WorldWideScience

Sample records for ecosystem 15n labeling

  1. Nitrogen processing in a tidal freshwater marsh: a whole ecosystem 15N labeling study

    NARCIS (Netherlands)

    Gribsholt, B.; Boschker, H.T.S.; Struyf, E.; Andersson, M.G.I.; Tramper, A.; de Brabandere, L.; van Damme, S.; Brion, N.; Meire, P.; Dehairs, F.; Middelburg, J.J.; Heip, C.H.R.

    2005-01-01

    We quantified the fate and transport of watershed-derived ammonium in a tidal freshwater marsh fringing the nutrientrich Scheldt River in a whole-ecosystem 15N labeling experiment. 15N-NH4+ was added to the floodwater entering a 3,477 14 m2 tidal marsh area, and marsh ammonium processing and

  2. Nitrogen processing in a tidal freshwater marsh: a whole ecosystem 15N labeling study

    DEFF Research Database (Denmark)

    Gribsholt, B.; Boschker, H.T.S.; Struyf, E.

    2005-01-01

    We quantified the fate and transport of watershed-derived ammonium in a tidal freshwater marsh fringing the nutrient-rich Scheldt River in a whole-ecosystem 15N labeling experiment. 15N-NH4+ was added to the floodwater entering a 3,477 m2 tidal marsh area, and marsh ammonium processing...... and retention were traced in six subsequent tide cycles. We present data for the water phase components of the marsh system, in which changes in concentration and isotopic enrichment of NO3-, NO2- , N2O, N2, NH4+, and suspended particulate nitrogen (SPN) were measured in concert with a mass balance study....... Simultaneous addition of a conservative tracer (NaBr) confirmed that tracer was evenly distributed, and the Br2 budget was almost closed (115% recovery). All analyzed dissolved and suspended N pools were labeled, and 31% of added 15N-NH4+ was retained or transformed. Nitrate was the most important pool for 15N...

  3. Competition for tracer 15N in tussock tundra ecosystems

    International Nuclear Information System (INIS)

    Marion, G.M.; Miller, P.C.; Black, C.H.

    1987-01-01

    The objectives of this study were to assess the roles of plant species, time, and site on competition for tracer 15 N (without carrier) in tussock tundra ecosystems. Six experimental sites were located in northern Alaska. After one year across the experimental sites, the recovery of 15 N by litter (11.3-16.3%) and mosses (5.4-16.4%) was significantly greater than for aboveground vascular plants (2.6-5.0%). 15 N recoveries by tundra vascular plants (2.6-5.0%) were low when compared to forest trees (9-25%) which suggst that competition for nitrogen is particularly severe in these colddominated tundra ecosystems. There were no significant differences among sites in 15 N recoveries by vascular plants, by mosses, or by litter. There was a statistically significant decline in 15 N recovery with time for Vaccinium vitis-idaea and Eriophoum vaginatum between the second and third year. The shallow rooted Vaccinium vitis-ideae was more highly labeled than the deep rooted Eriophorum vaginatum. Nearness to the source of the applied 15 N played a critical role in competition for surface applied nitrogen. (author)

  4. The fate of 13C15N labelled glycine in permafrost and surface soil at simulated thaw in mesocosms from high arctic and subarctic ecosystems

    DEFF Research Database (Denmark)

    Ravn, Nynne Marie Rand; Elberling, Bo; Michelsen, Anders

    2017-01-01

    Background and aim: Nutrient distribution and carbon fluxes upon spring thaw are compared in mesocosms from high arctic and subarctic ecosystems dominated by Cassiope tetragona or Salix hastata/Salix arctica, in order to evaluate the possibility of plant and microbial utilization of an organic...... compound in thawing permafrost and surface soil. Methods: Double labeled glycine (13C15N) was added to soil columns with vegetation and to permafrost. During thaw conditions ecosystem respiration 13C was measured and 13C and 15N distribution in the ecosystem pools was quantified one day and one month after...... glycine addition. Results: Near-surface soil microbes were more efficient in the uptake of intact glycine immediately upon thaw than plants. After one month plants had gained more 15N whereas microbes seemed to lose 15N originating from glycine. We observed a time lag in glycine degradation upon...

  5. 15N-labelled glycine synthesis

    International Nuclear Information System (INIS)

    Tavares, Claudineia R.O.; Bendassolli, Jose A.; Sant'Ana Filho, Carlos R.; Prestes, Clelber V.; Coelho, Fernando

    2006-01-01

    This work describes a method for 15 N-isotope-labeled glycine synthesis, as well as details about a recovery line for nitrogen residues. To that effect, amination of α-haloacids was performed, using carboxylic chloroacetic acid and labeled aqueous ammonia ( 15 NH 3 ). Special care was taken to avoid possible 15 NH 3 losses, since its production cost is high. In that respect, although the purchase cost of the 13 N-labeled compound (radioactive) is lower, the stable tracer produced constitutes an important tool for N cycling studies in living organisms, also minimizing labor and environmental hazards, as well as time limitation problems in field studies. The tests were carried out with three replications, and variable 15 NH 3(aq) volumes in the reaction were used (50, 100, and 150 mL), in order to calibrate the best operational condition; glycine masses obtained were 1.7, 2, and 3.2 g, respectively. With the development of a system for 15 NH 3 recovery, it was possible to recover 71, 83, and 87% of the ammonia initially used in the synthesis. With the required adaptations, the same system was used to recover methanol, and 75% of the methanol initially used in the amino acid purification process were recovered. (author)

  6. [Studies with 15N-labeled lysine in colostomized hens. 2. 15N excretion in feces].

    Science.gov (United States)

    Gruhn, K; Wiefel, P

    1983-05-01

    Over a period of four days colostomised hens were given 15N-lysine, and the development of 15N-excretion both in the TCA-soluble and the TCA-precipitable fraction of the faeces was measured over eight days. In both fractions the total, lysine, histidine and arginine N and 15N-excess (15N') was determined. The average apparent digestibility of 14N was 81.2% +/- 1.1% and of 15N' 93.2% +/- 0.7%. Labelled N is already excreted in faeces 3 hours after its application. The TCA-precipitable N is less strongly labelled than the TCA-soluble N. During the application of 15N' the labelling in faecal lysine is nearly one power of ten higher than in total N. The atom-% 15N' of the lysine could also be distinctly detected in arginine and histidine. The quotas of the total 15N' in faeces were 3.5% for arginine-15N' and 0.8% for histidine 15N'; 15N' can mainly be detected in the soluble fraction.

  7. 15N-labelled pyrazines of triterpenic acids

    International Nuclear Information System (INIS)

    Vlk, Martin; Micolova, Petra; Sarek, Jan

    2016-01-01

    Triterpenoid pyrazines from our research group were found selectively cytotoxic on several cancer cell lines with IC 50 in low micromolar range. This sparked our interest in preparing their labeled analogs for metabolic studies. In this work, we prepared a set of non-labeled pyrazines from seven triterpenoid skeletal types along with their 15 N labelled analogs. In this work, we present the synthesis and characterization of the target 15 N labelled pyrazines. Currently, these compounds are being studied in complex metabolic studies. (author)

  8. Synthesis of 15N-labelled urea and methylenediurea

    International Nuclear Information System (INIS)

    Murray, T.P.; Jones, G.T.

    1985-01-01

    A new technique was developed for the large-scale synthesis of 15 N-labelled urea at low enrichment levels. The synthesis is based on nucleophilic displacement of the phenoxide ion from phenyl carbonate and uses anhydrous ammonia as the nucleophile. In previous reports a copper catalyst was used; however, in this study it was found that the copper resulted in product decomposition and tar formation, which makes product purification difficult. A novel set of reaction conditions was developed: no catalyst was used, and no product decomposition or tar formation occurred. The reaction product was easily purified, and consistently high yields of 15 N-labelled urea were obtained. 15 N-labelled methylenediurea was prepared by the dilute solution reaction of formalin with 15 N-labelled urea. The methodology developed for the reclamation of unreacted urea resulted in minimum loss of labelled urea. High performance liquid chromatography has been used to determine the chemical purity of both urea and methylenediurea. (author)

  9. Investigation into endogenous N metabolism in /sup 15/N-labelled pigs. 1. /sup 15/N labelling and /sup 15/N excretion in urine and feces after feeding 4 different diets

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, H; Bergner, U; Adam, K [Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Tierproduktion und Veterinaermedizin

    1984-07-01

    4 male castrated pigs (55-65 kg) either received a wheat-fish meal diet (1 and 2) or a wheat-horse bean diet (3 and 4) without straw meal supplement (1 and 3) or with a supplement of 20% dry matter (2 and 4). In order to investigate whether a /sup 15/N labelling of the pigs is also possible with a protein excess in the ration, the animals received 24.8 g (1 and 2) and 11.6 g crude protein/kg/sup 0.75/ live weight (3 and 4). During a 10-day /sup 15/N-labelling 385 mg /sup 15/N excess (/sup 15/N') per kg/sup 0.75/ were applied with /sup 15/N labelling the following quotas of the applied /sup 15/N amount were incorporated: 1 = 10.2%, 2 = 7.2%, 3 = 18.7%, 4 = 14.4%. /sup 15/N excretion in both TCA fractions of feces showed a highly significant positive correlation to the increasing content of crude fibre in the 4 diets. The immediate /sup 15/N incorporation into the TCA-precipitable fraction of feces proves that /sup 15/N enters the large intestine endogenously and serves bacterial protein synthesis. 3 days after the last /sup 15/N application the pigs were killed. The values of atom-% /sup 15/N' were determined in the TCA-precipitable blood plasma and in the TCA-precipitable fraction of the liver. The other examined organs and tissues showed smaller differences between the test animals. The results show that the /sup 15/N labelling of tissues and organs of pigs is also possible at a high level of protein supply by means of an oral application of (/sup 15/N) ammonia salts.

  10. Investigation into endogenous N metabolism in 15N-labelled pigs. 1

    International Nuclear Information System (INIS)

    Bergner, H.; Bergner, U.; Adam, K.

    1984-01-01

    4 male castrated pigs (55-65 kg) either received a wheat-fish meal diet (1 and 2) or a wheat-horse bean diet (3 and 4) without straw meal supplement (1 and 3) or with a supplement of 20% dry matter (2 and 4). In order to investigate whether a 15 N labelling of the pigs is also possible with a protein excess in the ration, the animals received 24.8 g (1 and 2) and 11.6 g crude protein/kg/sup 0.75/ live weight (3 and 4). During a 10-day 15 N-labelling 385 mg 15 N excess ( 15 N') per kg/sup 0.75/ were applied with 15 N labelling the following quotas of the applied 15 N amount were incorporated: 1 = 10.2%, 2 = 7.2%, 3 = 18.7%, 4 = 14.4%. 15 N excretion in both TCA fractions of feces showed a highly significant positive correlation to the increasing content of crude fibre in the 4 diets. The immediate 15 N incorporation into the TCA-precipitable fraction of feces proves that 15 N enters the large intestine endogenously and serves bacterial protein synthesis. 3 days after the last 15 application the pigs were killed. The values of atom-% 15 N' were determined in the TCA-precipitable blood plasma and in the TCA-precipitable fraction of the liver. The other examined organs and tissues showed smaller differences between the test animals. The results show that the 15 N labelling of tissues and organs of pigs is also possible at a high level of protein supply by means of an oral application of [ 15 N] ammonia salts. (author)

  11. Nitrogen-15-labeled deoxynucleosides. 3. Synthesis of [3-15N]-2'-deoxyadenosine

    International Nuclear Information System (INIS)

    Rhee, Young-Sook; Jones, R.A.

    1990-01-01

    The synthesis of [3- 15 N]-labeled adenine has been reported by several groups. Each of these syntheses followed essentially the same route, in which the 15 N is introduced by nitration of 4-bromoimidazole under forcing conditions using [ 15 N]-HNO 3 . The authors have devised an alternate route which uses an azo coupling reaction for introduction of the 15 N and proceeds through the intermediacy of [5- 15 N]-labeled 5-aminoimidazole-4-carboxamide (AICA). An unrelated route to the [5- 15 N]-labeled 5-amino-imidazole ribonucleoside (AIRs) was recently reported. AICA is a versatile precursor, which is most commonly used for entry into the guanine or isoguanine families, although it is usually used as the AICA-riboside rather than the heterocycle itself. The authors have found that AICA also can be used for the adenine family by cyclization to hypoxanthine using diethoxymethyl acetate in DMF at reflux. Although these conditions are more vigorous than those required for cyclization of 4,5-diaminopyrimidines using this reagent, the reaction works well. In addition, they report high-yield enzymatic conversion of [3- 15 N]-adenine to [3- 15 N]-2'-deoxyadenosine

  12. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.A. [Rutgers, The State Univ. of New Jersey, Piscataway, NJ (United States)

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  13. Synthesis of 15N isotope labeled alanine

    International Nuclear Information System (INIS)

    Oliveira, Claudineia R. de; Bendassolli, Jose Albertino; Sant'Ana, Carlos Roberto; Tagliassachi, Romulo Barbieri; Maximo, Everaldo; Prestes, Clelber Vieira

    2005-01-01

    The application of light chemical elements and their stable isotopes in biological studies have been increased over the last years. The use of 15 N labeled amino acids is an important tool for elucidation of peptides structures. This paper describe a method for the synthesis of 15 N isotope labeled alanine at lower costs than international ones, as well as the details of the recovery system of the nitrogen residues. In the present work an amination of α-haloacids, with the bromopropionic carboxylic acid and labeled aqua ammonia ( 15 NH 3 aq) was carried out. In order to avoid eventually losses of 15 NH 3 , special cares were adopted, since the production cost is high. Although the acquisition cost of the 13 N (radioactive) labeled compounds is lower, the obtained stable tracer will allow the accomplishment of important studies of the nitrogen cycling in living things, less occupational and environment hazards, and the time limitation problems in field studies. The tests took place in triplicates with NH 3 (aq) being employed. With the establishment of the system for 15 NH 3 recovery, an average of 94 % of the ammonia employed in the synthesis process was recovered. The purity of the amino acid was state determined by TLC (Thin Layer Chromatography) and HPLC (High-Performance Liquid Chromatography) with a fluorescence detector. The Rf and the retention time of the synthesized sample were similar the sigma standard. Finally, regarding the established conditions, it was possible to obtain the alanine with a production cost about 40 % lower than the international price. (author)

  14. Ecosystem N distribution and δ15N during a century of forest regrowth after agricultural abandonment

    Science.gov (United States)

    Compton, J.E.; Hooker, T.D.; Perakis, S.S.

    2007-01-01

    Stable isotope ratios of terrestrial ecosystem nitrogen (N) pools reflect internal processes and input–output balances. Disturbance generally increases N cycling and loss, yet few studies have examined ecosystem δ15N over a disturbance-recovery sequence. We used a chronosequence approach to examine N distribution and δ15N during forest regrowth after agricultural abandonment. Site ages ranged from 10 to 115 years, with similar soils, climate, land-use history, and overstory vegetation (white pine Pinus strobus). Foliar N and δ15N decreased as stands aged, consistent with a progressive tightening of the N cycle during forest regrowth on agricultural lands. Over time, foliar δ15N became more negative, indicating increased fractionation along the mineralization–mycorrhizal–plant uptake pathway. Total ecosystem N was constant across the chronosequence, but substantial internal N redistribution occurred from the mineral soil to plants and litter over 115 years (>25% of ecosystem N or 1,610 kg ha−1). Temporal trends in soil δ15N generally reflected a redistribution of depleted N from the mineral soil to the developing O horizon. Although plants and soil δ15N are coupled over millennial time scales of ecosystem development, our observed divergence between plants and soil suggests that they can be uncoupled during the disturbance-regrowth sequence. The approximate 2‰ decrease in ecosystem δ15N over the century scale suggests significant incorporation of atmospheric N, which was not detected by traditional ecosystem N accounting. Consideration of temporal trends and disturbance legacies can improve our understanding of the influence of broader factors such as climate or N deposition on ecosystem N balances and δ15N.

  15. Utilization of 15N-labelled urea in laying hens. 2

    International Nuclear Information System (INIS)

    Gruhn, K.; Zander, R.

    1985-01-01

    In an N metabolism experiment 3 colostomized laying hybrids received 2870 mg 15 N excess ( 15 N') per animal in 6 days in the form of urea with their conventional feed rations. During the 8-day experiment the 21 eggs laid were separated into egg-shell, white of egg and yolk. Weight, N content and 15 N' of the individual fractions of the eggs were determined. On an average 4.6% of the heavy nitrogen was in the egg-shells, 50% in the white of egg and 45.5% in the yolk. 2.8%, 4.5% and 5.5% (hens 1 - 3) of the 15 N' consumed were detected in the eggs. The maximum 15 N' output in the white of egg was reached on the 6th day, whereas 15 N' output in the yolk showed a nearly linear increase in the time of the experiment. The results show that labelled nitrogen from urea is incorporated into the egg to a lower degree than after the feeding of 15 N-labelled proteins and that the development of its incorporation into the white of egg and the yolk differ from that after the feeding of 15 N-labelled native proteins. (author)

  16. Utilization of 15N-labelled urea in laying hens. 7

    International Nuclear Information System (INIS)

    Gruhn, K.

    1987-01-01

    3 colostomized laying hybrids received 1% 15 N-labelled urea with 96.06 atom-% 15 N excess ( 15 N') with a commercial ration over a period of 6 days. After the application of the same ration with unlabelled urea on the following 2 days the animals were butchered. In the muscles of breast, legs and heart, the labelling of total nitrogen and the incorporation of urea 15 N' into 15 amino acids of the 3 different kinds of muscles were ascertained. On average, significant differences could be ascertained between the atom-% 15 N of the muscles was 0.25 and 0.34 atom-%, resp.; that of the cardial proteins 0.71 atom-% 15 N'. The incorporation of urea 15 N into the basic amino acids is low and varies both between the kinds of muscles and between the amino acids. On average the highest level of labelling was found among the essential amino acids valine, isoleucine and leucine; the average atom-% 15 N' for the muscles of the breast is 0.13, of the leg 0.17, and of the heart 0.27; the 15 N' quota of branched Chain amino acids in the total 15 N' of the respective muscle is accordingly 6.0%, 5.0% and 4.5%. The non-essential amino acids, particularly glutamic acid, are more highly labelled in the muscles than the essential ones. A 15 N' for glutamic acid of 0.24 atom-% in the breast muscles, of 0.27 atom-% in those of the legs and of 0.64 atom-% in the heart muscle could be detected. The average quota of the 15 N' of these acid amino acids in the 15 N' for breast, leg and heart muscles is 7.4, 6.2 and 6.7, resp. The quota of the 15 N' in the 6 non-essential amino acids in the total 15 N' in all 3 kinds of muscles is approximately two thirds and in the 9 essential ones one third of the total 15 N'. Although the results show that there is a certain incorporation of 15 N' from urea into the amino acids of the muscle proteins, their contribution to meeting the demands is irrelevant. (author)

  17. Fate of 15N and 14C from labelled plant material

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Gjettermann, Birgitte; Eriksen, Jørgen

    2008-01-01

    strength of labelled plant residues in dissolved inorganic N (DIN) and dissolved organic N (DON) in pore water from the plough layer, and (ii) the plant uptake of organically bound N. Litterbags containing 14C- and 15N-labelled ryegrass or clover roots or leaves were inserted into the sward of a ryegrass......–clover mixture in early spring. The fate of the released 14C and 15N was monitored in harvested biomass, roots, soil, and pore water percolating from the plough layer. No evidence of plant uptake of dual-labelled organic compounds from the dual-labelled residues could be observed. N in pore water from the plough...

  18. Utilization of 15N-labelled urea in laying hens. 4

    International Nuclear Information System (INIS)

    Gruhn, K.; Hennig, A.

    1986-01-01

    In order to study the utilization of urea in poultry, 3 colostomized laying hybrids were orally supplied with a traditional ration supplemented with 1% 15 N'-labelled urea with a 15 N excess ( 15 N') of 96.06 atom-% over a period of 6 days. After another 2 days on which the hens received the same ration with unlabelled urea, they were killed. The atom-% 15 N' of the blood on an average of the 3 hens was 0.64, of the plasma 1.40 and of the corpuscles 0.47. The TCA-soluble fraction of the blood had an average 15 N' of 1.14 atom-%; the 15 N amount was 9.7% of the total amount of 15 N in the blood. The amount of 15 N' in the urea in the blood was 6.8 atom-%. This shows that the absorbed urea is decomposed very slowly. The quota of 15 N' in the basic amino acids from the total 15 N' of the blood plasma was only 0.3% and that of the corpuscles 2.2%. The average 15 N' of the mature follicles was 2.39 atom-% whereas the smallest and the remaining ovary contain 1.12 atom-%. The labelling level of lysine in mature egg cells was, in contrast to this, only 0.08 atom-% 15 N' and in infantile follicles 0.04 atom-% 15 N'. 1% of the 15 N' quota was in the follicles and the remaining ovary. Of the basic amino acids, histidine is most strongly labelled. The lower incorporation of the 15 N' from urea into the basic amino acids shows that the nitrogen of this compound can be used for the synthesis of the essential amino acids to a low degree only. (author)

  19. N-15-labelled pyrazines of triterpenic acids

    Czech Academy of Sciences Publication Activity Database

    Vlk, M.; Mičolová, P.; Urban, M.; Kvasnica, Miroslav; Šaman, David; Šarek, J.

    2016-01-01

    Roč. 308, č. 2 (2016), s. 733-739 ISSN 0236-5731 R&D Projects: GA ČR GJ15-08202Y; GA MŠk(CZ) LO1304; GA MŠk(CZ) LO1204 Grant - others:GA MŠk(CZ) LK21310; GA TA ČR(CZ) TA03010027; CTU(CZ) SGS15/094/OHK4/1T/14 Institutional support: RVO:61389030 ; RVO:61388963 Keywords : N-15 * Triterpenic acid * Isotopic labelling Subject RIV: CC - Organic Chemistry Impact factor: 1.282, year: 2016

  20. Synthesis of {sup 15}N isotope labeled alanine; Sintese da alanina enriquecida com {sup 15}N

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Claudineia R. de; Bendassolli, Jose Albertino; Sant' Ana, Carlos Roberto; Tagliassachi, Romulo Barbieri; Maximo, Everaldo; Prestes, Clelber Vieira [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Dept. de Isotopos Estaveis]. E-mail: crolivei@cena.usp.br

    2005-07-01

    The application of light chemical elements and their stable isotopes in biological studies have been increased over the last years. The use of {sup 15}N labeled amino acids is an important tool for elucidation of peptides structures. This paper describe a method for the synthesis of {sup 15}N isotope labeled alanine at lower costs than international ones, as well as the details of the recovery system of the nitrogen residues. In the present work an amination of {alpha}-haloacids, with the bromopropionic carboxylic acid and labeled aqua ammonia ({sup 15}NH{sub 3} aq) was carried out. In order to avoid eventually losses of {sup 15}NH{sub 3}, special cares were adopted, since the production cost is high. Although the acquisition cost of the {sup 13}N (radioactive) labeled compounds is lower, the obtained stable tracer will allow the accomplishment of important studies of the nitrogen cycling in living things, less occupational and environment hazards, and the time limitation problems in field studies. The tests took place in triplicates with NH{sub 3} (aq) being employed. With the establishment of the system for {sup 15}NH{sub 3} recovery, an average of 94 % of the ammonia employed in the synthesis process was recovered. The purity of the amino acid was state determined by TLC (Thin Layer Chromatography) and HPLC (High-Performance Liquid Chromatography) with a fluorescence detector. The Rf and the retention time of the synthesized sample were similar the sigma standard. Finally, regarding the established conditions, it was possible to obtain the alanine with a production cost about 40 % lower than the international price. (author)

  1. N-15 tracing helps explaining N leaching losses from contrasting forest ecosystems

    Science.gov (United States)

    Staelens, J.; Rütting, T.; Huygens, D.; Müller, C.; Verheyen, K.; Boeckx, P.

    2009-04-01

    Despite chronically enhanced nitrogen (N) deposition to forest ecosystems in Europe and NE America, considerable N retention by forests has been observed, reducing N leaching losses. Organic and mineral soil layers typically immobilize more N than the aboveground biomass, but it is unclear which factors determine N retention in forest ecoystems. However, this knowledge is crucial to assess the impact of changing anthropogenic N emissions on future N cycling and N loss of forests. For coniferous and deciduous forest stands at comparable sites, it is known that both N deposition onto the forest floor as well as N loss by leaching below the rooting zone are significantly higher in coniferous stands. In addition, the N loss in coniferous stands is often more enhanced than can be explained by the higher N input only. This suggests lower N retention by coniferous stands, and may be related to differences in litter and soil characteristics, microbial activity, and N uptake by plant roots. To test this hypothesis, we studied the effect of forest type on N retention using 15N tracing techniques: a field tracer experiment and a combination of in situ isotope pool dilution and a tracing model. The N dynamics were examined for two adjacent forest stands (pedunculate oak (Quercus robur L.) and Scots pine (Pinus sylvestris L.)) on a well-drained sandy soil and with a similar stand history, located in a region with high N deposition (Belgium). Input-output N budgets were established by quantifying atmospheric deposition and leaching below the rooting zone, and confirmed the above finding of higher N deposition and disproportionately higher N loss for the pine stand compared to the oak stand. First, the fate of inorganic N within the ecosystems was studied by spraying three pulses of dissolved 15N, either as ammonium or as nitrate, onto the forest floor in 12 plots of 25 m2. The organic and mineral soil layers, tree roots, soil water percolate, ferns, and tree foliage were sampled

  2. Methodical investigation of the endogenous N excretion in feces by 15N-labelled rats

    International Nuclear Information System (INIS)

    Bergner, U.; Bergner, H.

    1983-01-01

    Wistar rats (approximately 100g live weight, n = 8) received a wheat diet and were labelled over a period of 7 days with 15 N-ammonium acetate. From day 1 - 5 of the experiment after the end of the labelling feces and urine were collected and analysed. After the animals were killed (day 5 of the experiment) the atom-% 15 N excess ( 15 N') in the contents of the digestive tract as well as in the tissues of stomach wall, intestinal wall, liver, pancreas and blood plasma was determined. The TCA-soluble fraction of the blood plasma showed 0.44 atom-% 15 N' on day 5 after the end of 15 N labelling. 3 hours before the killing fecal N also showed 0.44 and during the last collection period (24 hours before) an average of 0.51 atom-% 15 N'. Urine decreased in the same period from 0.71 to 0.59 atom-% 15 N'. The endogenous fecal N is calculated to 88%. As the tissues of the digestive tract are likely to supply the biggest part of the endogenous fecal protein, the values of atom-% 15 N' from the TCA-precipitable fraction of the intestinal wall and of the pancreas gland was calculed to an average of 0.526. According to this the calculation endogenous fecal N is 84%. It is probable that the quota of endogenous fecal N in the total amount of fecal N varies in dependence on the fermentable crude fiber in the diet as well as on the age of the test animals and thus the bacterial protein synthesis in the colon. As the N used by the bacteria is likely to come from the TCA-soluble fraction of the blood, the calculation formula suggested, which uses the TCA-soluble fraction of the blood plasma, achieves good approximate values also for higher bacterial protein synthesis in the colon. (author)

  3. 15N incorporation into organ proteins of newborn rats following single pulse-labelling with different tracers

    International Nuclear Information System (INIS)

    Wutzke, K.D.; Plath, C.; Richter, I.; Heine, W.; Zhukova, T.P.; Sorokina, E.G.; Friedrich, M.

    1987-01-01

    A short-chain 15 N-peptide mixture characterized by an average chain length of 2.3 was obtained when 15 N-labelled yeast protein was hydrolyzed enzymatically by thermitase from Thermoactinomyces vulgaris. Fifteen newborn Wistar rats were given a single pulse of [ 15 N]glycine. [ 15 N]H 4 Cl and [ 15 N]yeast protein thermitasehydrolysate (YPTH) in a dosage of 50 mg 15 N excess kg -1 by gastric tube. In comparison with [ 15 N]glycine the 15 N incorporation rates of brain, muscle and liver were approximately 150% higher after [ 15 N]YPTH application. Uniform labelling, high 15 N enrichment, almost complete absorption, avoidance of imbalances and the low price make this tracer substance superior to other tracers conventionally used for organ labelling. (author)

  4. High-yield nitration of benzene in the synthesis of 15N-labelled nitrobenzene, acetanilide, and diphenylamine

    International Nuclear Information System (INIS)

    Konior, R.J.; Ling Yang; Walter, R.I.

    1990-01-01

    Labelled H 15 NO 3 was used as the least-cost source of nitrogen label to prepare nitrobenzene by reaction of acetyl nitrate with excess benzene. This labelled product was subsequently converted to acetanilide- 15 N and diphenylamine- 15 N. (author)

  5. Effect of organic matter application on the fate of 15N-labeled ammonium fertilizer in an upland soil

    International Nuclear Information System (INIS)

    Nishio, T.; Oka, N.

    2003-01-01

    The effect of the application of organic matter on the fate of 15 N-labeled ammonium was investigated in a field. The organic materials incorporated into the experimental plots consisted of wheat straw, rape, pig compost, cow compost, plant manure. In May 2000, 10 g N m -2 of 15 N-labeled ammonium was applied to the field together with the organic materials, and maize and winter wheat were consecutively cultivated. The recovery of applied 15 N in soils and plants was determined after the harvest of each crop. Although only about 10% of the applied 15 N-labeled fertilizer remained in the 0-30 cm layer of the Control Plot and the Plant Manure Plot, more than 25% of the applied 15 N remained in the Pig Compost Plot. Amount and proportion of the immobilized 15 N to those of total N or microbial biomass N in soils were determined for the topsoil samples (0-10 cm layer). The amounts of both microbial biomass N and total immobilized 15 N in soil were highest in the Pig Compost Plot. Although the amount of microbial biomass N was comparable to the amount of immobilized 15 N-labeled fertilizer in soil, the amounts of 15 N-labeled fertilizer contained in the microbial biomass accounted for less than 10 % of the amount of total immobilized 15 N in soil. The ratio of the amount of 15 N-labeled fertilizer contained in biomass N to the total amount of biomass N was one order to magnitude higher than the ratio of the amount of immobilized 15 N-labeled fertilizer to the amount of total N in soil. No conspicuous changes in the amount of immobilized 15 N in soil were observed during the cultivation of winter wheat except for the Pig Compost Plot. No significant correlation was recognized between the amount of 15 N-labeled fertilizer contained in microbial biomass before wheat cultivation and that of 15 N-labeled fertilizer absorbed by wheat, indicating that microbial N immobilized during the growth period of the former crop (maize) was not a significant source of N for the latter

  6. Nitrogen-15 labeling of Crotalaria juncea green manure Marcação do adubo verde Crotalaria juncea com 15N

    Directory of Open Access Journals (Sweden)

    Edmilson José Ambrosano

    2003-02-01

    Full Text Available Most studies dealing with the utilization of 15N labeled plant material do not present details about the labeling technique. This is especially relevant for legume species since biological nitrogen fixation difficults plant enrichment. A technique was developed for labeling leguminous plant tissue with 15N to obtain labeled material for nitrogen dynamics studies. Sun hemp (Crotalaria juncea L. was grown on a Paleudalf, under field conditions. An amount of 58.32 g of urea with 70.57 ± 0.04 atom % 15N was sprayed three times on plants grown on eight 6-m²-plots. The labelled material presented 2.412 atom % 15N in a total dry matter equivalent to 9 Mg ha-1 This degree of enrichment enables the use of the green manure in pot or field experiments requiring 15N-labeled material.A grande maioria dos estudos com a utilização de material vegetal marcado com o isótopo 15N não apresentam detalhes tão importantes sobre como foram obtidos esses materiais. Em se tratando de marcação de leguminosas as dificuldades em se obter material marcado com 15N são ainda maiores pelo fato de serem plantas fixadoras de nitrogênio. Isso posto foi estabelecida uma técnica de marcação de leguminosas com nitrogênio (15N, com o objetivo de obter material vegetal marcado isotopicamente para estudos de dinâmica do nitrogênio. Cultivou-se a leguminosa crotalária júncea (Crotalaria juncea L., em Argissolo Vermelho Amarelo distrófico, em campo. Ao se aplicarem via foliar 58,32 gramas de uréia em oito canteiros experimentais, (uréia com 70,57 ± 0,04% de átomos de 15N parceladas em três vezes, obteve-se material vegetal marcado seco que continha 2,412 % em átomos de 15N em uma massa seca equivalente a 9 Mg ha-1. Essa marcação permite o uso dessa massa vegetal em estudos de dinâmica de nitrogênio.

  7. High-yield nitration of benzene in the synthesis of sup 15 N-labelled nitrobenzene, acetanilide, and diphenylamine

    Energy Technology Data Exchange (ETDEWEB)

    Konior, R.J.; Ling Yang; Walter, R.I. (Illinois Univ., Chicago, IL (USA). Dept. of Chemistry)

    1990-11-01

    Labelled H{sup 15}NO{sub 3} was used as the least-cost source of nitrogen label to prepare nitrobenzene by reaction of acetyl nitrate with excess benzene. This labelled product was subsequently converted to acetanilide-{sup 15}N and diphenylamine-{sup 15}N. (author).

  8. Use of 15N enriched plant material for labelling of soil nitrogen in legume dinitrogen fixation experiments

    International Nuclear Information System (INIS)

    Jensen, E.S.

    1989-06-01

    The soil nitrogen in a field plot was labelled with nitrogen-15 (15N) by incorporating labelled plant material derived from previous experiments. The plot was used the following 3 years for determination of the amount of N2 fixed by different leguminous plants. The atom % 15N excess in grains of cereals grown as reference crops was 0.20, 0.05 and 0.03 in the 3 years, respectively. In the first year the level of enrichment was adequate for estimating symbiotic nitrogen fixation. In the second and third year lack of precision in determination of the 15N/14N ratios of legume N, may have caused an error in estimates of nitrogen fixation. About 23% of the labelled N was taken up by plants during the 3 years of cropping; after 4 years about 44% of the labelled N was found still to be present in the top soil. The labelling of the soil nitrogen with organic bound 15N, compared to adding mineral 15N at sowing, is advantageous because the labelled N is released by mineralization so that the enrichment of the plant available soil N pool become more uniform during the growth season; and high levels of mineral N, which may depress the fixation process, is avoided. (author) 7 tabs., 1 ill., 30 refs

  9. Nitrogen assimilation and short term retention in a nutrient-rich tidal freshwater marsh – a whole ecosystem 15N enrichment study

    Directory of Open Access Journals (Sweden)

    B. Gribsholt

    2007-01-01

    Full Text Available An intact tidal freshwater marsh system (3477 m2 was labelled by adding 15N-ammonium as a tracer to the flood water inundating the ecosystem. The appearance and retention of 15N-label in different marsh components (leaves, roots, sediment, leaf litter and invertebrate fauna was followed over 15 days. This allowed us to elucidate the direct assimilation and dependence on creek-water nitrogen on a relatively short term and provided an unbiased assessment of the relative importance of the various compartments within the ecosystem. Two separate experiments were conducted, one in spring/early summer (May 2002 when plants were young and building up biomass; the other in late summer (September 2003 when macrophytes were in a flowering or early senescent state. Nitrogen assimilation rate (per hour inundated was >3 times faster in May compared to September. On both occasions, however, the results clearly revealed that the less conspicuous compartments such as leaf litter and ruderal vegetations are more important in nitrogen uptake and retention than the prominent reed (Phragmites australis meadows. Moreover, short-term nitrogen retention in these nutrient rich marshes occurs mainly via microbial pathways associated with the litter and sediment. Rather than direct uptake by macrophytes, it is the large reactive surface area provided by the tidal freshwater marsh vegetation that is most crucial for nitrogen transformation, assimilation and short term retention in nutrient rich tidal freshwater marshes. Our results clearly revealed the dominant role of microbes in initial nitrogen retention in marsh ecosystems.

  10. Stabilization and plant uptake of N from 15N-labelled pea residue 16.5 years after incorporation in soil

    DEFF Research Database (Denmark)

    Laberge, G.; Ambus, P.; Hauggaard-Nielsen, H.

    2006-01-01

    The decline of N from N-15-labelled mature pea residues was followed in unplanted soil over 16.5 yr. Eight years after residue incorporation, 24% of the residue N-15 input was still present in the soil and, after 16.5 yr, 16% of the residue N-15 input remained. A double exponential model......-amended soils were obtaining 1.7% of their N from residue N. This is, to our knowledge, the longest study on decay of N in soils from N-15-labelled crop residues. The current study thus provides a unique data set for our empirical understanding of N-dynamics in agricultural systems, which is a prerequisite...

  11. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements.

    Science.gov (United States)

    Dabundo, Richard; Lehmann, Moritz F; Treibergs, Lija; Tobias, Craig R; Altabet, Mark A; Moisander, Pia H; Granger, Julie

    2014-01-01

    We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2 gas must be ensured prior to use in future N2 fixation rate determinations.

  12. Estimation of the endogenous N proportions in ileal digesta and faeces in 15N-labelled pigs

    International Nuclear Information System (INIS)

    Simon, O.; Bergner, H.

    1987-01-01

    4 castrated male pigs 40 kg fitted with simple 'T' cannulas in the terminal ileum were given 15 N-labelled ammonium salts, added to a low protein diet, for 6 days. Excretion of 15 N in urine and feces was monitored daily throughout the labelling and subsequent experimental periods. During the experimental period the pigs were given a diet based on wheat and fish meal, supplemented with varying levels of partially hydrolyzed straw meal to give crude fiber contents ranging from 40 to 132 g/kg. After adaptation to the particular levels of straw meal, feces and ileal digesta were collected during successive 24 h periods. N digestibility values were determined by the chromium oxide ratio method. The retention of 15 N-labelled non-specific N was 0.46 of the dose given. The validity of using urine values as a measure of 15 N abundance in endogenous N was demonstrated by the similarity of 15 N abundance in urine immediately before slaughter at the end of the experiment and in the digestive secretory organs thereafter. The average amount of endogenous N passing the terminal ileum was 3.4 g/day or 0.30-0.50 of total ileal N flow. This was not affected by dietary fiber level. The proportion of fecal N which was of endogenous origin was similar to that in ileal digesta, suggesting similar utilization of endogenous and residual dietary N by hindgut bacteria. Half the endogenous N entering the large intestine was reabsorbed there. Increasing dietary crude fiber from 40 to 132 g/kg increased fecal endogenous N excretion from 1.3 to 2.0 g/animal and day. (author)

  13. The use of N-15 labelling to study the turnover and utilization of ruminant manure N

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1998-01-01

    An improved understanding of the cycling of animal manure N is a prerequisite for malting better use of this N source. A sheep was fed N-15-Iabelled grass in order to study the fate of N-15-Iabelled ruminant manure N in the plant-soil system. The uniformity of labelling was found to be satisfactory...

  14. Nitrogen-15 labeling of Crotalaria juncea green manure

    International Nuclear Information System (INIS)

    Ambrosano, Edmilson Jose; Rossetto, Raffaella; Trivelin, Paulo Cesar Ocheuze; Muraoka, Takashi; Bendassolli, Jose Albertino; Cantarella, Heitor; Ambrosano, Glaucia Maria Bovi; Tamiso, Luciano Grassi; Vieira, Felipe de Campos; Prada Neto, Ithamar

    2003-01-01

    Most studies dealing with the utilization of 15 N labeled plant material do not present details about the labeling technique. This is especially relevant for legume species since biological nitrogen fixation difficult plant enrichment. A technique was developed for labeling leguminous plant tissue with 15 N to obtain labeled material for nitrogen dynamics studies. Sun hemp (Crotalaria juncea L.) was grown on a Paleudalf, under field conditions. An amount of 58.32 g of urea with 70.57± 0.04 atom % 15 N was sprayed three times on plants grown on eight 6-m2-plots. The labelled material presented 2.412 atom % 15 N in a total dry matter equivalent to 9 Mg ha -1 This degree of enrichment enables the use of the green manure in pot or field experiments requiring 15 N-labeled material. (author)

  15. Utilization of 15N-labelled urea in laying hens. 8

    International Nuclear Information System (INIS)

    Gruhn, K.; Graf, H.

    1987-01-01

    3 colostomized laying hybrids received orally with a conventional ration 1% urea with 96.06 atom-% 15 N excess ( 15 N') over a period of 6 days. In the period of the experiment every hen consumed 2.87 g 15 N'. After another 2 days, on which they received conventional feed urea, the animals were butchered. 15 N' was determined in the total N and in 15 amino acids of the oviduct. Of the 15 amino acids the labelling of glutamic acid, glycine and serine was highest and on average amounted to 0.80, 0.66 and 0.67 atom-% 15 N', resp. In lysine and arginine only 0.10 and 0.11 atom-% 15 N' could be detected. The amino acid N with natural isotopic frequency amounted to a quarter for the basic amino acids, a tenth for the branched chain ones and for the non-essential ones (glutamic acid, aspartic acid, serine, glycine, alanine, proline) a third of the total oviduct 14 N. The average quota of 15 N' is only 3.6%, that of the branched chain amino acids 4.5 and that of the non-essential ones 21.1%. Consequently, the 15 N' of the urea is mainly used for the synthesis of the non-essential amino acids of the oviduct. (author)

  16. Investigation of the metabolism of colostomized laying hens with 15N-labelled wheat. 6

    International Nuclear Information System (INIS)

    Gruhn, K.; Hennig, A.

    1980-01-01

    Three colostomized laving hens received 40 g 15 N-labelled wheat with 20.13 atom-% 15 N excess ( 15 N'), 19.18 atom-% 15 N'-lysine, 18.17 atom-% 15 N'-histidine and 20.43 atom-% 15 N'-arginine per day over a period of four days. After having received the same non-labelled feed ration on the following four days, the hens were slaughtered. The incorporation and distribution of 15 N' in the total nitrogen and the nitrogen of the basic amino acids was determined in liver, kidneys, muscles, bones and the remaining carcass (excluding blood, digestive tract and genital organs). The quota of nitrogen of natural isotope frequency ( 14 N) of the total 14 N of the hens' carcasses was 47% in the muscles, 14% in the bones and 20% in the feathers; the relative 15 N' values were 37%, 8% and 1%, resp. The atom-% 15 N' in the kidneys was twice as much as in the liver four days after the last 15 N' application. The average percentage of the nitrogen in the three basic amino acids of the total nitrogen in the tissues and organs (excluding feathers) is 25% concerning both 14 N and 15 N'. The 15N' balance revealed that in hen 1 100%, in hen 2 102% and in hen 3 101% of the consumed wheat 15 N' were found. (author)

  17. Foliar absorption of 15N labeled urea by tea plant

    International Nuclear Information System (INIS)

    Hoshina, Tsuguo; Kozai, Shuji; Ishigaki, Kozo

    1978-01-01

    The effect of foliar application on the nitrogen nutrient status of tea shoots has been studied using 15 N labelled urea. Furthermore, the difference in nitrogen utilization by tea plant between foliar applied and top dressed nitrogen was investigated using 15 N labelled urea and ammonium sulfate. The foliar application of urea increased the amount of chlorophyll and total nitrogen in the new shoot, and the foliar application was more effective under shading condition. The urea sprayed upon old leaves prior to the opening of new leaf translocated to the new shoots. However, the foliar application after the opening of new leaf was more effective on nitrogen absorption by new shoots than one prior to that, and rather than top dressing for new shoots. It could be recognized that the foliar application of urea raises the nitrogen nutrient status of tea leaves in summer. (author)

  18. Affordable uniform isotope labeling with 2H, 13C and 15N in insect cells

    International Nuclear Information System (INIS)

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D.

    2015-01-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80 % can be achieved for 15 N and 13 C with yields comparable to expression in full media. For 2 H, 15 N and 2 H, 13 C, 15 N labeling, incorporation is only slightly lower with 75 and 73 %, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins

  19. Recovery of nitrogen by spring barley following incorporation of 15N-labelled straw and catch crop material

    DEFF Research Database (Denmark)

    Thomsen, I.K.; Jensen, E.S.

    1994-01-01

    The recovery by spring barley (Hordeum vulgare L.) of nitrogen mineralized from N-15-labelled straw and ryegrass material was followed for 3 years in the field. The effects of separate and combined applications of straw and ryegrass were studied using cross-labelling with N-15. Reference plots re...... mineral fertilizer was in the second and third barley crop similar to the recovery of N from incorporated plant residues.......The recovery by spring barley (Hordeum vulgare L.) of nitrogen mineralized from N-15-labelled straw and ryegrass material was followed for 3 years in the field. The effects of separate and combined applications of straw and ryegrass were studied using cross-labelling with N-15. Reference plots...... receiving (NH4NO3)-N-15-N-15 were included. Plant samples were taken every second week until maturity during the first growing season and at maturity in the two following years. Incorporation of plant material had no significant influence on the above-ground dry matter yield of the barley. The barley...

  20. Tracing in situ amino acid uptake in plants and microbes with15N13C labelled compounds

    DEFF Research Database (Denmark)

    Andresen, Louise Christoffersen; Michelsen, Anders; Jonasson, Sven Evert

    amino acids. Furthermore, tannin addition tended to reduce plant uptake of label. By combining data on 15N recovery after 1 day in shoots and roots (fine and coarse) of the dominant heathland plants: the evergreen dwarf shrub Calluna vulgaris and the graminoid Deschampsia flexuosa, in soil...... microorganisms (chloroform fumigation extraction) and in soil water, we discuss the relative importance of free amino acids and ammonium as plant nutrients and microbial substrates in natural N-limited ecosystems with a high proportion of soil N held in tannin-N complexes. ...

  1. Isotopic evaluations of dynamic and plant uptake of N in soil amended with 15N-labelled sewage sludge

    International Nuclear Information System (INIS)

    Kchaou, R.; Khelil, M. N.; Rejeb, S.; Gharbi, F.; Henchi, B.; Hernandez, T.; Destain, J. P.

    2010-01-01

    Field experiments were conducted to evaluate the use of a novel 15N isotope technique for comparing the dynamics of N derived from sewage sludge applied to sorghum to the dynamics of N derived from the commercial fertilizer, urea. The treatments included a control, sludge applied at three rates (3, 6 and 9 t/ha, or 113, 226 and 338 kg N/ha) and N-urea applied at three rates (150, 250 and 350 kg N/ha). Recovery of 15N -labelled sludge was similar for the different nitrogen rates applied , with a mean value of 27%. However, the recovery of 15N -urea decreased as the rate of N application increased (from 38% to 27%). Approximately 22% and 19% of the 15N from sludge and urea, respectively, remained in the 0-60 cm layer of soil, most of which was present in the 0-20 cm layer. Furthermore, losses of 15N -labelled fertilizer were not affected by the N fertilization source, and the greatest losses, which were measured in response to the highest N application rate, were 59%. (authors)

  2. Application of 15N labeling to topics in molecular hematology

    International Nuclear Information System (INIS)

    Lapidot, A.; Irving, C.S.

    1975-01-01

    The amount of information which can be obtained from many types of spectrometric analysis of compounds of hematological interest can be greatly enhanced when measurements are made on a series of isotopically labeled compounds. A murine Friend virus-induced erythroleukemic cell (FLC) culture was found to be a superior biosynthetic system for the preparation of highly and selectively 15 N and 13 C enriched hemoglobins. A mutant of Rhodopseudomonas spheroides was found suitable for the preparation of larger quantities of >90 percent enriched protoporphyrin-IX- 15 N and coproporphyrin-III-- 15 N. A comparison of the 15 N and 13 C NMR spectra of FLC carbomonoxy-[Gly- 15 N]-hemoglobin, carbomonoxy-[Gly- 13 C/sub alpha/]-hemoglobin, α and β globin-[Gly- 15 N] and globin-[Gly- 13 C/sub alpha/] demonstrated 1) 15 N peptide chemical shifts are sensitive to polypeptide sequence, whereas 13 C α-carbon chemical shifts are not, (2) variations in the solvation of the peptide N-H group can be detected in the 15 N spectra but not the 13 C spectra, (3) 15 N heme resonances could not be detected, whereas 13 C resonances could. These studies indicated that in hemoglobin the glycyl N-H resonances are either solvated by H 2 O or hydrogen bonded to peptide C=0 groups. In denatured globin, the majority of the glycyl residues are rapidly exchanging between these two states

  3. Biosynthesis of agmatine in isolated mitochondria and perfused rat liver: studies with 15N-labelled arginine

    Science.gov (United States)

    2005-01-01

    An important but unresolved question is whether mammalian mitochondria metabolize arginine to agmatine by the ADC (arginine decarboxylase) reaction. 15N-labelled arginine was used as a precursor to address this question and to determine the flux through the ADC reaction in isolated mitochondria obtained from rat liver. In addition, liver perfusion system was used to examine a possible action of insulin, glucagon or cAMP on a flux through the ADC reaction. In mitochondria and liver perfusion, 15N-labelled agmatine was generated from external 15N-labelled arginine. The production of 15N-labelled agmatine was time- and dose-dependent. The time-course of [U-15N4]agmatine formation from 2 mM [U-15N4]arginine was best fitted to a one-phase exponential curve with a production rate of approx. 29 pmol·min−1·(mg of protein)−1. Experiments with an increasing concentration (0– 40 mM) of [guanidino-15N2]arginine showed a Michaelis constant Km for arginine of 46 mM and a Vmax of 3.7 nmol·min−1·(mg of protein)−1 for flux through the ADC reaction. Experiments with broken mitochondria showed little changes in Vmax or Km values, suggesting that mitochondrial arginine uptake had little effect on the observed Vmax or Km values. Experiments with liver perfusion demonstrated that over 95% of the effluent agmatine was derived from perfusate [guanidino-15N2]arginine regardless of the experimental condition. However, the output of 15N-labelled agmatine (nmol·min−1·g−1) increased by approx. 2-fold (P<0.05) in perfusions with cAMP. The findings of the present study provide compelling evidence that mitochondrial ADC is present in the rat liver, and suggest that cAMP may stimulate flux through this pathway. PMID:15656789

  4. Studies on the protein and amino acid metabolism of laying hens using 15N-labelled casein. 8

    International Nuclear Information System (INIS)

    Richter, G.

    1977-01-01

    Four colostomized Leghorn hens were fed, during 6 days, 15 N-labelled casein as sole protein source. Two animals were slaughtered 48 hours, the other two 144 hours after the last 15 N-application. The share of TCE-soluble N in total N averaged 16% for the body parts analysed, i.e. meat, bone, liver, kidneys, oviducts, residual viscera and other. The variation of the lysine, histidine and arginine levels in the body parts ranged from 3.6 to 7.9 g, 1.1 to 3.7 g and 6.4 to 7.4 g in 16.7 g hydrolysate N, respectively. Except for feathers, the analysed body parts contained an excess amount of heavy nitrogen. The degree of labelling was found to depend on the time of slaughtering after the tracer application. In the liver and in the oviduct being metabolically active organs, the 15 N-excess in the total N fraction decreased by 45% between the 2nd and the 6th days after 15 N-feeding, whilst in the meat it went down by 20%. The decline of the 15 N-concentration in the TCE-soluble N compounds was faster than in the total N-fraction. Out of the body samples analysed, the lysine of the liver having 0.26 atom% 15 N-excess was found to be more strongly labelled in hens 1 and 2. The amino acid arginine reached about the same level of labelling, the 15 N-frequency of histidine being the lowest. (author)

  5. Dynamics of amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 1

    International Nuclear Information System (INIS)

    Hennig, A.; Gruhn, K.; Kirchner, E.

    1987-01-01

    In a 6-day preliminary period with a pelleted ration 12 colostomized laying hybrids received 15 N-labelled wheat protein over 4 days. The labelling of the wheat was 14.37 atom-% 15 N excess ( 15 N'). During the 4-day application of 15 N-labelled wheat protein each hen consumed 12.08 g N, 3.52 g lysine, 2.12 g histidine, 4.41 g arginine, of which were 540 mg 15 N', 18.1 mg lysine 15 N', 21.5 mg histidine 15 N' and 47.9 mg arginine 15 N'. Heavy nitrogen was determined in urine and its uric acid N in the daily urine samples of the individual animals. The average daily urine N excretion was 54% of the total nitrogen consumed with the ration. The labelling of the urine N reached a plateau on the fourth day of the experiment with 3.2 atom-% 15 N'. On an average of the total experiment the quota of heavy nitrogen of the uric acid in the total 15 N' of the urine was 83.4% and that of uric acid nitrogen in the total urine nitrogen 80.8%. (author)

  6. 15N-Labelling and structure determination of adamantylated azolo-azines in solution

    Directory of Open Access Journals (Sweden)

    Sergey L. Deev

    2017-11-01

    Full Text Available Determining the accurate chemical structures of synthesized compounds is essential for biomedical studies and computer-assisted drug design. The unequivocal determination of N-adamantylation or N-arylation site(s in nitrogen-rich heterocycles, characterized by a low density of hydrogen atoms, using NMR methods at natural isotopic abundance is difficult. In these compounds, the heterocyclic moiety is covalently attached to the carbon atom of the substituent group that has no bound hydrogen atoms, and the connection between the two moieties of the compound cannot always be established via conventional 1H-1H and 1H-13C NMR correlation experiments (COSY and HMBC, respectively or nuclear Overhauser effect spectroscopy (NOESY or ROESY. The selective incorporation of 15N-labelled atoms in different positions of the heterocyclic core allowed for the use of 1H-15N (JHN and 13C-15N (JCN coupling constants for the structure determinations of N-alkylated nitrogen-containing heterocycles in solution. This method was tested on the N-adamantylated products in a series of azolo-1,2,4-triazines and 1,2,4-triazolo[1,5-a]pyrimidine. The syntheses of adamantylated azolo-azines were based on the interactions of azolo-azines and 1-adamatanol in TFA solution. For azolo-1,2,4-triazinones, the formation of mixtures of N-adamantyl derivatives was observed. The JHN and JCN values were measured using amplitude-modulated 1D 1H spin-echo experiments with the selective inversion of the 15N nuclei and line-shape analysis in the 1D 13С spectra acquired with selective 15N decoupling, respectively. Additional spin–spin interactions were detected in the 15N-HMBC spectra. NMR data and DFT (density functional theory calculations permitted to suggest a possible mechanism of isomerization for the adamantylated products of the azolo-1,2,4-triazines. The combined analysis of the JHN and JCN couplings in 15N-labelled compounds provides an efficient method for the structure

  7. Synthesis of {sup 15}N labeled glyphosate; Sintese do glifosato enriquecido com {sup 15}N

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Claudineia R. de; Bendassolli, Jose Albertino; Tavares, Glauco Arnold; Rossete, Alexssandra L.R.M.; Tagliassachi, Romulo Barbieri; Prestes, Cleuber Vieira [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Dept. de Isotopos Estaveis]. E-mail: crolivei@cena.usp.br

    2005-07-01

    Amongst the actually commercialized herbicides the Glyphosate is the most used in Brazil. Its efficiency as well as the others herbicides against undesirable weeds is harmed by its final composts left at the environment. Although studies has being carried out to improve the knowledge about the herbicides behavior at the environment its complexity has led them towards innumerous to new significant research work where the use of radiolabeled composts (radiative tracers) are recommended to evaluate their bio-availability in the soil. However is the use, the manipulation and the storage of radiolabeled composts is requires an extra care under chemical safety point of view. The use of non radiolabeled composts is a world tendency especially for field researches. Under this context the presented work describes a method for the synthesis of {sup 15}N labeled glyphosate. The {sup 15}N-herbicide was undertaken by phosphometilation with the phosphit dialquil and {sup 15}N-glycine. The tests where carried out through a micro scale production plant and of equimolars amounts. At these conditions it's was possible to reach approximately a 20% of yield. At the conclusion of a best operational condition its expected to offer another important toll that shall be used in glyphosate behavior at the environment and undesirably weeds. (author)

  8. Sub-cellular localisation of a 15N-labelled peptide vector using NanoSIMS imaging

    Science.gov (United States)

    Römer, Winfried; Wu, Ting-Di; Duchambon, Patricia; Amessou, Mohamed; Carrez, Danièle; Johannes, Ludger; Guerquin-Kern, Jean-Luc

    2006-07-01

    Dynamic SIMS imaging is proposed to map sub-cellular distributions of isotopically labelled, exogenous compounds. NanoSIMS imaging allows the characterisation of the intracellular transport pathways of exogenous molecules, including peptide vectors employed in innovative therapies, using stable isotopes as molecular markers to detect the compound of interest. Shiga toxin B-subunit (STxB) was chosen as a representative peptide vector. The recombinant protein ( 15N-STxB) was synthesised in Escherichia coli using 15NH 4Cl as sole nitrogen source resulting in 15N enrichment in the molecule. Using the NanoSIMS 50 ion microprobe (Cameca), different ion species ( 12C 14N -, 12C 15N -, 31P -) originating from the same sputtered micro volume were simultaneously detected. High mass resolving power enabled the discrimination of 12C 15N - from its polyatomic isobars of mass 27. We imaged the membrane binding and internalisation of 15N-STxB in HeLa cells at spatial resolutions of less than 100 nm. Thus, the use of rare stable isotopes like 15N with dynamic SIMS imaging permits sub-cellular detection of isotopically labelled, exogenous molecules and imaging of their transport pathways at high mass and spatial resolution. Application of stable isotopes as markers can replace the large and chemically complex tags used for fluorescence microscopy, without altering the chemical and physical properties of the molecule.

  9. Auto-inducing media for uniform isotope labeling of proteins with 15N, 13C and 2H

    International Nuclear Information System (INIS)

    Guthertz, Nicolas; Klopp, Julia; Winterhalter, Aurélie; Fernández, César; Gossert, Alvar D.

    2015-01-01

    Auto-inducing media for protein expression offer many advantages like robust reproducibility, high yields of soluble protein and much reduced workload. Here, an auto-inducing medium for uniform isotope labelling of proteins with 15 N, 13 C and/or 2 H in E. coli is presented. So far, auto-inducing media have not found widespread application in the NMR field, because of the prohibitively high cost of labeled lactose, which is an essential ingredient of such media. Here, we propose using lactose that is only selectively labeled on the glucose moiety. It can be synthesized from inexpensive and readily available substrates: labeled glucose and unlabeled activated galactose. With this approach, uniformly isotope labeled proteins were expressed in unattended auto-inducing cultures with incorporation of 13 C, 15 N of 96.6 % and 2 H, 15 N of 98.8 %. With the present protocol, the NMR community could profit from the many advantages that auto-inducing media offer

  10. Behavior of 15N-labelled amino acids in germinated corn

    International Nuclear Information System (INIS)

    Samukawa, Kisaburo; Yamaguchi, Masuro

    1979-01-01

    By investigating the rise and fall of 15 N-labelled amino acids in germinated corns, the behavior of amino radicals in free amino acids, the influence of the hydrolysis products of stored proteins on free amino acids and the change from heterotrophy to autotrophy of seeds were clarified. The amount of amino acid production depending on external nitrogen was very small in the early period of germination. 15 N incorporation into proline was not observed in the early period of germination, which suggested that the proline may be nitrogen-storing source. Most of the amino-state nitrogen of asparagine accumulated at the time of germination was internal nitrogen, and this fact suggested that aspartic acid serve as the acceptor of ammonia produced in the early stage of germination. 15 N content increased significantly on 9 th day after germination, and decreased on 12 th day. These facts prove that there are always active decomposition and production of protein in plant body. (Kobatake, H.)

  11. Nitrogen turnover of three different agricultural soils determined by 15N triple labelling

    Science.gov (United States)

    Fiedler, Sebastian R.; Kleineidam, Kristina; Strasilla, Nicol; Schlüter, Steffen; Reent Köster, Jan; Well, Reinhard; Müller, Christoph; Wrage-Mönnig, Nicole

    2017-04-01

    To meet the demand for data to improve existing N turnover models and to evaluate the effect of different soil physical properties on gross nitrogen (N) transformation rates, we investigated two arable soils and a grassland soil after addition of ammonium nitrate (NH4NO3), where either ammonium (NH4+), or nitrate (NO3-), or both pools have been labelled with 15N at 60 atom% excess (triple 15N tracing method). Besides NH4+, NO3- and nitrite (NO2-) contents with their respective 15N enrichment, nitrous oxide (N2O) and dinitrogen (N2) fluxes have been determined. Each soil was adjusted to 60 % of maximum water holding capacity and pre-incubated at 20˚ C for two weeks. After application of the differently labelled N fertilizer, the soils were further incubated at 20˚ C under aerobic conditions in a He-N2-O2 atmosphere (21 % O2, 76 He, 2% N2) to increase the sensitivity of N2 rates via the 15N gas flux method. Over a 2 week period soil N pools were quantified by 2 M KCl extraction (adjusted to pH 7 to prevent nitrite losses) (Stevens and Laughlin, 1995) and N gas fluxes were measured by gas chromatography in combination with IRMS. Here, we present the pool sizes and fluxes as well as the 15N enrichments during the study. Results are discussed in light of the soil differences that were responsible for the difference in gross N dynamics quantified by the 15N tracing model Ntrace (Müller et al., 2007). References Müller, C., T. Rütting, J. Kattge, R.J. Laughlin, and R.J. Stevens, (2007) Estimation of parameters in complex 15N tracing models by Monte Carlo sampling. Soil Biology & Biochemistry. 39(3): p. 715-726. Stevens, R.J. and R.J. Laughlin, (1995) Nitrite transformations during soil extraction with potassium chloride. Soil Science Society of America Journal. 59(3): p. 933-938.

  12. Combined solid state and solution NMR studies of α,ε-15N labeled bovine rhodopsin

    International Nuclear Information System (INIS)

    Werner, Karla; Lehner, Ines; Dhiman, Harpreet Kaur; Richter, Christian; Glaubitz, Clemens; Schwalbe, Harald; Klein-Seetharaman, Judith; Khorana, H. Gobind

    2007-01-01

    Rhodopsin is the visual pigment of the vertebrate rod photoreceptor cell and is the only member of the G protein coupled receptor family for which a crystal structure is available. Towards the study of dynamics in rhodopsin, we report NMR-spectroscopic investigations of α,ε- 15 N-tryptophan labeled rhodopsin in detergent micelles and reconstituted in phospholipids. Using a combination of solid state 13 C, 15 N-REDOR and HETCOR experiments of all possible 13 C' i-1 carbonyl/ 15 N i -tryptophan isotope labeled amide pairs, and H/D exchange 1 H, 15 N-HSQC experiments conducted in solution, we assigned chemical shifts to all five rhodopsin tryptophan backbone 15 N nuclei and partially to their bound protons. 1 H, 15 N chemical shift assignment was achieved for indole side chains of Trp35 1.30 and Trp175 4.65 . 15 N chemical shifts were found to be similar when comparing those obtained in the native like reconstituted lipid environment and those obtained in detergent micelles for all tryptophans except Trp175 4.65 at the membrane interface. The results suggest that the integrated solution and solid state NMR approach presented provides highly complementary information in the study of structure and dynamics of large membrane proteins like rhodopsin

  13. Transfer Comparison Study Nitrogen on the Intact and Decapitated Legumes by Using the 15N Labeling Technique

    International Nuclear Information System (INIS)

    Widjayanto, Didik W.

    1998-01-01

    The experiment was done in order to evaluate the N transfer from the intact and decapitated legumes by using the 15 N labeling technique. Seven days after final labeling the above ground biomass from labeled legume species was removed and the remaining stalks capped to prevent regrowth. Twenty days after final labeling (fourteen days after capping) the all treatments were sample and analyzed. The decapitated legumes appeared to transfer more percentage N than the intact legumes. Although both decapitated and intact legumes transferred, the transfer of N did not incur a dry matter and N yield benefit

  14. O potencial da rotulação metabólica de 15N para a pesquisa de esquizofrenia The potential of 15N metabolic labeling for schizophrenia research

    Directory of Open Access Journals (Sweden)

    Michaela D. Filiou

    2013-01-01

    Full Text Available Pesquisas em psiquiatria ainda necessitam de estudos não dirigidos por hipóteses para revelar fundamentos neurobiológicos e biomarcadores moleculares para distúrbios psiquiátricos. Metodologias proteômicas disponibilizam uma série de ferramentas para esses fins. Apresentamos o princípio de rotulação metabólica utilizando 15N para proteômica quantitativa e suas aplicações em modelos animais de fenótipos psiquiátricos com um foco particular em esquizofrenia. Exploramos o potencial de rotulação metabólica por 15N em diferentes tipos de experimentos, bem como suas considerações metodológicas.Psychiatric research is in need of non-hypothesis driven approaches to unravel the neurobiological underpinnings and identify molecular biomarkers for psychiatric disorders. Proteomics methodologies constitute a state-of-the-art toolbox for biomarker discovery in psychiatric research. Here we present the principle of in vivo 15N metabolic labeling for quantitative proteomics experiments and applications of this method in animal models of psychiatric phenotypes, with a particular focus on schizophrenia. Additionally we explore the potential of 15N metabolic labeling in different experimental set-ups as well as methodological considerations of 15N metabolic labeling-based quantification studies.

  15. Affordable uniform isotope labeling with {sup 2}H, {sup 13}C and {sup 15}N in insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D., E-mail: alvar.gossert@novartis.com [Novartis Institutes for BioMedical Research (Switzerland)

    2015-06-15

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80 % can be achieved for {sup 15}N and {sup 13}C with yields comparable to expression in full media. For {sup 2}H,{sup 15}N and {sup 2}H,{sup 13}C,{sup 15}N labeling, incorporation is only slightly lower with 75 and 73 %, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins.

  16. Nitrogen budget of 15 N-Labelled urea applied to dry land wheat as affected by seasonal rainfall

    International Nuclear Information System (INIS)

    Abdel-Monem, M.A.; Ryan, J.; Christianson, B.

    1999-01-01

    Field trial was conducted at two locations of the semi-arid region of Morocco with an objective of estimating the N balance for the applied urea to wheat under two different agroecological zones. N-15 labelled urea was applied in microplots (1 m x 1 m) at tillering stage at rates of 0,40,80, and 120 kg/ha. Soil and plant samples were analyzed for N-15 excess. An average of 45% increase in grain yield of wheat was due to fertilization with 60 kg N/ha. Recovery of N-15 labelled N ranged between 28.8 and 45.1% for the rate of 40 kg N/ha. Results suggested that efficiency of the applied fertilizer is governed by seasonal rainfall and soil properties

  17. The Contamination of Commercial 15N2 Gas Stocks with 15N–Labeled Nitrate and Ammonium and Consequences for Nitrogen Fixation Measurements

    Science.gov (United States)

    Dabundo, Richard; Lehmann, Moritz F.; Treibergs, Lija; Tobias, Craig R.; Altabet, Mark A.; Moisander, Pia H.; Granger, Julie

    2014-01-01

    We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2 gas must be ensured prior to use in future N2 fixation rate determinations. PMID:25329300

  18. A technique developed for labeling the green manures (sunnhemp and velvet bean) with 15 N for nitrogen dynamic studies

    International Nuclear Information System (INIS)

    Ambrosano, Edmilson Jose

    1997-01-01

    A technique was developed for labeling the leguminous plant tissue with nitrogen ( 15 N) to obtain labelled material for nitrogen dynamic studies. Sunnhemp (crotalaria juncea L.) and velvet beans (Mucuna aterrima, sinonimia Stizolobium aterrimum Piper and Tracy) were grown in pots containing 10 kg of a Red Yellow Podzolic soil, under greenhouse conditions. The rate of 1.2 of nitrogen (ammonium sulphate with 11.37 atom % 15 N) per pot was applied three times. The labelled dried plant material showed 3.177 and 4.337 of atom % 15 N, respectively for velvet beans and sunnhemp. (author)

  19. Ecosystem Nitrogen Retention Following Severe Bark Beetle and Salvage Logging Disturbance in Lodgepole Pine Forests: a 15N Enrichment Study

    Science.gov (United States)

    Avera, B.; Rhoades, C.; Paul, E. A.; Cotrufo, M. F.

    2017-12-01

    In recent decades, bark beetle outbreaks have caused high levels of tree mortality in lodgepole pine (Pinus contorta) dominated forests across western North America. Previous work has found increased soil mineral nitrogen (N) with tree mortality in beetle infested stands, but surprisingly little change in stream N export. These findings suggest an important role of residual live vegetation and altered soil microbial response for retaining surplus N and mitigating N losses from disturbed lodgepole forests. Post outbreak salvage of merchantable timber reduces fuel levels and promotes tree regeneration; however, the implications of the combined bark beetle and harvesting disturbances on ecosystem N retention and productivity are uncertain. To advance understanding of post-disturbance N retention we compare unlogged beetle-infested forests and salvage logged stands with post-harvest woody residue retention or removal. We applied 15N-labeled (2 atom%) and natural abundance ammonium sulfate to eight year old lodgepole pine seedlings in three replicate plots of the three forest management treatments. This approach allows us to quantify the relative contributions of N retention in soil, microbial biomass, and plant tissue. Our study targets gaps in understanding of the processes that regulate N utilization and transfer between soil and vegetation that result in effective N retention in lodgepole pine ecosystems. These findings will also help guide forest harvest and woody residue management practices in order to maintain soil productivity.

  20. Experiments and strategies for the assignment of fully13 C/15N-labelled polypeptides by solid state NMR

    International Nuclear Information System (INIS)

    Straus, Suzana K.; Bremi, Tobias; Ernst, Richard R.

    1998-01-01

    High-resolution heteronuclear NMR correlation experiments and strategies are proposed for the assignment of fully 13 C/ 15 N-labelled polypeptides in the solid state. By the combination of intra-residue and inter-residue 13 C- 15 N correlation experiments with 13 C- 13 C spin-diffusion studies, it becomes feasible to partially assign backbone and side-chain resonances in solid proteins. The performance of sequences using 15 N instead of 13 C detection is evaluated regarding sensitivity and resolution for a labelled dipeptide (L-Val-L-Phe). The techniques are used for a partial assignment of the 15 N and 13 C resonances in human ubiquitin

  1. A cost-effective approach to produce 15N-labelled amino acids employing Chlamydomonas reinhardtii CC503.

    Science.gov (United States)

    Nicolás Carcelén, Jesús; Marchante-Gayón, Juan Manuel; González, Pablo Rodríguez; Valledor, Luis; Cañal, María Jesús; Alonso, José Ignacio García

    2017-08-18

    The use of enriched stable isotopes is of outstanding importance in chemical metrology as it allows the application of isotope dilution mass spectrometry (IDMS). Primary methods based on IDMS ensure the quality of the analytical measurements and traceability of the results to the international system of units. However, the synthesis of isotopically labelled molecules from enriched stable isotopes is an expensive and a difficult task. Either chemical and biochemical methods to produce labelled molecules have been proposed, but so far, few cost-effective methods have been described. The aim of this study was to use the microalgae Chlamydomonas reinhardtii to produce, at laboratory scale, 15 N-labelled amino acids with a high isotopic enrichment. To do that, a culture media containing 15 NH 4 Cl was used. No kinetic isotope effect (KIE) was observed. The labelled proteins biosynthesized by the microorganism were extracted from the biomass and the 15 N-labelled amino acids were obtained after a protein hydrolysis with HCl. The use of the wall deficient strain CC503 cw92 mt+ is fit for purpose, as it only assimilates ammonia as nitrogen source, avoiding isotope contamination with nitrogen from the atmosphere or the reagents used in the culture medium, and enhancing the protein extraction efficiency compared to cell-walled wild type Chlamydomonas. The isotopic enrichment of the labelled amino acids was calculated from their isotopic composition measured by gas chromatography mass spectrometry (GC-MS). The average isotopic enrichment for the 16 amino acids characterized was 99.56 ± 0.05% and the concentration of the amino acids in the hydrolysate ranged from 18 to 90 µg/mL. Previously reported biochemical methods to produce isotopically labelled proteins have been applied in the fields of proteomics and fluxomics. For these approaches, low amounts of products are required and the isotopic enrichment of the molecules has never been properly determined. So far, only 13

  2. Behavior of /sup 15/N-labelled amino acids in germinated corn

    Energy Technology Data Exchange (ETDEWEB)

    Samukawa, K; Yamaguchi, M [Osaka Prefectural Univ., Sakai (Japan). Coll. of Agriculture

    1979-06-01

    By investigating the rise and fall of /sup 15/N-labelled amino acids in germinated corns, the behavior of amino radicals in free amino acids, the influence of the hydrolysis products of stored proteins on free amino acids and the change from heterotrophy to autotrophy of seeds were clarified. The amount of amino acid production depending on external nitrogen was very small in the early period of germination. /sup 15/N incorporation into proline was not observed in the early period of germination, which suggested that the proline may be nitrogen-storing source. Most of the amino-state nitrogen of asparagine accumulated at the time of germination was internal nitrogen, and this fact suggested that aspartic acid serve as the acceptor of ammonia produced in the early stage of germination. /sup 15/N content increased significantly on 9 th day after germination, and decreased on 12 th day. These facts prove that there are always active decomposition and production of protein in plant body.

  3. Quantifying nitrogen flux after application of 15N-labelled pig slurry on triticale in the late autumn

    International Nuclear Information System (INIS)

    Morvan, T.; Leterme, P.; Mary, B.

    1996-01-01

    Predicting nitrate leaching after spreading slurry in autumn is difficult because plant uptake, mineralization, immobilization, volatilization and denitrification occur and modify the nitrate pool available for leaching. To estimate these fluxes, pig slurry was labelled with (15NH4)2SO4 and spread in December (110 kg NH4-N.ha-1) on triticale. Soil microbial immobilization, crop uptake and soil inorganic nitrogen were measured at seven dates between day 2 and 63 after application. NH4-N in the slurry follows three ways of transformation: volatilization (38 kg N.ha-1 in 16 days), immobilization (29 kg N.ha-1 day 30) and nitrification (42 kg N.ha-1). This last one was achieved 48 days after spreading, despite the cold mean temperatures measured during the experiment. Gross mineralization of soil and slurry organic nitrogen was large (35 kg N.ha-1 for the 0-10 cm soil layer). The real utilization coefficient of 15N-labelled N was low, smaller than 4% at day 63. The leaching of nitrate was small because there was no rainfall after day 48. Thus, from the balance of 15N-labelled N, it is suggested that 22 kg NO3 N.ha-1 has been lost by denitrification [fr

  4. Compound-specific δ15N amino acid measurements in littoral mussels in the California upwelling ecosystem: a new approach to generating baseline δ15N Isoscapes for coastal ecosystems.

    Directory of Open Access Journals (Sweden)

    Natasha L Vokhshoori

    Full Text Available We explored δ(15N compound-specific amino acid isotope data (CSI-AA in filter-feeding intertidal mussels (Mytilus californianus as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ(15N gradients in the California Upwelling Ecosystem (CUE, determining bulk δ(15N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ(15N values showed a strong linear trend with latitude, increasing from North to South (from ∼ 7‰ to ∼ 12‰, R(2 = 0.759. In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ(15N trend is therefore most consistent with a baseline δ(15N gradient, likely due to the mixing of two source waters: low δ(15N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC, with (15N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ(15N values of phenylalanine (δ(15NPhe, the best AA proxy for baseline δ(15N values. We hypothesize δ(15N(Phe values in intertidal mussels can approximate annual integrated δ(15N values of coastal phytoplankton primary production. We therefore used δ(15N(Phe values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ(15N values. We propose that δ(15N(Phe isoscapes derived from filter feeders can directly characterize baseline δ(15N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives.

  5. Transformation of {sup 15}N-Labelled Ammonium during Aerobic Decomposition of Plant Material

    Energy Technology Data Exchange (ETDEWEB)

    Danneberg, O. H.; Haunold, E.; Kaindl, K. [Institute for Biology and Agriculture. Reactor Centre, Seibersdorf (Austria)

    1968-07-01

    Plant material from maize leaves with the addition of {sup 15}N-labelled (NH{sub 4}){sub 2}SO{sub 4} was composted for periods of 10 to 180 d. The nitrogen of the decomposing samples was fractionated and the {sup 15}N enrichment in the fractions was determined by mass spectrometry. The added {sup 15}NH{sub 4}{sup +} was incorporated into organic compounds mainly during the first 10 d. The largest amount was found in the 'protein' fraction. The total nitrogen of this fraction increased up to 30 d, thus showing a marked synthesis of microbial protein. It decreased afterwards, when the microbial substances themselves were decomposed. Apart from this there was a marked synthesis of humic substances, especially in the first 10 d as indicated by an increase of the acid-insoluble ''humin'' fraction. A rather small amount of labelled ammonium was incorporated into this fraction within this time and this amount remained constant during the whole experiment. Because of the greater decay resistance the ''humin'' fraction was enriched towards the end of the experiment. (author)

  6. Combined solid state and solution NMR studies of {alpha},{epsilon}-{sup 15}N labeled bovine rhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Karla; Lehner, Ines [Johann Wolfgang Goethe-Universitaet Frankfurt, Center for Biomolecular Magnetic Resonance (Germany); Dhiman, Harpreet Kaur [University of Pittsburgh School of Medicine, Department of Structural Biology (United States); Richter, Christian; Glaubitz, Clemens; Schwalbe, Harald, E-mail: schwalbe@nmr.uni-frankfurt.de; Klein-Seetharaman, Judith [Johann Wolfgang Goethe-Universitaet Frankfurt, Center for Biomolecular Magnetic Resonance (Germany); Khorana, H. Gobind [Massachusetts Institute of Technology, Departments of Biology and Chemistry (United States)], E-mail: khorana@mit.edu

    2007-04-15

    Rhodopsin is the visual pigment of the vertebrate rod photoreceptor cell and is the only member of the G protein coupled receptor family for which a crystal structure is available. Towards the study of dynamics in rhodopsin, we report NMR-spectroscopic investigations of {alpha},{epsilon}-{sup 15}N-tryptophan labeled rhodopsin in detergent micelles and reconstituted in phospholipids. Using a combination of solid state {sup 13}C,{sup 15}N-REDOR and HETCOR experiments of all possible {sup 13}C'{sub i-1} carbonyl/{sup 15}N{sub i}-tryptophan isotope labeled amide pairs, and H/D exchange {sup 1}H,{sup 15}N-HSQC experiments conducted in solution, we assigned chemical shifts to all five rhodopsin tryptophan backbone {sup 15}N nuclei and partially to their bound protons. {sup 1}H,{sup 15}N chemical shift assignment was achieved for indole side chains of Trp35{sup 1.30} and Trp175{sup 4.65}. {sup 15}N chemical shifts were found to be similar when comparing those obtained in the native like reconstituted lipid environment and those obtained in detergent micelles for all tryptophans except Trp175{sup 4.65} at the membrane interface. The results suggest that the integrated solution and solid state NMR approach presented provides highly complementary information in the study of structure and dynamics of large membrane proteins like rhodopsin.

  7. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 7

    International Nuclear Information System (INIS)

    Gruhn, K.

    1988-01-01

    In a 15 N labelling experiment 12 colostomized laying hens received 15 N-labelled wheat with 14.37 atom-% 15 N excess ( 15 N') over 4 days. 3 hens each were butchered after 12 h, 36 h, 60 h and 108 h after the last 15 N' application. The gastrointestinal tract was divided into 3 parts (esophagus with crop and gizzard as well as glandular stomach, small intestine, large intestine). These parts and the pancreas were hydrolyzed with 6 N HCl and the individual basic as well as the sum of acid and neutral amino acids were determined in the hydrolyzed fractions. In addition, the amino acids and peptides were determined in the TCA soluble N fraction. The atom-% 15 N' was determined in the individual amino acid and peptide fractions. The labelling of the basic amino acids in the individual tract segments was lower than in the acid and neutral amino acids. In comparison to the peptides, a higher atom-% 15 N' could be determined in the free amino acids. (author)

  8. Synthesis and biosynthesis of 13C, 15N labeled deoxynucleosides useful for biomolecular structural determinations

    International Nuclear Information System (INIS)

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J.

    1994-01-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study utilizes nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy (more than 10,000 mw) in this arena requires stable isotope enrichment. Herein, the authors present strategies for the site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of [U- 13 C, 15 N] DNA from methylotrophic bacteria. With commercially available 6-chloropurine, an effective 2-step route leads to [6- 15 N]-2'-deoxadenosine (dA). The resulting [6- 15 N]-dA is used in a series of reactions to synthesize [2- 13 C, 1,2'- 15 N 2 ]-2'-deoxyguanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4g of methanol to yield 1 gram of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. The authors are currently developing large scale isolation protocols. General synthetic pathways to oligomeric DNA are presented

  9. Synthesis and biosynthesis of 13C-, 15N-labeled deoxynucleosides useful for biomolecular structural determinations

    International Nuclear Information System (INIS)

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J.

    1994-01-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U- 13 C, 15 N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2'-deoxy-(amino- 15 N)adenosine (dA). The resulting d(amino- 15 N)A is used in a series of reactions to synthesize 2'-deoxy-(2- 13 C,1,amino- 15 N 2 )guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented

  10. Distribution of 15N-labeled urea injected into field-grown corn plants

    International Nuclear Information System (INIS)

    Zhou, X.; Madrmootoo, C.A.; Mackenzie, A.F.; Smith, D.L.

    1998-01-01

    Nitrogen (N) assimilate supply to developing corn (Zea mays L.) ears plays a critical role in grain dry weight accumulation. The use of stem-perfused/injected 15N labeled compounds to determine the effects of an artificial N source on the subsequent distribution of injected N and grain weight of field-grown corn plants has not been reported previously. Our objective was to assess the distribution of N added via an artificial source. Three soil N fertilizer levels (0, 180, and 270 kg N ha-1) and three N solutions (distilled water control and 15N enriched urea at 15 and 30 mM N) were arranged in a split-plot design. Three N concentrations were injected using a pressurized stem injection technique. The injection started fifteen days after silking and continued until immediately prior to plant physiological maturity. The average uptake volume was 256 mL over the 30-day injection period. The N supplied via injection represented 1.5 to 3% of the total plant N. Neither soil applied N fertilizer nor injected N altered dry matter distribution among plant tissues. As the concentration of N in the injected solutions increased, N concentrations increased in the grain and upper stalks, and % 15N atom excess in ear+1 leaves and leaves increased. The relative degree of 15N enrichment for each of the tissues measured was injected internode grain upper stalks leaves lower stalks cob husk ear + 1 leaf ear leaf. This study indicated that the exogenous N supplied via stem-injection, was incorporated into all the measured plant parts, although not uniformly. The distribution of the injected 15N was affected both by the proximity of sinks to the point of injection and the strength of the various sinks

  11. A novel medium for expression of proteins selectively labeled with 15N-amino acids in Spodoptera frugiperda (Sf9) insect cells

    International Nuclear Information System (INIS)

    Brueggert, Michael; Rehm, Till; Shanker, Sreejesh; Georgescu, Julia; Holak, Tad A.

    2003-01-01

    Whereas bacterial expression systems are widely used for production of uniformly or selectively 15 N-labeled proteins the usage of the baculovirus expression system for labeling is limited to very few examples in the literature. Here we present the complete formulations of the two insect media, IML406 and 455, for the high-yield production of selectively 15 N-labeled proteins in insect cells. The quantities of 15 N-amino acids utilized in the production of labeled GST were similar in the case of bacterial and viral expression. For the most studied amino acids essential for insect cells the 15 N-HSQC spectra, recorded with GST labeled in insect cells, showed no cross labeling and provided therefore spectra of better quality compared to NMR spectra of GST expressed in E. coli. Also in the case of amino acids not essential for Sf9 cells we were able to label a defined number of amino acid species. Therefore the selective labeling using the baculovirus expression vector system represents a complement or even an alternative to the bacterial expression system. Based on these findings we can provide a first simple overview of the network of the amino acid metabolism in E. coli and insect cells focused on nitrogen. For some amino acids the expression of labeled proteins in insect cells can replace the cell-free protein expression

  12. Studies of the intermediary metabolism in cultured cells of the insect Spodoptera frugiperda using 13C- or 15N-labelled tracers

    Directory of Open Access Journals (Sweden)

    Bacher Adelbert

    2005-11-01

    Full Text Available Abstract Background Insect cells can serve as host systems for the recombinant expression of eukaryotic proteins. Using this platform, the controlled expression of 15N/13C labelled proteins requires the analysis of incorporation paths and rates of isotope-labelled precursors present in the medium into amino acids. For this purpose, Spodoptera frugiperda cells were grown in a complex medium containing [U-13C6]glucose. In a second experiment, cultures of S. frugiperda were grown in the presence of 15N-phenylalanine. Results Quantitative NMR analysis showed incorporation of the proffered [U-13C6]glucose into the ribose moiety of ribonucleosides (40 – 45% and into the amino acids, alanine (41%, glutamic acid/glutamine (C-4 and C-5, 30% and aspartate/asparagine (15%. Other amino acids and the purine ring of nucleosides were not formed from exogenous glucose in significant amounts (> 5%. Prior to the incorporation into protein the proffered 15N-phenylalanine lost about 70% of its label by transamination and the labelled compound was not converted into tyrosine to a significant extent. Conclusion Growth of S. frugiperda cells in the presence of [U-13C6]glucose is conducive to the fractional labelling of ribonucleosides, alanine, glutamic acid/glutamine and aspartic acid/asparagine. The isotopolog compositions of the ribonucleosides and of alanine indicate considerable recycling of carbohydrate intermediates in the reductive branch of the pentose phosphate pathway. The incorporation of 15N-labelled amino acids may be hampered by loss of the 15N-label by transamination.

  13. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies.

    Directory of Open Access Journals (Sweden)

    Belén Martínez-Alcántara

    Full Text Available Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L. grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95% ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency.

  14. Decomposition and nitrogen dynamics of 15N-labeled leaf, root, and twig litter in temperate coniferous forests

    Science.gov (United States)

    van Huysen, Tiff L.; Harmon, Mark E.; Perakis, Steven S.; Chen, Hua

    2013-01-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7–20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  15. Decomposition and nitrogen dynamics of (15)N-labeled leaf, root, and twig litter in temperate coniferous forests.

    Science.gov (United States)

    van Huysen, Tiff L; Harmon, Mark E; Perakis, Steven S; Chen, Hua

    2013-12-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using (15)N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7-20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  16. Investigation of the metabolism of colostomized laying hens with 15N-labelled wheat. 5

    International Nuclear Information System (INIS)

    Gruhn, K.

    1980-01-01

    In an experiment with 3 colostomized laying hybrids each animal received 80 g pelleted mixed feed and 40 g 15 N-labelled wheat with 20.13 atom-% 15 N excess ( 15 N') over a period of four days. On the following four days the hens received rations composed in the same way with unlabelled wheat, however in the tissues and organs of the slaughtered hens 15 N' was determined in the total N and the amino acids lysine, histidine and arginine in both the segments of the gastro intestinal tract and in its content. The amount of 15 N' stomach, small intestine and colon was 43.7%, 27.2% and 29.1%, respectively. The tissue of the small intestine contained, on an average, the highest 15 N' in lysine of all the basic amino acids. It was 0.82 atom-% 15 N' for lysine, 0.55% for histidine and 0.63% for arginine. The percentage of the 15 N' of the basic amino acids from the corresponding total 15 N' amount of the charges was 20.5% in the contents of the gastrointestinal tract, 28.0% in the stomach tissue and in the tissues of the small intestine 24.4% of the cecum 21.5% and of the rectum 25.7%. (author)

  17. Uptake of pulse injected nitrogen by soil microbes and mycorrhizal and non-mycorrhizal plants in a species-diverse subarctic heath ecosystem

    DEFF Research Database (Denmark)

    Andresen, Louise Christoffersen; Jonasson, Sven; Strom, Lena

    2008-01-01

    15N labeled ammonium, glycine or glutamic acid was injected into subarctic heath soil in situ, with the purpose of investigating how the nitrogen added in these pulses was subsequently utilized and cycled in the ecosystem. We analyzed the acquisition of 15N label in mycorrhizal and non-mycorrhiza......15N labeled ammonium, glycine or glutamic acid was injected into subarctic heath soil in situ, with the purpose of investigating how the nitrogen added in these pulses was subsequently utilized and cycled in the ecosystem. We analyzed the acquisition of 15N label in mycorrhizal and non...

  18. Auto-inducing media for uniform isotope labeling of proteins with {sup 15}N, {sup 13}C and {sup 2}H

    Energy Technology Data Exchange (ETDEWEB)

    Guthertz, Nicolas [Institute of Cancer Research, Division of Structural Biology (United Kingdom); Klopp, Julia; Winterhalter, Aurélie; Fernández, César; Gossert, Alvar D., E-mail: alvar.gossert@novartis.com [Novartis Institutes for BioMedical Research (Switzerland)

    2015-06-15

    Auto-inducing media for protein expression offer many advantages like robust reproducibility, high yields of soluble protein and much reduced workload. Here, an auto-inducing medium for uniform isotope labelling of proteins with {sup 15}N, {sup 13}C and/or {sup 2}H in E. coli is presented. So far, auto-inducing media have not found widespread application in the NMR field, because of the prohibitively high cost of labeled lactose, which is an essential ingredient of such media. Here, we propose using lactose that is only selectively labeled on the glucose moiety. It can be synthesized from inexpensive and readily available substrates: labeled glucose and unlabeled activated galactose. With this approach, uniformly isotope labeled proteins were expressed in unattended auto-inducing cultures with incorporation of {sup 13}C, {sup 15}N of 96.6 % and {sup 2}H, {sup 15}N of 98.8 %. With the present protocol, the NMR community could profit from the many advantages that auto-inducing media offer.

  19. Distribution, and uptake by rice plants of 15N-labeled ammonium applied in mudballs in paddy soils

    International Nuclear Information System (INIS)

    Ventura, Wilbur; Yoshida, Tomio

    1978-01-01

    A 1974 field experiment determined the distribution, and uptake by rice plants, of ammonium fertilizer at 60 kg N/ha applied in mudballs into the reduced layer of paddy soil. The fertilizer-carrying mudballs were placed at the center of four hills. At the center of the plot, one 15 N-labeled mudball was applied and the 15 N content of the plants surrounding the site of placement were determined. For comparison, labeled ammonium fertilizer was basally incorporated with the entire puddled layer and a topdress application was made 39 days before heading. There was little movement of the ammonium nitrogen horizontally from the site of placement so that the distribution of 15 N was restricted to the four adjacent plant hills. The distribution of incorporated ammonium fertilizer with the puddled layer was likewise restricted to the four adjacent rice plants but topdressing, with the unavoidable disturbance of the floodwater, resulted to a wide distribution of the 15 N-labeled fertilizer. In all the methods of application, there was an uneven uptake of 15 N among four plants adjacent to the site of placement. An increase of at least 10% in the efficiency of ammonium fertilizer was obtained by the deep placement of ammoniated mudballs as compared to the common practice of incorporating the fertilizer with the puddled soil layer. Topdressing at 39 days before heading, however, was as efficient as mudballs applied at the same stage of growth. There was no significant increase in grain yield by deep placement of fertilizer because of the high initial nitrogen content of the soil. (author)

  20. Artifact suppression in electron paramagnetic resonance imaging of 14N- and 15N-labeled nitroxyl radicals with asymmetric absorption spectra

    Science.gov (United States)

    Takahashi, Wataru; Miyake, Yusuke; Hirata, Hiroshi

    2014-10-01

    This article describes an improved method for suppressing image artifacts in the visualization of 14N- and 15N-labeled nitroxyl radicals in a single image scan using electron paramagnetic resonance (EPR). The purpose of this work was to solve the problem of asymmetric EPR absorption spectra in spectral processing. A hybrid function of Gaussian and Lorentzian lineshapes was used to perform spectral line-fitting to successfully separate the two kinds of nitroxyl radicals. This approach can process the asymmetric EPR absorption spectra of the nitroxyl radicals being measured, and can suppress image artifacts due to spectral asymmetry. With this improved visualization method and a 750-MHz continuous-wave EPR imager, a temporal change in the distributions of a two-phase paraffin oil and water/glycerin solution system was visualized using lipophilic and hydrophilic nitroxyl radicals, i.e., 2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxy (16-DOXYL stearic acid) and 4-hydroxyl-2,2,6,6-tetramethylpiperidine-d17-1-15N-1-oxyl (TEMPOL-d17-15N). The results of the two-phase separation experiment verified that reasonable artifact suppression could be achieved by the present method that deals with asymmetric absorption spectra in the EPR imaging of 14N- and 15N-labeled nitroxyl radicals.

  1. A novel medium for expression of proteins selectively labeled with {sup 15}N-amino acids in Spodoptera frugiperda (Sf9) insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Brueggert, Michael; Rehm, Till; Shanker, Sreejesh; Georgescu, Julia; Holak, Tad A. [Max Planck Institute for Biochemistry (Germany)], E-mail: holak.biochem@mpg.de

    2003-04-15

    Whereas bacterial expression systems are widely used for production of uniformly or selectively {sup 15}N-labeled proteins the usage of the baculovirus expression system for labeling is limited to very few examples in the literature. Here we present the complete formulations of the two insect media, IML406 and 455, for the high-yield production of selectively {sup 15}N-labeled proteins in insect cells. The quantities of {sup 15}N-amino acids utilized in the production of labeled GST were similar in the case of bacterial and viral expression. For the most studied amino acids essential for insect cells the {sup 15}N-HSQC spectra, recorded with GST labeled in insect cells, showed no cross labeling and provided therefore spectra of better quality compared to NMR spectra of GST expressed in E. coli. Also in the case of amino acids not essential for Sf9 cells we were able to label a defined number of amino acid species. Therefore the selective labeling using the baculovirus expression vector system represents a complement or even an alternative to the bacterial expression system. Based on these findings we can provide a first simple overview of the network of the amino acid metabolism in E. coli and insect cells focused on nitrogen. For some amino acids the expression of labeled proteins in insect cells can replace the cell-free protein expression.

  2. Nitrate Leaching From a Mountain Forest Ecosystem with Gleysols Subjected to Experimentally Increased N Deposition

    International Nuclear Information System (INIS)

    Schleppi, Patrick; Hagedorn, Frank; Providoli, Isabelle

    2004-01-01

    Nitrate leaching was measured over seven years of nitrogen (N) addition in a paired-catchment experiment in Alptal, central Switzerland (altitude: 1200 m, bulk N deposition: 12 kg ha -1 a -1 ). Two forested catchments (1500 m 2 each) dominated by Picea abies) were delimited by trenches in the Gleysols. NH 4 NO 3 was added to one of the catchments using sprinklers. During the first year, the N addition was labelled with 15 N. Additionally, soil N transformations were studied in replicated plots. Pre-treatment NO 3 - -N leaching was 4 kg ha -1 a -1 from both catchments, and remained between 2.5 and 4.8 kg ha -1 a -1 in the control catchment. The first year of treatment induced an additional leaching of 3.1 kg ha -1 , almost 90% of which was labelled with 15 N, indicating that it did not cycle through the large N pools of the ecosystem (soil organic matter and plants). These losses partly correspond to NO 3 - from precipitation bypassing the soil due to preferential flow. During rain or snowmelt events, NO 3 - concentration peaks as the water table is rising, indicating flushing from the soil. Nitrification occurs temporarily along the water flow paths in the soil and can be the source of NO 3 - flushing. Its isotopic signature however, shows that this release mainly affects recently applied N, stored only between runoff events or up to a few weeks. At first, the ecosystem retained 90% of the added N (2/3 in the soil), but NO 3 - losses increased from 10 to 30% within 7 yr, indicating that the ecosystem became progressively N saturated

  3. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 5

    International Nuclear Information System (INIS)

    Gruhn, K.; Zander, R.; Kirchner, E.

    1987-01-01

    12 colostomized laying hens which received 15 N-labelled wheat over 4 days were butchered 12 h, 36 h, and 108 h (3 animals each) after the last 15 N application. The intake of 15 N exess ( 15 N') from the wheat amounted to 540 mg 15 N' during the application period. The 15 N' in the blood plasma decreased after the last 15 N' application from 0.76 atom-% to 0.55 atom-% after 108 h, the labelling of the corpuscular components at the same measuring points increased from 0.28 to 0.50 atom-% 15 N'. 96.6% of the plasma 15 N' and 93,8% of that in the corpuscles is precipitable in trichloroacetic acid. The atom-% 15 N' of histidine in the total blood remained unchanged in dependence on the butchering time. The 15 N amount in lysine and arginine and that in the non-basic amino acids decreased inconsiderably in the period between 12 h and 108 h after the last 15 N' wheat feeding. (author)

  4. Rapid mass spectrometric analysis of 15N-Leu incorporation fidelity during preparation of specifically labeled NMR samples

    DEFF Research Database (Denmark)

    Truhlar, Stephanie M E; Cervantes, Carla F; Torpey, Justin W

    2008-01-01

    . MALDI TOF-TOF MS/MS data provide additional information that shows where the "extra" (15)N labels are incorporated, which can be useful in confirming ambiguous assignments. The described procedure provides a rapid technique to monitor the fidelity of selective labeling that does not require a lot...

  5. The use of 15N-labelled dinitrogen in the study of nitrogen fixation by blue-green algae

    International Nuclear Information System (INIS)

    Jones, J.

    1985-01-01

    Prior to the development of the acetylene reduction technique 15 N was used as the main qualitative and quantitative measure of nitrogen fixation by free-living cyanobacteria in a variety of aquatic and terrestrial habitats. Despite its expense and the technical difficulty, 15 N is a major tool in the study of cyanobacteria, for example, incorporation of 15 N 2 is the definitive test for nitrogen fixation; it is used in the determination of the correct ratio of acetylene reduction to nitrogen fixation, in in situ nitrogen fixation assays, in tracing the formation and fate of extra-cellular nitrogen and in measuring the turnover and grazing rates of cyanobacterial intra-cellular nitrogen. These latter studies show that 15 N-labelled extra-cellular nitrogen can serve as nitrogen sources for a variety of bacteria, fungi, algae and higher plants, and that cyanobacteria are graced and digested by a variety of animals. The turnover rates of cyanobacterial 15 N-labelled cells are dependent on the type of cell, species, environmental conditions and the availability of degrading organisms. The breakdown products are rapidly mineralised and used as nitrogen sources by higher plants. (author)

  6. Selective 15N labeling and direct observation by NMR of the active-site glutamine of Fe-containing superoxide dismutase

    International Nuclear Information System (INIS)

    Vance, Carrie K.; Kang, Young M.; Miller, Anne-Frances

    1997-01-01

    The glutamine in position 69 is one of only three conserved active-site amino acid differences between Fe- and Mn-containing superoxide dismutases (SODs). We have refined the conditions for extremely selective labeling of the side chains of glutamine with 15N, and thus obtained dramatically simplified spectra, despite the large size of Fe-SOD. The improved resolution afforded by such highly specific labeling permits the use of direct 15N detection to observe and assign Gln 69, even though its distance to the paramagnetic Fe2+ is only 5A. Selective glutamine side-chain labeling is inexpensive and has general utility for large (and paramagnet-containing) proteins

  7. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 11

    International Nuclear Information System (INIS)

    Gruhn, K.; Zander, R.

    1989-01-01

    Over a period of 4 days 12 colostomized laying hens daily received 36 g 15 N-labelled wheat with 15 N excess ( 15 N') of 14.37 atom-% together with a conventional feed mixture for laying hens. The labelling of the lysine N in the wheat was 13.58 atom-%, that of histidine N 14.38 and that of arginine 15 N' 13.63 atom-% 15 N'. Three hens each were butchered 12, 36, 60 and 108 h after the last 15 N' feeding. The first three hens did not receive any feed before being butchered. The following three hens each received the unlabelled feed ration for another 1, 2 or 4 days, resp., after the main period until they were butchered. The total of skeleton muscles, heart and stomach muscle (without inner skin) of each hen were combined into one sample, cut thinly, drenched with fluid nitrogen and pulverized. N, 15 N' and the basic and non-basic amino acids as well as their 15 N' were determined in the individual samples. In contrast to the organs, the proteins in the muscle tissue have a long half-life so that a slight decrease of atom-% 15 N' in the muscles could only be detected after 108 h. The 14 N and 15 N' quota of the non-basic amino acids in the total nitrogen of the muscles is 50 %. The 14 N quota of the basic amino acids is 30% and the 15 N' quota only 22.5% in the total muscle N. The heavy nitrogen of the free lysine in the TCA soluble N fraction is hardly detectable 36 h and 60 h after the last 15 N' supply and not at all after 108 h. In contrast to this, the other two free basic amino acids remain significantly higher labelled in dependence on the last butchering time. (author)

  8. Quantitative analysis of 15N labeled positional isomers of glutamine and citrulline via electrospray ionization tandem mass spectrometry of their dansyl derivatives

    Science.gov (United States)

    The enteral metabolism of glutamine and citrulline are intertwined because, while glutamine is one of the main fuel sources for the enterocyte, citrulline is one of its products. It has been shown that the administration of 15N labeled glutamine results in the incorporation of the 15N label into cit...

  9. Synthesis and biosynthesis of {sup 13}C-, {sup 15}N-labeled deoxynucleosides useful for biomolecular structural determinations

    Energy Technology Data Exchange (ETDEWEB)

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J. [Los Alamos National Laboratory, NM (United States)

    1994-12-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U-{sup 13}C, {sup 15}N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2{prime}-deoxy-(amino-{sup 15}N)adenosine (dA). The resulting d(amino-{sup 15}N)A is used in a series of reactions to synthesize 2{prime}-deoxy-(2-{sup 13}C,1,amino-{sup 15}N{sub 2})guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented.

  10. δ15N of seagrass leaves for monitoring anthropogenic nutrient increases in coral reef ecosystems

    International Nuclear Information System (INIS)

    Yamamuro, M.; Kayanne, H.; Yamano, H.

    2003-01-01

    In a coral reef environment, a slight increase in dissolved inorganic nitrogen (DIN;≥1.0 μM) can alter the ecosystem via macroalgal blooms. We collected seagrass leaves from the tropical and subtropical Pacific Ocean in five countries and examined the interactions between nutrient concentrations (C, N, P), molar ratios of nutrients, and δ 15 N to find a possible indicator of the DIN conditions. Within most sites, the concentrations of nutrients and their molar ratios showed large variations owing to species-specific values. On the other hand, almost identical δ 15 N values were found in seagrass leaves of several species at each site. The correlations between δ 15 N and nutrient concentrations and between δ 15 N and molar ratios of nutrients suggested that nutrient availability did not affect the δ 15 N value of seagrass leaves by altering the physiological condition of the plants. Increases in δ 15 N of seagrass leaves mostly matched increases in DIN concentrations in the bottom water. We suggest that δ 15 N in seagrass leaves can be a good tool to monitor time-integrated decrease/increase of DIN concentrations at a site, both in the water column and the interstitial water

  11. Determination of symbiotic nitrogen fixation by labelling the soil atmosphere with sup(15)N sub(2) at low isotope enrichment

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.

    1982-01-01

    A direct method to determine the total symbiotic nitrogen fixation during the leguminous plants cycles has been, developed, by labelling the soil atmosphere with sup(15)N sub(2) at low isotope enrichment, of about 1 atom % excess. The soil explored by the root system of leguminous plants was confined by means of a chamber in the field and by sealed pots in greenhouse experiments in order to maintain the soil air labelled with sup(15)N sub(2). The average sup(15)N concentration in the soil atmosphere, necessary to calculate dinitrogen fixation, was obtained by integration of the exponential functions of isotope dilution. Those functions were obtained by periodic sampling and analysis of the N sub(2) in the soil atmosphere. The field experiment with labelled atmosphere was carried out from the 22 sup(nd) to the 31 sup(st) day of the bean crop cycle and 5.5 mg N/plant (24% of total plant N) was derived from fixation. In pot experiments, under greenhouse conditions, integrated determination of fixation was made in Phaseolus beans (from the 19 sup(th) to the 67 sup(th) day from planting) and in soybeans (from the 24 sup(th) to the 70 sup(th) day from planting). The soil atmosphere was labelled with sup(15)N sub(2) in both cases. Average fixation obtained for Phaseolus beans was 80 mg N/plant (65% of total plant N) and for soybeans 265 mg N/plant (71% of total plant N). Evaluation of the basic concept of the isotope dilution method to determine nitrogen fixation in pots experiments, as proposed by Fried and Middelboe (1977) has also been made in the present paper. Simultaneous determinations of fixation in soybeans, using the isotope dilution method of Fried and Middelboe, natural variation of the sup(15)N/ sup(14)N ratios, and total-N differences, indicated the same results for pot experiments, harvested at the end of the plant cycle. (author)

  12. Dynamics of N2O production pathways analyzed by 15N18O isotope labeling

    DEFF Research Database (Denmark)

    Jensen, Marlene Mark; Ma, Chun; Lavik, Gaute

    Nitrous oxide production associated with biological nitrogen transformations can contribute substantially to the CO2 footprint of both man-made and natural systems, but the pathways and regulation of N2O production are poorly understood. We developed a 15N/18O dual isotope labelling technique...

  13. Synthesis of hydroxylamine-15 N.HCl

    International Nuclear Information System (INIS)

    Baldea, Aurel

    2001-01-01

    15 N labelled hydroxylamine is one of the starting substance for synthesis of labelled oximes. Industrial procedure was chosen to prepare hydroxylamine- 15 N. Sodium nitrite reduced by sodium bisulfite and sulfur dioxide, at temperature of 0-2 deg. C, produces sodium hydroxylamine disulfonate. The reaction mixture is treated with acetone and the resulting acetoxime is distilled. In order to obtain crystalline hydroxylamine hydrochloride, hydrochloric acid is added to the distillate and the solution is evaporated to dryness. The crude product was purified by recristallization, yielding 62-65% of theoretical amount. Labelled ammonium chloride formed as byproduct can be recovered improving 15 N balance. IR spectra is used for chemical analysis and mass spectrometry for isotopic analysis. For this purpose hydroxylamine- 15 N is converted into molecular nitrogen. (author)

  14. Application of amino acid type-specific 1H- and 14N-labeling in a 2H-, 15N-labeled background to a 47 kDa homodimer: Potential for NMR structure determination of large proteins

    International Nuclear Information System (INIS)

    Kelly, Mark J.S.; Krieger, Cornelia; Ball, Linda J.; Yu Yihua; Richter, Gerald; Schmieder, Peter; Bacher, Adelbert; Oschkinat, Hartmut

    1999-01-01

    NMR investigations of larger macromolecules (>20 kDa) are severely hindered by rapid 1H and 13C transverse relaxation. Replacement of non-exchangeable protons with deuterium removes many efficient 1H-1H and 1H-13C relaxation pathways. The main disadvantage of deuteration is that many of the protons which would normally be the source of NOE-based distance restraints are removed. We report the development of a novel labeling strategy which is based on specific protonation and 14N-labeling of the residues phenylalanine, tyrosine, threonine, isoleucine and valine in a fully deuterated, 15N-labeled background. This allows the application of heteronuclear half-filters, 15N-editing and 1H-TOCSY experiments to select for particular magnetization transfer pathways. Results from investigations of a 47 kDa dimeric protein labeled in this way demonstrated that the method provides useful information for the structure determination of large proteins

  15. Ner protein of phage Mu: Assignments using {sup 13}C/{sup 15}N-labeled protein

    Energy Technology Data Exchange (ETDEWEB)

    Strzelecka, T.; Gronenborn, A.M.; Clore, G.M. [National Institutes of Health, Bethesda, MD (United States)

    1994-12-01

    The Ner protein is a small (74-amino acid) DNA-binding protein that regulates a switch between the lysogenic and lytic stages of phage Mu. It inhibits expression of the C repressor gene and down-regulates its own expression. Two-dimensional NMR experiments on uniformly {sup 15}N-labeled protein provided most of the backbone and some of the sidechain proton assignments. The secondary structure determination using two-dimensional NOESY experiments showed that Ner consists of five {alpha}-helices. However, because most of the sidechain protons could not be assigned, the full structure was not determined. Using uniformly {sup 13}C/{sup 15}N-labeled Ner and a set of three-dimensional experiments, we were able to assign all of the backbone and 98% of the sidechain protons. In particular, the CBCANH and CBCA(CO)NH experiments were used to sequentially assign the C{alpha} and C{beta} resonances; the HCCH-CTOCSY and HCCH-COSY were used to assign sidechain carbon and proton resonances.

  16. 15N-labeled nitrogen from green manure and ammonium sulfate utilization by the sugarcane ratoon

    International Nuclear Information System (INIS)

    Ambrosano, Edmilson Jose; Rossi, Fabricio; Trivelin, Paulo Cesar Ocheuze; Cantarella, Heitor; Ambrosano, Glaucia Maria Bovi; Schammass, Eliana Aparecida; Muraoka, Takashi

    2011-01-01

    Legumes as green manure are alternative sources of nitrogen (N) for crops and can supplement or even replace mineral nitrogen fertilization due to their potential for biological nitrogen fixation (BNF). The utilization of nitrogen by sugarcane (Saccharum spp.) fertilized with sunn hemp (Crotalaria juncea L.) and ammonium sulfate (AS) was evaluated using the 15 N tracer technique. N was added at the rate of 196 and 70 kg ha -1 as 15 N-labeled sunn hemp green manure (SH) and as ammonium sulfate (AS), respectively. Treatments were: (I) Control; (II) AS 15 N; (III) SH 15 N + AS; (IV) SH 15 N; and (V) AS 15 N + SH. Sugarcane was cultivated for five years and was harvested three times. 15 N recovery was evaluated in the two first harvests. In the sum of the three harvests, the highest stalk yields were obtained with a combination of green manure and inorganic N fertilizer; however, in the second cutting the yields were higher where SH was used than in plots with AS. The recovery of N by the first two consecutive harvests accounted for 19 to 21% of the N applied as leguminous green manure and 46 to 49% of the N applied as AS. The amounts of inorganic N, derived from both N sources, present in the 0-0.4 m layer of soil in the first season after N application and were below 1 kg ha -1 . (author)

  17. Nitrogen mineralization from selected 15N-labelled crop residues and humus as affected by inorganic nitrogen

    International Nuclear Information System (INIS)

    Santos, J.A.

    1987-01-01

    The use of cover crops or crop residues as a source of N to succeeding crops has become a matter of increasing importance for economic and environmental reason. Greenhouse and field studies were conducted to determine the N contribution of four 15 N labelled crop residues, rye (Secale cereale L.), wheat (Triticum aestivum L.), crimson clover (Trifolium encarnatum L.), and hairy vetch (Vicia sativa L.), to successive crops and to evaluate the effect of different organic (ON) and inorganic N (IN) combinations on mineralization of the above residues. Total 15 N recovery from the residues ranged from 51% to 85% and 4% to 74% for the greenhouse and field studies, respectively

  18. Distribution of total nitrogen and N-15 labelled nitrogen applied to apple trees

    International Nuclear Information System (INIS)

    Calvache, Marcelo.

    1990-01-01

    The efficiency of nitrogen fertilization from one year's application was studied in apple trees. Urea enriched with 1,5% N-15 a.e. was applied to 2 years old apple trees. Two irrigation treatments were studied, Al approx. 200mm/week and A2 approx. 100 mm/week. The distribution of N in the different parts of the trees was determined after 2 months of fertilization and after the experimental trees were excavated. The recovery of labelled fertilizer N was different in the trees in both treatments (Al = 1,2% and A2 = 3,1%). However, the distribution in the tree's parts was similar: 46% in leaves, 34% in branches and 20% in roots. We also determined that sampling only 20% of leaves at the beginning and the end of the experiment it is possible to know the quantity of nitrogen from fertilizer, without the excavation trees

  19. A technique developed for labeling the green manures (sunnhemp and velvet bean) with {sup 15} N for nitrogen dynamic studies; Tecnica para marcacao dos adubos verdes crotalaria juncea e mucuna-preta com {sup 15} N para estudos de dinamica do nitrogenio

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosano, Edmilson Jose [Instituto Agronomico de Campinas, SP (Brazil). Secao de Leguminosas; Trivelin, Paulo Cesar Ocheuze; Muruoka, Takashi [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)

    1997-07-01

    A technique was developed for labeling the leguminous plant tissue with nitrogen ({sup 15} N) to obtain labelled material for nitrogen dynamic studies. Sunnhemp (crotalaria juncea L.) and velvet beans (Mucuna aterrima, sinonimia Stizolobium aterrimum Piper and Tracy) were grown in pots containing 10 kg of a Red Yellow Podzolic soil, under greenhouse conditions. The rate of 1.2 of nitrogen (ammonium sulphate with 11.37 atom % {sup 15} N) per pot was applied three times. The labelled dried plant material showed 3.177 and 4.337 of atom % {sup 15} N, respectively for velvet beans and sunnhemp. (author)

  20. Tracer experiments with 15N-labelled wheat to determine the endogenous and exogenous fecal N-proportion

    International Nuclear Information System (INIS)

    Krawielitzki, K.; Timm, E.

    1978-01-01

    In an experiment with growing Wistar rats of 100 g live weight the N-values and the 15 N-frequency of the nitrogen in feces, urine and the experimental carcasses were determined after feeding 15 N-labelled wheat. Proceeding from Czarnetzki's multicompartment model (1969) for N-metabolism in monogastric animals, the measured data were used to calculate the endogenous and exogenous fecal N-proportion of total nitrogen. In agreement with earlier studies the intestinal nitrogen loss was found to rise as the protein intake increased. In this experiment, the intestinal nitrogen loss went up from 8.2 mg N/animal and day (N-free diet) to 33.9 mg N/animal and day at a daily nitrogen intake of 240 mg/animal and day. The true digestibility of the wheat protein (determined by taking into account the rise of fecal N loss) was 97.2% this value being 8.4 units higher than the true digestibility calculated by the conventional regressive method of fecal analysis with a constant value being taken for fecal N loss. In connection with earlier findings, this experiment allows to draw the conclusion that the true digestibility determined conventionally by regression analysis does not reflect the actual digestibility of the protein. (author)

  1. Foliar fertilization of sugarcane (Saccharum spp): absorption and translocation of 15-N-labeled urea

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.; Carvalho, J.G. de; Silva, A.Q. da; Primavesi, A.C.P.A.; Camacho, E.; Eimori, I.E.; Guilherme, M.R.

    1988-01-01

    The absorption and translocation of foliar applied nitrogen as urea solution to sugar cane plants was evaluated. An experiment using the isotope dilution technique with 15 N labeled urea was carried out in green house condition. Seedlings of sugarcane variety IAC 53-150 were planted in pots with 5KG of top soil''latossolo vermelho amarelo, fase arenosa'' (Haplustox). (M.A.C.) [pt

  2. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 10

    International Nuclear Information System (INIS)

    Gruhn, K.; Hennig, A.

    1989-01-01

    Over a period of 4 days 12 colostomized laying hens daily received 36 g coarse wheat meal containing 14.37 atom-% 15 N excess ( 15 N') together with a conventional ration. After the homogenisation of each oviduct N and 15 N' were determined. After the precipitation with TCA the 15 N' of the amino acids was analysed in both the precipitate and the supernatant. In addition, the free amino acids and the peptides were determined in the TCA soluble fraction. The atom-% 15 N' in the total N and in the non-basic amino acid N showed a parallel decrease; it diminshed from 1.75 atom-% 15 N' to 0.64. Of the three basic amino acids, lysine shows the lowest labelling at all four measuring points. The quotas of non-basic amino acid 14 N and 15 N' in the total 14 N and 15 N' of the oviduct are the same and amount to 53%. In contrast to this, the quota of the 14 N of the basic amino acids in the total 14 N of the oviduct only amounts to 21.6% and that of 15 N' only to 15.4%. The average atom-% 15 N' of the free amino acids 12 h after the last 15 N application is 1.54 and is considerably above that of the peptides with 1.15 atom-% 15 N'. 36 h after the last 15 N application the ascertained value of 1.25 is identical in both fractions. The labelling of the free amino acids decreases more quickly than that of the peptides the more time has passed after the last 15 N application. (author)

  3. Stereospecific assignments of glycine in proteins by stereospecific deuteration and {sup 15}N labeling

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.P.; Curley, R.W. Jr.; Panigot, M.J.; Fesik, S.W. [Ohio State Univ., Columbus, OH (United States)

    1994-12-01

    Stereospecific assignments are important for accurately determining the three-dimensional structures of proteins through the use of multidimensional NMR techniques. It is especially important to stereospecifically assign the glycine {alpha}-protons in proteins because of the potential for different backbone conformations of this residue. These stereospecific assignments are critical for interpreting the {sup 3}J{sub NH,{alpha}H} coupling constants and NOEs involving the glycine {alpha}-protons that determine the conformation of this part of the protein. However, it is often difficult to unambiguously obtain the stereospecific assignments for glycine residues by using only NOE data. In this poster, we present a method for unambiguous, stereospecific assignment of the {alpha}-protons of glycine residues. This method involves synthesis of stereo-specifically deuterated and {sup 15}N-labeled Gly using a slightly modified procedure originally described by Woodard and coworkers for the stereoselective deuteration of glycine. The stereospecifically deuterated and {sup 15}N-labeled Gy has been incorporated into recombinant proteins expressed in both bacterial systems (FKBP) and mammalian cells (u-PA). Two- and three-dimensional isotope-filtered and isotope-edited NMR experiments were used to obtain the stereospecific assignments of the glycine {alpha}-protons for these proteins.

  4. Transformation of /sup 14/C labelled plant components in soil in relation to immobilization and remineralization of /sup 15/N fertilizer

    Energy Technology Data Exchange (ETDEWEB)

    Azam, F.; Haider, K.; Malik, K.A.

    1985-01-01

    Uniformly /sup 14/C labeled glucose, cellulose and wheat straw and specifically /sup 14/C labeled lignin component in corn stalks were aerobically incubated for 12 weeks in a chernozem soil along with /sup 15/N labeled ammonium sulfate. Glucose was most readily decomposed, followed in order by cellulose, wheat straw and corn stalk lignins labeled at methoxyl-, side chain 2- and ring-C. More than 50% of /sup 14/C applied as glucose, cellulose and wheat straw evolved as CO/sub 2/ during the first week. Lignin however, decomposed relatively slowly. A higher proportion of /sup 14/C was transformed into microbial biomass whereas lignins contributed a little to this fraction. After 12 weeks of incubation nearly 60% of the lignin /sup 14/C was found in humic compounds of which more than 70% was resistant to hydrolysis with 6N HCl. Maximum incorporation of /sup 15/N in humic compounds was observed in cellulose amended soil. However, in this case more than 80% of the /sup 15/N was in hydrolysable forms. Immobilization-remineralization of applied /sup 15/N was most rapid in glucose treated soil and a complete immobilization followed by remineralization was observed after 3 days. The process was much slow in soil treated with cellulose, wheat straw or corn stalks. More than 70% of the newly immobilized N was in hydrolysable forms mainly representing the microbial component. Serial hydrolysis of soil at different incubation intervals showed a greater proportion of 6N HCl hydrolysable /sup 14/C and /sup 15/N in fractions representing microbial material. /sup 14/C from lignin carbons was relatively more uniformly distributed in different fractions as compared to glucose, cellulose and wheat straw where a major portion of /sup 14/C was in easily hydrolysable fractions. 25 refs., 3 figs., 4 tabs.

  5. {delta}{sup 15}N of seagrass leaves for monitoring anthropogenic nutrient increases in coral reef ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Yamamuro, M.; Kayanne, H.; Yamano, H

    2003-04-01

    In a coral reef environment, a slight increase in dissolved inorganic nitrogen (DIN;{>=}1.0 {mu}M) can alter the ecosystem via macroalgal blooms. We collected seagrass leaves from the tropical and subtropical Pacific Ocean in five countries and examined the interactions between nutrient concentrations (C, N, P), molar ratios of nutrients, and {delta}{sup 15}N to find a possible indicator of the DIN conditions. Within most sites, the concentrations of nutrients and their molar ratios showed large variations owing to species-specific values. On the other hand, almost identical {delta}{sup 15}N values were found in seagrass leaves of several species at each site. The correlations between {delta}{sup 15}N and nutrient concentrations and between {delta}{sup 15}N and molar ratios of nutrients suggested that nutrient availability did not affect the {delta}{sup 15}N value of seagrass leaves by altering the physiological condition of the plants. Increases in {delta}{sup 15}N of seagrass leaves mostly matched increases in DIN concentrations in the bottom water. We suggest that {delta}{sup 15}N in seagrass leaves can be a good tool to monitor time-integrated decrease/increase of DIN concentrations at a site, both in the water column and the interstitial water.

  6. 47 CFR 15.19 - Labelling requirements.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Labelling requirements. 15.19 Section 15.19 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES General § 15.19 Labelling... label shall be located in a conspicuous location on the device and shall contain the unique...

  7. Nitrogen immobilization and mineralization during initial decomposition of 15N-labelled pea and barley residues

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1997-01-01

    The immobilization and mineralization of N following plant residue incorporation were studied in a sandy loam soil using N-15-labelled field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) straw. Both crop residues caused a net immobilization of soil-derived inorganic N during...... the complete incubation period of 84 days. The maximum rate of N immobilization was found to 12 and 18 mg soil-derived N g(-1) added C after incorporation of pea and barley residues, respectively. After 7 days of incubation, 21% of the pea and 17% of the barley residue N were assimilated by the soil microbial...... the decomposition of the barley residue. The net mineralization of residue-derived N was 2% in the barley and 22% in the pea residue treatment after 84 days of incubation. The results demonstrated that even if crop residues have a relative low C/N ratio (15), transient immobilization of soil N in the microbial...

  8. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events

    International Nuclear Information System (INIS)

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A. Mark; Press, Malcolm C.; Phoenix, Gareth K.

    2016-01-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem "1"5N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g N m"−"2 yr"−"1, applied as "1"5NH_4"1"5NO_3 in Svalbard (79"°N), during the summer. Separate applications of "1"5NO_3"− and "1"5NH_4"+ were also made to determine the importance of N form in their retention. More than 95% of the total "1"5N applied was recovered after one growing season (~ 90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants > vascular plants > organic soil > litter > mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of "1"5N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater "1"5NO_3"− than "1"5NH_4"+, suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication. - Highlights: • High Arctic tundra demonstrated a

  9. {sup 15}N-labeled nitrogen from green manure and ammonium sulfate utilization by the sugarcane ratoon

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosano, Edmilson Jose; Rossi, Fabricio, E-mail: ambrosano@apta.sp.gov.b [Agencia Paulista de Tecnologia dos Agronegocios (APTA), Piracicapa, SP (Brazil). Polo Rigional Centro Sul; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis; Cantarella, Heitor [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IAC), Campinas, SP (Brazil). Instituto Agronomico de Campinas. Centro de Solos e Recursos Agroambientais; Ambrosano, Glaucia Maria Bovi [Universidade de Campinas (UNICAMP/FOP), Piracicaba, SP (Brazil). Fac. de Odontologia de Piracicaba. Dept. de Odontologia Social, Bioestatistica; Schammass, Eliana Aparecida [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IZ), Nova Odessa, SP (Brazil). Instituto de Zootecnia; Muraoka, Takashi [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Fertilidade do solo

    2011-05-15

    Legumes as green manure are alternative sources of nitrogen (N) for crops and can supplement or even replace mineral nitrogen fertilization due to their potential for biological nitrogen fixation (BNF). The utilization of nitrogen by sugarcane (Saccharum spp.) fertilized with sunn hemp (Crotalaria juncea L.) and ammonium sulfate (AS) was evaluated using the {sup 15}N tracer technique. N was added at the rate of 196 and 70 kg ha{sup -1} as {sup 15}N-labeled sunn hemp green manure (SH) and as ammonium sulfate (AS), respectively. Treatments were: (I) Control; (II) AS{sup 15}N; (III) SH{sup 15}N + AS; (IV) SH{sup 15}N; and (V) AS{sup 15}N + SH. Sugarcane was cultivated for five years and was harvested three times. {sup 15}N recovery was evaluated in the two first harvests. In the sum of the three harvests, the highest stalk yields were obtained with a combination of green manure and inorganic N fertilizer; however, in the second cutting the yields were higher where SH was used than in plots with AS. The recovery of N by the first two consecutive harvests accounted for 19 to 21% of the N applied as leguminous green manure and 46 to 49% of the N applied as AS. The amounts of inorganic N, derived from both N sources, present in the 0-0.4 m layer of soil in the first season after N application and were below 1 kg ha{sup -1}. (author)

  10. Effect of nitrificide in temporally varied /sup 15/N-labelled slurry fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Peschke, H. (Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Pflanzenproduktion)

    1983-01-01

    The fertilizing effect of /sup 15/N-labelled semi-liquid cattle manure (application in August, November and March) with nitrification inhibitor 'N-Serve' added in amounts of 1 and 3 percent of the fertilizer N on perennial ryegrass with feed oats as follow-up seed was tested in an open-air pot experiment using sand of a sandy-rusty soil. A combination of semi-liquid manure and straw and winter rape-seed, respectively, as green manure (August) and ammonium sulfate with and without 1 per cent N-Serve (November and March) were used as comparative variants. Manuring in August had no effect on the yield, the 3 per cent N-Serve application in November and of 1 and 3 percent in March resulted in an increase of the perennial ryegrass yield. By analogy, the N utilization of the fertilizers was increased with later fertilizing dates and the amount of the nitrificide applied. In the case of semi-liquid manure application, N-Serve promoted the mineralization of the nitrogen in the soil.

  11. Isobutylidene diurea as NPN-source for ruminants. 2. Digestion of /sup 15/N-labelled isobutylidene diurea in lactating dairy cows

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, H; Goersch, R; Adam, K; Piatkowski, B; Voigt, J [Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Tierproduktion und Veterinaermedizin; Akademie der Landwirtschaftswissenschaften der DDR, Dummerstorf-Rostock. Forschungszentrum fuer Tierproduktion)

    1981-04-01

    Two cows with rumen cannulae and duodenal re-entrance cannulae received a conventional diet on the basis of a mixture of maize silage, hay and concentrated feed and after a three-week adaptation to isobutylidene diurea (IBDU) 138 g IBDU with 3.865 mg /sup 15/N excess as a single supplementation to their first meal. After a 6-week break without IBDU adaptation the same cows served for a repeated experiment. Irrespective of the adaptation, a reincrease of the /sup 15/N labelling in the TCA-soluble N in the rumen could be proved between the tsup(th) and the 8sup(th) hour after the intake of the isotopes, which resulted from the backflow of /sup 15/N to the rumen. In the duodenal digesta the maximum labelling of the TCA - soluble N fraction appeared 12 hours after the intake of the isotopes. At that moment a labelling plateau began in the protein fraction, which lasted to the 36sup(th) hour. On an average of all 4 cows approximately 30% of the /sup 15/N taken up in the TCA-precipitable fraction and 55 to 60% in the TCA-soluble fraction had passed the duodenum up to the 72sup(nd) hour after the beginning of the experiment approximately 15% were excreted in urine, 16% in feces and 7% in the milk. This shows that roughly one half of the 90% /sup 15/N amount measured at its passage in the re-entrance cannula (related to the intake) was metabolized in the rumen at least twice, and after the first passage through the duodenum it originated from the intermediary metabolism, resp. Negative correlations could be ascertained between the pH value of the rumen fluid and the /sup 15/N incorporation into the rumen proteins as well as the N excretion through the TCA-soluble and -precipitable quota of feces. An adaptation to IBDU is not necessary obviously.

  12. 13C- and 15N-labelled non-biogenic compounds used as stable isotope drugs for human liver function tests

    International Nuclear Information System (INIS)

    Krumbiegel, P.

    1989-01-01

    As a result of liver diseases, the elimination of certain drugs is retarded. After labelling a suitable drug with 13 C, the 13 CO 2 elimination rate serves as a liver function parameter. Current contributions to the 13 CO 2 breath test method are reviewed and related to the 14 CO 2 breath test proposals. In spite of several advantages of 13 C-labelled agents, some dissatisfaction has remained with the tests, especially at using them with infants. It is the necessity of face masks and the uncertainty to consider endogeneous CO 2 contributions diluting the exhaled 13 CO 2 . The problems are avoided if the other molecule site of the drug is labelled which is known to be eliminated via urine. With 15 N as a tracer, a suitable urine test using [ 15 N]-methacetin as agent has been proposed and put into practice. (author)

  13. Nitrogen incorporation and retention by bacteria, algae, and fauna in a subtropical, intertidal sediment: An in situ 15N-labeling study

    NARCIS (Netherlands)

    Veuger, B.; Eyre, B.D.; Maher, D.; Middelburg, J.J.

    2007-01-01

    We performed a 15N-labeling study to investigate nitrogen incorporation and retention by the benthic microbial community (bacteria and benthic microalgae) and fauna in the intertidal sediment of the subtropical Australian Brunswick Estuary. The main experiment involved an in situ 15N pulse–chase

  14. Comparing the Influence of Wildfire and Prescribed Burns on Watershed Nitrogen Biogeochemistry Using 15N Natural Abundance in Terrestrial and Aquatic Ecosystem Components

    Science.gov (United States)

    Stephan, Kirsten; Kavanagh, Kathleen L.; Koyama, Akihiro

    2015-01-01

    We evaluated differences in the effects of three low-severity spring prescribed burns and four wildfires on nitrogen (N) biogeochemistry in Rocky Mountain headwater watersheds. We compared paired (burned/unburned) watersheds of four wildfires and three spring prescribed burns for three growing seasons post-fire. To better understand fire effects on the entire watershed ecosystem, we measured N concentrations and δ15N in both the terrestrial and aquatic ecosystems components, i.e., soil, understory plants in upland and riparian areas, streamwater, and in-stream moss. In addition, we measured nitrate reductase activity in foliage of Spiraea betulifolia, a dominant understory species. We found increases of δ15N and N concentrations in both terrestrial and aquatic ecosystem N pools after wildfire, but responses were limited to terrestrial N pools after prescribed burns indicating that N transfer from terrestrial to aquatic ecosystem components did not occur in low-severity prescribed burns. Foliar δ15N differed between wildfire and prescribed burn sites; the δ15N of foliage of upland plants was enriched by 2.9 ‰ (difference between burned and unburned watersheds) in the first two years after wildfire, but only 1.3 ‰ after prescribed burns. In-stream moss δ15N in wildfire-burned watersheds was enriched by 1.3 ‰, but there was no response by moss in prescription-burned watersheds, mirroring patterns of streamwater nitrate concentrations. S. betulifolia showed significantly higher nitrate reductase activity two years after wildfires relative to corresponding unburned watersheds, but no such difference was found after prescribed burns. These responses are consistent with less altered N biogeochemistry after prescribed burns relative to wildfire. We concluded that δ15N values in terrestrial and aquatic plants and streamwater nitrate concentrations after fire can be useful indicators of the magnitude and duration of fire effects and the fate of post

  15. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Sonal, E-mail: S.Choudhary@sheffield.ac.uk [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Management School, University of Sheffield, Conduit Road, Sheffield S10 1FL (United Kingdom); Blaud, Aimeric [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Osborn, A. Mark [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); School of Applied Sciences, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Press, Malcolm C. [School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Manchester Metropolitan University, Manchester, M15 6BH (United Kingdom); Phoenix, Gareth K. [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem {sup 15}N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g N m{sup −2} yr{sup −1}, applied as {sup 15}NH{sub 4}{sup 15}NO{sub 3} in Svalbard (79{sup °}N), during the summer. Separate applications of {sup 15}NO{sub 3}{sup −} and {sup 15}NH{sub 4}{sup +} were also made to determine the importance of N form in their retention. More than 95% of the total {sup 15}N applied was recovered after one growing season (~ 90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants > vascular plants > organic soil > litter > mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of {sup 15}N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater {sup 15}NO{sub 3}{sup −} than {sup 15}NH{sub 4}{sup +}, suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events

  16. Plot-size for 15N-fertilizer recovery studies by tanzania-grass

    International Nuclear Information System (INIS)

    Martha Junior, Geraldo Bueno; Trivelin, Paulo Cesar Ocheuze; Corsi, Moacyr

    2009-01-01

    The understanding of the N dynamics in pasture ecosystems can be improved by studies using the 15 N tracer technique. However, in these experiments it must be ensured that the lateral movement of the labeled fertilizer does not interfere with the results. In this study the plot-size requirements for 15 N-fertilizer recovery experiments with irrigated Panicum maximum cv. Tanzania was determined. Three grazing intensities (light, moderate and intensive grazing) in the winter, spring and summer seasons were considered. A 1 m 2 plot-size, with a grass tussock in the center, was adequate, irrespective of the grazing intensity or season of the year. Increasing the distance from the area fertilized with 15 N negatively affected the N derived from fertilizer (Npfm) recovered in herbage.The lowest decline in Npfm values were observed for moderate and light grazing intensities. This fact might be explained by the vigorous growth characteristics of these plants. Increasing the grazing intensity decreased the tussock mass and, the smaller the tussock mass, the greater was the dependence on fertilizer nitrogen. (author)

  17. Plot-size for {sup 15}N-fertilizer recovery studies by tanzania-grass; Tamanho da parcela para estudos de recuperacao de fertilizante-{sup 15}N por capim-tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Martha Junior, Geraldo Bueno [EMBRAPA Cerrados, Planaltina, DF (Brazil)], e-mail: gbmartha@cpac.embrapa.br; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis], e-mail: pcotrive@cena.usp.br; Corsi, Moacyr [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Zootecnia], e-mail: moa@esalq.usp.br

    2009-07-01

    The understanding of the N dynamics in pasture ecosystems can be improved by studies using the {sup 15}N tracer technique. However, in these experiments it must be ensured that the lateral movement of the labeled fertilizer does not interfere with the results. In this study the plot-size requirements for {sup 15}N-fertilizer recovery experiments with irrigated Panicum maximum cv. Tanzania was determined. Three grazing intensities (light, moderate and intensive grazing) in the winter, spring and summer seasons were considered. A 1 m{sup 2} plot-size, with a grass tussock in the center, was adequate, irrespective of the grazing intensity or season of the year. Increasing the distance from the area fertilized with {sup 15}N negatively affected the N derived from fertilizer (Npfm) recovered in herbage.The lowest decline in Npfm values were observed for moderate and light grazing intensities. This fact might be explained by the vigorous growth characteristics of these plants. Increasing the grazing intensity decreased the tussock mass and, the smaller the tussock mass, the greater was the dependence on fertilizer nitrogen. (author)

  18. Synthesis of [1,3 - 15 N2] uracil

    International Nuclear Information System (INIS)

    Chiriac, M.; Axente, D.

    2001-01-01

    The synthesis of 15 N labelled uracil, using CO( 15 NH 2 ) 2 as starting material, is presented. The experimental procedure is an adaptation of the synthesis methods for the corresponding unlabelled compounds. Urea- 15 N 2 used as starting material was obtained from H 15 NO 3 (99 at.% 15 N) produced at National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca.The uracil structure was determined using the mass spectrometry method and the isotopic labelling was determined by the same method on the molecular compound. The synthesis scheme of (1,3- 15 N 2 ) uracil is presented. (authors)

  19. Cyanobacteria-derived nitrogen uptake by benthic invertebrates in Lake Taihu: a mesocosm study using 15N labeling

    Directory of Open Access Journals (Sweden)

    Yu J.

    2014-01-01

    Full Text Available Eutrophication of lakes can lead to dominance by cyanobacteria, which are hardly used by zooplankton due to their low nutrition value. However, sedimented cyanobacterial detritus may be a useful source for benthic invertebrates. We studied the Microcystis-derived nitrogen incorporation in benthic invertebrates in Lake Taihu using stable isotopic nitrogen (15N as a tracer. The δ15N of all organisms increased significantly with time after addition of the labeled Microcystis detritus. δ15N values of POM and periphyton peaked earlier than for benthic invertebrates, and the maximum levels were also higher than bivalves, snails and worms (Limnodrilus spp.. Among benthic invertebrates, Radix swinhoei peaked later than other invertebrates, but the maximum level and the excess 15N of the last sampling day were higher. At the end of the experiment, approximately 70% of the added 15N was retained in the benthic food web, while only a small fraction (less than 1% of the added detritus 15N occurred in the pelagic food web. Our results suggest that nitrogen from cyanobacteria can be incorporated more in benthic than pelagic food webs and cyanobacterial blooms may contribute to the development of benthic animals.

  20. Labelling of animal manure nitrogen with 15N

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.; Nielsen, N.E.

    1994-01-01

    A sheep was fed on N-15-labelled ryegrass hay during a period of 9 days in order to obtain N-15-labelled manure. After 9 days of feeding, the total N in faeces contained 3.70 atom % N-15 excess, which was equivalent to 82% of the N-15 enrichment of the hay N. The easily-decomposable fraction...

  1. Bicarbonate as tracer for plant assimilated C and homogeneity of 14C and 15N distribution in ryegrass and white clover tissue by alternative labeling approaches

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Kusliene, Gedrime; Jacobsen, Ole Stig

    2013-01-01

    that 15N also had a heterogeneous distribution (up to two orders of magnitude). Conclusion Bicarbonate can efficiently be used to introduce 14C or 13C into plant via the leaf-labeling method. Both 14C and 15N showed heterogeneous distribution in the plant, although the distribution of 15N was more even......Aims: Application of carbon (C) and nitrogen (N) isotopes is an essential tool to study C and N flows in plant-soil-microorganisms systems. When targeting single plants in a community the tracers need to be added via e.g., leaf-labeling or stem-feeding approaches. In this study we: (i) investigated...... if bicarbonate can be used to introduce 14C (or 13C) into white clover and ryegrass, and (ii) compared the patterns of 14C and 15N allocation in white clover and ryegrass to evaluate the homogeneity of tracer distribution after two alternative labeling approaches. Methods Perennial ryegrass and white clover were...

  2. Medium-term response of microbial community to rhizodeposits of white clover and ryegrass and tracing of active processes induced by 13C and 15N labelled exudates

    DEFF Research Database (Denmark)

    Kusliene, Gedrime; Rasmussen, Jim; Kuzyakov, Yakov

    2014-01-01

    and actinomycetes was unaffected by plant species, but pool of Gram-negative and Gram-positive bacteria was greater under white clover at the 10 percent significance level. In the short term, microorganisms more actively utilised fresh exudates (13C-labelled) of ryegrass than of white clover. We expected ryegrass...... microbial groups in soil under white clover (Trifolium repens L.) and ryegrass (Lolium perenne L.) following leaf-labelling with 13C-bicarbonate and 15N-urea. In this way microbial N and 15N and the composition of PLFAs reflect the medium-term (two months) response of microorganisms to rhizodeposits......, whereas the 13C-label of the PLFAs reflects the short-term (one week) utilisation of root exudates following labelling of shoots. In the medium term, microbial biomass N and 15N were greater under the ryegrass, whereas total PLFA was higher under white clover. The relative abundance of fungi...

  3. Unusually negative nitrogen isotopic compositions (δ15N) of mangroves and lichens in an oligotrophic, microbially-influenced ecosystem

    Science.gov (United States)

    Fogel, M. L.; Wooller, M. J.; Cheeseman, J.; Smallwood, B. J.; Roberts, Q.; Romero, I.; Meyers, M. J.

    2008-12-01

    Extremes in δ15N values in mangrove tissues and lichens (range =+4 to -22‰) were measured from a mangrove forest ecosystem located on Twin Cays, offshore islands in Belize, Central America. The N isotopic compositions and concentrations of NH4+/NH3 in porewater, rainwater, and atmospheric ammonia, and the δ15N of lichens, mangrove leaves, roots, stems, and wood were examined to study the biogeochemical processes important for establishing these unusual N isotopic ratios. Dwarfed Rhizophora mangle trees had the most negative δ15N, whereas fringing Rhizophora trees, the most positive δ15N values. Porewater ammonium concentrations had little relationship to N isotopic fractionation in mangrove tissues. In dwarfed mangroves, the δ15N of fine and coarse roots were 6-9‰ more positive than leaf tissue from the same tree, indicating different sources of N for root and leaf tissues. When P was added to dwarfed mangrove trees without added N, δ15N increased within one year from -12‰ to -2‰, approaching the δ15N of porewater ammonium (δ15N=+4‰). Isotopically depleted ammonia in the atmosphere (δ15N=-19‰) and in rainwater (δ15N=-10‰) were found on Twin Cays. We propose that foliar uptake of these atmospheric sources by P-stressed, dwarfed mangrove trees and lichens can explain their very negative δ15N values. In environments where P is limiting for growth, uptake of atmospheric N by Rhizophora mangle may be an important adaptive strategy.

  4. Synthesis of puric bases labelled with carbon 14 and nitrogen 15

    International Nuclear Information System (INIS)

    Lamorre, Yves

    1975-01-01

    In this report for graduation in organic chemistry engineering, the author reports the synthesis of adenine 14 C-2 et 14 C-6 by two different chemical ways from two derivatives of imidazole. He has used adenine 14 C-6 to obtain hypoxanthine 14 C-6, and then, by enzymatic processing, uric acid 14 C-6. He reports the study of the production of guanine 14 C-2 by cyclization of silylated derivative of imidazole with the carbon 14 C sulphur. However, a method of complete synthesis of this same compound revealed to be more practical. This complete synthesis way allowed the labelling of guanine in positions 1, 2 and 3 by the 96 per cent isotopic nitrogen. Nitrogen in positions 7 and 9 could have been labelled by the same way from the ethyl cyanoacetate 15 N and from the sodium nitrite 15 N. The study of the mass spectrum of these compounds labelled with nitrogen 15 N allowed most of fragments obtained during this analysis to be identified [fr

  5. Recovery of 15N-labelled fertilizers applied to bromegrass on a thin black chernozem soil

    International Nuclear Information System (INIS)

    Malhi, S.S.

    1995-01-01

    The availability of N fertilizers on established grass stands is a function of such processes as immobilization, gaseous loss, leaching and position of applied N. A field experiment was conducted on a Thin Black Chernozem soil at Crossfield, Alberta to determine the effect of source, time and method of application on the recovery of 15 N-labelled fertilizers applied to smooth bromegrass (Bromus inermis Leyss.). The treatments included two sources of N [urea and ammonium nitrate (AN)], four application times (early autumn, late autumn, early spring and late spring) and two methods of placement (surface-broadcast and subsurface banding). In most cases the 15 N recovery in soil did not differ much between urea and AN. However, when urea was surface-broadcast, there was, on average, 10.2% less 15 N recovery in plants than AN. The N recovery for late spring > early spring > late autumn = early autumn. When urea was banded 4 cm deep into the soil, N recovery in plants increased significantly compared with its surface-broadcast application. However, this was not observed when the source of N was AN. Banding generally increased the amount of immobilized N present in the soil and N recovery. We concluded that the N recovery in plants and in plants plus soil was less for urea than for AN and was less with autumn broadcast N application than with spring broadcast application. (author). 23 refs., 3 tabs

  6. Preparation of 15N-13C-fulminic acid

    International Nuclear Information System (INIS)

    Wilmes, R.; Winnewisser, M.

    1993-01-01

    The precursor for the title compound was prepared in a three-step synthesis. The 13 C-label was incorporated in the first step employing 2- 13 C-ethyl acetate and the 15 N-label in the last step, using 15 N-sodium nitrite. Upon pyrolysis the precursor forms three fragments, one of them being the title compound. (Author)

  7. North Atlantic ecosystem shifts revealed by cod otolith δ15N and δ13C chronologies

    DEFF Research Database (Denmark)

    Pedersen, Jens Brøgger; Nielsen, Jens Munk; Steingrund, Petur

    . To study the link between environmental changes and ecosystem trophic structure we developed δ15N and δ13C chronologies by analyzing the organic matrix of cod otoliths from the Faroe Shelf cod population (1950-2010) and the Nuuk Fjord cod population (1927-2009). Significant correlations between δ15N & δ13C...... of organic matrix of otolith core material (Nuuk Fjord) and annual growth increments in Ocean Quahog (A. Islandica) shells will be included.......Changes in climate and exploitation have caused large fluctuations in the productivity of many North Atlantic cod populations and the collapse of many cod fisheries. These fluctuations are most likely due to a combined effect of physical processes and changes in ecosystem trophic structure...

  8. An economic approach to efficient isotope labeling in insect cells using homemade 15N-, 13C- and 2H-labeled yeast extracts

    International Nuclear Information System (INIS)

    Opitz, Christian; Isogai, Shin; Grzesiek, Stephan

    2015-01-01

    Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein 15 N and 13 C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor

  9. Dynamics of nitrogen in an oxic paleudalf soil with the incorporation of 15N-tagged organic nitrogen (maize straw) and 15N-tagged mineral nitrogen (ammonium sulphate)

    International Nuclear Information System (INIS)

    Freitas, J.R. de.

    1984-12-01

    An experiment, carried out under field conditions in 12 lysimeters, each containing 3.0 ton of Oxic Paleudalf soil with four replicates, is described. This objective is labelling soil organic N. Nitrogen was incorporated into soil as maize straw, non-labelled and labelled with 15 N and ammonium sulphate - 15 N. The soil was sampled every 15 days in three different depths. N as NH + 4 , NO - 3 , total-N and (%)C and (%) moisture was analysed. (M.A.C.) [pt

  10. Cyclotron production of molecules labelled with short-lived radioisotopes β+ emitters (15O, 13N, 11C) and their clinical uses

    International Nuclear Information System (INIS)

    Bougharouat, B.

    1981-01-01

    Clinical use of three short-lived radioisotopes: 15 O, 13 N and 11 C is studied on two complementary aspects. A production and purification system is realized; detection instruments in medical use are studied. The production of labelled molecules with the three radiotracers 15 O, 13 N, 11 C from the target bombardment with charged and accelerated particles was studied [fr

  11. Unusually negative nitrogen isotopic compositions (δ15N of mangroves and lichens in an oligotrophic, microbially-influenced ecosystem

    Directory of Open Access Journals (Sweden)

    I. Romero

    2008-12-01

    Full Text Available Extremes in δ15N values in mangrove tissues and lichens (range =+4 to −22‰ were measured from a mangrove forest ecosystem located on Twin Cays, offshore islands in Belize, Central America. The N isotopic compositions and concentrations of NH4+/NH3 in porewater, rainwater, and atmospheric ammonia, and the δ15N of lichens, mangrove leaves, roots, stems, and wood were examined to study the biogeochemical processes important for establishing these unusual N isotopic ratios. Dwarfed Rhizophora mangle trees had the most negative δ15N, whereas fringing Rhizophora trees, the most positive δ15N values. Porewater ammonium concentrations had little relationship to N isotopic fractionation in mangrove tissues. In dwarfed mangroves, the δ15N of fine and coarse roots were 6–9‰ more positive than leaf tissue from the same tree, indicating different sources of N for root and leaf tissues. When P was added to dwarfed mangrove trees without added N, δ15N increased within one year from −12‰ to −2‰, approaching the δ15N of porewater ammonium (δ15N=+4‰. Isotopically depleted ammonia in the atmosphere (δ15N=−19‰ and in rainwater (δ15N=−10‰ were found on Twin Cays. We propose that foliar uptake of these atmospheric sources by P-stressed, dwarfed mangrove trees and lichens can explain their very negative δ15N values. In environments where P is limiting for growth, uptake of atmospheric N by Rhizophora mangle may be an important adaptive strategy.

  12. Olive and citrus tree crops and their fertilization in Greece: Field studies with 15N labelled fertilizers

    International Nuclear Information System (INIS)

    Papanicolaou, E.P.

    1982-01-01

    Fertilizer use for tree crops in Greece is increasing rapidly, however, fertilizer experiments with olive and citrus tree crops have given results which were often inconclusive. The value of using isotopically labelled fertilizers to directly measure fertilizer uptake is thus obvious. A preliminary experiment determined that relatively low enriched 15 N fertilizers (1.0-1.5% atom excess) could be accurately detected in citrus trees. The concentration of added N was higher in the leaves than in the wood and fruit. In a second study foliarly applied 15 N urea was found to be taken up more efficiently than broadcast urea or ammonium sulphate. In an initial sampling distribution of N among the plant parts was similar to that of the initial study, although a final harvest and analysis must still be conducted. (author)

  13. Nitrate removal in stream ecosystems measured by 15N addition experiments: Denitrification

    Science.gov (United States)

    Mulholland, P.J.; Hall, R.O.; Sobota, D.J.; Dodds, W.K.; Findlay, S.E.G.; Grimm, N. B.; Hamilton, S.K.; McDowell, W.H.; O'Brien, J. M.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Gregory, S.V.; Johnson, S.L.; Meyer, J.L.; Peterson, B.J.; Poole, G.C.; Valett, H.M.; Webster, J.R.; Arango, C.P.; Beaulieu, J.J.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; Niederlehner, B.R.; Potter, J.D.; Sheibley, R.W.; Thomasn, S.M.

    2009-01-01

    We measured denitrification rates using a field 15N-NO- 3 tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (SWden) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N2 production rates far exceeded N2O production rates in all streams. The fraction of total NO-3 removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NHz 4 concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling SWden were specific discharge (discharge / width) and NO-3 concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (Uden) and NO- 3 concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis-Menten equation. Although Uden increased with increasing NO- 3 concentration, the efficiency of NO-3 removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO-3 load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO-3 concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO-3 concentration. ?? 2009.

  14. Increasing plant use of organic nitrogen with elevation is reflected in nitrogen uptake rates and ecosystem delta15N.

    Science.gov (United States)

    Averill, Colin; Finzi, Adrien

    2011-04-01

    It is hypothesized that decreasing mean annual temperature and rates of nitrogen (N) cycling causes plants to switch from inorganic to organic forms of N as the primary mode of N nutrition. To test this hypothesis, we conducted field experiments and collected natural-abundance delta15N signatures of foliage, soils, and ectomycorrhizal sporocarps along a steep elevation-climate gradient in the White Mountains, New Hampshire, USA. Here we show that with increasing elevation organic forms of N became the dominant source of N taken up by hardwood and coniferous tree species based on dual-labeled glycine uptake analysis, an important confirmation of an emerging theory for the biogeochemistry of the N cycle. Variation in natural abundance foliar delta15N with elevation was also consistent with increasing organic N uptake, though a simple, mass balance model demonstrated that the uptake of delta15N depleted inorganic N, rather than fractionation upon transfer of N from mycorrhizal fungi, best explains variations in foliar delta15N with elevation.

  15. Utilization of 15N-labelled nitrogen fertilizer in dependence on organic manuring and carbon and nitrogen contents of loess chernozem profiles with different stratification

    International Nuclear Information System (INIS)

    Greilich, J.

    1988-01-01

    In an outdoor model experiment with different total C and N contents in five profile variants of loess chernozem, the utilization of 15 N-labelled mineral fertilizer N by maize was investigated over three years. The total nitrogen uptake in the variants correlated with the yields at nearly uniform nitrogen contents in dry matter. Total C and N contents of the profile variants and one organic manure application per year had no statistically significant effects on the 15 N-labelled fertilizer N proportion in total N content of biomass. As a result of the low yields obtained from the variants with low total C and N contents of soil, mineral fertilizer utilization was found to be lower, too, in most of these variants. Organic manuring had no essential effect on mineral fertilizer N utilization. (author)

  16. Fate of N and relative efficiency of 15N-labeled organic materials applied to transplanted rice in northern Kyushu region of Japan

    International Nuclear Information System (INIS)

    Nishida, Mizuhiko; Tsuchiya, Kazunari; Yamamuro, Shigekazu

    2004-01-01

    Seven kinds of 15 N-labeled organic materials were applied to transplanted rice to investigate their N fate and relative efficiency in the northern Kyushu region of Japan. The 15 N-labeled organic materials examined in a micro-plot experiment were cattle manure compost, poultry manure compost, swine feces, rice straw compost, rice bran, rice straw, and wheat straw. Regarding swine feces, rice bran, and wheat straw, the direct evaluation of their N fate in paddy fields using 15 N organic materials has not been reported. A significant difference in the N fate in response to the type of organic materials was observed in the uptake rate by rice plants. The uptake rate at the maturity stage was significantly higher in poultry manure (29%), swine feces (25%), and rice bran (26%) than for the other organic materials (6-13%). Cattle manure compost showed the lowest value, namely 6-7%. Using the uptake rate of ( 15 NH 4 ) 2 SO 4 observed earlier, the relative efficiency of organ nic materials (relative uptake rate of organic material N to chemical fertilizer N) was calculated as the index of the organic material N efficiency. These relative efficiencies of organic materials derived from animal wastes were 16-19, 81, 72, and 71% for cattle manure compost, poultry manure compost, poultry manure compost without inherent NH 4 -H, and swine feces, respectively, and were similar to those estimated by indirect way. The relative efficiencies of organic materials derived from plant residues were 25-31, 73, 33 and 34% for rice straw compost, rice bran, rice straw, and wheat straw, respectively. The N uptake from the organic materials (OM-N uptake) in swine feces and cattle manure compost continued throughout the rice growth period, whereas the OM-N uptake of the other organic materials declined remarkably after 54 DAT. No significant difference was observed in the residual rate and the loss rate among the organic materials. However, some tendencies that might be related to the

  17. Vinasse labelling with sup(15)N: use in mineral plants fertilization studies and the potential of the isotopic technique in studies of fermentative nitrogen metabolism of wine

    International Nuclear Information System (INIS)

    Lara C, W.A.; Trivelin, P.C.O.; Basso, L.C.

    1991-01-01

    A methodology for vinasse sup(15)N enrichment was developed under laboratory conditions through a fermentative process. Direct addition of sup(15)N-(NH sub(4)) sub(2)SO sub(4) 90.39 atoms % to the vintage tub (FESA procedure) was compared to the use of a previously enrichment sup(15)N yeast (FELE procedure) by the addition of the label to the multiplicative medium. The mean metabolic recovery of the tracer from the vinasse after fermentation was 4.2 and 11.1% per cycle and accumulated recovery was 3.4 and 33.3%, respectively for the FESA and FELE procedures. The potential of the use of sup(15)N label in studies of fermentative nitrogen metabolism is illustrated by the quantification of sup(15)N distribution among recycled yeast and wine. (author)

  18. Determination of endogenous nitrogen in feces using 15N tracers

    International Nuclear Information System (INIS)

    Herrmann, U.; Krawielitzki, K.; Schadereit, R.; Smulikowska, S.

    1986-01-01

    A ration consisting of wheat gluten and N-free components was supplemented with L-lysine and L-leucine and fed to two groups of growing Wistar rats. Group 1 received 15 N Lys and unlabelled Leu, group 2 received unlabelled Lys and 15 N Leu in order to study the influence of the utilization of the 15 N marker on the labelling quota of feces and urine as well as various fractions of the body. The good utilization of Lys in group 1 results in a higher 15 N excess in feces and a reduced 15 N abundance in urine in comparison to group 2 with a lower utilization of 15 N Leu. The results show that the 15 N abundance in urine is unsuitable as an indicator of the 15 N labelling quota of endogenous metabolic fecal nitrogen. (author)

  19. Resolution of the 15N balance enigma?

    International Nuclear Information System (INIS)

    Clough, T.J.; Sherlock, R.R.; Cameron, K.C.; Stevens, R.J.; Laughlin, R.J.; Mueller, C.

    2001-01-01

    The enigma of soil nitrogen balance sheets has been discussed for over 40 years. Many reasons have been considered for the incomplete recovery of 15 N applied to soils, including sampling uncertainty, gaseous N losses from plants, and entrapment of soil gases. The entrapment of soil gases has been well documented for rice paddy and marshy soils but little or no work appears to have been done to determine entrapment in drained pasture soils. In this study 15 N-labelled nitrate was applied to a soil core in a gas-tight glovebox. Water was applied, inducing drainage, which was immediately collected. Dinitrogen and N -2 were determined in the flux through the soil surface, and in the gases released into the glovebox as a result of irrigation or physical destruction of the core. Other components of the N balance were also measured, including soil inorganic-N and organic-N. Quantitative recovery of the applied 15 N was achieved when the experiment was terminated 484 h after the 15 N-labelled material was applied. Nearly 23% of the 15 N was recovered in the glovebox atmosphere as N 2 and N 2 O due to diffusion from the base of the soil core, convective flow after irrigation, and destructive soil sampling. This 15 N would normally be unaccounted for using the sampling methodology typically employed in 15 N recovery experiments. Copyright (2001) CSIRO Publishing

  20. Oxygen-15 labelled water production for positron emission tomography

    International Nuclear Information System (INIS)

    Janus, A.; Sachinidis, J.I.; Chan, J.G.; Tochon-Danguy, H.J.

    1998-01-01

    Full text: Functional imaging using positron emission tomography (PET) and 15 O-labelled compounds is both scientifically and clinically challenging. The short half-life of oxygen-15 (t 1/2 = 2 min) allows for multiple administration to a patient without exceeding acceptable levels of absorbed radiation dose and without excessive delay between administrations. The clinical usefulness of [ 15 O]-labelled water for cerebral blood flow measurements has been well established. Here we report the development and construction of a [ 15 O]water generator based on an earlier design from Hammersmith Hospital, London. The cyclotron produces a continuous flow of [ 15 O]O 2 gas by the irradiation of a natural nitrogen target (1% O 2 in N 2 ) with a 5 MeV deuteron beam, via the nuclear reaction ( 14 N(d,n) 15 O). The radioactive gas is then mixed with 5% hydrogen in nitrogen and piped to the water generator located in the scanner room. The O 2 /N 2 gas mixture is reacted over a palladium catalyst at 1500 deg C to produce [ 15 O]H 2 O vapour. The vapour passes through an exchanger where it diffuses across a semi-permeable membrane (cellulose acetate) into saline solution. At the optimum gas flow- rate of 500 mL/min, more than 95% of the radioactive oxygen is converted to radioactive water. Waste radioactive gas is piped back to the cyclotron vault to decay before release into the atmosphere. The saline solution (0.9% NaCl) is pumped continuously through the system at 6 mL/min with an infusion pump (3M AVI470). The present system has been in operation for more than a year and has been used for clinical evaluation of stroke patients and for brain activation research studies

  1. Studies on the process of attachment of diazotroph alcaligenes faecalis and its Tn5 mutants to rice roots using 15N-labelling technique

    International Nuclear Information System (INIS)

    Fang Xuanjun; Lin Min; You Chongbiao

    1993-09-01

    By using 15 N-labelling technique and Tn5-induced mutants the attachment of associative diazotroph Alcaligenes faecalis to intact rice plants was examined in vitro. Three distinguished modes of attachment of Alcaligenes faecalis: adsorption, anchoring and colonization were proposed by using 15 N-labelling bacterial cells and Tn5-induced mutants. Che - mutants affected on adsorption, but not on anchoring. Exo - Che - mutant is defective in both adsorption and anchoring. Exo - or exo ++ mutants are only defective in anchoring. Effective colonization is benefit for establishment on the associative system. The data also indicated that EPS (exopolysaccharide) play rather important roles in the association between the host plant and bacteria

  2. Studies of 15N transamination following application of various tracer substances. 1

    International Nuclear Information System (INIS)

    Schadereit, R.; Krawielitzki, K.; Herrmann, U.

    1986-01-01

    4 groups of 3 growing Wistar rats each were orally given 15 N-labelled methionine, lysine, glycine and ammonia sulphate, resp., over 10 days. Measuring the 15 N accumulation in the amino acids (AA) of the body protein, the transamination of the individual 15 N substances and thus their suitability as tracer substances for studies of N metabolism was determined. None of the tested 15 N-AA achieved a proportionate labelling of all AA of the body protein. The AA used as tracer in each case showed the highest 15 N labelling. Of the amino- 15 N detected in the animal body, about 19% were found in Met after 15 N Met application, 88% in Lys after 15 N Lys application and 50% in Gly after 15 N Gly application. After the application of 15 N-ammonia sulphate about 42% of the body amino- 15 N are apportioned to the essential and 58% to the non-essential AA. Thus, this substance produces a more proportional labelling of the essential and non-essential AA of the body protein than 15 N-Gly. The following quotas of the 15 N amounts applied were found in the AA of the animal bodies: tracer substance lysine 52%, glycine 32%, ammonia sulphate 24%, methionine 21%. After summing up the amino acid 15 N amounts in the animal body, eliminating in each case the tracer AA and taking into account the molecular weight of the AA, there was a good agreement of the intensity of the accumulation of 15 N in the individual AA, irrespective of the applied tracer substance. (author)

  3. Using N-15 Technique for Assessing Organic.N Turnover in Sandy Soil

    International Nuclear Information System (INIS)

    Soliman, S.; El-Akel, E.A.; Ismail, M.M.; El-Sherbiny, E.; Awad, E.E.

    2008-01-01

    Turnover of organic-N was traced under greenhouse condition. 15 N-labelled wheat and/or soybean residues were used as organic additives which applied individually or in combinations. These residues were applied at rates of 100, 75 and 25μg N g - 1 soil. Also, labelled ammonium sulfate with 2% 15 N atom excess, was applied either alone or in combination with the plant residues, at rates of 100, 75 and 25μg N g - 1 soil as single dose after 10 days from planting. Relative positive effect of the nitrogen plant residues on N-uptake and yield components can be arranged as follows: Soybean > wheat + > soybean > wheat residues. Tracer technique indicated that the mixture of labeled residues and ammonium sulfate at rates of (*50 + 50) and (*25 + 75), was effective on dry matter and N uptake. Effect of organic and inorganic nitrogen sources on portions N derived from residue (Ndfr) and N derived from fertilizer (Ndff) to wheat could be arranged as following: ammonium sulfate > soybean > mixture > wheat. Higher 15 N recovery percentage was noticed in grains as affected by addition of soybean residues combined with ordinary ammonium sulfate at rates of (*25 + 75) and (*50 + 50), respectively

  4. Quantitative analysis of 15N-labeled positional isomers of glutamine and citrulline via electrospray ionization tandem mass spectrometry of their dansyl derivatives.

    Science.gov (United States)

    Marini, Juan C

    2011-05-15

    The enteral metabolisms of glutamine and citrulline are intertwined because, while glutamine is one of the main fuel sources for the enterocyte, citrulline is one of its products. It has been shown that the administration of (15)N-labeled glutamine results in the incorporation of the (15)N label into citrulline, but it is not clear which of the three nitrogen groups of citrulline is actually labeled. To determine the (15)N-enrichment of the positional isomers of glutamine and citrulline, a rapid liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed. The amino acids were analyzed as their dansyl derivatives. The product ion resulting from the loss of NH(3) from the omega carbon allows for the determination of the enrichment of the ureido (citrulline) or amido groups (glutamine). The protonated pyrrolidine (citrulline) or 5-oxopyrrolidine (glutamine) product ion contains the 2-N (amino group) and is used to determine its enrichment. The method described showed no ion suppression and a wide dynamic range ranging from 1.3 picomoles to 2 nanomoles for citrulline. Background samples and standards resulted in enrichments not different from those theoretically expected. The enrichment curves for the different glutamine and citrulline isotopomers were linear (R(2)  > 0.998) over the range of enrichments studied. The method developed provides an additional insight into the metabolism of glutamine and citrulline tracing the precursor-product relationship between these two amino acids. Copyright © 2011 John Wiley & Sons, Ltd.

  5. δ15N constraints on long-term nitrogen balances in temperate forests

    Science.gov (United States)

    Perakis, S.S.; Sinkhorn, E.R.; Compton, J.E.

    2011-01-01

    Biogeochemical theory emphasizes nitrogen (N) limitation and the many factors that can restrict N accumulation in temperate forests, yet lacks a working model of conditions that can promote naturally high N accumulation. We used a dynamic simulation model of ecosystem N and δ15N to evaluate which combination of N input and loss pathways could produce a range of high ecosystem N contents characteristic of forests in the Oregon Coast Range. Total ecosystem N at nine study sites ranged from 8,788 to 22,667 kg ha−1 and carbon (C) ranged from 188 to 460 Mg ha−1, with highest values near the coast. Ecosystem δ15N displayed a curvilinear relationship with ecosystem N content, and largely reflected mineral soil, which accounted for 96–98% of total ecosystem N. Model simulations of ecosystem N balances parameterized with field rates of N leaching required long-term average N inputs that exceed atmospheric deposition and asymbiotic and epiphytic N2-fixation, and that were consistent with cycles of post-fire N2-fixation by early-successional red alder. Soil water δ15NO3 − patterns suggested a shift in relative N losses from denitrification to nitrate leaching as N accumulated, and simulations identified nitrate leaching as the primary N loss pathway that constrains maximum N accumulation. Whereas current theory emphasizes constraints on biological N2-fixation and disturbance-mediated N losses as factors that limit N accumulation in temperate forests, our results suggest that wildfire can foster substantial long-term N accumulation in ecosystems that are colonized by symbiotic N2-fixing vegetation.

  6. A liver-function test using 15N-labelled ammonium chloride

    International Nuclear Information System (INIS)

    Jung, K.; Hirscherg, K.; Faust, H.; Matkowitz, R.

    1985-01-01

    Malfunction of the liver involves disturbances of urea synthesis and ammonia detoxification. These phenomena became apparent, especially during ammonia loading of patients. The functional state of the liver can be assessed by oral administration of 15 NH 4 Cl and subsequent analysis of 15 N-urea and 15 N-ammonia in urine by emission spectrometry. Clinical tests based on the ratio of the excess abundances (see Appendix) of 15 N-ammonia to 15 N-urea excreted in urine 3 h after oral administration gave values for patients with liver disease which differed significantly from those for healthy subjects. Absorption disturbances, which often accompany liver diseases, do not influence the effectiveness of the method. (orig.)

  7. Liver-function test using /sup 15/N-labelled ammonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K; Hirscherg, K; Faust, H; Matkowitz, R

    1985-08-01

    Malfunction of the liver involves disturbances of urea synthesis and ammonia detoxification. These phenomena became apparent, especially during ammonia loading of patients. The functional state of the liver can be assessed by oral administration of /sup 15/NH/sub 4/Cl and subsequent analysis of /sup 15/N-urea and /sup 15/N-ammonia in urine by emission spectrometry. Clinical tests based on the ratio of the excess abundances (see Appendix) of /sup 15/N-ammonia to /sup 15/N-urea excreted in urine 3 h after oral administration gave values for patients with liver disease which differed significantly from those for healthy subjects. Absorption disturbances, which often accompany liver diseases, do not influence the effectiveness of the method.

  8. The use of N-15 in the measurement of symbiotic nitrogen fixation by legumes under field condition

    International Nuclear Information System (INIS)

    Impithuksa, Viroj

    1982-01-01

    The amount of N fixation by legume crop in field condition by using 15 N can determine by the addition of labelled 15 N fertilizer into the soil and measuring the amount of labelled 15 N, soil N, and fixed N taken up by legume crop. This requires a standard crop (reference crop) as a control to determine labelled 15 N and soil N taken up by this crop. In case the same rate of labelled 15 N fertilizer is added to the legume crop and a standard crop

  9. HN-NCA heteronuclear TOCSY-NH experiment for {sup 1}H{sup N} and {sup 15}N sequential correlations in ({sup 13}C, {sup 15}N) labelled intrinsically disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Christoph; Goradia, Nishit; Häfner, Sabine [Leibniz Institute for Age Research, Fritz Lipmann Institute, Research Group Biomolecular NMR Spectroscopy (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Görlach, Matthias; Ohlenschläger, Oliver; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Leibniz Institute for Age Research, Fritz Lipmann Institute, Research Group Biomolecular NMR Spectroscopy (Germany)

    2015-10-15

    A simple triple resonance NMR experiment that leads to the correlation of the backbone amide resonances of each amino acid residue ‘i’ with that of residues ‘i−1’ and ‘i+1’ in ({sup 13}C, {sup 15}N) labelled intrinsically disordered proteins (IDPs) is presented. The experimental scheme, {HN-NCA heteronuclear TOCSY-NH}, exploits the favourable relaxation properties of IDPs and the presence of {sup 1}J{sub CαN} and {sup 2}J{sub CαN} couplings to transfer the {sup 15}N{sub x} magnetisation from amino acid residue ‘i’ to adjacent residues via the application of a band-selective {sup 15}N–{sup 13}C{sup α} heteronuclear cross-polarisation sequence of ∼100 ms duration. Employing non-uniform sampling in the indirect dimensions, the efficacy of the approach has been demonstrated by the acquisition of 3D HNN chemical shift correlation spectra of α-synuclein. The experimental performance of the RF pulse sequence has been compared with that of the conventional INEPT-based HN(CA)NH pulse scheme. As the availability of data from both the HCCNH and HNN experiments will make it possible to use the information extracted from one experiment to simplify the analysis of the data of the other and lead to a robust approach for unambiguous backbone and side-chain resonance assignments, a time-saving strategy for the simultaneous collection of HCCNH and HNN data is also described.

  10. Uptake of 15N-labelled urea and 32P-labelled phosphate from acid-based urea phosphate and granular fertilizers

    International Nuclear Information System (INIS)

    Bole, J.B.

    1986-01-01

    The availability of nitrogen and phosphorus in fertilizer products labelled with both 32 P and 15 N was measured in a growth chamber experiment. The uptake of N and P by soft white spring wheat (Triticum aestivum L.) from a solution of acid urea phosphate fertilizer did not differ significantly from that of a mixture of granular urea and monammonium phosphate fertilizer. The fertilizer-P uptake efficiency of both sources was higher in a neutral soil than in acid or calcareous soils. Banding either fertilizer increased the uptake of fertilizer P compared with sources mixed with the soil, but did not significantly affect fertilizer-N uptake. The increase in fertilizer-P efficiency due to banding was significantly greater for the urea-monammonium phosphate than for the acid urea phosphate solution. Banding fertilizer did not increase the uptake of fertilizer P in the calcareous soil, and decreased the uptake of fertilizer N in that soil compared with mixed treatments. It is suggested that soluble Ca formed from the reaction of acid with naturally occurring lime may have reduced the availability of fertilizer P in the band

  11. Exploring the nitrogen ingestion of aphids--a new method using electrical penetration graph and (15N labelling.

    Directory of Open Access Journals (Sweden)

    Franziska Kuhlmann

    Full Text Available Studying plant-aphid interactions is challenging as aphid feeding is a complex process hidden in the plant tissue. Here we propose a combination of two well established methods to study nutrient acquisition by aphids focusing on the uptake of isotopically labelled nitrogen ((15N. We combined the Electrical Penetration Graph (EPG technique that allows detailed recording of aphid feeding behaviour and stable isotope ratio mass spectrometry (IRMS to precisely measure the uptake of nitrogen. Bird cherry-oat aphids Rhopalosiphum padi L. (Hemiptera, Aphididae fed for 24 h on barley plants (Hordeum vulgare L., cultivar Lina, Poaceae that were cultivated with a (15N enriched nutrient solution. The time aphids fed in the phloem was strongly positive correlated with their (15N uptake. All other single behavioural phases were not correlated with (15N enrichment in the aphids, which corroborates their classification as non-feeding EPG phases. In addition, phloem-feeding and (15N enrichment of aphids was divided into two groups. One group spent only short time in the phloem phase and was unsuccessful in nitrogen acquisition, while the other group displayed longer phloem-feeding phases and was successful in nitrogen acquisition. This suggests that several factors such as the right feeding site, time span of feeding and individual conditions play a role for the aphids to acquire nutrients successfully. The power of this combination of methods for studying plant-aphid interactions is discussed.

  12. Ammonium absorption mechanism of rice seedling roots and 15N-labelling pattern of their glutamine-amide group, 2

    International Nuclear Information System (INIS)

    Arima, Yasuhiro; Kumazawa, Kikuo

    1975-01-01

    The processes of producing glutamine and asparagine at the initial stage of the absorption and assimilation of ammonia in rice seedling roots were examined in relation to glutamic acid, aspartic acid and ammonia by 15 N-labelling method. When ( 15 NH 4 ) 2 SO 4 was absorbed into the roots, 15 N concentration appeared very high in glutamine-amide radical and ammonia. It was also higher in amide radical than in amino radical in both glutamine and asparagine, while 15 N concentration in the amino radical of glutamine and asparagine were far lower than that of corresponding glutamine acid and aspartic acid. From these facts, glutamine-amide radical seems to be produced directly from the ammonia in culture media at the contact point of root cells and the culture media, while there is some possibility that asparagine-amide radical is formed from other amino compounds than ammonia. Also the amino radical of aspartic acid seems to be produced not only by the transamination from glutamic acid but also by the reductive amination of oxalautic acid by ammonium. (Kobatake, H.)

  13. Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils

    DEFF Research Database (Denmark)

    Pörtl, K.; Zechmeister-Boltenstern, S.; Wanek, W.

    2007-01-01

    Natural N-15 abundance measurements of ecosystem nitrogen (N) pools and N-15 pool dilution assays of gross N transformation rates were applied to investigate the potential of delta N-15 signatures of soil N pools to reflect the dynamics in the forest soil N cycle. Intact soil cores were collected...

  14. An economic approach to efficient isotope labeling in insect cells using homemade {sup 15}N-, {sup 13}C- and {sup 2}H-labeled yeast extracts

    Energy Technology Data Exchange (ETDEWEB)

    Opitz, Christian; Isogai, Shin; Grzesiek, Stephan, E-mail: Stephan.Grzesiek@unibas.ch [University of Basel, Focal Area Structural Biology and Biophysics, Biozentrum (Switzerland)

    2015-07-15

    Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein {sup 15}N and {sup 13}C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor.

  15. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 6

    International Nuclear Information System (INIS)

    Gruhn, K.; Kirchner, E.

    1988-01-01

    12 colostomized laying hens received, together with a conventional feed ration, 15 N-labelled wheat with a 15 N excess ( 15 N') of 14.37 atom-% over 4 days. 3 animals each were butchered after 12 h, 36 h, 60 h and 108 h after the last 15 N' application and, apart from various organs, the contents and the tissue of the gastrointestinal tract of each hen was divided into 3 fractions. TCA precipitation was carried out with the contents and the tissue of the 3 fractions. Nitrogen and its atom-% 15 N' were determined in the supernatant and the precipitate. The 15 N' amount in the contents of the crop and the stomachs, the small and large intestines is still considerable 12 h after the last 15 N wheat feeding and still clearly detectable 108 h after it. The TCA precipitable amounts of 14 N and 15 N' of the contents of crop and stomach and that of the small intestine agree well; they are 75% and 50% resp. of the total N. The amount of atom-% 15 N' of the contents of the small and large intestines remains the same up to 36 h after the last 15 N' application and is higher at the following measuring points in the contents of the large intestine. A close correlation could be ascertained between the atom-% 15 N' in the contents and tissue of the small and large intestines. The TCA soluble N quotas of both 14 N and 15 N' in the pancreas are above 50%. (author)

  16. General method of preparation of uniformly 13C, 15N-labeled DNA fragments for NMR analysis of DNA structures

    International Nuclear Information System (INIS)

    Rene, Brigitte; Masliah, Gregoire; Zargarian, Loussine; Mauffret, Olivier; Fermandjian, Serge

    2006-01-01

    Summary 13 C, 15 N labeling of biomolecules allows easier assignments of NMR resonances and provides a larger number of NMR parameters, which greatly improves the quality of DNA structures. However, there is no general DNA-labeling procedure, like those employed for proteins and RNAs. Here, we describe a general and widely applicable approach designed for preparation of isotopically labeled DNA fragments that can be used for NMR studies. The procedure is based on the PCR amplification of oligonucleotides in the presence of labeled deoxynucleotides triphosphates. It allows great flexibility thanks to insertion of a short DNA sequence (linker) between two repeats of DNA sequence to study. Size and sequence of the linker are designed as to create restriction sites at the junctions with DNA of interest. DNA duplex with desired sequence and size is released upon enzymatic digestion of the PCR product. The suitability of the procedure is validated through the preparation of two biological relevant DNA fragments

  17. Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with 15N2 Labeling.

    Science.gov (United States)

    Cui, Li; Yang, Kai; Li, Hong-Zhe; Zhang, Han; Su, Jian-Qiang; Paraskevaidi, Maria; Martin, Francis L; Ren, Bin; Zhu, Yong-Guan

    2018-04-17

    Nitrogen (N) fixation is the conversion of inert nitrogen gas (N 2 ) to bioavailable N essential for all forms of life. N 2 -fixing microorganisms (diazotrophs), which play a key role in global N cycling, remain largely obscure because a large majority are uncultured. Direct probing of active diazotrophs in the environment is still a major challenge. Herein, a novel culture-independent single-cell approach combining resonance Raman (RR) spectroscopy with 15 N 2 stable isotope probing (SIP) was developed to discern N 2 -fixing bacteria in a complex soil community. Strong RR signals of cytochrome c (Cyt c, frequently present in diverse N 2 -fixing bacteria), along with a marked 15 N 2 -induced Cyt c band shift, generated a highly distinguishable biomarker for N 2 fixation. 15 N 2 -induced shift was consistent well with 15 N abundance in cell determined by isotope ratio mass spectroscopy. By applying this biomarker and Raman imaging, N 2 -fixing bacteria in both artificial and complex soil communities were discerned and imaged at the single-cell level. The linear band shift of Cyt c versus 15 N 2 percentage allowed quantification of N 2 fixation extent of diverse soil bacteria. This single-cell approach will advance the exploration of hitherto uncultured diazotrophs in diverse ecosystems.

  18. Effect of organic fertilization of soil, differentiated over many years, on the utilization of 15N-labelled urea

    International Nuclear Information System (INIS)

    Markgraf, G.; Winterfeld, C.

    1983-01-01

    Topsoil from samples with different organic fertilization of a soil fertility experiment started in 1936 at the Thyrow experimental site of the Berlin Humboldt University Crop Production Department was used for a pot experiment to study the N utilization of equal amounts of mineral fertilizer N (1.380 mg N/pot in the form of 15 N-labelled urea with an N frequency of 50 +- 0.5 atom per cent). The results showed that combined application of mineral NPK fertilization and high amounts of farmyard manure over a period of about 40 years on deep-loam fallow soil-sandy-rusty soil (diluvial sand to loamy-sandy soil) will lead to better utilization of the applied urea N as well as to higher N availability from the N pool of the soil. (author)

  19. Metabolic studies in colostomized laying hens using 15N-labelled wheat. 4

    International Nuclear Information System (INIS)

    Gruhn, K.; Glotz, D.

    1979-01-01

    3 colostomized laying hybrids received over 4 days a dosage of 672 mg 15 N excess ( 15 N'), 20.3 mg lysine 15 N', 23.0 mg histidine 15 N' and 66.7 mg arginine 15 N' with a ration customary in production. After feeding the same unlabelled ration for another 4 days the hens were killed and the N content of the blood as well as of its fractions (cells, plasma, free amino acids of the plasma) was determined. The 15 N' was determined in the total blood, the corpuscles, the plasma, the nonprotein-N (NPN) fraction as well as in the amino acids lysine, histidine and arginine. The average amount of the blood cell N in the total blood N was 58.5% and that of the plasma 40.3%; the corresponding 15 N' values amounted to 66.1% and 33.9%, respectively. The sum of the 15 N' of the basic amino acids of the blood cells, on an average, amounted to 39.7% of the total cell 15 N'; the corresponding average value for the total 15 N' in lysine, histidine and arginine of the blood plasma 15 N' was 23.6.% and the quota of the three free amino acids of the total NP 15 N' of the plasma was 6.2%. (author)

  20. The fate of fresh and stored 15N-labelled sheep urine and urea applied to a sandy and a sandy loam soil using different application strategies

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1996-01-01

    The fate of nitrogen from N-15-labelled sheep urine and urea applied to two soils was studied under field conditions. Labelled and stored urine equivalent to 204 kg N ha(-1) was either incorporated in soil or applied to the soil surface prior to sowing of Italian ryegrass (Lolium multiflorum L...... and soil was not significantly different for incorporated urine and urea. Almost all the supplied labelled N was accounted for in soil and herbage in the sandy loam soil, whereas 33-34% of the labelled N was unaccounted for in the sandy soil. When the stored urine was applied to the soil surface, 20...... was applied to growing ryegrass at the sandy loam soil, the immobilization of urine-derived N was significantly reduced compared to application prior to sowing. The results indicated that the net mineralization of urine N was similar to that of urea in the sandy soil, but only about 75% of the urine N was net...

  1. A novel dual-isotope labelling method for distinguishing between soil sources of N2O

    NARCIS (Netherlands)

    Wrage, N.; Groenigen, van J.W.; Oenema, O.; Baggs, E.M.

    2005-01-01

    We present a novel O-18-N-15-enrichment method for the distinction between nitrous oxide (N2O) from nitrification, nitrifier denitrification and denitrification based on a method with single- and double-N-15-labelled ammonium nitrate. We added a new treatment with O-18-labelled water to quantify N2O

  2. Bioavailability of nitrogen from sewage sludge using 15N-labelled ammonium sulphate

    International Nuclear Information System (INIS)

    El-Motaium, R.A.

    2001-01-01

    The high nutrient nitrogen and organic matter contents of sewage sludge (SS) make it a potential organic fertilizer for sandy soil. In this study, 15 N-labelled ammonium sulphate was used to investigate the availability of nitrogen from irradiated and non-irradiated sewage sludge to tomato plants. The application of sewage sludge to sandy soil increased dry matter production (DMP), nitrogen yield (NY) and nitrogen recovery (NR) over two successive years. A positive relationship was found between sludge application rate and DMP and NY. The increase was significantly higher (P=0.05) in irradiated than non-irradiated sewage sludge. Total nitrogen derived from non-irradiated sewage sludge are : 48.0, 63.7, 73.5, 105.2 Kg/ha, whereas, the total nitrogen derived from irradiated sewage sludge are: 55.1, 72.5, 88.9, 141.4 Kg/ha corresponding to application rates of 10 t/ha, 20 t/ha, 30 t/ha, respectively. This was attributed to higher dry matter production in the later than the former. A highly significant correlation (0.945**) was found between dry matter production and sludge nitrogen yield (i.e. nitrogen derived from sewage sludge). Fertilizer nitrogen yield (total nitrogen derived from fertilizer) was high in treatment receiving mineral fertilizer, however, the 15 N recovery by tomato was only 13.8%. Soil did not contribute well towards total nitrogen yield in tomato and most nitrogen was derived from sewage sludge. Percent nitrogen derived from sewage sludge was in the range 88-92%, depending on the application rate

  3. 15N liver function tests - concept, validity, clinical use

    International Nuclear Information System (INIS)

    Faust, H.; Jung, K.; Krumbiegel, P.; Hirschberg, K.; Reinhardt, R.; Junghans, P.

    1987-01-01

    Several liver function tests using the oral application of a nitrogen compound labelled with 15 N and the subsequent determination of 15 N in a certain fraction of urine by emission spectrometry are described. Because of the key position of the liver in the metabolism of nitrogen compounds the results of these tests allow conclusions concerning disturbances of special liver functions. Instructions for the clinical use of the '[ 15 N]Ammonium Test', '[ 15 N]Hippurate Test' the '[ 15 N]Methacetin Test', and the '[ 15 N]Glycine Test' are given. (author)

  4. Understanding the Fate of Applied Nitrogen in Pine Plantations of the Southeastern United States Using 15N Enriched Fertilizers

    Directory of Open Access Journals (Sweden)

    Jay E. Raymond

    2016-11-01

    Full Text Available This study was conducted to determine the efficacy of using enhanced efficiency fertilizer (EEFs products compared to urea to improve fertilizer nitrogen use efficiency (FNUE in forest plantations. All fertilizer treatments were labeled with 15N (0.5 atom percent and applied to 100 m2 circular plots at 12 loblolly pine stands (Pinus taeda L. across the southeastern United States. Total fertilizer N recovery for fertilizer treatments was determined by sampling all primary ecosystem components and using a mass balance calculation. Significantly more fertilizer N was recovered for all EEFs compared to urea, but there were generally no differences among EEFs. The total fertilizer N ecosystem recovery ranged from 81.9% to 84.2% for EEFs compared to 65.2% for urea. The largest amount of fertilizer N recovered for all treatments was in the loblolly pine trees (EEFs: 38.5%–49.9%, urea: 34.8% and soil (EEFs: 30.6%–38.8%, urea: 28.4%. This research indicates that a greater ecosystem fertilizer N recovery for EEFs compared to urea in southeastern pine plantations can potentially lead to increased FNUE in these systems.

  5. Analysis of carbon and nitrogen co-metabolism in yeast by ultrahigh-resolution mass spectrometry applying 13C- and 15N-labeled substrates simultaneously

    International Nuclear Information System (INIS)

    Blank, Lars M.; Desphande, Rahul R.; Schmid, Andreas; Hayen, Heiko

    2012-01-01

    Alternative metabolic pathways inside a cell can be deduced using stable isotopically labeled substrates. One prerequisite is accurate measurement of the labeling pattern of targeted metabolites. Experiments are generally limited to the use of single-element isotopes, mainly 13 C. Here, we demonstrate the application of direct infusion nanospray, ultrahigh-resolution Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) for metabolic studies using differently labeled elemental isotopes simultaneously - i.e., 13 C and 15 N - in amino acids of a total protein hydrolysate. The optimized strategy for the analysis of metabolism by a hybrid linear ion trap-FTICR-MS comprises the collection of multiple adjacent selected ion monitoring scans. By limiting both the width of the mass range and the number of ions entering the ICR cell with automated gain control, sensitive measurements of isotopologue distribution were possible without compromising mass accuracy and isotope intensity mapping. The required mass-resolving power of more than 60,000 is only achievable on a routine basis by FTICR and Orbitrap mass spectrometers. Evaluation of the method was carried out by comparison of the experimental data to the natural isotope abundances of selected amino acids and by comparison to GC/MS results obtained from a labeling experiment with 13 C-labeled glucose. The developed method was used to shed light on the complexity of the yeast Saccharomyces cerevisiae carbon-nitrogen co-metabolism by administering both 13 C-labeled glucose and 15 N-labeled alanine. The results indicate that not only glutamate but also alanine acts as an amino donor during alanine and valine synthesis. Metabolic studies using FTICR-MS can exploit new possibilities by the use of multiple-labeled elemental isotopes. (orig.)

  6. Measuring the BNF of Soybean Using 15N-Labelled Urea with Different Atom Excess (A.E. Content

    Directory of Open Access Journals (Sweden)

    A. Citraresmini

    2012-12-01

    Full Text Available The soybean is a legume which has an ability to supply its major nitrogen need by the biological nitrogen fixation (BNF process. This process is made possible by nodules formed in their roots, colonized by Rhizobium sp.bacteria. An accurate estimation of N gained by BNF is necessary to predict the increase or decrease of chemical fertilizer-N requirements to increase soybean production. Among several methods, the 15N method was used to estimate the ability of legumes to perform BNF. The study involved soybean var. Willis (W and a completely non-BNF soybean var. CV, which is termed as a standard crop. The standard crop is non-nodulated soybean, but it has the same main physiological traits with var. Willis. The aim of this study was to determine whether15N-labelled fertilizer with different %a.e. given to nodulated and non-nodulated soybean would not be of significant consequences for the calculation of N-BNF of W. The treatments applied were different rates of urea (20 kg N/ha and 100 kg N/ha combined with different atom excess percentages (%a.e.15N (2% and 10%. Thus, the combination of treatments were as follows:(1 W-ll (20 kg N; 2% a.e; (2 CV-hl (100 kg N; 2% a.e; (3 W-lh (20 kg N; 10% a.e; (4 CV-hh (100 kg N; 10% a.e; (5 CV-ll (20 kg N; 2% a.e; (6 W-hl (100 kg N; 2% a.e; (7 CV-lh (20 kg N; 10% a.e; (8 W-hh (100 kg N; 10% a.e. The result of the experiment showed that a high %a.e. with a low rate of 15N and a low %a.e. with a high rate of N should be used to study the %N-BNF of nodulated plants.

  7. Marcação de fitomassa de cana-de-açúcar com aplicação de solução de uréia marcada com15N Sugarcane phytomass labeling with application of 15N-urea solution

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Faroni

    2007-06-01

    Full Text Available O objetivo deste trabalho foi comparar três métodos de aplicação de solução de uréia marcada com15N (15N-uréia : pulverização foliar, injeção na base do colmo e imersão radicular, a fim de se definir qual seria o mais eficiente na marcação de fitomassa de cana-de-açúcar. O experimento foi instalado na Estação Experimental Apta - Pólo Regional Centro Sul, em Piracicaba, SP. A cana-de-açúcar, variedade SP80 3280, foi plantada em vasos preenchidos com aproximadamente 120 dm³ de Neossolo Quartzarênico de textura arenosa. O delineamento experimental foi inteiramente casualizado, com quatro repetições. A fitomassa de cana-de-açúcar dos três tratamentos, no 11º mês de desenvolvimento, não diferiu estatisticamente, e suas abundâncias de 15N foram superiores à natural, tendo-se verificado a seguinte ordem decrescente de marcação com 15N: parte aérea > rizoma > rizomas+raízes na camada de 0,0-0,2 m > raízes na camada de 0,2-0,4 m > raízes em profundidade maior que 0,4 m. Entre os métodos de aplicação de 15N-uréia, a injeção na base de colmos é o de mais fácil execução, o mais efetivo na marcação da fitomassa e o que apresentou a maior recuperação do traçador (96%. A aplicação foliar é comparável à injeção, somente na marcação e na recuperação do traçador no sistema radicular.The objective of this research was to compare three methods of 15N-urea solutions application: spray on leaf, injection in the plant base stem and root immersion, in order to define the most efficient labeling sugarcane phytomass with 15N method. The experiment was carried out at APTA - Pólo Regional Centro Sul, in Piracicaba, SP, Brazil, and the sugarcane variety SP80 3280 was planted in pots filled out with approximately 120 dm³ of a Typic Quartzipsamment soil. The experiment was conducted in a completely randomized design with four replicates. There were no difference between the methods in the plant parts dry

  8. Nitrogen Uptake During Fall, Winter and Spring Differs Among Plant Functional Groups in a Subarctic Heath Ecosystem

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Michelsen, Anders; Jonasson, Sven

    2012-01-01

    Nitrogen (N) is a critical resource for plant growth in tundra ecosystems, and species differences in the timing of N uptake may be an important feature regulating community composition and ecosystem productivity. We added 15N-labelled glycine to a subarctic heath tundra dominated by dwarf shrubs...... to 37 ± 7% by April indicating significant microbial N turnover prior to spring thaw. Only the evergreen dwarf shrubs showed active 15N acquisition before early May indicating that they had the highest potential of all functional groups for acquiring nutrients that became available in early spring....... The faster-growing deciduous shrubs did not resume 15N acquisition until after early May indicating that they relied more on nitrogen made available later during the spring/early summer. The graminoids and mosses had no significant increases in 15N tracer recovery or tissue 15N tracer concentrations after...

  9. Precision analysis of 15N-labelled samples with the emission spectrometer NOI-5 for nitrogen balance in field trials

    International Nuclear Information System (INIS)

    Lippold, H.

    1984-01-01

    A technique was adapted for the preparation of samples with 15 N to be analyzed with the emission spectrometer NOI-5. This technique is based on methods of analyzing 15 N labelled gas samples in denitrification experiments. Nitrogen released from ammonium compounds by using hypobromite is injected into a repeatedly usable gaseous discharge tube where it is freed from water traces by means of the molecular sieve 5A. The described procedure of activating the molecular sieve allows to record spectra of reproducible quality thus promising an accuracy of analysis of +- 0.003 at% in the range of natural isotope frequency and the possibility of soil nitrogen analysis in field trials with fertilizers of low nitrogen content (3 to 6.5 at%; corresponding with 0.055 to 0.14% N/sub t/ of soils) without being dependent on mass spectrometers. (author)

  10. Transformations of sup(15)N labelled urea applied to a soil with maize strain incorporation under continuous flood

    International Nuclear Information System (INIS)

    Colaco, W.

    1991-01-01

    A greenhouse experiment with deep placed sup(15)N-labelled urea was conducted in an Aluvial soil in which maize straw was incorporated. The transformations of total-N, NH sub(4) sup(+) -N, and NO sub(3) sup(-) -N, - were investigated under continuous flooded conditions in soil planted or not to rice. Total -N and inorganic-N levels decreased in both conditions. The rapid inorganic decrease in planted soil would be mainly due to assimilation by the rice plants. However losses occurred in all cases. Such losses increased in the absence of rice plants and seemed to be mainly to nitrification - denitrification mechanisms although NH sub(3) volatilization could also be involved. Dry matter yield and N-uptake by rice increased with increasing rate of N-application. Maize straw was an important source of N for rice. N losses are modified by the incorporation of maize straw. (author)

  11. Balance study of the fate of 15N fertilizer

    International Nuclear Information System (INIS)

    Korte, F.; Sotiriou, N.

    1980-01-01

    An interim report is presented on a series of experiments with wooden box-type lysimeters (60 cm x 60 cm x 70 cm) loaded with a sandy soil, a loess soil and straw-amended soil. The lysimeters support crops rotated over a five-year period to be studied - potato, barley, sugar-beet, barley (with winter rape) and finally (1979) potato. Each lysimeter received split applications of urea at total rates of 0, 50 or 100 kg.ha -1 . The effects of soil residues of the herbicide monolinuron were also studied. The report deals with data collected during the first three years of the planned experiments (1975 - 1977 inclusive). 15 N-labelled urea (47 atom 15 N% excess) was initially used but in some experiments this was followed by applications of unlabelled urea in order to study the fate of the residual 15 N in the subsequent years. The results to date indicated that in the first year highest recoveries in the plant of the applied 15 N obtained on the sandy soil. The low recoveries of 15 N in the subsequent years when unlabelled urea was supplied also indicated significant storage by soil or root organic matter of the applied 15 N. Compared with the control (zero application of urea nitrogen), potato took up more total nitrogen in the presence of fertilizer including more of the unlabelled soil pool nitrogen. Analyses of the soil profiles in terms of total soil nitrogen and fertilizer-derived nitrogen (on the basis of 15 N assays) indicated leaching of the labelled nitrogen down the soil profile in all cases during the three-year period. Analysis of NO 3 -N in leachates confirmed the presence of labelled urea-derived nitrogen. (author)

  12. EFFECT OF IRRIGATION WITH SEWAGE WASTEWATER ON NITROGEN UPTAKE AND TRANSLOCATION BY NAVEL ORANGE TRANSPLANTS USING 15N-LABELLED AMMONIUM SULPHATE

    International Nuclear Information System (INIS)

    EL-MOTAIUM, R.A.; SHARAF, A.N.; HASHEM, M.E.; HEGAZI, E.S.; BADAWY, S.H.

    2009-01-01

    An isotope aided study using 15 N-labelled ammonium sulphate was applied to investigate nitrogen uptake and translocation from sewage water by one year old Navel orange transplants. The investigation was conducted in a pot experiment at the greenhouse for two successive seasons (2005 and 2006). Ammonium sulphate was applied to the soil at a rate of 6 g/pot. The treatments included irrigation with canal water and sewage water. Half strength Hoagland nutrient solution, nitrogen depleted, was applied to provide the required nutrients for healthy growth of the transplants. The pots were irrigated to maintain the soil moisture content at field capacity.The results indicated that there is an increase in the transplants biomass irrigated with sewage water than using canal water. A substantial increase in mineral fertilizer nitrogen ( 15 N) uptake by plant roots and translocation into shoots was observed using canal water than sewage water. The nitrogen percent derived from sewage water was higher (26.1-49.5%) than that derived from 15 N-labelled ammonium sulphate (4.9-12.7%). Fertilizer nitrogen recovery was higher under canal water than under sewage water irrigation regime, although the plant biomass was higher under sewage water. Using sewage water alone can provide the orange transplants with their nitrogen requirements with no need for application of mineral fertilizer

  13. Investigations on the transformation of N-fertilizer and the mineralization of organic N using 15N Pt. 1

    International Nuclear Information System (INIS)

    Latkovics, Gy.-ne

    1979-01-01

    A composting experiment was set up on chernozem-type brown forest soil to investigate the transformation of nitrogen fertilizer and the mineralization of organic N. For the average soil sample from the ploughed layer the pH value was 7.1, the mineral N content 2.85 mg, the fixed ammonium content 15.98 mg and the total N 140.8 mg100/g soil. The humus content was 1.91%. In the experiment 15 N labelled ammonium nitrate was used, and, as 15 N labelled organic matter, ground, air-dried rye-grass and bean stalks and with approximately the same N content as the 0.4% of the soil quantity measured. The values obtained by chemical methods and isotope indication show that the N-loss during composting was negligible and that the methods tested are suitable for the investigation of the transformation processes of nitrogen. (author)

  14. Uniform 15N- and 15N/13C-labeling of proteins in mammalian cells and solution structure of the amino terminal fragment of u-PA

    International Nuclear Information System (INIS)

    Hansen, A.P.; Petros, A.M.; Meadows, R.P.; Mazar, A.P.; Nettesheim, D.G.; Pederson, T.M.; Fesik, S.W.

    1994-01-01

    Urokinase-type plasminogen activator (u-PA) is a 54-kDa glycoprotein that catalyzes the conversion of plasminogen to plasmin, a broad-specificity protease responsible for the degradation of fibrin clots and extracellular matrix components. The u-PA protein consists of three individual modules: a growth factor domain (GFD), a kringle, and a serine protease domain. The amino terminal fragment (ATF) includes the GFD-responsible for u-PA binding to its receptor-and the kringle domains. This protein was expressed and uniformly 15 N-and 15 N/ 13 C-labeled in mammalian cells by methods that will be described. In addition, we present the three-dimensional structure of ATF that was derived from 1299 NOE-derived distance restraints along with the φ angle and hydrogen bonding restraints. Although the individual domains in the structures were highly converged, the two domains are structurally independent. The overall structures of the individual domains are very similar to the structures of homologous proteins. However, important structural differences between the growth factor domain of u-PA and other homologous proteins were observed in the region that has been implicated in binding the urokinase receptor. These results may explain, in part, why other growth factors show no appreciable affinity for the urokinase receptor

  15. Metabolism-oriented amino acid requirement determination by means of the catabolic rates of 14C- and 15N-labelled lysine under maintenance

    International Nuclear Information System (INIS)

    Simon, O.; Bergner, H.; Adam, K.

    1977-01-01

    Male Wistar rats (of 60 g live weight) allotted in 10 groups were fed diets with gradually increasing lysine levels ranging from 1.4 to 7.4 g lysine/16 g N. Feed intake was restricted so much that the experimental animals did not change their live weights during the last 3 days of the 8-day experimental period. On the 7the experimental day, 4 animals of each group were injected, i. p. 14 C-L-lysine, the 14 CO 2 -excretion being subsequently measured over a period of 2 hours. On the next day, 6 animals of each group were applied an i. p. injection of 15 N-L-lysine, the urine being collected over the following 24-hour period to measure the 15 N-frequency. Applying both labelling methods, an increased catabolisation of the amino acid was observed after the metabolically necessary lysine requirement had been covered. The methods are very sensitive and revealed, under the experimental conditions chosen, a lysine requirement coverage of about 3 g lysine/16 g N. The possibility of using also 15 N-labelled compounds in the metabolism-oriented amino acid requirement determination is likely to facilitate the transfer of the methodology to farm animals would thus allow to study the amino acid requirement of man. The metabolism-oriented amino acid requirement determination will likewise allow to estimate exact amino acid requirement data under conditions that cannot be rated on the basis of productive yields. (author)

  16. Metabolism of [15N]alanine in the ectomycorrhizal fungus Paxillus involutus

    International Nuclear Information System (INIS)

    Chalot, M.; Finlay, R.D.; Ek, H.; Söderström, B.

    1995-01-01

    Chalot, M., Finlay, R. D., Ek, H., and Söderström, B. 1995. Metabolism of [ 15 N]alanine in the ectomycorrhizal fungus Paxillus involutus. Experimental Mycology 19, 297-304. Alanine metabolism in the ectomycorrhizal fungus Paxillus involutus was investigated using [ 15 N]alanine. Short-term exposure of mycelial discs to [ 15 N]alanine showed that the greatest flow of 15 N was to glutamate and to aspartate. Levels of enrichment were as high as 15-20% for glutamate and 13-18% for aspartate, whereas that of alanine reached 30%. Label was also detected in the amino-N of glutamine and in serine and glycine, although at lower levels. Preincubation of mycelia with aminooxyacetate, an inhibitor of transamination reactions. resulted in complete inhibition of the flow of the label to glutamate, aspartate, and amino-N of glutamine, whereas [ 15 N]alanine rapidly accumulated. This evidence indicates the direct involvement of alanine aminotransferase for translocation of 15 N from alanine to glutamate. Alanine may be a convenient reservoir of both nitrogen and carbon. (author)

  17. Regional assessment of N saturation using foliar and root δ15N

    Science.gov (United States)

    L.H. Pardo; P.H. Templer; C.L. Goodale; S. Duke; P.M. Groffman; M.B. Adams; P. Boeckx; J. Boggs; J. Campbell; B. Colman; J. Compton; B. Emmett; P. Gundersen; J. Kjonaas; G. Lovett; M. Mack; A. Magill; M. Mbila; M.J. Mitchell; G. McGee; S. McNulty; K. Nadelhoffer; S. Ollinger; D. Ross; H. Rueth; L. Rustad; P. Schaberg; S. Schiff; P. Schleppi; J. Spoelstra; W. Wessel

    2006-01-01

    N saturation induced by atmospheric N deposition can have serious consequences for forest health in many regions. In order to evaluate whether foliar δ15N may be a robust, regional-scale measure of the onset of N saturation in forest ecosystems, we assembled a large dataset on atmospheric N deposition, foliar and root δ

  18. 15N tracer techniques in pediatric research

    International Nuclear Information System (INIS)

    Heine, W.; Richter, I.; Plath, C.; Wutzke, K.; Stolpe, H.J.; Tiess, M.; Toewe, J.

    1983-01-01

    The main topics of the review comprise mathematical fundamentals of the determination of N metabolism parameters using the 3-pool method, the value of different 15 N tracer substances for the determination of whole-body protein parameters, the utilization of parenterally applied D-amino acids, studies on the influence of different diets on the N metabolism of premature infants with the 15 N tracer technique, the application of the 15 N-glycine-STH-test for the evaluation of the therapeutic effect of STH in children suffering from hypothalamico-hypophyseal dwarfism, in vivo studies on urea utilization by the infant intestinal flora under various dietary regimens as well as in vitro investigations on the utilization of 15 N-labelled urea and NH 4 Cl, resp., by the intestinal flora

  19. Turnover of manure 15N-labelled ammonium during composting and soil application as affected by lime and superphosphate addition

    DEFF Research Database (Denmark)

    Tran, Tien Minh; Luxhøi, Jesper; Jensen, Lars Stoumann

    2012-01-01

    ). The NH4-N pool in the pig manure was initially labeled with 15N to determine the fate of manure NH4-N during composting. The composts were subsequently applied to soil to investigate the effects on soil mineral N and to trace the 15N during 60 d of incubation at 25°C. Of the initial manure 15NH4-N......, approximately 30, 90, and 20% was lost by NH3 volatilization during composting in the Straw, Lime, and SSP treatments, respectively. Concurrently, 62, 16, and 41% of initial 15NH4-N was immobilized in the respective treatments. When the composts were applied to soil, the mineral N in soil with SSP compost...... or effectively in balance. In soil with Lime compost, net N immobilization was strong in the fi rst 10 d, but then net N mineralization dominated the remaining period of soil incubation. Overall, adding lime before composting reduced the NH4-N content in the compost and the amount available in soil, while adding...

  20. Does labelling frequency affect N rhizodeposition assessment using the cotton-wick method?

    DEFF Research Database (Denmark)

    Mahieu, S.; Fustec, J.; Jensen, Erik Steen

    2009-01-01

    The aim of the present study was to test and improve the reliability of the 15N cotton-wick method for measuring soil N derived from plant rhizodeposition, a critical value for assessing belowground nitrogen input in field-grown legumes. The effects of the concentration of the 15N labelling...... solution and the feeding frequency on assessment of nitrogen rhizodeposition were studied in two greenhouse experiments using the field pea (Pisum sativum L.). Neither the method nor the feeding frequency altered plant biomass and N partitioning, and the method appeared well adapted for assessing...... the belowground contribution of field-grown legumes to the soil N pool. However, nitrogen rhizodeposition assessment was strongly influenced by the feeding frequency and the concentration of labelling solution. At pod-filling and maturity, despite similar root 15N enrichment, the fraction of plants' belowground...

  1. Passage and absorption of dietary and endogenous nitrogen in different regions of the digestive tract of rats given a single meal of 15N-labelled barley

    International Nuclear Information System (INIS)

    Partridge, I.G.; Simon, O.; Bergner, H.

    1985-01-01

    Young male Wistar rats (86.9 +- 0.96 g) were fasted for 24 hours and then offered a single meal (intake of 1 to 2.5 g) of 15 N-labelled barley (5.34 atom% 15 N excess). The test meal also contained Cr 2 O 3 (20 mg/g). Groups of five animals were killed 0.5; 1; 1.5; 2; 2.5; 4; 6 and 8 hours after removal of food. The contents of different regions of the digestive tract (stomach, proximal, middle and distal third of small intestine, large intestine) and feces were analyzed for Cr 2 O 3 and for N and 15 N abundance in both a TCA soluble and a TCA precipitable fraction. The distribution patterns of Cr 2 O 3 and 15 N along the digestive tract were very similar. If the disappearance of 15 N from the contents of the small and of the large intestines was expressed as a proportion of the gastric outflow of 15 N, a disappearance rate of 90% was found. On the basis of isotopic dilution the proportion of dietary nitrogen in digesta was calculated. The results illustrated the intensive dilution of dietary nitrogen by endogenous secretions in all regions of the digestive tract. In the distal small intestine endogenous nitrogen accounted for 70% of total nitrogen. 17 mg endogenous N were produced by the stomach within 8 hours after the single meal. The results show the value of the method in determining the true digestibility of nitrogen in 15 N-labelled feedstuffs more accurately than with classical methods and in providing an insight into the dynamics of nitrogen absorption and secretion in the digestive tract. (author)

  2. Localization of 15N uptake in a Tibetan alpine Kobresia pasture

    Science.gov (United States)

    Schleuß, Per-Marten; Kuzyakov, Yakov

    2014-05-01

    The Kobresia Pygmea ecotone covers approximately 450.000 km2 and is of large global and regional importance due several socio-ecological aspects. For instance Kobresia pastures store high amounts of carbon, nitrogen and other nutrients, represent large grazing areas for herbivores, provide a fast regrowth after grazing events and protect against mechanical degradation and soil erosion. However, Kobresia pastures are assumed to be a grazing induced and are accompanied with distinct root mats varying in thickness between 5-30 cm. Yet, less is known about the morphology and the functions of this root mats, especially in the background of a progressing degradation due to changes of climate and management. Thus we aimed to identify the importance of single soil layers for plant nutrition. Accordingly, nitrogen uptake from different soil depths and its remain in above-ground biomass (AGB), belowground biomass (BGB) and soil were determined by using a 15N pulse labeling approach during the vegetation period in summer 2012. 15N urea was injected into six different soil depths (0.5 cm, 2.5 cm, 7.5 cm, 12.5 cm, 17.5 cm, 22.5 cm / for each 4 replicates) and plots were sampled 45 days after the labeling. For soil and BGB samples were taken in strict sample intervals of 0-1 cm, 1-5 cm, 5-10 cm, 10-15 cm, 15-20 cm, 20-25 cm. Results indicate that total recovery (including AGB, BGB and soil) was highest, if tracer was injected into the top 5 cm and subsequently decreased with decreasing injection depth. This is especially the case for the 15N recovery of BGB, which is clearly attributed to the root density and strongly decreased with soil depth. In contrast, the root activity derived from the 15N content of roots increased with soil depth, which is primary associated to a proportionate increase of living roots related to dead roots. However, most 15N was captured in plant biomass (67.5-85.3 % of total recovery), indicating high 15N uptake efficiency possibly due to N limitation

  3. Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm

    International Nuclear Information System (INIS)

    Hefke, Frederik; Bagaria, Anurag; Reckel, Sina; Ullrich, Sandra Johanna; Dötsch, Volker; Glaubitz, Clemens; Güntert, Peter

    2011-01-01

    We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273–6279 (1982)), types of amino acids are labeled with 13 C or/and 15 N such that cross peaks between 13 CO(i – 1) and 15 NH(i) result only for pairs of sequentially adjacent amino acids of which the first is labeled with 13 C and the second with 15 N. In this way, unambiguous sequence-specific assignments can be obtained for unique pairs of amino acids that occur exactly once in the sequence of the protein. To be practical, it is crucial to limit the number of differently labeled protein samples that have to be prepared while obtaining an optimal extent of labeled unique amino acid pairs. Our computer algorithm UPLABEL for optimal unique pair labeling, implemented in the program CYANA and in a standalone program, and also available through a web portal, uses combinatorial optimization to find for a given amino acid sequence labeling patterns that maximize the number of unique pair assignments with a minimal number of differently labeled protein samples. Various auxiliary conditions, including labeled amino acid availability and price, previously known partial assignments, and sequence regions of particular interest can be taken into account when determining optimal amino acid type-specific labeling patterns. The method is illustrated for the assignment of the human G-protein coupled receptor bradykinin B2 (B 2 R) and applied as a starting point for the backbone assignment of the membrane protein proteorhodopsin.

  4. Adsorption, translocation and redistribution of nitrogen (15N) in orange trees

    International Nuclear Information System (INIS)

    Fenilli, Tatiele Anete Bergamo; Boaretto, Antonio Enedi Boaretto; Bendassolli, Jose Albertino; Trivelin, Paulo Cesar Ocheuze; Muraoka, Takashi

    2002-01-01

    The objective was to evaluate the absorption of 15 N from nutrient solution by young orange trees and the translocation and the redistribution of the absorbed N. The treatments were constituted by four periods of 15 N labelling (spring, summer, autumn and winter). In the first treatment, the young orange trees received 15 N in the nutrient solution during the spring and five replicates of the plants were picked at the end of the period. The new part, which was developed during the 15 N labelling period, was separated from the other part (old part) in branch and leaf, and also in flower and fruit when they were. The old part was separated in leaf, stem and root. This same procedure was followed in the other treatments. The total N and the isotope ratios 15 N/ 14 N were performed by mass spectrometry. The major part of absorbed N during the spring and summer was translocated to the new part of the orange trees, but in autumn and winter the absorbed N was concentrated in the old plant part. The redistribution of N from of old plant parts was more intensive during the autumn and winter. (author)

  5. Applications of stable isotopes of 2H, 13C and 15N to clinical problems

    International Nuclear Information System (INIS)

    Klein, P.D.; Szczepanik, P.A.; Hachey, D.L.

    1974-01-01

    The function of the Argonne Program is to provide synthetic, analytical instrumental capability in a core facility for the clinical investigator who needs to use 2 H, 13 C, or 15 N labelled compounds for metabolic or clinical research on pregnant women, newborn infants, young children, or for mass screening. To carry out such application development, there were six stages which were recurrent steps in every application. Five fundamental strategies should be adopted to establish the use of stable isotopes in clinical work. The instrument required for measurements was a combined gas chromatograph-mass spectrometer, and its use was schematically illustrated. Some of the successful experiences with compounds labelled by stable isotopes, such as deuterium labelled chenodeoxycholic acid, and respective 13 C and 15 N-labelled glycine were described. Deutrium labelled bile acid enabled easy and safe determination of the size of the bile acid pool and the replacement rate, providing clearer diagnoses for cholestatic liver disease and gallstones. 13 C and 15 N labelled compounds were used in clinical studies, of children with genetic disorders of amino acid metabolism, i.e., non ketotic hyperflycinemia, B 12 -responsive methyl malonic acidemia, and Lesch-Nyhan syndrome. 15 N-labelled glycine was also studied in a child with Lesch-Nyhan syndrome. (Mukohata, S.)

  6. Distribution of complemented 15N - (NH4)2SO4 in an ethanolic fermentation process on insolube-N and solube-N fractions

    International Nuclear Information System (INIS)

    Lara Cabejas, W.A.R.; Trivelin, P.C.O.

    1990-01-01

    Looking for stillage labeling with 15 N for further utilization in studies of mineral fertilization of sugar-cane, 15 N-(NH 4 ) 2 SO 4 (43.5ppm, 45.401 atoms% 15 N) was supplemented in a single fermentative cycle, in a laboratory scale. A nitrogen fractionation was made between insoluble-N and soluble-N in several componentes of the fermentative process (yeast, sugar-cane juice, centrifugate wine, centrifugate yeast and stillage) with the objective of studying the added nitrogen distribution and its isotopic abundance composition. The nitrogen fractionation, and the isotopic analysis by mass spectrometry of 15 N, in the fractions of the several components of the fermentative process, showed 81.1% of N recovery, being 3.2% in stillage and mainly in a soluble-N fraction (71.4%), and the rest found in centrifugate yeast (77.9%), distributed mainly in a insoluble-N fraction (92.0%). Desuniform isotopic label was found in stillage, between soluble-N (1.333 atoms% 15 N) and insoluble-N fractions (0.744 atoms% 15 N). Means to improve the isotopic uniformity in these fractions is discussed. (autor) [pt

  7. Changes in mineral 15 N from soils treated with 15 N-urea and 15 N-vinasse incorporated or not to sugar cane straw

    International Nuclear Information System (INIS)

    Silva, Vilma M.; Colaco, Waldeciro; Encarnacao, Fernando A.F.

    1999-01-01

    Changes in N derived from 15 N sources (urea and vinasse), applied to two soils differing in texture (PV sandy, LR clayey), incorporated or not to sugar cane straw (dry leaves and sheathes) and incubated in an open system for 35 days, were evaluated through an isotope technique. Soil samples were collected 7, 14, 21, 28 and 35 days after applications to determine nitrogen fractions (total-N, N H 4 + - N and NO 3 - - N) derived from the labelled sources. Mineral N was taken as the sum of N H 4 + - N and N H 3 - -N. 15 N-abundances were determined in the concentrated extracts of these fractions. The mineral N net transformation rates were found from the mineral N obtained by taking the difference between the values of two subsequent incubation times. The results showed that mineral N transformation rates were initially positives in the treatments of 15 N-urea, and significantly higher (10,30 mg kg -1 d -1 , PV and 8,08 mg kg -1 d -1 , LR) than those obtained in the treatments with 15 N vinasse (1,11 mg kg -1 dia -1 , PV and 0,55 mg kg -1 dia -1 , LR). In general terms, mineral-N net transformation rates were negative (0,06 and 0,26 mg.kg -1 d -1 , PV; -1,44 and 0,07 mg.kg -1 .d -1 , LR, respective;y for urea and vinasse) indicating prevalence of immobilization. The results also showed small fluctuations among treatments at some of the incubation periods, which reflects the influence of characteristics and properties of both soils. (author)

  8. Dynamic effects of soil bulk density on denitrification and mineralisation by 15N labelled lettuce residue and paper wastes

    International Nuclear Information System (INIS)

    Hua Luo; Cheng Qing; Vinten, A.J.A.

    1997-10-01

    Two laboratory incubation experiments aimed to study the denitrification and mineralisation influenced by different additives ( 15 N labelled lettuce residue, paper wastes and mixture of both) and soil bulk densities were carried out by means of acetylene inhibition at the constant 15 degree C for 107 and 90 days, respectively. The results showed that the changes of N 2 O, CO 2 emission rates, inorganic nitrogen (NO 3 - and NH 4 + ), total N and 15 N abundance in the soils which were affected by adding lettuce residue, paper wastes and mixture of both were investigated. Soil denitrification rate increased after lettuce residue was added into soil for 8 days. The maximum rate of N 2 O emission was 15 times higher than that in soil without any additive. However, paper wastes did not increase N 2 O emission in the first 8 days compared with other treatments, mixed residue and paper wastes could promote soil microbial activity, but N 2 O emission was lower than that in the soil with lettuce residue added and higher than that with paper wastes, indicating that mixture of residue and paper wastes was benefit to soil nitrogen immobilisation. CO 2 emission in all the treatments were declined to the same level on the 107 th day. In the treatment added mixed residues and paper wastes, the released CO 2 quantities were higher than those in other treatments every day. Effect of different bulk density on N 2 O and CO 2 emission were response to the change of bulk density, it seems that N 2 O and CO 2 emission increased with bulk density. High bulk density could affect decomposition of paper wastes and NO 3 - , NH 4 + concentration. (30 ref., 10 tabs.)

  9. 15N tracer kinetic studies on the validity of various 15N tracer substances for determining whole-body protein parameters in very small preterm infants

    International Nuclear Information System (INIS)

    Plath, C.; Heine, W.; Wutzke, K.D.; Krienke, L.; Toewe, J.M.; Massute, G.; Windischmann, C.

    1987-01-01

    Reliable 15 N tracer substances for tracer kinetic determination of whole-body protein parameters in very small preterm infants are still a matter of intensive research, especially after some doubts have been raised about the validity of [ 15 N]glycine, a commonly used 15 N tracer. Protein turnover, synthesis, breakdown, and further protein metabolism data were determined by a paired comparison in four preterm infants. Their post-conceptual age was 32.2 +/- 0.8 weeks, and their body weight was 1670 +/- 181 g. Tracer substances applied in this study were a [ 15 N]amino acid mixture (Ia) and [ 15 N]glycine (Ib). In a second group of three infants with a post conceptual age of 15 N-labeled 32.0 +/- 1.0 weeks and a body weight of 1,907 +/- 137 g, yeast protein hydrolysate (II) was used as a tracer substance. A three-pool model was employed for the analysis of the data. This model takes into account renal and fecal 15 N losses after a single 15 N pulse. Protein turnovers were as follows: 11.9 +/- 3.1 g kg-1 d-1 (Ia), 16.2 +/- 2.5 g kg-1 d-1 (Ib), and 10.8 +/- 3.0 g kg-1 d-1 (II). We were able to demonstrate an overestimation of the protein turnover when Ib was used. There was an expected correspondence in the results obtained from Ia and II. The 15 N-labeled yeast protein hydrolysate is a relatively cheap tracer that allows reliable determination of whole-body protein parameters in very small preterm infants

  10. Endogenous and exogenous control of ecosystem function: N cycling in headwater streams

    OpenAIRE

    Valett, H. M.; Thomas, S. A.; Mulholland, P. J.; Webster, J. R.; Dahm, C. N.; Fellows, C. S.; Crenshaw, C. L.; Peterson, C. G.

    2008-01-01

    Allochthonous inputs act as resource subsidies to many ecosystems, where they exert strong influences on metabolism and material cycling. At the same time, metabolic theory proposes endogenous thermal control independent of resource supply. To address the relative importance of exogenous and endogenous influences, we quantified spatial and temporal variation in ecosystem metabolism and nitrogen (N) uptake using seasonal releases of (15)N as nitrate in six streams differing in riparian-stream ...

  11. Application time of nitrogen fertilizer 15N by a potato crop (Solanum Tuberosum L.)

    International Nuclear Information System (INIS)

    Bastidas, O.G.; Urquiaga, S.

    1987-01-01

    This study was performed at the ''San Jorge'' experimental farm of the Instituto Colombiano Agropecuario (ICA), Bogota, Colombia. The study was performed to investigate the effect of timing of application of nitrogen fertilizer on the productivity of, and the efficiency of utilization of 15 N-labelled fertilizer by, a potato crop (Solanum tuberosum L.), cv. Tequendama. The crop was fertilized with 100, 200 and 100 Kg/ha -1 of N, P 2 O 5 and K 2 O respectively. The N fertilizers were either added as 15 N labelled urea (2.955 at.% 15 N excess) or as labelled ammonium sulphate (2.071 at.% 15 N excess). In all treatments with nitrogen, a total of 100 Kg N ha -1 was added, but the nitrogen was added either in two or three split doses (only one dose being labelled with 15 N) at the following times: at planting, 35 days after emergence (DAE) and/or 60 DAE. It was found that: a) Nitrogen fertilization increased tuber production from 24 to 43 t/ha -1 ; b) The tubers constituted approximately 80% of total plant dry matter and 70% of the total nitrogen and fertilizer N accumulated by the plant; c) The fertilizer use efficiency varied between 49 and 68%, and the highest efficiency occurred when the nitrogen was split in three doses; d) The urea and ammonium sulphate gave similar results in all parameters evaluated; e) When the total nitrogen difference method was applied to interpretation of the results the fertilizer use efficiency was overestimated by 15 to 30%

  12. A system for oxygen-15 labeled blood for medical applications

    International Nuclear Information System (INIS)

    Subramanyam, R.; Bucelewicz, W.M.; Hoop, B. Jr.; Jones, S.C.

    1977-01-01

    Oxygen-15 labeled compounds in blood have been used successfully for cerebral circulation and cerebral oxygen metabolism measurements. The present paper describes a system for the rapid sequential production of 15 O-HgB, C 15 O-Hgb and H 2 15 O in blood under sterile and pyrogen-free conditions. A tonometer has been adopted for labeling blood without hemolysis and foam production. (author)

  13. Crop uptake and leaching losses of 15N labelled fertilizer nitrogen in relation to waterlogging of clay and sandy loam soils

    International Nuclear Information System (INIS)

    Webster, C.P.; Belford, R.K.; Cannell, R.Q.

    1986-01-01

    Ammonium nitrate fertilizer, labelled with 15 N, was applied in spring to winter wheat growing in undisturbed monoliths of clay and sandy loam soil in lysimeters; the rates of application were respectively 95 and 102 kg N ha -1 in the spring of 1976 and 1975. Crops of winter wheat, oilseed rape, peas and barley grown in the following 5 or 6 years were treated with unlabelled nitrogen fertilizer at rates recommended for maximum yields. During each year of the experiments the lysimeters were divided into treatments which were either freely drained or subjected to periods of waterlogging. Another labelled nitrogen application was made in 1980 to a separate group of lysimeters with a clay soil and a winter wheat crop to study further the uptake of nitrogen fertilizer in relation to waterlogging. In the first growing season, shoots of the winter wheater at harvest contained 46 and 58% of the fertilizer nitrogen applied to the clay and sandy loam soils respectively. In the following year the crops contained a further 1-2% of the labelled fertilizer, and after 5 and 6 years the total recoveries of labelled fertilizer in the crops were 49 and 62% on the clay and sandy loam soils respectively. In the first winter after the labelled fertilizer was applied, less than 1% of the fertilizer was lost in the drainage water, and only about 2% of the total nitrogen (mainly nitrate) in the drainage water from both soils was derived from the fertilizer

  14. Liver function tests using the stable istope 15N

    International Nuclear Information System (INIS)

    Faust, H.; Jung, K.; Hirschberg, K.; Krumbiegel, P.; Junghans, P.; Reinhardt, R.; Teichmann, B.

    1988-01-01

    Several liver function tests using oral application of a nitrogen compound labelled with 15 N and the subsequent determination of 15 N in a certain fraction of urine or in the total urine by emission spectrometry are described. Because of the key function of the liver in the metabolism of nitrogen compounds, the results of these tests allow conclusions concerning some disturbances of liver functions. (author)

  15. Ecosystem partitioning of 15N-glycine after long-term climate and nutrient manipulations, plant clipping and addition of labile carbon in a subarctic heath tundra

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Michelsen, Anders; Jonasson, Sven Evert

    2008-01-01

    of nitrogen (N). Here, we studied 15N label incorporation into microbes, plants and soil N pools after both long-term (12 years) climate manipulation and nutrient addition, plant clipping and a pulse-addition of labile C to the soil, in order to gain information on interactions among soil N and C pools...... addition. However, plants exerted control on the soil inorganic N concentrations and recovery of total dissolved 15N (TD15N), and likewise the microbes reduced these soil pools, but only when fed with labile C. Soil microbes in clipped plots were primarily C limited, and the findings of reduced N...... availability, both in the presence of plants and with the combined treatment of plant clipping and addition of sugar, suggest that the plant control of soil N pools was not solely due to plant uptake of soil N, but also partially caused by plants feeding labile C to the soil microbes, which enhanced...

  16. Methods for sequential resonance assignment in solid, uniformly 13C, 15N labelled peptides: Quantification and application to antamanide

    International Nuclear Information System (INIS)

    Detken, Andreas; Hardy, Edme H.; Ernst, Matthias; Kainosho, Masatsune; Kawakami, Toru; Aimoto, Saburo; Meier, Beat H.

    2001-01-01

    The application of adiabatic polarization-transfer experiments to resonance assignment in solid, uniformly 13 C- 15 N-labelled polypeptides is demonstrated for the cyclic decapeptide antamanide. A homonuclear correlation experiment employing the DREAM sequence for adiabatic dipolar transfer yields a complete assignment of the C α and aliphatic side-chain 13 C resonances to amino acid types. The same information can be obtained from a TOBSY experiment using the recently introduced P9 1 12 TOBSY sequence, which employs the J couplings as a transfer mechanism. A comparison of the two methods is presented. Except for some aromatic phenylalanine resonances, a complete sequence-specific assignment of the 13 C and 15 N resonances in antamanide is achieved by a series of selective or broadband adiabatic triple-resonance experiments. Heteronuclear transfer by adiabatic-passage Hartmann-Hahn cross polarization is combined with adiabatic homonuclear transfer by the DREAM and rotational-resonance tickling sequences into two- and three-dimensional experiments. The performance of these experiments is evaluated quantitatively

  17. Use of Bio-Organic Fertilizers to Develop N Uptake Using 15N Technique

    International Nuclear Information System (INIS)

    Galal, Y.G.M.

    2008-01-01

    Experimental work either in field scale or in green house conditions were conducted using 15 N technique to evaluate the role of different bio fertilizers and different plant residues as organic amendments on enhancement of plant N nutrition. Nitrogen fixation by a symbiotic bacteria has been observed in greenhouse and field experiments under dry land cropping systems. Biological N 2 fixation associated with crop residues (legumes or cereals) was investigated in pot experiments with wheat and chickpea cultivars. In these experiments, labelled wheat and rice straw were used as organic N sources in comparison with either 15 N-labelled ammonium sulfate or ammonium nitrate as chemical nitrogen fertilizers. Rhizobium inoculation extended to be used with wheat gave the best results of N uptake and N 2 fixation when combined with Azospirillum brasilense as heterotrophic diazotrophs. The nitrogen uptake by wheat plants was significantly increased by application of soybean residues and inoculation with Azospirillum brasilense. From the field trial we can conclude that soybean residue as enriched N material, and Azospirillum brasilense inoculation enhanced N yields of wheat cultivars grown in poor fertile sandy soil

  18. NMR experiments for resonance assignments of 13C, 15N doubly-labeled flexible polypeptides: Application to the human prion protein hPrP(23-230)

    International Nuclear Information System (INIS)

    Liu Aizhuo; Riek, Roland; Wider, Gerhard; Schroetter, Christine von; Zahn, Ralph; Wuethrich, Kurt

    2000-01-01

    A combination of three heteronuclear three-dimensional NMR experiments tailored for sequential resonance assignments in uniformly 15 N, 13 C-labeled flexible polypeptide chains is described. The 3D (H)N(CO-TOCSY)NH, 3D (H)CA(CO-TOCSY)NH and 3D (H)CBCA(CO-TOCSY)NH schemes make use of the favorable 15 N chemical shift dispersion in unfolded polypeptides, exploit the slow transverse 15 N relaxation rates of unfolded polypeptides in high resolution constant-time [ 1 H, 15 N]-correlation experiments, and use carbonyl carbon homonuclear isotropic mixing to transfer magnetization sequentially along the amino acid sequence. Practical applications are demonstrated with the 100-residue flexible tail of the recombinant human prion protein, making use of spectral resolution up to 0.6 Hz in the 15 N dimension, simultaneous correlation with the two adjacent amino acid residues to overcome problems associated with spectral overlap, and the potential of the presently described experiments to establish nearest-neighbor correlations across proline residues in the amino acid sequence

  19. Estimate of production of gaseous nitrogen in the human body based on (15)N analysis of breath N2 after administration of [(15)N2]urea.

    Science.gov (United States)

    Junghans, Peter

    2013-01-01

    After oral administration of [(15)N2]urea (1.5 mmol, 95 atom% (15)N), we found that breath N2 was significantly (15)N-labelled. The result suggests that molecular nitrogen in breath must be partly produced endogenously. Based on a metabolic model, the endogenous N2 production was estimated to be 0.40±0.25 mmol kg(-1) d(-1) or 2.9±1.8 % of the total (urinary and faecal) N excretion in fasted healthy subjects (n=4). In patients infected with Helicobacter pylori (n=5), the endogenous N2 production was increased to 1.24±0.59 mmol kg(-1) d(-1) or 9.0±4.3 % of the total N excretion compared to the healthy controls (pexchange measurements may be affected by endogenously produced nitrogen, especially in metabolic situations with elevated nitrosation, for instance in oxidative and nitrosative stress-related diseases such as H. pylori infections.

  20. Fate of 15N applied as ammonium sulphate to a bean crop

    International Nuclear Information System (INIS)

    Cervellini, A.; Ruschel, A.P.; Matsui, E.

    1980-01-01

    An instrumented 10 X 10-m site was used to study the fate of 15 N-labelled ammonium sulphate (3.289 atom 15 N % excess) applied at the rate of 100 kg N.ha -1 with P and K supplements. Data were collected for the year January through December, 1977. The first bean crop (Phaseolus vulgaris, L) was planted in March, followed by the fertilizer, and harvested three months later. The plot was left fallow for three months when a second bean crop was planted without further fertilizer. The data indicated that the total drainage (22 cm) represented approximately 16% of the total water input (precipitation plus irrigation). It was estimated that nitrate leaching below the 120-cm depth was equivalent to approximately 16 kg N.ha -1 of which less than 10% was derived from the labelled fertilizer. The low recovery of labelled fertilizer (30%) by the first total harvest of straw and grain, and the less than 2.5% further recovery of initial labelled fertilizer by the second crop, suggest high immobilization by the soil-plant residue system. (author)

  1. Uniform {sup 15}N- and {sup 15}N/{sup 13}C-labeling of proteins in mammalian cells and solution structure of the amino terminal fragment of u-PA

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.P.; Petros, A.M.; Meadows, R.P.; Mazar, A.P.; Nettesheim, D.G.; Pederson, T.M.; Fesik, S.W. [Abbott Laboratories, Abbott Park, IL (United States)

    1994-12-01

    Urokinase-type plasminogen activator (u-PA) is a 54-kDa glycoprotein that catalyzes the conversion of plasminogen to plasmin, a broad-specificity protease responsible for the degradation of fibrin clots and extracellular matrix components. The u-PA protein consists of three individual modules: a growth factor domain (GFD), a kringle, and a serine protease domain. The amino terminal fragment (ATF) includes the GFD-responsible for u-PA binding to its receptor-and the kringle domains. This protein was expressed and uniformly {sup 15}N-and {sup 15}N/{sup 13}C-labeled in mammalian cells by methods that will be described. In addition, we present the three-dimensional structure of ATF that was derived from 1299 NOE-derived distance restraints along with the {phi} angle and hydrogen bonding restraints. Although the individual domains in the structures were highly converged, the two domains are structurally independent. The overall structures of the individual domains are very similar to the structures of homologous proteins. However, important structural differences between the growth factor domain of u-PA and other homologous proteins were observed in the region that has been implicated in binding the urokinase receptor. These results may explain, in part, why other growth factors show no appreciable affinity for the urokinase receptor.

  2. Estimating legume N-2 fixation in grass-clover mixtures of a grazed organic cropping system using two N-15 methods

    DEFF Research Database (Denmark)

    Vinther, F.P.; Jensen, E.S.

    2000-01-01

    The input of Nitrogen (N) through symbiotic N-2 fixation (SNF) in grass-clover mixtures was determined in an organic cropping. system for grazing during 3 years. The mixture of perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) was established by undersowing in spring...... barley (Hordeum vulgare L.) and maintained subsequently for two production years. Dinitrogen fixation was determined using the N-15 isotope dilution techniques and two labelling procedures. Using either pre-labelling of the soil with immobilisation of the N-15 by addition of a carbon source before...

  3. Fate of leaf-litter N in forest and grassland along a pedo-climatic gradient in south-western Siberia: an in situ 15N-labelling experiment

    Science.gov (United States)

    Brédoire, Félix; Zeller, Bernd; Nikitich, Polina; Barsukov, Pavel A.; Rusalimova, Olga; Bakker, Mark R.; Legout, Arnaud; Bashuk, Alexander; Kayler, Zachary E.; Derrien, Delphine

    2017-04-01

    The suitability of Siberia for agriculture is expected to increase in the next decades due to strong and rapid climatic changes, but little is known on the environmental drivers of soil fertility there, especially nitrogen (N). Plant-available N is mainly derived from litter decomposition. South-western (SW) Siberia is located on the transition between several bioclimatic zones that are predicted to shift and extend along with climate change (steppe, forest-steppe, sub-taiga). The soils of this region are formed on a common loess deposit but they are submitted to different climatic conditions and vegetation cover. In the south of the region, typically in steppe/forest-steppe, soil freezes over winter because of a relatively shallow snow-pack, and water shortages are frequent in summer. In the north, typically in sub-taiga, the soil is barely frozen in winter due to a thick snow-pack and sufficient soil moisture in summer. In this study, we characterized the dynamics of leaf litter decomposition and the transfer of N from leaf litter to the soil and back to plants. Four sites were chosen along a climate gradient (temperature, precipitation and snow depth). At each site, we applied 15N-labelled leaf litter on the soil surface in experimental plots in an aspen (Populus tremula L.) forest and in a grassland. Twice a year during three years, we tracked the 15N derived from the decomposing labelled-litter in the organic layers, in the first 15 cm of the soil, and in above-ground vegetation. Soil temperature and moisture were monitored at a daily timestep over three years and soil water budgets were simulated (BILJOU model, Granier et al. 1999). We observed contrasting patterns in the fate of litter-derived 15N between bioclimatic zones. Over three years, along with faster decay rates, the release of leaf litter-N was faster in sub-taiga than in forest-steppe. As such, higher quantities of 15N were transferred into the soil in sub-taiga. The transfer was also deeper there

  4. The fate of 15N-labelled organic nitrogen in sheep manure applied to soils of different texture under field conditions

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.; Nielsen, N.E.

    1994-01-01

    The fate of nitrogen from N-15-labelled sheep manure and ammonium sulfate in small lysimeters and plots in the field was studied during two growth seasons. In April 1991, N-15-labelled sheep faeces (87 kg N ha(-1)) plus unlabelled (NH4)(2)SO4 (90 kg N ha(-1)), and ((NH4)-N-15)(2)SO4 (90 kg N ha(-1......-17% of the labelled manure N and 56% of the labelled (NH4)(2)SO4-N. After 18 months 30% of the labelled manure N and 65% of the labelled (NH4)(2)SO4-N were accumulated in barley, the succeeding ryegrass crop and in leachate collected below 45 cm of soil, irrespective of the soil-sand mixture. Calculating the barley...

  5. Effect of the supply dose on the 15N enrichment level of cow's milk nitrogenous fractions

    International Nuclear Information System (INIS)

    Colin, O.; Laurent, F.; Vignon, B.; Antoine, J.M.

    1994-01-01

    Production of cow milk 15 N-labelled proteins is necessary for the study of their digestion by man. An adequate enrichment is required for compatibility with utilization constraints (application dose, studied fractions...). A test was conducted with five cows in order to optimize the utilization of labelled ammonium sulphate in the cow diet for 15 N enrichment of the milk nitrogenous matter. Doses and supply timing of labelled compounds are discussed. 3 figs., 3 refs

  6. Production of mungbean under reclaimed sandy soil and irrigation levels using N-15 labeled

    International Nuclear Information System (INIS)

    Abdallah, A.A.G.; Thabet, E.M.A.

    2000-01-01

    Field experiment were performed at the Atomic Energy Authority, Experimental farm, Inshas, Egypt. During 1998 growing season. In tafla and sand mixture soil (1:7 Wt./Wt.). The treatments were laid out using a single line source sprinkler irrigation system which allows a gradual variation of irrigation from excess to little irrigation in which the calculated amount of irrigation water levels were 2241, 1562 and 1093 m 3 / feddan (W 1 , W 2 and W 3 ). The obtained results indicated that, there was a clear relationship between adequate amount of irrigation water and both total seed yield and total green pods/plot as well as there were significant increase in both characters due to irrigation W 1 and W 2 compared with W 3 . The results also indicated that W 2 irrigation level could be used in irrigation under the same conditions. Water use efficiency was significantly increased with middle irrigation level than with other two irrigation treatments. The result concerned fertilizer use efficiency using N 15 labeled fertilizers and total seed protein content were increased with decreasing irrigation level

  7. NMR studies on 15N-labeled creatine (CR), creatinine (CRN), phosphocreatine (PCR), and phosphocreatinine (PCRN), and on barriers to rotation in creatine kinase-bound creatine in the enzymatic reaction

    International Nuclear Information System (INIS)

    Kenyon, G.L.; Reddick, R.E.

    1986-01-01

    Recently, the authors have synthesized 15 N-2-Cr, 15 N-3-Crn, 15 N-2-Crn, 15 N-3-PCrn, 15 N-3-PCr, and 15 N-2-PCr. 1 H, 15 N, 31 P NMR data show that Crn protonates exclusively at the non-methylated ring nitrogen, confirm that PCrn is phosphorylated at the exocyclic nitrogen, and demonstrate that the 31 P- 15 N one-bond coupling constant in 15 N-3-PCr is 18 Hz, not 3 Hz as previously reported by Brindle, K.M., Porteous, R. and Radda, G.K.. The authors have found that creatine kinase is capable of catalyzing the 14 N/ 15 N positional isotope exchange of 3- 15 N-PCr in the presence of MgADP, but not in its absence. Further, the exchange does not take place when labeled PCr is resynthesized exclusively from the ternary complex E X Cr X MgATP as opposed to either E X Cr or free Cr. This suggests that the enzyme both imparts an additional rotational barrier to creatine in the complex and catalyzes the transfer of phosphoryl group with essentially complete regiospecificity

  8. Nitrogen dynamics in stream wood samples incubated with [14C]lignocellulose and potassium[15N]nitrate

    International Nuclear Information System (INIS)

    Aumen, N.G.; Bottomley, P.J.; Gregory, S.V.

    1985-01-01

    Surface wood samples obtained from a Douglas fir log incubated in vitro with [ 14 C]lignocellulose in a defined mineral salts medium supplemented with 10 mg of N liter -1 of 15 N-labeled NO 3 - (50 atom % 15 N). Evolution of 14 CO 2 , distribution and isotopic dilution of 15 N, filtrate N concentrations, and the rates of denitrification, N 2 fixation, and respiration were measured at 6, 12, and 18 days of incubation. The organic N content of the lignocellulose-wood sample mixture had increased from 132 μg of N to a maximum of 231 μg of N per treatment after 6 days of incubation. Rates of [ 14 C]lignocellulose decomposition were greatest during the first 6 days and then began to decline over the remaining 12 days. Total CO 2 evolution was also highest at day 6 and declined steadily over the remaining duration of the incubation. Filtrate NH 4 + -N increased from background levels to a final value of 57 μg of N per treatment. Filtrate NO 3 - N completely disappeared by day 6, and organic N showed a slight decline between days 12 and 18. The majority of the 15 N that could be recovered appeared in the particulate organic fraction by day 6 (41 μg of N), and the filtrate NH 4 + N fraction contained 11 μg of 15 N by day 18. The 15 N enrichment values of the filtrate NH 4 + and the inorganic N associated with the particulate fraction had increased to approximately 20 atom % 15 N by 18 days of incubation, whereas the particulate organic fraction reached its highest enrichment by day 6. Measurements of N 2 fixation and denitrification indicated an insignificant gain or loss of N from the experimental system by these processes. The data show that woody debris in stream ecosystems might function as a rapid and efficient sink for exogenous N, resulting in stimulation of wood decomposition and subsequent activation of other N cycling processes

  9. Liver function tests using the stable isotope /sup 15/N

    Energy Technology Data Exchange (ETDEWEB)

    Faust, H; Jung, K; Hirschberg, K; Krumbiegel, P; Junghans, P; Reinhardt, R; Matkowitz, R; Teichmann, B

    1988-01-01

    Several liver function tests using oral application of a nitrogen compound labelled with /sup 15/N and the subsequent determination of /sup 15/N in a certain fraction of urine or in the total urine by emission spectrometry are described. Because of the key function of the liver in the metabolism of nitrogen compounds, the results of these tests allow conclusions concerning some disturbances of liver functions.

  10. Production of granules of urea, urea-ammonium sulphate and urea-potassium chloride enriched with 15N

    International Nuclear Information System (INIS)

    Bendassolli, J.A.

    1991-01-01

    Using a pearling tower it was possible to produce granulated urea, and granulated mixtures of ammonium sulphate and urea, potassium chloride and urea, Labelled in 15 N. Granulated urea with 1, 2, 3 and 4 mm of diameter was obtained using a system with a heating controller. A low concentration of biuret was observed in the granules produced ( 15 N-Labelled ( 15 NH 4' 15 NH 2 ) with variable proportion of ammonium sulphate and urea. (author)

  11. MASS LOSS AND NITROGEN DYNAMICS DURING THE DECOMPOSITION OF A N-LABELED N2-FIXING EPOPHYTIC LICHEN, LOBARIA OREGANA (TUCK.) MULL. ARG.

    Science.gov (United States)

    We studied mass loss and nitrogen dynamics during fall and spring initiated decomposition of an N2-fixing epiphytic lichen, Lobaria oregana (Tuck.) Mull. Arg. using 15N. We developed a method of labeling lichens with 15N that involved spraying lichen material with a nutrient sol...

  12. Estimation of dinitrogen fixation by cowpea (Vigna unguiculata) using residual soil 15N in poppy (Papaver somniferum L) cowpea sequence

    International Nuclear Information System (INIS)

    Patra, D.D.; Chand, Sukhmal; Anwar, M.

    1994-01-01

    Estimation of dinitrogen fixation by cowpea was carried out under greenhouse conditions using pots each containing 12 kg soil. Different 15 N sources included residual soil 15 N where urea was applied to opium poppy before planting of cowpea as fixing and maize as non-fixing crop. Other N sources were labelled urea, 15 N labelled poppy straw, and labelled urea + unlabelled poppy straw. The amount of N 2 fixed varied with the source of 15 N in soil. Plant material treatment gave a higher estimate at 40 days, whereas the estimate was highest with residual 15 N at 75 days. Such variation is attributed to variation in 1 5N enrichment which can be reduced by utilizing the residual 15 N which gives a more stable enrichment of soil 15 N with time. It may also alleviate the errors resulting from the differential pattern of 15 N uptake by fixing and nonfixing plant due to temporal variation in 15 N enrichment in soil. (author). 8 refs., 3 tabs

  13. The influence of tannin, pectin and polyethylene glycol on attachment of 15N-labelled rumen microorganisms to cellulose

    International Nuclear Information System (INIS)

    Bento, M.H.L.; Acamovic, T.; Makkar, H.P.S.

    2005-01-01

    The microbial attachment to and gas production from α-cellulose (Sigma; C-8002) without and with mimosa tannin (MT), pectin (P), polyethylene glycol (PEG), MT + P or MT + PEG, were investigated using the in vitro gas production system. Microbial attachment based on 15 N-labelled rumen microorganisms in the residual pellet after 24 h incubation was estimated, which varied from 113.7 to 161.3 μg 15 N per g residual pellet. C + MT had the lowest microbial attachment (P 2 = 0.84, P 15 N) in the residual pellet measured for C + MT (0.054) and C + MT + P (0.159), compared with the other treatments (0.32 for C; 0.34 for C + P; 0.33 for C + PEG; and 0.33 for C + MT + PEG). A MT concentration of 194 g/kg diet reduced microbial attachment and activity of rumen microorganisms in vitro. Polyethylene glycol counteracted the effect of MT on microbial attachment and activity. Pectin exerted a beneficial effect on attachment and fermentation in the initial hours of incubation. A ratio of pectin to MT of 1:1 improved microbial activity of C + MT but inhibition of microbial activity by MT remained at 24 h as indicated by the lower gas production of C + MT + P compared with the control. The results support the hypothesis that there is considerable interaction between tannins, microbes and non-starch-polysaccharides (NSP) in animal feeds and that these interactions may influence the functional ability of microbes in the gastrointestinal tract of animals. (author)

  14. [13N]ammonia in organic solvents; a potent synthetic precursor for 13N-labeling

    International Nuclear Information System (INIS)

    Tominaga, Toshiyoshi; Hirobe, Masaaki

    1987-01-01

    13 NH 3 in an organic solvent was prepared and its utility as a labeling precursor was studied. [ 13 N]adenine ([ 13 N]ADN), [ 13 N]nicotinamide ([ 13 N]NAM), [ 13 N]p-nitrophenyl carbamate ([ 13 N]NPC), and [ 13 N]L-glutamine ([ 13 N]Gln) were labeled utilizing this precursor. [ 13 N]ADN and [ 13 N]NAM were labeled in much better yields than from an aqueous solution of 13 NH 3 . [ 13 N]NPC and [ 13 N]Gln, which could not be labeled in an aqueous solution, were labeled in high radiochemical yields. Thus, the advantages of this precursor are the improvement of the labeling yield and the feasibility of labeling compounds unstable in aqueous conditions. (author)

  15. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet

    Science.gov (United States)

    Díaz, Francisca P.; Frugone, Matías; Gutiérrez, Rodrigo A.; Latorre, Claudio

    2016-03-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ15N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ15N and δ13C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ15N values span the entire gradient, soil δ15N values show a positive correlation with aridity as expected. In contrast, foliar δ15N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ15N values.

  16. Nitrogen cycling in an extreme hyperarid environment inferred from δ(15)N analyses of plants, soils and herbivore diet.

    Science.gov (United States)

    Díaz, Francisca P; Frugone, Matías; Gutiérrez, Rodrigo A; Latorre, Claudio

    2016-03-09

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ(15)N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ(15)N and δ(13)C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ(15)N values span the entire gradient, soil δ(15)N values show a positive correlation with aridity as expected. In contrast, foliar δ(15)N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ(15)N values.

  17. Selective detection of carbon-13, nitrogen-15, and deuterium labeled metabolites by capillary gas chromatography-chemical reaction interface/mass spectrometry

    International Nuclear Information System (INIS)

    Chace, D.H.; Abramson, F.P.

    1989-01-01

    We have applied a new chemical reaction interface/mass spectrometer technique (CRIMS) to the selective detection of 13C-, 15N-, and 2H-labeled phenytoin and its metabolites in urine following separation by capillary gas chromatography. The microwave-powered chemical reaction interface converts materials from their original forms into small molecules whose mass spectra serve to identify and quantify the nuclides that make up each analyte. The presence of each element is followed by monitoring the isotopic variants of CO2, NO, or H2 that are produced by the chemical reaction interface. Chromatograms showing only enriched 13C and 15N were produced by subtracting the abundance of naturally occurring isotopes from the observed M + 1 signal. A selective chromatogram of 2H (D) was obtained by measuring HD at m/z 3.0219 with a resolution of 2000. Metabolites representing less than 1.5% of the total labeled compounds could be identified in the chromatogram. Detection limits from urine of 380 pg/mL of a 15N-labeled metabolite, 7 ng/mL of a 13C-labeled metabolite, and 16 ng/mL of a deuterium labeled metabolite were determined at a signal to noise ratio of 2. Depending on the isotope examined, a linear dynamic range of 250-1000 was observed using CRIMS. To identify many of these labeled peaks (metabolites), the chromatographic analysis was repeated with the chemical reaction interface turned off and mass spectra obtained at the retention times found in the CRIMS experiment. CRIMS is a new analytical method that appears to be particularly useful for metabolism studies

  18. RAPID AND AUTOMATED PROCESSING OF MALDI-FTICR/MS DATA FOR N-METABOLIC LABELING IN A SHOTGUN PROTEOMICS ANALYSIS.

    Science.gov (United States)

    Jing, Li; Amster, I Jonathan

    2009-10-15

    Offline high performance liquid chromatography combined with matrix assisted laser desorption and Fourier transform ion cyclotron resonance mass spectrometry (HPLC-MALDI-FTICR/MS) provides the means to rapidly analyze complex mixtures of peptides, such as those produced by proteolytic digestion of a proteome. This method is particularly useful for making quantitative measurements of changes in protein expression by using (15)N-metabolic labeling. Proteolytic digestion of combined labeled and unlabeled proteomes produces complex mixtures that with many mass overlaps when analyzed by HPLC-MALDI-FTICR/MS. A significant challenge to data analysis is the matching of pairs of peaks which represent an unlabeled peptide and its labeled counterpart. We have developed an algorithm and incorporated it into a compute program which significantly accelerates the interpretation of (15)N metabolic labeling data by automating the process of identifying unlabeled/labeled peak pairs. The algorithm takes advantage of the high resolution and mass accuracy of FTICR mass spectrometry. The algorithm is shown to be able to successfully identify the (15)N/(14)N peptide pairs and calculate peptide relative abundance ratios in highly complex mixtures from the proteolytic digest of a whole organism protein extract.

  19. Synthesis of specifically 15N- and 13C-labeled antitumor (2-Haloethyl)nitrosoureas. The study of their conformations in solution by nitrogen-15 and carbon-13 nuclear magnetic resonance and evidence for stereoelectronic control in their aqueous decomposition

    International Nuclear Information System (INIS)

    Lown, J.W.; Chauhan, S.M.S.

    1981-01-01

    The synthesis of certain specifically 15 N, 13 C, and 2 H isotope labeled 1-(2-chloroethyl)-3-alkyl-1-nitrosoureas (CENUs) is described. Spectroscopic examination of CENUs and their isotope-labeled counterparts by 1 H, 15 N, and 13 C NMR and infrared spectra indicates that they adopt preferred conformations in nonpolar aprotic solvents in which the NO group is aligned toward the 2-chloroethyl group. The result is in accord with the conformation of MeCCNU in the crystalline state derived from X-ray diffraction. The chemical shifts and coupling constants in the CENUs change with both solvent polarity and basicity. In aqueous phosphate buffer there is evidence for the formation of a tetrahedral intermediate, the conformation of which alters according to the reaction conditions and ultimately controls the formation of the aqueous decomposition products of CENUs. This is revealed most clearly by 13 C NMR of carbonyl- 13 C- and nitroso- 15 N-labeled BCNU and CCNU where two distinct 15 N-coupled 13 C doublets with different chemical shifts are observed. The rate of conformational change is comparable with the rate of decomposition of CENUs (via the second conformer) and may therefore represent the critical initial step of the latter process in vivo. The intermediacy of the postulated tetrahedral intermediates for CENUs is supported by observed 18 O exchange into the carbonyl group in 18 O-enriched water. Consideration of the conformations of the intermediates and of the alignment of the heteroatom lone pairs provides a satisfactory interpretation of the reactions of CENUs in aqueous solution as well as their pH dependence in terms of strict steroelectronic control and accounts for the formation of the observed products

  20. Removal of nitrite impurity from nitrate labeled with nitrogen-15

    International Nuclear Information System (INIS)

    Malone, J.P.; Stevens, R.J.

    1998-01-01

    Potassium nitrate labeled with 15 N is often used as a tracer in studies of N dynamics in soil and water systems. Typically, 0.8% NO 2 - impurity has been found in the batches of K 15 NO 3 enriched to 99 atom % excess 15 N that were purchased by our laboratory. Nitrite is an intermediate in several N cycling processes so its addition when adding NO 3 - could produce misleading results. We have developed a safe, simple, and inexpensive method to remove NO 2 - impurity from any NO 3 - solution in a water matrix. The principle is the oxidation of NO2- to NO 3 - by UV light in the presence of a heterogenous TiO 2 catalyst. A NO 2 - concentration of 0.2 mM in 100 mL of 0.2 M NO 3 - solution could be oxidized in 12 min using 0.5 g L -1 TiO 2 in a specially constructed photoreactor with a 75-W UV facial tanning lamp. For the routine removal of NO 2 - , use of the same TiO 2 concentration in a standard beaker worked equally well when the irradiation time was extended to 2.5 h. After irradiation, the TiO2 is easily and totally removed from the solution by membrane filtration. (author)

  1. Biosynthetic preparation of L-[13C]- and [15N]glutamate by Brevibacterium flavum

    International Nuclear Information System (INIS)

    Walker, T.E.; London, R.E.

    1987-01-01

    The biosynthesis of isotopically labeled L-glutamic acid by the microorganism Brevibacterium flavum was studied with a variety of carbon-13-enriched precursors. The purpose of this study was twofold: (i) to develop techniques for the efficient preparation of labeled L-glutamate with a variety of useful labeling patterns which can be used for other metabolic studies, and (ii) to better understand the metabolic events leading to label scrambling in these strains. B. flavum, which is used commercially for the production of monosodium glutamate, has the capability of utilizing glucose or acetate as a sole carbon source, and important criterion from the standpoint of developing labeling strategies. Unfortunately, singly labeled glucose precursors lead to excessive isotopic dilution which reduces their usefulness. Studies with [3- 13 C]pyruvate indicate that this problem can in principle be overcome by using labeled three-carbon precursors; however, conditions could not be found which would lead to an acceptable yield of isotopically labeled L-glutamate. In contrast, [1- 13 C]- or [2- 13 C]acetate provides relatively inexpensive, readily available precursors for the production of selectively labeled, high enriched L-glutamate. The preparation of L-[ 15 N]glutamate from [ 15 N]ammonium sulfate was carried out and is a very effective labeling strategy. Analysis of the isotopic distribution in labeled glutamate provides details about the metabolic pathways in these interesting organisms

  2. 16 CFR 1500.15 - Labeling of fire extinguishers.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Labeling of fire extinguishers. 1500.15 Section 1500.15 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT...)(1), the signal word “Danger” and the statement of hazard “Poisonous gases formed when used to...

  3. N isotopes and N cycle in the TieShanPing subtropical forest ecosystem, Southwestern China.

    Science.gov (United States)

    Jiang, Chun-lai; Zhang, Xiao-Shan

    2009-07-01

    Nitrogen is essential for forest growth and forest stand development. It is commonly a limited factor for forest productivity. We examined delta (15)N values in soils and plants by studying the sources of N used by vegetation and cycles of N in a 43-year-old plantation of the TieShanPing forest ecosystem in southwestern China, dominated by massone pine (Pinus massoniana). The N concentration of plant materials ranges from 1.1% to 2.2%. The nitrogen concentration of P. massoniana was 1.3% while soils showed the concentration of 0.04-0.15%. Regarding natural abundance of (15)N, large significant variation (-6.0 per thousand to -3.8 per thousand) in delta (15)N values was observed among shrub and tree leaves. delta (15)N values were also significantly varied from -4.7 per thousand to -3.8 per thousand among the pioneer species in the plantation. Soil delta (15)N values (3.1-6.3 per thousand) were significantly enriched compared to those values in plant samples. Despite the negative delta (15)N values of the vegetation cover, the high delta (15)N values in the topsoil indicate that return of N to soils by litter-fall is minimal on TieShanPing and the present forests do not change very much the soil (15)N signals at the surface layer. The positive delta (15)N values may also indicate large N losses from the soil system vial leaching, volatilization and plant uptake.

  4. 15N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification

    International Nuclear Information System (INIS)

    Poth, M.; Focht, D.D.

    1985-01-01

    A series of 15 N isotope tracer experiments showed that Nitrosomonas europaea produces nitrous oxide only under oxygen-limiting conditions and that the labeled N from nitrite, but not nitrate, is incorporated into nitrous oxide, indicating the presence of the denitrifying enzyme nitrite reductase. A kinetic analysis of the m/z 44, 45, and 46 nitrous oxide produced by washed cell suspensions of N. europaea when incubated with 4 mM ammonium (99% 14 N) and 0.4 mM nitrite (99% 15 N) was performed. No labeled nitirte was reduced to ammonium. All labeled material added was accounted for as either nitrite or nitrous oxide. The hypothesis that nitrous oxide is produced directly from nitrification was rejected since (i) it does not allow for the large amounts of double-labeled (m/z 46) nitrous oxide observed; (ii) the observed patterns of m/z 44, 45, 46 nitrous oxide were completely consistent with a kinetic analysis based on denitrification as the sole mechanism of nitrous oxide production but not with a kinetic analysis based on both mechanisms; (iii) the asymptotic ratio of m/z 45 to m/z 46 nitrous oxide was consistent with denitrification kinetics but inconsistent with nitrification kinetics, which predicted no limit to m/z 45 production. It is concluded that N. europaea is a denitrifier which, under conditions of oxygen stress, uses nitrite as a terminal electron acceptor and produces nitrous oxide

  5. Effect of 15n-labeled hairy vetch and nitrogen fertilization on maize nutrition and yield under no-tillage

    International Nuclear Information System (INIS)

    Almeida Acosta, Jose Alan de; Amado, Telmo Jorge Carneiro; Silva, Leandro Souza da; Silveira Nicoloso, Rodrigo da

    2011-01-01

    This study evaluated the effect of hairy vetch (Vicia villosa Roth) as cover crop on maize nutrition and yield under no tillage using isotope techniques. For this purpose, three experiments were carried out: quantification of biological nitrogen fixation (BNF) in hairy vetch; estimation of the N release rate from hairy vetch residues on the soil surface; quantification of 15 N recovery by maize from labeled hairy vetch under three rates of mineral N fertilization. This two year field experiment was conducted on a sandy Acrisol (FAO soil classification) or Argissolo Vermelho distrofico arenico (Brazilian Soil Classification), at a mean annual temperature of 18 deg C and mean annual rainfall of 1686 mm. The experiment was arranged in a double split-plot factorial design with three replications. Two levels of hairy vetch residue (50 and 100 % of the aboveground biomass production) were distributed on the surface of the main plots (5 x 12 m). Maize in the sub-plots (5 x 4 m) was fertilized with three N rates (0, 60, and 120 kg ha -1 N), with urea as N source. The hairy vetch-derived N recovered by maize was evaluated in microplots (1.8 x 2.2 m). The BFN of hairy vetch was on average 72.4 %, which represents an annual input of 130 kg ha -1 of atmospheric N. The N release from hairy vetch residues was fast, with a release of about 90 % of total N within the first four weeks after cover crop management and soil residue application. The recovery of hairy vetch 15 N by maize was low, with an average of 12.3 % at harvest. Although hairy vetch was not directly the main source of maize N nutrition, the crop yield reached 8.2 Mg ha -1 , without mineral fertilization. There was an apparent synergism between hairy vetch residue application and the mineral N fertilization rate of 60 kg ha -1 , confirming the benefits of the combination of organic and inorganic N sources for maize under no tillage. (author)

  6. Nitrogen cycling in a forest stream determined by a 15N tracer addition

    Science.gov (United States)

    Patrick J. Mullholland; Jennifer L. Tank; Diane M. Sanzone; Wilfred M. Wollheim; Bruce J. Peterson; Jackson R. Webster; Judy L. Meyer

    2000-01-01

    Nitrogen uptake and cycling was examined using a six-week tracer addition of 15N-labeled ammonium in early spring in Waer Branch, a first-order deciduous forest stream in eastern Tennessee. Prior to the 15N addition, standing stocks of N were determined for the major biomass compartments. During and after the addition,

  7. True cooking aroma or artefact. 15N gives the answer

    International Nuclear Information System (INIS)

    Metro, F.; Boudaud, N.; Dumont, J.P.

    1994-01-01

    In order to determine the respective contributions of the various nitrous precursor families in aroma preparations, the usually added amino acids were substituted with 15 N isotope labelled homologous components. Results concerning isotope ratios for the volatile fraction nitrous components collected from poultry meat aromatic preparations, are presented. Terminal product labelling appears to allow for a better determination of the substrate and functional additive contributions. 4 figs., 6 refs

  8. Comparison of three 15N methods to correct for microbial contamination when assessing in situ protein degradability of fresh forages.

    Science.gov (United States)

    Kamoun, M; Ammar, H; Théwis, A; Beckers, Y; France, J; López, S

    2014-11-01

    The use of stable (15)N as a marker to determine microbial contamination in nylon bag incubation residues to estimate protein degradability was investigated. Three methods using (15)N were compared: (15)N-labeled forage (dilution method, LF), (15)N enrichment of rumen solids-associated bacteria (SAB), and (15)N enrichment of rumen liquid-associated bacteria (LAB). Herbage from forages differing in protein and fiber contents (early-cut Italian ryegrass, late-cut Italian ryegrass, and red clover) were freeze-dried and ground and then incubated in situ in the rumen of 3 steers for 3, 6, 12, 24, and 48 h using the nylon bag technique. The (15)N-labeled forages were obtained by fertilizing the plots where herbage was grown with (15)NH4 (15)NO3. Unlabeled forages (obtained from plots fertilized with NH4NO3) were incubated at the same time that ((15)NH4)2SO4 was continuously infused into the rumen of the steers, and then pellets of labeled SAB and LAB were isolated by differential centrifugation of samples of ruminal contents. The proportion of bacterial N in the incubation residues increased from 0.09 and 0.45 g bacterial N/g total N at 3 h of incubation to 0.37 and 0.85 g bacterial N/g total N at 48 h of incubation for early-cut and late-cut ryegrass, respectively. There were differences (P forage (late-cut ryegrass) was 0.51, whereas the corrected values were 0.85, 0.84, and 0.77 for the LF, SAB, and LAB methods, respectively. With early-cut ryegrass and red clover, the differences between uncorrected and corrected values ranged between 6% and 13%, with small differences among the labeling methods. Generally, methods using labeled forage or labeled SAB and LAB provided similar corrected degradability values. The accuracy in estimating the extent of degradation of protein in the rumen from in situ disappearance curves is improved when values are corrected for microbial contamination of the bag residue.

  9. Improved diffusion technique for 15N:14N analysis of ammonium and nitrate from aqueous samples by stable isotope spectrometry

    International Nuclear Information System (INIS)

    Goerges, T.; Dittert, K.

    1998-01-01

    Nitrogen (N) isotope ratio mass spectrometry (IRMS) by Dumas combustion and continuous flow mass spectrometry has become a wide-spread tool for the studies of N turnover. The speed and labor efficiency of 15N determinations from aqueous solutions such as soil solutions or soil extracts are often limited by sample preparation. Several procedures for the conversion of dissolved ammonium (NH4+) or nitrate NO3- to gaseous ammonia and its subsequent trapping in acidified traps have been elaborated in the last decades. They are based on the use of acidified filters kept either above the respective solution or in floating PTFE envelopes. In this paper, we present an improved diffusion method with a fixed PTFE trap. The diffusion containers are continuously kept in a vertical rotary shaker. Quantitative diffusion can thus be achieved in only three days. For solutions with NH4+ levels of only 1 mg N kg-1 and NO3- concentrations of 12 mg N kg-1, recovery rates of 98.8-102% were obtained. By addition of 15N labeled and non-labeled NH4+ and NO3- it was shown that no cross-contamination from NH4+ to NO3- or vice versa takes place even when one form is labeled to more than 1 at %15N while the other form has natural 15N content. The method requires no intermediate step of ammonia volatilization before NO3- conversion

  10. Incorporation of 15N-inorganic nitrogen into free-amino acids in germinating corn

    International Nuclear Information System (INIS)

    Samukawa, Kisaburo; Yamaguchi, Masuro

    1979-01-01

    Incorporation of 15 N-labeled compounds, (K 15 NO 3 ) and ( 15 NH 4 ) 2 SO 4 , into free-amino acids was measured in germinating corn. Sterilized seeds of sweet corn (Choko No. 865) were sown on the filter papers soaked in 10 ml of the solution containing one of the labeled compounds (40 ppm N, 99 atom % excess) in petri dishes and germinated at 30 deg C. After 48 hours and 72 hours, 15 N-incorporation was measured in 5 seedlings selected owing to uniform growth. A GC-MS was used for measuring the ratio of 15 N isotopes present in free-amino acids. 15 N incorporation into free-amino acids hardly occurred when corn was germinated in the solution containing K 15 NO 3 , which suggested that endogenous nitrogen was used during the early germination stage of corn when nitrate is present. Incorporation into amino acids was greater when corn was germinated in the medium containing ( 15 NH 4 ) 2 SO 4 , than the case of the solution containing K 15 NO 3 . When corn was germinated in the solution containing ( 15 NH 4 ) 2 SO 4 , assimilation of 15 N into asparagine or aspartic acid was comparatively higher than that into the other amino acids, though the incorporation rate was low. Thus, in intact germinating corn, the hydrolyzed product of protein was utilized for germination with priority, and dependence on exogenous nitrogen was low. (Kaihara, S.)

  11. 15N Kinetic Analysis of N2O Production by Nitrosomonas europaea: an Examination of Nitrifier Denitrification

    OpenAIRE

    Poth, Mark; Focht, Dennis D.

    1985-01-01

    A series of 15N isotope tracer experiments showed that Nitrosomonas europaea produces nitrous oxide only under oxygen-limiting conditions and that the labeled N from nitrite, but not nitrate, is incorporated into nitrous oxide, indicating the presence of the “denitrifying enzyme” nitrite reductase. A kinetic analysis of the m/z 44, 45, and 46 nitrous oxide produced by washed cell suspensions of N. europaea when incubated with 4 mM ammonium (99% 14N) and 0.4 mM nitrite (99% 15N) was performed....

  12. 1H, 15N and 13C NMR Assignments of Mouse Methionine Sulfoxide Reductase B2

    Science.gov (United States)

    Breivik, Åshild S.; Aachmann, Finn L.; Sal, Lena S.; Kim, Hwa-Young; Del Conte, Rebecca; Gladyshev, Vadim N.; Dikiy, Alexander

    2011-01-01

    A recombinant mouse methionine-r-sulfoxide reductase 2 (MsrB2ΔS) isotopically labeled with 15N and 15N/13C was generated. We report here the 1H, 15N and 13C NMR assignments of the reduced form of this protein. PMID:19636904

  13. Methods of 15N tracer research in biological systems

    International Nuclear Information System (INIS)

    Hirschberg, K.; Faust, H.

    1985-01-01

    The application of the stable isotope 15 N is of increasing importance in different scientific disciplines, especially in medicine, agriculture, and the biosciences. The close correlation between the growing interest and improvements of analytical procedures resulted in remarkable advances in the 15 N tracer technique. On the basis of the latest results of 15 N tracer research in life sciences and agriculture methods of 15 N tracer research in biological systems are compiled. The 15 N methodology is considered under three headings: Chemical analysis with a description of methods of sample preparation (including different separation and isolation methods for N-containing substances of biological and agricultural origin) and special procedures converting ammonia to molecular nitrogen. Isotopic analysis with a review on the most important methods of isotopic analysis of nitrogen: mass spectrometry (including the GC-MS technique), emission spectrometry, NMR spectroscopy, and other analytical procedures. 15 N-tracer techniques with a consideration of the role of the isotope dilution analysis as well as different labelling techniques and the mathematical interpretation of tracer data (modelling, N turnover experiments). In these chapters also sources of errors in chemical and isotopic analysis, the accuracy of the different methods and its importance on tracer experiments are discussed. Procedures for micro scale 15 N analysis and aspects of 15 N analysis on the level of natural abundance are considered. Furthermore some remarks on isotope effects in 15 N tracer experiments are made. (author)

  14. Synthesis 1-(5-oxohexyl)-3,7-dimethyl-xanthyne labelled with tritium into 8 position from purinic ring

    International Nuclear Information System (INIS)

    Mihaila, V.; Corol, D.

    1999-01-01

    This paper presents the work on synthesis of 1-(5-oxohexyl)-3,7-dimethyl-xanthyne labelled with tritium into 8 position from purinic ring. The obtaining of tritium labelled compound is realized by initial labelling of theobromine with tritium into 8 position and by coupling the purinic derivative to 1-Br-5-hexanone. Theobromine-8- 3 H was obtained by the bromination of theobromine with elementary bromine and after that the bromine was substituted with tritium i.e.: C 7 H 8 O 2 N 4 theobromine Br 2 /(-HBr) C 7 H 7 O 2 N 4 Br (8-Br-theobromine) ( 3 H 2 /cat)/(-KOH) C 7 H 7 3 HO 2 N 4 (theobromine-8- 3 H). Theobromine-8- 3 H was purified by thin layer chromatography with a solvent system i.e. n-BuOH:AcOH:H 2 O (4:1:1, v/v/v) and characterized radiochemically. It was then diluted by unlabelled theobromine to specific activity of 50 mCi/g. After dilution, theobromine-8- 3 H was coupled to 1-Br-5-hexanone i.e.: C 7 H 7 3 HO 2 N 4 (theobromine-8- 3 H) + Br-(CH 2 ) 4 -CO-CH 3 (1-Br-5-hexanone) (NaOH)/(CH 3 OH) C 13 H 17 3 HO 3 N 4 (1-(5-oxohexyl)- 3,7-dimethyl-xanthine-8- 3 H). The raw compound was purified by recrystallization from 2-propanol and it was characterized radiochemically. (authors)

  15. Effect of method of N-application and modified urea on N-15 recovery by rice

    International Nuclear Information System (INIS)

    Soliman, S.M.; Abdelmonem, M.A.S.

    1995-01-01

    Rice is a very responsive crop to nitrogen fertilizer, but the efficiency of the applied N-fertilizer is low. Greenhouse experiment conducted to evaluate several methods to improve fertilizer efficiency and reduce N-losses in rice fields. N-15 labelled urea was applied to 10 kg soils in pots, urea was applied alone, with addition of two urease inhibitors (NBPT and HQ), with addition of nitrification inhibitor (DCD),or with the combination of both inhibitors. The fertilizers were applied either broadcast on soil surface or at depth of 8 cm below the surface. At maturity, plants were separated into grain and straw, dried and weighted. Soil and plant samples were analyzed for total N and N-15 excess. Both fertilizer placement and inhibitor application significantly increased straw and grain yield, as well as N-uptake. Nitrogen derived from fertilizer (%Ndff) was more than doubled, when urea was applied deep and in combination with inhibitors. Plant recovery of N-15 labelled urea ranged from 17% to 75% according to treatment. Regardless of inhibitors application, plant recovery was increased from 39% to 65% when urea was applied at depth of 8 cm. Approximately 2/3 of the applied urea (64%)was lost when urea was applied alone. Those losses were reduced down to 12% with deep placement and inhibitor application. The two management practices show significant effect on minimizing N-losses and increasing plant recovery. 1 fig., 3 tabs

  16. Effect of method of N-application and modified urea on N-15 recovery by rice

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, S M; Abdelmonem, M A.S. [Soil and Water Dept., Atomic Energy Auth., Cairo, (Egypt)

    1995-10-01

    Rice is a very responsive crop to nitrogen fertilizer, but the efficiency of the applied N-fertilizer is low. Greenhouse experiment conducted to evaluate several methods to improve fertilizer efficiency and reduce N-losses in rice fields. N-15 labelled urea was applied to 10 kg soils in pots, urea was applied alone, with addition of two urease inhibitors (NBPT and HQ), with addition of nitrification inhibitor (DCD),or with the combination of both inhibitors. The fertilizers were applied either broadcast on soil surface or at depth of 8 cm below the surface. At maturity, plants were separated into grain and straw, dried and weighted. Soil and plant samples were analyzed for total N and N-15 excess. Both fertilizer placement and inhibitor application significantly increased straw and grain yield, as well as N-uptake. Nitrogen derived from fertilizer (%Ndff) was more than doubled, when urea was applied deep and in combination with inhibitors. Plant recovery of N-15 labelled urea ranged from 17% to 75% according to treatment. Regardless of inhibitors application, plant recovery was increased from 39% to 65% when urea was applied at depth of 8 cm. Approximately 2/3 of the applied urea (64%)was lost when urea was applied alone. Those losses were reduced down to 12% with deep placement and inhibitor application. The two management practices show significant effect on minimizing N-losses and increasing plant recovery. 1 fig., 3 tabs.

  17. Studies on 14C labelled chlorpyrifos in model marine ecosystem

    International Nuclear Information System (INIS)

    Pandit, G.G.; Mohan Rao, A.M.; Kale, S.P.; Murthy, N.B.K.; Raghu, K.

    1997-01-01

    Chlorpyrifos is one of the widely used organophosphorus insecticides in tropical countries. Experiments were conducted with 14 C labelled chlorpyrifos to study the distribution of this compound in model marine ecosystem. Less than 50 per cent of the applied activity remained in water in 24 h. Major portion of the applied chlorpyrifos (about 4.2 % residue per g) accumulated into the clams with sediment containing a maximum of 5 to 6 per cent of applied compound. No degradation of chlorpyrifos was observed in water or sediment samples. However, metabolic products were formed in clams. (author). 4 refs., 3 tabs

  18. Nitrogen-15 natural abundance of different soil N pools as a tool for assessing N transformation processes in alpine soils

    Science.gov (United States)

    Makarov, Mikhail; Malysheva, Tatiana; Tiunov, Alexei; Kadulin, Maxim; Maslov, Mikhail

    2017-04-01

    Nitrogen availability, net N mineralization, nitrification and 15N natural abundance of total soil N and small soil N pools (N-NH4+, N-NO3-, DON and microbial biomass N) were studied in a toposequence of alpine ecosystems in the Northern Caucasus. The toposequence was represented by (1) low productive alpine lichen heath (ALH) of the wind-exposed ridge and upper slope; (2) more productive Festuca varia grassland (FG) of the middle slope; (3) most productive Geranium gymnocaulon/Hedysarum caucasicum meadow (GHM) of the lower slope and (4) low productive snow bed community (SBC) of the slope bottom. Nitrogen transformation in the alpine soils produces distinct N pools with different 15N enrichment: DON/microbial biomass N > total N > N-NH4+ > N-NO3-. Grassland and meadow soils of the middle part of the toposequence are characterized by higher nitrogen transformation activities and higher δ15 values of total N and N-NH4+. Field incubation of alpine soils increased δ15N of N-NH4+ from -2.6 - +2.0‰ to +6.1 - +15.7‰. The N-NO3-produced in the incubation experiment had extremely low (negative) δ15N values (up to -14‰). We found a positive correlation between δ15N of different soil N pools (total N, N-NH4+ and N-NO3-) and net N mineralization and nitrification. Nitrification controls the formation of 15N enriched N-NH4+ pool while N mineralization probably had an important role in regulation of 15N enrichment of DON pool in alpine soils. Overall, our results support the hypothesis that 15N is more enriched in N-rich and more depleted in N-poor ecosystems. We conclude that δ15N values of different soil N pools could be a good indicator of microbial N transformation in alpine soils of the Northern Caucasus. Acknowledgement: This study was supported by Russian Science Foundation (16-14-10208).

  19. Syntheses of 18F-labeled reduced haloperidol and 11C-labeled reduced 3-N-methylspiperone

    International Nuclear Information System (INIS)

    Ravert, H.T.; Dannals, R.F.; Wilson, A.A.; Wong, D.F.; Wagner, H.N. Jr.

    1991-01-01

    18 F-Labeled reduced haloperidol and 11 C-labeled reduced 3-N-methylspiperone were synthesized in a convenient and quantitative one step reduction from 18 F-labeled haloperidol and 11 C-labeled N-methylspiperone, respectively. Both products were purified by semipreparative HPLC and were obtained at high specific activity and radiochemical purity. (author)

  20. Effect of {sup 15}n-labeled hairy vetch and nitrogen fertilization on maize nutrition and yield under no-tillage

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Acosta, Jose Alan de [Drakkar Solos, Santa Maria, RS (Brazil); Amado, Telmo Jorge Carneiro; Silva, Leandro Souza da, E-mail: tamado@smail.ufsm.b, E-mail: leandro@smail.ufsm.b [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Soil Dept.; Neergaard, Andreas de; Vinther, Mads, E-mail: adn@life.ku.d [University of Copenhagen (Denmark); Silveira Nicoloso, Rodrigo da, E-mail: rodrigo.nicoloso@cnpsa.embrapa.b [Embrapa Swine and Poultry, Concordia, SC (Brazil)

    2011-07-15

    This study evaluated the effect of hairy vetch (Vicia villosa Roth) as cover crop on maize nutrition and yield under no tillage using isotope techniques. For this purpose, three experiments were carried out: quantification of biological nitrogen fixation (BNF) in hairy vetch; estimation of the N release rate from hairy vetch residues on the soil surface; quantification of {sup 15}N recovery by maize from labeled hairy vetch under three rates of mineral N fertilization. This two year field experiment was conducted on a sandy Acrisol (FAO soil classification) or Argissolo Vermelho distrofico arenico (Brazilian Soil Classification), at a mean annual temperature of 18 deg C and mean annual rainfall of 1686 mm. The experiment was arranged in a double split-plot factorial design with three replications. Two levels of hairy vetch residue (50 and 100 % of the aboveground biomass production) were distributed on the surface of the main plots (5 x 12 m). Maize in the sub-plots (5 x 4 m) was fertilized with three N rates (0, 60, and 120 kg ha{sup -1} N), with urea as N source. The hairy vetch-derived N recovered by maize was evaluated in microplots (1.8 x 2.2 m). The BFN of hairy vetch was on average 72.4 %, which represents an annual input of 130 kg ha{sup -1} of atmospheric N. The N release from hairy vetch residues was fast, with a release of about 90 % of total N within the first four weeks after cover crop management and soil residue application. The recovery of hairy vetch {sup 15}N by maize was low, with an average of 12.3 % at harvest. Although hairy vetch was not directly the main source of maize N nutrition, the crop yield reached 8.2 Mg ha{sup -1}, without mineral fertilization. There was an apparent synergism between hairy vetch residue application and the mineral N fertilization rate of 60 kg ha{sup -1}, confirming the benefits of the combination of organic and inorganic N sources for maize under no tillage. (author)

  1. Towards fully automated structure-based NMR resonance assignment of 15N-labeled proteins from automatically picked peaks

    KAUST Repository

    Jang, Richard; Gao, Xin; Li, Ming

    2011-01-01

    In NMR resonance assignment, an indispensable step in NMR protein studies, manually processed peaks from both N-labeled and C-labeled spectra are typically used as inputs. However, the use of homologous structures can allow one to use only N-labeled NMR data and avoid the added expense of using C-labeled data. We propose a novel integer programming framework for structure-based backbone resonance assignment using N-labeled data. The core consists of a pair of integer programming models: one for spin system forming and amino acid typing, and the other for backbone resonance assignment. The goal is to perform the assignment directly from spectra without any manual intervention via automatically picked peaks, which are much noisier than manually picked peaks, so methods must be error-tolerant. In the case of semi-automated/manually processed peak data, we compare our system with the Xiong-Pandurangan-Bailey- Kellogg's contact replacement (CR) method, which is the most error-tolerant method for structure-based resonance assignment. Our system, on average, reduces the error rate of the CR method by five folds on their data set. In addition, by using an iterative algorithm, our system has the added capability of using the NOESY data to correct assignment errors due to errors in predicting the amino acid and secondary structure type of each spin system. On a publicly available data set for human ubiquitin, where the typing accuracy is 83%, we achieve 91% accuracy, compared to the 59% accuracy obtained without correcting for such errors. In the case of automatically picked peaks, using assignment information from yeast ubiquitin, we achieve a fully automatic assignment with 97% accuracy. To our knowledge, this is the first system that can achieve fully automatic structure-based assignment directly from spectra. This has implications in NMR protein mutant studies, where the assignment step is repeated for each mutant. © Copyright 2011, Mary Ann Liebert, Inc.

  2. Towards fully automated structure-based NMR resonance assignment of 15N-labeled proteins from automatically picked peaks

    KAUST Repository

    Jang, Richard

    2011-03-01

    In NMR resonance assignment, an indispensable step in NMR protein studies, manually processed peaks from both N-labeled and C-labeled spectra are typically used as inputs. However, the use of homologous structures can allow one to use only N-labeled NMR data and avoid the added expense of using C-labeled data. We propose a novel integer programming framework for structure-based backbone resonance assignment using N-labeled data. The core consists of a pair of integer programming models: one for spin system forming and amino acid typing, and the other for backbone resonance assignment. The goal is to perform the assignment directly from spectra without any manual intervention via automatically picked peaks, which are much noisier than manually picked peaks, so methods must be error-tolerant. In the case of semi-automated/manually processed peak data, we compare our system with the Xiong-Pandurangan-Bailey- Kellogg\\'s contact replacement (CR) method, which is the most error-tolerant method for structure-based resonance assignment. Our system, on average, reduces the error rate of the CR method by five folds on their data set. In addition, by using an iterative algorithm, our system has the added capability of using the NOESY data to correct assignment errors due to errors in predicting the amino acid and secondary structure type of each spin system. On a publicly available data set for human ubiquitin, where the typing accuracy is 83%, we achieve 91% accuracy, compared to the 59% accuracy obtained without correcting for such errors. In the case of automatically picked peaks, using assignment information from yeast ubiquitin, we achieve a fully automatic assignment with 97% accuracy. To our knowledge, this is the first system that can achieve fully automatic structure-based assignment directly from spectra. This has implications in NMR protein mutant studies, where the assignment step is repeated for each mutant. © Copyright 2011, Mary Ann Liebert, Inc.

  3. δ15N in the turtle grass from the Mexican Caribbean

    Science.gov (United States)

    Talavera-Saenz, A.; Sanchez, A.; Ortiz-Hernandez, M.

    2013-05-01

    Nutrient inputs associated with population growth threaten the integrity of coastal ecosystems. To assess the rapid increase in tourism, we compared the δ15N from Thalassia testudinum collected at sites with different levels of tourism development and population to detect the N inputs of wastewater discharge (WD) along the coast of Quintana Roo. The contributions of nitrogen enriched in 15N are directly related to the increase of WD inputs in areas of high tourism development (Nichupte Lagoon in Cancun, >3 million tourists per year from 2007 to 2011 and 0.7 million of resident population) and decreased towards Bahia Akumal and Tulum (>3 million tourists per year from 2007 to 2011 and 0.15 million of resident population). The δ15N from T. testudinum was significantly lower at Mahahual and Puerto Morelos (about 0.4 million tourists per year in 2007 to 2011 and 0.25 million of resident population) than other the sites. In areas of the lowest development and with tourist activity restricted and small population, such as the Yum Balam Reserve and Sian Ka'an Biosphere Reserve, the δ15N values were in much higher enrichment that Mahahual and Puerto Morelos. Therefore is suggested that Mahahual and Puerto Morelos may be used for baseline isotopic monitoring, over environmental pressure on the reef lagoon ecosystem, where tourist activities and population are growing very slow rate. The anthropogenic N input has the potential to impact, both environmentally and economically, the seagrass meadows and the coral reefs along the coast of Quintana Roo and the Caribbean.

  4. Tracing the cycling and fate of the explosive 2,4,6-trinitrotoluene in coastal marine systems with a stable isotopic tracer, 15N-[TNT

    Science.gov (United States)

    Smith, Richard W.; Vlahos, Penny; Böhlke, John Karl; Ariyarathna, Thivanka; Ballentine, Mark; Cooper, Christopher; Fallis, Stephen; Groshens, Thomas J.; Tobias, Craig

    2015-01-01

    2,4,6-Trinitrotoluene (TNT) has been used as a military explosive for over a hundred years. Contamination concerns have arisen as a result of manufacturing and use on a large scale; however, despite decades of work addressing TNT contamination in the environment, its fate in marine ecosystems is not fully resolved. Here we examine the cycling and fate of TNT in the coastal marine systems by spiking a marine mesocosm containing seawater, sediments, and macrobiota with isotopically labeled TNT (15N-[TNT]), simultaneously monitoring removal, transformation, mineralization, sorption, and biological uptake over a period of 16 days. TNT degradation was rapid, and we observed accumulation of reduced transformation products dissolved in the water column and in pore waters, sorbed to sediments and suspended particulate matter (SPM), and in the tissues of macrobiota. Bulk δ15N analysis of sediments, SPM, and tissues revealed large quantities of 15N beyond that accounted for in identifiable derivatives. TNT-derived N was also found in the dissolved inorganic N (DIN) pool. Using multivariate statistical analysis and a 15N mass balance approach, we identify the major transformation pathways of TNT, including the deamination of reduced TNT derivatives, potentially promoted by sorption to SPM and oxic surface sediments.

  5. Mineralization of nitrogen from nitrogen-15 labeled crop residues and utilization by rice

    International Nuclear Information System (INIS)

    Norman, R.J.; Gilmour, J.T.; Wells, B.R.

    1990-01-01

    The availability of N from the residues of the previous crop to the subsequent rice (Oryza sativa L.) crop is largely unknown. The objectives of this study were to (1) measure the mineralization of N from 15 N-labeled rice, soybean (Glycine max L.), and wheat (Triticum aestivum L.) residues and the uptake by a subsequent rice crop; and (2) compare the 15 N tracer method with the standard fertilizer-N response method used in field studies to quantify the N contribution from the crop residue to the next crop. Nitrogen mineralization from decomposing crop residues was measured by soil sampling prior to seeding the rice crop and after seeding by plant sampling the rice at maturity. The minimum estimate of the amount of residue N mineralized from the time of residue incorporation until rice harvest was 9, 52, and 38% of the rice, soybean, and wheat residue N, respectively. The amount of residue N recovered in the rice crop was 3, 11, and 37% of the rice, soybean, and wheat residue N, respectively. The lower the C/N ratio and the higher the amount of N in the residue, the lower was the amount of residue N recovered in the soil organic fraction at harvest and the higher was the amount of residue N mineralized. The 15 N tracer method compared favorably with the fertilizer N response method when the uptake efficiency of the fertilizer N was taken into account

  6. Use of /sup 15/N in following organic matter turnover, with specific reference to rotation systems

    Energy Technology Data Exchange (ETDEWEB)

    Ladd, J N [Commonwealth Scientific and Industrial Research Organization, Glen Osmond (Australia). Div. of Soils

    1981-01-01

    The results of this experiment indicate that the use of the technique described, (based on the degree of /sup 15/N-labelling of an N/sub 2/ fixer and a non-fixer), may be of value in assessing N/sub 2/ fixation in the field by legumes, but it is apparent that there are some problems to be overcome. Analyses of the whole plant are necessary, since the proportions of legume N due to N/sub 2/ fixation vary with the plant part. The extent to which legumes take up available N from the soil obviously will vary with soil profile and plant properties; and they will be affected by sward density and competition from other plants. These latter factors will increase the difficulty of using this method for assessing N/sub 2/ fixation by legumes in grazed pastures, but probably they would not be big problems when applying the method to grain legume crops. It is important that, in comparing the extent of labelling of the N of fixing and non-fixing plants, both types of plants should have access to soil inorganic-N of the same enrichment. This will be difficult to achieve under field conditions. However soils which contain relatively stable /sup 15/N-labelled organic residues may yield NO/sub 3/-N of tolerably constant enrichments. An experiment is in progress at Avon in which soils, amended 15 months previously with /sup 15/N-labelled legume residues and then cropped to wheat, will remain in situ and will be sown with fixing and non-fixing plants during the 1980 and 1981 seasons. These soils may prove to be suitable for measuring N/sub 2/ fixation in the field.

  7. Endogenous and exogenous control of ecosystem function: N cycling in headwater streams

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, Patrick J [ORNL; Valett, H. Maurice [Virginia Polytechnic Institute and State University (Virginia Tech); Thomas, Steve [University of Nebraska; Webster, Jackson [Virginia Polytechnic Institute and State University (Virginia Tech); Dahm, Cliff [University of New Mexico, Albuquerque; Fellows, Christine [Griffith University, Nathan, Queensland, Australia; Crenshaw, Chelsea [University of New Mexico, Albuquerque; Peterson, Chris G. [Loyola University

    2008-01-01

    Allochthonous inputs act as resource subsidies to many ecosystems, where they exert strong influences on metabolism and material cycling. At the same time, metabolic theory proposes endogenous thermal control independent of resource supply. To address the relative importance of exogenous and endogenous influences, we quantified spatial and temporal variation in ecosystem metabolism and nitrogen (N) uptake using seasonal releases of {sup 15}N as nitrate in six streams differing in riparian-stream interaction and metabolic character. Nitrate removal was quantified using a nutrient spiraling approach based on measurements of downstream decline in {sup 15}N flux. Respiration (R) and gross primary production (GPP) were measured with whole-stream diel oxygen budgets. Uptake and metabolism metrics were addressed as z scores relative to site means to assess temporal variation. In open-canopied streams, areal uptake (U; {micro}g N {center_dot} m{sup -2} {center_dot} s{sup -1}) was closely related to GPP, metabolic rates increased with temperature, and R was accurately predicted by metabolic scaling relationships. In forested streams, N spiraling was not related to GPP; instead, uptake velocity (v{sub f}; mm/s) was closely related to R. In contrast to open-canopied streams, N uptake and metabolic activity were negatively correlated to temperature and poorly described by scaling laws. We contend that streams differ along a gradient of exogenous and endogenous control that relates to the relative influences of resource subsidies and in-stream energetics as determinants of seasonal patterns of metabolism and N cycling. Our research suggests that temporal variation in the propagation of ecological influence between adjacent systems generates phases when ecosystems are alternatively characterized as endogenously and exogenously controlled.

  8. Endogenous and exogenous control of ecosystem function: N cycling in headwater streams.

    Science.gov (United States)

    Valett, H M; Thomas, S A; Mulholland, P J; Webster, J R; Dahm, C N; Fellows, C S; Crenshaw, C L; Peterson, C G

    2008-12-01

    Allochthonous inputs act as resource subsidies to many ecosystems, where they exert strong influences on metabolism and material cycling. At the same time, metabolic theory proposes endogenous thermal control independent of resource supply. To address the relative importance of exogenous and endogenous influences, we quantified spatial and temporal variation in ecosystem metabolism and nitrogen (N) uptake using seasonal releases of 15N as nitrate in six streams differing in riparian-stream interaction and metabolic character. Nitrate removal was quantified using a nutrient spiraling approach based on measurements of downstream decline in 15N flux. Respiration (R) and gross primary production (GPP) were measured with whole-stream diel oxygen budgets. Uptake and metabolism metrics were addressed as z scores relative to site means to assess temporal variation. In open-canopied streams, areal uptake (U; microg N x m(-2) x s(-1)) was closely related to GPP, metabolic rates increased with temperature, and R was accurately predicted by metabolic scaling relationships. In forested streams, N spiraling was not related to GPP; instead, uptake velocity (v(f); mm/s) was closely related to R. In contrast to open-canopied streams, N uptake and metabolic activity were negatively correlated to temperature and poorly described by scaling laws. We contend that streams differ along a gradient of exogenous and endogenous control that relates to the relative influences of resource subsidies and in-stream energetics as determinants of seasonal patterns of metabolism and N cycling. Our research suggests that temporal variation in the propagation of ecological influence between adjacent systems generates phases when ecosystems are alternatively characterized as endogenously and exogenously controlled.

  9. Leaching and mass balance of 15N-labeled urea applied to a Kentucky bluegrass turf

    International Nuclear Information System (INIS)

    Miltner, E.D.; Branham, B.E.; Paul, E.A.; Rieke, P.E.

    1996-01-01

    The fate of urea applied to Kentucky bluegrass (Poa pratensis L.) turf was studied over a 2-yr period using a combination of intact monolith lysimeters and small plots. Soil type was a Marlette fine sandy loam (fine-loamy mixed mesic Glossoboric Hapludalfs). Urea was applied at a rate of 196 kg N ha-1 yr-1 in five equal applications of 39.2 kg N ha-1, using two application schedules. Treatments were fertilized at approximately 38-d intervals with the 'Spring' treatment fertilized from late April through late September and the 'Fall' treatment from early June through early November. In 1991 only, the April and November applications used 15N-labeled urea (LFN). For the Spring treatment, 31% of LFN was recovered from thatch at 18 DAT. This value remained constant for the next year, then gradually declined to 20% after 2 yr. Only 8% of the LFN was recovered from soil at 18 DAT and increased to only 20% 2 yr after application. Approximately 35% of the LFN was harvested in clippings over 2 yr. Through May 1993 (748 DAT), LFN in leachate totaled 0.18% of the amount applied. For the Fall treatment, 62% of the LFN was recovered from thatch d 18 DAT. This value declined to 35% by the following June. LFN in soil increased from 12% to 25% over 2 yr. Approximately 38% of the LFN was harvested in clippings over 2 yr. Total leachate LFN recovery was 0.23% over the 2-yr period. Total recovery of LFN was 64 and 81% for the Spring and Fall treatments, respectively, suggesting volatile losses of N. Whether the N was applied in the spring or late fall, rapid uptake and immobilization of the LFN resulted. A maximum of 25% of applied LFN was recovered in the soil from either application timing at any time over the 2 yr of the experiment. A well-maintained turf intercepts and immobilizes LFN quickly making leaching an unlikely avenue of N loss from a turf system

  10. (/sup 13/N)ammonia in organic solvents; a potent synthetic precursor for /sup 13/N-labeling

    Energy Technology Data Exchange (ETDEWEB)

    Tominaga, Toshiyoshi; Hirobe, Masaaki; Suzuki, Kazutoshi; Inoue, Osamu; Irie, Toshiaki; Yamasaki, Toshio

    1987-01-01

    /sup 13/NH/sub 3/ in an organic solvent was prepared and its utility as a labeling precursor was studied. (/sup 13/N)adenine ((/sup 13/N)ADN), (/sup 13/N)nicotinamide ((/sup 13/N)NAM), (/sup 13/N)p-nitrophenyl carbamate ((/sup 13/N)NPC), and (/sup 13/N)L-glutamine ((/sup 13/N)Gln) were labeled utilizing this precursor. (/sup 13/N)ADN and (/sup 13/N)NAM were labeled in much better yields than from an aqueous solution of /sup 13/NH/sub 3/. (/sup 13/N)NPC and (/sup 13/N)Gln, which could not be labeled in an aqueous solution, were labeled in high radiochemical yields. Thus, the advantages of this precursor are the improvement of the labeling yield and the feasibility of labeling compounds unstable in aqueous conditions.

  11. Simple and Robust N-Glycan Analysis Based on Improved 2-Aminobenzoic Acid Labeling for Recombinant Therapeutic Glycoproteins.

    Science.gov (United States)

    Jeong, Yeong Ran; Kim, Sun Young; Park, Young Sam; Lee, Gyun Min

    2018-03-21

    N-glycans of therapeutic glycoproteins are critical quality attributes that should be monitored throughout all stages of biopharmaceutical development. To reduce both the time for sample preparation and the variations in analytical results, we have developed an N-glycan analysis method that includes improved 2-aminobenzoic acid (2-AA) labeling to easily remove deglycosylated proteins. Using this analytical method, 15 major 2-AA-labeled N-glycans of Enbrel ® were separated into single peaks in hydrophilic interaction chromatography mode and therefore could be quantitated. 2-AA-labeled N-glycans were also highly compatible with in-line quadrupole time-of-flight mass spectrometry (MS) for structural identification. The structures of 15 major and 18 minor N-glycans were identified from their mass values determined by quadrupole time-of-flight MS. Furthermore, the structures of 14 major N-glycans were confirmed by interpreting the MS/MS data of each N-glycan. This analytical method was also successfully applied to neutral N-glycans of Humira ® and highly sialylated N-glycans of NESP ® . Furthermore, the analysis data of Enbrel ® that were accumulated for 2.5 years demonstrated the high-level consistency of this analytical method. Taken together, the results show that a wide repertoire of N-glycans of therapeutic glycoproteins can be analyzed with high efficiency and consistency using the improved 2-AA labeling-based N-glycan analysis method. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Use of 15N reverse gradient two-dimensional nuclear magnetic resonance spectroscopy to follow metabolic activity in Nicotiana plumbaginifolia cell-suspension cultures.

    Science.gov (United States)

    Mesnard, F; Azaroual, N; Marty, D; Fliniaux, M A; Robins, R J; Vermeersch, G; Monti, J P

    2000-02-01

    Nitrogen metabolism was monitored in suspension cultured cells of Nicotiana plumbaginifolia Viv. using nuclear magnetic resonance (NMR) spectroscopy following the feeding of (15NH4)2SO4 and K15NO3. By using two-dimensional 15N-1H NMR with heteronuclear single-quantum-coherence spectroscopy and heteronuclear multiple-bond-coherence spectroscopy sequences, an enhanced resolution of the incorporation of 15N label into a range of compounds could be detected. Thus, in addition to the amino acids normally observed in one-dimensional 15N NMR (glutamine, aspartate, alanine), several other amino acids could be resolved, notably serine, glycine and proline. Furthermore, it was found that the peak normally assigned to the non-protein amino-acid gamma-aminobutyric acid in the one-dimensional 15N NMR spectrum was resolved into a several components. A peak of N-acetylated compounds was resolved, probably composed of the intermediates in arginine biosynthesis, N-acetylglutamate and N-acetylornithine and, possibly, the intermediate of putrescine degradation into gamma-aminobutyric acid, N-acetylputrescine. The occurrence of 15N-label in agmatine and the low detection of labelled putrescine indicate that crucial intermediates of the pathway from glutamate to polyamines and/or the tobacco alkaloids could be monitored. For the first time, labelling of the peptide glutathione and of the nucleotide uridine could be seen.

  13. Label Review Training: Module 1: Label Basics, Page 15

    Science.gov (United States)

    This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. Learn about the consequences of improper labeling.

  14. Synthesis and 125I labeling of N-succinimidyl-3-(tri-n-butylstannyl)benzoate

    International Nuclear Information System (INIS)

    Liu Zhenfeng; Wang Yongxian; Zhou Wei; Wang Lihua; Xia Jiaoyun; Yin Duanzhi

    2005-01-01

    N-succinimidyl-3-(tri-n-butylstannyl)benzoate (ATE) and N-succinimidyl-3-iodo-benzoate (SIB) is synthesized. The structures of ATE and SIB are confirmed with 1 HNMR, MS and IR. The yields of ATE and SIB are 45.4% and 71.4%, respectively. ATE is labeled with 125 I. The labeling field is 93.0% and radiochemical purity is over 98.0%. The synthesis and the labeling of ATE have a important value for indirect label of radiopharmaceuticals. (authors)

  15. Effect of applying wheat stubble on preservation and utilization of n-fertilizer by 15N trace technique

    International Nuclear Information System (INIS)

    Xu Xinyu; Zhang Yumei; Xiang Hua; Hu Jisheng

    1991-10-01

    By using 15 N trace technique, the effect of applying wheat stubble on the preservation and utilization rate of 15 N- ammonium sulphate have been studied. The abundance of ( 15 NH 4 ) 2 SO 4 fertilizer was 8.92%. After three years pot test and field plot test, the results showed that the yields with ' 15 N+mulching' and ' 15 N+incorporating' treated were increased by 5.4∼30.0% for spring wheat and millet(pot test), and 18∼23% for winter wheat and summer corn(field plot test), as compared with only ' 15 N' treatment. The results of 15 N-fertilizer labelled tests showed that the utilization rates of 15 N-fertilizer treated by ' 15 N+mulching' for cropping seasons were 57.8%, 65.8%, 36.6% and 8.5% respectively. These were increased 3.7%, 10.2%, 21.5% and 2.8% as compared with only ' 15 N' treatment. Comparing with only ' 15 N'treatment, the N leached off by percolation water was decreasing 50%, the loss of N caused by volatilization was decreasing 30.3% and the N in humus was increasing 21.1%. All of these proved that the applying of wheat stubble in different mode would adjust and control the activation of microbe in the soil, and the preservation and utilization rate of fertilizer in the soul would be increased

  16. Labeled Embedding Of (n, n-2-Graphs In Their Complements

    Directory of Open Access Journals (Sweden)

    Tahraoui M.-A.

    2017-11-01

    Full Text Available Graph packing generally deals with unlabeled graphs. In [4], the authors have introduced a new variant of the graph packing problem, called the labeled packing of a graph. This problem has recently been studied on trees [M.A. Tahraoui, E. Duchêne and H. Kheddouci, Labeled 2-packings of trees, Discrete Math. 338 (2015 816-824] and cycles [E. Duchˆene, H. Kheddouci, R.J. Nowakowski and M.A. Tahraoui, Labeled packing of graphs, Australas. J. Combin. 57 (2013 109-126]. In this note, we present a lower bound on the labeled packing number of any (n, n − 2-graph into Kn. This result improves the bound given by Woźniak in [Embedding graphs of small size, Discrete Appl. Math. 51 (1994 233-241].

  17. Synthesis of tritium-labelled isopenicillin N, penicillin N and 6-aminopenicillanic acid

    International Nuclear Information System (INIS)

    Usher, J.J.; Loder, B.; Abraham, E.P.

    1975-01-01

    1. Phenoxymethylpenicillin sulphoxide 4-methoxybenzyl ester was labelled with 3 H in its 2-β-methyl group. Its specific radioactivity was 362mCi/mmol. 2. Removal of the side chain of this compound yielded the corresponding ester of 6-aminopenicillanic acid sulphoxide and coupling of the latter with the appropriate protected α-aminoadipic acid gave 4-methoxybenzyloxycarbonylisopenicillin N sulphoxide di-4-methoxybenzyl ester or the corresponding derivative of penicillin N. 3. Removal of the protective groups by hydrogenolysis and reduction of the sulphoxide group yielded 3 H-labelled isopenicillin N or penicillin N. 4. 3 H-labelled phenoxymethylpenicillin sulphoxide was obtained by hydrogenolysis from its 4-methoxybenzyl ester. Reducton of its sulphoxide group and subsequent removal of the side chain gave 3 H-labelled 6-aminopenicillanic acid. (author)

  18. Absorption of ammonium sulphate 15N by coffee plants

    International Nuclear Information System (INIS)

    Fenilli, Tatiele Anete Bergamo; Reichardt, Klaus; Bacchi, Osny Oliveira Santos; Trivelin, Paulo Cesar Ocheuze; Dourado Neto, Durval

    2005-01-01

    The objective of this study was to quantify the absorption of ammonium sulphate 15 N by coffee plants. Treatments consisted of five sub-plots of 9 plants, of which the three central ones received 280 kg ha -1 of 15 N, applied at four times: 1/4 on 01 Set 03; 1/4 on 03 Nov 03; 1/4 on 15 Dec 03 and 1/4 on 30 Jan 04. The isotopic enrichment was 2,072 ± 0,001 atom % 15 N. The dry matter of the shoot was evaluated every 60 days, using one plant per replicate, collected outside the sub-plot. They were as similar as possible to the labeled plants, which were used only for isotopic and Total N analysis, after being dried at 65 deg C until constant weight. At harvest, plants had absorbed 42,88% of the fertilizer N. Leaves accumulated the largest amount of fertilizer N, and were also the compartments that received most N from other parts of the plant. The following partition of the fertilizer N was found at harvest: 23.01% in young leaves, 6.23% in old leaves, 4,46% in stem, 3.46% in fruits, 3.10% in young branches and 2.63% in old branches. (author)

  19. /sup 15/N analysis in nutritional and metabolic research of infancy

    Energy Technology Data Exchange (ETDEWEB)

    Heine, W; Richter, I; Plath, C; Wutzke, K; Drescher, U [Rostock Univ. (German Democratic Republic). Bereich Medizin

    1982-01-01

    Investigation of protein metabolism in nutritional pediatric research by means of /sup 15/N tracer techniques has been relatively seldom used up to now. /sup 15/N-labelled compounds for these purposes are not injurious to health. The technique is based on oral or intravenous application of the tracer substances and on /sup 15/N analysis of the urine fractions. The subsequent calculation of protein synthesis and breakdown rate, turnover, and the reutilisation of amino acids from protein breakdown as well as the size of the metabolic pool offers detailed information of protein metabolism. Determination of these parameters were performed in infants on breast milk, formula feeding and on chemically defined diet. As an example of utilisation of D-amino acids for protein synthesis the /sup 15/N-D-phenylalanine retention of parenteral nutrition was found to be 33% of the applied doses at an average. An oral /sup 15/N-glycine loading test proved to be of value for the prediction of the therapeutic effect of human growth hormone. /sup 15/N tracer technique was also tested in utilizing /sup 15/N-urea for bacterial protein synthesis of the intestinal flora and by incorporation of /sup 15/N from /sup 15/N-glycine and /sup 15/N-lysine into the jejunal mucosa for measuring the enterocyte regeneration.

  20. Metabolic regulation in Streptomyces parvulus during actinomycin D synthesis, studied with 13C- and 15N-labeled precursors by 13C and 15N nuclear magnetic resonance spectroscopy and by gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Inbar, L.; Lapidot, A.

    1988-01-01

    Recent studies have suggested that the onset of synthesis of actinomycin D in Streptomyces is due to a release from L-glutamate catabolic repression. In the present investigation we showed that S. parvulus has the capacity to maintain high levels of intracellular glutamate during the synthesis of actinomycin D. The results seem contradictory, since actinomycin D synthesis cannot start before a release from L-glutamate catabolic repression, but a relatively high intracellular pool of glutamate is needed for the synthesis of actinomycin D. Utilizing different labeled precursors, D-[U- 13 C]fructose and 13 C- and 15 N-labeled L-glutamate, and nuclear magnetic resonance techniques, we showed that carbon atoms of an intracellular glutamate pool of S. parvulus were not derived biosynthetically from the culture medium glutamte source but rather from D-fructose catabolism. A new intracellular pyrimidine derivative whose nitrogen and carbon skeletons were derived from exogenous L-glutamate was obtained as the main glutamate metabolite. Another new pyrimidine derivative that had a significantly reduced intracellular mobility and that was derived from D-fructose catabolism was identified in the cell extracts of S. parvulus during actinomycin D synthesis. These pyrimidine derivatives may serve as a nitrogen store for actinomycin D synthesis. In the present study, the N-trimethyl group of a choline derivative was observed by 13 C nuclear magnetic resonance spectroscopy in growing S. parvulus cells. The choline group, as well as the N-methyl groups of sarcosine, N-methyl-valine, and the methyl groups of an actinomycin D chromophore, arose from D-fructose catabolism. The 13 C enrichments found in the peptide moieties of actinomycin D were in accordance with a mechanism of actinomycin D synthesis from L-glutamate and D-fructose

  1. Absorption of ammonium sulphate {sup 15}N by coffee plants; Recuperacao do {sup 15}N do sulfato de amonio por plantas de cafe

    Energy Technology Data Exchange (ETDEWEB)

    Fenilli, Tatiele Anete Bergamo; Reichardt, Klaus; Bacchi, Osny Oliveira Santos [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Fisica do Solo]. E-mail: tatiele@cena.usp.br; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis; Dourado Neto, Durval [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Producao Vegetal

    2005-07-01

    The objective of this study was to quantify the absorption of ammonium sulphate {sup 15}N by coffee plants. Treatments consisted of five sub-plots of 9 plants, of which the three central ones received 280 kg ha{sup -1} of {sup 15}N, applied at four times: 1/4 on 01 Set 03; 1/4 on 03 Nov 03; 1/4 on 15 Dec 03 and 1/4 on 30 Jan 04. The isotopic enrichment was 2,072 {+-} 0,001 atom % {sup 15}N. The dry matter of the shoot was evaluated every 60 days, using one plant per replicate, collected outside the sub-plot. They were as similar as possible to the labeled plants, which were used only for isotopic and Total N analysis, after being dried at 65 deg C until constant weight. At harvest, plants had absorbed 42,88% of the fertilizer N. Leaves accumulated the largest amount of fertilizer N, and were also the compartments that received most N from other parts of the plant. The following partition of the fertilizer N was found at harvest: 23.01% in young leaves, 6.23% in old leaves, 4,46% in stem, 3.46% in fruits, 3.10% in young branches and 2.63% in old branches. (author)

  2. Urinary excretion of 15N during intraportal infusion of 15N-ammonia in chickens fed low or high protein diet

    International Nuclear Information System (INIS)

    Karasawa, Yutaka; Koh, Katsuki; Takahashi, Akira; Sumiya, Ryuta

    1985-01-01

    The purpose of this study is to examine time courses of 15 N in urinary ammonia and total N when 15 N-labeled ammonium acetate was continuously infused for 1 hour into chickens fed a 5 or 20 % protein diet. 15 N-enrichment of urinary nitrogen in the two dietary groups increased sharply in ammonia for the first 20 minutes and to a less extent linearly in total N for the first 30 minutes, and then gradually in both ammonia and total N. Through the ammonia infusion, the 15 N-enrichment of urinary ammonia was higher in the chickens fed the low protein diet than in those fed the high protein diet; both of them were higher than 15 N-enrichments of urinary N, which were almost the same in the two dietary groups. The urinary total N from the infused ammonia rose linearly for the first 40 minutes but thereafter did not rise further in the two dietary groups, whereas the endogenous urinary total N tended to decrease a little in the chichens fed the high protein diet but unchanged in those fed the low protein diet. The urinary ammonia from the infused ammonia increased sharply for the first 20 minutes, then linearly but at a lower rate in the chickens fed the high protein diet, whereas that in the chickens fed the low protein diet rose linearly throughout ammonia infusion. In contrast, the endogenous urinary ammonia showed no change in the chickens fed the high protein diet while it showed a tendency to increase a little in these fed the low protein diet. These results indicate that the increased urinary ammonia and total N during ammonia infusion are derived mostly from the infused ammonia in chickens fed 5 and 20% protein diets. (author)

  3. Dinitrogen fixation in white clover grown in pure stand and mixture with ryegrass estimated by the immobilized 15N isotope dilution method

    DEFF Research Database (Denmark)

    Jørgensen, F.V.; Jensen, E.S.; Schjørring, J.K.

    1999-01-01

    Dinitrogen fixation in white clover (Trifolium repens L.) grown in pure stand and mixture with perennial ryegrass (Lolium perenne L.) was determined in the field using N-15 isotope dilution and harvest of the shoots. The apparent transfer of clover N to perennial ryegrass was simultaneously...... assessed. The soil was labelled either by immobilizing N-15 in organic matter prior to establishment of the sward or by using the conventional labelling procedure in which N-15 fertilizer is added after sward establishment. Immobilization of N-15 in the soil organic matter has not previously been used...

  4. Fertilizer 15N balance and recovery of N from organic sources by rice in Typic Ustochrept

    International Nuclear Information System (INIS)

    Bhattacharyya, Ranjan; Sachdev, M.S.; Sachdev, P.; Kundu, S.; Sutradhar, G.

    2002-01-01

    To investigate the fertilizer-N balance and recovery of N from organics (as determined by A-value technique) by rice as affected by urea application alone or in combination with FYM or green manure, a field experiment was conducted in the khariff season if 1997 at IARI, New Delhi on a sandy loam soil (Typic Ustochrept). 15 N-labelled urea was applied at 0.90 and 120 kg N ha -1 levels alone and in combination with either FYM or green manure in 2:1 or 1:1 ratios. Organic sources were incorporated seven days before transplanting whereas, urea was applied in three equal splits at 15 DAT, 28 DAT and 42 DAT. The residual 15 N in soil was determined only in the surface soil layer (0-15 cm) of rice crop. The combined source helped in conserving more of urea-N in soil as residual (42-45%) than urea alone (23-27%) treatment due to the fact that the unaccounted fertilizer 15 N was more in urea alone treatment (43-45%) than combined sources (12-15%) at both the levels. The efficiency of uptake of organic N by rice as determined through A-value technique was similar or better than urea-N at both the levels. (author)

  5. Absorption and translocation of 15N in Japonica (Hinohikari) and Indica (Hadsaduri) rice varieties

    International Nuclear Information System (INIS)

    Islam, N.; Inagaki, S.; Chishaki, N.; Horiguchi, T.

    1997-01-01

    The absorption and translocation of 15 N-labeled nitrogen (N) applied as three N levels of ammonium nitrate at the stages of panicle initiation (PI) and heading (HD) were compared between a japonica rice variety (var. Hinohikari) and a tall indica rice variety (var. Hadsaduri) by growing them hydroponically. With the supply of low N level, 15 N absorption by the japonica variety was larger, but at medium and high N levels, the tall indica variety absorbed larger amounts of 15 N at both stages. However, the amount of 15 N partitioned to the panicles at maturity was considerably smaller in the indica variety, since dry matter allocation to the panicles was also smaller in this variety. The tall indica variety showed a considerable loss of 15 N from heading to maturity at the high N-level unlike the japonica variety. (author)

  6. Syntheses of sup 18 F-labeled reduced haloperidol and sup 11 C-labeled reduced 3-N-methylspiperone

    Energy Technology Data Exchange (ETDEWEB)

    Ravert, H T; Dannals, R F; Wilson, A A; Wong, D F; Wagner, Jr, H N [Johns Hopkins Medical Institutions, Baltimore, MD (USA)

    1991-03-01

    {sup 18}F-Labeled reduced haloperidol and {sup 11}C-labeled reduced 3-N-methylspiperone were synthesized in a convenient and quantitative one step reduction from {sup 18}F-labeled haloperidol and {sup 11}C-labeled N-methylspiperone, respectively. Both products were purified by semipreparative HPLC and were obtained at high specific activity and radiochemical purity. (author).

  7. New series of Tc-99m-labeled hepatobiliary tracers: N'-acyl- and N'-sulfonyl ethylenediamine-N,N-diacetic acids

    International Nuclear Information System (INIS)

    Karube, Y.; Kono, A.; Maeda, T.; Ohya, M.; Matsushima, Y.

    1981-01-01

    Various Tc-99m-labeled N'-substituted derivatives of ethylenediamine-N,N-diacetic acid (EDDA) are evaluated as hepatobiliary imaging agents. N-substituted aromatic acyl and aromatic sulfonyl derivatives of EDDA, labeled with Tc-99m, were administered to rabbits and golden hamsters, and the distribution indicated clearance by the hepatobiliary system. N'-aromatic sulfonyl EDDAs were labeled with Tc-99m by the SnCl 2 method with more than 99% yield. Clearance of Tc-99m-p-toluenesulfonyl EDDA from the blood and the liver was as rapid as that of TC-99m N-(2,6-diethylphenylcarbamoylmethyl)iminodiacetic acid (Tc-99m benzenesulfonyl EDDA lowered urinary excretion. It is concluded that the sulfonyl EDDAs provide a fruitful source for Tc-99m-labeled hepatobiliary radiopharmaceuticals

  8. 15N and 13C abundances in marine environments with emphasis on biogeochemical structure of food networks

    International Nuclear Information System (INIS)

    Wada, E.

    1987-01-01

    Distributions of δ 15 N and δ 13 C for biogenic substances in the Antarctic Ocean and in the Otsuchi River estuary in Japan were investigated to construct isotope biogeochemical framework for assessing marine ecosystems. The isotopic compositions of phytoplankton were particularly low in the Antarctic Ocean. High nitrate and CO 2 concentrations in the surface sea waters, and the low light intensity seem to enhance the kinetic isotope fractionations that preferred the depletion of 15 N and 13 C in the algal body. A clear-cut linear relationship between animal δ 15 N and its trophic level was obtained in the Antarctic system. In the estuary, the variation of isotope ratios were principally governed by the mixing of land-derived organic matter, marine phytoplankton, and seagrasses. A food-chain effect of 15 N enrichment was also confirmed. An isotopically ordered structure was presented for a marine estuarine ecosystem. The isotopic abundances in a food network vary mainly because of the variation in 15 N and 13 C contents of primary producers grown under different environmental conditions and because of the enrichment of 15 N along food chains. (author)

  9. Use of 15N in evaluating symbiotic N2 fixation of field-grown soybeans

    International Nuclear Information System (INIS)

    Ham, G.E.

    1978-01-01

    Various methods have been used to estimate N 2 fixation by legumes (i.e. Kjeldahl N and the acetylene-ethylene assay). Recently 'Asub(N)' values by the legume and a non-nodulating crop using 15 N-labelled N fertilizer were used to quantitatively estimate the amount of N 2 fixed by legume crops growing under field conditions. The objective of this research was to evaluate Kjeldahl N procedures, the acetylene-ethylene assay and the 'Asub(N)' technique as estimators of N 2 fixation by field-grown soybeans. The 'Asub(N)' value concept provided a reliable estimate of N 2 fixation by soybeans which agreed with acetylene-ethylene measurements made weekly and the values compared favourably with Kjeldahl N measurements. (author)

  10. Study of the production yields of {sup 18}F, {sup 11}C, {sup 13}N and {sup 15}O positron emitters from plasma-laser proton sources at ELI-Beamlines for labeling of PET radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Ernesto [Section of Radiological Sciences, Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging, University of Messina (Italy); Italiano, Antonio, E-mail: italianoa@unime.it [Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina (Italy); Margarone, Daniele [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, 182 21 Prague (Czech Republic); Pagano, Benedetta [Nuclear Medicine Unit, University Hospital “G. Martino”, Messina (Italy); Baldari, Sergio [Section of Radiological Sciences, Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging, University of Messina (Italy); Nuclear Medicine Unit, University Hospital “G. Martino”, Messina (Italy); Korn, Georg [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, 182 21 Prague (Czech Republic)

    2016-03-01

    The development of novel compact PET radionuclide production systems is of great interest to promote the diffusion of PET diagnostics, especially in view of the continuous development of microfluidics labeling approaches. We studied the feasibility to produce clinically-relevant amounts of PET isotopes by means of laser-accelerated proton sources such that expected at the ELI-Beamlines facility. {sup 18}F, {sup 11}C, {sup 13}N and {sup 15}O production yields were calculated through the TALYS software, by taking into account the broad proton spectra expected. With the hypothesized proton fluencies, clinically-relevant amounts of radionuclides can be obtained, suitable to prepare single doses of {sup 18}F-, {sup 11}C- and {sup 13}N-labeled radiopharmaceuticals exploiting fast and efficient microfluidic labeling systems.

  11. Study of the production yields of "1"8F, "1"1C, "1"3N and "1"5O positron emitters from plasma-laser proton sources at ELI-Beamlines for labeling of PET radiopharmaceuticals

    International Nuclear Information System (INIS)

    Amato, Ernesto; Italiano, Antonio; Margarone, Daniele; Pagano, Benedetta; Baldari, Sergio; Korn, Georg

    2016-01-01

    The development of novel compact PET radionuclide production systems is of great interest to promote the diffusion of PET diagnostics, especially in view of the continuous development of microfluidics labeling approaches. We studied the feasibility to produce clinically-relevant amounts of PET isotopes by means of laser-accelerated proton sources such that expected at the ELI-Beamlines facility. "1"8F, "1"1C, "1"3N and "1"5O production yields were calculated through the TALYS software, by taking into account the broad proton spectra expected. With the hypothesized proton fluencies, clinically-relevant amounts of radionuclides can be obtained, suitable to prepare single doses of "1"8F-, "1"1C- and "1"3N-labeled radiopharmaceuticals exploiting fast and efficient microfluidic labeling systems.

  12. Investigations on the production of labelled organic compounds by recoil labelling with gamma,n-produced 11-C-atoms

    International Nuclear Information System (INIS)

    Wagenbach, U.

    1981-01-01

    ''Hot'' 11 C atoms are produced from 12 C(γ,n) 11 C nuclear reactions by bremsstrahlung at the 65 MeV electron linear accelerator in Giessen. The relative retention in various C-atoms of the amino acid, methionine, is determined by splitting of the terminal C-atoms of the molecule and by independent determination of the content of 11 C in the isolated and derived fragments. The terminal groups (thiomethyl or carboxyl groups) each carry approx. 25% of the total retained radioactivity, the remaining 50% being spread over the three inner carbon atoms. The activation of alkylamines, crystallised as hydrochlorides, hydrofluorides, oxalates and sulphates, leads to similar yields of direct labelling from 5 to 15%. Amines activated in the liquid state show a retention of less than 5%. The yields for labelled synthetic products are between 10 and 15% for amino acids and are often higher for crystallised amines. Amines activated in the liquid state produced greater yields of synthesis products but at the same time an increase in the product range. The labelled synthesis products can be separated faster by suitable methods such as preparative HPLC and are then available for carrier-free studies in the life sciences. (orig./EF) [de

  13. 15N-enrichments of ammonia and glutamine in blood after infusion of 15N-ammonia in chickens fed low or high protein diet

    International Nuclear Information System (INIS)

    Karasawa, Yutaka; Koh, Katsuki

    1985-01-01

    In this experment, the blood ammonia and glutamine amide came from infused ammonia were determined when N-15 labeled ammonium acetate was intraportally infused into the chickens fed 5 or 20 % protein diet. The data obtained indicated that the infused ammonia was taken into blood glutamine amide, and also accumulated in blood as it is, in both dietary groups. 10 to 12 months old White Leghorn male birds were used. The experimental diet was fed once a day for 5 days to the birds weighting about 1.2 kg by 35 g per kg body weight. The experimental diet was consumed within 40 min in all cases. Cardiac and portal catheterization were performed for blood collection and ammonia infusion, respectively. After finishing the infusion, blood samples were taken to analyze the ammonia and glutamine contents and their N-15 enrichment. Statistical difference was not observed in the appearance of N-15 in ammonia and glutamine amide between two dietary groups. The N-15 enrichment in blood ammonia and the amide of plasma glutamine, and the calculated exogenous nitrogen in the ammonia and glutamine amide tended to be more in the 5 % protein diet group than the other. (Kako, I.)

  14. Does fertilizer (N15P15K15) amendment enhance phytoremediation of petroleum-polluted aquatic ecosystem in the presence of water hyacinth (Eichhornia crassipes [Mart.] Solms)?

    Science.gov (United States)

    Ndimele, Prince Emeka; Jenyo-Oni, Adetola; Chukwuka, Kanayo S; Ndimele, Chinatu Charity; Ayodele, Ibukunoluwa Augustine

    2015-01-01

    This study investigated the effects of inorganic fertilizer (N15P15K15) amendments on crude oil uptake by water hyacinth. Experimental units (water hyacinth grown in fresh water) were spiked with 0, 20, 40 and 60 mg/L crude oil. After 24 h, they were randomly assigned fertilizer (N15P15K15) at three different concentrations; 0, 6 and 10 mg/L. Crude oil degradation and absorption were determined by measuring total petroleum hydrocarbon (TPH) in the water column and water hyacinth, respectively. The measurements were taken monthly for six months (February-August 2010). The results showed that TPH concentration in the water column in the treatment amended at 6 mg/L (0.30 ± 0.01 mg/L) was significantly lower (p phytoremediation) absorbed significantly higher (p phytoremediation of crude oil by water hyacinth and biostimulation with fertilizer (N15P15K15) is possible.

  15. New series of Tc-99m-labeled hepatobiliary tracers: N'-acyl- and N'-sulfonyl ethylenediamine-N,N-diacetic acids

    International Nuclear Information System (INIS)

    Karube, Y.; Kono, A.; Maeda, T.; Ohya, M.; Matsushima, Y.

    1981-01-01

    Various Tc-99m-labeled N'-substituted derivatives of ethylenediamine-N,N-diacetic acid (EDDA) are evaluated as hepatobiliary imaging agents. N'-substituted aromatic acyl and aromatic sulfonyl derivatives of EDDA, labeled with Tc-99m, were administered to rabbits and golden hamsters, and the distribution indicated clearance by the hepatobiliary system. N'-aromatic sulfonyl EDDAs were labeled with Tc-99m by the SnCl 2 method with more than 99% yield. Clearance of Tc-99m-p-toluenesulfonyl EDDA from the blood and the liver was as rapid as that of Tc-99m N-(2,6-diethylphenylcarbamoylmethyl)iminodiacetic acid (Tc-99m diethyl IDA). Substitution of a bulky group at the aromatic ring in Tc-99m benzene-sulfonyl EDDA lowered urinary excretion. It is concluded that the sulfonyl EDDAs provide a fruitful source for Tc-99m-labeled hepatobiliary radiopharmaceuticals

  16. Imprint of oaks on nitrogen availability and δ15N in California grassland-savanna: A case of enhanced N inputs?

    Science.gov (United States)

    Perakis, S.S.; Kellogg, C.H.

    2007-01-01

    Woody vegetation is distributed patchily in many arid and semi-arid ecosystems, where it is often associated with elevated nitrogen (N) pools and availability in islands of fertility. We measured N availability and δ15N in paired blue-oak versus annual grass dominated patches to characterize the causes and consequences of spatial variation in N dynamics of grassland-savanna in Sequoia-Kings Canyon National Park. We found significantly greater surface soil N pools (0–20 cm) in oak patches compared to adjacent grass areas across a 700 m elevation gradient from foothills to the savanna-forest boundary. N accumulation under oaks was associated with a 0.6‰ depletion in soil δ15N relative to grass patches. Results from a simple δ15N mass balance simulation model, constrained by surface soil N and δ15N measured in the field, suggest that the development of islands of N fertility under oaks can be traced primarily to enhanced N inputs. Net N mineralization and percent nitrification in laboratory incubations were consistently higher under oaks across a range of experimental soil moisture regimes, suggesting a scenario whereby greater N inputs to oak patches result in net N accumulation and enhanced N cycling, with a potential for greater nitrate loss as well. N concentrations of three common herbaceous annual plants were nearly 50% greater under oak than in adjacent grass patches, with community composition shifted towards more N-demanding species under oaks. We find that oaks imprint distinct N-rich islands of fertility that foster local feedback between soil N cycling, plant N uptake, and herbaceous community composition. Such patch-scale differences in N inputs and plant–soil interactions increase biogeochemical heterogeneity in grassland-savanna ecosystems and may shape watershed-level responses to chronic N deposition.

  17. Growth, development, and fertilizer-15N recovery by the coffee plant

    International Nuclear Information System (INIS)

    Fenilli, Tatiele Anete Bergamo; Reichardt, Klaus; Bacchi, Osny Oliveira Santos; Dourado-Neto, Durval; Favarin, Jose Laercio; Trivelim, Paulo Cesar Ocheuze; Costa, Flavio Murilo Pereira da

    2007-01-01

    The relationship between growth and fertilizer nitrogen recovery by perennial crops such as coffee is poorly understood and improved understanding of such relations is important for the establishment of rational crop management practices. In order to characterize the growth of a typical coffee crop in Brazil and quantify the recovery of 15 N labeled ammonium sulfate, and improve information for fertilizer management practices this study presents results for two consecutive cropping years, fertilized with 280 and 350 kg ha -1 of N, respectively, applied in four splittings, using five replicates. Shoot dry matter accumulation was evaluated every 60 days, separating plants into branches, leaves and fruits. Labeled sub-plots were used to evaluate N-total and 15 N abundance by mass spectrometry. During the first year the aerial part reached a recovery of 71% of the fertilizer N applied up to February, but this value was reduced to 34% at harvest and 19% at the beginning of the next flowering period due to leaf fall and fruit export. For the second year the aerial part absorbed 36% of the fertilizer N up to March, 47% up to harvest and 19% up to the beginning of the next flowering period. The splitting into four applications of the used fertilizer rates was adequate for the requirements of the crop at these growth stages of the coffee crop. (author)

  18. Quantitative estimates of uptake and internal cycling of 15N-depleted fertilizer in mature walnut trees

    International Nuclear Information System (INIS)

    Weinbaum, S.; Kessel, C. van

    1998-01-01

    In mature fruit trees, internal recycling is an important source of N for the growth of new wood, leaves and fruits. Using 15 N-depleted fertilizer, i.e. 14 N-enriched, N-uptake efficiency and the magnitude of internal N cycling were studied in mature walnut trees. Two kg of 14 N-labelled ammonium sulfate N were applied per tree, and compartmentation of N was followed over a period of 6 years by analyzing catkins, pistillate flowers, leaves and fruits each year for total N content and isotopic composition. Subsequently, two of the six labelled trees were excavated and analyzed for labelled-N content. The data indicate that mature walnut uses most of the N accumulated from soil and fertilizer for storage purposes, to be remobilized for new growth within 2 years, and about half of the total-N pool in a mature tree is present as non-structural compounds, available for recycling. (author)

  19. Infrared and Raman spectra of uric acid and its 15N and D labelled compounds

    International Nuclear Information System (INIS)

    Majoube, Michel

    Infrared and Raman spectra of polycrystalline uric acid (2, 6, 8-trioxypurine) 1.3, 7 and 9- 15 N and deuterated analogues have been determined. Band shifts with 15 N substitution and with deuteration are discussed. An assignment of fundamental vibrations of uric acid is proposed from the comparison of the eight isotopically substituted analogues [fr

  20. Reconstructing Century-Scale Changes in Nitrogen Cycling in Forests Throughout the United States using Tree-Ring δ15N Chronologies

    Science.gov (United States)

    Gerhart-Barley, L.; McLauchlan, K. K.; Battles, J. J.; Craine, J. M.; Higuera, P. E.; Mack, M. C.; McNeil, B. E.; Nelson, D. M.; Pederson, N.; Perakis, S. S.

    2016-12-01

    In recent decades, human perturbation of the global nitrogen (N) cycle has been immense with reactive nitrogen supply to ecosystems from anthropogenic sources now exceeding that of natural fixation. The impact of these perturbations on ecosystem nutrient cycling and plant communities is limited by the lack of long-term `baseline' assessments of N cycling prior to anthropogenic influences. Stable N isotope analysis (δ15N) of dendrochronological records have the potential to provide this baseline data, but to date have focused on short term, regional assessments. Here, we address this question with a data set incorporating 311 individual trees and 7,661 δ15N measurements from 50 sites throughout the contiguous United States. These sites represent the diversity of US forest types, climate conditions, N deposition, soil types, and disturbance histories. The chronologies span, on average, the last 162 calendar years, with the oldest chronology dating back to 1572 C.E. Consequently, this study is the first century- and continental-scale assessment of ecosystem N cycling using tree-ring chronologies. When aggregated, the chronologies show a consistent decline from 1825 C.E. to present, indicating declining N availability in US forests, despite global increases in N supply. Environmental factors such as mean annual precipitation (MAP), mean annual temperature (MAT), and mean annual nitrogen deposition (Ndep) did not contribute to average site δ15N values; however, MAP and MAT significantly affected temporal trajectories in tree-ring δ15N, with more negative slopes toward present occurring in regions with low MAT and high MAP. Quantity of atmospheric N deposition had no discernible impact on mean δ15N values or on the temporal slope. This lack of response is either because levels of N deposition are too low to produce a discernible response in any meaningful aspects of the N cycle, and/or the δ15N signature of depositional N is similar enough to ecosystem N pools that

  1. Evaluation of automated analysis of 15N and total N in plant material and soil

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1991-01-01

    Simultaneous determination of N-15 and total N using an automated nitrogen analyser interfaced to a continuous-flow isotope ratio mass spectrometer (ANA-MS method) was evaluated. The coefficient of variation (CV) of repeated analyses of homogeneous standards and samples at natural abundance...... was lower than 0.1%. The CV of repeated analyses of N-15-labelled plant material and soil samples varied between 0.3% and 1.1%. The reproducibility of repeated total N analyses using the automated method was comparable to results obtained with a semi-micro Kjeldahl procedure. However, the automated method...... analysis showed that the recovery of inorganic N in the NH3 trap was lower when the N was diffused from water than from 2 M KCl. The results also indicated that different proportions of the NO3- and the NH4+ in aqueous solution were recovered in the trap after combined diffusion. The method is most suited...

  2. High retention of 15N-labeled nitrogen deposition in a nitrogen saturated old-growth tropical forest

    DEFF Research Database (Denmark)

    Gurmesa, Geshere Abdisa; Lu, Xiankai; Gundersen, Per

    2016-01-01

    ecosystem compartments were quantified 4 months after the last addition. Tracer recoveries in soil solution were monitored monthly to quantify leaching losses. Total tracer recovery in plant and soil (N retention) in the control plots was 72% and similar to those observed in temperate forests. The retention...

  3. Measurement of undisturbed di-nitrogen emissions from aquatic ecosystems

    Science.gov (United States)

    Qin, Shuping, Clough, Timothy, Lou, Jiafa; Hu, Chunsheng; Oenema, Oene; Wrage-Mönnig, Nicole; Zhang, Yuming

    2016-04-01

    Increased production of reactive nitrogen (Nr) from atmospheric di-nitrogen (N2) during the last century has greatly contributed to increased food production1-4. However, enriching the biosphere with Nr through N fertilizer production, combustion, and biological N2 fixation has also caused a series of negative effects on global ecosystems 5,6, especially aquatic ecosystems7. The main pathway converting Nr back into the atmospheric N2 pool is the last step of the denitrification process, i.e., the reduction of nitrous oxide (N2O) into N2 by micro-organisms7,8. Despite several attempts9,10, there is not yet an accurate, fast and direct method for measuring undisturbed N2 fluxes from denitrification in aquatic sediments at the field scale11-14. Such a method is essential to study the feedback of aquatic ecosystems to Nr inputs1,2,7. Here we show that the measurement of both N2O emission and its isotope signature can be used to infer the undisturbed N2 fluxes from aquatic ecosystems. The microbial reduction of N2O increases the natural abundance of 15N-N2O relative to 14N-N2O (δ15N-N2O). We observed linear relationships between δ15N-N2O and the logarithmic transformed N2O/(N2+N2O) emission ratios. Through independent measurements, we verified that the undisturbed N2 flux from aquatic ecosystems can be inferred from measurements of N2O emissions and the δ15N-N2O signature. Our method allows the determination of field-scale N2 fluxes from undisturbed aquatic ecosystems, and thereby allows model predictions of denitrification rates to be tested. The undisturbed N2 fluxes observed are almost one order of magnitude higher than those estimated by the traditional method, where perturbation of the system occurs, indicating that the ability of aquatic ecosystems to remove Nr may have been severely underestimated.

  4. Fate of 15N-labelled urea fertilizer under conditions of tropical flooded-rice culture

    International Nuclear Information System (INIS)

    Krishnappa, A.M.; Shinde, J.E.

    1980-01-01

    The fate of an initial pulse of 15 N urea (at the rate of 100 kg N.ha -1 ) was followed under conditions of tropical flooded-rice culture over a sequence of three crops and two intercrop fallows. The total crop recovery accounted for 24.3% of the added fertilizer nitrogen. Ammonia volatilization and leaching losses amounted to 9.7% and 7.5%, respectively. The major losses of the fertilizer nitrogen occurred during the crop season immediately following its application. At the end of the experiment, 26.5% of the fertilizer nitrogen was recovered in the root zone in the Kjeldahl fraction and 0.9% as clay-fixed, non-exchangeable ammonium-N. Total recovery thus amounted to about 69%. The maximum contribution of the 15 N pulse to the NO 3 -N content of the groundwater (about 2%) occurred in the first crop season. It had declined below 0.2% by the third crop season. Throughout the experimental period the total NO 3 -N concentration of the groundwater never exceeded 3.2 ppm. (author)

  5. Application of unsymmetrical indirect covariance NMR methods to the computation of the (13)C (15)N HSQC-IMPEACH and (13)C (15)N HMBC-IMPEACH correlation spectra.

    Science.gov (United States)

    Martin, Gary E; Hilton, Bruce D; Irish, Patrick A; Blinov, Kirill A; Williams, Antony J

    2007-10-01

    Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra. We recently reported the use of unsymmetrical indirect covariance processing to combine (1)H--(13)C GHSQC and (1)H--(15)N GHMBC long-range spectra to yield a (13)C--(15)N HSQC-HMBC chemical shift correlation spectrum that could not be acquired in a reasonable period of time without resorting to (15)N-labeled molecules. We now report the unsymmetrical indirect covariance processing of (1)H--(13)C GHMBC and (1)H--(15)N IMPEACH spectra to afford a (13)C--(15)N HMBC-IMPEACH spectrum that has the potential to span as many as six to eight bonds. Correlations for carbon resonances long-range coupled to a protonated carbon in the (1)H--(13)C HMBC spectrum are transferred via the long-range (1)H--(15)N coupling pathway in the (1)H--(15)N IMPEACH spectrum to afford a much broader range of correlation possibilities in the (13)C--(15)N HMBC-IMPEACH correlation spectrum. The indole alkaloid vincamine is used as a model compound to illustrate the application of the method. (c) 2007 John Wiley & Sons, Ltd.

  6. Protocol development for continuous nitrogen-15 measurement of N2O and its isotopomers for real-time greenhouse gas tracing

    International Nuclear Information System (INIS)

    Slaets, J.; Mayr, L.; Heiling, M.; Zaman, M.; Resch, C.; Weltin, G.; Gruber, R.; Dercon, G.

    2016-01-01

    Quantifying sources of nitrous oxide (N2O) (soil-N and applied N) is essential to improve our understanding of the global N cycle and to develop climate-smart agriculture, as N 2 O has a global warming potential that is 300 times higher than that of CO 2 . The isotopic signature and the intramolecular distribution (site preference) of 15 N are powerful tools to identify N 2 O sources. We have developed a protocol for continuous (closedloop), real time measurement of the N 2 O flux, the isotopic signature and the intramolecular distribution of 15 N by using off-axis integrated cavity output spectroscopy (ICOS, Los Gatos Research). The method was applied in a fertilizer inhibitor experiment, in which N 2 O emissions were measured on undisturbed soil cores for three weeks. The treatments consisted of enriched 15 N labelled urea (5 atom %) applied at a rate equivalent to 100 kg N/ha), 15 N labelled urea with the nitrification inhibitor (NI) nitrapyrin (375 g/100 kg urea), and controls (no fertilizer or NI).

  7. Application of 13C and 15N stable isotope probing to characterize RDX degrading microbial communities under different electron-accepting conditions

    International Nuclear Information System (INIS)

    Cho, Kun-Ching; Lee, Do Gyun; Fuller, Mark E.; Hatzinger, Paul B.; Condee, Charles W.; Chu, Kung-Hui

    2015-01-01

    Highlights: • SIP characterized RDX-degrading communities under different e-accepting conditions. • Dominant RDX degradation pathways differed under different e-accepting conditions. • More complete detoxification of RDX occurred under methanogenic and sulfate-reducing conditions than under manganese(IV) and iron(III)-reducing conditions. - Abstract: This study identified microorganisms capable of using the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) or its metabolites as carbon and/or nitrogen sources under different electron-accepting conditions using 13 C and 15 N stable isotope probing (SIP). Mesocosms were constructed using groundwater and aquifer solids from an RDX-contaminated aquifer. The mesocosms received succinate as a carbon source and one of four electron acceptors (nitrate, manganese(IV), iron(III), or sulfate) or no additional electron acceptor (to stimulate methanogenesis). When RDX degradation was observed, subsamples from each mesocosm were removed and amended with 13 C 3 - or ring- 15 N 3 -, nitro- 15 N 3 -, or fully-labeled 15 N 6 -RDX, followed by additional incubation and isolation of labeled nucleic acids. A total of fifteen 16S rRNA sequences, clustering in α- and γ-Proteobacteria, Clostridia, and Actinobacteria, were detected in the 13 C-DNA fractions. A total of twenty seven sequences were derived from different 15 N-DNA fractions, with the sequences clustered in α- and γ-Proteobacteria, and Clostridia. Interestingly, sequences identified as Desulfosporosinus sp. (in the Clostridia) were not only observed to incorporate the labeled 13 C or 15 N from labeled RDX, but also were detected under each of the different electron-accepting conditions. The data suggest that 13 C- and 15 N-SIP can be used to characterize microbial communities involved in RDX biodegradation, and that the dominant pathway of RDX biodegradation may differ under different electron-accepting conditions

  8. N-13 labeled amino acids: biodistribution, metabolism and dosimetric considerations

    International Nuclear Information System (INIS)

    Rosenspire, K.C.; Gelbard, A.S.

    1986-01-01

    With the growing interest in metabolic imaging and with the increasing number of cyclotron/PET facilities, more studies are being performed in animal and humans using short-lived positron-emitting radionuclides. Amino acids labeled either with N-13 or C-11 are one group of compounds being used to study in vivo regional organ (i.e., brain and heart) or tumor metabolism. Of the studies previously reported using C-11 or N-13 labeled amino acids (methionine, alanine, valine, glutamate, glutamine and tryptophan), imaging was restricted mainly to the organ or tissue of interest with little information obtained about the whole-bode distribution of the label. Such data are important for studying interorgan transport of amino acids and for determining accurate dosimetric measurements after intravenous injection of labeled amino acids. The goals of the authors study were to compare the distribution of several N-13 L-amino acids and N-13 ammonia in tumor-bearing mice and to determine the metabolic fate of the label in vivo. The following amino acids were enzymatically labeled using N-13 ammonia: glutamine, glutamate, methionine, α-aminobutyric acid, valine and leucine. 30 references, 2 figures, 14 tables

  9. Quantifying the production of dissolved organic nitrogen in headwater streams using 15N tracer additions

    Science.gov (United States)

    Laura T. Johnson; Jennifer L. Tank; Robert O. Hall; Patrick J. Mullholland; Stephen K. Hamilton; H. Maurice Valett; Jackson R. Webster; Melody J. Bernot; William H. McDowell; Bruce J. Peterson; Suzanne M. Thomas

    2013-01-01

    Most nitrogen (N) assimilation in lake and marine ecosystems is often subsequently released via autochthonous dissolved organic nitrogen (DON) production, but autochthonous DON production has yet to be quantified in flowing waters. We measured in-stream DON production following 24 h 15N-nitrate (NO3-...

  10. nitrogen saturation in stream ecosystems

    OpenAIRE

    Earl, S. R.; Valett, H. M.; Webster, J. R.

    2006-01-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer ((NO3)-N-15-N) to measure uptake. Experiments were conducted in streams spanning a gradient ...

  11. Quantitative estimates of uptake and internal cycling of {sup 15}N-depleted fertilizer in mature walnut trees

    Energy Technology Data Exchange (ETDEWEB)

    Weinbaum, S; Kessel, C van [University of California at Davis, Davis, CA (United States)

    1998-11-01

    In mature fruit trees, internal recycling is an important source of N for the growth of new wood, leaves and fruits. Using {sup 15}N-depleted fertilizer, i.e. {sup 14}N-enriched, N-uptake efficiency and the magnitude of internal N cycling were studied in mature walnut trees. Two kg of {sup 14}N-labelled ammonium sulfate N were applied per tree, and compartmentation of N was followed over a period of 6 years by analyzing catkins, pistillate flowers, leaves and fruits each year for total N content and isotopic composition. Subsequently, two of the six labelled trees were excavated and analyzed for labelled-N content. The data indicate that mature walnut uses most of the N accumulated from soil and fertilizer for storage purposes, to be remobilized for new growth within 2 years, and about half of the total-N pool in a mature tree is present as non-structural compounds, available for recycling. (author) 31 refs, 2 figs, 4 tabs

  12. Different fates of deposited NH4+ and NO3- in a temperate forest in northeast China: a 15 N tracer study.

    Science.gov (United States)

    Liu, Jun; Peng, Bo; Xia, Zongwei; Sun, Jianfei; Gao, Decai; Dai, Weiwei; Jiang, Ping; Bai, Edith

    2017-06-01

    Increasing atmospheric reactive nitrogen (N) deposition due to human activities could change N cycling in terrestrial ecosystems. However, the differences between the fates of deposited NH4+ and NO3- are still not fully understood. Here, we investigated the fates of deposited NH4+ and NO3-, respectively, via the application of 15 NH 4 NO 3 and NH 4 15 NO 3 in a temperate forest ecosystem. Results showed that at 410 days after tracer application, most 15NH4+ was immobilized in litter layer (50 ± 2%), while a considerable amount of 15NO3- penetrated into 0-5 cm mineral soil (42 ± 2%), indicating that litter layer and 0-5 cm mineral soil were the major N sinks of NH4+ and NO3-, respectively. Broad-leaved trees assimilated more 15 N under NH 4 15 NO 3 treatment compared to under 15 NH 4 NO 3 treatment, indicating their preference for NO3--N. At 410 days after tracer application, 16 ± 4% added 15 N was found in aboveground biomass under 15NO3- treatment, which was twice more than that under 15NH4+ treatment (6 ± 1%). At the same time, approximately 80% added 15 N was recovered in soil and plants under both treatments, which suggested that this forest had high potential for retention of deposited N. These results provided evidence that there were great differences between the fates of deposited NH4+ and NO3-, which could help us better understand the mechanisms and capability of forest ecosystems as a sink of reactive nitrogen. © 2016 John Wiley & Sons Ltd.

  13. The role of 15N in elucidating processes governing integrated soil fertility management strategies

    International Nuclear Information System (INIS)

    Vanlauwe, B.; Sanginga, N.; Merckx, R.

    2005-01-01

    Full text: Nitrogen is the most limiting nutrient for crop production in most of sub-Saharan Africa and has negative impacts on the environment if inputs, both mineral and organic, are not properly managed. Integrated Soil Fertility Management (ISFM) aims at integrating organic and mineral inputs and at site-specific management of mineral inputs to maximize the N use efficiency of both inputs. A series of experiments with 15 N labelled urea and organic matter of varying biochemical quality was carried out to test the hypothesis that mixing urea with organic matter will lead to temporary immobilization of urea-derived N and subsequently to a better utilization of urea-N by the crop and reduced losses of urea-N. Another set of experiments addressed the issue whether organic matter status affects the recovery of applied N fertilizer. First of all, in a lysimeter experiment, mixing 15 N-labeled urea with various organic materials with varying quality was observed not to significantly affect the drainage of urea-derived mineral N. Outflow of water at the bottom of the lysimeters was affected by the type of residue and the way of application. Secondly, in a nanoplot experiment with square metal cubes, 0.43 by 0.43 m, the recovery of applied 15 N-labeled urea was not affected by applying the urea together with incorporated organic materials of varying quality and averaged 23%. Recovery of applied urea in the soil (0-90 cm), however, was significantly higher after mixing the urea with maize stover than in the treatment which received only 90 kg urea-N ha -1 . This is likely to be related to the rather large N-immobilization potential of maize stover in view of its low quality. Leucaena residues have also been shown to initially immobilize N and this was related to the rather high content of soluble polyphenols. Cowpea stover is likely to decompose very fast and may have little impact on the urea-N dynamics. Thirdly, the recovery of 15 N-labeled urea, as affected by the

  14. Exploring symbiotic nitrogen fixation and assimilation in pea root nodules by in vivo 15N nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry

    DEFF Research Database (Denmark)

    Scharff, A.M.; Egsgaard, H.; Hansen, P.E.

    2003-01-01

    Nitrogen (N) fixation and assimilation in pea (Pisum sativum) root nodules were studied by in vivo N-15 nuclear magnetic resonance (NMR) by exposing detached nodules to N-15, via a perfusion medium, while recording a time course of spectra. In vivo P-31 NMR spectroscopy was used to monitor...... the physiological state of the metabolically active nodules. The nodules were extracted after the NMR studies and analyzed for total soluble amino acid pools and N-15 labeling of individual amino acids by liquid chromatography-mass spectrometry. A substantial pool of free ammonium was observed by N-15 NMR...... labeling of Asn was observed by liquid chromatography-mass spectrometry, which is consistent with the generally accepted role of Asn as the end product of primary N assimilation in pea nodules. However, the Asn N-15 amino signal was absent in in vivo N-15 NMR spectra, which could be because...

  15. Influence of an azolla layer on growth, production and efficiency and use of 15N Labelled urea fertilizer of lowland rice

    International Nuclear Information System (INIS)

    Hendrarti, Etty; Sopandie, Didy; Komarudin Idris; Sisworo, Elsje L

    1998-01-01

    The purpose of this experiment was to study the effect of an Azolla mat on rice growth, percentage of N-total, N derived from fertilizer and urea efficiency. The experiment used a factorial design which consists of 2 factors : the using of an Azolla mat and the doses of N fertilizer. The first factor comprised 2 levels, with (A1) and without an azolla mat (A0). The second factor comprised 4 levels, 0(N0), 30 (N1), 60(N2) and 90 kg N/ha(N3).Application of 15 N labeled Urea done to determine percentage N-derived from Urea efficiency , which was divided in 2 experiment series as follows : application Urea at planting (experiment I) and one month after planting (experiment II). The experiments were carried out in the green house of Agricultural Faculty of IPB and continued in the laboratory of BATAN. Parameters observed were plant height, number of tillers, number of panicles, number of grains/panicle, dry weight of grain, straw and percentage of empty grain. Result of the experiment showed that an Azolla mat, the doses of N fertilizer and interaction of both increased all the parameters observed yield, except for percentage of empathy grain, up to the dose of N fertilizer at 60 kg N/ha and decreased at the dose of N fertilizer at 90 kg N/ha. The treatment of Urea fertilizer doses resulted in a significant difference on the percentage of N- derived from Urea for both experiment, but not for the treatment of an Azolla mat and the interaction of both treatment. An azolla mat, N fertilizer and interaction of both did not result in a significantly difference on the percentage of total-N and Urea efficiency. The best treatment combination was treatment of an azolla mat and dose of Urea fertilizer of 60 kg N/ha. (author)

  16. The natural abundance of 15N in litter and soil profiles under six temperate tree species: N cycling depends on tree species traits and site fertility

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Nilsson, Lars Ola; Schmidt, Inger Kappel

    2013-01-01

    We investigated the influence of tree species on the natural 15N abundance in forest stands under elevated ambient N deposition.We analysed δ15N in litter, the forest floor and three mineral soil horizons along with ecosystem N status variables at six sites planted three decades ago with five Eur...... to nitrate leaching or other N transformation processes....... species leached more nitrate.The δ15N pattern reflected tree species related traits affecting the N cycling as well as site fertility and former land use, and possibly differences in N leaching. The tree species δ15N patterns reflected fractionation caused by uptake of N through mycorrhiza rather than due...

  17. GC-MS DETERMINATION OF RATIOS OF STABLE-ISOTOPE LABELED TO NATURAL UREA USING [(CN2)-C-13-N-15]UREA FOR STUDYING UREA KINETICS IN SERUM AND AS A MEANS TO VALIDATE ROUTINE METHODS FOR THE QUANTITATIVE ASSAY OF UREA IN DIALYSATE

    NARCIS (Netherlands)

    WOLTHERS, BG; TEPPER, T; WITHAG, A; NAGEL, GT; DEHAAN, THY; VANLEEUWEN, JJ; STEGEMAN, CA; HUISMAN, RM

    A GC-MS determination of urea in serum or spent dialysate is described, using (CN2)-C-13-N-15-labelled urea and assaying the area ratio of labelled to natural urea by mass fragmentographic monitoring of fragments m/e 153 and 156, after its eventual conversion into the trimethylsilylether-derivative

  18. 15N dilution technique of assessing the contribution of nitrogen fixation to rice plant

    International Nuclear Information System (INIS)

    Ventura, Wilbur; Watanabe, Iwao

    1983-01-01

    An attempt to correlate the positive nitrogen balance in rice-soil system with the 15 N dilution in rice plants was made to see if isotope dilution can be used to assess the contribution of nitrogen fixation to the nitrogen nutrition of rice. 15 N ammonium sulfate and sucrose were added to the moist soil in pots to label biomass nitrogen fraction. The rice-soil system with higher nitrogen gain had lower 15 N content in the rice plants. When the surface of pots was covered with black cloths to suppress photodependent N 2 fixation, no significant nitrogen gain was observed. Significant gain was found in the rice-flooded soil system exposed to light, and the 15 N content of plants decreased in allowing the photodependent N 2 fixation by blue-green algae symbiosis. The contribution of plant nitrogen derived from photodependent N 2 fixation was estimated to be 20-30 % of the positive nitrogen gain in the system by the 15 N dilution technique using the rice-covered soil as reference system. (Mori, K.)

  19. Chinese Milk Vetch Improves Plant Growth, Development and 15N Recovery in the Rice-Based Rotation System of South China.

    Science.gov (United States)

    Xie, Zhijian; He, Yaqin; Tu, Shuxin; Xu, Changxu; Liu, Guangrong; Wang, Huimin; Cao, Weidong; Liu, Hui

    2017-06-15

    Chinese milk vetch (CMV) is vital for agriculture and environment in China. A pot experiment combined with 15 N labeling (including three treatments: control, no fertilizer N and CMV; 15 N-labeled urea alone, 15 NU; substituting partial 15 NU with CMV, 15 NU-M) was conducted to evaluate the impact of CMV on plant growth, development and 15 NU recovery in rice-based rotation system. The 15 NU-M mitigated oxidative damage by increasing antioxidant enzymes activities and chlorophyll content while decreased malondialdehyde content in rice root and shoot, increased the biomass, total N and 15 N uptake of plant shoots by 8%, 12% and 39% respectively, thus inducing a noticeable increase of annual 15 N recovery by 77% versus 15 NU alone. Remarkable increases in soil NH 4 + and populations of bacteria, actinomycetes and azotobacter were obtained in legume-rice rotation system while an adverse result was observed in soil NO 3 - content versus fallow-rice. CMV as green manure significantly increased the fungal population which was decreased with cultivating CMV as cover crop. Therefore, including legume cover crop in rice-based rotation system improves plant growth and development, annual N conservation and recovery probably by altering soil nitrogen forms plus ameliorating soil microbial communities and antioxidant system which alleviates oxidative damages in plants.

  20. Synthesis of the arginine labelled by {sup 15}N on the amidine group; Synthese de l'arginine marquee par {sup 15}N dans le groupe amidine

    Energy Technology Data Exchange (ETDEWEB)

    Pichat, L; Clement, J [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1955-07-01

    For some biologic studies, it was necessarily to have (+) arginine marked by nitrogen 15 in the amidine group. This report describes the synthesis of the labelled arginine. The first step is the synthesis of the methyl-isourated hydro-chlorate, the intermediate reactive, from the ClNH{sub 4} isotope. The arginine is obtained from the ornithine which we previously blocked the amino group as cupric complex. The mean yield in arginine reaches 30%, based on the ammonium chloride uses. (M.B.) [French] Pour certaines etudes biologiques, il etait indispensable de disposer de (+) arginine marquee par l'azote 15 dans le groupement amidine. Ce rapport decrit la synthese de l'ariginine marquee. La premiere etape est la synthese du chlorhydrate de methylisouree, intermediaire reactif, a partir du ClNH{sub 4} isotopique. L'obtention de l'arginine est obtenue a partir de l'ornithine dont on a prealablement bloque le groupe amino sous forme de complexe cuivrique. Le rendement global moyen en arginine atteint 30 %, base sur le chlorure d'ammonium utilise. (M.B.)

  1. Determination of nitrogen absorption and endogenous nitrogen secretion in the digestive tract of pigs fed with nitrogen-15-labelled dried whey

    International Nuclear Information System (INIS)

    Gebhardt, G.; Souffrant, W.; Koehler, R.; Zebrowska, T.

    1977-01-01

    Two fistulated pigs weighing between 15kg and 54kg were given experimental diets containing 15 N-labelled dried whey. The labelled experimental diets were given once only. Samples of the digesta were taken from the duodenum and terminal ileum at various intervals of time up to 48h after feeding the labelled protein feed. The digesta were separated into the four following fractions: Residue on centrifugation, proteins, peptides and free amino acids. The secretion of endogenous nitrogen in the duodenum was 12.5g/24h in pigs having a live weight of 50kg. The endogenous nitrogen was found to be relatively uniformly distributed among the four fractions. The rate of secretion of endogenous nitrogen showed a continuous decrease during 24h. The secretion of endogenous nitrogen in the terminal ileum was 54 to 60mg of nitrogen per kilogram live weight. After passage through the small intestine the greater part of the free amino acids in digesta was of exogenous origin. In the protein fraction most came from endogenous proteins. A true absorption of 17% of nitrogen was determined in the duodenum. The amount of nitrogen absorbed in the terminal part of the small intestine was, on average, 90% relative to the nitrogen intake. The true digestibility calculated with the amount of 15 N in food and faeces was 98%. (author)

  2. Accurate Determination of Leucine and Valine Side-chain Conformations using U-[15N/13C/2H]/[1H-(methine/methyl)-Leu/Val] Isotope Labeling, NOE Pattern Recognition, and Methine Cγ-Hγ/Cβ-Hβ Residual Dipolar Couplings

    International Nuclear Information System (INIS)

    Tang, Chun; Iwahara, Junji; Clore, G. Marius

    2005-01-01

    An isotope labeling scheme is described in which specific protonation of methine and methyl protons of leucine and valine is obtained on a 15 N/ 13 C labeled background with uniform deuteration of all other non-exchangeable protons. The presence of a protonated methine group has little effect on the favorable relaxation properties of the methyl protons of Leu and Val. This labeling scheme permits the rotameric state of leucine side-chains to be readily determined by simple inspection of the pattern of Hγ(i)-H N (i) and Hγ(i)-H N (i+1) NOEs in a 3D 15 N-separated NOE spectrum free of complications arising from spectral overlap and spin-diffusion. In addition, one-bond residual dipolar couplings for the methine 13 C- 1 H bond vectors of Leu and Val can be accurately determined from an intensity J-modulated constant-time HCCH-COSY experiment and used to accurately orient the side-chains of Leu and Val. Incorporation of these data into structure refinement improves the accuracy with which the conformations of Leu and Val side-chains can be established. This is important to ensure optimal packing both within the protein core and at intermolecular interfaces. The impact of the method on protein structure determination is illustrated by application to enzyme IIA Chitobiose , a 34 kDa homotrimeric phosphotransferase protein

  3. Synthesis of a Potent Aminopyridine-Based nNOS-Inhibitor by Two Recent No-Carrier-Added 18F-Labelling Methods

    Directory of Open Access Journals (Sweden)

    Christian Drerup

    2016-09-01

    Full Text Available Nitric oxide (NO, an important multifunctional signaling molecule, is produced by three isoforms of NO-synthase (NOS and has been associated with neurodegenerative disorders. Selective inhibitors of the subtypes iNOS (inducible or nNOS (neuronal are of great interest for decoding neurodestructive key factors, and 18F-labelled analogues would allow investigating the NOS-function by molecular imaging with positron emission tomography. Especially, the highly selective nNOS inhibitor 6-((3-((3-fluorophenethylaminomethylphenoxymethyl-4-methylpyridin-2-amine (10 lends itself as suitable compound to be 18F-labelled in no-carrier-added (n.c.a. form. For preparation of the 18F-labelled nNOS-Inhibitor [18F]10 a “build-up” radiosynthesis was developed based on a corresponding iodonium ylide as labelling precursor. The such activated phenethyl group of the compound was efficiently and regioselectively labelled with n.c.a. [18F]fluoride in 79% radiochemical yield (RCY. After conversion by reductive amination and microwave assisted displacement of the protecting groups, the desired nNOS-inhibitor was obtained in about 15% total RCY. Alternatively, for a simplified “late-stage” 18F-labelling procedure a corresponding boronic ester precursor was synthesized and successfully used in a newer, copper(II mediated n.c.a. 18F-fluoro-deboroniation reaction, achieving the same total RCY. Thus, both methods proved comparatively suited to provide the highly selective NOS-inhibitor [18F]10 as probe for preclinical in vivo studies.

  4. Synthesis of a Potent Aminopyridine-Based nNOS-Inhibitor by Two Recent No-Carrier-Added (18)F-Labelling Methods.

    Science.gov (United States)

    Drerup, Christian; Ermert, Johannes; Coenen, Heinz H

    2016-09-01

    Nitric oxide (NO), an important multifunctional signaling molecule, is produced by three isoforms of NO-synthase (NOS) and has been associated with neurodegenerative disorders. Selective inhibitors of the subtypes iNOS (inducible) or nNOS (neuronal) are of great interest for decoding neurodestructive key factors, and (18)F-labelled analogues would allow investigating the NOS-function by molecular imaging with positron emission tomography. Especially, the highly selective nNOS inhibitor 6-((3-((3-fluorophenethylamino)methyl)phenoxy)methyl)-4-methylpyridin-2-amine (10) lends itself as suitable compound to be (18)F-labelled in no-carrier-added (n.c.a.) form. For preparation of the (18)F-labelled nNOS-Inhibitor [(18)F]10 a "build-up" radiosynthesis was developed based on a corresponding iodonium ylide as labelling precursor. The such activated phenethyl group of the compound was efficiently and regioselectively labelled with n.c.a. [(18)F]fluoride in 79% radiochemical yield (RCY). After conversion by reductive amination and microwave assisted displacement of the protecting groups, the desired nNOS-inhibitor was obtained in about 15% total RCY. Alternatively, for a simplified "late-stage" (18)F-labelling procedure a corresponding boronic ester precursor was synthesized and successfully used in a newer, copper(II) mediated n.c.a. (18)F-fluoro-deboroniation reaction, achieving the same total RCY. Thus, both methods proved comparatively suited to provide the highly selective NOS-inhibitor [(18)F]10 as probe for preclinical in vivo studies.

  5. Detection of free radicals by radical trapping and 15N NMR spectroscopy in copolymerization of methyl acrylate and styrene

    NARCIS (Netherlands)

    Kelemen, P.; Klumperman, B.

    2003-01-01

    The macroradicals taking part in the copolymn. of Me acrylate and styrene were trapped by reaction with a 15N labeled stable nitroxyl radical at 70 DegC. The nitroxyl radical is formed in situ from a thermally instable alkoxyamine precursor. 15N NMR spectroscopy is applied to detect the trapping

  6. Applications of stable isotopes of /sup 2/H, /sup 13/C and /sup 15/N to clinical problems. Experience of a collaborative program at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P D; Szczepanik, P A; Hachey, D L [Argonne National Lab., Evanston, Ill. (USA)

    1974-08-01

    The function of the Argonne Program is to provide synthetic, analytical instrumental capability in a core facility for the clinical investigator who needs to use /sup 2/H, /sup 13/C, or /sup 15/N labelled compounds for metabolic or clinical research on pregnant women, newborn infants, young children, or for mass screening. To carry out such application development, there were six stages which were recurrent steps in every application. Five fundamental strategies should be adopted to establish the use of stable isotopes in clinical work. The instrument required for measurements was a combined gas chromatograph-mass spectrometer, and its use was schematically illustrated. Some of the successful experiences with compounds labelled by stable isotopes, such as deuterium labelled chenodeoxycholic acid, and respective /sup 13/C and /sup 15/N-labelled glycine were described. Deutrium labelled bile acid enabled easy and safe determination of the size of the bile acid pool and the replacement rate, providing clearer diagnoses for cholestatic liver disease and gallstones. /sup 13/C and /sup 15/N labelled compounds were used in clinical studies, of children with genetic disorders of amino acid metabolism, i.e., non ketotic hyperflycinemia, B/sub 12/-responsive methyl malonic acidemia, and Lesch-Nyhan syndrome. /sup 15/N-labelled glycine was also studied in a child with Lesch-Nyhan syndrome.

  7. Amide or Amine: Determining the Origin of the 3300 cm−1 NH Mode in Protein SFG Spectra Using 15N Isotope Labels

    Science.gov (United States)

    Weidner, Tobias; Breen, Nicholas F.; Drobny, Gary P.; Castner, David G.

    2009-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been employed in biomaterials research and protein adsorption studies with growing success in recent years. A number of studies focusing on understanding SFG spectra of proteins and peptides at different interfaces have laid the foundation for future, more complex studies. In many cases a strong NH mode near 3300 cm−1 is observed in the SFG spectra, but the relationship of this mode to the peptide structure is uncertain since it has been assigned to either a backbone amide mode or a side chain related amine resonance. A thorough understanding of the SFG spectra of these first model systems is an important first step for future experiments. To clarify the origin of the NH SFG mode we studied 15N isotopically labeled 14-amino acid amphiphilic model peptides composed of lysine (K) and leucine (L) in an α-helical secondary structure (LKα14) that were adsorbed onto charged surfaces in situ at the solid-liquid interface. 15N substitution at the terminal amine group of the lysine side chains resulted in a red-shift of the NH mode of 9 cm−1 on SiO2 and 13 cm−1 on CaF2. This clearly shows the 3300 cm−1 NH feature is associated with side chain NH stretches and not with backbone amide modes. PMID:19873996

  8. Amide or amine: determining the origin of the 3300 cm(-1) NH mode in protein SFG spectra using 15N isotope labels.

    Science.gov (United States)

    Weidner, Tobias; Breen, Nicholas F; Drobny, Gary P; Castner, David G

    2009-11-26

    Sum frequency generation (SFG) vibrational spectroscopy has been employed in biomaterials research and protein adsorption studies with growing success in recent years. A number of studies focusing on understanding SFG spectra of proteins and peptides at different interfaces have laid the foundation for future, more complex studies. In many cases, a strong NH mode near 3300 cm(-1) is observed in the SFG spectra, but the relationship of this mode to the peptide structure is uncertain, since it has been assigned to either a backbone amide mode or a side chain related amine resonance. A thorough understanding of the SFG spectra of these first model systems is an important first step for future experiments. To clarify the origin of the NH SFG mode, we studied (15)N isotopically labeled 14-amino acid amphiphilic model peptides composed of lysine (K) and leucine (L) in an alpha-helical secondary structure (LKalpha14) that were adsorbed onto charged surfaces in situ at the solid-liquid interface. (15)N substitution at the terminal amine group of the lysine side chains resulted in a red-shift of the NH mode of 9 cm(-1) on SiO(2) and 13 cm(-1) on CaF(2). This clearly shows the 3300 cm(-1) NH feature is associated with side chain NH stretches and not with backbone amide modes.

  9. Study on the utilization of N fertilizers by labelling with 15N in a microplot experiment

    International Nuclear Information System (INIS)

    Latkovics, I.

    1982-01-01

    The effect and residual effect of urea and NH 4 NO 3 on the dry matter yield and N uptake of rye-grass and Sudan grass, as well as on the N status of the soil and the distribution of N within the soil profile were studied with 15 N indication on a chernozem-like calcareous sandy soil in an isolated microplot experiment. It has been found that 57-79% of the N contents of the first cuttings came from the fertilizer, and the percentage N amounts decreased with each cutting. Under the given experimental conditions there was no significant difference between the N amounts taken up from urea or from NH 4 NO 3 . Rye-grass utilized N both from urea and NH 4 NO 3 in the same degree (55%), while Sudan grass utilized 29.8% from urea and 36.1% from NH 4 NO 3 . Depending on the treatment, 22.8-31.7% of fertilizer-N was found in the 0-120 cm layer of the soil, while the larger part (74.8-84.6%) of this amount accumulated in the upper 40 cm layer. The amount of fertilizer-N not recovered (and thus 'lost' for the plants) was 13.3-21.6% in the case of rye-grass and 34.4-43.1% of Sudan grass. (author)

  10. Exogenous proline relieves growth inhibition caused by NaCl in petunia cells: Metabolism of L-[15M]-proline followed by 15N NMR

    International Nuclear Information System (INIS)

    Heyser, J.W.; Chacon, M.J.

    1989-01-01

    Exogenous proline stimulated the growth of Petunia hybrida cells on 195 mM NaCl 10-fold as compared with cells grown on 195 mM CaCl medium minus proline. L-[ 15 N]-proline was fed to cells growing on 0 and 195 mM CaCl, and its metabolism was followed by 15 N NMR analysis of cell extracts. Total proline and amino acids were determined by ninhydrin assay. Proline and primary amino acids were easily resolved in NMR spectra and the amount of 15 N-label which remained in proline was determined. Reduced catabolism of proline in cells grown on NaCl was evident. The role of exogenous proline in conferring increased NaCl tolerance in this nonhalophyte will be discussed

  11. 15N-tomatine

    International Nuclear Information System (INIS)

    Elliger, C.A.

    1988-01-01

    A method for preparative isolation of 15 N-tomatine from foliage of tomato plants grown hydroponically with 15 N-containing nutrient salts is described. Extractive workup of plant material gave a crude product which was chromatographed on Sephadex LH-20 to yield pure tomatine. Assay of 15 N content by mass spectrometry showed that isotopic purity was ca. 95%. (author)

  12. Using the N-15 method to determine N-soil, N-green manure, and N-urea availability after six seasons in an alley cropping system

    International Nuclear Information System (INIS)

    Elsje L Sisworo; Haryanto and Ania Citraresmini

    2006-01-01

    Nitrogen (N) is the most important nutrient for crop growth and production. This study was conducted to determine whether in each of six seasons and after these seasons the N-soil, N-green manure, N-green manure + urea, and N-urea is still available for crops. Upland rice and corn were planted successively for six seasons. In each season upland rice and corn were planted and applied with N-fertilizers at rate of: control (0N), N1 (100% green manure), N2 (50% green manure + 50% urea), N3 (100% urea). N-15 labelled urea was added at each season to determine the A-value of the crops. In each seasons it was shown that crops used N-soil as well as N-fertilizer. With the increase of the availability of N-fertilizers the use of N-soil decrease and so could preserve N-soil. With preservation of N-soil it could be assumed that soil quality has increased. The N-15 method could be used to determine the availability at each fertilizer rate’s in each season and at the end of the sixth season. (author)

  13. Nitrogen (15N) accumulation in corn grains as affected by source of nitrogen in red latosol

    International Nuclear Information System (INIS)

    Duete, Robson Rui Cotrim; Muraoka, Takashi; Trivelin, Paulo Cesar Ocheuze; Silva, Edson Cabral da; Ambrosano, Edmilson Jose

    2009-01-01

    Nitrogen is the most absorbed mineral nutrient by corn crop and most affects grains yield. It is the unique nutrient absorbed by plants as cation (NH 4 + ) or anion (NO 3 - ). The objectives of this work were to investigate the N accumulation by corn grains applied to the soil as NH 4 + or NO 3 - in the ammonium nitrate form compared to amidic form of the urea, labeled with 15 N; to determine the corn growth stage with highest fertilizer N utilization by the grains, and to quantify soil nitrogen exported by corn grains. The study was carried out in the Experimental Station of the Regional Pole of the Sao Paulo Northwestern Agribusiness Development (APTA), in Votuporanga, State of Sao Paulo, Brazil, in a Red Latosol. The experimental design was completely randomized blocks, with 13 treatments and four replications, disposed in factorial outline 6x2 + 1 (control, without N application). A nitrogen rate equivalent to 120 kg N ha-1 as urea- 15 N or as ammonium nitrate, labeled in the cation NH 4 + ( 15 NH 4 + NO 3 - ) or in the anion NO 3 - (NH 4 + 15N+O 3 - ), was applied in six fractions of 20 kg N ha-1 each, in different microplots, from seeding to the growth stage 7 (pasty grains). The forms of nitrogen, NH 4 + -N and N O 3 --N, were accumulated equitably by corn grains. The corn grains accumulated more N from urea than from ammonium nitrate. The N applied to corn crop at eight expanded leaves stage promoted largest accumulation of this nutrient in the grains. (author)

  14. /sup 15/N dilution technique of assessing the contribution of nitrogen fixation to rice plant

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, W; Watanabe, Iwao [International Rice Research Inst., College, Laguna (Phillippines)

    1983-06-01

    An attempt to correlate the positive nitrogen balance in rice-soil system with the /sup 15/N dilution in rice plants was made to see if isotope dilution can be used to assess the contribution of nitrogen fixation to the nitrogen nutrition of rice. /sup 15/N ammonium sulfate and sucrose were added to the moist soil in pots to label biomass nitrogen fraction. The rice-soil system with higher nitrogen gain had lower /sup 15/N content in the rice plants. When the surface of pots was covered with black cloths to suppress photodependent N/sub 2/ fixation, no significant nitrogen gain was observed. Significant gain was found in the rice-flooded soil system exposed to light, and the /sup 15/N content of plants decreased in allowing the photodependent N/sub 2/ fixation by blue-green algae symbiosis. The contribution of plant nitrogen derived from photodependent N/sub 2/ fixation was estimated to be 20-30 % of the positive nitrogen gain in the system by the /sup 15/N dilution technique using the rice-covered soil as reference system.

  15. Chemienzymatic synthesis of Uridine. Nucleotides labeled with [15N] and [13C

    DEFF Research Database (Denmark)

    Gilles, Anne-Marie; Cristea, Ioan; Palibroda, Nicolae

    1995-01-01

    +necessary for the oxidation of glucose 6-phosphate and 6-phosphogluconate was recycled by glutamate dehydrogenase and excess of ammonia and a-oxoglutarate. Despite the number and complexity of the enzymatic steps, the synthesis of [15N,13C]UTP is straightforward with an overall yield exceeding 60%. This method, extended...... and diversified to the synthesis of all natural ribonucleotides, is a more economical alternative for obtaining nucleic acids for structural analysis by heteronuclear NMR spectroscopy....

  16. Quantifying denitrification losses from a sub-tropical pasture in Queensland/Australia - use of the 15N gas flux method

    Science.gov (United States)

    Friedl, Johannes; Scheer, Clemens; Warner, Daniel; Grace, Peter

    2014-05-01

    The microbial mediated production of nitrous oxide (N2O) and its reduction to dinitrogen (N2) via denitrification represents a loss of nitrogen (N) from fertilised agro ecosystems to the atmosphere. Although denitrification remains a major uncertainty in estimating N losses from soils, the magnitude of N2 losses and related N2:N2O ratios from soils are largely unknown due to difficulties measuring N2 against a high atmospheric background. In order to address this lack of data, this study investigated the influence of different soil moisture contents on N2 and N2O emissions from a sub-tropical pasture in Queensland/Australia using the 15N gas flux method. Intact soil cores were incubated over 14 days at 80% and 100% water filled pore space (WFPS). Gas samples were taken up to six times per day after application of 15N labelled nitrate, equivalent to 50 kg N ha-1 and analysed for N2 and N2O by isotope ratio mass spectrometry. Fluxes were calculated assuming non-random 15N distribution in the headspace according to Mulvaney and Kurtz (1984) using the labelled pool of nitrate estimated from N2O measurements (Stevens and Laughlin 2001). The main product of denitrification in both treatments was N2. N2 emissions exceeded N2O emissions by a factor of 1.3 ± 0.3 at 80% WFPS and a factor of 3 ± 0.8 at 100% WFPS. The total amount of N-N2 lost over the incubation period was 13.5±1.0 kg N ha-1 at 80% WFPS and 21.8±1.8 kg ha-1 at 100% WFPS respectively. Over the entire incubation period, N2 emissions remained elevated at 100% WFPS, showing high variation between soil cores, while related N2O emissions decreased. At 80% WFPS, N2 emissions increased constantly over time showing significantly higher values after day five. At the same time, N2O fluxes declined. Consequently, N2:N2O ratios rose over the incubation period in both treatments. Overall denitrification rates and related N2:N2O ratios were higher at 100% WFPS compared to 80% WFPS, confirming WFPS as a major driver of

  17. Plant delta 15N correlates with the transpiration efficiency of nitrogen acquisition in tropical trees.

    Science.gov (United States)

    Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L

    2009-11-01

    Based upon considerations of a theoretical model of (15)N/(14)N fractionation during steady-state nitrate uptake from soil, we hypothesized that, for plants grown in a common soil environment, whole-plant delta(15)N (deltaP) should vary as a function of the transpiration efficiency of nitrogen acquisition (F(N)/v) and the difference between deltaP and root delta(15)N (deltaP - deltaR). We tested these hypotheses with measurements of several tropical tree and liana species. Consistent with theoretical expectations, both F(N)/v and deltaP - deltaR were significant sources of variation in deltaP, and the relationship between deltaP and F(N)/v differed between non-N(2)-fixing and N(2)-fixing species. We interpret the correlation between deltaP and F(N)/v as resulting from variation in mineral nitrogen efflux-to-influx ratios across plasma membranes of root cells. These results provide a simple explanation of variation in delta(15)N of terrestrial plants and have implications for understanding nitrogen cycling in ecosystems.

  18. Evaluation of the method for determining organic fertilizer efficiency by indirect labelling of 15N

    International Nuclear Information System (INIS)

    Liu Delin; Zhu Zhaomin; Wu Min

    1995-01-01

    By using the A-value method, direct method and differential method respectively, the absorption and utilization of organic fertilizer-N by rice were studied. The results are as follows. The utilization efficiency of organic fertilizer-N was 25.48%∼50.5% by the differential method, 19.70%∼27.17% by the A-value method, and 18.49%∼24.80% by the direct method. The data by the differential method was higher than those by the other two methods, and there was no significant difference between the direct method and the A-value method. Meanwhile, when the ratio of inorganic fertilizer-N to organic fertilizer-N was 1:0.48, the results from above two methods were similar. The nitrogen efficiency of 1,5 x 10 4 kg fresh Astragalus sinicus L. was equivalent to 53.43 kg urea for early rice, and 39.15 kg urea for late rice

  19. Synthesis of isotopically labelled angiotensin II receptor antagonist GR138950X

    International Nuclear Information System (INIS)

    Carr, R.M.; Cable, K.M.; Newman, J.J.; Sutherland, D.R.

    1996-01-01

    Syntheses of [ 13 C] and [ 14 C]-labelled versions of angiotensin II receptor antagonist GR138950X, labelled in the imidazole carboxamide residue, are described. These involved preparation of an iodoimidazole substrate by a novel iododecarboxylation procedure, followed by cyanation with a mixture of carbon-labelled potassium cyanide and copper (l) iodide in DMF at high temperature. The preparation of a mass-labelled (M+5) version of GR138950X is also described. This involved the synthesis of an [ 13 C 3 , 15 N 2 ]-labelled imidazole from a 1,2,3-tricarbonyl compound, [ 13 C 3 ]propionaldehyde and [ 15 N]ammonia. The labelled imidazole was further elaborated into multiply-labelled GR138950X. (Author)

  20. Fields of application and results of analytic procedures with 15N in pediatric alimentary research

    International Nuclear Information System (INIS)

    Heine, W.; Richter, I.; Plath, C.; Wutzke, K.; Kupatz, P.; Drescher, U.

    1981-01-01

    Investigation of protein metabolism in nutritional pediatric research by means of 15 N tracer techniques has been relatively seldom used up to now. 15 N labelled compounds for these purposes are not injurious to health. The technique is based on oral or intravenous application of the tracer substances and on 15 N analysis of the urine fractions. The subsequent calculation of protein synthesis and breakdown rate, turnover and reutilisation of amino acids from protein breakdown as well as the size of the metabolic pool offers detailed information of protein metabolism. Determination of these parameters was performed in infants on mother's milk and formula feeding and on chemically defined diet. As an example of utilisation of D-amino acids for protein synthesis the 15 N-D-phenylalanin retention on parenteral nutrition was found to be 33% of the applied dosis at an average. An oral 15 N glycine loading test proved to be of value for the prediction of the therapeutic effect of human growth hormon in numerous types of dwarfism. Further application of 15 N tracer technique dealt with utilisation of 15 N urea for bacterial protein synthesis of the intestinal flora and with incorporation of 15 N from 15 N glycine and 15 N lysine into the jejunal mucosa for measuring the enterocyte regeneration. (author)

  1. Ultra-violet absorption cross sections of isotopically substituted nitrous oxide species: 14N14NO, 15N14NO, 14N15NO and 15N15NO

    Directory of Open Access Journals (Sweden)

    P. von Hessberg

    2004-01-01

    Full Text Available The isotopically substituted nitrous oxide species 14N14NO, 15N14NO, 14N15NO and 15N15NO were investigated by ultra-violet (UV absorption spectroscopy. High precision cross sections were obtained for the wavelength range 181 to 218nm at temperatures of 233 and 283K. These data are used to calculate photolytic isotopic fractionation constants as a function of wavelength. The fractionation constants were used in a three-dimensional chemical transport model in order to simulate the actual fractionation of N2O in the stratosphere, and the results were found to be in good agreement with field studies.

  2. Understanding N timing in corn yield and fertilizer N recovery: An insight from an isotopic labeled-N determination

    Science.gov (United States)

    de Almeida, Rodrigo Estevam Munhoz; Pierozan Junior, Clovis; Lago, Bruno Cocco; Trivelin, Paulo Cesar Ocheuze

    2018-01-01

    Early fertilizer nitrogen (N) application on cover crops or their residues during the off-season is a practice adopted in Brazil subtropical conditions under no-tillage corn (Zea mays L.) systems. However, the effect of early N application on yield, plant N content, and N recovery efficiency (NRE) for corn is not yet well documented. Five fertilizer N timings in an oat-corn system were evaluated in two studies utilizing an isotopic-labeled N determination, 15N isotope. The N fertilization timings were: (i) oat tillering, (ii) 15 days before corn planting time, over the oat residues, (iii) at corn planting time, (iv) in-season at the three-leaf growth stage (V3), and (v) in-season split application at V3 and six-leaf (V6) growth stages. Based on the statistical analysis, the N fertilization timings were separated into three groups: 1) N-OATS, designated to N applied at oat; 2) N-PLANT, referred to pre-plant and planting N applications; and 3) N-CORN, designated to in-season corn N applications. Corn yield was not affected by the N fertilization timing. However, the N-CORN N fertilization timings enhanced NRE by 17% and 35% and final N recovery system (plant plus soil) by 16% and 24% all relative to N-OATS and N-PLANT groups, respectively. Overall, N-OATS resulted in the largest N derived from fertilizer (NDFF) amount in the deeper soil layer, in overall a delta of 10 kg N ha-1 relative to the rest of the groups. Notwithstanding corn yield was not affected, early N fertilization under subtropical conditions is not a viable option since NRE was diminished and the non-recovery N increased relative to the in-season N applications. PMID:29462178

  3. Understanding N timing in corn yield and fertilizer N recovery: An insight from an isotopic labeled-N determination.

    Science.gov (United States)

    Maciel de Oliveira, Silas; Almeida, Rodrigo Estevam Munhoz de; Ciampitti, Ignacio A; Pierozan Junior, Clovis; Lago, Bruno Cocco; Trivelin, Paulo Cesar Ocheuze; Favarin, José Laércio

    2018-01-01

    Early fertilizer nitrogen (N) application on cover crops or their residues during the off-season is a practice adopted in Brazil subtropical conditions under no-tillage corn (Zea mays L.) systems. However, the effect of early N application on yield, plant N content, and N recovery efficiency (NRE) for corn is not yet well documented. Five fertilizer N timings in an oat-corn system were evaluated in two studies utilizing an isotopic-labeled N determination, 15N isotope. The N fertilization timings were: (i) oat tillering, (ii) 15 days before corn planting time, over the oat residues, (iii) at corn planting time, (iv) in-season at the three-leaf growth stage (V3), and (v) in-season split application at V3 and six-leaf (V6) growth stages. Based on the statistical analysis, the N fertilization timings were separated into three groups: 1) N-OATS, designated to N applied at oat; 2) N-PLANT, referred to pre-plant and planting N applications; and 3) N-CORN, designated to in-season corn N applications. Corn yield was not affected by the N fertilization timing. However, the N-CORN N fertilization timings enhanced NRE by 17% and 35% and final N recovery system (plant plus soil) by 16% and 24% all relative to N-OATS and N-PLANT groups, respectively. Overall, N-OATS resulted in the largest N derived from fertilizer (NDFF) amount in the deeper soil layer, in overall a delta of 10 kg N ha-1 relative to the rest of the groups. Notwithstanding corn yield was not affected, early N fertilization under subtropical conditions is not a viable option since NRE was diminished and the non-recovery N increased relative to the in-season N applications.

  4. Light-mediated 15N fractionation in Caribbean gorgonian octocorals: implications for pollution monitoring

    Science.gov (United States)

    Baker, D. M.; Kim, K.; Andras, J. P.; Sparks, J. P.

    2011-09-01

    The stable nitrogen isotope ratio ( δ 15N) of coral tissue is a useful recorder of anthropogenic pollution in tropical marine ecosystems. However, little is known of the natural environmentally induced fractionations that affect our interpretation of coral δ 15N values. In symbiotic scleractinians, light affects metabolic fractionation of N during photosynthesis, which may confound the identification of N pollution between sites of varied depth or turbidity. Given the superiority of octocorals for δ 15N studies, our goal was to quantify the effect of light on gorgonian δ 15N in the context of monitoring N pollution sources. Using field collections, we show that δ 15N declined by 1.4‰ over 20 m depth in two species of gorgonians, the common sea fan, Gorgonia ventalina, and the slimy sea plume, Pseudopterogorgia americana. An 8-week laboratory experiment with P. americana showed that light, not temperature causes this variation, whereby the lowest fractionation of the N source was observed in the highest light treatment. Finally, we used a yearlong reciprocal depth transplant experiment to quantify the time frame over which δ 15N changes in G. ventalina as a function of light regime . Over the year, δ 15N was unchanged and increased slightly in the deep control colonies and shallow colonies transplanted to the deep site, respectively. Within 6 months, colonies transplanted from deep to shallow became enriched by 0.8‰, mirroring the enrichment observed in the shallow controls, which was likely due to the combined effect of an increase in the source δ 15N and reduced fractionation. We conclude that light affects gorgonian δ 15N fractionation and should be considered in sampling designs for N pollution monitoring. However, these fractionations are small relative to differences observed between natural and anthropogenic N sources.

  5. Efficient use of N-Fertilizers under flooded and un flooded conditions using N-15

    International Nuclear Information System (INIS)

    Ismail, M.M.A.

    1997-01-01

    Laboratory and greenhouse experiments were out to study the behaviour of nitrogen fertilizers in soil and efficiency for plant under flooded and un flooded conditions using 15 N-labelled urea as a source of N and many possibilities such as urease and nitrification inhibitors and some of slow-release N-fertilizers. The obtained results can be summarized under the following headings: A) Greenhouse Experiments: 1- Effect of nitrogen rats, methods of N-application and nitrification inhibitors or slow- release N-fertilizer on wheat plants. 2- The combined effect of organic materials and inorganic nitrogen fertilizer at different levels on rice yield. 3- Effect of some urease inhibitors and slow-release fertilizer on the efficiency of urea applied to rice. B) Laboratory experiment. 4- Effect of urease and/or nitrification inhibitors on urea hydrolysis and transformation under flooded soil conditions. 20 tabs., 17 figs., 228 refs

  6. A new technique for the evaluation of the capacity of the gastrointestinal tract to assimilate foods by using a stable isotope of nitrogen (15N)

    International Nuclear Information System (INIS)

    Takemiya, Muneyasu; Fujita, Yoshikuni; Yazima, Yoshitada; Okabe, Haruya

    1983-01-01

    A new technique is introduced for the evaluation of the capacity of the gastrointestinal tract to assimilate foods by using a stable isotope of nitrogen ( 15 N) as a tracer. Four groups of male Wistar rats were fed 15 N-labeled rice for one day following a basal diet, composed of 87% poudered rice. Then, 15 N-labeled rice was switched to basal diet again for the next seven days. The four groups of rats consisted of: Group A-three pancreatic duct-ligated rats; Group B-four sham operated rats; Group C-five control rats and Group D-seven Streptozotocin-treated (20mg/kg) rats. The 15 N contents were measured in the stool, urine and sera collected before feeding of 15 N-labeled rice and one, three and seven days thereafter. In group A, the rate of 15 N excretion into the stools, i.e., the amount of 15 N in the stools against the total amount of 15 N consumed, was higher as compared to the control group throughout the period of the study. On the contrary, the rate of urinary excretion of 15 N as well as the contents of 15 N in the urine and sera were apparently lower. In group D, the rate of 15 N excretion into the stools as well as the contents of 15 N in the sera and urine showed no difference as compared to the control group. The rate of 15 N excretion into the urine, however, was apparently higher than that of the control group throughout the period of the study. These results indicate that this stable isotope of nitrogen ( 15 N), which clearly reveals the existence of malabsorption of pancreatic origin, is valuable as a tracer for assimilation studies and technically applicable for clinical use. We have found no evidence of malassimilation in rats with Streptozotocin-induced diabetes in spite of the presence of previous reports that assert the existence of pancreatic exocrine dysfunction in these animals. (author)

  7. Distribution of nitrogen ammonium sulfate (15N) soil-plant system in a no-tillage crop succession

    International Nuclear Information System (INIS)

    Fernandes, Flavia Carvalho da Silva; Libardi, Paulo Leonel

    2012-01-01

    the n use by maize (Zea mays, l.) is affected by n-fertilizer levels. this study was conducted using a sandy-clay texture soil (Hapludox) to evaluate the efficiency of n use by maize in a crop succession, based on 15 N labeled ammonium sulfate (5.5 atom %) at different rates, and to assess the residual fertilizer effect in two no-tillage succession crops (signal grass and corn). Two maize crops were evaluated, the first in the growing season 2006, the second in 2007, and brachiaria in the second growing season. The treatments consisted of n rates of 60, 120 and 180 kg ha -1 in the form of labeled 15 N ammonium sulfate. This fertilizer was applied in previously defined subplots, only to the first maize crop (growing season 2006). The variables total accumulated n; fertilizer-derived n in corn plants and pasture; fertilizer-derived n in the soil; and recovery of fertilizer-n by plants and soil were evaluated.The highest uptake of fertilizer n by corn was observed after application of 120 kg ha -1 N and the residual effect of n fertilizer on subsequent corn and brachiaria was highest after application of 180 kg ha -1 N. After the crop succession, soil n recovery was 32, 23 and 27 % for the respective applications of 60, 120 and 180 kg ha -1 N. (author)

  8. Use of stable nitrogen isotope signatures of riparian macrophytes as an indicator of anthropogenic N inputs to river ecosystems.

    Science.gov (United States)

    Kohzu, Ayato; Miyajima, Toshihiro; Tayasu, Ichiro; Yoshimizu, Chikage; Hyodo, Fujio; Matsui, Kiyoshi; Nakano, Takanori; Wada, Eitaro; Fujita, Noboru; Nagata, Toshi

    2008-11-01

    Deterioration of aquatic ecosystems resulting from enhanced anthropogenic N loading has become an issue of increasing concern worldwide, and methods are needed to trace sources of N in rivers. Because nitrate from sewage is enriched in 15N relative to nitrate from natural soils, delta(15)N values of stream nitrate (delta(15)Nnitrate) should be an appropriate index of anthropogenic N loading to rivers, as should the delta(15)N values of riparian plants (delta(15)Nplant) because they are consumers of nitrate. We determined the delta(15)N values of stream nitrate and six species of riparian macrophytes in 31 rivers in the Lake Biwa Basin in Japan. We then tested the correlation between these values and various land-use parameters, including the percentage of land used for residential and agricultural purposes as well as for natural areas. These delta(15)N values were significantly positively correlated with land use (%) that had a high N load (i.e., residential or agricultural use) and significantly negatively correlated with forest (%). These findings indicate that delta(15)N values of stream nitrate and riparian plants might be good indicators of anthropogenic inputs of nitrogen.

  9. Determination of the major tautomeric form of the covalently modified adenine in the (+)-CC-1065-DNA adduct by 1H and 15N NMR studies

    International Nuclear Information System (INIS)

    Lin, Chin Hsiung; Hurley, L.H.

    1990-01-01

    (+)-CC-1065 is an extremely potent antitumor antibiotic produced by Streptomyces zelensis. The potent cytotoxic effects of the drug are thought to be due to the formation of a covalent adduct with DNA through N3 of adenine. Although the covalent linkage sites between (+)-CC-1065 and DNA have been determined, the tautomeric form of the covalently modified adenine in the (+)-CC-1065-DNA duplex adduct was not defined. The [6- 15 N]deoxyadenosine-labeled 12-mer duplex adduct was then studied by 1 H and 15 N NMR. One-dimensional NOE difference and two-dimensional NOESY 1 H NMR experiments on the nonisotopically labeled 12-mer duplex adduct demonstrate that the 6-amino protons of the covalently modified adenine exhibit two signals at 9.19 and 9.08 ppm. Proton NMR experiments on the [6- 15 N]deoxyadenosine-labeled 12-mer duplex adduct show that the two resonance signals for adenine H6 observed on the nonisotopically labeled duplex adduct were split into doublets by the 15 N nucleus with coupling constants of 91.3 Hz for non-hydrogen-bonded and 86.8 Hz for hydrogen-bonded amino protons. The authors conclude that the covalently modified adenine N6 of the (+)-CC-1065-12-mer duplex adduct is predominantly in the doubly protonated form, in which calculations predict that the C6-N6 bond is shortened and the positive charge is delocalized over the entire adenine molecule

  10. Disturbance and topography shape nitrogen availability and δ15 N over long-term forest succession

    Science.gov (United States)

    Perakis, Steven; Tepley, Alan J.; Compton, Jana

    2015-01-01

    Forest disturbance and long-term succession towards old-growth are thought to increase nitrogen (N) availability and N loss, which should increase soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across 800 years of forest succession in a topographically complex montane landscape influenced by human logging and wildfire. In contrast to expectations, we found that disturbance caused declines in surface mineral soil δ15N values, both in logged forests measured 40–50 years after disturbance, and in unlogged forests disturbed by severe wildfire within the last 200 years. Both symbiotic N fixation and N transfers from disturbed vegetation and detritus could lower soil δ15N values after disturbance. A more important role for symbiotic N fixation is suggested by lower soil δ15N values in slow-successional sites with slow canopy closure, which favors early-successional N fixers. Soil δ15N values increased only marginally throughout 800 years of succession, reflecting soil N uptake by vegetation and strong overall N retention. Although post-disturbance N inputs lowered surface soil δ15N values, steady-state mass balance calculations suggest that wildfire combustion of vegetation and detritus can dominate long-term N loss and increase whole-ecosystem δ15N. On steeper topography, declining soil δ15N values highlight erosion and accelerated soil turnover as an additional abiotic control on N balances. We conclude for N-limited montane forests that soil δ15N and N availability are less influenced by nitrate leaching and denitrification loss than by interactions between disturbance, N fixation, and erosion.

  11. Evaluation of natural 15N abundance method in estimating symbiotic dinitrogen fixation by leguminous grasses

    International Nuclear Information System (INIS)

    Yao Yunyin; Cheng Ming; Ma Changlin; Wang Zhidong; Hou Jinqin; Zhang Lihong; Luo Yongyun

    1991-01-01

    Natural 15 N abundance method was used to estimate contribution of symbiotic dinitrogen fixation by leguminous grasses. With the method the expensive 15 N fertilizer did not need to be applied to the soil and the normal ecosystem was not disturbed. Collecting samples of shoots of leguminous grasses and measuring the content of 15 N in them wee all to do for estimating potential of symbiotically fixed N 2 . Isotopic fractionation associated with N 2 fixation by legumes was studied. Values for 7 cultivars of alfalfa were ranged between 1.0000 ∼ 1.0015 (δ 15 N values were -0.05 ∼ 1.47 per mille); and the values for white clover, mung bean and whitepopinac lead tree were 0.0079, 0.9983 and 1.0018 (δ 15 N values: 2.15, 1.74 and -1.81 per mille) respectively. According to the δ 15 N values of grasses tested, the potential of N 2 fixation for 6 cultivars of alfalfa was estimated. Glory and rambler had higher potential of N 2 fixation; Baoding, Aigonquin and Minto had lower potential, and Peru was the lowest.N 2 fixing activity of alfalfa varied with different periods. The peak was found between June and July. Effects of non-N 2 -fixing references and different methods on estimates of %Ndfa of leguminous grasses were also discussed

  12. Life and death of a sewage treatment plant recorded in a coral skeleton δ15N record.

    Science.gov (United States)

    Duprey, Nicolas N; Wang, Xingchen T; Thompson, Philip D; Pleadwell, Jeffrey E; Raymundo, Laurie J; Kim, Kiho; Sigman, Daniel M; Baker, David M

    2017-07-15

    We investigated the potential of coral skeleton δ 15 N (CS-δ 15 N) records for tracking anthropogenic-N sources in coral reef ecosystems. We produced a 56yr-long CS-δ 15 N record (1958-2014) from a reef flat in Guam that has been exposed to varying 1) levels of sewage treatment 2) population density, and 3) land use. Increasing population density (from sewage treatment plant (STP) started operation in 1975. Then, CS-δ 15 N stabilized, despite continued population density and land use changes. Based on population and other considerations, a continued increase in the sewage footprint might have been expected over this time. The stability of CS-δ 15 N, either contradicts this expectation, or indicates that the impacts on the outer reef at the coring site were buffered by the mixing of reef water with the open ocean. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. 15N Isotopic Study on Decomposition of Organic Residues Incorporated into Alluvial and Sandy Saline Soils

    International Nuclear Information System (INIS)

    El-Kholi, A. F.; Galal, Y. G. M.

    2004-01-01

    Incubation experiment was conducted to study the effect of the nitrogenous fertilizer on the decomposition and mineralization of organic residues (soybean powdered forage) as well as the release of the soil inorganic nitrogen. This technique was carried out using two types of soils, one is alluvial and the other is saline sandy soil collected from Fayoum governorate. Soybean forage has an organic carbon 23.1%, total N 1.6% and C/N ratio 14.4. Regarding the effect of incubation period on the two soil samples, the evolved NH 4 -N was generally reached its highest peak after 30-45 days, in the presence of either the added 15 No3-fertilizer solely or in combination with soybean forage. Reversible trend was occurred with regard to the evolved No3-N. The highest peak of evolved No3-N recorded in unfertilized control, as compared to 15 No3-N treatment, at 30 day incubation period indicated that the addition of labeled mineral fertilizer had appreciably enhanced the immobilization process. Net nitrification revealed that it was the highest in unfertilized control soil where it was significantly decreased in the treated two soil samples. Gross mineralization as affected by the addition of soybean forage in combination with labeled mineral fertilizer had been promoted by 75% in the alluvial soil and by 18% in the sandy saline soil, as compared with the soil samples received 15 No3-fertilizer only. Gross immobilization, in soil samples received 15 No3-fertilizer plus soybean forage had surpassed those received 15 No3-fertilizer only by 16% in the alluvial soil and by 25% in the sandy saline soil. (Authors)

  14. Expeditious syntheses of stable and radioactive isotope-labeled anticonvulsant agent, JNJ-26990990, and its metabolites.

    Science.gov (United States)

    Lin, Ronghui; Weaner, Larry E; Hoerr, David C; Salter, Rhys; Gong, Yong

    2013-01-01

    Syntheses of stable and radioactive isotope-labeled anticonvulsant agent, JNJ-26990990, that is, N-(benzo[b]thien-3-ylmethyl)-sulfamide and its metabolites are described. [(13)C(15)N]Benzo[b]thiophene-3-carbonitrile was first prepared by coupling of 3-bromo-benzo[b]thiophene with [(13)C(15)N]-copper cyanide. The resultant [(13)C(15)N]benzo[b]thiophene-3-carbonitrile was reduced with lithium aluminum deuteride to give [(13)CD2(15)N]benzo[b]thiophen-3-yl-methylamine; which was then coupled with sulfamide to afford [(13)CD2(15)N]-N-(benzo[b]thien-3-ylmethyl)-sulfamide, the stable isotope-labeled compound with four stable isotope atoms. Direct oxidation of [(13)CD2(15)N]-N-(benzo[b]thien-3-ylmethyl)-sulfamide with hydrogen peroxide and peracetic acid gave the stable isotope-labeled sulfoxide and sulfone metabolites. On the other hand, radioactive (14)C-labeled N-(benzo[b]thien-3-ylmethyl)-sulfamide was prepared conveniently by sequential coupling of 3-bromo-benzo[b]thiophene with [(14)C]-copper cyanide, reduction of the carbonitrile to carboxaldehyde, and reductive amination with sulfamide. Copyright © 2013 John Wiley & Sons, Ltd.

  15. δ 15N Studies of Nitrogen Use by the Red Mangrove, Rhizophora mangle L. in South Florida

    Science.gov (United States)

    Fry, B.; Bern, A. L.; Ross, M. S.; Meeder, J. F.

    2000-02-01

    To help define nitrogen (N) sources and patterns of N processing in mangrove ecosystems, mangrove leaf nitrogen contents and δ 15N values were assayed in three marshes along the south Florida coast. In each marsh, leaf samples were collected from dwarf mangroves at interior locations and taller mangroves at the ocean fringe. Leaf % N and δ 15N values did not differ consistently between dwarf and tall mangroves, even though there were large variations in δ 15N (18‰ range, -5 to +13‰) and % N (1·2% range, 0·9-2·1%). Highest % N and δ 15N values occurred along the western margin of Biscayne Bay where canals draining agricultural lands deliver high-nitrate waters to fringing mangrove marshes. High mangrove δ 15N values may be good biomonitors of anthropogenic N loading to south Florida estuaries. Lower values likely reflect less anthropogenic N entering the mangrove marshes, as well as differences in plant physiology that occur along the fringe-dwarf gradient.

  16. Selective backbone labelling of ILV methyl labelled proteins

    International Nuclear Information System (INIS)

    Sibille, Nathalie; Hanoulle, Xavier; Bonachera, Fanny; Verdegem, Dries; Landrieu, Isabelle; Wieruszeski, Jean-Michel; Lippens, Guy

    2009-01-01

    Adding the 13 C labelled 2-keto-isovalerate and 2-oxobutanoate precursors to a minimal medium composed of 12 C labelled glucose instead of the commonly used ( 2 D, 13 C) glucose leads not only to the 13 C labelling of (I, L, V) methyls but also to the selective 13 C labelling of the backbone C α and CO carbons of the Ile and Val residues. As a result, the backbone ( 1 H, 15 N) correlations of the Ile and Val residues and their next neighbours in the (i + 1) position can be selectively identified in HN(CA) and HN(CO) planes. The availability of a selective HSQC spectrum corresponding to the sole amide resonances of the Ile and Val residues allows connecting them to their corresponding methyls by the intra-residue NOE effect, and should therefore be applicable to larger systems

  17. Study on the utilization of N fertilizers by labelling with /sup 15/N in a microplot experiment

    Energy Technology Data Exchange (ETDEWEB)

    Latkovics, I. (Magyar Tudomanyos Akademia, Budapest. Talajtani es Agrokemiai Kutato Intezet)

    1982-12-01

    The effect and residual effect of urea and NH/sub 4/NO/sub 3/ on the dry matter yield and N uptake of rye-grass and Sudan grass, as well as on the N status of the soil and the distribution of N within the soil profile were studied with /sup 15/N indication on a chernozem-like calcareous sandy soil in an isolated microplot experiment. It has been found that 57-79% of the N contents of the first cuttings came from the fertilizer, and the percentage N amounts decreased with each cutting. Under the given experimental conditions there was no significant difference between the N amounts taken up from urea or from NH/sub 4/NO/sub 3/. Rye-grass utilized N both from urea and NH/sub 4/NO/sub 3/ in the same degree (55%), while Sudan grass utilized 29.8% from urea and 36.1% from NH/sub 4/NO/sub 3/. Depending on the treatment, 22.8-31.7% of fertilizer-N was found in the 0-120 cm layer of the soil, while the larger part (74.8-84.6%) of this amount accumulated in the upper 40 cm layer. The amount of fertilizer-N not recovered (and thus 'lost' for the plants) was 13.3-21.6% in the case of rye-grass and 34.4-43.1% of Sudan grass.

  18. Measuring denitrification after grassland renewal and grassland conversion to cropland by using the 15N gas-flux method

    Science.gov (United States)

    Buchen, Caroline; Eschenbach, Wolfram; Flessa, Heinz; Giesemann, Anette; Lewicka-Szczebak, Dominika; Well, Reinhard

    2015-04-01

    Denitrification, the reduction of oxidized forms of inorganic N to N2O and N2 is an important pathway of gaseous nitrogen losses. Measuring denitrification, especially the reduction of N2O to N2, expressed in the product ratio (N2O/(N2O + N2)), is rather difficult and hence rarely performed under field conditions. But using the 15N gas-flux method allows determining N transformation processes in their natural environment. In order to develop effective climate mitigation strategies understanding the N2O source is essential. We used the 15N gas-flux method to determine N2O and N2 emissions following grassland renewal and conversion techniques. Therefore we selected three different treatments: control (C), mechanical grassland renovation (GR) (autumn 2013) and grassland conversion to maize (GM) (spring 2014) from field plot trials on two different sites (Histic Gleysoil and Plaggic Anthrosol) near Oldenburg, Lower Saxony, Germany. We applied 15N labeled KNO3- (60 atom. % 15N) at a rate equivalent to common farming practices (150 kg N*ha-1) using needle injection of fertilizer solution in three different depths (10 cm, 15 cm, 20 cm) for homogeneous soil labeling up to 30 cm in microplots. During the first 10 days after application (May 2014) gas flux measurements from closed chambers were performed every second day and then weekly following a period of 8 weeks. Gas samples were analyzed for δ15N of N2 and N2O by IRMS according to Lewicka-Szczebak et al. (2013). Concentration and 15N enrichment of NO3- in soil water was determined on weekly samples using the SPIN-MAS technique (Stange et al. 2007). Fluxes of N2 and N2O evolved from the 15N labeled soil nitrogen pool were calculated using the equations of Spott et al. (2006). Peak events of N2 and N2O emissions occurred during the first 10 days of measurement, showing differences in soil types, as well as treatment variations. N2 fluxes up to 178 g*ha-1*day-1 and N2O fluxes up to 280 g*ha-1*day-1 were measured on the

  19. Quantification Of 15N Internal Transformation To Assess Nitrogen Supply Capacity In Deforested Soil

    International Nuclear Information System (INIS)

    Handayani, I.P.; Prawito, P.; Sisworo, E.L.

    2002-01-01

    Quantification of deforested soil's capacity to supply available N via mineralization and immobilization using 15N pool dilution is crucial to make fertilizer recommendation. The objective of this research was to measure the soil's capacity to minemlize and ilmnobilize N, so that the actual value of available N released by soil can be predicted. The results showed that Imperata grassland released the highest available N (amonium + nitrate) about 33.93 mg/kg/d and can immobilize 11.68 mg/kg/d of N. On the other hand, agriculture lields had the lowest inorganic N by nearly 23.15 mg/kg/d, and no immobilization occurred. The implication is that agriculture fields have a very low labile and stabile pool N (nearly 0), while Imperata grassland have capacity to store more pool N into labile or stabil pool (about 34%). In conclusion, dynamics of N cycling in ecosystem are dependent upon the content of pool C-N utilized by microorganisms and plants

  20. Fields of application and results of analytic procedures with /sup 15/N in pediatric alimentary research

    Energy Technology Data Exchange (ETDEWEB)

    Heine, W; Richter, I; Plath, C; Wutzke, K; Kupatz, P; Drescher, U [Rostock Univ. (German Democratic Republic)

    1981-10-01

    Investigation of protein metabolism in nutritional pediatric research by means of /sup 15/N tracer techniques has been relatively seldom used up to now. /sup 15/N labelled compounds for these purposes are not injurious to health. The technique is based on oral or intravenous application of the tracer substances and on /sup 15/N analysis of the urine fractions. The subsequent calculation of protein synthesis and breakdown rate, turnover and reutilisation of amino acids from protein breakdown as well as the size of the metabolic pool offers detailed information of protein metabolism. Determination of these parameters was performed in infants on mother's milk and formula feeding and on chemically defined diet. As an example of utilisation of D-amino acids for protein synthesis the /sup 15/N-D-phenylalanin retention on parenteral nutrition was found to be 33% of the applied dosis at an average. An oral /sup 15/N glycine loading test proved to be of value for the prediction of the therapeutic effect of human growth hormon in numerous types of dwarfism. Further application of /sup 15/N tracer technique dealt with utilisation of /sup 15/N urea for bacterial protein synthesis of the intestinal flora and with incorporation of /sup 15/N from /sup 15/N glycine and /sup 15/N lysine into the jejunal mucosa for measuring the enterocyte regeneration.

  1. Seasonal changes in nitrogen availability, and root and microbial uptake of 15N13C9-phenylalanine and 15N-ammonium in situ at a temperate heath

    DEFF Research Database (Denmark)

    Andresen, Louise C.; Michelsen, Anders; Jonasson, Sven Evert

    2011-01-01

    In the plant biosynthesis of secondary compounds, phenylalanine is a precursor of condensed tannins. Tannins are deposited into the soil in plant root exudates and dead plant material and have been suggested to precipitate some soil nutrients and hence reduce nutrient availability for plants. Free...... amino acid,inorganic and microbial N concentration during the growing season was investigated in an ecosystem with a natural tannin chemosphere. The influence of tannins on the uptake of nitrogen in plants and microbes was followed by injecting tannic acid (TA), ammonium-15N and phenylalanine-15N/13C9...

  2. Compaction stimulates denitrification in an urban park soil using 15N tracing technique

    DEFF Research Database (Denmark)

    Li, Shun; Deng, Huan; Rensing, Christopher Günther T

    2014-01-01

    Soils in urban areas are subjected to compaction with accelerating urbanization. The effects of anthropogenic compaction on urban soil denitrification are largely unknown. We conducted a study on an urban park soil to investigate how compaction impacts denitrification. By using 15N labeling method...... and acetylene inhibition technique, we performed three coherent incubation experiments to quantify denitrification in compacted soil under both aerobic and anaerobic conditions. Uncompacted soil was set as the control treatment. When monitoring soil incubation without extra substrate, higher nitrous oxide (N2O......) flux and denitrification enzyme activity were observed in the compacted soil than in the uncompacted soil. In aerobic incubation with the addition of K15NO3, N2O production in the compacted soil reached 10.11 ng N h-1 g-1 as compared to 0.02 ng N h-1 g-1 in the uncompacted soil. Denitrification...

  3. Study of the organic -15N mineralization in an Oxisol and its absorption by a grass (Melinis minutiflora Beauv.)

    International Nuclear Information System (INIS)

    Urquiaga C, S.; Libardi, P.L.; Reichardt, K.; Padovese, P.P.; Moraes, S.O.; Victoria, R.L.

    1982-01-01

    Mineralization of organic-N to soil samples of an Oxisol as 15 N-labeled bean straw, with and without N from fertilizer (urea) was studied, as well as the effect of expanded vermiculite in the production and absorption of the mineralized-N by a grass. The experiment was conducted in plastic pots. The fertilizer urea (46,64%N) utilized was labelled (5,2% of 15 N) atoms). All experimental pots received 150 ppm of P and K as simple superphosphate (18% P 2 O 5 ) and 26% CaO) and potassium sulphate (60% K 2 O), respectively. The grass was planted by putting 8 small pieces by pot. The aerial part was harvested at 30 days intervals. Grass production was a function of the N available and bean straw behaved as an important N source for the plants; at 30 days (first sampling) the production N extraction and efficiency of utilization of the organic N were at their maximum, decreasing (p=0,01) at each following harvest; after the first sampling the mineralization rate of organic N was very low, decreasing significantly the grass production; N fertilizer favoured significantly the mineralization and the efficiency of utilization of the organic-N applied; vermiculite did not affect either production or the N extraction by the grass; in the soil mineral-N, after the culture, the percentage of N from labelled sources was two times that of the total-N and lower than in the plant in the final harvest. (Author) [pt

  4. Improving N-use efficiency in onion plants grown in desert soils using 15N through fertigation technique

    International Nuclear Information System (INIS)

    Thabet, E.M.A.; Abdallah, A.A.G.; Battah, N.S.

    2005-01-01

    Two field experiments were performed at the Experimental Farm of Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt, during the two successive growing seasons of 2003 and 2004, in a clay loam textured soil. Seedlings of onion (Allium cepa L.) cultivar Giza-20 were transplanted in the field prepared with drip irrigation system for studying onion production under fertigation technique. Three nitrogen rates (50, 100 and 150 kg N/fed) as ammonium sulphate contain 21.2% N were used. These experiments aim to apply nitrogen along an extended time in order to maximize its use efficiency. Each rate was subjected to four splitting, i.e. one, two, three and four times of application, at 45 days from transplanting. Nitrogen was added every 15 days started 45 days after transplanting through a fertigation technique. In the first experiment (2003), labelled nitrogen (N-15) as ammonium sulphate contain 3.33% N-15 atom excess was applied for to estimate nitrogen use efficiency. One vegetative sample was harvested at 105 days from transplanting (15 days after the fourth application of nitrogen) to determine dry matter characters and N-15 analysis. At harvest, yield and yield components were determined for unit area. Results indicated that onion plants did not use more than about 20% of the applied nitrogen. Also yield did not respond to increasing rate up to splitting of nitrogen. The second growing season (2004) was conducted to measure bulbs yield under the same previous treatments

  5. Radiopharmaceutical potential of I-131 labelled diazepam

    International Nuclear Information System (INIS)

    Yurt, F.; Unek, P.; Asikoglu, M.; Baggi, S.; Erener, G.; Ozkilic, H.; Uluc, F.; Tuglular, I.

    1998-01-01

    In this study, diazepam is a derivative of the 1.4 benzodiazepine family that the most widely used drug as anticonvulsant agent has been labeled with I-131, as a new radiopharmaceutical and its radiopharmaceutical potential has been determined. Labeling of diazepam has been performed by iodogen method and optimum labeling conditions have been determined. Optimum reaction conditions are 1 mg for iodogen amount; 1-5 mg for diazepam amount, 15-20 minutes for reaction time and room temperature for reaction temperature. Specific activity of labeled compound was 0,15 Ci/mmol level. N-octanol/water ratio was found 1.9 for 131 IDZ ( 131 I labeled diazepam). In vivo experiments have been carried out to determine radiopharmaceutical potentials of labeled compound. Biodistribution studies on rats showed that 131 IDZ have accumulated in kidneys, liver, lungs and brain tissues. Scintigraphic results taken with gamma camera on rabbits agree with biodistribution results of rats. (author)

  6. Synthesis of Novel C-2- or C-15-Labeled BODIPY—Estrone Conjugates

    Directory of Open Access Journals (Sweden)

    Ildikó Bacsa

    2018-04-01

    Full Text Available Novel BODIPY–estrone conjugates were synthesized via Cu(I-catalyzed azide–alkyne cycloaddition (CuAAC. Estrone-alkynes or an estrone-azide as starting compounds were synthesized via Michael addition or Sonogashira reaction as key steps. Fluorescent dyes based on BODIPY-core were provided by azide or alkyne functional groups. Fluorescent labeling of estrone was efficiently achieved at the C-2 or C-15 position. The newly-elaborated coupling procedures might have a broad applicability in the synthesis of fluorescent-labeled estrone conjugates suitable for biological assays.

  7. Dry weight and N-uptake by rice plants fertilized with azolla and N-15 enriched urea

    International Nuclear Information System (INIS)

    Abdel-Monem, M.; Gadalla, A.M.; Abbady, Kh.

    1994-01-01

    Integrated soil fertility management is essential if soil productivity is to be sustained or improved. In view the recently high cost of N-fertilizers, interest was generated in using Azolla in rice fields. A greenhouse experiment was conducted to study the fate of N-15 labelled urea to rice with or without Azolla application, also to examine the effect of the soil moisture regime at the time of urea application on nitrogen recovery. The results indicated that addition of urea to dry soil gave more than 20% of the rice dry matter as compared to the urea application to wet soil which was also reflected on the N-uptake by the rice. Also N-15 recovery by plant was increased from 22% to 41% when urea was applied to wet and dry soil respectively. At the same time N-losses dropped from 62% to 29%. Addition of Azolla to rice provided rice with 63% of the nitrogen provided by urea, this may be attributed not only to N-fixation by Azolla, but also to its role in reducing the N-losses. Application of Azolla reduced the losses of applied nitrogen from 45.5% to 22.5%. Thus, integration between Azolla and urea is valuable in N-fixation as well as inhibiting nitrogen losses. 2 tabs

  8. The influence of tannin, pectin and polyethylene glycol on attachment of {sup 15}N-labelled rumen microorganisms to cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Bento, M.H.L. [Avian Science Research Centre, Animal Health Group, SAC, Edinburgh, Scotland (United Kingdom) and FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna (Austria)]. E-mail: helena.bento@sac.ac.uk; Acamovic, T. [Avian Science Research Centre, Animal Health Group, SAC, Edinburgh, Scotland (United Kingdom); Makkar, H.P.S. [FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna (Austria)

    2005-08-19

    The microbial attachment to and gas production from {alpha}-cellulose (Sigma; C-8002) without and with mimosa tannin (MT), pectin (P), polyethylene glycol (PEG), MT + P or MT + PEG, were investigated using the in vitro gas production system. Microbial attachment based on {sup 15}N-labelled rumen microorganisms in the residual pellet after 24 h incubation was estimated, which varied from 113.7 to 161.3 {mu}g {sup 15}N per g residual pellet. C + MT had the lowest microbial attachment (P < 0.05) of all treatments and C + P the highest (P < 0.05). Both pectin and PEG improved microbial attachment when added to C + MT (P < 0.001). Gas production was measured at 2, 4, 6, and 24 h. Mimosa tannin drastically reduced gas production only at 24 h (P < 0.001). Pectin increased gas production throughout the incubation period (P < 0.001). Both pectin and PEG increased gas production at 24 h, when added to C + MT (P < 0.05), however, for C + MT + P, the gas production was only half (P < 0.05) of the gas produced in the control (when only C incubated). A rapid degradation of pectin early in the incubation could have reduced the interaction of pectin with the MT. Microbial attachment agreed well with gas production at 24 h (R{sup 2} = 0.84, P < 0.001). However, the inclusion of MT and pectin may have resulted in differences in microbial profiles, thereby altering the capability of the adhered microbes to degrade cellulose. This assertion is supported by the lower gas production (ml per {mu}g of {sup 15}N) in the residual pellet measured for C + MT (0.054) and C + MT + P (0.159), compared with the other treatments (0.32 for C; 0.34 for C + P; 0.33 for C + PEG; and 0.33 for C + MT + PEG). A MT concentration of 194 g/kg diet reduced microbial attachment and activity of rumen microorganisms in vitro. Polyethylene glycol counteracted the effect of MT on microbial attachment and activity. Pectin exerted a beneficial effect on attachment and fermentation in the initial hours of incubation

  9. Studies on the N mineralization behavior of various plants in soil by means of 15N tracers

    International Nuclear Information System (INIS)

    Schulz, E.

    1986-01-01

    Nitrogen mineralization of different 15 N-labelled plant matter in three soils with different C/sub t/ content was investigated in an incubation experiment (54 days, 25 0 C, 60% maximum water capacity) in the laboratory. Plant matter decomposition was most intensive at the start of the incubation experiment. Between 19 and 29% of the plant nitrogen was mineralized after three days. This seems to be due to an intensified internal nitrogen cycling. The dynamics of the further N mineralization process depends largely on the C:N ratio of the organic primary matter. The critical C:N ratio was found to be about 21. A close correlation exists between the immobilization of released nitrogen and the C/sub t/ content of the soil. (author)

  10. Investigation on the absorption of 14C-leucine and 15N-leucine in rats after feeding a fish meal diet in comparison with a gelatine diet

    International Nuclear Information System (INIS)

    Bergner, U.; Adam, K.; Bergner, H.

    1981-01-01

    Albino rats received after nine days of adaptation to a fish meal diet in comparison with a gelatine diet 14 C-U-L-leucine and 15 N-L-leucine via a pellet made from the specific diet after food deprivation for 15 h. Thereafter, the animals consumed the non-labelled experimental diet ad libitum. 30 min, and 1, 2, 4 and 8 h, resp., after intake of the labelled food, four rats at a time were sacrificed. The contents of the digestive tract and tissue samples were examined for 14 C and 15 N and their percentages in the TCA-soluble fraction determined. If these values are regarded as non-absorbed leucine, the 14 C values obtained up to the four hour period of the experiment would be too high. Presumably, they are in the case of both diets simulated by other 14 C metabolites which originate from the leucine catabolism and reach the intestinal lumen. Amino acids labelled with 15 N should be preferred in studies on the absorption of amino acids because, in case of catabolization, the 15 N aminogroup is excreted mainly as urea via urine. (author)

  11. Primary assimilation process of triply (/sup 15/N, /sup 14/C and /sup 3/H) labeled arginine in the roots of arginine-fed barley

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Satoshi [Tokyo Univ. (Japan). Faculty of Agriculture

    1981-03-01

    To clarify the mechanism of arginine utilization in barley roots, triply labeled (ureido-/sup 15/N, ureido-/sup 14/C and 5-/sup 3/H) arginine was applied to plants precultured with arginine (Arg-plants). (5-/sup 3/H) Arginine was incorporated mainly into ornithine, suggesting that arginase contributes in the first step of arginine metabolism. The arginase activity in the tissues was greatly enhanced by continuous supply of arginine, whereas urease activity was not by the same treatment. The amount of /sup 14/CO/sub 2/ evolved from (ureido-/sup 14/C) arginine in the Arg-plants was several times higher than that in plants treated with NO/sub 3//sup -/(NO/sub 3/-plants), and most /sup 14/C-urea exogenously supplied to detached roots of Arg-plants was immediately decomposed to /sup 14/CO/sub 2/. The urea released from arginine by arginase was cleaved to /sup 15/NH/sub 4//sup +/ + /sup 14/CO/sub 2/ by urease. Most of the /sup 14/CO/sub 2/ was then lost from the root system. On the other hand, the released /sup 15/NH/sub 4//sup +/ was reassimilated into amino acids probably through the pathway of ammonia assimilation. Released (5-/sup 3/H) ornithine was metabolized dominantly to proline.

  12. Effects of a large scale nitrogen and phosphorous fertilization on the ecosystem functioning of a Mediterranean tree-grass ecosystem

    Science.gov (United States)

    Migliavacca, Mirco; El Madany, Tarek; Perez-Priego, Oscar; Carrara, Arnaud; Hammer, Tiana; Henkel, Kathin; Kolle, Olaf; Luo, Yunpeng; Moreno, Gerardo; Morris, Kendalynn; Nair, Richard; Schrumpf, Marion; Wutzler, Thomas; Reichstein, Markus

    2017-04-01

    Recent studies have shown how human induced N/P imbalances affect essential ecosystem processes, and might be particularly important in water-limited ecosystems. In this contribution we will present results from an ecosystem scale nutrient manipulation experiment on a Mediterranean tree-grass ecosystem (Majadas del Tietar, Spain). Specifically, we will show how ecosystem functioning (e.g. light use efficiency, water use efficiency - WUE, albedo) changes as consequence of N and NP fertilization. A cluster of eddy covariance (EC) flux towers has been set up beside a long-term EC site (Control site) to measured high temporal resolution C and water fluxes between the ecosystem and the atmosphere. The sites were selected in a way to have similar pre-treatment conditions. Two out of three EC footprint areas (18 Ha) were fertilized with N and NP at the beginning of 2015 and 2016. To interpret the variations in C and water fluxes measured with the EC systems we monitored spatial and temporal variations in phenology, plant traits, species richness, and tree transpiration by using sap-flow meters, digital repeat photography, as well as soil sampling. The results show a consistent increase ( 15% compared to the Control site) in net ecosystem production (NEP) observed both in the N and the NP treatments. An increase of evapotranspiration (ET) of about 15% and 10% is observed in the N and NP site, respectively, indicating an increase of WUE in the NP treatment. The partitioning of the NEP into its gross components, the gross primary production (GPP) and the total ecosystem respiration (TER), show that the fertilization stimulated more GPP rather than TER, increasing therefore the capability of the ecosystem to act as carbon sink. The effects of fertilization are pronounced in spring and autumn and negligible in summer. This indicates that grass reacted much more than trees to N and NP addition. An increase of greenness and also an earlier green-up of grass in the N and NP sites

  13. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.

    Science.gov (United States)

    Bindschedler, Laurence V; Mills, Davinia J S; Cramer, Rainer

    2012-01-01

    Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills.

  14. Combined 15N-Labeling and TandemMOAC Quantifies Phosphorylation of MAP Kinase Substrates Downstream of MKK7 in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Nicola V. Huck

    2017-12-01

    Full Text Available Reversible protein phosphorylation is a widespread posttranslational modification that plays a key role in eukaryotic signal transduction. Due to the dynamics of protein abundance, low stoichiometry and transient nature of protein phosphorylation, the detection and accurate quantification of substrate phosphorylation by protein kinases remains a challenge in phosphoproteome research. Here, we combine tandem metal-oxide affinity chromatography (tandemMOAC with stable isotope 15N metabolic labeling for the measurement and accurate quantification of low abundant, transiently phosphorylated peptides by mass spectrometry. Since tandemMOAC is not biased toward the enrichment of acidophilic, basophilic, or proline-directed kinase substrates, the method is applicable to identify targets of all these three types of protein kinases. The MKK7-MPK3/6 module, for example, is involved in the regulation of plant development and plant basal and systemic immune responses, but little is known about downstream cascade components. Using our here described phosphoproteomics approach we identified several MPK substrates downstream of the MKK7-MPK3/6 phosphorylation cascade in Arabidopsis. The identification and validation of dynamin-related protein 2 as a novel phosphorylation substrate of the MKK7-MPK3/6 module establishes a novel link between MPK signaling and clathrin-mediated vesicle trafficking.

  15. Biosynthesis of quinolizidine alkaloids. Incorporation of [1-amino-15N, 1-13C] cadaverine into lupanine, 13-hydroxylupanine, and angustifoline

    International Nuclear Information System (INIS)

    Rana, J.; Robins, D.J.

    1985-01-01

    The labelling patterns in (+)-lupanine, (+)-13-hydroxylupanine, and (+)-angustifoline derived biosynthetically from [1-amino- 15 N,1- 13 C]-1,5-diaminopentane (cadaverine) have been established by 13 C n.m.r. spectroscopy. Three cadaverine units are incorporated to about the same extent into each of these three alkaloids. The presence of two doublets due to 13 C- 15 N coupling in the 13 C brace 1 H brace n.m.r. spectra associated with C-2 and C-15 of lupanine and 13-hydroxylupanine, and one 13 C- 15 N doublet at C-2 of angustifoline, indicate that two of the cadaverine units are converted into the outer rings of the tetracyclic quinolizidine alkaloids in a specific fashion. (author)

  16. Nitrogen and water regime effects on corn yields determined by N-15 methodology

    International Nuclear Information System (INIS)

    Halitligil, M.B.; Akin, A.

    2002-01-01

    This investigation was carried out to determine the relationships between fertilizer N leaching and N fertilizer application time, method and irrigation rate by using 15 N methodology. Therefore, in the field experiments, the effects of three factors namely a) Irrigation rate (optimum 240 mm, high 360 mm), b) N application time (All at planting, 1/2 at planting and 1/2 after planting when plant heights were 50 cm), c) N application method (side dress and broadcast) were investigated. The field experiments were conducted using randomized block design as split-split plot and 4 replications. As the test plant hybrid corn was selected and at planting row spaces were arranged as 0.80 m x 0.25 m. Nitrogen was applied 120 kg N/ha to the all treatments as urea fertilizer (46 % N). In addition, to the sub-plots (which received half of N at planting and the other half when plant heights were 50 cm) 15 N labelled urea (2.63 % 15 N a.e. as 120 kg N/ha) was applied. After harvesting, total N and 15 N analyses were done for plant and soil samples. The results showed that the seed and total yields were increased with higher (360 mm) irrigation. When N application was side dressed the availability of N was increased, and also its loss by leaching from the active root zone was decreased. In conclusion, it was observed that at high irrigation rate was saved about 84 kg N/ha by side dressing rather than broadcasting of the applied N fertilizer

  17. Labelling and Self-Esteem: The Impact of Using Specific vs. Generic Labels

    Science.gov (United States)

    Taylor, Laura Marie; Hume, Ian Robert; Welsh, Nikki

    2010-01-01

    The aim of this study is to investigate the relationship between being labelled either as having dyslexia or as having general special educational needs (SEN) and a child's self-esteem. Seventy-five children aged between 8 and 15 years categorised as having dyslexia (N = 26), as having general SEN (N = 26) or as having no learning difficulties (N…

  18. Influence of N-15 labelled urea and azotobacter on corn yield and nitrogen budget as affected by organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, S M; Abdelmonem, M A [Soil and Water Dept., Atomic Energy Authority, Cairo, (Egypt)

    1995-10-01

    As sandy soils of Egypt are poor in their chemical and physical properties, their fertilization with chemical or biological fertilizer is essential. The reported greenhouse experiment was conducted, using sandy soil of Egypt to evaluate the impact of urea fertilizer, applied alone combined with nitrification inhibitors (DCD) or (N-serve) on (corn yield and N-losses) as compared with inoculation with azotobacter under organic matter treatment as soil amendment. Total dry matter was recorded, while N-uptake by corn, and N-recovery due to inoculation with azotobacter was determined using N-15 dilution technique. Data obtained indicated that, application of DCD or N-serve with urea increased corn dry matter weight as well N-15 recovery. Significant increase in N-recovery was obtained due to nitrification inhibitor application and azotobacter inoculation. N-15 losses were reduced due to application of DCD and N-serve from 45% and respectively. Use of bio fertilizers and nitrification inhibitors could play an important role in corn production in sandy soil, as well as decrease the losses of applied N-fertilizers. fig., 3 tabs.

  19. Influence of N-15 labelled urea and azotobacter on corn yield and nitrogen budget as affected by organic matter

    International Nuclear Information System (INIS)

    Soliman, S.M.; Abdelmonem, M.A.

    1995-01-01

    As sandy soils of Egypt are poor in their chemical and physical properties, their fertilization with chemical or biological fertilizer is essential. The reported greenhouse experiment was conducted, using sandy soil of Egypt to evaluate the impact of urea fertilizer, applied alone combined with nitrification inhibitors (DCD) or (N-serve) on (corn yield and N-losses) as compared with inoculation with azotobacter under organic matter treatment as soil amendment. Total dry matter was recorded, while N-uptake by corn, and N-recovery due to inoculation with azotobacter was determined using N-15 dilution technique. Data obtained indicated that, application of DCD or N-serve with urea increased corn dry matter weight as well N-15 recovery. Significant increase in N-recovery was obtained due to nitrification inhibitor application and azotobacter inoculation. N-15 losses were reduced due to application of DCD and N-serve from 45% and respectively. Use of bio fertilizers and nitrification inhibitors could play an important role in corn production in sandy soil, as well as decrease the losses of applied N-fertilizers. fig., 3 tabs

  20. Studies of the efficiency of nitrogen placement methods and slow release nitrogen fertilizers for rice and wheat, using N-15 labelled fertilizers

    International Nuclear Information System (INIS)

    Shaukat, A.

    1979-12-01

    A series of experiments with rice and wheat were carried out to study the efficiency of nitrogen placement methods and slow-release nitrogen fertilizers for these two crops using N-15-labelled fertilizer. The results show that (1) reduced N levels, of the order of 75 percent of the full recommended dose, are equally efficient as the full dose for wheat. The yield of rice grain increased with the increased dose of nitrogen; (2) Point placement of fertilizers for rice was superior to broadcast application in terms of uptake and yield. For optimum yield of wheat grain, urea should perferably be applied as a single dose banded between the rows at 5 cm depth or by broadcasting and incorporation in the soil at the time of sowing; (3) Sulphur-coated urea (SCU) at a comparable dose and mode of application gave better yields of rice grain than the application of urea and IBDU (Isobutylidine Diurea); (4) More nitrogen was taken up by wheat when SCU was applied. The best uptake was when it was applied half at sowing and half at tillering. The nitrogen uptake from the SCU by point placement was better for rice plants than broadcast application and was higher in magnitude than the IBDU

  1. The choice of label and measurement technique in tracer studies of body protein metabolism in man

    International Nuclear Information System (INIS)

    James, W.P.T.; Sender, P.M.; Garlick, P.J.; Waterlow, J.C.

    1975-01-01

    The turnover of non-serum proteins in man has had limited study despite the physiological importance of maintaining the balance between synthesis and breakdown of body proteins. Body protein is usually considered as a single pool and breakdown rates are often measured by monitoring excreted label at intervals after pulse labelling with radioactive or 15 N amino acids. No label has yet been used for measuring tissue protein breakdown in man which is free from the major problem of label re-utilization. All measurements of breakdown rates, eg. with 75 Se-selenomethionine, 15 N- or 14 C-glycine, give rate constants which are too low. The heterogeneity of body proteins also means that an estimate of the weighted average breakdown rate can only be obtained after following the excretion of isotope for a long period, perhaps of the order of 3-4 half-lives which, for man, would be 100 days after labelling. We therefore use infusions with either 14 C- or 15 N-labelled amino acids to measure breakdown and synthesis rates: these values are less affected by problems of protein heterogeneity. Single injection techniques are subject to more error than constant infusions of label because of the difficulty of defining the precursor activity. 15 N labelling need not be confined to essential amino acids if total protein rather than amino acid turnover is studied: the latter involves measurements of the labelled amino acid itself which is difficult with 15 N because of the small amounts of free amino acid nitrogen available. Carbon labelling of non-essential amino acids is unsuitable for studies of protein turnover and the choice of the position of the label on the molecule is important when labelled essential amino acids are employed. Short-term changes in protein metabolism are evaluated better with amino acids with a small pool size; the equilibration time in the excretory bicarbonate pool is also shorter than in the urea pool so that 15 N is less useful than carbon labelling. We

  2. Explaining the doubling of N2 O emissions under elevated CO2 in the Giessen FACE via in-field 15 N tracing.

    Science.gov (United States)

    Moser, Gerald; Gorenflo, André; Brenzinger, Kristof; Keidel, Lisa; Braker, Gesche; Marhan, Sven; Clough, Tim J; Müller, Christoph

    2018-03-23

    Rising atmospheric CO 2 concentrations are expected to increase nitrous oxide (N 2 O) emissions from soils via changes in microbial nitrogen (N) transformations. Several studies have shown that N 2 O emission increases under elevated atmospheric CO 2 (eCO 2 ), but the underlying processes are not yet fully understood. Here, we present results showing changes in soil N transformation dynamics from the Giessen Free Air CO 2 Enrichment (GiFACE): a permanent grassland that has been exposed to eCO 2 , +20% relative to ambient concentrations (aCO 2 ), for 15 years. We applied in the field an ammonium-nitrate fertilizer solution, in which either ammonium (NH4+) or nitrate (NO3-) was labelled with 15 N. The simultaneous gross N transformation rates were analysed with a 15 N tracing model and a solver method. The results confirmed that after 15 years of eCO 2 the N 2 O emissions under eCO 2 were still more than twofold higher than under aCO 2 . The tracing model results indicated that plant uptake of NH4+ did not differ between treatments, but uptake of NO3- was significantly reduced under eCO 2 . However, the NH4+ and NO3- availability increased slightly under eCO 2 . The N 2 O isotopic signature indicated that under eCO 2 the sources of the additional emissions, 8,407 μg N 2 O-N/m 2 during the first 58 days after labelling, were associated with NO3- reduction (+2.0%), NH4+ oxidation (+11.1%) and organic N oxidation (+86.9%). We presume that increased plant growth and root exudation under eCO 2 provided an additional source of bioavailable supply of energy that triggered as a priming effect the stimulation of microbial soil organic matter (SOM) mineralization and fostered the activity of the bacterial nitrite reductase. The resulting increase in incomplete denitrification and therefore an increased N 2 O:N 2 emission ratio, explains the doubling of N 2 O emissions. If this occurs over a wide area of grasslands in the future, this positive feedback reaction may

  3. Machine Learned Replacement of N-Labels for Basecalled Sequences in DNA Barcoding.

    Science.gov (United States)

    Ma, Eddie Y T; Ratnasingham, Sujeevan; Kremer, Stefan C

    2018-01-01

    This study presents a machine learning method that increases the number of identified bases in Sanger Sequencing. The system post-processes a KB basecalled chromatogram. It selects a recoverable subset of N-labels in the KB-called chromatogram to replace with basecalls (A,C,G,T). An N-label correction is defined given an additional read of the same sequence, and a human finished sequence. Corrections are added to the dataset when an alignment determines the additional read and human agree on the identity of the N-label. KB must also rate the replacement with quality value of in the additional read. Corrections are only available during system training. Developing the system, nearly 850,000 N-labels are obtained from Barcode of Life Datasystems, the premier database of genetic markers called DNA Barcodes. Increasing the number of correct bases improves reference sequence reliability, increases sequence identification accuracy, and assures analysis correctness. Keeping with barcoding standards, our system maintains an error rate of percent. Our system only applies corrections when it estimates low rate of error. Tested on this data, our automation selects and recovers: 79 percent of N-labels from COI (animal barcode); 80 percent from matK and rbcL (plant barcodes); and 58 percent from non-protein-coding sequences (across eukaryotes).

  4. Stimulation effect of synthetic cytokinins on the uptake and incorporation of nitrogen-15-labelled ammonium nitrate and urea in wheat leaves

    International Nuclear Information System (INIS)

    Iglewski, S.M.; Szarvas, T.; Pozsar, B.I.

    1977-01-01

    The turnover of different labelled nitrogen sources in wheat leaves has been investigated using the isotopic tracer technique. The 15 N at.% was determined in free ammonium ion, in the nitrate and the nitrite levels, and also in the non-disintegrated urea. The accumulation and the incorporation of stable nitrogen was measured in the TCA insoluble protein fraction. According to the experimental data the intensity of incorporation of urea nitrogen is relatively higher than that of the different inorganic compounds. The utilization of ammonium ion was 76% compared with the urea, whereas that of the nitrate nitrogen was 60% in the wheat leaves. The incorporation rate of the two nitrogen atoms from ammonium nitrate was 32% lower than that of the urea nitrogen, in the leaf protein of Bezostaia-1 wheat variety. The turnover of urea through the transamination was very rapid, the amination with ammonium ion was slower, and the first phase of the nitrate reduction was relatively more retarded than the nitrite reduction. The endogenous cytokinin-like biological activity and some synthetic cytokinins (kinetin, benzyladenine) have a remarkably stimulating effect on the incorporation of the different 15 N-labelled nitrogen sources into the leaf protein fraction. (author)

  5. Eastern oyster (Crassostrea virginica) δ15N as a bioindicator of nitrogen sources: Observations and modeling

    International Nuclear Information System (INIS)

    Fertig, B.; Carruthers, T.J.B.; Dennison, W.C.; Fertig, E.J.; Altabet, M.A.

    2010-01-01

    Stable nitrogen isotopes (δ 15 N) in bioindicators are increasingly employed to identify nitrogen sources in many ecosystems and biological characteristics of the eastern oyster (Crassostrea virginica) make it an appropriate species for this purpose. To assess nitrogen isotopic fractionation associated with assimilation and baseline variations in oyster mantle, gill, and muscle tissue δ 15 N, manipulative fieldwork in Chesapeake Bay and corresponding modeling exercises were conducted. This study (1) determined that five individuals represented an optimal sample size; (2) verified that δ 15 N in oysters from two locations converged after shared deployment to a new location reflecting a change in nitrogen sources; (3) identified required exposure time and temporal integration (four months for muscle, two to three months for gill and mantle); and (4) demonstrated seasonal δ 15 N increases in seston (summer) and oysters (winter). As bioindicators, oysters can be deployed for spatial interpolation of nitrogen sources, even in areas lacking extant populations.

  6. Vibrational spectra of cholorophylls a and b labeled with 26Mg and 15N

    International Nuclear Information System (INIS)

    Lutz, M.; Kleo, J.; Gilet, R.; Henry, M.; Plus, R.; Leicknam, J.P.

    1975-01-01

    Chlorophyll molecules having their central natural magnesium replaced by 26 Mg and their natural nitrogens by 15 N were obtained by biosynthesis and examined by infrared and resonance Raman spectrometry. These observations provide unequivocal assignments of the molecular vibrational frequencies which involve the magnesium and nitrogen atoms. In particular, in both infrared and resonance Raman spectra, the absence of displacements in bands of frequency higher than 1550 cm -1 indicated the insignificant contributions of C=N stretching modes, which have maximum activity in the 1050 to 1180 cm -1 region. These results also indicate a configuration of chlorophyll in which the magnesium atom is not at a center of symmetry

  7. Triple resonance experiments for the simultaneous correlation of H6/H5 and exchangeable protons of pyrimidine nucleotides in 13C,15N-labeled RNA applicable to larger RNA molecules

    International Nuclear Information System (INIS)

    Woehnert, Jens; Goerlach, Matthias; Schwalbe, Harald

    2003-01-01

    Triple-resonance two-dimensional H6/H5(C4N)H and C6/C5(C4N)H experiments are described that provide through-bond H6/H5 or C6/C5 to imino/amino correlations in pyrimidine bases in 13 C, 15 N-labeled RNA. The experiments simultaneously transfer H6/H5 magnetization by an INEPT step to the C6/C5 nuclei and by homonuclear CC- and heteronuclear CN-TOCSY steps via the intervening C4 nucleus to the N3/N4 nuclei and then by a reverse INEPT step to the imino/amino hydrogens. The sensitivity of these experiments is high as demonstrated using a 30-nucleotide pyrimidine rich RNA at a concentration of 0.9 mM at temperatures of 10 deg. C and 25 deg. C. This indicates the general applicability of the experiments and the possibility to obtain correlations for imino resonances in non-canonical regions of the target RNA

  8. Measurements of regional lung water with 0-15 labeled water and CO-15 labeled carboxyhemoglobin

    International Nuclear Information System (INIS)

    Helmeke, H.J.; Schober, O.; Lehr, L.; Junker, D.; Meyer, G.J.; Fitschen, J.; Bossaller, C.; Hundeshagen, H.

    1982-01-01

    Determination of regional vascular lung water is only practicable by external imaging since it is the only method which allows analysis of many regions. 0-15 was produced by our medical cyclotron (MC-35) via the N-14(d,n)0-15 reaction and processed to H 2 O-15 as the diffusible and to CO-15-hemiglobin autologous erythrocytes - as the intravascular tracer. The activity over both lungs applied as a bolus into the right atrium (5-10 mCi/1 sec) was followed by a positron camera (4200; Cycl. Corp.). Data acquisition and analysis was done in a pdp 11-55 computer system. Mean transit times were computed by the 'height over area' and the 'ratio of moments' method. The extravascular lung water per unit of plasma volume (ELW/Vp) was calculated according to Fazio et al. (1976).The lungs were divided into six zones. 47 investigations in 27 patients were caried out (controls, patients with heart failure, and critically ill with respiratory distress). As expected critically ill patients (ELW/Vp = 0.39+-0.19/0.66+-0.21) demonstrated a higher ELW/Vp than those suffering from myocardial insufficiency (ELW/V = 0.30+-0.13) or controls (ELW/Vp = 0.22+-0.11). Various factors involved in the measurement of lung water are mentioned. Because of methodological considerations and the worse discrimination concerning of the 'ratio of moments' method we prefer the 'height over area' analysis in the determination of transit times. The scintigraphic estimation of the so defind regional lung water is possible as the discrimination of groups is; the follow up or quantification of regional lung water of a patient in clinical routine work seems to be not yet established under the demonstrated conditions. (Author)

  9. Use of stable nitrogen isotope 15N in investigating nitrogen uptake by plants from allylisothiocyanate decomposition products

    International Nuclear Information System (INIS)

    Dolejskova, J.; Kovar, J.

    1976-01-01

    The assimilability of nitrogen from allylisothiocyanate or from its nitrogenous decomposition products by plants was investigated using 15 N-labelled allylisothiocyanate. The results show that plant nitrogen assimilation from allylisothiocyanate is the higher, the lower the total nitrogen content of the nutritive medium. (author)

  10. Synthesis and NMR characterization of ( sup 15 N)taurine (2-( sup 15 N)aminoethanesulfonic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Philippossian, G.; Welti, D.H.; Fumeaux, R.; Richli, U.; Anantharaman, K. (Nestle Research Centre, Nestec Ltd., Lausanne (Switzerland))

    1989-11-01

    The title compound was prepared in three steps with 55% overall yield starting from potassium ({sup 15}N)phthalimide. The synthetic route involved reaction with 1,2-dibromoethane, hydrolysis of the resulting N-(2-bromoethyl) ({sup 15}N)phthalimide with HBr and treatment of the 2-bromoethyl({sup 15}N)amine thus formed with sodium sulphite. The product was characterized by {sup 13}C, {sup 1}H and {sup 15}N NMR spectroscopy. The absolute coupling constants of {sup 15}N with the {sup 13}C nuclei and the non-exchanging protons were determined and an unambiguous assignment of the proton signals obtained. (author).

  11. Estimates of matter yield and N-uptake in sorghum grown on saline and non-saline soils manured with dhaincha (sesbania aculeata) plant residues utilizing 15N tracer techniques

    International Nuclear Information System (INIS)

    Kurdali, F.

    2002-11-01

    Pot experiments were conducted to study the effect of manuring with three types of plant residues (roots, shoots or roots plus shoots) of Dhaincha (Sesbania aculeata Pers.) on the yield and N-uptake of Sorghum bicolor grown in saline and non-saline soils. For measuring various sources of N-uptake, two isotopic dilution techniques were utilized by adding to these soils either 15 N-labelled inorganic N-fertilizer (indirect method) or 15 N-labelled sesbania leaves (direct method). For the indirect method, both soils manured with each type of sesbania residue, received four split applications of 15 N-labelled ammonium sulphate. Results indicated that each type of sesbania residue, applied as a green manure, resulted in significant increases in both dry matter yield and N-uptake of sorghum as compared with the un manured control. Moreover, sesbania residues decreased the harmful effect of salinity on plant growth. Percentages of N derived from residues (%Ndfr) in sorghum grown in non saline soil ranged between 3.9 and 33%; whereas, in saline soil, the observed values ranged between 4.9 and 19.8%. N recoveries in sorghum grown in non saline soil were 61, 45 and 37% of the total amount contained in the sesbania root, shoot and root plus shoot; whereas, values in sorghum grown in saline soils were 48, 14,8 and 15.7%, respectively. The beneficial effects of sesbania residues have been attributed not only to the additional N availability to the plants, but also to its effects on the enhancement of soil N uptake. Percentages and amounts of Ndfr calculated using the indirect method were not significantly different from those obtained by the direct method indicating that the indirect method used herein is feasible and simple for measuring N release from organic residues. It is suggested that the use of Sesbania aculeata residues, particularly the shoots, as a green manure, can provide a substantial portion of total N in sorghum. Moreover, the use of sesbania green manure in

  12. Uptake of 15N labelled urea and ammonium nitrate by 4-year old Douglas-fir grown in sand-peat mix

    International Nuclear Information System (INIS)

    Pang, P.C.K.

    1982-01-01

    Four-year old Douglas-fir planted in a 1:1 ratio of sand and peat mixture were fertilized with 200 kg N/ha in the form of either ( 15 NH 2 ) 2 CO, 15 NH 4 NO 3 or NH 4 15 NO 3 and grown in a shadehouse over periods of one and two years. Under the experimental conditions, trees recovered a higher percentage of 15 N from the NO 3 - than the NH 4 + source. The soil retained a higher percentage of N from NH 4 + than the NO 3 - source. % Ndff suggested NO 3 - is the preferred N source for the Douglas-fir. A description is also given of some of the ongoing experiments related to N fertilization of forests underway at the Pacific Forest Research Centre. (author)

  13. Human and climate impact on ¹⁵N natural abundance of plants and soils in high-mountain ecosystems: a short review and two examples from the Eastern Pamirs and Mt. Kilimanjaro.

    Science.gov (United States)

    Zech, Michael; Bimüller, Carolin; Hemp, Andreas; Samimi, Cyrus; Broesike, Christina; Hörold, Claudia; Zech, Wolfgang

    2011-09-01

    Population pressure increasingly endangers high-mountain ecosystems such as the pastures in the Eastern Pamirs and the mountain forests on Mt. Kilimanjaro. At the same time, these ecosystems constitute the economic basis for millions of people living there. In our study, we, therefore, aimed at characterising the land-use effects on soil degradation and N-cycling by determining the natural abundance of (15)N. A short review displays that δ(15)N of plant-soil systems may often serve as an integrated indicator of N-cycles with more positive δ(15)N values pointing towards N-losses. Results for the high-mountain pastures in the Eastern Pamirs show that intensively grazed pastures are significantly enriched in (15)N compared to the less-exploited pastures by 3.5 ‰, on average. This can be attributed to soil organic matter degradation, volatile nitrogen losses, nitrogen leaching and a general opening of the N-cycle. Similarly, the intensively degraded savanna soils, the cultivated soils and the soils under disturbed forests on the foothill of Mt. Kilimanjaro reveal very positive δ(15)N values around 6.5 ‰. In contrast, the undisturbed forest soils in the montane zone are more depleted in (15)N, indicating that here the N-cycle is relatively closed. However, significantly higher δ(15)N values characterise the upper montane forest zone at the transition to the subalpine zone. We suggest that this reflects N-losses by the recently monitored and climate change and antropogenically induced increasing fire frequency pushing the upper montane rainforest boundary rapidly downhill. Overall, we conclude that the analysis of the (15)N natural abundance in high-mountain ecosystems is a purposeful tool for detecting land-use- or climate change-induced soil degradation and N-cycle opening.

  14. Investigation on the absorption of /sup 14/C-leucine and /sup 15/N-leucine in rats after feeding a fish meal diet in comparison with a gelatine diet

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, U; Adam, K; Bergner, H [Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Tierproduktion und Veterinaermedizin

    1981-01-01

    Albino rats received after nine days of adaptation to a fish meal diet in comparison with a gelatine diet /sup 14/C-U-L-leucine and /sup 15/N-L-leucine via a pellet made from the specific diet after food deprivation for 15 h. Thereafter, the animals consumed the non-labelled experimental diet ad libitum. 30 min, and 1, 2, 4 and 8 h, resp., after intake of the labelled food, four rats at a time were sacrificed. The contents of the digestive tract and tissue samples were examined for /sup 14/C and /sup 15/N and their percentages in the TCA-soluble fraction determined. If these values are regarded as non-absorbed leucine, the /sup 14/C values obtained up to the four hour period of the experiment would be too high. Presumably, they are in the case of both diets simulated by other /sup 14/C metabolites which originate from the leucine catabolism and reach the intestinal lumen. Amino acids labelled with /sup 15/N should be preferred in studies on the absorption of amino acids because, in case of catabolization, the /sup 15/N aminogroup is excreted mainly as urea via urine.

  15. Pharmaceuticals labelled with stable isotopes

    International Nuclear Information System (INIS)

    Krumbiegel, P.

    1986-11-01

    The relatively new field of pharmaceuticals labelled with stable isotopes is reviewed. Scientific, juridical, and ethical questions are discussed concerning the application of these pharmaceuticals in human medicine. 13 C, 15 N, and 2 H are the stable isotopes mainly utilized in metabolic function tests. Methodical contributions are given to the application of 2 H, 13 C, and 15 N pharmaceuticals showing new aspects and different states of development in the field under discussion. (author)

  16. Incorporation of 15N and 14C into amino acids of bacterial and protozoal protein in the rumen of the cow on urea-rich feed

    Directory of Open Access Journals (Sweden)

    Eeva-Liisa Syväoja

    1979-01-01

    Full Text Available The utilization of the non-protein nitrogen and carbon of feed by rumen microorganisms for the synthesis of protein was studied by administering [U-14C] sucrose and 15NH4Cl to a cow on urea-rich, low-protein feed. By studying the labelling of the protozoa and bacteria and the amino acids isolated from them at intervals up to 48 hours afterwards, it was found that the bacteria synthesized amino acids from nonprotein nitrogen much more rapidly and effectively than the protozoa. Also the labelling of the carbon in the amino acids of the bacteria was more rapid than in the protozoa. In both protozoa and bacteria there was intracellular storage of [14C] sucrose. Of the bacterial amino acids the most vigorous 14C labelling was found in Glu, Arg, Lys, Val and Ala and the weakest labelling in Gly, His and Ser. Of the protozoal amino acids Ala, Asp, Glu, Leu and Lys had the highest labelling and Pro, Gly, His and Phe the lowest. In the bacterial protein the labelling of Pro and Arg was ten times that of the corresponding protozoal amino acids, and Asp, Ser and Ala four times. After the 15NH4Cl dose the half-life of 15N in the rumen fluid was estimated to be 3.3 h. Labelled ammonium nitrogen was about 11 —15 % of the bacterial nitrogen and 2—3 % of the protozoal nitrogen after 1 h. Of the protozoal amino acids Ala, Glu, Val, Asp and Met had the most vigorous labelling, and of the bacterial amino acids Glu, Asp, Ser, He and Tyr. The slowest incorporation of ammonium nitrogen was into His, Pro, Arg and Gly in both bacteria and protozoa. The labelling of the bacterial amino acids was approximately 7—8 times more vigorous than that of the protozoal amino acids. The labelling of Ala was only 4 times, and that of Val, Met and Glu 5 times more vigorous than with protozoal protein. The pathway of histidine synthesis seemed to be restricted in both bacteria and protozoa and therefore may be a limiting factor in protein synthesis, particularly in cows fed

  17. Gas chromatography-mass spectrometry of N-heptafluorobutyryl isobutyl esters of amino acids in the analysis of the kinetics of [15N]H4+ assimilation in Lemna minor L

    International Nuclear Information System (INIS)

    Rhodes, D.; Myers, A.C.; Jamieson, G.

    1981-01-01

    Rapid, sensitive, and selective methods for the determination of the 15 N abundance of amino acids in isotopic tracer experiments with plant tissues are described and discussed. Methodology has been directly tested in an analysis of the kinetics of [ 15 N]H 4 + assimilation in Lemna minor L. The techniques utilize gas chromatography-mass spectrometry selected ion monitoring of major fragments containing the N moiety of N-heptafluorobutyryl isobutyl esters of amino acids. The ratio of selected ion pairs at the characteristic retention time of each amino acid derivative can be used to calcuulate 15 N abundance with an accuracy of +/- 1 atom % excess 15 N using samples containing as little as 30 picomoles of individual amino acids. Up to 11 individual amino acid derivatives can be selectively monitored in a single chromatogram of 30 minutes. It is suggested that these techniques will be useful in situations where the small quantities of N available for analysis have hitherto hindered the use of 15 N-labeled precursors

  18. Using δ15N of Chironomidae as an index of nitrogen sources and processing within watersheds as part of EPA's National Aquatic Resource Surveys

    Science.gov (United States)

    Brooks, J. R.; Compton, J.; Herlihy, A.; Sobota, D. J.; Stoddard, J.; Weber, M.

    2014-12-01

    Nitrogen (N) removal in watersheds is an important regulating ecosystem service that can help reduce N pollution in the nation's waterways. However, processes that remove N such as denitrification are generally determined at point locations. Measures that integrate N processing within watersheds and over time would be particularly useful for assessing the degree of this vital service. Because most N removal processes isotopically enrich the N remaining, δ15N from basal food-chain organisms in aquatic ecosystems can provide information on watershed N processing. As part of EPA's National Aquatic Resource Surveys (NARS), we measured δ15N of Chironomidae in lakes, rivers and streams because these larval aquatic insects were found in abundance in almost every lake and stream in the U.S. Using information on nitrogen loading to the watershed, and total N concentrations within the water, we assessed when elevated chironomid δ15N would indicate N removal rather than possible enriched sources of N. Chironomid δ15N values ranged from -4 to +20 ‰, and were higher in rivers and streams than in lakes (median = 7.6 ‰ vs. 4.8 ‰, respectively), indicating that N was processed to a greater degree in lotic chironomids than in lentic ones. For both, δ15N increased with watershed-level agricultural land cover and N loading, and decreased as precipitation increased. In rivers and streams with high synthetic N loading, we found lower N concentrations in streams with higher chironomid δ15N values, suggesting greater N removal. At low levels of synthetic N loading, the pattern reversed, and streams with enriched chironomid δ15N had higher N concentrations, suggesting enriched sources such as manure or sewage. Our results indicate that chironomid δ15N values can provide valuable information about watershed-level N inputs and processing for national water quality monitoring efforts.

  19. Positron emitting nuclides and their synthetic incorporation in radiopharmaceuticals. [Labeled with /sup 11/C, /sup 13/N, and /sup 18/F

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.

    1976-01-01

    /sup 11/C, /sup 13/N, and /sup 15/O has potential applicability to the study of metabolism in humans. Problems in the synthesis of radiopharmaceuticals labeled with /sup 11/C, /sup 13/N, and /sup 18/F are described: quality control, radiation exposure, carboxylic acids, glucose, amines, amino acids, nitrosources, fluoroethanol. 54 references. (DLC)

  20. Wheat Yield Production Grown on Sandy Soil as Fertilized by Different N-Sources Using 15N-Technique

    International Nuclear Information System (INIS)

    Ismail, M. M.; Soliman, S. M.; El-Akel, E. A.; El-Sherbieny, A. E.; Awad, E. A. M.

    2007-01-01

    A pot experiment was carried out to evaluate the ability of some plant residues to meet total N demand of wheat crop in sandy soil and their performance to reduce chemical N fertilizer requirements. Residue-N sources, i.e. soybean and wheat residues were compared to ammonium sulfate as inorganic N source as well as mixtures of residue-N sources and (NH 4 )SO 4 in ratios of (3:1), (1:1) and (1:3), respectively. The nitrogen application rate in all amended pots was kept at 100 mg N pot -1 . The obtained results could be summarized as follows: 1) ry weight of straw and grains of wheat crop was significantly increased this at the addition of nitrogen sources as a result of N-uptake increased. The highest value was observed at the application treatment ratios of (1:1) and (1:3) on the basis of (residue: ammonium sulfate), which can be arranged in this order: Soybean > wheat + soybean > wheat residues. 2) he value of N derived from residues (Ndfr) and fertilizer (Ndff), as well as 15N -recovery ratios can be arranged in this order: Ammonium sulfate > soybean residue > Soybean + wheat residue > wheat residue. 3) he values indicated that 15N -labelled soybean residue in combination with ordinary, ammonium sulfate at the ratios of (*25: 75) and (*50: 50), respectively was found to be effective on 15N -recovery ratios in the straw and grains of wheat crop. 4) he present study indicates that the entire N requirements of wheat crop cannot be met by the separate application of any residue-N source examined.

  1. Pharmaceutical preparation of oxygen-15 labelled molecular oxygen and carbon monoxide gasses in a hospital setting.

    NARCIS (Netherlands)

    Luurtsema, Geert; Boellaard, Ronald; Greuter, Henri; Rijbroek, Abraham; Takkenkamp, Kevin; de Geest, Frank; Buijs, Fred; Hendrikse, NH; Franssen, Eric; van Lingen, Arthur; Lammertsma, Adriaan A.

    BACKGROUND: Clinical positron emission tomography (PET) requires safe and effective PET radiopharmaceuticals. Tracers used for measuring oxygen consumption and blood volume are [(15)O]O(2) and [(15)O]CO, respectively. In general, these oxygen-15 labelled tracers are produced using a cyclotron that

  2. n-Alkane distributions as indicators of novel ecosystem development in western boreal forest soils

    Science.gov (United States)

    Norris, Charlotte; Dungait, Jennifer; Quideau, Sylvie

    2013-04-01

    Novel ecosystem development is occurring within the western boreal forest of Canada due to land reclamation following surface mining in the Athabasca Oil Sands Region. Sphagnum peat is the primary organic matter amendment used to reconstruct soils in the novel ecosystems. We hypothesised that ecosystem recovery would be indicated by an increasing similarity in the biomolecular characteristics of novel reconstructed soil organic matter (SOM) derived from peat to those of natural boreal ecosystems. In this study, we evaluated the use of the homologous series of very long chain (>C20) n-alkanes with odd-over-even predominance as biomarker signatures to monitor the re-establishment of boreal forests on reconstructed soils. The lipids were extracted from dominant vegetation inputs and SOM from a series of natural and novel ecosystem reference plots. We observed unique very long n-alkane signatures of the source vegetation, e.g. Sphagnum sp. was dominated by C31 and aspen (Populus tremuloides Michx.) leaves by C25. Greater concentrations of very long chain n-alkanes were extracted from natural than novel ecosystem SOM (puse of n-alkanes as biomarkers of ecosystem development is a promising method.

  3. TÉCNICA PARA MARCAÇÃO DOS ADUBOS VERDES CROTALÁRIA JÚNCEA E MUCUNA-PRETA COM 15N PARA ESTUDOS DE DINÂMICA DO NITROGÊNIO

    Directory of Open Access Journals (Sweden)

    EDMILSON JOSÉ AMBROSANO

    1997-01-01

    Full Text Available Estabeleceu-se uma técnica de marcação de leguminosas com nitrogênio (15N, objetivando-se obter material vegetal marcado isotopicamente para estudos de dinâmica do nitrogênio. Cultivaram-se as leguminosas crotalária júncea (Crotalaria juncea L. e mucuna-preta (Mucuna aterrima, sinonímia Stizolobium aterrimum Piper & Tracy, em um podzólico vermelho-amarelo, textura arenosa/média, em casa de vegetação e em vasos contendo 10 kg de terra. Aplicou-se 1,2 g de nitrogênio por vaso (sulfato de amônio com 11,37 átomos % de 15N, parcelando-o em três vezes. O material vegetal seco marcado continha 3,177 e 4,337 átomos % de 15N, para mucuna-preta e crotalária júncea respectivamente.A technique was developed for labeling the leguminous plant tissue with nitrogen (15N to obtain labelled material for nitrogen dynamic studies. Sunnhemp (Crotalaria juncea L. and velvet beans (Mucuna aterrima, sinonímia Stizolobium aterrimum Piper & Tracy were grown in pots containing 10 kg of a Red Yellow Podzolic soil, under greenhouse conditions. The rate of 1.2 g of nitrogen (ammonium sulphate with 11.37 atom % 15N per pot was applied three times. The labelled dried plant material showed 3.177 and 4.337 of atom % 15N, respectively for velvet beans and sunnhemp.

  4. Distribution of nitrogen ammonium sulfate ({sup 15}N) soil-plant system in a no-tillage crop succession; Distribuicao do nitrogenio do sulfato de amonio ({sup 15}N) no sistema solo-planta, em uma sucessao de culturas, sob sistema plantio direto

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Flavia Carvalho da Silva, E-mail: flcsfernandes@gmail.com [Universidade Estadual de Maringa - Campus de Umuarama, PR (Brazil); Libardi, Paulo Leonel, E-mail: pllibard@esalq.usp.br [Departamento de Engenharia de Biossistemas, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, SP (Brazil)

    2012-05-15

    the n use by maize (Zea mays, l.) is affected by n-fertilizer levels. this study was conducted using a sandy-clay texture soil (Hapludox) to evaluate the efficiency of n use by maize in a crop succession, based on {sup 15}N labeled ammonium sulfate (5.5 atom %) at different rates, and to assess the residual fertilizer effect in two no-tillage succession crops (signal grass and corn). Two maize crops were evaluated, the first in the growing season 2006, the second in 2007, and brachiaria in the second growing season. The treatments consisted of n rates of 60, 120 and 180 kg ha{sup -1}in the form of labeled {sup 15}N ammonium sulfate. This fertilizer was applied in previously defined subplots, only to the first maize crop (growing season 2006). The variables total accumulated n; fertilizer-derived n in corn plants and pasture; fertilizer-derived n in the soil; and recovery of fertilizer-n by plants and soil were evaluated.The highest uptake of fertilizer n by corn was observed after application of 120 kg ha{sup -1}N and the residual effect of n fertilizer on subsequent corn and brachiaria was highest after application of 180 kg ha{sup -1}N. After the crop succession, soil n recovery was 32, 23 and 27 % for the respective applications of 60, 120 and 180 kg ha{sup -1}N. (author)

  5. Determination of the free radical concentration ratio in the copolymerization of methyl acrylate and styrene. Application of radical trapping and 15N NMR spectroscopy

    NARCIS (Netherlands)

    Kelemen, P.; Klumperman, B.

    2004-01-01

    15N-labeled nitroxides are employed to trap propagating radicals in the copolymn. of styrene and Me acrylate. The resulting polymeric alkoxyamines are analyzed by 15N NMR.The assignment of the obsd. bands to the two possible end groups of the propagating copolymer chain is achieved by comparison of

  6. Root - shoot - signaling in Chenopodium rubrum L. as studied by 15O labeled water uptake

    International Nuclear Information System (INIS)

    Ohya, T.; Hayashi, Y.; Tanoi, K.; Rai, H.; Nakanishi, T.M.; Suzuki, K.; Albrechtova, J.T.P.; Wagner, E.

    2005-01-01

    Full text: It has been demonstrated with C. rubrum that the different organ systems are transmitting surface action potentials which might be the basis for systemic signal transduction. Shoot tip respectively root generated action potentials travel along the stem axis. Shoot tip generated action potentials arriving at the basis can be reflected and travel upwards. The radioactive labeling technique was established at the NIRS in Inage, Japan. About 2 GBq of 15 O labeled Hoagland's solution was supplied to the plant root or cut stem in a phytotron at 25 o C with 45 % of relative humidity and continuous light. By cutting the shoot apical bud and the apices of main side branches the uptake of 15 O labeled water was inhibited in plants with intact roots but not in plants with roots cut. Because of the short half-life of 15 O (2 min), experiments could be repeated in hourly intervals. Cutting the apex probably limits root water uptake via a hydraulic-electrochemical signal. The results are discussed with respect to the significance of a continuous communication between the root system and the shoot apical meristem(s) in the adaptation of plants to their environment. (author)

  7. Radiobromination of humanized anti-HER2 monoclonal antibody trastuzumab using N-succinimidyl 5-bromo-3-pyridinecarboxylate, a potential label for immunoPET

    Energy Technology Data Exchange (ETDEWEB)

    Mume, Eskender [Organic Chemistry, Department of Chemistry, Uppsala University, S-751 24 Uppsala (Sweden); Orlova, Anna [Affibody AB, S-161 02 Bromma (Sweden); Malmstroem, Per-Uno [Division of Urology, Department of Surgical Sciences, Uppsala University, S-751 85 Uppsala (Sweden); Lundqvist, Hans [Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, S-751 85 Uppsala (Sweden); Sjoeberg, Stefan [Organic Chemistry, Department of Chemistry, Uppsala University, S-751 24 Uppsala (Sweden); Tolmachev, Vladimir [Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, S-751 85 Uppsala (Sweden)]. E-mail: vladimir.tolmachev@bms.uu.se

    2005-08-01

    Combining the specificity of radioimmunoscintigraphy and the high sensitivity of PET in an in vivo detection technique could improve the quality of nuclear diagnostics. Positron-emitting nuclide {sup 76}Br (T {sub 1/2}=16.2 h) might be a possible candidate for labeling monoclonal antibodies (mAbs) and their fragments, provided that the appropriate labeling chemistry has been established. For internalizing antibodies, such as the humanized anti-HER2 monoclonal antibody, trastuzumab, radiobromine label should be residualizing, i.e., ensuring that radiocatabolites are trapped intracellularly after the proteolytic degradation of antibody. This study evaluated the chemistry of indirect radiobromination of trastuzumab using N-succinimidyl 5-(tributylstannyl)-3-pyridinecarboxylate. Literature data indicated that the use of this method provided residualizing properties for iodine and astatine labels on some antibodies. An optimized 'one-pot' procedure produced an overall labeling efficiency of 45.5{+-}1.2% over 15 min. The bromine label was stable under physiological and denaturing conditions. The labeled trastuzumab retained its capacity to bind specifically to HER2-expressing SKOV-3 ovarian carcinoma cells in vitro (immunoreactivity more than 75%). However, in vitro cell test did not demonstrate that the radiobromination of trastuzumab using N-succinimidyl 5-bromo-3-pyridinecarboxylate improves cellular retention of radioactivity in comparison with the use of N-succinimidyl 4-bromobenzoate.

  8. Measurement of nitrogen fixation in beam (Phaseolus vulgaris L.) cv. carioca, using a 15N2 low enrichment method

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.; Matsui, E.; Saito, S.M.T.; Libardi, P.L.; Salati, E.

    1984-01-01

    A experimental work under field conditions to develop a method to measure atmospheric N 2 -fixation by leguminous plants, using a low enrichment 15 N 2 technique, is carried out. The experiment was developed using a N 2 -fixation measuring chamber on Terra Roxa Estruturada. The beam plants had their aereal part under normal conditions and the rooting system confined, through which a mixture of Ar, O 2 and N 2 labelled with 15 N (1.9% atom excess) was circulated from the 22nd to the 31st day from planting. Samples of the gaseous Ar, O 2 and N 2 mixture were analysed by mass spectrometry to determine 15 N concentrations and O 2 and CO 2 contents. The N 2 -fixed was measured by determination of total-N and isotopic concentration of nitrogen in the plants. (M.A.C.) [pt

  9. Using Whole Stream {delta}{sup 15}N Additions to Understand the Effects of Land Use Change on Stream Function

    Energy Technology Data Exchange (ETDEWEB)

    Deegan, L. A.; Neill, C.; Thomas, S.; Haupert, C. [Marine Biological Laboratory, Woods Hole, MA (United States); Victoria, R. L.; Krusche, A. V.; Ballester, M. V.R. [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2013-05-15

    In this paper we introduce an emerging new technique; the use of {delta}{sup 15}N stable isotope tracers to understand both short term and long term alterations in stream ecosystem nitrogen biogeochemistry and food web dynamics. The use of {delta}{sup 15}N isotopes to determine stream nitrogen cycling was developed in small tundra streams in Alaska (USA), but a network of researchers using similar technique has rapidly grown to answer questions about nitrogen cycling and stream food webs in a variety of ecosystem types and subject to human modifications. Here we provide an overview of some of the information that can be provided using stable isotope additions and describe the general approach of an isotope addition experiment. To illustrate the scope of isotope applicability some examples are provided of work undertaken in the Brazilian Amazon. (author)

  10. Utilization of {sup 15}N-Diammonium Phosphate by Ruminants to Produce Milk and Meat Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Piva, G.; Silva, S. [Istituto di Zootecnicae di Chimica Agraria, Facolta di Agraria Univ. Cattolicas. Cuore, Piacenza (Italy)

    1968-07-01

    The authors investigated the alimentary role of diammonium phosphate (DAP) in ruminants. For this study DAP labelled with {sup 15}N was used; analysis of the {sup 15}N atomic per cent excess was made with an Italelettronica mass spectrophotometer (model SP 21 F) and the amino acid determination by a Beckman-Spinco amino acid analyser (model 120B) fitted with a preparative column. For the experiment 7 g of DAP at 15 and 20 at. % excess {sup 15}N were administered once to mature lactating and non-lactating sheep, respectively. The measurement of {sup 15}N in the protein and isolated amino acids of milk and meat showed: (1) The milk protein produced in the first 24 h contained the highest atomic per cent excess of {sup 15}SN, 0.093; (2) That the supplemental {sup 15}N was found in all the amino acids of milk proteins except tryptophane. The atomic per cent excess of {sup 15}N was observed to vary between the various amino acids. These results confirmed previous observations on bacterial protein synthesized from DAP. (3) Muscle protein {sup 15}N maximized on the third day after administration of the {sup 15}N-DAP, with an atomic per cent excess of 0.040; (4) The atomic per cent excess of {sup 15}N in the individual amino acids of muscle protein is significant in only two amino' acids, serine and cystine; and (5) That after 8 d of adaptation there are no traces of DAP in milk or meat proteins, urine or faeces. The authors conclude that the ruminant, after a period of adaptation and through the mediation of ruminant microorganisms, is able to use the nitrogen of diammonium phosphate for the synthesis of milk and meat proteins. (author)

  11. Barley Benefits from Organic Nitrogen in Plant Residues Applied to Soil using 15N Isotope Dilution

    International Nuclear Information System (INIS)

    Gadalla, A.M.; Galal, Y.G.M.; Abdel Aziz, H.A.; El-Degwy, S.M.A.; Abd El-Haleem, M.

    2008-01-01

    The experiment was carried out in pots (sandy soil cultivated with Barley plant) under greenhouse conditions, at Inshas, Egypt. The aim was to evaluate the transformation of nitrogen applied either as mineral form ( 15 NH 4 ) 2 SO 4 , or as organic-material-N (plant residues) .Basal recommended doses of P and K were applied. Labeled 15 N as( 15 NH 4 ) 2 SO 4 (5 % a.e) or plant residues (ground leuceana forage, compost, and mixture of them) were applied at a rate of 20 kg N/ ha). 15 N technique was used to evaluate N-uptake and fertilizer use efficiency. The treatments were arranged in a completely randomized block design under greenhouse conditions. The obtained results showed that the dry weight of barley shoots was positively affected by reinforcement of mineral- N with organic-N. On the other hand, the highest dry weight was estimated with leuceana either applied alone or reinforced with mineral N. Similar trend was noticed with N uptake but only with organic N, while with treatment received 50% organic-N. plus 50% mineral- N. the best value of N uptake was recorded with mixture of leuceana and compost. The amount of Ndff was lowest where fertilizer 15 N was applied alone. Comparing Ndff for the three organic treatments which received a combination of fertilizer- 15 N+organic-material-N, results showed that the highest Ndff was occurred with mixture of leuceana and compost, whereas the lowest was induced with individual leuceana treatment. 15 N recovery in shoots of barley ranged between 22.14 % to 82.16 %. The lowest occurred with application of mineral 15 N alone and; the highest occurred where mineral 15 N was mixed with compost or leucaena-compost mixture

  12. Sensitivity enhanced NMR spectroscopy by quenching scalar coupling mediated relaxation: Application to the direct observation of hydrogen bonds in 13C/15N-labeled proteins

    Energy Technology Data Exchange (ETDEWEB)

    Liu Aizhuo; Hu Weidong; Qamar, Seema; Majumdar, Ananya [Memorial Sloan-Kettering Cancer Center, Cellular Biochemistry and Biophysics Program (United States)

    2000-05-15

    In this paper, we demonstrate that the sensitivity of triple-resonance NMR experiments can be enhanced significantly through quenching scalar coupling mediated relaxation by using composite-pulse decoupling (CPD) or an adiabatic decoupling sequence on aliphatic, in particular alpha-carbons in {sup 13}C/{sup 15}N-labeled proteins. The CPD-HNCO experiment renders 50% sensitivity enhancement over the conventional CT-HNCO experiment performed on a 12 kDa FK506 binding protein, when a total of 266 ms of amide nitrogen-carbonyl carbon defocusing and refocusing periods is employed. This is a typical time period for the direct detection of hydrogen bonds in proteins via trans-hydrogen bond {sup 3h}J{sub NC'} couplings. The experimental data fit theoretical analysis well. The significant enhancement in sensitivity makes the experiment more applicable to larger-sized proteins without resorting to perdeuteration.

  13. Determination of urea utilization of rice at different growth stages by 15N tracer technique

    International Nuclear Information System (INIS)

    Korkmaz, A.; Halitligil, M.B.; Torun, M.

    1991-01-01

    This study reported here examines the percent utilization of 15 N labelled urea by rice when it is broadcasted over the soil surface or mixed within 10 cm soil at different vegetative stages. The experimental plots were arranged in randomized block design and replicated 3 times. N was applied at a rate of 120 kg N/ha as single or split applications at four different times during the growing season. Labelled urea was applied to 0.5x0.5 m plots only in 1988, however in 1989 unlabelled urea was applied to all plots. Stover and seed samples from each plot were harvested, dried at 65 0 C, weighed and kilogram per hectare were calculated in 1988. Also, the yield surplus per kilogram N was calculated for each treatment and this was indicated as urea fertilizer efficiency coefficient. Total N and 15 N analysis for stover and seed were done. Significant differences (at 0.05 level) were observed in stover and seed yields, when 120 kg/ha urea was split applied at different growth stages. Similar yield responses were obtained in 1988 and 1989. Highest seed yields were obtained when half of urea was applied at planting and the other half was applied at one week before heading. The results also showed that the highest utilization of urea for seed plus stover was obtained from the second half of urea (60 kg N/ha) applied one week before heading. Percent utilization of urea by rice also differed according to the rate applied at each stage

  14. Stable isotope labeling, in vivo, of D- and L-tryptophan pools in lemna gibba and the low incorporation of label into indole-3-acetic acid

    International Nuclear Information System (INIS)

    Baldi, B.G.; Maher, B.R.; Slovin, J.P.; Cohen, J.D.

    1991-01-01

    The authors present evidence that the role of tryptophan and other potential intermediates in the pathways that could lead to indole derivatives needs to be reexamined. Two lines of Lemna gibba were tested for uptake of [ 15 N-indole]-labeled tryptophan isomers and incorporation of that label into free indole-3-acetic acid (IAA). Both lines required levels of L-[ 15 N]tryptophan 2 to 3 orders of magnitude over endogenous levels in order to obtain measurable incorporation of label into IAA. Labeled L-tryptophan was extractable from plant tissue after feeding and showed no measurable isomerization into D-tryptophan. D-[ 15 N]trytophan supplied to Lemna at rates of approximately 400 times excess of endogenous D-tryptophan levels (to yield an isotopic enrichment equal to that which allowed detection of the incorporation of L-tryptophan into IAA), did not result in measurable incorporation of label into free IAA. These results demonstrate that L-tryptophan is a more direct precursor to IAA than the D isomer and suggest (a) that the availability of tryptophan in vivo is not a limiting factor in the biosynthesis of IAA, thus implying that other regulatory mechanisms are in operation and (b) that L-tryptophan also may not be a primary precursor to IAA in plants

  15. Nitrogen leaching from N limited forest ecosystems: the MERLIN model applied to Gårdsjön, Sweden

    Directory of Open Access Journals (Sweden)

    O. J. Kjønaas

    1998-01-01

    Full Text Available Chronic deposition of inorganic nitrogen (N compounds from the atmosphere to forested ecosystems can alter the status of a forest ecosystem from N-limited towards N-rich, which may cause, among other things, increased leaching of inorganic N below the rooting zone. To assess the time aspects of excess N leaching, a process-oriented dynamic model, MERLIN (Model of Ecosystem Retention and Loss of Inorganic Nitrogen, was tested on an N-manipulated catchment at Gårdsjön, Sweden (NITREX project. Naturally generated mature Norway spruce dominates the catchment with Scots pine in drier areas. Since 1991, ammonium nitrate (NH4NO3 solution at a rate of about 35 kg N ha-1 yr-1 (250 mmol m-2 yr-1 has been sprinkled weekly, to simulate increased atmospheric N deposition. MERLIN describes C and N cycles, where rates of uptake and cycling between pools are governed by the C/N ratios of plant and soil pools. The model is calibrated through a hindcast period and then used to predict future trends. A major source of uncertainty in model calibration and prediction is the paucity of good historical information on the specific site and stand history over the hindcast period 1930 to 1990. The model is constrained poorly in an N-limited system. The final calibration, therefore, made use of the results from the 6-year N addition experiment. No independent data set was available to provide a test for the model calibration. The model suggests that most N deposition goes to the labile (LOM and refractory (ROM organic matter pools. Significant leaching is predicted to start as the C/N ratio in LOM is reduced from the 1990 value of 35 to <28. At ambient deposition levels, the system is capable of retaining virtually all incoming N over the next 50 years. Increased decomposition rates, however, could simulate nitrate leaching losses. The rate and capacity of N assimilation as well as the change in carbon dynamics are keys to ecosystem changes. Because the knowledge of

  16. Bradyrhizobium strain and the 15N natural abundance quantification of biological N2 fixation in soybean Estirpe do Bradyrhizobium e quantificação da fixação biológica de nitrogênio em soja utilizando a técnica da abundância natural de 15N

    Directory of Open Access Journals (Sweden)

    Ana Paula Guimarães

    2008-01-01

    Full Text Available In commercial plantations of soybean in both the Southern and the Cerrado regions, contributions from biological nitrogen fixation (BNF are generally proportionately high. When using the 15N natural abundance technique to quantify BNF inputs, it is essential to determine, with accuracy, the 15N abundance of the N derived from BNF (the 'B' value. This study aimed to determine the effect of four recommended strains of Bradyrhizobium spp. (two B. japonicum and two B. elkanii on the 'B' value of soybean grown in pots in an open field using an equation based on the determination of δ15N natural abundance in a non-labelled soil, and estimate of the contribution of BNF derived from the use of 15N-isotope dilution in soils enriched with 15N. To evaluate N2 fixation by soybean, three non-N2-fixing reference crops were grown under the same conditions. Regardless of Bradyrhizobium strain, no differences were observed in dry matter, nodule weight and total N between labelled and non-labelled soil. The N2 fixation of the soybeans grown in the two soil conditions were similar. The mean 'B' values of the soybeans inoculated with the B. japonicum strains were -1.84 ‰ and -0.50 ‰, while those inoculated with B. elkanii were -3.67 ‰ and -1.0 ‰, for the shoot tissue and the whole plant, respectively. Finally, the 'B' value for the soybean crop varied considerably in function of the inoculated Bradyrhizobium strain, being most important when only the shoot tissue was utilised to estimate the proportion of N in the plant derived from N2 fixation.Em plantações comerciais de soja na região Sul e do Cerrado, as contribuições da fixação biológica de Nitrogênio (FBN são geralmente elevadas. Quando usamos a técnica da abundância natural de 15N para quantificar a FBN, é essencial determinar com exatidão a abundância de 15N do N derivado da FBN (valor 'B'. Este trabalho buscou determinar o efeito das quatro estirpes de Bradyrhizobium spp. (duas B

  17. REDOR NMR of stable-isotope-labeled protein binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, J. [Washington Univ., St. Louis, MO (United States)

    1994-12-01

    Rotational-echo, double resonance (REDOR) NMR, a new analytical spectroscopic technique for solids spinning at the magic angle, has been developed over the last 5 years. REDOR provides a direct measure of heteronuclear dipolar coupling between isolated pairs of labeled nuclei. In a solid with a {sup 13}C-{sup 15}N labeled pair, for example, the {sup 13}C rotational echoes that form each rotor period following a{sup 1}H-{sup 13}C cross-polarization transfer can be prevented from reaching full intensity by insertion of a {sup 15}N {pi} pulse each half rotor period. The REDOR difference (the difference between a {sup 13}C NMR spectrum obtained under these conditions and one obtained with no {sup 15}N {pi} pulses) has a strong dependence on the {sup 13}C-{sup 15}N dipolar coupling, and hence, the {sup 13}C-{sup 15}N internuclear distance. REDOR is described as double-resonance even though three radio frequencies (typically {sup 1}H, {sup 13}C, and {sup 15}N) are used because the protons are removed from the important evolution part of the experiment by resonant decoupling. The dephasing of magnetization in REDOR arises from a local dipolar {sup 13}C-{sup 15}N field gradient and involves no polarization transfer. REDOR has no dependence on {sup 13}C or {sup 15}N chemical-shift tensors and does not require resolution of a {sup 13}C-{sup 15}N coupling in the chemical-shift dimension.

  18. {sup 15}N and {sup 13}C- SOFAST-HMQC editing enhances 3D-NOESY sensitivity in highly deuterated, selectively [{sup 1}H,{sup 13}C]-labeled proteins

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: rossip@umn.edu; Xia, Youlin; Khanra, Nandish; Veglia, Gianluigi, E-mail: vegli001@umn.edu; Kalodimos, Charalampos G., E-mail: ckalodim@umn.edu [University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics (United States)

    2016-12-15

    The ongoing NMR method development effort strives for high quality multidimensional data with reduced collection time. Here, we apply ‘SOFAST-HMQC’ to frequency editing in 3D NOESY experiments and demonstrate the sensitivity benefits using highly deuterated and {sup 15}N, methyl labeled samples in H{sub 2}O. The experiments benefit from a combination of selective T{sub 1} relaxation (or L-optimized effect), from Ernst angle optimization and, in certain types of experiments, from using the mixing time for both NOE buildup and magnetization recovery. This effect enhances sensitivity by up to 2.4× at fast pulsing versus reference HMQC sequences of same overall length and water suppression characteristics. Representative experiments designed to address interesting protein NMR challenges are detailed. Editing capabilities are exploited with heteronuclear {sup 15}N,{sup 13}C-edited, or with diagonal-free {sup 13}C aromatic/methyl-resolved 3D-SOFAST-HMQC–NOESY–HMQC. The latter experiment is used here to elucidate the methyl-aromatic NOE network in the hydrophobic core of the 19 kDa FliT-FliJ flagellar protein complex. Incorporation of fast pulsing to reference experiments such as 3D-NOESY–HMQC boosts digital resolution, simplifies the process of NOE assignment and helps to automate protein structure determination.

  19. Solubilization and cleavage of human neutrophil (N) affinity-labeled receptors for leukotriene B4 (LTB4)

    International Nuclear Information System (INIS)

    Marotti, T.; Young, R.N.; Gifford, L.A.; Goldman, D.W.; Goetzl, E.J.

    1986-01-01

    LTB 4 chemotactic receptors in purified N plasma membranes (PMs) have been affinity-labeled with [ 3 H]-C-1 aminopropylamide-LTB 4 ([ 3 H]APA-LTB 4 ) by disuccinimidyl suberate (DSS) cross-linking. Intact Ns were pretreated with diisopropylfluorophosphate, suspended at 10 7 /ml in Hanks' solution-10 mM HEPES (pH 7.4), incubated for 30 min at 4 0 C with 30 nM [ 3 H]APA-LTB 4 and 25 min with 1 mM bis[2-(succinimidooxycarbonyloxy)-ethyl] sulfone, an impermeant analog of DSS, and sonified for 30 sec at 4 0 C. The 10,000 g supernatant of the sonicate was centrifuged at 40,000 g for 30 min at 4 0 C on a discontinuous gradient of 10-50 g % sucrose, from which a mean of 78% of the radiolabel was recovered with PM markers. The extent and specificity of labeling of intact N receptors were similar to those of receptors in PMs. The radioactively-labeled receptors appeared as a single band of 35-40 kd in sodium dodecyl sulfate (SDS) 10 g % polyacrylamide gel electrophoresis. Cleavage of radiolabeled receptors with 1 mg/ml of cyanogen bromide in 70% formic acid for 18 hr at room temperature or with 30 mM HCl under N 2 for 4 hr at 105 0 C converted a mean of 18-32% of the radioactivity to a band of 14 kd in SDS-15 g % PAGE. N receptors for LTB 4 , thus, are localized in the PM and can be isolated for structural studies

  20. Measurement of NO2 pollutant sorption of various trees, shrubs and ground cover plants using gas NO2 labelled 15N

    International Nuclear Information System (INIS)

    Nasrullah, Nizar; Wungkar, Marietje; Gunawan, Andi; Gandanegara, Soertini; Suharsono, Heny

    2000-01-01

    The objective of this study is to measure the NO 2 pollutant sorption of various trees, shrubs and ground cover plants. 32 species of trees, 64 speceis of shrubs and 13 species of ground cover plants were exposed to 3 ppm (v / v) N- 15 O 2 in a gas chamber for 60 minutes. Experiment consisted of 2 replicates. The environment conditions in the chamber were set at 30 o C, 1000 lux, and initial relative humidity 60 %. After gas treatment, plants parts were separated into leaves, stems and roots, than dried in 70 o C for 48 hours and then weighed. After weighing, those plants parts were ground to a pine powder. After kjendhal digestion, N total content of plants were analyzed by distillation method. 15 N content of plant samples were analyzed by emission spectrometer ( Yasco, N-151). The amount of N-15 absorbed by plant was the total content of 15 N in the whole plants ( leaves, stem and root ) per gram dry weight of leaves. The amount of 15 N absorbed by plants varied among investigated plants. 15 N sorption of trees are in the range 0.28 - 68.31μg/g. The sorption of shrubs and ground cover plants varied in 1.97 - 100.02 μg/g and 2.38 - 24.06μg/g, respectively. According to the amount of 15 N sorption , the plants were divided into 3 groups of sorption level, high ( > 30.0μg/g), moderate ( 15 - 30 μg/g ), and low sorption level ( 15 μg/g). Results showed that among of 32 investigated trees, 64 shrubs and 13 ground cover plant, 4 species of trees and 13 species of shrubs performed a high sorption level and no one of ground cover plants performed a high sorption level. The species of trees and 15 species of shrubs that mention above are recommended to use as an element of landscape which to be functioned to reduce NO 2 atmospheric pollutant

  1. Geomorphic control on the δ15N of mountain forests

    Directory of Open Access Journals (Sweden)

    R. G. Hilton

    2013-03-01

    Full Text Available Mountain forests are subject to high rates of physical erosion which can export particulate nitrogen from ecosystems. However, the impact of geomorphic processes on nitrogen budgets remains poorly constrained. We have used the elemental and isotopic composition of soil and plant organic matter to investigate nitrogen cycling in the mountain forest of Taiwan, from 24 sites with distinct geomorphic (topographic slope and climatic (precipitation, temperature characteristics. The organic carbon to nitrogen ratio of soil organic matter decreased with soil 14C age, providing constraint on average rates of nitrogen loss using a mass balance model. Model predictions suggest that present day estimates of nitrogen deposition exceed contemporary and historic nitrogen losses. We found ∼6‰ variability in the stable isotopic composition (δ15N of soil and plants which was not related to soil 14C age or climatic conditions. Instead, δ15N was significantly, negatively correlated with topographic slope. Using the mass balance model, we demonstrate that the correlation can be explained by an increase in nitrogen loss by non-fractioning pathways on steeper slopes, where physical erosion most effectively removes particulate nitrogen. Published data from forests on steep slopes are consistent with the correlation. Based on our dataset and these observations, we hypothesise that variable physical erosion rates can significantly influence soil δ15N, and suggest particulate nitrogen export is a major, yet underappreciated, loss term in the nitrogen budget of mountain forests.

  2. Evaluation of the symbiotic nitrogen fixation in soybean by labelling of soil organic matter

    International Nuclear Information System (INIS)

    Ruschel, A.P.; Freitas, J.R. de; Vose, P.B.

    1982-01-01

    An experiment was carried out using the isotopic dilution method to evaluate symbiotic nitrogen fixation in soybean grown in soil labelled with 15 N enriched organic matter. Symbiotic N 2 -fixed was 71-76% of total N in the plant. Non nodulated soybean utilized 56-59% N from organic matter and 40% from soil. Roots of nodulated plants had lower NdN 2 than aereal plant parts. The advantage of using labelled organic matter as compared with 15 N-fertilizer addition in evaluating N 2 -fixation is discussed. (Author) [pt

  3. Studies of the utilization of phosphorus and nitrogen fertilizers by 32P and 15N isotopes

    International Nuclear Information System (INIS)

    Dombovari, Janos; Kiss, A.S.

    1983-01-01

    The utilization of phosphorus and nitrogen fertilizers in crop enhancement was studied with different plants and soils, using 15 N nad 32 P labelling. 15 N was determined by mass spectrometry, 32 P by radiometry. For nitrogen fertilizers better results were achieved by sequential small doses than by single higher doses. The utilization of phosphorus fertilizer strongly depends, in addition to the plant species, on the quality of the soil, especially on its Ca and N contents. Low and high soil liming increased and decreased the utilization of phosphorus, respectively, while nitrogen fertilizers increased it in each case. Measurement of the isotopically exchangable phosphorus content of soils represents a new technique for the determination of the phosphorus uptake. (A.L.)

  4. Use of 15N-labelled nitrogen deposition to quantify the source of nitrogen in runoff at a coniferous-forested catchment at Gardsjoen, Sweden

    International Nuclear Information System (INIS)

    Kjonaas, O. Janne; Wright, Richard F.

    2007-01-01

    To determine the source of dissolved inorganic nitrogen (N) in runoff, approx. 35 kg N enriched with the stable isotope 15 N (2110 per mille δ 15 N) was added to a mature coniferous forested catchment for one whole year. The total N input was approx. 50 kg ha -1 year -1 . The enrichment study was part of a long-term whole-catchment ammonium nitrate addition experiment at Gardsjoen, Sweden. The 15 N concentrations in precipitation, throughfall, runoff and upper forest floor were measured prior to, during, and 3-9 years following the 15 N addition. During the year of the 15 N addition the δ 15 N level in runoff largely reflected the level in incoming N, indicating that the leached NO 3 - came predominantly from precipitation. Only 1.1% of the incoming N was lost during the year of the tracer addition. The cumulative loss of tracer N over a 10-year period was only 3.9% as DIN and 1.1% as DON. - 15 N tracer addition showed that initially the main source of NO 3 - in runoff was N from atmospheric deposition

  5. Origin and tracing techniques of high 15N nitrogen compounds in industrial environments

    International Nuclear Information System (INIS)

    Talma, A.S.; Meyer, R.

    2002-01-01

    Effluents and process waters from various industrial plants were investigated for the 15 N/ 14 N isotope ratio in nitrate and ammonia. It was found that large isotope fractionation occurs in cases where ammonia is involved in gas-liquid phase changes. This feature was found to occur in two coke oven plants where ammonia gas is removed from a gas stream by solution in water, in an ammonia sulphate plant where ammonia gas is absorbed in sulphuric acid and in a water treatment plant where ammonia is removed from (high pH) water by blowing air through the process water. In all these cases 15 N isotope enrichments (in the range of 10 to 30 per mille) occurred. These enrichments are in excess of those found naturally. Ammonia in such wastewaters essentially retains this high 15 N content when it is converted to nitrate underground: which occurs rapidly under well-oxidised conditions. Nitrate is a fairly conservative tracer and its contamination in water can be followed readily. In the low recharge environment in the central parts of South Africa evidence of waste management practices of 10-20 years earlier were still quite evident using this isotopic label. The high 15 N nitrate signal could be used to distinguish industrial nitrogen pollution from pollution by local sewage disposal systems. Vegetation that derives its nitrogen from such high 15 N sources retains the isotope signature of its source. Grass and other annual plants then exhibit the isotope signature of the water of a specific year. Trees exhibit the isotope signature of deeper water, which shows the effects of longer term pollution events. The use of high 15 N as tracer enables the source apportionment of nitrogen derived pollution in these specific circumstances. (author)

  6. Synthesis of 15N-enriched fertilizers. Pt. II. Synthesis of 15N-enriched urea

    International Nuclear Information System (INIS)

    Bondassolli, J.A.; Trivelin, P.C.O.; Mortatti, J.; Victoria, R.L.

    1988-01-01

    The results of studies on the production of 15 N-urea through the reaction between 15 N-enriched anhidrous ammonia, carbon monoxide and sulfur, using hydrogen sulfite as a auto catalizers and methyl alcohol as a liquid reaction medium is presented. The influence of the quantities of reagents on final yield of synthesised urea were studied. Analysis of the cost of 5 Atoms % 15 N-enriched urea were made. (M.A.C.) [pt

  7. New method for quality testing of food proteins for the maintenance metabolism. 1. Studies of urinary /sup 15/N excretion by /sup 15/N-labelled young rats fed with various proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, H; Bergner, U; Adam, K [Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Tierproduktion und Veterinaermedizin

    1978-05-01

    Over a period of 7 days 38 Wistar rats received supplements of /sup 15/N in the form of ammonium acetate added to a casein methionine diet. From the 8th day groups of 4 or 5 rats were fed different protein diets (115 kcal per kg body weight sup(0.75)) over a 5-day period. The relationship between /sup 15/N excreted via urine and the quantity of N absorbed from the food protein was used for determining the protein quality under conservation conditions. The following order of protein quality was found: fish meal, casein, wheat, whole egg, soybean, yeast, pea, and gelatin.

  8. New method for quality testing of food proteins for the maintenance metabolism. I. Studies of urinary /sup 15/N excretion by /sup 15/N-labelled young rats fed with various proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, H; Bergner, U; Adam, K [Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Tierproduktion und Veterinaermedizin

    1978-05-01

    Over a period of 7 days 38 Wistar rats received supplements of /sup 15/N in the form of ammonium acetate added to a casein methionine diet. From the 8th day groups of 4 or 5 rats were fed different protein diets (115 kcal per kg body weight sup(0.75)) over a 5-day period. The relationship between /sup 15/N excreted via urine and the quantity of N absorbed from the food protein was used for determining the protein quality under conservation conditions. The following order of protein quality was found: fish meal, casein, wheat, whole egg, soybean, yeast, pea, and gelatin.

  9. Accurate Determination of Leucine and Valine Side-chain Conformations using U-[{sup 15}N/{sup 13}C/{sup 2}H]/[{sup 1}H-(methine/methyl)-Leu/Val] Isotope Labeling, NOE Pattern Recognition, and Methine C{gamma}-H{gamma}/C{beta}-H{beta} Residual Dipolar Couplings

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chun; Iwahara, Junji; Clore, G. Marius [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Laboratory of Chemical Physics (United States)], E-mail: mariusc@intra.niddk.nih.gov

    2005-10-15

    An isotope labeling scheme is described in which specific protonation of methine and methyl protons of leucine and valine is obtained on a {sup 15}N/{sup 13}C labeled background with uniform deuteration of all other non-exchangeable protons. The presence of a protonated methine group has little effect on the favorable relaxation properties of the methyl protons of Leu and Val. This labeling scheme permits the rotameric state of leucine side-chains to be readily determined by simple inspection of the pattern of H{gamma}(i)-H{sub N}(i) and H{gamma}(i)-H{sub N}(i+1) NOEs in a 3D {sup 15}N-separated NOE spectrum free of complications arising from spectral overlap and spin-diffusion. In addition, one-bond residual dipolar couplings for the methine {sup 13}C-{sup 1}H bond vectors of Leu and Val can be accurately determined from an intensity J-modulated constant-time HCCH-COSY experiment and used to accurately orient the side-chains of Leu and Val. Incorporation of these data into structure refinement improves the accuracy with which the conformations of Leu and Val side-chains can be established. This is important to ensure optimal packing both within the protein core and at intermolecular interfaces. The impact of the method on protein structure determination is illustrated by application to enzyme IIA{sup Chitobiose}, a 34 kDa homotrimeric phosphotransferase protein.

  10. Fire increases the risk of higher soil N2O emissions from Mediterranean Macchia ecosystems

    DEFF Research Database (Denmark)

    Karhu, Kristiina; Dannenmann, M.; Kitzler, B.

    2015-01-01

    on climate change. However, the potential importance of indirect GHG emissions due to changes in soil biological and chemical properties after fire is less well known. Increased soil mineral nitrogen (N) concentrations after fire pose a risk for increased emissions of gaseous N, but studies on the post......-fire N2O production and soil N turnover rates (mineralization, nitrification, microbial immobilization, denitrification) are still rare. We determined N2O production, rates of N turnover and pathways for N2O production from the soil of burned and unburned plots of a Macchia shrubland in central Spain...... using a 15N labelling approach. Measurements were initiated before the controlled burning and continued for up to half a year after fire. Fire markedly increased the risk of N2O emissions from soil through denitrification (N2O production rate was 3 to ≈30 times higher in burned soils compared to control...

  11. Nitrogen Dynamic Study on Rice Mutant Lines Using 15N Isotope Techniques

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abd Wahid; Shyful Azizi Abdul Rahman; Abdul Rahim Harun

    2015-01-01

    Malaysian Nuclear Agency in collaboration with UPM and MARDI has produced two types of rice mutant lines of MR219, viz. MR219-4 and MR219-9 developed under rice radiation mutagenenesis programme for adaptability to aerobic conditions. Aerobic cultivating is rice cultivation system on well drained soil and using minimal water input. At Malaysian Nuclear Agency, a nitrogen fertilization study in aerobic condition for the rice mutant lines was carried out in the shade house and field. The study is intended to examine and assess the dynamics of nitrogen by rice mutant lines through the different soil water management and nitrogen levels. Direct 15 N isotopic tracer method was used in this study, whereby the 15 N labeled urea fertilizer was utilized as a tracer for nitrogen nutrient uptake by the test crops. This paper is intended to highlight the progress that has been made in the study of the nitrogen dynamics on MR219-4 and MR219-9 rice mutant lines. (author)

  12. Methodological investigation on the use of 14C-leucine and 15N-leucine for studying the absorption of amino acids in the experimental rat

    International Nuclear Information System (INIS)

    Bergner, H.; Bergner, U.; Adam, K.

    1980-01-01

    After nine days of adaptation to a whole-egg diet, albino rats were given 14 C-U-L-leucine and 15 N-L-leucine in addition by the oral route. Each rat received the labelled leucine via a pellet made from the whole-egg diet after food deprivation for 15 h. Thereafter, the experimental animals consumed the unlabelled experimental diet ad libitum. Four times, 30 min, and 1, 2, 4 and 8 h after ingestion of the labelled food, four experimental rats were sacrificed. The contents of the digestive tract and tissue samples were examined for 14 C and 15 N. The halftime of disappearance of the 14 C activity and of the 15 N excess from the TCA-soluble fraction of the gastric contents lay between 1.9 and 2.2 h. Up to the fourth hour of experiment, the 15 N level of the TCA-soluble fraction of the gastric contents was high. The free leucine is obviously absorbed in the stomach and is used for the synthesis of enzyme protein and mucoproteides. In the TCA-soluble fraction of the total contents of the small intestine, the following values (expressed as percentages of the total amounts ingested at the times of measurement) were found: 14 C = 2.0; 6.5; 9.6; 7.4 and 1.5; 15 N excess = 0.8; 1.2; 1.6; 1.6 and 1.2 Were these values regarded as non-absorbed leucine, the 14 C values obtained during the one-to-four hour period of experiment would unequivocally be too high. Presumably, they are simulated by other 14 C-metabolites which originate from the leucine catabolism and reach the intestinal lumen through the intestinal wall. Amino acids labelled with 15 N should be preferred in studies on the absorption of amino acids because, in case of catabolization, the 15 N-amino group is excreted mainly in the form of urea. 14 C-amino acids can be recommended for such studies only if the specific 14 C activity of the amino acid used is also measured. (author)

  13. Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake

    Science.gov (United States)

    Hall, R.O.; Tank, J.L.; Sobota, D.J.; Mulholland, P.J.; O'Brien, J. M.; Dodds, W.K.; Webster, J.R.; Valett, H.M.; Poole, G.C.; Peterson, B.J.; Meyer, J.L.; McDowell, W.H.; Johnson, S.L.; Hamilton, S.K.; Grimm, N. B.; Gregory, S.V.; Dahm, Clifford N.; Cooper, L.W.; Ashkenas, L.R.; Thomas, S.M.; Sheibley, R.W.; Potter, J.D.; Niederlehner, B.R.; Johnson, L.T.; Helton, A.M.; Crenshaw, C.M.; Burgin, A.J.; Bernot, M.J.; Beaulieu, J.J.; Arangob, C.P.

    2009-01-01

    We measured uptake length of 15NO-3 in 72 streams in eight regions across the United States and Puerto Rico to develop quantitative predictive models on controls of NO-3 uptake length. As part of the Lotic Intersite Nitrogen eXperiment II project, we chose nine streams in each region corresponding to natural (reference), suburban-urban, and agricultural land uses. Study streams spanned a range of human land use to maximize variation in NO-3 concentration, geomorphology, and metabolism. We tested a causal model predicting controls on NO-3 uptake length using structural equation modeling. The model included concomitant measurements of ecosystem metabolism, hydraulic parameters, and nitrogen concentration. We compared this structural equation model to multiple regression models which included additional biotic, catchment, and riparian variables. The structural equation model explained 79% of the variation in log uptake length (S Wtot). Uptake length increased with specific discharge (Q/w) and increasing NO-3 concentrations, showing a loss in removal efficiency in streams with high NO-3 concentration. Uptake lengths shortened with increasing gross primary production, suggesting autotrophic assimilation dominated NO-3 removal. The fraction of catchment area as agriculture and suburban-urban land use weakly predicted NO-3 uptake in bivariate regression, and did improve prediction in a set of multiple regression models. Adding land use to the structural equation model showed that land use indirectly affected NO-3 uptake lengths via directly increasing both gross primary production and NO-3 concentration. Gross primary production shortened SWtot, while increasing NO-3 lengthened SWtot resulting in no net effect of land use on NO- 3 removal. ?? 2009.

  14. 15N nitrogen-balance studies in patients with testicular feminization, their relatives, and in normal subjects

    International Nuclear Information System (INIS)

    Zachman, M.; Zagalak, M.; Voellmin, J.A.; Prader, A.

    1975-01-01

    Fourteen subjects (4 with testicular feminization, 2 mothers, 1 aunt and 1 father of these patients, 2 normal women, 2 normal men and 2 normal prepubertal boys) were given 0.1 to 0.2 g/kg of 50 percent 15 N-labeled NH 4 Cl before and after 6 daily injections of testosterone (T) 15 mg/m 2 ). In 24-hour urine specimens collected on the test days, 15 N was calculated from total N (Kjeldahl) and the percentage of 15 N (mass spectrometry or 15 N-analyzer Isocommerz). In all normal subjects, urinary 15 N-balance was influenced positively by T (+31.3 +- 8.4 percent), in prepubertal boys more (+43 to +66 percent) than in women (+20 to +30 percent) and men (+6 to +23). In testicular feminization, 15 N-balance not only failed to become more positive, but was even reduced (-24.7 +- 17.6 percent). The father of a patient had only a slight response (+7 percent) as one of the normal males, probably because of higher endogenous T-levels in adult males. One mother and the aunt had no response (-7.4 to + 1.5 percent). In the mother, the balance became slightly positive (+10 percent) on oral contraceptives. The other mother, who was on estrogen treatment prior to and during the test, had a positive but insufficient change of balance (+17 percent). It is concluded that this test allows detection of patients with testicular feminization and possibly also healthy female carriers. In these cases, estrogen treatment appears to positively influence the response to T

  15. [Accumulation responses of seeds and seedlings to 15N isotope for two typical broadleaved trees in Northeast China.

    Science.gov (United States)

    Wang, Guang Chen; Song, Yuan; Yan, Qiao Ling; Zhang, Jin Xin

    2016-08-01

    Two typical broadleaved trees (i.e., Fraxinus rhynchophylla and Acer mono) with wind-dispersed seeds in Northeast China were selected in this study. A method of 15 N isotope labeling was used to explore the accumulation responses of seeds and seedlings to 15 N-urea soaking concentration (0, 0.05, 0.1 and 0.2 g·L -1 ), soaking time (4, 8 and 12 days) and leaf stage (2, 4, 6, and 8 leaves). The results showed that 15 N-urea soaking concentration and soaking time had significantly positive effects on δ 15 N values of seeds, i.e., higher 15 N-urea concentration and longer period of soaking (0.2 g·L -1 +12 d) were contributed to more 15 N accumulation of seeds. The maximum multiples of 15 N accumulation in F. rhynchophylla seeds and A. mono seeds were observed in 0.1 g·L -1 + (4 d, 8 d) and 0.05 g·L -1 + (4 d, 8 d), respectively. The loss rate of δ 15 N values decreased markedly from 2 leaves to 6 leaves and then kept relatively stable with the increasing seedling height, and the total δ 15 N values of seedlings started to decline at the stage of 8 leaves. These results suggested that seedlings with 6 leaves were more suitable for tracking seedling source. The δ 15 N values in leaves of seedlings were significantly positively correlated with 15 N-urea concentration level, soaking time and δ 15 N values of seeds. Overall, the accumulation of 15 N-urea could be found in seeds and seedlings of F. rhynchophylla and A. mono. The combination of 15 N-urea concentration (0.1 g·L -1 ), soaking time (8 d) and leaf stage (6 leaves) was the most suitable for tracking the seeds and seedlings of these two broadleaved trees.

  16. Use of reversed-phase gel partition chromatography for the purification of chemically synthesized (5,6,8,9,11,12,14,15(n)) octadeuterium- and octatritium-labelled arachidonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wollard, P M; Lascelles, P T [Department of Chemical Pathology, Institute of Neurology, London, Great Britain; Hensby, C N [Hammersmith Hospital, London (UK). Postgraduate Medical School

    1978-12-11

    The development of a method is described for the preparation and purification of (5,6,8,9,11,12,14,15(n)-/sup 2/H)arachidonic acid (/sup 2/H/sub 8/-AA). The /sup 2/H/sub 8/-AA was chemically synthesised by the selective reduction of 5,8,11,14-eiconsatetraynoic acid (ETYA) with deuterium gas. Using reversed-phase partition chromatography on a Lipidex 5000 column support, it was shown that: (1) The reaction products could readily be separated from each other to yield /sup 2/H/sub 8/-AA of greater than 98% mass purity by gas chromatography. (2) Closely related C20 cis-ethylenic fatty acids differing only in the degree of unsaturation are efficiently separated. The resolution increases exponentially on saturation of double bonds. (3) Commercially available (5,6,8,9,11,12,14,15(n))octatritium-labelled arachidonic acid (/sup 3/H/sub 8/-AA) was readily purified. Both (/sup 3/H/sub 8/)- and (1-/sup 14/C)arachidonic acid (/sup 14/C-AA) co-chromatographed with /sup 2/H/sub 8/-AA. (4) The mass spectra of the methyl ester and trimethylsilyl ester of the purified /sup 2/H/sub 8/-AA showed molecular ions at m/e 326 and 384, respectively.

  17. 15N Hyperpolarization of Imidazole-15N2 for Magnetic Resonance pH Sensing via SABRE-SHEATH.

    Science.gov (United States)

    Shchepin, Roman V; Barskiy, Danila A; Coffey, Aaron M; Theis, Thomas; Shi, Fan; Warren, Warren S; Goodson, Boyd M; Chekmenev, Eduard Y

    2016-06-24

    15 N nuclear spins of imidazole- 15 N 2 were hyperpolarized using NMR signal amplification by reversible exchange in shield enables alignment transfer to heteronuclei (SABRE-SHEATH). A 15 N NMR signal enhancement of ∼2000-fold at 9.4 T is reported using parahydrogen gas (∼50% para-) and ∼0.1 M imidazole- 15 N 2 in methanol:aqueous buffer (∼1:1). Proton binding to a 15 N site of imidazole occurs at physiological pH (p K a ∼ 7.0), and the binding event changes the 15 N isotropic chemical shift by ∼30 ppm. These properties are ideal for in vivo pH sensing. Additionally, imidazoles have low toxicity and are readily incorporated into a wide range of biomolecules. 15 N-Imidazole SABRE-SHEATH hyperpolarization potentially enables pH sensing on scales ranging from peptide and protein molecules to living organisms.

  18. Assimilation of 15N-labelled urea nitrogen and ammonium nitrate nitrogen by plants in case of root and non-root fertilization

    International Nuclear Information System (INIS)

    Muravin, Eh.A.; Kozhemyachko, V.A.; Vernichenko, I.V.

    1974-01-01

    Assimilation of 15 N labeled urea and ammonium nitrate in root and foliar application by spring wheat and barley has been studied during 1970-1973 period in a series of vegetative experiments at the Department of Agrochemistry, Timiryazev Agricultural Academy, and at D.N. Pryanishnikov Experimental Agrochemical Station. Additional fertilizer nitrogen applied at later ontogenesis stages (flowering and milky ripeness) is utilized mostly for protein synthesis in developing grains, thus leading to a significant increase in the relative grain protein content. A transfer of a part of nitrogen from the main ortion of fertilizer at later stages of nitrition results, at the same time, in a lower yield. Nitrogen utilization degree of urea and ammonium nitrate, when introduced before sowing or at the flowering stage is similar but in the latter case, however, additional assimilation of soil nitrogen is lower. The assimilation rate of nitrogen in root application is the lower the later the fertilizer is applied. When ammonium nitrate is additionally applied as nutrition to barley at the milky ripeness stage, ammonia and nitrate nitrogen are assimilated at the same rate and to the same extent but ammonia nitrogen is more rapidly used for protein synthesis and the rate of its transfer to the developing grains is higher. The rate of nitrogen assimilation at plant is much higher in foliar than in root application. Wheat utilizes more urea nitrogen at the flowering stage when root application is used but at the milky ripeness stage foliar application is more effective

  19. Fate of 15N-labelled urea as affected by organic amendments and oils applied to rice

    International Nuclear Information System (INIS)

    Singh, G.R.; Singh, T.A.

    1987-01-01

    The present study was undertaken to explore the possibility of using 2 organic compounds (p-benzoquinone and catechol), 2 oils (neem oil (Azadirachta indica A. Juss) and linseed oil (Linum usitatissimum Linn.) oil) and 3 polyphenolic plant residues, viz. catechu (Acacia catechu (L.f.) Willd.), babul acacia (Acacia nilotica (Linn.) Willd. ex Del. sub.indica (Benth.) Brenan, syn. A. arabica (Lamk.) Willd.) and yellow myrobalan (Terminalia chebula Retz.) when applied with 15 N-tagged urea to observe their effectiveness in decreasing N losses. (author). 8 refs

  20. The assessment of nitrogen balance under flooding and saturation circumstances using N-15

    Energy Technology Data Exchange (ETDEWEB)

    Abouseeda, M; Khater, A [National Research Centre, Soil and Water Dept., Cairo (Egypt); Soliman, S [Atomic Energy Authority, Soil and Water Dept., P.O.Box 13759 Cairo (Egypt)

    1995-10-01

    The use{sup 15} N- balance techniques has already identified N-loss as a major problem in lowland rice management. Ammonium sulphate labelled with 5% N-15 atom ex. as a basal fertilized through special column in order to study the effect of flooding and saturation condition on the potential loss of nitrogen fertilizer. Rice straw at a rate of 1% was incorporated with the soil in order to study the role of rice straw (as a source of organic matter) on N-loss. Results show that the application of rice straw under flooding condition resulted in an increase of the biomass. It was observed that flooding circumstances may reduce the loss of nitrogen. Since N-recovery under flood and saturation rhizosphere (with plant) conditions were about 75% and 56%, respectively. The effect of rice root (rhizosphere) on nitrification has been observed. Results of flood and non flood rhizossphere show that the nitrogen recovery were about 75% and 86%, respectively. Results show an indirect evidence that the process of rhizosphere nitrification denitrification resulted in a significant amount of N-loss.It is evident that deep placement and flooded condition proved to be an effective means of reducing the potential of N-loss. 1 fig., 3 tabs.

  1. The assessment of nitrogen balance under flooding and saturation circumstances using N-15

    International Nuclear Information System (INIS)

    Abouseeda, M.; Khater, A.; Soliman, S.

    1995-01-01

    The use 15 N- balance techniques has already identified N-loss as a major problem in lowland rice management. Ammonium sulphate labelled with 5% N-15 atom ex. as a basal fertilized through special column in order to study the effect of flooding and saturation condition on the potential loss of nitrogen fertilizer. Rice straw at a rate of 1% was incorporated with the soil in order to study the role of rice straw (as a source of organic matter) on N-loss. Results show that the application of rice straw under flooding condition resulted in an increase of the biomass. It was observed that flooding circumstances may reduce the loss of nitrogen. Since N-recovery under flood and saturation rhizosphere (with plant) conditions were about 75% and 56%, respectively. The effect of rice root (rhizosphere) on nitrification has been observed. Results of flood and non flood rhizossphere show that the nitrogen recovery were about 75% and 86%, respectively. Results show an indirect evidence that the process of rhizosphere nitrification denitrification resulted in a significant amount of N-loss.It is evident that deep placement and flooded condition proved to be an effective means of reducing the potential of N-loss. 1 fig., 3 tabs

  2. First realisation of a labelling kit of N.T.P. 15-5 ligand by {sup 99m}Tc in view of a clinical application in cartilage functional imaging; Premiere realisation d'une trousse de marquage du ligand NTP 15-5 par le 99mTc en vue d'une application clinique en imagerie fonctionnelle du cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Miot-Noirault, E.; Cachin, F.; Vidal, A.; Auzeloux, P.; Chezal, J.M.; Gaumet, V.; Askienazy, S. [Inserm, EA4231, UMR 990, 63 - Clermont-Ferrand (France); Guenu, S. [UFR de pharmacie, laboratoire de chimie analytique, 63 - Clermont-Ferrand (France); Askienazy, S. [Laboratoires Cyclopharma, 63 - Saint-Beauzire (France)

    2010-07-01

    We are working on a SPECT tracer for functional imaging of articular cartilage, the {sup 99m}Tc-NTP 15-5. This molecule has its application in degenerative diseases of cartilage (arthrosis, arthritis and chondrosarcoma). Excellent reports of cartilage versus tissues fixing ratios are obtained in different animal models as well as human anatomical parts. For clinical application, we present the development of a labelling kit by the technetium of the ligand NTP 15-5. (N.C.)

  3. N2-fixing red alder indirectly accelerates ecosystem nitrogen cycling

    Science.gov (United States)

    Perakis, Steven S.; Matkins, Joselin J.; Hibbs, David E.

    2012-01-01

    Symbiotic N2-fixing tree species can accelerate ecosystem N dynamics through decomposition via direct pathways by producing readily decomposed leaf litter and increasing N supply to decomposers, as well as via indirect pathways by increasing tissue and detrital N in non-fixing vegetation. To evaluate the relative importance of these pathways, we compared three-year decomposition and N dynamics of N2-fixing red alder leaf litter (2.34 %N) to both low-N (0.68 %N) and high-N (1.21 %N) litter of non-fixing Douglas-fir, and decomposed each litter source in four forests dominated by either red alder or Douglas-fir. We also used experimental N fertilization of decomposition plots to assess elevated N availability as a potential mechanism of N2-fixer effects on litter mass loss and N dynamics. Direct effects of N2-fixing red alder on decomposition occurred primarily as faster N release from red alder than Douglas-fir litter, but direct increases in N supply to decomposers via fertilization did not stimulate decomposition of any litter. Fixed N indirectly influenced detrital dynamics by increasing Douglas-fir tissue and litter N concentrations, which accelerated litter N release without accelerating mass loss. By increasing soil N, tissue N, and the rate of N release from litter of non-fixers, we conclude that N2-fixing vegetation can indirectly foster plant-soil feedbacks that contribute to the persistence of elevated N availability in terrestrial ecosystems.

  4. Metabolic fate of 13N-labeled ammonia in rat brain

    International Nuclear Information System (INIS)

    Cooper, A.J.L.; McDonald, J.M.; Gelbard, A.S.; Gledhill, R.F.; Duffy, T.E.

    1979-01-01

    After infusion of physiological concentrations of [ 13 N]ammonia for 10 min via one internal carotid artery, the relative specific activities of glutamate, glutamine (α-amino), and glutamine (amide) in rat brain were approximately 1:5:400, respectively. Analysis of metabolites, after infusion of [ 13 N]ammonia into one lateral cerebral ventricle, indicated that ammonia entering the brain from the cerebrospinal fluid is also metabolized in a small glutamate pool. Pretreatment with methionine sulfoximine led to a decrease in the label present in brain glutamine following carotid artery infusion of [ 13 N]ammonia. 13 N activity in brain glutamate was greater than in the α-amino group of glutamine. The amount of label recovered in the right cerebral hemisphere, 5 s after a rapid bolus injection of [ 13 N]ammonia via the right common carotid artery, was independent of concentration within the bolus over a 1000-fold range indicating that ammonia enters the brain largely by diffusion. In normal rats approximately 60% of the label recovered in brain was incorporated into glutamine, indicating that the t 1 /sub// 2 for conversion of ammonia to glutamine in the small pool is in the range of 1 to 3 s or less. The data emphasize the importance of the small pool glutamine synthetase as a metabolic trap for the detoxification of blood-borne and endogenously produced brain ammonia. The possibility that the astrocytes represent the anatomical site of the small pool is considered

  5. Labeling of monoclonal antibodies with a 67Ga-phenolic aminocarboxylic acid chelate. Part I. Chemistry and labeling technique.

    Science.gov (United States)

    Schuhmacher, J; Matys, R; Hauser, H; Maier-Borst, W; Matzku, S

    1986-01-01

    As a chelating agent for labeling antibodies (Abs) with metallic radionuclides, a propionic acid substituted ethylenediamine N,N'-di-[(o-hydroxyphenyl) acetic acid] (P-EDDHA), which tightly complexes 67Ga, was synthesized. The 67Ga-P-EDDHA chelate was coupled in aqueous solution to IgG at a molar ratio of 1:1 via carbodiimide. The average coupling yield was 15%. A specific activity of 4 mCi/mg IgG could be obtained with commercially supplied 67Ga. In vitro stability was evaluated in human serum at 37 degrees C and showed a half-life of about 120 h for the release of 67Ga from the labeled Ab during the initial phase of incubation. This in vitro halflife is similar to that measured for 111In-DTPA labeled Abs. Because of the high stability of the 67Ga-P-EDDHA chelate, the in vivo formation of radioactive labeled transferrin by transchelation, as described for 111In-DTPA labeled Abs, should, however, be reduced by this labeling technique.

  6. Constant infusion of 15O-labeled water and inhalation of 11C-labeled carbon monoxide for the regional determination of pulmonary water by positron emission tomography

    International Nuclear Information System (INIS)

    Meyer, G.J.; Schober, O.; Hundeshagen, H.

    1983-01-01

    A method was developed for the continuous infusion of 15 O-labeled water which allows the tomographic reconstruction of the total lung water (TLW). Subsequent inhalation of 11 C-labeled carbon-monoxide permits the reconstruction of the blood volume (BV). After normalization of intravascular activities the difference of TLW minus BV yields a quantitative value of regional extravascular lung water (rELW). 15 O-O 2 is converted on-line to 15 O-H 2 O and trapped in a 2 ml buffer reservoir which is fed by a pump with 0.9% NaCl. A precision pump is used to withdraw the labeled H 2 O and infuse it at a rate of 6 ml/min. The radioactivity level of the indusate (ca. 3.7 MBq/sec) is controlled and can be kept constant with a deviation of less than 5% over 40 min. The sterility and apyrogenicity of the system effluent is assured by frequent bacteriological, rabbit and limulus tests. A constant radioactivity level in the lung area is reached after 8-10 min. The infusion is continued for the tomographic reconstruction (Positron Camera System 4200, Cyclotron Corp.) which takes 15 min. A fast change of cyclotron parameters (MC-36, Scanditronix) and automated chemistry procedures allow a single breath administration of 11 C-CO (ca. 40 MBq) 15 min after the end of the 15 O-H 2 O infusion. Blood pool equilibrium is reached after 3-4 min, and the blood volume is reconstructed within 15 min also. Intravascular activites as determined from reconstructed slices in the region of the aortic arch correlate linearly with blood sample activities up to 100 kBq/ml. (orig.) [de

  7. Cation-exchange antibody labeling for simultaneous electrochemical detection of tumor markers CA15-3 and CA19-9

    International Nuclear Information System (INIS)

    Wang, Guangjie; Qing, Yi; Shan, Jinlu; Jin, Feng; Wang, Dong; Yuan, Ruo

    2013-01-01

    We report on a new kind of non-covalent multi-label electrochemical immunoassay that was applied to simultaneously quantify the tumor markers CA15-3 and CA19-9. The method employs a nanohybrid composed of an ionomer and conductive titanium dioxide nanoparticles that act as a matrix support for the antibodies. The two antibodies (anti-CA153 and anti-CA199) were labeled (a) with a cobaltous dipyridine complex, and (b) with methylene blue. Labeling is based on cation-exchange interaction rather than on covalent conjugation. The redox potentials of the two labels are separated by an interval of 0.3 V. The resulting sandwich-type immunosensor was read out by differential pulse voltammetry. The potential sites and currents of the two redox probes reflect the concentration of the two analytes. The two analytes were determined with a detection limit of 1.6 U mL −1 for CA19-9, and of 0.3 U mL −1 for CA15-3 (author)

  8. Secondary structure of 5S RNA: NMR experiments on RNA molecules partially labeled with Nitrogen-15

    International Nuclear Information System (INIS)

    Gewirth, D.T.; Abo, S.R.; Leontis, N.B.; Moore, P.B.

    1987-01-01

    A method has been found for reassembling fragment 1 of Escherichia coli 5S RNA from mixtures containing strand III (bases 69-87) and the complex consisting of strand II (bases 89-120) and strand IV (bases 1-11). The reassembled molecule is identical with unreconstituted fragment 1. With this technique, fragment 1 molecules have been constructed 15 N-labeled either in strand III or in the strand II-strand IV complex. Spectroscopic data obtained with these partially labeled molecules show that the terminal helix of 5S RNA includes the GU and GC base pairs at positions 9 and 10 which the standard model for 5S secondary structure predicts but that these base pairs are unstable both in the fragment and in native 5S RNA. The data also assign three resonances to the helix V region of the molecule (bases 70-77 and 99-106). None of these resonances has a normal chemical shift even though two of them correspond to AU or GU base pairs in the standard model. The implications of these findings for the authors understanding of the structure of 5S RNA and its complex with ribosomal protein L25 are discussed

  9. The effect of noncollinearity of 15N-1H dipolar and 15N CSA tensors and rotational anisotropy on 15N relaxation, CSA/dipolar cross correlation, and TROSY

    International Nuclear Information System (INIS)

    Fushman, David; Cowburn, David

    1999-01-01

    Current approaches to 15N relaxation in proteins assume that the 15N-1H dipolar and 15N CSA tensors are collinear. We show theoretically that, when there is significant anisotropy of molecular rotation, different orientations of the two tensors, experimentally observed in proteins, nucleic acids, and small peptides, will result in differences in site- specific correlation functions and spectral densities. The standard treatments of the rates of longitudinal and transverse relaxation of amide 15N nuclei, of the 15N CSA/15N-1H dipolar cross correlation, and of the TROSY experiment are extended to account for the effect of noncollinearity of the 15N-1H dipolar and 15N CSA (chemical shift anisotropy) tensors. This effect, proportional to the degree of anisotropy of the overall motion, (D-parallel /D-perpendicular -1), is sensitive to the relative orientation of the two tensors and to the orientation of the peptide plane with respect to the diffusion coordinate frame. The effect is negligible at small degrees of anisotropy, but is predicted to become significant for D-parallel /D-perpendicular ≥1.5, and at high magnetic fields. The effect of noncollinearity of 15N CSA and 15N-1H dipolar interaction is sensitive to both gross (hydrodynamic) properties and atomic-level details of protein structure. Incorporation of this effect into relaxation data analysis is likely to improve both precision and accuracy of the derived characteristics of protein dynamics, especially at high magnetic fields and for molecules with a high degree of anisotropy of the overall motion. The effect will also make TROSY efficiency dependent on local orientation in moderately anisotropic systems

  10. Influence of the form and rate of 15N-labelled nitrogen fertilizers on nitrogen uptake by maize grown on two different soils

    International Nuclear Information System (INIS)

    Balabanova-Georgieva, R.; Ikonomova, E.

    1996-01-01

    The influence of 15 N-labelled urea and ammonium sulfate on the yield and uptake of fertilizer nitrogen and soil nitrogen by maize was studied under the conditions of pot experiments on calcareous black earth and leached black earth. The nitrogen fertilizers were applied in rates: N 1 =250 mg, N 2 =500 mg, N 3 =750 mg and N 4 =1000 mg/1 kg of soil, on phosphorus(P)-potassium(K) background (P=200 and K=600 mg/kg soil). When treating with N 3 and N 4 , the application of the whole nitrogen rate was compared with its split application. It was found that the form of the nitrogen fertilizer played no important role for the formation of the yield of biomass and the uptake of nitrogen with the yield when it is applied in low nitrogen rates and maize was grown on calcareous black earth. The yield of biomass and the uptake of nitrogen with the yield of maize reach their maximum under the conditions of calcareous black earth and high nitrogen rates applied as urea depressed the plants which proves the statement that in case of calcareous black earth application of ammonium sulfate should be preferred rather that urea, fertilization with which should be avoided. No depression of plants was observed under the conditions of leached black earth and application of high urea rates. The amount of nitrogen taken up is growing with the increasing of the nitrogen rate (excluding the N-treatment). The split application of high nitrogen rates increased notably the yield of maize-vegetation mass which proved the great ability of this crop for effective utilization of the nitrogen fertilizers when applied in portions and at suitable phases of plant vegetation. The role of the fertilizer nitrogen on the formation of the plant mass yield is much greater compared to that of the soil nitrogen; in the split application of urea the soil nitrogen plays a much bigger role than in its single application. The additional mobilization of the soil nitrogen under the influence of the applied nitrogen

  11. Comparative Study of Water and Nitrogen Fertilizer Application on Potato Crop under Fertigation and Surface Irrigating Systems by Using Labeled Nitrogen (15N)

    International Nuclear Information System (INIS)

    Abdullah Haidara, H. M.; Amin Alkirshi, A. H.; Saleh Husien, A.

    2007-01-01

    This research activity was conducted at Central Highland Research Station Farm-Dhamar, on potato Crop (Diamant cv.), during three seasons of 2000, 2001, and 2003.The objective of this activity was to study the Nitrogen Fertilizer Use Efficiency (WUE) which applied in different dosages with irrigation water (fertigation) and one dosage to the soil under surface irrigation, by using Labeled nitrogen fertilizer ( 15N ), comparing the quantity of irrigation water applied through Drip irrigation method and surface irrigation and its effect on WUE and yield of potato crop. The basic experiment was planted in randomized completely block design (RCBD) with five replications during 2000 season and six replication in 2001.and five treatments were tested (N1= 50kg N/ha, N2 =100kg N/ha, N3=150kg N/ha and N4=200kgN/ha as fertigated treatments under drip irrigation and Ns = 150kg N/ha as surface Nitrogen Application under surface irrigation. While in the 2003 season Verification trial was conducted with two replications, two treatments and RCB design. Results indicated that using Drip irrigation method in application of water saved 38% of irrigation water as compared to Surface irrigation. Fertigated treatments (N1, N2, N3 and N4) were, significantly superior to Surface Nitrogen Application treatment (NS), fertigated treatment (N3) gave the highest values of WUE which were 5.3, 6.4 and 6.1 kg/m3 for the three seasons (2000, 2001, 2003 respectively) with an average of 5.9 kg/m3 comparing to the surface Nitrogen Application treatment (NS) which gave the less yield per unit of water which was 3.8, 3.6 and 3.9 kg /m3 for the three seasons 2000, 2001 and 2003 respectively with an average of 3.7 kg/m3.The Average yield of potato tubers for (N3) treatment in the three seasons was 30 .3 t/ha comparing to the (NS) treatment, which gave an average of 29,5t/ha.The fertigatetd treatment (N1) recorded the highest efficient use of nitrogen Fertilizer followed by (N3) compare to the surface

  12. Stem infusion of nitrogen-15 to quantify nitrogen remobilization in maize

    International Nuclear Information System (INIS)

    Ma, B.L.; Dwyer, L.M.; Tollenaar, M.; Smith, D.L.

    1998-01-01

    Nitrogen (N) use efficiency (NUE) of fertilizer N can be accurately estimated by tracing the fate of soil applied labelled fertilizer, but the quantity of N remobilization from non-kernel components into kernels in maize (Zea mays L.) plants is difficult to determine. A field experiment involving stem infusion with labelled 15N solution was conducted at Ottawa, Ontario (45 degrees 22'N, 75 degrees 43'W) for two years to determine whether stem infused 15N could be used to quantify N remobilization and the contribution of remobilized N to the grain. A current stay-green commercial hybrid was grown at three fertilizer N rates and infused with 30 mL 15N solution [35.7 mmol N as 15NH(4)15NO(3) at 99.2 15N% atom enrichment (a.e.)] into the internode below the primary cob at anthesis. The control plants were infused with distilled water. Sampling occurred at 3 d, 2 wk and 5 wk after anthesis and at physiological maturity

  13. Combining combing and secondary ion mass spectrometry to study DNA on chips using 13C and 15N labeling [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Armelle Cabin-Flaman

    2016-06-01

    Full Text Available Dynamic secondary ion mass spectrometry (D-SIMS imaging of combed DNA – the combing, imaging by SIMS or CIS method – has been developed previously using a standard NanoSIMS 50 to reveal, on the 50 nm scale, individual DNA fibers labeled with different, non-radioactive isotopes in vivo and to quantify these isotopes. This makes CIS especially suitable for determining the times, places and rates of DNA synthesis as well as the detection of the fine-scale re-arrangements of DNA and of molecules associated with combed DNA fibers. Here, we show how CIS may be extended to 13C-labeling via the detection and quantification of the 13C14N- recombinant ion and the use of the 13C:12C ratio, we discuss how CIS might permit three successive labels, and we suggest ideas that might be explored using CIS.

  14. Synthesis of 13N and/or 11C single or doubly labelled urea

    International Nuclear Information System (INIS)

    Emran, A.M.

    1989-01-01

    Utilization of nitrogen by plants encounters two important problems which are denitrification and deficiency or inactivation of certain enzyme. In the first process the fertilizer is affected by certain bacteria to produce nitrogen or its oxides which cannot be utilized by plants. In the second process, transformation of urea nitrogen into forms usable by plants depends on abundance and activity of the enzyme urease. Study of inorganic nitrogen transport has been underway using 13 N-nitrate as a tracer. Behavior of organic nitrogen can be studied using labelled urea. [ 13 N] and/or [ 11 C] single or doubly labelled urea are good tracers for this purpose. Reaction of trace amounts of potassium cyanate with 13 N-ammonium sulfate produced 13 N-ammonium cyanate which was thermally transformed into [ 13 N]-urea with no added carrier. Similarly, [ 11 C]-potassium cyanate reacted with 13 N-ammonium sulfate to produce 13 N/ 11 C-doubly labelled urea. Thin layer and high performance liquid chromatography were used to identify the products and determine the yields

  15. Changes in leaf δ13C and δ15N for three Mediterranean tree species in relation to soil water availability

    Science.gov (United States)

    Ogaya, Romà; Peñuelas, Josep

    2008-11-01

    A rain exclusion experiment simulating drought conditions expected in Mediterranean areas for the following decades (15% decrease in soil moisture) was conducted in a Mediterranean holm oak forest to study the response of leaf δ13C, δ15N, and N concentrations to the predicted climatic changes for the coming decades. Plant material was sampled in 2000, 2003, 2004, and 2005 in eight plots: four of them were control plots and the other four plots received the rain exclusion treatment. Although there was a negative relationship between δ13C and soil moisture, for each species and year, the rain exclusion treatment did not have any significant effect on δ13C, and therefore on the intrinsic water use efficiency (iWUE) of the three dominant species: Phillyrea latifolia, Arbutus unedo, and Quercus ilex. On the other hand, rain exclusion clearly increased the δ15N values in the three species studied, probably indicating higher N losses at the soil level leading to a 15N enrichment of the available N. It suggested that rain exclusion exerted a greater effect on the nitrogen biogeochemical cycle than on the carbon assimilation process. δ15N values were inversely correlated with summer soil moisture in Q. ilex and A. unedo, but no relationship was observed in P. latifolia. This latter species showed the lowest iWUE values, but it was the only species with no decrease in annual basal increment in response to the rain exclusion treatment, and it also had the highest resistance to the hot and dry conditions projected for the Mediterranean basin in the coming decades. The different strategies to resist rain exclusion conditions of these species could induce changes in their competitive ability and future distribution. The losses of N from the ecosystem may further limit plant growth and ecosystem functioning.

  16. The complete nitrogen cycle of an N-saturated spruce forest ecosystem.

    Science.gov (United States)

    Kreutzer, K; Butterbach-Bahl, K; Rennenberg, H; Papen, H

    2009-09-01

    Long-term nitrogen deposition into forest ecosystems has turned many forests in Central Europe and North America from N-limited to N-saturated systems, with consequences for climate as well as air and groundwater quality. However, complete quantification of processes that convert the N deposited and contributed to ecosystem N cycling is scarce. In this study, we provide the first complete quantification of external and internal N fluxes in an old-growth spruce forest, the Höglwald, Bavaria, Germany, exposed to high chronic N deposition. In this forest, N cycling is dominated by high rates of mineralisation of soil organic matter, nitrification and immobilisation of ammonium and nitrate into microbial biomass. The amount of ammonium available is sufficient to cover the entire N demand of the spruce trees. The data demonstrate the existence of a highly dynamic internal N cycle within the soil, driven by growth and death of the microbial biomass, which turns over approximately seven times each year. Although input and output fluxes are of high environmental significance, they are low compared to the internal fluxes mediated by microbial activity.

  17. Synthesis of labeled compounds

    International Nuclear Information System (INIS)

    Whaley, T.W.

    1977-01-01

    Intermediate compounds labeled with 13 C included methane, sodium cyanide, methanol, ethanol, and acetonitrile. A new method for synthesizing 15 N-labeled 4-ethylsulfonyl-1-naphthalene-sulfonamide was developed. Studies were conducted on pathways to oleic-1- 13 C acid and a second pathway investigated was based on carbonation of 8-heptadecynylmagnesium bromide with CO 2 to prepare sterolic acid. Biosynthetic preparations included glucose- 13 C from starch isolated from tobacco leaves following photosynthetic incubation with 13 CO 2 and galactose- 13 C from galactosylglycerol- 13 C from kelp. Research on growth of organisms emphasized photosynthetic growth of algae in which all cellular carbon is labeled. Preliminary experiments were performed to optimize the growth of Escherichia coli on sodium acetate- 13 C

  18. Creating 13C- and 15N-enriched tree leaf litter for decomposition experiments

    Science.gov (United States)

    Szlavecz, K. A.; Pitz, S.; Chang, C.; Bernard, M.

    2013-12-01

    Labeling plant material with heavy isotopes of carbon and nitrogen can produce a traceable nutrient signal that can be followed into the different trophic levels and decomposer food web. We treated 60 tree saplings with 13C-enriched CO2 gas and 15N-enriched ammonium nitrate over a three-month period to create dually-labeled plant material for future decomposition experiments. The trees included both early (Red maple, Sweetgum, Tulip poplar) and late (American beech, White oak) successional deciduous tree species, and a conifer, White pine. We constructed a 2.4 m × 2.4 m × 2.4 m environmental chamber that was climate-controlled using an air conditioning system. An Arduino microcontroller interfaced with a Vaisala GMP343 CO2 probe maintained a CO2 concentration between 500-520 ppm by controlling a solenoid valve on the CO2 tank regulator. The trees were placed into the chamber in August 2012 and remained until senescence unless they were lost to death or disease. Ammonium nitrate was added twice, in September and October. Leaf samples were collected prior to the start of the experiment and after senescence, whereas root samples were collected only in December. Samples were dried, ground and analyzed using an isotope ratio mass spectrometer. American beech and White oak had 40% mortality, and 34% of tulip poplar trees were removed because of powdery mildew overgrowth or death. Most tulip poplar trees exhibited a second leaf out following senescence in late September. Nearly 1 kg of litter was produced with tulip poplar representing over half of the total mass. Levels of enrichment varied greatly by species. Beech (-14.2‰) and White oak (-4.8‰) had low levels of enrichment in comparison to early successional species such as Sweetgum (41.7‰) and Tulip poplar (30.7‰ [first leaf fall] and 238.0‰ [second leaf fall]). Leaf enrichment with 15N followed a similar pattern, though it was achieved at a higher level with δ15N values varying from 271.6‰ to 1354.2

  19. Production of 15N-enriched nitric acid (H15NO3

    Directory of Open Access Journals (Sweden)

    C. R. Sant Ana Filho

    2008-12-01

    Full Text Available Techniques that employ 15N have proved to be an important tool in many areas of the agronomic and biomedical sciences. Nevertheless, their use is limited by methodological difficulties and by the price of compounds in the international market. Nitric compounds (15NO3- have attracted the interest of researchers. However, these compounds are not currently produced in Brazil. Thus, in the present work H15NO3 was obtained from the oxidation of anhydrous 15NH3. The method we used differs from the industrial process in that the absorption tower is replaced with a polytetrafluoroethylene-lined, stainless-steel hydration reactor. The process output was evaluated based on the following parameters: reaction temperature; ratio of reagents; pressure and flow of 15NH3(g through the catalyst (Pt/Rh. The results showed that, at the best conditions (500 ºC; 50 % excess O2; 0.4 MPa; and 3.39 g.min-1 of 15NH3, a conversion percentage (N-15NH3 to N-15NO3- of 62.2 %, an overall nitrogen balance (N-15NH3 + N-15NO3- of 86.8 %, and purity higher than 99 % could be obtained.

  20. Propionyl-l-carnitine: Labelling in the N-methyl position with Carbon-11 and pharmacokinetic studies in rats

    International Nuclear Information System (INIS)

    Davenport, Raymond J.; Law, Marilyn P.; Pike, Victor W.; Osman, Safiye; Poole, Keith G.

    1995-01-01

    The prospective therapeutic, propionyl-l-carnitine, was labelled in the N-methyl position with the positron-emitter, carbon-11 (t (1(2)) = 20.4 min), with a view to studying its pharmacokinetics in humans using PET. Labelling was achieved by methylating nor-propionyl-l-carnitine hydrochloride with no-carrier-added [ 11 C]iodomethane (produced from cyclotron-produced [ 11 C]carbon dioxide) in ethanol in the presence of 1,2,2,6,6,-pentamethylpiperidine. HPLC of the reaction mixture on a strong cation exchange column provided high purity [N-methyl- 11 C]propionyl-l-carnitine in 62% radiochemical yield (decay-corrected from [ 11 C]iodomethane), ready for intravenous administration within 35 min from the end of radionuclide production. [N-methyl- 11 C]Propionyl-l-carnitine, given intravenously to rats, cleared rapidly from plasma. A slow uptake of radioactivity into myocardium and striated muscle was observed. In plasma, unchanged tracer represented 84% of the radioactivity at 2.5 min and 2.5% of the radioactivity at 60 min. In heart, unchanged tracer represented 18% of radioactivity at 2.5 min and 2.4% at 15 min. The remainder of radioactivity detected in plasma and heart was identified as [N-methyl- 11 C]l-carnitine and [N-methyl- 11 C]acetyl-l-carnitine

  1. 15N indicates an active N-cycling microbial community in low carbon, freshwater sediments.

    Science.gov (United States)

    Sheik, C.

    2017-12-01

    Earth's large lakes are unique aquatic ecosystems, but we know little of the microbial life driving sedimentary biogeochemical cycles and ultimately the isotopic record. In several of these large lakes, water column productivity is constrained by element limitation, such as phosphorus and iron, creating oligotrophic water column conditions that drive low organic matter content in sediments. Yet, these sediments are biogeochemically active and have been shown to have oxygen consumption rates akin to pelagic ocean sediments and complex sulfur cycling dynamics. Thus, large oligotrophic lakes provide unique and interesting biogeochemical contrast to highly productive freshwater and coastal marine systems. Using Lake Superior as our study site, we found microbial community structure followed patterns in bulk sediment carbon and nitrogen concentrations. These observed patterns were loosely driven by land proximity, as some stations are more coastal and have higher rates of sedimentation, allochthonous carbon inputs and productivity than pelagic sites. Interestingly, upper sediment carbon and nitrogen stable isotopes were quite different from water column. Sediment carbon and nitrogen isotopes correlated significantly with microbial community structure. However, 15N showed much stronger correlation than 13C, and became heavier with core depth. Coinciding with the increase in 15N values, we see evidence of both denitrification and anammox processes in 16S rRNA gene libraries and metagenome assembled genomes. Given that microorganisms prefer light isotopes and that these N-cycling processes both contribute to N2 production and efflux from the sediment, the increase in 15N with sediment depth suggests microbial turnover. Abundance of these genomes also varies with depth suggesting these novel microorganisms are partitioning into specific sediment geochemical zones. Additionally, several of these genomes contain genes involved in sulphur cycling, suggesting a dual

  2. Investigation of the influence of the feed quantity on the utilisation of synthetic lysine (α-15N-labelled) in broiler chickens

    International Nuclear Information System (INIS)

    Liebert, F.; Gebhardt, G.

    1982-01-01

    A total of 15 broiler chickens was fed with a diet of wheat/wheat gluten supplemented with lysine on three N intake levels (I: 1,500; II: 2,100; III: 3,000 mgN/LW/sub kg//sup 0.67/) between their 11. and 20. day of life and tested with regard to the characteristic data of N metabolisation (N balance experiment) and 15 N incorporation in selected tissues and the whole body of chickens. While N metabolisation did not show any differences of process, the results of 15 N incorporation indicated a little more favorable conditions of utilisation for synthetic lysine in III concerning the whole body and the liver. The level of feed intake must not be neglected as a quantity on the utilisation of synthetic lysine but all the problems connected cannot be explained as a whole by this parameter. For the restrictions of N intake effective in the N balance experiment no negative influence is to be expected with regard to the utilisation of synthetic lysine in comparison to ad libitum feeding. (author)

  3. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates.

    Science.gov (United States)

    Kleifeld, Oded; Doucet, Alain; Prudova, Anna; auf dem Keller, Ulrich; Gioia, Magda; Kizhakkedathu, Jayachandran N; Overall, Christopher M

    2011-09-22

    Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo-N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and

  4. Biological transfer and loss of 36Cl-labeled DDT in an old-field ecosystem

    International Nuclear Information System (INIS)

    Peterle, T.J.

    1979-01-01

    An enclosed 10-acre old-field plot treated in June 1969, with chlorine-36 labeled DDT was sampled each year from 1969 through 1974 to monitor the fate of the insecticide in the soil and biota. In order to provide data on compartmentalization of DDT in the vegetation, invertebrates and vertebrates inhabiting the plot, sampling was carried out to estimate both body burdens of DDT and biomass of populations. Another aspect of this study, the determination of rates of accumulation of residues by invertebrates and vertebrates, has been reported previously (Forsyth and Peterle 1973; Forsyth et al. 1975; Peterle 1975). This report describes (a) temporal patterns of DDT residues in soil and biota from 1969 through 1974 and (b) quantities of DDT held in the soil and biotic compartments of the ecosystem. Part II of the report is concerned with translocation and accumulation of 14 C-DDT

  5. Stable isotopic labeling-based quantitative targeted glycomics (i-QTaG).

    Science.gov (United States)

    Kim, Kyoung-Jin; Kim, Yoon-Woo; Kim, Yun-Gon; Park, Hae-Min; Jin, Jang Mi; Hwan Kim, Young; Yang, Yung-Hun; Kyu Lee, Jun; Chung, Junho; Lee, Sun-Gu; Saghatelian, Alan

    2015-01-01

    Mass spectrometry (MS) analysis combined with stable isotopic labeling is a promising method for the relative quantification of aberrant glycosylation in diseases and disorders. We developed a stable isotopic labeling-based quantitative targeted glycomics (i-QTaG) technique for the comparative and quantitative analysis of total N-glycans using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We established the analytical procedure with the chemical derivatizations (i.e., sialic acid neutralization and stable isotopic labeling) of N-glycans using a model glycoprotein (bovine fetuin). Moreover, the i-QTaG using MALDI-TOF MS was evaluated with various molar ratios (1:1, 1:2, 1:5) of (13) C6 /(12) C6 -2-aminobenzoic acid-labeled glycans from normal human serum. Finally, this method was applied to direct comparison of the total N-glycan profiles between normal human sera (n = 8) and prostate cancer patient sera (n = 17). The intensities of the N-glycan peaks from i-QTaG method showed a good linearity (R(2) > 0.99) with the amount of the bovine fetuin glycoproteins. The ratios of relative intensity between the isotopically 2-AA labeled N-glycans were close to the theoretical molar ratios (1:1, 1:2, 1:5). We also demonstrated that the up-regulation of the Lewis antigen (~82%) in sera from prostate cancer patients. In this proof-of-concept study, we demonstrated that the i-QTaG method, which enables to achieve a reliable comparative quantitation of total N-glycans via MALDI-TOF MS analysis, has the potential to diagnose and monitor alterations in glycosylation associated with disease states or biotherapeutics. © 2015 American Institute of Chemical Engineers.

  6. A totally magic cordial labeling of one-point union of n copies of a graph

    Directory of Open Access Journals (Sweden)

    P. Jeyanthi

    2014-01-01

    Full Text Available A graph \\(G\\ is said to have a totally magic cordial (TMC labeling with constant \\(C\\ if there exists a mapping \\(f: V(G\\cup E(G\\rightarrow \\left\\{0,1\\right\\}\\ such that \\(f(a + f(b + f(ab \\equiv C(\\mbox{mod 2}\\ for all \\(ab\\in E(G\\ and \\(\\left|n_f(0-n_f(1\\right|\\leq1\\, where \\(n_f(i\\ \\((i = 0, 1\\ is the sum of the number of vertices and edges with label \\(i\\. In this paper, we establish the totally magic cordial labeling of one-point union of \\(n\\-copies of cycles, complete graphs and wheels.

  7. Dynamics of the diazotroph Bacillus polymyxa in the rhizosphere of wheat (Triticum aestivum L.) after inoculation and its effect on uptake of 15N-labelled fertilizer

    International Nuclear Information System (INIS)

    Gouzou, L.; Cheneby, D.; Nicolardot, B.; Heulin, T.

    1995-01-01

    An experiment under glasshouse conditions with a sandy soil was conducted to evaluate the effect of the inoculation of wheat (Triticum aestivum L.) roots with Bacillus polymyxa on N uptake by plants and to investigate the effect of N fertilization on the dynamics of this strain. Different treatments were considered: (i) amended (100 kg N ha −1 ) or not with 15 N labelled ammonium nitrate; (ii) inoculated (2.5 10 7 spores per seed and 0.5 10 9 spores kg −1 soil) or not with B. polymyxa CF43. No promoting effect on wheat growth (dry yield) or N uptake was observed after inoculation under these experimental conditions; 62 per cent of the N fertilizer was assimilated by plants during the first 33 days. Inoculation had no effect on the quantity of soil adhering to the roots. Soluble organic C and inorganic N concentrations were higher in the soil adhering to the roots than in bulk soil. However, the nitrate concentration in soil adhering to the roots was influenced by inoculation at the beginning of plant growth, nitrate supply to the root system being delayed by its probable retention in the rhizosphere. Furthermore, total bacteria in roots, soil adhering to the roots and bulk soil was not affected by N fertilization. The number of B. polymyxa cells measured by an AB-ELISA method increased first in the bulk soil and later in the soil adhering to the roots after inoculation. Fertilization with N decreased the B. polymyxa population in adhering soil, competitive suppression of diazotrophs by non-fixing bacteria probably being induced by the presence of large amounts of nutrients in the rhizosphere when N was added. (author)

  8. High-efficiency astatination of antibodies using N-iodosuccinimide as the oxidising agent in labelling of N-succinimidyl 3-(trimethylstannyl)benzoate

    International Nuclear Information System (INIS)

    Lindegren, S.; Andersson, H.; Baeck, T.; Jacobsson, L.; Karlsson, B.; Skarnemark, G.

    2001-01-01

    Monoclonal antibodies C215, reactive with colorectal carcinomas, and MOv18, reactive with most of the ovarian carcinomas, were radiohalogenated with [ 211 At]astatine. The radiohalogen was conjugate coupled to antibodies via the intermediate labelling reagent N-succinimidyl-3-(trimethylstannyl)benzoate (m-MeATE) in a two-step, single-pot reaction. Optimisation of the labelling of the reagent was achieved using N-iodosuccinimide, NIS, as the oxidising agent. The yields ranged from 69-95% in the labelling of 0.1-1.0 nmole of the m-MeATE precursor. Subsequent conjugation to antibodies resulted in yields of 58±7%. In vitro binding to tumour cells showed that the immunoreactivity of both antibodies was retained after astatine labelling

  9. Efficiency of soil and fertilizer nitrogen in relation to variety and application time, using N-15 labelled fertilizer. Part of a coordinated programme on agricultural nitrogen residues with particular reference to their conservation as fertilizers and behaviour as potential pollutants

    International Nuclear Information System (INIS)

    Park, H.

    1979-12-01

    A series of experiments with flooded rice were carried out on 36 locations to study the influence of rice variety, fertilizer source, frequency of fertilizer application and soil conditions on the uptake of fertilizer N and grain yield. 15 N-labelled fertilizer was used in this study. The results show that (i) urea is a better source of N than ammonium sulphate on saline soils and also for the leading local rice variety (Milyang 15). The new variety Tongil utilized ammonium sulphate more efficiently; (ii) Fertilizer was more efficiently utilized on high organic matter soils; (iii) Varieties differed in fertilizer use efficiency; (iv) Hybrid Tongil lines gave higher grain yields than the local varieties, and made better use of fertilizer N, especially on saline soil, when applied at transplanting; (v) Sulphur-coated urea gave higher yield than urea on saline soils (27-39%), virgin soils (20%) and unmatured soils (10%)

  10. The Use of 32P and 15N to Estimate Fertilizer Efficiency in Oil Palm

    International Nuclear Information System (INIS)

    Sisworo, Elsje L; Sisworo, Widjang H; Havid-Rasjid; Haryanto; Syamsul-Rizal; Poeloengan, Z; Kusnu-Martoyo

    2004-01-01

    Oil palm has become an important commodity for Indonesia reaching an area of 2.6 million ha at the end of 1998. It is mostly cultivated in highly weathered acid soil usually Ultisols and Oxisols which are known for their low fertility, concerning the major nutrients like N and P. This study most conducted to search for the most active root-zone of oil palm and applied urea fertilizer at such soils to obtain high N-efficiency. Carrier free KH 2 32 PO 4 solution was used to determine the active root-zone of oil palm by applying 32 P around the plant in twenty holes. After the most active root-zone have been determined, urea in one, two and three splits were respectively applied at this zone. To estimate N-fertilizer efficiency of urea labelled 15 N Ammonium Sulphate was used by adding them at the same amount of 16 g 15 N plan -1 . This study showed that the most active root-zone was found at a 1.5 m distance from the plant-stem and at 5 cm soil depth. For urea the highest N-efficiency was obtained from applying it at two splits. The use of 32 P was able to distinguish several root zones: 1.5 m - 2.5 m from the plant-stem at a 5 cm and 15 cm soil depth. Urea placed at the most active root-zone, which was at a 1.5 m distance from the plant-stem and at a 5 cm depth in one, two, and three splits respectively showed difference N-efficiency. The highest N-efficiency of urea was obtained when applying it in two splits at the most active root-zone. (author)

  11. Acúmulo de nutrientes e destino do nitrogênio (15N aplicado em pomar jovem de laranjeira Nutrients accumulation and fate of nitrogen (15N in Young bearing orange trees

    Directory of Open Access Journals (Sweden)

    Rodrigo Marcelli Boaretto

    2007-01-01

    orchard, three plants were fertilized with 300 g per tree of N-[(15NH42SO 4] labeled with 15N to study the fate of N in the soil-orange tree system. Fruit yield and recovery of 15N by tree biomass were evaluated. The efficiency of fertilization, estimate by tree N absorption, varied from 20 to 27% of the total applied N. Fruits exported 35% of the N taken up from fertilizer. Furthermore, the highest fruit yield was attained with N rate of 400 g/tree.

  12. 18F-labelled N,N-dimethylamphetamine analogues for brain imaging studies

    International Nuclear Information System (INIS)

    Mathis, C.A.; Shulgin, A.T.; Yano, Y.; Sargent, T. III

    1986-01-01

    The radiochemical yields of nine N,N-dimethyl-2-(substituted phenyl)-isopropylamines (amphetamine analogues) were determined following reaction with [ 18 F]acetyl hypofluorite in a 0.1 M HCl solution at room temperature. The meta-dimethoxy substituted amphetamines gave the highest radiofluorination yields (24-32%, at EOB). Purification of the 18 F-labelled amphetamines was achieved in 10-20 min. 5- 18 F-2,4-Dimethoxy-N,N-dimethylamphetamine (5- 18 F-2,4-DNNA) was utilized to determine brain and lung uptake in rats. Positron emission tomography studies were conducted in a dog to determine the dynamic brain uptake and retention of this agent. The 5- 18 F-2,4-DNNA exhibited decreased initial uptake and more rapid loss of radioactivity in cerebral tissue compared to the iodinated homologue. (author)

  13. δ15N as a proxy for historic anthropogenic nitrogen loading in Charleston Harbor, SC, USA

    Science.gov (United States)

    Payne, T. N.; Andrus, C. F. T.

    2015-12-01

    Bivalve shell geochemistry can serve as a useful indicator of changes in coastal environments. There is increasing interest in developing paleoenvironmental proxies from mollusk shell organic components. Numerous studies have focused on how the δ15N obtained from bivalve tissues can be used to trace present-day wastewater input into estuaries. However, comparatively little attention has been paid to tracing the impact of anthropogenic nitrogen loading into estuaries over time. By measuring historic levels of δ15N in the organic fraction of oyster shells (Crassostrea virginica) from archaeological sites around Charleston Harbor and comparing those levels to the δ15N content of modern shells, it is possible to assess how nitrogen has fluctuated historically in the area. Whole-shell samples from the Late Archaic Period (~3000-4000 BP, Late Woodland Period (~1400-800 BP), 18th and 19th centuries, and modern controls were measured for %N and d15N. Evidence of increased anthropogenic input of N is expected to begin in the early historic period based on similar analysis in Chesapeake Bay. More ancient samples may give insight into baseline conditions prior to recent population growth and industrialization. This information could help understand how large-scale anthropogenic nitrogen loading has affected coastal ecosystems over time and guide future remediation. Furthermore, this project will help refine and improve this novel proxy of past environmental conditions.

  14. Assimilation of /sup 15/N-labelled urea nitrogen and ammonium nitrate nitrogen by plants in case of root and non-root fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Muravin, E A; Kozhemyachko, V A; Vernichenko, I V

    1974-01-01

    Assimilation of /sup 15/N labeled urea and ammonium nitrate in root and foliar application by spring wheat and barley has been studied during 1970-1973 period in a series of vegetative experiments at the Department of Agrochemistry, Timiryazev Agricultural Academy, and at D.N. Pryanishnikov Experimental Agrochemical Station. Additional fertilizer nitrogen applied at later ontogenesis stages (flowering and milky ripeness) is utilized mostly for protein synthesis in developing grains, thus leading to a significant increase in the relative grain protein content. A transfer of a part of nitrogen from the main portion of fertilizer at later stages of nitrition results, at the same time, in a lower yield. Nitrogen utilization degree of urea and ammonium nitrate, when introduced before sowing or at the flowering stage is similar but in the latter case, however, additional assimilation of soil nitrogen is lower. The assimilation rate of nitrogen in root application is the lower the later the fertilizer is applied. When ammonium nitrate is additionally applied as nutrition to barley at the milky ripeness stage, ammonia and nitrate nitrogen are assimilated at the same rate and to the same extent but ammonia nitrogen is more rapidly used for protein synthesis and the rate of its transfer to the developing grains is higher. The rate of nitrogen assimilation at plant is much higher in foliar than in root application. Wheat utilizes more urea nitrogen at the flowering stage when root application is used but at the milky ripeness stage foliar application is more effective.

  15. Labeling of antibodies with a /sup 67/Ga-phenolic aminocarboxylic acid chelate. Pt. 1. Chemistry and labeling technique

    Energy Technology Data Exchange (ETDEWEB)

    Schuhmacher, J.; Matys, R.; Hauser, H.; Maier-Borst, W.; Matzku, S.

    1986-11-01

    As a chelating agent for labeling antibodies (Abs) with metallic radionuclides, a propionic acid substituted ethylenediamine N, N'-di-((o-hydroxyphenyl) acetic acid) (P-EDDHA), which tighly complexes /sup 67/Ga, was synthetized. The /sup 67/Ga-P-EDDHA chelate was coupled in aqueous solution to IgG at a molar ratio of 1:1 via carbodiimide. The average coupling yield was 15%. A specific activity of 4 mCi/mg IgG could be obtained with commercially supplied /sup 67/Ga. In vitro stability was evaluated in human serum at 37/sup 0/C and showed a half-life of about 120 h for the release of /sup 67/Ga from the labeled Ab during the initial phase of incubation. This in vitro halflife is similar to that measured for /sup 111/In-DTPA labeled Abs. Because of the high stability of the /sup 67/Ga-P-EDDHA chelate, the in vivo formation of radioactive lebeled transferrin by transchelation, as described for /sup 111/In-DTPA labeled Abs, should, however, be reduced by this labeling technique.

  16. Grass species influence on plant N uptake - Determination of atmospheric N deposition to a semi-natural peat bog site using a 15N labelling approach

    Science.gov (United States)

    Hurkuck, Miriam; Brümmer, Christian; Spott, Oliver; Flessa, Heinz; Kutsch, Werner L.

    2014-05-01

    Large areas of natural peat bogs in Northwestern Germany have been converted to arable land and were subjected to draining and peat cutting in the past. The few protected peatland areas remaining are affected by high nitrogen (N) deposition. Our study site - a moderately drained raised bog - is surrounded by highly fertilized agricultural land and livestock production. In this study, we used a 15N pool dilution technique called 'Integrated Total Nitrogen Input' (ITNI) to quantify annual deposition of atmospheric N into biomonitoring pots over a two-year period. Since it considers direct N uptake by plants, it was expected to result in higher N input than conventional methods for determination of N deposition (e.g. micrometeorological approaches, bulk N samplers). Using Lolium multiflorum and Eriophorum vaginatum as monitor plants and low, medium and high levels of fertilization, we aimed to simulate increasing N deposition to planted pots and to allocate airborne N after its uptake by the soil-plant system in aboveground biomass, roots and soil. Increasing N fertilization was positively correlated with biomass production of Eriophorum vaginatum, whereas atmospheric plant N uptake decreased and highest airborne N input of 899.8 ± 67.4 µg N d-1 pot-1 was found for low N fertilization. In contrast, Lolium multiflorum showed a clear dependency of N supply on plant N uptake and was highest (688.7 ± 41.4 µg N d-1 pot-1) for highly fertilized vegetation pots. Our results suggest that grass species respond differently to increasing N input. While crop grasses such as Lolium multiflorum take up N according to N availability, species adopted to nutrient-limited conditions like Eriophorum vaginatum show N saturation effects with increasing N supply. Total airborne N input ranged from about 24 to 66 kg N ha-1 yr-1 dependent on the used indicator plant and the amount of added fertilizer. Parallel determination of atmospheric N deposition using a micrometeorological approach

  17. Bryophytes and Organic layers Control Uptake of Airborne Nitrogen in Low-N Environments

    Science.gov (United States)

    Bähring, Alexandra; Fichtner, Andreas; Friedrich, Uta; von Oheimb, Goddert; Härdtle, Werner

    2017-01-01

    The effects of atmospheric nitrogen (N) deposition on ecosystem functioning largely depend on the retention of N in different ecosystem compartments, but accumulation and partitioning processes have rarely been quantified in long-term field experiments. In the present study we analysed for the first time decadal-scale flows and allocation patterns of N in a heathland ecosystem that has been subject to airborne N inputs over decades. Using a long-term 15N tracer experiment, we quantified N retention and flows to and between ecosystem compartments (above-ground/below-ground vascular biomass, moss layer, soil horizons, leachate). After 9 years, about 60% of the added 15N-tracer remained in the N cycle of the ecosystem. The moss layer proved to be a crucial link between incoming N and its allocation to different ecosystem compartments (in terms of a short-term capture, but long-term release function). However, about 50% of the 15N captured and released by the moss layer was not compensated for by a corresponding increase in recovery rates in any other compartment, probably due to denitrification losses from the moss layer in the case of water saturation after rain events. The O-horizon proved to be the most important long-term sink for added 15N, as reflected by an increase in recovery rates from 18 to 40% within 8 years. Less than 2.1% of 15N were recovered in the podzol-B-horizon, suggesting that only negligible amounts of N were withdrawn from the N cycle of the ecosystem. Moreover, 15N recovery was low in the dwarf shrub above-ground biomass (account for cumulative effects of N additions into ecosystems. PMID:29375589

  18. Mineralization and volatilization of nitrogen from vinasse-15 N in the presence or absence of urea and sugar cane straw

    International Nuclear Information System (INIS)

    Silva, Vilma Maria; Colaco, Waldeciro; Encarnacao, Fernando Antonio Franco da; Cabezas, Waldo Alejandro Ruben Lara

    1999-01-01

    The mineralized and volatilized nitrogen derived from vinasse labelled with 15 N were determined in a laboratory experiment, using samples of two soils [a sandy Red-Yellow-Podzolic-PV and a clayey Latosol - LR (Oxisol)], collected in Piracicaba, SP, Brazil. The experiment consisted of four treatments: application of vinasse (V * ); vinasse with urea (V * +U); vinasse with sugar cane straw (V * +P); and vinasse with urea and sugar cane straw (V * +U+P). Vinasse, labelled with 15 N (V * ) was applied at a rate of 100 mg.kg -1 of N-vinasse. All treatments, were incubated for 7, 14, 21, 28 and 35 days. N-urea and sugar cane straw were incorporated in the soil at rates of 220 mg.kg -1 and 22 g.kg -1 , respectively. N H 4 + -N and NO 3 - -N concentrations, as a result of the vinasse addition, were affected by soil type. A larger availability of N H 4 + -N and NO 3 - -N derived from vinasse were observed, when urea was added. Sugar cane straw plus vinasse did not alter the concentrations of N H 4 + - N and NO 3 - - N derived from vinasse. Urea plus sugar cane straw did not affect N H 4 + -N concentrations, and affected the NO 3 - -N concentration in LR soil over time. Losses of vinasse-N, due to volatilization, increased with time for all treatments, and were larger for PV (14%) than for LR(5%); but such losses were similar in LR soil. (author)

  19. Saline irrigation water and its effect on N.use efficiency, growth and yield of Sorghum plant using 15N

    International Nuclear Information System (INIS)

    Abd El-Latteef, E.M.

    2010-01-01

    Series of pot experiments were conducted and randomly arranged under greenhouse conditions for evaluating the effect of irrigation with saline water (alternative source) in combination with different organic sources (amendments) i.e. leucaena plant residue (LU), Quail feces (QF) and chicken manure (ChM) added in different percentages against the mineral form (ammonium sulfate) either in ordinary or 15 N labeled (2 and 5% 15 N atom excess) forms, on sorghum growth and nutrients acquisition. Artificial saline water with different EC and SAR values was prepared at laboratory using computer program designed by the author with guiding of the designed Package named Artificial Saline Irrigation Water (ASIW) (Manual of Salinity Research Methods). In addition, proline acid was also sprayed (foliar) on leaves of sorghum plants at different concentrations. The experimental results indicated the positive effect of organic amendments, as compared to mineral fertilizer, and foliar application of proline acid on enhancement of plant growth and nutrient uptake. This phenomenon was pronounced under water salinity conditions. In this regard, increasing of water salinity levels induced reduction in plant growth as well as nutrients acquisition. Data of 14 N/ 15 N ratio analysis pointed out enhancement of N derived from mineral source as affected by organic amendments. At the same time, considerable amounts of N was derived from organic sources and utilized by plants. The superiority of organic sources on each others was fluctuated depending on interaction with water salinity levels and proline concentrations. In conclusion, organic additives and proline acid has an improvement effects especially under adverse condition of irrigation water salinity.

  20. Nitrogen limitation, 15N tracer retention, and growth response in intact and Bromus tectorum-invaded Artemisia tridentata ssp. wyomingensis communities

    Science.gov (United States)

    Witwicki, Dana L.; Doescher, Paul S.; Pyke, David A.; DeCrappeo, Nicole M.; Perakis, Steven S.

    2012-01-01

    Annual grass invasion into shrub-dominated ecosystems is associated with changes in nutrient cycling that may alter nitrogen (N) limitation and retention. Carbon (C) applications that reduce plant-available N have been suggested to give native perennial vegetation a competitive advantage over exotic annual grasses, but plant community and N retention responses to C addition remain poorly understood in these ecosystems. The main objectives of this study were to (1) evaluate the degree of N limitation of plant biomass in intact versus B. tectorum-invaded sagebrush communities, (2) determine if plant N limitation patterns are reflected in the strength of tracer 15N retention over two growing seasons, and (3) assess if the strength of plant N limitation predicts the efficacy of carbon additions intended to reduce soil N availability and plant growth. Labile C additions reduced biomass of exotic annual species; however, growth of native A. tridentata shrubs also declined. Exotic annual and native perennial plant communities had divergent responses to added N, with B. tectorum displaying greater ability to use added N to rapidly increase aboveground biomass, and native perennials increasing their tissue N concentration but showing little growth response. Few differences in N pools between the annual and native communities were detected. In contrast to expectations, however, more 15N was retained over two growing seasons in the invaded annual grass than in the native shrub community. Our data suggest that N cycling in converted exotic annual grasslands of the northern Intermountain West, USA, may retain N more strongly than previously thought.

  1. Efficient sortase-mediated N-terminal labeling of TEV protease cleaved recombinant proteins.

    Science.gov (United States)

    Sarpong, Kwabena; Bose, Ron

    2017-03-15

    A major challenge in attaching fluorophores or other handles to proteins is the availability of a site-specific labeling strategy that provides stoichiometric modification without compromising protein integrity. We developed a simple approach that combines TEV protease cleavage, sortase modification and affinity purification to N-terminally label proteins. To achieve stoichiometrically-labeled protein, we included a short affinity tag in the fluorophore-containing peptide for post-labeling purification of the modified protein. This strategy can be easily applied to any recombinant protein with a TEV site and we demonstrate this on Epidermal Growth Factor Receptor (EGFR) and Membrane Scaffold Protein (MSP) constructs. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. On the nitrogen isotope dilution analysis by means of the automated NA-5A type 15N-analyzer

    International Nuclear Information System (INIS)

    Faust, H.; Mueller, G.; Stoerl, H.J.

    1976-01-01

    The analytical conditions are investigated under which quantitative nitrogen determination through isotope dilution analysis is possible using the NA-5A type 15 N-analyzer. Calculation of the nitrogen quantity, estimation of the maximum error and the evaluation technique are considered in detail. Test analyses performed on ammonia, urea, and amino acid nitrogen model solutions labelled in different ways yielded good correspondence with preset values. This technique was applied to determine the nitrogen content of biomedical materials. A working scheme for direct quantitative determination of ammonia-N, urea-N, and total-N in urine is presented. (author)

  3. Measurement of the denitrification in soil monoliths from grassland and arable soil by means of 15N techniques

    International Nuclear Information System (INIS)

    Lippold, H.; Foerster, I.

    1980-01-01

    Losses of fertilizer nitrogen by denitrification were determined in soil monoliths from two sites (loess chernozem and clay ranker). The monoliths were isolated by driving plastic pipes into the plots, and fertilized with 15 N-labelled ammonium nitrate. Emission spectrometric techniques were applied to measure the N 2 and N 2 O quantities released in the isolated atmospheric layer above the monolith. The considerable losses, especially on grassland soils (up to a maximum of 30 kg N/ha), indicate the influence of rainfalls and mean temperature at the 5 dates of sampling (end of March to mid-October). (author)

  4. Interception of residual nitrate from a calcareous alluvial soil profile on the North China Plain by deep-rooted crops: A 15N tracer study

    International Nuclear Information System (INIS)

    Ju, X.T.; Gao, Q.; Christie, P.; Zhang, F.S.

    2007-01-01

    15 N-labeled nitrate was injected into different depths of an alluvial calcareous soil profile on the North China Plain. Subsequent movement of NO 3 - N and its recovery by deep-rooted maize (Zea mays L.) and shallow-rooted eggplant (Solanum melongena L.) were studied. Under conventional water and nutrient management the mean recoveries of 15 N-labeled nitrate from K 15 NO 3 injected at depths 15, 45, and 75 cm were 22.4, 13.8, and 7.8% by maize and 7.9, 4.9, and 2.7% by eggplant. The recovery rate by maize at each soil depth was significantly higher than by eggplant. The deeper the injection of nitrate the smaller the distance of its downward movement and this corresponded with the movement of soil water during crop growth. Deeper rooting crops with high root length density and high water consumption may therefore be grown to utilize high concentrations of residual nitrate in the subsoil from previous intensive cropping and to protect the environment. - Deep-rooted crops have a greater capacity than shallow-rooted crops to intercept residual nitrate from the subsoil and restrict its movement down to the shallow groundwater

  5. Ammonium assimilation in rice based on the occurrence of 15N and inhibition of glutamine synthetase activity

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, J. R.; Huber, D. M.; Lee, T. C.; Tsai, C. Y.

    1995-07-01

    Assimilation of ammonium (NH4) into free amino acids and total reduced nitrogen (N) was monitored in both roots and shoots of two-week old rice seedlings supplied with 5 mM 99% (15NH4)2SO4 in aerated hydroponic culture with or without a 2 h preincubation with 1 mM methionine sulfoximine (MSX) an inhibitor of glutamine synthetase (GS) activity. 15NH4 was not assimilated into amino acids when the GS/GOGAT (glutamate synthase) cycle was inhibited by MSX. Inhibition of glutamine synthetase (GS) activity in roots with MSX increased both the amount of NH4 and the abundance of 15N labeled NH4. In contrast, the amount of Gln and Glu, and their proportions as 15N, decreased in roots when GS activity was inhibited. This research confirms the importance of GS/GOGAT in NH4 assimilation in rice roots. 15N-labeled studies indicate that NH4 ions incorporated by roots of rice are transformed primarily into glutamine (Gin) and glutamic acid (Glu) before being converted to other amino acids through transamination. The formation of amino acids such as aspartic acid (Asp) and alanine (Ala) directly from free NH4 in roots also has been reported. Translocation of free NH4 to plant shoots, based on the concentration of free NH4 in xylem exudate, has been reported in tomato, although NH4 in shoots primarily originates from nitrate reduction in the shoot. Photorespiration also can contribute to the accumulation of NH4 in leaves. The GS/GOGAT cycle appears to be primarily responsible for the assimilation of exogenously supplied NH4 and NH4 derived from nitrate reduction in leaves, as well as NH4 derived from photorespiration. Genetic evidence cited to support this conclusion includes the lethal effect of photorespiratory conditions on plant mutants deficient in chloroplast-localized GS and GOGAT activities, and the rapid accumulation of free NH4 in GS-deficient mutants under photorespiratory conditions. The present study was initiated to quantify the in vivo amino acid synthesis in rice

  6. Ammonium assimilation in rice based on the occurrence of 15N and inhibition of glutamine synthetase activity

    International Nuclear Information System (INIS)

    Magalhaes, J.R.; Huber, D.M.; Lee, T.C.; Tsai, C.Y.

    1995-01-01

    Assimilation of ammonium (NH4) into free amino acids and total reduced nitrogen (N) was monitored in both roots and shoots of two-week old rice seedlings supplied with 5 mM 99% (15NH4)2SO4 in aerated hydroponic culture with or without a 2 h preincubation with 1 mM methionine sulfoximine (MSX) an inhibitor of glutamine synthetase (GS) activity. 15NH4 was not assimilated into amino acids when the GS/GOGAT (glutamate synthase) cycle was inhibited by MSX. Inhibition of glutamine synthetase (GS) activity in roots with MSX increased both the amount of NH4 and the abundance of 15N labeled NH4. In contrast, the amount of Gln and Glu, and their proportions as 15N, decreased in roots when GS activity was inhibited. This research confirms the importance of GS/GOGAT in NH4 assimilation in rice roots. 15N-labeled studies indicate that NH4 ions incorporated by roots of rice are transformed primarily into glutamine (Gin) and glutamic acid (Glu) before being converted to other amino acids through transamination. The formation of amino acids such as aspartic acid (Asp) and alanine (Ala) directly from free NH4 in roots also has been reported. Translocation of free NH4 to plant shoots, based on the concentration of free NH4 in xylem exudate, has been reported in tomato, although NH4 in shoots primarily originates from nitrate reduction in the shoot. Photorespiration also can contribute to the accumulation of NH4 in leaves. The GS/GOGAT cycle appears to be primarily responsible for the assimilation of exogenously supplied NH4 and NH4 derived from nitrate reduction in leaves, as well as NH4 derived from photorespiration. Genetic evidence cited to support this conclusion includes the lethal effect of photorespiratory conditions on plant mutants deficient in chloroplast-localized GS and GOGAT activities, and the rapid accumulation of free NH4 in GS-deficient mutants under photorespiratory conditions. The present study was initiated to quantify the in vivo amino acid synthesis in rice

  7. sup 15 N-ammonium test in clinical research. Der ( sup 15 N)-Ammoniumtest in der klinischen Forschung

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K; Metzner, C; Teichmann, B [Akademie der Wissenschaften der DDR, Leipzig (German Democratic Republic). Zentralinstitut fuer Isotopen- und Strahlenforschung Leipzig Univ. (German Democratic Republic). Bereich Medizin

    1989-01-01

    By use of the {sup 15}N-ammonium test the liver function is investigated under influence of hormonal contraceptives in women and in liver diseases in children. With the described noninvasive nonradioactive isotope test the ammonia detoxification capability and the urea synthesis capacity of the liver is determined by measuring of the {sup 15}N excretion in ammonia and urea in urine after oral administering of {sup 15}N-ammonium chloride. The {sup 15}N-ammonium test shows a significant influence of the hormonal contraceptives on the liver function and gives diagnostic evidence for liver diseases in children. (author).

  8. Determination of N-glycans by high performance liquid chromatography using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate as the glycosylamine labeling reagent.

    Science.gov (United States)

    Wu, Yike; Sha, Qiuyue; Du, Juan; Wang, Chang; Zhang, Liang; Liu, Bi-Feng; Lin, Yawei; Liu, Xin

    2018-02-02

    Robust, efficient identification and accurate quantification of N-glycans are of great significance in N-glycomics analysis. Here, a simple and rapid derivatization method, based on the combination of microwave-assisted deglycosylation and 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) labeling, was developed for the analysis of N-glycan by high performance liquid chromatography with fluorescence detection (HPLC-FLD). After optimizing various parameters affecting deglycosylation and derivatization by RNase B, the time for N-glycan labeling was shortened to 50 min with ∼10-fold enhancement in detection sensitivity comparing to conventional 2-aminobenzoic acid (2-AA) labeling method. Additionally, the method showed good linearity (correlation coefficients > 0.991) and reproducibility (RSD < 8.7%). These advantages of the proposed method were further validated by the analysis of complex samples, including fetuin and human serum. Investigation of serum N-glycome for preliminary diagnosis of human lung cancer was conducted, where significant changes of several N-glycans corresponding to core-fucosylated, mono- and disialylated glycans have been evidenced by a series of statistical analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Utilization of nitrogen-15 from wheat by growing poultry and laying hens

    International Nuclear Information System (INIS)

    Hennig, A.; Gruhn, K.; Jahreis, G.

    1976-01-01

    Nitrogen-15 offered to broiler chickens and laying hens has been tested. The test animals were given wheat (atom % 15 N-excess 20-25%) or 15 N-lysine in balanced rations. The results showed that different feedstuffs are transported selectively through the gastro-intestinal tract. Therefore the atom % 15 N-excess is higher in the contents of the crop, the proventriculus and the gizzard in comparison with the feed. Some hours after feeding the atom % 15 N-excess in the contents of the small intestine is lower than in other parts of the intestinal tract (3 to 12 hours after feeding). As to atom % 15 N, there is a significant correlation between the contents of the small intestine and the gut wall (r=0.99). As the amount of nitrogen in the contents of the small intestine does not change between 3 and 12 hours after feeding, the obvious dilution of 15 N does not allow conclusions to be made regarding the endogenic secretion. In the steady state, 24% of the 15 N of wheat lysine, 12% of the 15 N of wheat histidine and 9% of arginine were excreted in the faeces. Four days after the last feed intake of labelled wheat or lysine we found more 15 N in the carcass than in the total sum of eggs. Four days after the last feeding the albumen showed a higher labelling rate than urine. The 15 N of wheat was differently incorporated into thoracic, leg and heart muscles. We found a different half-life time for the individual muscle protein types in the following order: heart, leg, thoracic. Within the eight-day period no changes were observed in the level of labelling in the thoracic muscle. (author)

  10. Asymmetric synthesis including enzymatic catalysis of 11C and 13N labelled amino acids

    International Nuclear Information System (INIS)

    Langstrom, B.; Antonio, G.; Bjurling, P.; Fasth, K.J.; Westerberg, G.; Watanabe, Y.

    1993-01-01

    Use of asymmetric synthesis in production of 11 C- and 13 N-labelled amino acids has been shown to be a useful approach in order to prepare amino acids routinely for PET-studies. Such PET-studies are focused either on problems related to amino acid transport, protein synthesis rate or the turnover of neurotransmitters from amino acids. The paper discusses matters regarding synthetic strategies and techniques involving production of precursors, labelled intermediates and main reaction sequences. In synthesis using the short-lived β + -emitters like 11 C and 13 N with T 1/2 of 20.3 and 10.0 min respectively, many special aspects have to be considered. The use of enzymes as catalysts has shown to be a useful tool in such preparations. The design of the labelled amino acids especially considering the stereochemistry, the position of the label will be addressed since these points are important both with regard to the application of the labelled amino acids as well as to the synthesis itself. In this presentation of the synthesis of labelled amino acids these various aspects are discussed

  11. Resonances in the nuclear reactions 15N + 12C and 15N + 16O

    International Nuclear Information System (INIS)

    Monnehan, G.A.

    1987-06-01

    The reaction 12 C + 15 N have been studied at 15 N beam energies between 30 and 70 MeV. For each reaction, about twelve residual nuclei have been identified through the γ-ray detection method. Excitation functions were obtained for the fusion and peripheral channels. Resonances are seen in the channels containing at least one α particle at energies below 50 MeV. At higher energies, strong structures are observed in the direct reaction channels. The evolution of the fusion cross section is well reproduced by a model based on the statistical desexcitation of the compound nucleus if the discrete states of the residual nuclei are taken into account. The favourable observation of resonant phenomena in 15 N induced reactions can be understood in terms of a small number of channels open to the grazing wave. In the range 50 to 60 MeV, there is a strong coupling between the fusion and the direct reaction channels. The occurrence of resonances above E lab = 50 MeV in the peripheral channels is explained with the band crossing and effective barrier models. In the 15 N induced reactions, the absorption of the surface waves is weak [fr

  12. Earthworms and litter management contributions to ecosystem services in a tropical agroforestry system.

    Science.gov (United States)

    Fonte, Steven J; Six, Johan

    2010-06-01

    The development of sustainable agricultural systems depends in part upon improved management of non-crop species to enhance the overall functioning and provision of services by agroecosystems. To address this need, our research examined the role of earthworms and litter management on nutrient dynamics, soil organic matter (SOM) stabilization, and crop growth in the Quesungual agroforestry system of western Honduras. Field mesocosms were established with two earthworm treatments (0 vs. 8 Pontoscolex corethrurus individuals per mesocosm) and four litter quality treatments: (1) low-quality Zea mays, (2) high-quality Diphysa robinioides, (3) a mixture of low- and high-quality litters, and (4) a control with no organic residues applied. Mesocosms included a single Z. mays plant and additions of 15N-labeled inorganic nitrogen. At maize harvest, surface soils (0-15 cm) in the mesocosms were sampled to determine total and available P as well as the distribution of C, N, and 15N among different aggregate-associated SOM pools. Maize plants were divided into grain and non-grain components and analyzed for total P, N, and 15N. Earthworm additions improved soil structure as demonstrated by a 10% increase in mean weight diameter and higher C and N storage within large macro-aggregates (>2000 microm). A corresponding 17% increase in C contained in micro-aggregates within the macro-aggregates indicates that earthworms enhance the stabilization of SOM in these soils; however, this effect only occurred when organic residues were applied. Earthworms also decreased available P and total soil P, indicating that earthworms may facilitate the loss of labile P added to this system. Earthworms decreased the recovery of fertilizer-derived N in the soil but increased the uptake of 15N by maize by 7%. Litter treatments yielded minimal effects on soil properties and plant growth. Our results indicate that the application of litter inputs and proper management of earthworm populations can have

  13. Fractionation of Nitrogen Isotopes by Plants with Different Types of Mycorrhiza in Mountain Tundra Ecosystems

    Science.gov (United States)

    Buzin, Igor; Makarov, Mikhail; Maslov, Mikhail; Tiunov, Alexei

    2017-04-01

    We studied nitrogen concentration and nitrogen isotope composition in plants from four mountain tundra ecosystems in the Khibiny Mountains. The ecosystems consisted of a toposequence beginning with the shrub-lichen heath (SLH) on the ridge and upper slope, followed by the Betula nana dominated shrub heath (SH) on the middle slope, the cereal meadow (CM) on the lower slope and the sedge meadow (SM) at the bottom of the slope. The inorganic nitrogen concentration of the soils from the studied ecosystems were significantly different; the SLH soil was found to contain the minimum concentration of N-NH4+ and N-NO3- , while in the soils of the meadow ecosystems these concentrations were much higher. The concentration of nitrogen in leaves of the dominant plant species in all of the ecosystems is directly connected with the concentration of inorganic nitrogen in the soils, regardless of the plant's mycorrhizal symbiosis type. However, such a correlation is not apparent in the case of plant roots, especially for plant roots with ectomycorrhiza and ericoid mycorrhiza. The majority of plant species with these types of mycorrhiza in the SH and particularly in the CM were enriched in 15N in comparison with the SLH (such plants were not found within the SM). This could be due to several reasons: 1) the decreasing role of mycorrhiza in nitrogen consumption and therefore in the fractionation of isotopes in the relatively-N-enriched ecosystems; 2) the use of relatively-15N-enriched forms of nitrogen for plant nutrition in meadow ecosystems. This heavier nitrogen isotope composition in plant roots with ectomycorrhiza and ericoid mycorrhiza in ecosystems with available nitrogen enriched soils doesn't correspond to the classical idea of mycorrhiza decreasing participation in nitrogen plant nutrition. The analysis of the isotope composition of separate labile forms of nitrogen makes it possible to explain the phenomenon. Not all arbuscular mycorrhizal species within the sedge meadow

  14. Evaluation of the biological nitrogen fixation (N2) contribution in several forage legumes and the transfer of N to associated grasses

    International Nuclear Information System (INIS)

    Vargas, M.S.V.

    1991-12-01

    The objective of experiment 1 was to compare two different techniques for labelling the soil mineral nitrogen with 15 N, for studies to quantify the contribution of biological nitrogen fixation (BNF) to forage legumes using the 15 N isotope dilution technique. The two techniques for labelling the soil were: incorporation a 15 N labelled organic compost (slow release treatment), and split applications of 15 N labelled ammonium sulphate. The evaluation of the techniques was through the quantification of BNF in the Itaguai Hybrid of Centrosema using two non-Na- fixing control plants (P. maximum K K-16 and Sorghum bicolor). The objective of experiment 2 was to quantify the contribution of BNF to forage legumes and the transfer of fixed nitrogen to associated grasses in mixed swards again using the 15 N isotope dilution technique. This study was conducted on a red podzolic soil (Typic Hapludult), with 7 forage legumes and 3 grasses in monoculture, and 3 mixed swards of Brachiaria brizantha with the Centrosema hybrid, Galactia striata and Desmodium ovalifolium, respectively, with varying ratios of grass to legume (4:1 to 1:4). In order to quantify the BNF contributions to the legumes and the transfer of fixed N to the B. brizantha, the plots were amended 8 times with doses of 0.01 g 15 N m -2 of 15 N labelled ammonium sulphate (12.5 atom % 15 N) each 14 days, giving a total of 0.08 g 15 N m -2 of 15 N during the 97 days of the experiment. In monoculture the different forage legumes obtained the equivalent of between 43 and 100 kg N ha -1 from BNF. Stylosanthes guianensis showed the greatest contributions from BNF at 100 Kg N ha -1 . In mixed swards with Brachiaria brizantha the proportion of N derived from BNF in the three legumes studied (Centrosema hybrid, G. striata and D. ovalifolium) was significantly greater than when they were grown in monoculture. (author). 197 refs, 9 figs, 19 tabs

  15. Synthesis of fertilizers nitrogen and 15N-enriched. Pt. I. Production of enriched 15N-anhydrous ammonia

    International Nuclear Information System (INIS)

    Bendassolli, J.A.; Mortatti, J.; Trivelin, P.C.O.; Victoria, R.L.

    1988-01-01

    The results of 15 N-anhydrous ammonia production through reaction between 15 N-enriched ammonium sulphate and sodium hidroxide are reported. Influence of the reaction temperature, carrier gas flow, reaction time and mass of ammonium sulphate on the production of anhydrous ammonia were studied. Analyses for the cost of production of 5% atoms in 15 N-enriched anhydrous ammonia were made. (M.A.C.) [pt

  16. Bryophytes and Organic layers Control Uptake of Airborne Nitrogen in Low-N Environments

    Directory of Open Access Journals (Sweden)

    Alexandra Bähring

    2017-12-01

    Full Text Available The effects of atmospheric nitrogen (N deposition on ecosystem functioning largely depend on the retention of N in different ecosystem compartments, but accumulation and partitioning processes have rarely been quantified in long-term field experiments. In the present study we analysed for the first time decadal-scale flows and allocation patterns of N in a heathland ecosystem that has been subject to airborne N inputs over decades. Using a long-term 15N tracer experiment, we quantified N retention and flows to and between ecosystem compartments (above-ground/below-ground vascular biomass, moss layer, soil horizons, leachate. After 9 years, about 60% of the added 15N-tracer remained in the N cycle of the ecosystem. The moss layer proved to be a crucial link between incoming N and its allocation to different ecosystem compartments (in terms of a short-term capture, but long-term release function. However, about 50% of the 15N captured and released by the moss layer was not compensated for by a corresponding increase in recovery rates in any other compartment, probably due to denitrification losses from the moss layer in the case of water saturation after rain events. The O-horizon proved to be the most important long-term sink for added 15N, as reflected by an increase in recovery rates from 18 to 40% within 8 years. Less than 2.1% of 15N were recovered in the podzol-B-horizon, suggesting that only negligible amounts of N were withdrawn from the N cycle of the ecosystem. Moreover, 15N recovery was low in the dwarf shrub above-ground biomass (<3.9% after 9 years and in the leachate (about 0.03% within 1 year, indicating still conservative N cycles of the ecosystem, even after decades of N inputs beyond critical load thresholds. The continuous accumulation of reactive forms of airborne N suggests that critical load-estimates need to account for cumulative effects of N additions into ecosystems.

  17. Inhibition of the coated vesicle proton pump and labeling of a 17,000-dalton polypeptide by N,N'-dicyclohexylcarbodiimide

    International Nuclear Information System (INIS)

    Arai, H.; Berne, M.; Forgac, M.

    1987-01-01

    N,N'-Dicyclohexylcarbodiimide (DCCD) inhibits 100% of proton transport and 80-85% of (Mg2+)-ATPase activity in clathrin-coated vesicles. Half-maximum inhibition of proton transport is observed at 10 microM DCCD after 30 min. Although treatment of the coated vesicle (H+)-ATPase with DCCD has no effect on ATP hydrolysis in the detergent-solubilized state, sensitivity of proton transport and ATPase activity to DCCD is restored following reconstitution into phospholipid vesicles. In addition, treatment of the detergent-solubilized enzyme with DCCD followed by reconstitution gives a preparation that is blocked in both proton transport and ATP hydrolysis. These results suggest that although the coated vesicle (H+)-ATPase can react with DCCD in either a membrane-bound or detergent-solubilized state, inhibition of ATPase activity is only manifested when the pump is present in sealed membrane vesicles. To identify the subunit responsible for inhibition of the coated vesicle (H+)-ATPase by DCCD, we have labeled the partially purified enzyme with [ 14 C]DCCD. A single polypeptide of molecular weight 17,000 is labeled. The extremely hydrophobic nature of this polypeptide is indicated by its extraction with chloroform:methanol. The 17,000-dalton protein can be labeled to a maximum stoichiometry of 0.99 mol of DCCD/mol of protein with 100% inhibition of proton transport occurring at a stoichiometry of 0.15-0.20 mol of DCCD/mol of protein. Amino acid analysis of the chloroform:methanol extracted 17,000-dalton polypeptide reveals a high percentage of nonpolar amino acids. The similarity in properties of this protein and the DCCD-binding subunit of the coupling factor (H+)-ATPases suggests that the 17,000-dalton polypeptide may function as part of a proton channel in the coated vesicle proton pump

  18. Nuclear spin-lattice relaxation in nitroxide spin-label EPR.

    Science.gov (United States)

    Marsh, Derek

    2016-11-01

    Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T 1 -exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows that the definition of nitrogen nuclear relaxation rate W n commonly used in the CW-EPR literature for 14 N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14 N spin-lattice relaxation rate, b=W n /(2W e ), preserves the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14 N-nitroxyl spin labels do not accord with conventional analysis of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14 N-relaxation: T 1 n =1/W n . Results are compared and contrasted with those for the two-level 15 N-nitroxide system. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The impact of Great Cormorants on biogenic pollution of land ecosystems: Stable isotope signatures in small mammals

    International Nuclear Information System (INIS)

    Balčiauskas, Linas; Skipitytė, Raminta; Jasiulionis, Marius; Trakimas, Giedrius; Balčiauskienė, Laima; Remeikis, Vidmantas

    2016-01-01

    Studying the isotopic composition of the hair of two rodent species trapped in the territories of Great Cormorant colonies, we aimed to show that Great Cormorants transfer biogens from aquatic ecosystems to terrestrial ecosystems, and that these substances reach small mammals through the trophic cascade, thus influencing the nutrient balance in the terrestrial ecosystem. Analysis of δ"1"3C and δ"1"5N was performed on two dominant species of small mammals, Apodemus flavicollis and Myodes glareolus, inhabiting the territories of the colonies. For both species, the values of δ"1"3C and δ"1"5N were higher in the animals trapped in the territories of the colonies than those in control territories. In the hair of A. flavicollis and M. glareolus, the highest values of δ"1"5N (16.31 ± 3.01‰ and 17.86 ± 2.76‰, respectively) were determined in those animals trapped in the biggest Great Cormorant colony. δ"1"5N values were age dependent, highest in adult A. flavicollis and M. glareolus and lowest in juvenile animals. For δ"1"3C values, age-dependent differences were not registered. δ"1"5N values in both small mammal species from the biggest Great Cormorant colony show direct dependence on the intensity of influence. Biogenic pollution is at its strongest in the territories of the colonies with nests, significantly diminishing in the ecotones of the colonies and further in the control zones, where the influence of birds is negligible. Thus, Great Cormorant colonies alter ecosystem functioning by enrichment with biogens, with stable isotope values in small mammals significantly higher in the affected territories. - Highlights: • Cormorants transport nutrients from water to land ecosystems and pollute biogenically. • We studied stable isotope composition of small mammal hair in 3 cormorant colonies. • δ"1"3C and δ"1"5N were measured using elemental analyzer–isotope ratio mass spectrometer. • δ"1"3C and δ"1"5N values were higher in rodents inhabiting

  20. The impact of Great Cormorants on biogenic pollution of land ecosystems: Stable isotope signatures in small mammals

    Energy Technology Data Exchange (ETDEWEB)

    Balčiauskas, Linas, E-mail: linasbal@ekoi.lt [Nature Research Centre, Akademijos 2, LT-08412 Vilnius (Lithuania); Skipitytė, Raminta, E-mail: raminta.skipityte@ftmc.lt [Nature Research Centre, Akademijos 2, LT-08412 Vilnius (Lithuania); Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius (Lithuania); Jasiulionis, Marius, E-mail: mjasiulionis@ekoi.lt [Nature Research Centre, Akademijos 2, LT-08412 Vilnius (Lithuania); Trakimas, Giedrius, E-mail: giedrius.trakimas@gf.vu.lt [Center for Ecology and Environmental Research, Vilnius University, Vilnius (Lithuania); Institute of Life Sciences and Technology, Daugavpils University, Parades Str. 1a, Daugavpils, LV-5401 (Latvia); Balčiauskienė, Laima, E-mail: laiba@ekoi.lt [Nature Research Centre, Akademijos 2, LT-08412 Vilnius (Lithuania); Remeikis, Vidmantas, E-mail: vidrem@fi.lt [Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius (Lithuania)

    2016-09-15

    Studying the isotopic composition of the hair of two rodent species trapped in the territories of Great Cormorant colonies, we aimed to show that Great Cormorants transfer biogens from aquatic ecosystems to terrestrial ecosystems, and that these substances reach small mammals through the trophic cascade, thus influencing the nutrient balance in the terrestrial ecosystem. Analysis of δ{sup 13}C and δ{sup 15}N was performed on two dominant species of small mammals, Apodemus flavicollis and Myodes glareolus, inhabiting the territories of the colonies. For both species, the values of δ{sup 13}C and δ{sup 15}N were higher in the animals trapped in the territories of the colonies than those in control territories. In the hair of A. flavicollis and M. glareolus, the highest values of δ{sup 15}N (16.31 ± 3.01‰ and 17.86 ± 2.76‰, respectively) were determined in those animals trapped in the biggest Great Cormorant colony. δ{sup 15}N values were age dependent, highest in adult A. flavicollis and M. glareolus and lowest in juvenile animals. For δ{sup 13}C values, age-dependent differences were not registered. δ{sup 15}N values in both small mammal species from the biggest Great Cormorant colony show direct dependence on the intensity of influence. Biogenic pollution is at its strongest in the territories of the colonies with nests, significantly diminishing in the ecotones of the colonies and further in the control zones, where the influence of birds is negligible. Thus, Great Cormorant colonies alter ecosystem functioning by enrichment with biogens, with stable isotope values in small mammals significantly higher in the affected territories. - Highlights: • Cormorants transport nutrients from water to land ecosystems and pollute biogenically. • We studied stable isotope composition of small mammal hair in 3 cormorant colonies. • δ{sup 13}C and δ{sup 15}N were measured using elemental analyzer–isotope ratio mass spectrometer. • δ{sup 13}C and

  1. N-15 analysis by emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-12-31

    The stable isotope of nitrogen, N-15, has become widely used as tracer in agriculture, medicine and biology research. The film gives an overview of the sample preparation and analytical procedures followed in the analysis of the nitrogen isotopic composition (14N/15N ratio) by optical emission spectrometry at the Seibersdorf Laboratory. The subsampling of plant material and the several steps of chemical pretreatment such as Kjeldahl digestion, distillation, titration and adjustment of the proper N concentration in the extract are demonstrated. The preparation of the discharge tubes is shown in detail. Final measurement of the 14N/15N ratio is carried out with the NOI-5 and JASCO emission spectrometers

  2. Emission spectroscopic 15N analysis 1985

    International Nuclear Information System (INIS)

    Meier, G.

    1986-01-01

    The state of the art of emission spectroscopic 15 N analysis is demonstrated taking the NOI-6e 15 N analyzer as an example. The analyzer is equipped with a microcomputer to ensure a high operational comfort, computer control, and both data acquisition and data processing. In small amounts of nitrogen-containing substances (10 to 50 μg N 2 ) the 15 N abundance can be very quickly determined in standard discharge tubes or in aqueous ammonium salt solutions with a standard deviation less than 0.6 percent

  3. Structural analysis of N-glycans by the glycan-labeling method using 3-aminoquinoline-based liquid matrix in negative-ion MALDI-MS.

    Science.gov (United States)

    Nishikaze, Takashi; Kaneshiro, Kaoru; Kawabata, Shin-ichirou; Tanaka, Koichi

    2012-11-06

    Negative-ion fragmentation of underivatized N-glycans has been proven to be more informative than positive-ion fragmentation. Fluorescent labeling via reductive amination is often employed for glycan analysis, but little is known about the influence of the labeling group on negative-ion fragmentation. We previously demonstrated that the on-target glycan-labeling method using 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid (3AQ/CHCA) liquid matrix enables highly sensitive, rapid, and quantitative N-glycan profiling analysis. The current study investigates the suitability of 3AQ-labeled N-glycans for structural analysis based on negative-ion collision-induced dissociation (CID) spectra. 3AQ-labeled N-glycans exhibited simple and informative CID spectra similar to those of underivatized N-glycans, with product ions due to cross-ring cleavages of the chitobiose core and ions specific to two antennae (D and E ions). The interpretation of diagnostic fragment ions suggested for underivatized N-glycans could be directly applied to the 3AQ-labeled N-glycans. However, fluorescently labeled N-glycans by conventional reductive amination, such as 2-aminobenzamide (2AB)- and 2-pyrydilamine (2PA)-labeled N-glycans, exhibited complicated CID spectra consisting of numerous signals formed by dehydration and multiple cleavages. The complicated spectra of 2AB- and 2PA-labeled N-glycans was found to be due to their open reducing-terminal N-acetylglucosamine (GlcNAc) ring, rather than structural differences in the labeling group in the N-glycan derivative. Finally, as an example, the on-target 3AQ labeling method followed by negative-ion CID was applied to structurally analyze neutral N-glycans released from human epidermal growth factor receptor type 2 (HER2) protein. The glycan-labeling method using 3AQ-based liquid matrix should facilitate highly sensitive quantitative and qualitative analyses of glycans.

  4. Biosynthesis and characterization of ¹⁵N₆-labeled phomopsin A, a lupin associated mycotoxin produced by Diaporthe toxica.

    Science.gov (United States)

    Schloß, Svenja; Wedell, Ines; Koch, Matthias; Rohn, Sascha; Maul, Ronald

    2015-06-15

    The hepatotoxin phomopsin A (PHO-A), a secondary metabolite mainly produced by the fungus Diaporthe toxica, occurs predominantly on sweet lupins. Along with the growing interest in sweet lupins for food and feed commodities, concerns have been raised about fungal infestations, and consequently, about the determination of PHO-A. High performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) represents the most suitable analytical technique for sensitive and selective detection of mycotoxins including PHO-A. However, isotopic labeled substances are needed as internal standards for a reliable and convenient quantification. As no isotope standard for PHO-A is currently available, a biosynthesis of fully (15)N6-labeled PHO-A was established by cultivation of D. toxica on defined media containing Na(15)NO3 and (15)N-labeled yeast extract as the only nitrogen sources. The identity of (15)N6-PHO-A was confirmed by high resolution mass spectrometry. The new (15)N6-labeled standard will facilitate the method development for PHO-A including a more accurate quantification by LC-MS/MS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Nitrogen ligation to manganese in the photosynthetic oxygen-evolving complex: Continuous-wave and pulsed EPR studies of Photosystem II particles containing 14N or 15N

    International Nuclear Information System (INIS)

    DeRose, V.J.; Yachandra, V.K.; McDermott, A.E.; Britt, R.D.; Sauer, K.; Klein, M.P.

    1991-01-01

    The possibility of nitrogen ligation to the Mn in the oxygen-evolving complex from photosystem II was investigated with electron paramagnetic resonance (EPR) and electron spin echo envelope modulation (ESEEM) spectroscopies using 14 N- and 15 N-labeled preparations. Oxygen-evolving preparations were isolated from a thermophilic cyanobacterium, Synechococcus sp., grown on a medium containing either 14 NO 3 - or 15 NO - 3 as the sole source of nitrogen. The substructure on the multiline EPR signal, which arises from Mn in the S 2 state of the enzyme, was measured with continuous-wave EPR. No changes were detected in the substructure peak positions upon substitution of 15 N for 14 N, indicating that this substructure is not due to superhyperfine coupling from nitrogen ligands. To detect potential nitrogen ligands with superhyperfine couplings of lesser magnitude than could be observed with conventional EPR methods, electron spin-echo envelope modulation experiments were also performed on the multiline EPR signal. The Fourier transform of the light-minus-dark time domain ESEEM data shows a peak at 4.8 MHz in 14 N samples which is absent upon substitution with 15 N. This gives unambiguous evidence for weak hyperfine coupling of nitrogen to the Mn of the oxygen-evolving complex. Possible origins of this nitrogen interaction are discussed

  6. Isotope labeling for NMR studies of macromolecular structure and interactions

    International Nuclear Information System (INIS)

    Wright, P.E.

    1994-01-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform 13 C, 15 N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific 13 C and 15 N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions

  7. Isotope labeling for NMR studies of macromolecular structure and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.E. [Scripps Research Institute, La Jolla, CA (United States)

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  8. N-[3H]acetyl-labeling, a convenient method for radiolabeling of glycosaminoglycans

    International Nuclear Information System (INIS)

    Hook, M.; Riesenfeld, J.; Lindahl, U.

    1982-01-01

    A method for the introduction of N-[ 3 H]acetyl groups into glycosaminoglycans is described. The procedure is based on [ 3 H]acetylation of N-unsubstituted hexosamine residues by treating the polysaccharides with [ 3 H]acetic anhydride. Preparations of heparin and heparin sulfate were found to contain significant numbers of N-unsubstituted hexosamine residues, as isolates. In contrast, such units could not be detected in chondroitin sulfate, dermatan sulfate, or hyaluronic acid. These polysaccharides were therefore subjected to partial N-deacetylation by reaction with hydrazine in the presence of hydrazine sulfate. After treatment with [ 3 H]acetic anhydride, the specific activities of the resulting labeled polysaccharide preparations ranged between 0.1 X 10 6 and 0.6 X 10 6 cpm 3 H/μg of uronic acid. The 3 H-labeled polysaccharide preparations did not differ significantly from the corresponding unlabeled starting materials with regard to polyanion properties (chromatography on DEAE-cellulose) or polymer chain size (gel chromatography). Further, the radiolabeled polysaccharide derivatives were susceptible to specific enzymatic degradation (chondroitinase ABC and mammalian heparitinase) and retained their ability to interact specifically with certain proteins - for example, [ 3 H]heparin with antithrombin [ 3 H]hyaluronic acid oligosaccharides with chondroitin sulfate proteoglycan. These findings indicate that the labeling procedures did not induce any major structural derangement of the polysaccharide molecules. The method developed should be useful in providing labeled glycosaminoglycans for metabolic and enzymatic experiments as well as for studies on the interacion between glycosaminoglycans and other bilogical macromolecules

  9. Relationships between depth and δ15N of Arctic benthos vary among regions and trophic functional groups

    Science.gov (United States)

    Stasko, Ashley D.; Bluhm, Bodil A.; Reist, James D.; Swanson, Heidi; Power, Michael

    2018-05-01

    Stable isotope ratios of nitrogen (δ15N) of benthic primary consumers are often significantly related to water depth. This relationship is commonly attributed to preferential uptake of 14N from sinking particulate organic matter (POM) by microbes, and suggests that relationships between δ15N and water depth may be affected by local POM sources and flux dynamics. We examined the relationships between δ15N and water depth (20-500 m) for six trophic functional groups using a mixed effects modelling approach, and compared relationships between two contiguous Arctic marine ecosystems with different POM sources and sinking export dynamics: the Canadian Beaufort Sea and Amundsen Gulf. We demonstrate for the first time in the Arctic that δ15N values of mobile epifaunal carnivores increased as a function of depth when considered separately from benthopelagic and infaunal carnivores, which contrarily did not exhibit increasing δ15N with depth. The δ15N of suspension/filter feeders, infaunal deposit feeders and bulk sediment also increased with water depth, and the slopes of the relationships were steeper in the Amundsen Gulf than in the Beaufort Sea. We propose that regional differences in slopes reflect differences in POM sources exported to the benthos. In the Beaufort Sea, terrestrial POM discharged from the Mackenzie River quantitatively dominates the sedimentary organic matter across the continental shelf and slope, dampening change in δ15N of benthic POM with depth. In the Amundsen Gulf, we attribute a faster rate of change in δ15N of POM with increasing depth to larger contributions of marine-derived POM to the benthic sedimentary pool, which had likely undergone extensive biological transformation in the productive offshore pelagic zone. Differences in POM input regimes among regions should be considered when comparing food webs using stable isotopes, as such differences may impact the rate at which consumer δ15N changes with depth.

  10. Photoaffinity labeling of [3H]flunitrazepam- and [3H]Ro15-4513-bound pellets in rat cerebral cortex and cerebellum

    International Nuclear Information System (INIS)

    Chiu, T.H.; Yu, Onnfoh; Rosenberg, H.C.

    1989-01-01

    Irreversible incorporation of [ 3 H]flunitrazepam and [ 3 H]Ro15-4513 into GABA/benzodiazepine receptor subunits was studied by UV/irradiation using ligand-bound membrane pellets from rat cerebral cortical and cerebellar synaptic membranes. Specific incorporation for [ 3 H]flunitrazepam was greater in the pellet than in the suspension. The incorporation was identical for [ 3 H]Ro15-4513 in both pellet and suspension. With the ligand-bound pellets, 50% of the available binding sites were photolabeled by both ligands in cortex and cerebellum. SDS polyacrylamide gel electrophoresis and fluorography of [ 3 H]flunitrazepam photo-labeled receptor revealed the same number of major sites in both brain regions. In contrast, [ 3 H]Ro15-4513 appears to label fewer sites in cortex and cerebellum. Photoaffinity labeling with [ 3 H]flunitrazepam in ligand-bound membrane pellet provides a more selective and reliable method for studying the subunit structure of GABA/benzodiazepine receptor complex

  11. Study of a case of essential hypoproteinaemia using the isotopes {sup 131}I and {sup 15}N; Etude a l'aide des isotopes {sup 131}I et {sup 15}N d'un cas d'hypoproteinemie essentielle

    Energy Technology Data Exchange (ETDEWEB)

    Dubert, A; Coursaget, J; Fallot, P; Royer, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Hopital des Enfants Malades, 75 - Paris (France)

    1959-07-01

    Hypoproteinaemia both human and experimental has been studied with the help of nuclear labelling. A comparative study has been made of the fate of serum proteins labelled by an endogenous path after administration of nitrogen-15 glycine and also of serum albumin labelled by exogenous path using iodine-131. We have determined the biological period of the serum albumin and serum globulins and also the magnitude of the vascular and extravascular pools of serum albumin. In this way it has been possible to measure the speed of replacement of plasma proteins. A presentation of results taken from both clinical observation and experiment leads to a discussion on the pathogenic mechanism of hypoproteinaemia. (author) [French] Les hypoproteinemies humaine et experimentale ont ete explorees a l'aide d'indicateurs nucleaires. Une etude comparative du devenir des proteines seriques marquees par voie endogene, apres administration de glycocolle-{sup 15}N et de l'albumine serique marquee par voie exogene a l'iode-131 a ete realisee. On a determine la periode biologique de la serumalbumine et des globulines seriques ainsi que la grandeur des 'pools' vasculaire et extravasculaire de la serumalbumine. Il a ete ainsi possible d'evaluer la vitesse de renouvellement des proteines plasmatiques. La confrontation des resultats tires de l'observation clinique et de l'experimentation conduit a une discussion sur le mecanisme pathogenique de l'hypoproteinemie. (auteur)

  12. 15N studies on the in-vivo assay of nitrate reductase in leaves

    International Nuclear Information System (INIS)

    Yoneyama, Tadakatsu

    1981-01-01

    The reduction of nitrate and nitrite in the leaf disks of seven di- and two mono-cotyledonous species under the in-vivo assay conditions of nitrate reductase was studied using N-15 labeled substrates. The significant reduction of both nitrate and nitrite into ammonia and amino acids was detected in the atmosphere of air. In the atmosphere of N 2 gas, anaerobic incubation enhanced the accumulation of nitrite, but the subsequent reduction to the basic nitrogen compounds was from 40 to 180 % of the aerobic rate. The present examination indicated that the in-vivo assay of nitrate reductase under aerobic condition may give greatly underestimated results due to nitrite reduction, and that the exclusion of oxygen from the in-vivo assay mixture is desirable. The addition of n- propanol may be desirable for the assay under aerobic condition. Significant difference was not observed in the reduction of nitrate supplied as sodium and potassium salts on the nitrite formation and on the incorporation of nitrate-N into basic fractions. The N-15 experiment on the dark assimilation of nitrate, nitrite and ammonia into amino acids in wheat leaves showed that these three nitrogen sources were assimilated through the same route, and that the glutamine synthetase/glutamate synthetase pathway was the main route. By anaerobic treatment, the incorporation of nitrogen into alanine and serine was relatively high. (Kako, I.)

  13. Constraints on oceanic N balance/imbalance from sedimentary 15N records

    Directory of Open Access Journals (Sweden)

    M. A. Altabet

    2007-01-01

    Full Text Available According to current best estimates, the modern ocean's N cycle is in severe deficit. N isotope budgeting provides an independent geochemical constraint in this regard as well as the only means for past reconstruction. Overall, it is the relative proportion of N2 fixation consumed by water column denitrification that sets average oceanic δ15N under steady-state conditions. Several factors (conversion of organic N to N2, Rayleigh closed and open system effects likely reduce the effective fractionation factor (ε for water column denitrification to about half the inherent microbial value for εden. If so, the average oceanic δ15N of ~5‰ is consistent with a canonical contribution from water column denitrification of 50% of the source flux from N2 fixation. If an imbalance in oceanic N sources and sinks changes this proportion then a transient in average oceanic δ15N would occur. Using a simple model, changing water column denitrification by ±30% or N2 fixation by ±15% produces detectable (>1‰ changes in average oceanic δ15N over one residence time period or more with corresponding changes in oceanic N inventory. Changing sedimentary denitrification produces no change in δ15N but does change N inventory. Sediment δ15N records from sites thought to be sensitive to oceanic average δ15N all show no detectible change over the last 3 kyr or so implying a balanced marine N budget over the latest Holocene. A mismatch in time scales is the most likely meaningful interpretation of the apparent conflict with modern flux estimates. Decadal to centennial scale oscillations between net N deficit and net surplus may occur but on the N residence timescale of several thousand years, net balance is achieved in sum. However, sediment δ15N records from the literature covering the period since the last glacial maximum show excursions of up to several ‰ that are consistent with sustained N deficit during the deglaciation followed by readjustment

  14. effect of irrigation with sewage wastewater on nitrogen uptake, translocation and orange fruit quality under el-gabal el-asfar condition: the use of 15N-labelled fertilizer

    International Nuclear Information System (INIS)

    Hussien, M.E.H.

    2008-01-01

    The uptake and translocation of nitrogen from sewage water and mineral fertilizer by one year old Navel orange transplants was investigated at a greenhouse pot experiment during (2005 and 2006) seasons. An isotope-aided study using 15 N-labelled ammonium sulfate was applied around the stem to assess the percentage of nitrogen in plants that is derived from fertilizer. The 15 N ammonium sulfate was applied at a rate of (6 g / pot).Treatments included irrigation with canal water or sewage water in addition to half strength Hoagland nutrient solution. Pots were irrigated to maintain the soil moisture content at field capacity. Results indicated an increase in transplants biomass using sewage water than using canal water for irrigation. A substantial increase in mineral fertilizer nitrogen uptake by roots and translocation into shoots was observed using canal water than using sewage water. Fertilizer nitrogen recovery by orange transplants under both kinds of water was low. However, fertilizer nitrogen recovery was higher under canal water than under sewage water irrigation regime although the plant biomass was higher under sewage water.The percent nitrogen derived from sewage water was higher (26.1- 49.5 %) comparing with the percent nitrogen (4.9 - 12.7 %) derived from 15 N-labelled ammonium sulfate Twenty years old Navel orange trees were selected for this study. Treatments included trees grown at field sites that have been irrigated with sewage water (S.W.) for 20, 50 and 90 years. Navel orange trees, of the same age, grown at a farm in Inshas using canal water (C.W.) from (Ismailia canal a branch of the River Nile) as a source for irrigation, was included in this study as the control. Fruits were sampled at maturity and ripening stages. Results of the physical characteristics of the fruits showed an increase in fruit weight, volume, but reduction in firmness and color development (from green to yellow color) relative to the control and as the irrigation period

  15. Distribution of spin dipole transition strength in the 15N(n,p)15C reaction

    International Nuclear Information System (INIS)

    Cellar, A.; Alford, W.P.; Helmer, R.; Abegg, R.; Frekers, D.; Haeusser, O.; Henderson, R.S.; Jackson, K.P.; Vetterli, M.; Yen, S.; Jeppesen, R.; Larson, B.; Mildenberger, J.; Pointon, B.W.; Trudel, A.

    1990-08-01

    The reaction 15 N(n,p) 15 C was studied at a neutron energy of 288 MeV using the TRIUMF (n,p) charge exchange facility and a high pressure gas target. The angular distributions for spin dipole (ΔL=1) transitions to the states in 15 C at energies 0 MeV and 0.740 MeV, as well as for higher excitation energies, were measured and the results were compared with DWIA calculations. The measured distribution of the spin dipole strength agrees well with shell model predictions, indicating that a rather simple model provides a satisfactory description of the 15 N ground state, and of positive parity states in 15 C up to about 18 MeV excitation. The magnitude of the peak cross sections (at ≅ 7 degrees) is described well by the calculations when the theoretical cross section is renormalized by a factor 0.7. The calculated cross sections near zero degrees are generally smaller than experimental data. It this is a general feature of ΔL=1 transitions, it suggests that estimates of GT strength based on a multipole decomposition of measured cross sections may be too high. (Author) (41 refs., 3 tabs., 14 figs.)

  16. Going with the flow: N resourcing in macadamia

    International Nuclear Information System (INIS)

    Fletcher, A.; Critchley, C.; Schmidt, S.

    2002-01-01

    Full text: Macadamia, large evergreen sub-tropical rainforest trees are the only Australian tree genus to become an economically important food crop. Annual export production from Australian orchards to June 2002 was 12,560 tons nut-in-shell valued at $96m. However, low and variable nut yields represent a major constraint for producers worldwide. Orchard management includes hedging and fertilizer application although how such strategies affect Macadamia physiology and subsequent yield is largely unclear. Our study examined the role of xylem sap for provision of long distance transport of resources to developing tissue. Three techniques were used: (i) a new xylem injection 15 N-labeling method for tissue of branches to identify N sinks within sub-branches, (ii) analysis of 15 N-label distribution patterns following soil application of N-labeled fertiliser, (iii) screening of the composition of endogenous xylem amino N of mature trees in years with different nut yields. The highest rate of 15 N-label incorporation in the dormant period was observed in bark tissue. During vegetative flush, very young flush leaves had a high rate of xylem sap delivered 15 N incorporation. Incorporation N into nuts during premature nut drop between 8-10 weeks post-anthesis was not significantly different between retained and abscised nuts. This suggests that xylem derived N is not the primary factor in determination of premature nut drop. Uptake and transport of soil-applied 15 N-Iabel is rapid and one week after 15 N-label application increased 15 N levels were observed in young flush leaves while youngest mature leaves showed increases in labeling approximately 2 weeks after soil application. In mature trees, the dominant forms of amino N in the xylem are arginine, asparagine, glutamine, aspartate and glutamate accounting for 60-95% of the total amino N in the xylem sap. Increases in arginine preceding flowering in July 2000 were not seen in 2001 suggesting a loss of storage N because

  17. Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers

    International Nuclear Information System (INIS)

    Mote, Kaustubh R.; Gopinath, T.; Traaseth, Nathaniel J.; Kitchen, Jason; Gor’kov, Peter L.; Brey, William W.; Veglia, Gianluigi

    2011-01-01

    Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring 1 H- 15 N dipolar couplings (DC) and 15 N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal (rotational) angles of the protein domains can be directly derived from analytical expression of DC and CSA values, or, alternatively, obtained by refining protein structures using these values as harmonic restraints in simulated annealing calculations. The Achilles’ heel of this approach is the lack of suitable experiments for sequential assignment of the amide resonances. In this Article, we present a new pulse sequence that integrates proton driven spin diffusion (PDSD) with sensitivity-enhanced PISEMA in a 3D experiment ([ 1 H, 15 N]-SE-PISEMA-PDSD). The incorporation of 2D 15 N/ 15 N spin diffusion experiments into this new 3D experiment leads to the complete and unambiguous assignment of the 15 N resonances. The feasibility of this approach is demonstrated for the membrane protein sarcolipin reconstituted in magnetically aligned lipid bicelles. Taken with low electric field probe technology, this approach will propel the determination of sequential assignment as well as structure and topology of larger integral membrane proteins in aligned lipid bilayers.

  18. NMR studies of isotopically labeled RNA

    Energy Technology Data Exchange (ETDEWEB)

    Pardi, A. [Univ. of Colorado, Boulder, CO (United States)

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  19. Stable isotope labeled n-alkanes to assess digesta passage kinetics through the digestive tract of ruminants

    NARCIS (Netherlands)

    Warner, D.; Ferreira, L.M.M.; Breuer, M.J.H.; Dijkstra, J.; Pellikaan, W.F.

    2013-01-01

    We describe the use of carbon stable isotope (13C) labeled n-alkanes as a potential internal tracer to assess passage kinetics of ingested nutrients in ruminants. Plant cuticular n-alkanes originating from intrinsically 13C labeled ryegrass plants were pulse dosed intraruminally in four

  20. Evaluation of the biological nitrogen fixation (N{sub 2}) contribution in several forage legumes and the transfer of N to associated grasses; Avaliacao da contribuicao da fixacao biologica de N{sub 2} em varias leguminosas forrageiras e transferencia de N para uma graminea consorciada

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, M S.V.

    1991-12-01

    The objective of experiment 1 was to compare two different techniques for labelling the soil mineral nitrogen with {sup 15} N, for studies to quantify the contribution of biological nitrogen fixation (BNF) to forage legumes using the {sup 15} N isotope dilution technique. The two techniques for labelling the soil were: incorporation a {sup 15} N labelled organic compost (slow release treatment), and split applications of {sup 15} N labelled ammonium sulphate. The evaluation of the techniques was through the quantification of BNF in the Itaguai Hybrid of Centrosema using two non-Na- fixing control plants (P. maximum K K-16 and Sorghum bicolor). The objective of experiment 2 was to quantify the contribution of BNF to forage legumes and the transfer of fixed nitrogen to associated grasses in mixed swards again using the {sup 15} N isotope dilution technique. This study was conducted on a red podzolic soil (Typic Hapludult), with 7 forage legumes and 3 grasses in monoculture, and 3 mixed swards of Brachiaria brizantha with the Centrosema hybrid, Galactia striata and Desmodium ovalifolium, respectively, with varying ratios of grass to legume (4:1 to 1:4). In order to quantify the BNF contributions to the legumes and the transfer of fixed N to the B. brizantha, the plots were amended 8 times with doses of 0.01 g {sup 15} N m{sup -2} of {sup 15} N labelled ammonium sulphate (12.5 atom % {sup 15} N) each 14 days, giving a total of 0.08 g {sup 15} N m{sup -2} of {sup 15} N during the 97 days of the experiment. In monoculture the different forage legumes obtained the equivalent of between 43 and 100 kg N ha{sup -1} from BNF. Stylosanthes guianensis showed the greatest contributions from BNF at 100 Kg N ha{sup -1}. In mixed swards with Brachiaria brizantha the proportion of N derived from BNF in the three legumes studied (Centrosema hybrid, G. striata and D. ovalifolium) was significantly greater than when they were grown in monoculture. (author). 197 refs, 9 figs, 19 tabs.