WorldWideScience

Sample records for ecoserp hiilidioksidipaeaestoet mineraalikarbonointi

  1. CO{sub 2} emissions: mineral carbonation and Finnish pulp and paper industry (CO{sub Nordic Plus}) and use of serpentinites in energy and metal industry (ECOSERP); Hiilidioksidipaeaestoet: Mineraalikarbonointi ja Suomen massaja paperiteollisuus (CO{sub 2} Nordic plus) ja serpentiinin hyoetykaeyttoe energia- ja metalliteollisuudessa (ECOSERP)

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Raiski, T.; Teir, S. [Helsinki Univ. of Technology, Espoo (Finland). Lab of Energy Engineering and Environmental Protection

    2006-12-19

    Mineral carbonation has been investigated at Helsinki University of Technology (TKK), laboratory of energy engineering and environmental protection since year 2000. The Finnish Technology Agency Tekes and the Finnish Recovery Boiler Committee are funding through the ClimBus technology programme, in conjunction with the Nordic Energy Research Programme, the research regarding the application of ex situ mineral carbonation processes. One aspect is to verify the possible use of mineral carbonation for the separation, utilisation and long-term storage of carbon dioxide (CO2) in the pulp and paper industry. The Geological Survey of Finland (GTK) has been screening since 2004 the location, quality and suitability of the Finnish processed serpentine and stopped serpentinite storage of mines and in situ serpentinite bodies of ultramafic rock formations for mineral carbonation of CO2. Tekes and the GTK are funding development work through the ClimBus technology programme on the utilisation of serpentine and serpentinite for CO2 sequestration purposes, based on economical and environmental evaluation of mineral and mining processing operations. Also the options for other use of serpentine and serpentinite are evaluated. The most promising magnesium and calcium-based sources for carbonation are by products of mining processes of ultramafic rocks (such as serpentinites and serpentine) and steelmaking slags. Carbonated minerals could possibly be used as paper coating materials (PCC), fillers or construction materials. For magnesium carbonate new markets and applications must be developed. (orig.)

  2. CO2 emissions: mineral carbonation and Finnish pulp and paper industry (CO2 Nordic Plus) and use of serpentinites in energy and metal industry (ECOSERP)

    International Nuclear Information System (INIS)

    Fogelholm, C.-J.; Raiski, T.; Teir, S.

    2007-01-01

    Abstract Mineral carbonation has been investigated at Helsinki University of Technology (TKK), laboratory of energy engineering and environmental protection since year 2000. The Finnish Technology Agency Tekes and the Finnish Recovery Boiler Committee are funding through the ClimBus technology programme, in conjunction with the Nordic Energy Research Programme, the research regarding the application of ex situ mineral carbonation processes. One aspect is to verify the possible use of mineral carbonation for the separation, utilisation and long-term storage of carbon dioxide (CO 2 ) in the pulp and paper industry. The Geological Survey of Finland (GTK) has been screening since 2004 the location, quality and suitability of the Finnish processed serpentine and stoped serpentinite storage of mines and in situ serpentinite bodies of ultramafic rock formations for mineral carbonation of CO 2 . Tekes and the GTK are funding development work through the ClimBus technology programme on the utilisation of serpentine and serpentinite for CO 2 sequestration purposes, based on economical and environmental evaluation of mineral and mining processing operations. Also the options for other use of serpentine and serpentinite are evaluated. The most promising magnesium- and calcium-based sources for carbonation are by-products of mining processes of ultramafic rocks (such as serpentinites and serpentine) and steelmaking slags. Carbonated minerals could possibly be used as paper coating materials (PCC), fillers or construction materials. For magnesium carbonate new markets and applications must be developed. (orig.)

  3. CO2 emissions: mineral carbonation and Finnish pulp and paper industry (CONordicPlus) and use of serpentinites in energy and metal industry (ECOSERP)

    International Nuclear Information System (INIS)

    Fogelholm, C.J.; Raiski, T.; Teir, S.

    2006-01-01

    Mineral carbonation has been investigated at Helsinki University of Technology (TKK), laboratory of energy engineering and environmental protection since year 2000. The Finnish Technology Agency Tekes and the Finnish Recovery Boiler Committee are funding through the ClimBus technology programme, in conjunction with the Nordic Energy Research Programme, the research regarding the application of ex situ mineral carbonation processes. One aspect is to verify the possible use of mineral carbonation for the separation, utilisation and long-term storage of carbon dioxide (CO2) in the pulp and paper industry. The Geological Survey of Finland (GTK) has been screening since 2004 the location, quality and suitability of the Finnish processed serpentine and stopped serpentinite storage of mines and in situ serpentinite bodies of ultramafic rock formations for mineral carbonation of CO2. Tekes and the GTK are funding development work through the ClimBus technology programme on the utilisation of serpentine and serpentinite for CO2 sequestration purposes, based on economical and environmental evaluation of mineral and mining processing operations. Also the options for other use of serpentine and serpentinite are evaluated. The most promising magnesium and calcium-based sources for carbonation are by products of mining processes of ultramafic rocks (such as serpentinites and serpentine) and steelmaking slags. Carbonated minerals could possibly be used as paper coating materials (PCC), fillers or construction materials. For magnesium carbonate new markets and applications must be developed. (orig.)