leaf dry weight, stem dry weight and stem juice volume, respectively, compared with plants grown at ambient [CO2]/near-ambient temperature combination. In addition, plants grown at doubled [CO2]/high temperature combination were 2-3-fold higher in stem soluble solids than those at ambient [CO2]/near-ambient temperature combination. Although midday CER of fully developed leaves was not affected by doubled [CO2] or high temperature, plants grown at doubled [CO2] were 41-43% less in leaf stomatal conductance and 69-79% greater in leaf water-use efficiency, compared with plants grown at ambient [CO2]. Activity of PEPC was down-regulated 23-32% at doubled [CO2], while high temperature did not have a significant impact on this enzyme. Activity of Rubisco was not affected by growth at doubled [CO2], but was reduced 15-28% at high temperature. The increases in stem juice production and stem juice soluble solids concentration for sugarcane grown at doubled [CO2] or high temperature, or at doubled [CO2]/high temperature combination, were partially

  18. Elevated CO2 and warming induce substantial and persistent declines in forage quality irrespective of warming in mixed grass prairie (United States)

    Increasing atmospheric [CO2] and temperature are expected to affect the productivity, species composition, biogeochemistry, and therefore the quantity and quality of forage available to herbivores in rangeland ecosystems. Both elevated CO2 (eCO2) and warming affect plant tissue chemistry through mul...

  19. Daily variation in net primary production and net calcification in coral reef communities exposed to elevated pCO2

    Directory of Open Access Journals (Sweden)

    S. Comeau


    Full Text Available The threat represented by ocean acidification (OA for coral reefs has received considerable attention because of the sensitivity of calcifiers to changing seawater carbonate chemistry. However, most studies have focused on the organismic response of calcification to OA, and only a few have addressed community-level effects, or investigated parameters other than calcification, such as photosynthesis. Light (photosynthetically active radiation, PAR is a driver of biological processes on coral reefs, and the possibility that these processes might be perturbed by OA has important implications for community function. Here we investigate how CO2 enrichment affects the relationships between PAR and community net O2 production (Pnet, and between PAR and community net calcification (Gnet, using experiments on three coral communities constructed to match (i the back reef of Mo'orea, French Polynesia, (ii the fore reef of Mo'orea, and (iii the back reef of O'ahu, Hawaii. The results were used to test the hypothesis that OA affects the relationship between Pnet and Gnet. For the three communities tested, pCO2 did not affect the Pnet–PAR relationship, but it affected the intercept of the hyperbolic tangent curve fitting the Gnet–PAR relationship for both reef communities in Mo'orea (but not in O'ahu. For the three communities, the slopes of the linear relationships between Pnet and Gnet were not affected by OA, although the intercepts were depressed by the inhibitory effect of high pCO2 on Gnet. Our result indicates that OA can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification, but without affecting community photosynthesis.

  20. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests (United States)

    Talhelm, Alan F; Pregitzer, Kurt S; Kubiske, Mark E; Zak, Donald R; Campany, Courtney E; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F


    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2) and tropospheric ozone (O3) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3. Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r2 = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m−2) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (ΔNPP/ΔN) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2. Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content. PMID:24604779

  1. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests. (United States)

    Talhelm, Alan F; Pregitzer, Kurt S; Kubiske, Mark E; Zak, Donald R; Campany, Courtney E; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F


    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2 ) and tropospheric ozone (O3 ) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3 . Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r(2) = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m(-2) ) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (∆NPP/∆N) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2 . Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content. © 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  2. CO2 chemical valorization

    International Nuclear Information System (INIS)

    Kerlero De Rosbo, Guillaume; Rakotojaona, Loic; Bucy, Jacques de; Clodic, Denis; Roger, Anne-Cecile; El Khamlichi, Aicha; Thybaud, Nathalie; Oeser, Christian; Forti, Laurent; Gimenez, Michel; Savary, David; Amouroux, Jacques


    Facing global warming, different technological solutions exist to tackle carbon dioxide (CO 2 ) emissions. Some inevitable short term emissions can be captured so as to avoid direct emissions into the atmosphere. This CO 2 must then be managed and geological storage seems to currently be the only way of dealing with the large volumes involved. However, this solution faces major economic profitability and societal acceptance challenges. In this context, alternative pathways consisting in using CO 2 instead of storing it do exist and are generating growing interest. This study ordered by the French Environment and Energy Management Agency (ADEME), aims at taking stock of the different technologies used for the chemical conversion of CO 2 in order to have a better understanding of their development potential by 2030, of the conditions in which they could be competitive and of the main actions to be implemented in France to foster their emergence. To do this, the study was broken down into two main areas of focus: The review and characterization of the main CO 2 chemical conversion routes for the synthesis of basic chemical products, energy products and inert materials. This review includes a presentation of the main principles underpinning the studied routes, a preliminary assessment of their performances, advantages and drawbacks, a list of the main R and D projects underway, a focus on emblematic projects as well as a brief analysis of the markets for the main products produced. Based on these elements, 3 routes were selected from among the most promising by 2030 for an in-depth modelling and assessment of their energy, environmental and economic performances. The study shows that the processes modelled do have favorable CO 2 balances (from 1 to 4 t-CO 2 /t-product) and effectively constitute solutions to reduce CO 2 emissions, despite limited volumes of CO 2 in question. Moreover, the profitability of certain solutions will remain difficult to reach, even with an

  3. CO2 slurry pipeline to transport solid marketable products to improve CCS economics

    Energy Technology Data Exchange (ETDEWEB)

    Luhning, Richard


    Carbon dioxide pipelines are anticipated to be a key element in CCS (Carbon Capture and Sequestration) to transport the carbon dioxide to sequestration sites or to oil fields for use in enhanced oil recovery applications. However the economics of CCS are such that the operations are economically challenged. The concept of using super critical (liquid) carbon dioxide in a slurry pipeline is to use the pipeline constructed for environmental purposes to transport marketable products such as sulphur, petroleum coke, limestone and others to market thereby generating additional income to make CCS carbon dioxide transportation economically attractive.

  4. Effects of different elevated CO2 concentrations on chlorophyll contents, gas exchange, water use efficiency, and PSII activity on C3 and C4 cereal crops in a closed artificial ecosystem. (United States)

    Wang, Minjuan; Xie, Beizhen; Fu, Yuming; Dong, Chen; Hui, Liu; Guanghui, Liu; Liu, Hong


    Although terrestrial CO2 concentrations [CO2] are not expected to reach 1000 μmol mol(-1) (or ppm) for many decades, CO2 levels in closed systems such as growth chambers and greenhouses can easily exceed this concentration. CO2 levels in life support systems (LSS) in space can exceed 10,000 ppm (1 %). In order to understand how photosynthesis in C4 plants may respond to elevated CO2, it is necessary to determine if leaves of closed artificial ecosystem grown plants have a fully developed C4 photosynthetic apparatus, and whether or not photosynthesis in these leaves is more responsive to elevated [CO2] than leaves of C3 plants. To address this issue, we evaluated the response of gas exchange, water use efficiency, and photosynthetic efficiency of PSII by soybean (Glycine max (L.) Merr., 'Heihe35') of a typical C3 plant and maize (Zea mays L., 'Susheng') of C4 plant under four CO2 concentrations (500, 1000, 3000, and 5000 ppm), which were grown under controlled environmental conditions of Lunar Palace 1. The results showed that photosynthetic pigment by the C3 plants of soybean was more sensitive to elevated [CO2] below 3000 ppm than the C4 plants of maize. Elevated [CO2] to 1000 ppm induced a higher initial photosynthetic rate, while super-elevated [CO2] appeared to negate such initial growth promotion for C3 plants. The C4 plant had the highest ETR, φPSII, and qP under 500-3000 ppm [CO2], but then decreased substantially at 5000 ppm [CO2] for both species. Therefore, photosynthetic down-regulation and a decrease in photosynthetic electron transport occurred by both species in response to super-elevated [CO2] at 3000 and 5000 ppm. Accordingly, plants can be selected for and adapt to the efficient use of elevated CO2 concentration in LSS.

  5. Estimating Gross Primary Productivity of a tropical forest ecosystem ...

    Indian Academy of Sciences (India)


    forest ecosystem over north-east India using LAI and meteorological ... water and Greenhouse Gas (GHG) fluxes between the biosphere and the at- mosphere ..... calculated from these by internal algorithms of LAI-2200 and stored in its in-built ..... 2007). As a result of these enhanced CO2 emission could be observed from.

  6. An Integrated Hydrogen Production-CO2 Capture Process from Fossil Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zhicheng Wang


    The new technology concept integrates two significant complementary hydrogen production and CO{sub 2}-sequestration approaches that have been developed at Oak Ridge National Laboratory (ORNL) and Clark Atlanta University. The process can convert biomass into hydrogen and char. Hydrogen can be efficiently used for stationary power and mobile applications, or it can be synthesized into Ammonia which can be used for CO{sub 2}-sequestration, while char can be used for making time-release fertilizers (NH{sub 4}HCO{sub 3}) by absorption of CO{sub 2} and other acid gases from exhaust flows. Fertilizers are then used for the growth of biomass back to fields. This project includes bench scale experiments and pilot scale tests. The Combustion and Emission Lab at Clark Atlanta University has conducted the bench scale experiments. The facility used for pilot scale tests was built in Athens, GA. The overall yield from this process is 7 wt% hydrogen and 32 wt% charcoal/activated carbon of feedstock (peanut shell). The value of co-product activated carbon is about $1.1/GJ and this coproduct reduced the selling price of hydrogen. And the selling price of hydrogen is estimated to be $6.95/GJ. The green house experimental results show that the samples added carbon-fertilizers have effectively growth increase of three different types of plants and improvement ability of keeping fertilizer in soil to avoid the fertilizer leaching with water.

  7. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shwetha Ramkumar; Mahesh Iyer; Danny Wong; Himanshu Gupta; Bartev Sakadjian; Liang-Lhih Fan


    High purity hydrogen is commercially produced from syngas by the Water Gas Shift Reaction (WGSR) in high and low temperature shift reactors using iron oxide and copper catalysts respectively. However, the WGSR is thermodynamically limited at high temperatures towards hydrogen production necessitating excess steam addition and catalytic operation. In the calcium looping process, the equilibrium limited WGSR is driven forward by the incessant removal of CO{sub 2} by-product through the carbonation of calcium oxide. At high pressures, this process obviates the need for a catalyst and excess steam requirement, thereby removing the costs related to the procurement and deactivation of the catalyst and steam generation. Thermodynamic analysis for the combined WGS and carbonation reaction was conducted. The combined WGS and carbonation reaction was investigated at varying pressures, temperatures and S/C ratios using a bench scale reactor system. It was found that the purity of hydrogen increases with the increase in pressure and at a pressure of 300 psig, almost 100% hydrogen is produced. It was also found that at high pressures, high purity hydrogen can be produced using stoichiometric quantities of steam. On comparing the catalytic and non catalytic modes of operation in the presence of calcium oxide, it was found that there was no difference in the purity of hydrogen produced at elevated pressures. Multicyclic reaction and regeneration experiments were also conducted and it was found that the purity of hydrogen remains almost constant after a few cycles.

  8. Production and fractionation of 14CO2 labeled smooth cordgrass, Spartina alterniflora

    International Nuclear Information System (INIS)

    Fallon, R.D.; Pfaender, F.K.


    A simple chamber for use in radioactive carbon labeling of plants is described and used to successfully label Spartina Alterniflora. The plant material contained 5.5 +- 1.3 μCi/g (dry) mean activity after a 1-week pulse. The plant was chemically fractionated and the mean activity (+- standard error) was determined in four biochemical fractions: fiber = 2.6 +- 0.7 μCi/g (dry), organic acid 2.6 +- 0.1 μCi/g (dry), protein/nucleic acid = 2.4 +- 0.5 μCi/g (dry), and lipid = 27.3 +- 6.2 μCi/g (dry). The high activity of the lipid fraction indicates that it may serve as a carbon storage pool in the plant under the described growing conditions. The simple, low cost chamber can be used for plant biochemistry experiments, and for the production of labeled detritus and plant fractions

  9. Responses of Ecosystem CO2 Fluxes to Short-Term Experimental Warming and Nitrogen Enrichment in an Alpine Meadow, Northern Tibet Plateau (United States)

    Shi, Peili; Jiang, Jing; Song, Minghua; Xiong, Dingpeng; Ma, Weiling; Fu, Gang; Zhang, Xianzhou; Shen, Zhenxi


    Over the past decades, the Tibetan Plateau has experienced pronounced warming, yet the extent to which warming will affect alpine ecosystems depends on how warming interacts with other influential global change factors, such as nitrogen (N) deposition. A long-term warming and N manipulation experiment was established to investigate the interactive effects of warming and N deposition on alpine meadow. Open-top chambers were used to simulate warming. N addition, warming, N addition × warming, and a control were set up. In OTCs, daytime air and soil temperature were warmed by 2.0°C and 1.6°C above ambient conditions, but soil moisture was decreased by 4.95 m3 m−3. N addition enhanced ecosystem respiration (Reco); nevertheless, warming significantly decreased Reco. The decline of Reco resulting from warming was cancelled out by N addition in late growing season. Our results suggested that N addition enhanced Reco by increasing soil N availability and plant production, whereas warming decreased Reco through lowering soil moisture, soil N supply potential, and suppression of plant activity. Furthermore, season-specific responses of Reco indicated that warming and N deposition caused by future global change may have complicated influence on carbon cycles in alpine ecosystems. PMID:24459432

  10. A New Method for Production of Titanium Dioxide Pigment - Eliminating CO2 Emission

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak [University of Utah


    The objective of this project was to demonstrate the potential of a new process technology to reduce the energy consumption and CO{sub 2} emission from the production of titanium dioxide (TiO{sub 2}) pigment. TiO{sub 2} is one of the most commonly used minerals in the chemical manufacturing industry. It has been commercially processed as a pigment since the early 1900's, and has a wide variety of domestic and industrial applications. TiO{sub 2} pigment is currently produced primarily by the use of the so called chloride process. A key step of the chloride process relies on high temperature carbo-chlorination of TiO{sub 2} bearing raw materials, hence producing large quantities of CO{sub 2}. The new method uses a chemical/metallurgical sequential extraction methodology to produce pigment grade TiO{sub 2} from high-TiO{sub 2} slag. The specific project objectives were to 1) study and prove the scientific validity of the concept, 2) understand the primary chemical reactions and the efficiency of sequential extraction schemes, 3) determine the properties of TiO{sub 2} produced using the technology, and 4) model the energy consumptions and environmental benefits of the technology. These objectives were successfully met and a new process for producing commercial quality TiO{sub 2} pigment was developed and experimentally validated. The process features a unique combination of established metallurgical processes, including alkaline roasting of titania slag followed by leaching, solvent extraction, hydrolysis, and calcination. The caustic, acidic, and organic streams in the process will also be regenerated and reused in the process, greatly reducing environmental waste. The purpose and effect of each of these steps in producing purified TiO{sub 2} is detailed in the report. The levels of impurities in our pigment meet the requirements for commercial pigment, and are nearly equivalent to those of two commercial pigments. Solvent extraction with an amine extractant

  11. Ethanol production by immobilized yeast and its CO2 gas effects on a packed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, G M; Choi, C Y; Choi, Y D; Han, M H


    Immobilised yeast trapped in an alginate matrix demonstrated maximum activity at 30 degrees C and showed no pH effect between 3 and 7. Substrate inhibition was observed at glucose concentrations above 8% but the immobilised cells retained 70% of their maximum activity at 20% glucose concentration. The operation stability of immobilised cells was lower in simple glucose solution than in the activation medium in which only 20% of the activity was lost after 10 days operation. Inactivated immobilised yeast beads were reactivated by incubation in activation medium without a significant increase in cell numbers in a bead. During the operation of the immobilised yeast in a packed bed reactor, CO/sub 2/ gas accumulation adversely affected the reactor performance. An ideal plus flow reactor, not taking into account the formation of CO/sub 2/ gas bubbles and the presence of mass trasnfer resistance, was simulated using a kinetic model for the production of ethanol and the simulation results were compared with the actual reactor performance to determine the CO/sub 2/ gas effect, quantitatively. Up to 45% of the substrate conversion was lost due to the accumulation of CO/sub 2/ gas bubbles in all cases. (Refs. 21).

  12. Evaluation of Energy Balance and CO2 Emissions of Wheat (Triticum aestivum L. Production

    Directory of Open Access Journals (Sweden)

    Mohammad Pazouki


    Full Text Available Introduction Among the various factors affecting agricultural production, climatic conditions of the natural environment variables are effected .On the other hand the agriculture development , the exact knowledge of environmental characteristics and management practices is anywhere special in semi-arid zone. Cotton (Gossypium hirsutum L. due to the extensive roots and permeability and also the ability to set the number of leaves and fruits when the plant is under water stress, is a suitable crop for planting in arid and semi-arid climate. South Khorasan Province has dry and desert climatic conditions in post-semi-arid and semi-arid climates in mountainous regions. South Khorasan province produces 34 thousand tons of cotton annually and planted 13 thousand hectares of irrigated cotton production ranks second in the country. Materials and Methods South Khorasan province is located in the east of Iran with an area of 149,107 square kilometers and is located between the geographical circle of 30° and 31´ to 34° and 53´of northern latitudes and 57° and 3´to 57° and 60´ of east. This study is to evaluate the climatic conditions for the cotton cultivation in the history of different cultures in South Khorasan province in a 25-year period (2015-1990 AD. For this purpose, fifteen stations of South Khorasan province and to help software environment for modeling and spatial analysis was performed by Arc GIS. By taking advantage of favorable climatic conditions at each stage of cotton growth, data layers of classification and weighting values for each zone was determined and prepared. Finally, in order to overlay layers by using multi-criteria decision-making methods based the Analytic Hierarchy Process (AHP, the final maps was set for each date based on climatic factors for the cultivation date of cotton in Khorasan South, Results and Discussion According to the results obtained in the zoning of cultivars, in the western and southern parts of the

  13. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean, supplement to: Holding, Johnna; Duarte, Carlos M; Sanz-Martín, Marina; Mesa, E; Arrieta, J M; Chierici, Melissa; Hendriks, Iris; García-Corral, L S; Regaudie-de-Gioux, A; Delgado, A; Reigstad, M; Wassmann, P; Agustí, Susana (2015): Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean. Nature Climate Change, 5(12), 1079-1082

    KAUST Repository

    Holding, Johnna; Duarte, Carlos M.; Sanz-Martí n, Marina; Mesa, E; Arrieta, J M; Chierici, Melissa; Hendriks, Iris; Garcí a-Corral, L S; Regaudie-de-Gioux, A; Delgado, A; Reigstad, M; Wassmann, P; Agusti, Susana


    should lead to increased rates of planktonic primary production. Yet, simultaneous assessment of warming and increased CO2 on primary production in the Arctic has not been conducted. Here we test the expectation that CO2-enhanced gross primary production

  14. Effects of elevated atmospheric CO2 on competition between the mosquitoes Aedes albopictus and Ae. triseriatus via changes in litter quality and production. (United States)

    Smith, C; Baldwin, A H; Sullivan, J; Leisnham, P T


    Elevated atmospheric CO2 can alter aquatic communities via changes in allochthonous litter inputs. We tested effects of atmospheric CO2 on the invasive Aedes albopictus (Skuse) and native Aedes triseriatus (Say) (Diptera: Culicidae) via changes in competition for microbial food or resource inhibition/toxicity. Quercus alba L. litter was produced under elevated (879 ppm) and ambient (388 ppm) atmospheric CO2. Saplings grown at elevated CO2 produced greater litter biomass, which decayed faster and leached more tannins than saplings at ambient CO2. Competition was tested by raising larvae in different species and density combinations provisioned with elevated- or ambient-CO2 litter. Species-specific performance to water conditions was tested by providing single-species larval cohorts with increasing amounts of elevated- or ambient-CO2 litter, or increasing concentrations of tannic acid. Larval densities affected some fitness parameters of Ae. albopictus and Ae. triseriatus, but elevated-CO2 litter did not modify the effects of competition on population growth rates or any fitness parameters. Population growth rates and survival of each species generally were affected negatively by increasing amounts of both elevated- and ambient-CO2 litter from 0.252 to 2.016 g/liter, and tannic acid concentrations above 100 mg/liter were entirely lethal to both species. Aedes albopictus had consistently higher population growth rates than Ae. triseriatus. These results suggest that changes to litter production and chemistry from elevated CO2 are unlikely to affect the competitive outcome between Ae. albopictus and Ae. triseriatus, but that moderate increases in litter production increase population growth rates of both species until a threshold is exceeded that results in resource inhibition and toxicity.

  15. Production and Extraction of [10C]-CO2 From Proton Bombardment of Molten 10B2O3

    International Nuclear Information System (INIS)

    Schueller, M.J.; Nickles, R.J.; Roberts, A.D.; Jensen, M.


    This work describes the production of 10C (t (1/2) = 19 s) from an enriched 10B2O3 target using a CTI RDS-112 11 MeV proton cyclotron. Proton beam heating is used to raise the target to a molten state (∼ 1300 deg. C), enabling the activity to diffuse to the surface of the melt. An infrared thermocouple monitors the melt temperature. Helium sweep gas then transports the activity to flow-through chemistry processing for human inhalation of 10CO2 for blood flow imaging with Positron Emission Tomography. The temperature-related diffusion of activity out of the white-hot molten glass target is discussed

  16. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016: a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions

    Directory of Open Access Journals (Sweden)

    T. Oda


    Full Text Available The Open-source Data Inventory for Anthropogenic CO2 (ODIAC is a global high-spatial-resolution gridded emissions data product that distributes carbon dioxide (CO2 emissions from fossil fuel combustion. The emissions spatial distributions are estimated at a 1  ×  1 km spatial resolution over land using power plant profiles (emissions intensity and geographical location and satellite-observed nighttime lights. This paper describes the year 2016 version of the ODIAC emissions data product (ODIAC2016 and presents analyses that help guide data users, especially for atmospheric CO2 tracer transport simulations and flux inversion analysis. Since the original publication in 2011, we have made modifications to our emissions modeling framework in order to deliver a comprehensive global gridded emissions data product. Major changes from the 2011 publication are (1 the use of emissions estimates made by the Carbon Dioxide Information Analysis Center (CDIAC at the Oak Ridge National Laboratory (ORNL by fuel type (solid, liquid, gas, cement manufacturing, gas flaring, and international aviation and marine bunkers; (2 the use of multiple spatial emissions proxies by fuel type such as (a nighttime light data specific to gas flaring and (b ship/aircraft fleet tracks; and (3 the inclusion of emissions temporal variations. Using global fuel consumption data, we extrapolated the CDIAC emissions estimates for the recent years and produced the ODIAC2016 emissions data product that covers 2000–2015. Our emissions data can be viewed as an extended version of CDIAC gridded emissions data product, which should allow data users to impose global fossil fuel emissions in a more comprehensive manner than the original CDIAC product. Our new emissions modeling framework allows us to produce future versions of the ODIAC emissions data product with a timely update. Such capability has become more significant given the CDIAC/ORNL's shutdown. The ODIAC data

  17. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions (United States)

    Oda, Tomohiro; Maksyutov, Shamil; Andres, Robert J.


    The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) is a global high-spatial-resolution gridded emissions data product that distributes carbon dioxide (CO2) emissions from fossil fuel combustion. The emissions spatial distributions are estimated at a 1 × 1 km spatial resolution over land using power plant profiles (emissions intensity and geographical location) and satellite-observed nighttime lights. This paper describes the year 2016 version of the ODIAC emissions data product (ODIAC2016) and presents analyses that help guide data users, especially for atmospheric CO2 tracer transport simulations and flux inversion analysis. Since the original publication in 2011, we have made modifications to our emissions modeling framework in order to deliver a comprehensive global gridded emissions data product. Major changes from the 2011 publication are (1) the use of emissions estimates made by the Carbon Dioxide Information Analysis Center (CDIAC) at the Oak Ridge National Laboratory (ORNL) by fuel type (solid, liquid, gas, cement manufacturing, gas flaring, and international aviation and marine bunkers); (2) the use of multiple spatial emissions proxies by fuel type such as (a) nighttime light data specific to gas flaring and (b) ship/aircraft fleet tracks; and (3) the inclusion of emissions temporal variations. Using global fuel consumption data, we extrapolated the CDIAC emissions estimates for the recent years and produced the ODIAC2016 emissions data product that covers 2000-2015. Our emissions data can be viewed as an extended version of CDIAC gridded emissions data product, which should allow data users to impose global fossil fuel emissions in a more comprehensive manner than the original CDIAC product. Our new emissions modeling framework allows us to produce future versions of the ODIAC emissions data product with a timely update. Such capability has become more significant given the CDIAC/ORNL's shutdown. The ODIAC data product could play an important

  18. Hynol: An economic process for methanol production from biomass and natural gas with reduced CO2 emission (United States)

    Steinberg, M.; Dong, Yuanji


    The Hynol process is proposed to meet the demand for an economical process for methanol production with reduced CO2 emission. This new process consists of three reaction steps: (1) hydrogasification of biomass, (2) steam reforming of the produced gas with additional natural gas feedstock, and (3) methanol synthesis of the hydrogen and carbon monoxide produced during the previous two steps. The H2-rich gas remaining after methanol synthesis is recycled to gasify the biomass in an energy neutral reactor so that there is no need for an expensive oxygen plant as required by commercial steam gasifiers. Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventional while the plant still maintains high methanol yield. Energy recovery designed into the process minimizes heat loss and increases the process thermal efficiency. If the Hynol methanol is used as an alternative and more efficient automotive fuel, an overall 41% reduction in CO2 emission can be achieved compared to the use of conventional gasoline fuel. A preliminary economic estimate shows that the total capital investment for a Hynol plant is 40% lower than that for a conventional biomass gasification plant. The methanol production cost is $0.43/gal for a 1085 million gal/yr Hynol plant which is competitive with current U.S. methanol and equivalent gasoline prices. Process flowsheet and simulation data using biomass and natural gas as cofeedstocks are presented. The Hynol process can convert any condensed carbonaceous material, especially municipal solid waste (MSW), to produce methanol.

  19. Long-term influence of alternative forest management treatments on total ecosystem and wood product carbon storage (United States)

    Joshua J. Puhlick; Aaron R. Weiskittel; Ivan J. Fernandez; Shawn Fraver; Laura S. Kenefic; Robert S. Seymour; Randall K. Kolka; Lindsey E. Rustad; John C. Brissette


    Developing strategies for reducing atmospheric CO2 is one of the foremost challenges facing natural resource professionals today. The goal of this study was to evaluate total ecosystem and harvested wood product carbon (C) stocks among alternative forest management treatments (selection cutting, shelterwood cutting, commercial clearcutting, and...

  20. Combined effect of CO2 enrichment and foliar application of salicylic acid on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from ginger (United States)


    Background The increase in atmospheric CO2 concentration caused by climate change and agricultural practices is likely to affect biota by producing changes in plant growth, allocation and chemical composition. This study was conducted to evaluate the combined effect of the application of salicylic acid (SA, at two levels: 0 and 10-3 M) and CO2 enrichment (at two levels: 400 and 800 μmol·mol−1) on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from two Malaysian ginger varieties, namely Halia Bentong and Halia Bara. Methods High-performance liquid chromatography (HPLC) with photodiode array detection and mass spectrometry was employed to identify and quantify the flavonoids and anthocyanins in the ginger extracts. The antioxidant activity of the leaf extracts was determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and thiobarbituric acid (TBA) assays. The substrate specificity of chalcone synthase, the key enzyme for flavonoid biosynthesis, was investigated using the chalcone synthase (CHS) assay. Results CO2 levels of 800 μmol·mol−1 significantly increased anthocyanin, rutin, naringenin, myricetin, apigenin, fisetin and morin contents in ginger leaves. Meanwhile, the combined effect of SA and CO2 enrichment enhanced anthocyanin and flavonoid production compared with single treatment effects. High anthocyanin content was observed in H Bara leaves treated with elevated CO2 and SA. The highest chalcone synthase (CHS) activity was observed in plants treated with SA and CO2 enrichment. Plants not treated with SA and kept under ambient CO2 conditions showed the lowest CHS activity. The highest free radical scavenging activity corresponded to H Bara treated with SA under high CO2 conditions, while the lowest activity corresponded to H Bentong without SA treatment and under atmospheric CO2 levels. As the level of CO2 increased, the DPPH activity increased. Higher TBA activity was also recorded in the extracts of H Bara

  1. Combined effect of CO2 enrichment and foliar application of salicylic acid on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from ginger

    Directory of Open Access Journals (Sweden)

    Ghasemzadeh Ali


    Full Text Available Abstract Background The increase in atmospheric CO2 concentration caused by climate change and agricultural practices is likely to affect biota by producing changes in plant growth, allocation and chemical composition. This study was conducted to evaluate the combined effect of the application of salicylic acid (SA, at two levels: 0 and 10-3 M and CO2 enrichment (at two levels: 400 and 800 μmol·mol−1 on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from two Malaysian ginger varieties, namely Halia Bentong and Halia Bara. Methods High-performance liquid chromatography (HPLC with photodiode array detection and mass spectrometry was employed to identify and quantify the flavonoids and anthocyanins in the ginger extracts. The antioxidant activity of the leaf extracts was determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH and thiobarbituric acid (TBA assays. The substrate specificity of chalcone synthase, the key enzyme for flavonoid biosynthesis, was investigated using the chalcone synthase (CHS assay. Results CO2 levels of 800 μmol·mol−1 significantly increased anthocyanin, rutin, naringenin, myricetin, apigenin, fisetin and morin contents in ginger leaves. Meanwhile, the combined effect of SA and CO2 enrichment enhanced anthocyanin and flavonoid production compared with single treatment effects. High anthocyanin content was observed in H Bara leaves treated with elevated CO2 and SA. The highest chalcone synthase (CHS activity was observed in plants treated with SA and CO2 enrichment. Plants not treated with SA and kept under ambient CO2 conditions showed the lowest CHS activity. The highest free radical scavenging activity corresponded to H Bara treated with SA under high CO2 conditions, while the lowest activity corresponded to H Bentong without SA treatment and under atmospheric CO2 levels. As the level of CO2 increased, the DPPH activity increased. Higher TBA activity was also recorded in the

  2. Sea anemones may thrive in a high CO2 world. (United States)

    Suggett, David J; Hall-Spencer, Jason M; Rodolfo-Metalpa, Riccardo; Boatman, Toby G; Payton, Ross; Tye Pettay, D; Johnson, Vivienne R; Warner, Mark E; Lawson, Tracy


    Increased seawater pCO 2 , and in turn 'ocean acidification' (OA), is predicted to profoundly impact marine ecosystem diversity and function this century. Much research has already focussed on calcifying reef-forming corals (Class: Anthozoa) that appear particularly susceptible to OA via reduced net calcification. However, here we show that OA-like conditions can simultaneously enhance the ecological success of non-calcifying anthozoans, which not only play key ecological and biogeochemical roles in present day benthic ecosystems but also represent a model organism should calcifying anthozoans exist as less calcified (soft-bodied) forms in future oceans. Increased growth (abundance and size) of the sea anemone (Anemonia viridis) population was observed along a natural CO 2 gradient at Vulcano, Italy. Both gross photosynthesis (P G ) and respiration (R) increased with pCO 2 indicating that the increased growth was, at least in part, fuelled by bottom up (CO 2 stimulation) of metabolism. The increase of P G outweighed that of R and the genetic identity of the symbiotic microalgae (Symbiodinium spp.) remained unchanged (type A19) suggesting proximity to the vent site relieved CO 2 limitation of the anemones' symbiotic microalgal population. Our observations of enhanced productivity with pCO 2 , which are consistent with previous reports for some calcifying corals, convey an increase in fitness that may enable non-calcifying anthozoans to thrive in future environments, i.e. higher seawater pCO 2 . Understanding how CO 2 -enhanced productivity of non- (and less-) calcifying anthozoans applies more widely to tropical ecosystems is a priority where such organisms can dominate benthic ecosystems, in particular following localized anthropogenic stress. © 2012 Blackwell Publishing Ltd.

  3. Phytoplankton primary production in the world's estuarine-coastal ecosystems (United States)

    Cloern, James E.; Foster, S.Q.; Kleckner, A.E.


    reported values of APPP, 958 come from sites between 30 and 60° N; we found only 36 for sites south of 20° N. Second, of the 131 ecosystems where APPP has been reported, 37% are based on measurements at only one location during 1 year. The accuracy of these values is unknown but probably low, given the large interannual and spatial variability within ecosystems. Finally, global assessments are confounded by measurements that are not intercomparable because they were made with different methods. Phytoplankton primary production along the continental margins is tightly linked to variability of water quality, biogeochemical processes including ocean–atmosphere CO2 exchange, and production at higher trophic levels including species we harvest as food. The empirical record has deficiencies that preclude reliable global assessment of this key Earth system process. We face two grand challenges to resolve these deficiencies: (1) organize and fund an international effort to use a common method and measure APPP regularly across a network of coastal sites that are globally representative and sustained over time, and (2) integrate data into a unifying model to explain the wide range of variability across ecosystems and to project responses of APPP to regional manifestations of global change as it continues to unfold.

  4. Effects of Co2 Concentrations and light intensity on photosynthesis of a rootless submerged plant, ceratophyllum demersum L., used for aquatic food production in bioregenerative life support systems (United States)

    Kitaya, Y.; Okayama, T.; Murakami, K.; Takeuchi, T.

    Aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO2 to O2 and remedying water quality in addition to green microalgae. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for plant function in aquatic food production modules including both plant culture and fish culture systems . The net photosynthetic rate in plants was determined by the increase in dissolved O2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known level CO 2 gas mixed with N2 gas before closing the vessel. The CO 2 concentrations in the aerating gas ranged from 0.3 to 100 mmol mol-1 . Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol m-2 s-1 , which was controlled with a metal halide lamp. Temperature was kept at 28 C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m-2 s-1 PPFD under CO 2 levels of 1.0 and 3.0 mmol mol-1 , respectively. The net photosynthetic rate increased with increasing CO2 levels from 0.3 to 3.0 mmol mol-1 showing the maximum value, 70 nmolO 2 gDW s at 3.0 mmol mol-1 CO2 and gradually decreased with increasing CO 2 levels from 3.0 to 100 mmol mol-1 . The results demonstrate that Ceratophyllum demersum L. could be an efficient CO 2 to O2 converter under a 3.0 mmol mol-1 CO2 level and relatively low PPFD levels in aquatic food production modules.

  5. Towards explaining excess CO2 production in wetlands - the roles of solid and dissolved organic matter as electron acceptors and of substrate quality (United States)

    Knorr, Klaus-Holger; Gao, Chuanyu; Agethen, Svenja; Sander, Michael


    To understand carbon storage in water logged, anaerobic peatlands, factors controlling mineralization have been studied for decades. Temperature, substrate quality, water table position and the availability of electron acceptors for oxidation of organic carbon have been identified as major factors. However, many studies reported an excess carbon dioxide (CO2) production over methane (CH4) that cannot be explained by available electron acceptors, and peat soils did not reach strictly methanogenic conditions (i.e., a stoichiometric formation ratio of 1:1 of CO2 to CH4). It has been hypothesized that peat organic matter (OM) provides a previously unrecognized electron acceptor for microbial respiration, elevating CO2 to CH4 ratios. Microbial reduction of dissolved OM has been shown in the mid 90's, but only recently mediated electrochemical techniques opened the possibility to access stocks and changes in electron accepting capacities (EAC) of OM in dissolved and solid form. While it was shown that the EAC of OM follows redox cycles of microbial reduction and O2 reoxidation, changes in the EAC of OM were so far not related quantitatively to CO2 production. We therefore tested if CO2 production in anoxic peat incubations is balanced by the consumption of electron acceptors if EAC of OM is included. We set up anoxic incubations with peat and monitored production of CO2 and CH4, and changes in EAC of OM in the dissolved and solid phase over time. Interestingly, in all incubations, the EAC of dissolved OM was poorly related to CO2 and CH4 production. Instead, dissolved OM was rapidly reduced at the onset of the incubations and thereafter remained in reduced form. In contrast, the decrease in the EAC of particulate (i.e. non-dissolved) OM was closely linked to the observed production of non-methanogenic CO2. Thereby, the total EAC of the solid OM pool by far exceeded the EAC of the dissolved OM pool. Over the course of eight week incubations, measured decreases in the EAC

  6. Soil Fungi Respond More Strongly Than Fine Roots to Elevated CO2 in a Model Regenerating Longleaf Pine-Wiregrass Ecosystem (United States)

    Increasing atmospheric CO2 will have significant effects on belowground processes which will affect forest structure and function. A model regenerating longleaf pine-wiregrass community [consisting of longleaf pine (Pinus palustris), wiregrass (Aristida stricta), sand post oak (Quescus margaretta),...

  7. Utilization of CO2 fixating bacterium Actinobacillus succinogenes 130Z for simultaneous biogas upgrading and bio-succinic acid production

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Alvarado-Morales, Merlin; Angelidaki, Irini


    Biogas is an attractive renewable energy carrier. However, it contains CO2 which limits certain applications of biogas. Here we report a novel approach for removing CO2 from biogas and capturing it as a biochemical through a biological process. This approach entails converting CO2 into bio...... and titre, CO2 consumption rate and CH4 purity. When using biogas as the only CO2 source at 140 kPa, the CO2 consumption rate corresponded to 2.59 L CO2 L-1 d-1 with a final succinic acid titre of 14.4 g L-1. Under this pressure condition the highest succinic acid yield and biogas quality reached......-succinic acid using the bacterial strain Actinobacillus succinogenes 130Z, and simultaneously producing high purity CH4 (>95%). Results showed that when pressure during fermentation was increased from 101.325 to 140 kPa, higher CO2 solubility was achieved, thereby positively affecting final succinic acid yield...

  8. Batch production of micron size particles from poly(ethylene glycol) using supercritical CO2 as a processing solvent

    NARCIS (Netherlands)

    Nalawade, Sameer P.; Picchioni, Francesco; Janssen, L. P. B. M.

    The major advantage of using supercritical carbon dioxide (CO2) as a solvent in polymer processing is an enhancement in the free volume of a polymer due to dissolved CO2, which causes a considerable reduction in the viscosity. This allows spraying the polymer melt at low temperatures to produce


    We conducted a 4-year study of Pinus ponderosa fine root (<2 mm) responses to atmospheric CO2 and N-fertilization. Seedlings were grown in open-top chambers at 3 CO2 levels (ambient, ambient+175 mol/mol, ambient+350 mol/mol) and 3 N-fertilization levels (0, 10, 20 g?m-2?yr-1). ...

  10. Formate-Dependent Microbial Conversion of CO2 and the Dominant Pathways of methanogenesis in production water of high-temperature oil reservoirs amended with bicarbonate

    Directory of Open Access Journals (Sweden)

    Guang-Chao eYang


    Full Text Available CO2 sequestration in deep-subsurface formations including oil reservoirs is a potential measure to reduce the CO2 concentration in the atmosphere. However, the fate of the CO2 and the ecological influences in Carbon Dioxide Capture and Storage (CDCS facilities is not understood clearly. In the current study, the fate of CO2 (in bicarbonate form (0~90 mM with 10 mM of formate as electron donor and carbon source was investigated with high-temperature production water from oilfield in China. The isotope data showed that bicarbonate could be reduced to methane by methanogens and major pathway of methanogenesis could be syntrophic formate oxidation coupled with CO2 reduction and formate methanogenesis under the anaerobic conditions. The bicarbonate addition induced the shift of microbial community. Addition of bicarbonate and formate was associated with a decrease of Methanosarcinales, but promotion of Methanobacteriales in all treatments. Thermodesulfovibrio was the major group in all the samples and Thermacetogenium dominated in the high bicarbonate treatments. The results indicated that CO2 from CDCS could be transformed to methane and the possibility of microbial CO2 conversion for enhanced microbial energy recovery in oil reservoirs.

  11. FY 2000 report on the results of the development of the program system CO2 fixation/effective utilization technology. Development of the technology to assess global warming gas recovery/emission control by restoring/preserving the tropical mangrove coastal ecosystem; 2000 nendo program hoshiki nisanka tanso koteika yuko riyo gijutsu kaihatsu seika hokokusho. Mangrove nado nettai engan seitaikei no shufuku hozen ni yoru chikyu ondanka gas kaishu hoshutsu yokusei hyoka gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)



    For the purpose of developing the technology to assess the CO2 storage amount using the tropical mangrove coastal ecosystem, survey was conducted in the mangrove tree area in Ishigaki island, Japan and in Trat province, Thailand, and a draft of the assessment method was worked out. As to the assessment of the CO2 existence amount by analysis of satellite pictures, the regression equation between the mangrove existence amount and Landsat satellite data was determined to study a method for assessment of the CO2 storage amount in the whole area for survey. Further, using the relational equation between NDVI and LAI, vegetation indices reflecting vegetation conditions, methods to estimate the CO2 absorption amount by photosynthesis of mangrove tree community, the CO2 emission amount by respiration and the net production amount. Concerning the technology to assess the terrestrial area photosynthesis CO2 absorption amount, methods were studied for direct measurement of the amount of photosynthesis/respiration of the leaf area of mangrove tree community and the respiration amount by area such as trunk, branch and root and for assessment of CO2 absorption amount. Besides, studies were made on a variety of items such as the CO2 absorption/emission amount by underwater photosynthesis/respiration and decomposition of organic substances, the seawater exchange amount, and the rate of decomposition of organic substances. (NEDO)

  12. Variability of annual CO2 exchange from Dutch grasslands

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Jacobs, A.F.G.; Bosveld, F.C.; Hendriks, D.M.D.; Hensen, A.; Kroon, P.; Moors, E.J.; Nol, L.; Schrier-Uijl, A.P.; Veenendaal, E.M.


    An intercomparison is made of the Net Ecosystem Exchange of CO2, NEE, for eight Dutch grassland sites: four natural grasslands, two production grasslands and two meteorological stations within a rotational grassland region. At all sites the NEE was determined during at least 10 months per site,

  13. Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation (United States)

    Tokoro, Tatsuki; Hosokawa, Shinya; Miyoshi, Eiichi; Tada, Kazufumi; Watanabe, Kenta; Montani, Shigeru; Kayanne, Hajime; Kuwae, Tomohiro


    ‘Blue Carbon’, which is carbon captured by marine living organisms, has recently been highlighted as a new option for climate change mitigation initiatives. In particular, coastal ecosystems have been recognized as significant carbon stocks because of their high burial rates and long-term sequestration of carbon. However, the direct contribution of Blue Carbon to the uptake of atmospheric CO2 through air-sea gas exchange remains unclear. We performed in situ measurements of carbon flows, including air-sea CO2 fluxes, dissolved inorganic carbon changes, net ecosystem production, and carbon burial rates in the boreal (Furen), temperate (Kurihama), and subtropical (Fukido) seagrass meadows of Japan from 2010 to 2013. In particular, the air-sea CO2 flux was measured using three methods: the bulk formula method, the floating chamber method, and the eddy covariance method. Our empirical results show that submerged autotrophic vegetation in shallow coastal waters can be functionally a sink for atmospheric CO2. This finding is contrary to the conventional perception that most near-shore ecosystems are sources of atmospheric CO2. The key factor determining whether or not coastal ecosystems directly decrease the concentration of atmospheric CO2 may be net ecosystem production. This study thus identifies a new ecosystem function of coastal vegetated systems; they are direct sinks of atmospheric CO2. PMID:24623530

  14. Morphological and Compositional Design of Pd-Cu Bimetallic Nanocatalysts with Controllable Product Selectivity toward CO2 Electroreduction. (United States)

    Zhu, Wenjin; Zhang, Lei; Yang, Piaoping; Chang, Xiaoxia; Dong, Hao; Li, Ang; Hu, Congling; Huang, Zhiqi; Zhao, Zhi-Jian; Gong, Jinlong


    Electrochemical conversion of carbon dioxide (electrochemical reduction of carbon dioxide) to value-added products is a promising way to solve CO 2 emission problems. This paper describes a facile one-pot approach to synthesize palladium-copper (Pd-Cu) bimetallic catalysts with different structures. Highly efficient performance and tunable product distributions are achieved due to a coordinative function of both enriched low-coordinated sites and composition effects. The concave rhombic dodecahedral Cu 3 Pd (CRD-Cu 3 Pd) decreases the onset potential for methane (CH 4 ) by 200 mV and shows a sevenfold CH 4 current density at -1.2 V (vs reversible hydrogen electrode) compared to Cu foil. The flower-like Pd 3 Cu (FL-Pd 3 Cu) exhibits high faradaic efficiency toward CO in a wide potential range from -0.7 to -1.3 V, and reaches a fourfold CO current density at -1.3 V compared to commercial Pd black. Tafel plots and density functional theory calculations suggest that both the introduction of high-index facets and alloying contribute to the enhanced CH 4 current of CRD-Cu 3 Pd, while the alloy effect is responsible for high CO selectivity of FL-Pd 3 Cu. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing. (United States)

    Azoulay-Shemer, Tamar; Palomares, Axxell; Bagheri, Andisheh; Israelsson-Nordstrom, Maria; Engineer, Cawas B; Bargmann, Bastiaan O R; Stephan, Aaron B; Schroeder, Julian I


    Stomata mediate gas exchange between the inter-cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2 ]. [CO2 ] in leaves mediates stomatal movements. The role of guard cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll-deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard cell specific enhancer trap line. Our data show that more than 90% of guard cells were chlorophyll-deficient. Interestingly, approximately 45% of stomata had an unusual, previously not-described, morphology of thin-shaped chlorophyll-less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole-leaf photosynthetic parameters (PSII, qP, qN, FV '/FM' ) were comparable with wild-type plants. Time-resolved intact leaf gas-exchange analyses showed a reduction in stomatal conductance and CO2 -assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2 ] shifts. Detailed stomatal aperture measurements of normal kidney-shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2 ] elevation and abscisic acid (ABA), while thin-shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2 ] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard cell CO2 and ABA signal transduction are not directly modulated by guard cell photosynthesis/electron transport. Moreover, the finding that chlorophyll-less stomata cause a 'deflated' thin-shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard cell turgor production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  16. CuCo2O4 nanoplate film as a low-cost, highly active and durable catalyst towards the hydrolytic dehydrogenation of ammonia borane for hydrogen production (United States)

    Liu, Quanbing; Zhang, Shengjie; Liao, Jinyun; Feng, Kejun; Zheng, Yuying; Pollet, Bruno G.; Li, Hao


    Catalytic dehydrogenation of ammonia borane is one of the most promising routes for the production of clean hydrogen as it is seen as a highly efficient and safe method. However, its large-scale industrial application is either limited by the high cost of the catalyst (usually a noble metal based catalyst) or by the low activity and poor reusability (usually a non-noble metal catalyst). In this study, we have successfully prepared three low-cost CuCo2O4 nanocatalysts, namely: (i) Ti supported CuCo2O4 film made of CuCo2O4 nanoplates, (ii) Ti supported CuCo2O4 film made of CuCo2O4 nanosheets, and (iii) unsupported CuCo2O4 nanoparticles. Among the three catalysts used for the hydrolytic dehydrogeneration of ammonia borane, the CuCo2O4 nanoplate film exhibits the highest catalytic activity with a turnover frequency (TOF) of ∼44.0 molhydrogen min-1 molcat-1. This is one of the largest TOF value for noble-metal-free catalysts ever reported in the literature. Moreover, the CuCo2O4 nanoplate film almost keeps its original catalytic activity after eight cycles, indicative of its high stability and good reusability. Owing to its advantages, the CuCo2O4 nanoplate film can be a promising catalyst for the hydrolytic dehydrogenation of ammonia borane, which may find important applications in the field of hydrogen energy.

  17. Forecasting global atmospheric CO2

    International Nuclear Information System (INIS)

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.


    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  18. Net exchanges of CO2, CH4 and N2O between the terrestrial ecosystems and the atmosphere in boreal and arctic region: Towards a full greenhouse gas budget (United States)

    Zhang, B.; Tian, H.; Lu, C.; Yang, J.; Kamaljit, K.; Pan, S.


    Boreal and arctic terrestrial ecosystem is a unique ecological region due to large portion of wetland and permafrost distribution. Increasing disturbances, like permafrost-thaw, fire event, climate extreme, would greatly change the patterns and variations of greenhouse gas emission and further affect the feedback between terrestrial ecosystem and climate change. Carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) accounted for more than 85% of the radioactive forcing (RF) due to long-lived greenhouse gases. However, few studies have considered the full budget of three gases together in this region. In this study, we used a process-based model (Dynamic Land Ecosystem Model), driven by multiple global change factors, to quantify the magnitude, spatial and temporal variation of CO2, CH4 and N2O across the boreal and arctic regions. Simulated results have been evaluated against field observations, inventory-based and atmospheric inversion estimates. By implementing a set of factorial simulations, we further quantify the relative contribution of climate, atmospheric composition, fire to the CO2, CH4 and N2O fluxes. Continued warming climate potentially could shift the inter-annual and intra-annual variation of greenhouse gases fluxes. The understanding of full budget in this region could provide insights for reasonable future projection, which is also crucial for developing effective mitigation strategies.

  19. The Influence of CO2 Admixtures on the Product Composition in a Nitrogen-Methane Atmospheric Glow Discharge Used as a Prebiotic Atmosphere Mimic. (United States)

    Mazankova, V; Torokova, L; Krcma, F; Mason, N J; Matejcik, S


    This work extends our previous experimental studies of the chemistry of Titan's atmosphere by atmospheric glow discharge. The Titan's atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO 2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N 2  + CH 4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO 2 reactivity. CO 2 was introduced to the standard N 2  + CH 4 mixture at different mixing ratio up to 5 % CH 4 and 3 % CO 2 . The reaction products were characterized by FTIR spectroscopy. This work shows that CO 2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO 2 on increasing concentration other products as cyanide (HCN) and ammonia (NH 3 ).

  20. Assessment of hydrothermal pretreatment of various lignocellulosic biomass with CO2 catalyst for enhanced methane and hydrogen production. (United States)

    Eskicioglu, Cigdem; Monlau, Florian; Barakat, Abdellatif; Ferrer, Ivet; Kaparaju, Prasad; Trably, Eric; Carrère, Hélène


    Hydrothermal pretreatment of five lignocellulosic substrates (i.e. wheat straw, rice straw, biomass sorghum, corn stover and Douglas fir bark) were conducted in the presence of CO 2 as a catalyst. To maximize disintegration and conversion into bioenergy (methane and hydrogen), pretreatment temperatures and subsequent pressures varied with a range of 26-175 °C, and 25-102 bars, respectively. Among lignin, cellulose and hemicelluloses, hydrothermal pretreatment caused the highest reduction (23-42%) in hemicelluloses while delignification was limited to only 0-12%. These reductions in structural integrity resulted in 20-30% faster hydrolysis rates during anaerobic digestion for the pretreated substrates of straws, sorghum, and corn stover while Douglas fir bark yielded 172% faster hydrolysis/digestion due to its highly refractory nature in the control. Furans and phenolic compounds formed in the pretreated hydrolyzates were below the inhibitory levels for methane and hydrogen production which had a range of 98-340 ml CH 4 /g volatile solids (VS) and 5-26 ml H 2 /g VS, respectively. Results indicated that hydrothermal pretreatment is able to accelerate the rate of biodegradation without generating high levels of inhibitory compounds while showing no discernible effect on ultimate biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. CO2-neutral fuels

    Directory of Open Access Journals (Sweden)

    Goede A. P. H.


    Full Text Available The need for storage of renewable energy (RE generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geo