WorldWideScience

Sample records for economic nuclear energy

  1. Nuclear energy. Economical aspects

    International Nuclear Information System (INIS)

    Legee, F.

    2010-01-01

    This document present 43 slides of a power point presentation containing detailed data on economical and cost data for nuclear energy and nuclear power plants: evolution from 1971 to 2007 of world total primary energy supply, development of nuclear energy in the world, nuclear power plants in the world in 2009, service life of nuclear power plants and its extension; nuclear energy market and perspectives at 2030, the EPR concept (generation III) and its perspectives at 2030 in the world; cost assessment (power generation cost, nuclear power generation cost, costs due to nuclear safety, comparison of investment costs for gas, coal and nuclear power generation, costs for building a nuclear reactor and general cost; cost for the entire fuel cycle, the case of the closed cycle with recycling (MOX); costs for radioactive waste storage; financial costs and other costs such as environmental impacts, strategic stocks, comparative evaluation of the competitiveness of nuclear versus coal and gas

  2. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Oh, K. B.

    2006-12-01

    It has been well recognized that securing economic viabilities along with technologies are very important elements in the successful implementation of nuclear R and D projects. The objective of the Project is to help nuclear energy to be utilized in an efficient way by analyzing major issues related with nuclear economics. The study covers following subjects: the role of nuclear in the future electric supply system, economic analysis of nuclear R and D project, contribution to the regional economy from nuclear power. In addition, the study introduces the international cooperation in the methodological area of efficient use of nuclear energy by surveying the international activities related with nuclear economics

  3. Economic Analysis of Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Oh, K. B

    2006-12-15

    It has been well recognized that securing economic viabilities along with technologies are very important elements in the successful implementation of nuclear R and D projects. The objective of the Project is to help nuclear energy to be utilized in an efficient way by analyzing major issues related with nuclear economics. The study covers following subjects: the role of nuclear in the future electric supply system, economic analysis of nuclear R and D project, contribution to the regional economy from nuclear power. In addition, the study introduces the international cooperation in the methodological area of efficient use of nuclear energy by surveying the international activities related with nuclear economics.

  4. The economics of nuclear energy

    International Nuclear Information System (INIS)

    Wilmer, P.

    2004-01-01

    In common with many of the issues surrounding nuclear energy, there is some truth in the popular claim that nuclear energy is 'not economic', but this is far from being a universal truth. This paper puts forward the view that, overall, nuclear energy can be a competitive source of electricity and a realistic economic option for the future. (author)

  5. Economic analysis of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Myung; Lee, M.K.; Moon, K.H.; Kim, S.S.; Lim, C.Y.; Song, K.D.; Kim, H

    2001-12-01

    The objective of this study is to evaluate the contribution of nuclear energy to the energy use in the economical way, based on the factor survey performed on the internal and external environmental changes occurred recent years. Internal and external environmental changes are being occurred recent years involving with using nuclear energy. This study summarizes the recent environmental changes in nuclear energy such as sustainable development issues, climate change talks, Doha round and newly created electricity fund. This study also carried out the case studies on nuclear energy, based on the environmental analysis performed above. The case studies cover following topics: role of nuclear power in energy/environment/economy, estimation of environmental external cost in electric generation sector, economic comparison of hydrogen production, and inter-industrial analysis of nuclear power generation.

  6. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Han Myung; Lee, M.K.; Moon, K.H.; Kim, S.S.; Lim, C.Y.; Song, K.D.; Kim, H.

    2001-12-01

    The objective of this study is to evaluate the contribution of nuclear energy to the energy use in the economical way, based on the factor survey performed on the internal and external environmental changes occurred recent years. Internal and external environmental changes are being occurred recent years involving with using nuclear energy. This study summarizes the recent environmental changes in nuclear energy such as sustainable development issues, climate change talks, Doha round and newly created electricity fund. This study also carried out the case studies on nuclear energy, based on the environmental analysis performed above. The case studies cover following topics: role of nuclear power in energy/environment/economy, estimation of environmental external cost in electric generation sector, economic comparison of hydrogen production, and inter-industrial analysis of nuclear power generation

  7. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Kim, S. S.; Lee, M. K.; Moon, K. H.; Nam, J. H.; Noh, B. C.; Kim, H. R.

    2008-12-01

    The concerns on the global warming issues in the international community are bringing about a paradigm shift in the national economy including energy technology development. In this connection, the green growth mainly utilizing green technology, which emits low carbon, is being initiated by many advanced countries including Korea. The objective of the study is to evaluate the contribution to the national economy from nuclear energy attributable to the characteristics of green technology, to which nuclear energy belongs. The study covers the role of nuclear in addressing climate change issues, the proper share of nuclear in the electricity sector, the cost analyses of decommissioning and radioactive waste management, and the analysis on the economic performance of nuclear R and D including cost benefit analysis

  8. Economic analysis of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Dong; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Kim, H. S

    1999-12-01

    The objective of this study is to analyze how the economics of nuclear power generation are affected by the change in nuclear environmental factors and then, to suggest desirable policy directions to improve the efficiency of the use of nuclear energy resources in korea. This study focused to analyze the impact of the change in 3 major nuclear environmental factors in Korea on the economics of nuclear power generation. To do this, environmental external cost, nuclear R and fund, and carbon emission control according to UNFCCC were selected as the major factors. First of all, this study evaluated the impacts on the health and the environment of air pollutants emitted from coal power plant and nuclear power plant, two major electric power generating options in Korea. Then, the environmental external costs of those two options were estimated by transforming the health and environmental impact in to monetary values. To do this, AIRPACTS and 'Impacts of atmospheric release' model developed by IAEA were used. Secondly, the impact of nuclear R and D fund raised by the utility on the increment of nuclear power generating cost was evaluated. Then, the desirable size of the fund in Korea was suggested by taking into consideration the case of Japan. This study also analyzed the influences of the fund on the economics of nuclear power generation. Finally, the role of nuclear power under the carbon emission regulation was analyzed. To do this, the econometric model was developed and the impact of the regulation on the national economy was estimated. Further efforts were made to estimate the role by developing CGE model in order to improve the reliability of the results from the econometric model.

  9. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Song, Ki Dong; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Kim, H. S.

    1999-12-01

    The objective of this study is to analyze how the economics of nuclear power generation are affected by the change in nuclear environmental factors and then, to suggest desirable policy directions to improve the efficiency of the use of nuclear energy resources in korea. This study focused to analyze the impact of the change in 3 major nuclear environmental factors in Korea on the economics of nuclear power generation. To do this, environmental external cost, nuclear R and fund, and carbon emission control according to UNFCCC were selected as the major factors. First of all, this study evaluated the impacts on the health and the environment of air pollutants emitted from coal power plant and nuclear power plant, two major electric power generating options in Korea. Then, the environmental external costs of those two options were estimated by transforming the health and environmental impact in to monetary values. To do this, AIRPACTS and 'Impacts of atmospheric release' model developed by IAEA were used. Secondly, the impact of nuclear R and D fund raised by the utility on the increment of nuclear power generating cost was evaluated. Then, the desirable size of the fund in Korea was suggested by taking into consideration the case of Japan. This study also analyzed the influences of the fund on the economics of nuclear power generation. Finally, the role of nuclear power under the carbon emission regulation was analyzed. To do this, the econometric model was developed and the impact of the regulation on the national economy was estimated. Further efforts were made to estimate the role by developing CGE model in order to improve the reliability of the results from the econometric model

  10. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Song, K. D.; Oh, K. B.

    2004-12-01

    This study evaluated the role of nuclear energy in various aspects in order to provide a more comprehensive standard of judgement to the justification of the utilization of nuclear energy. Firstly, this study evaluated the economic value addition of nuclear power generation technology and Radio-Isotope(RI) technology quantitatively by using modified Input-Output table. Secondly, a comprehensive cost-benefit analysis of nuclear power generation was conducted with an effort to quantify the foreign exchange expenditure, the environmental damage cost during 1986-2015 for each scenario. Thirdly, the effect of the regulation of CO 2 emission on the Korean electric supply system was investigated. In more detail, an optimal composition of power plant mix by energy source was investigated, under the assumption of the CO 2 emission regulation at a certain level, by using MESSAGE model. Finally, the economic spillover effect from technology self-reliance of NSSS by Korea Atomic Energy Research Institute was evaluated. Both production spillover effect and value addition spillover effect were estimated by using Input-Output table

  11. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Song, K. D.; Lee, H. M.; Oh, K. B.

    2003-12-01

    This study consists of various issues as follows; electricity price regulation in the liberalized electricity market, establishment of carbon emission limit in national electricity sector, the role of nuclear power as an future energy supply option, the future prospect of CO2 capture and sequestration and current research status of that area in Korea, and Preliminary economic feasibility study of MIP(Medical Isotopes Producer). In the price regulation in the liberalized electricity market, the characteristic of liberalized electricity market in terms of regulation was discussed. The current status and future projection of GHG emission in Korean electricity sector was also investigated. After that, how to set the GHG emission limit in the national electricity sector was discussed. The characteristic of nuclear technology and the research in progress were summarized with the suggestion of the possible new application of nuclear power. The current status and future prospect of the CO2 capture and sequestration research was introduced and current research status of that area in Korea was investigated. Preliminary economic feasibility study of MIP(Medical Isotopes Producer), using liquid nuclear fuel to produce medical isotopes of Mo-99 and Sr-89, was performed

  12. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Han Myung; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Song, K. D.; Oh, K. B.

    2002-12-01

    This study deals with current energy issues, environmental aspects of energy, project feasibility evaluation, and activities of international organizations. Current energy issues including activities related with UNFCCC, sustainable development, and global concern on energy issues were surveyed with focusing on nuclear related activities. Environmental aspects of energy includes various topics such as, inter- industrial analysis of nuclear sector, the role of nuclear power in mitigating GHG emission, carbon capture and sequestration technology, hydrogen production by using nuclear energy, Life Cycle Analysis as a method of evaluating environmental impacts of a technology, and spent fuel management in the case of introducing fast reactor and/or accelerator driven system. Project feasibility evaluation includes nuclear desalination using SMART reactor, and introduction of COMFAR computer model, developed by UNIDO to carry out feasibility analysis in terms of business attitude. Activities of international organizations includes energy planning activities of IAEA and OECD/NEA, introduction of the activities of FNCA, one of the cooperation mechanism among Asian countries. In addition, MESSAGE computer model was also introduced. The model is being developed by IAEA to effectively handle liberalization of electricity market combined with environmental constraints

  13. The new economics of nuclear energy

    International Nuclear Information System (INIS)

    Salian, Ramesh; Prasanna Kumar, N.

    2012-01-01

    With 15% of the world's population and an economic growth rate that increases the aspiration of its people to better quality of life, India has a voracious appetite for energy. Nuclear power is one of the options of providing safe, environmentally benign, reliable and economically competitive energy services. Nuclear power world over provides about 16% of electricity through 440 nuclear power plants with a total installed capacity of 361.582 GW (as of January 2004, IAEA PRIS data). Nuclear energy has traditionally played a small role in meeting India's energy requirements. Nuclear power makes up only 4,120 MW, constituting 2.6%, of the total electricity generation capacity. India is a power hungry nation and needs to switch over from its tremendous dependence on fossil fuels to alternative sources of energy like solar energy, bio energy and nuclear energy. Indian nuclear power plants have progressively attained excellent operation performances. However, the changing economic and geopolitical situation in the energy sector has made it imperative to emphasize the significance of nuclear energy in the future energy landscape of the country. The present paper discuss the importance, demand and supply pattern of nuclear energy and its economics. (author)

  14. Economic analysis of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Dong; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Kim, H. S

    2000-12-01

    This study identified the role of nuclear energy in the following three major aspects. First of all, this study carried out cost effectiveness of nuclear as a CDM technology, which is one of means of GHG emission reduction in UNFCCC. Secondly, environmental externalities caused by air pollutants emitted by power options were estimated. The 'observed market behaviour' method and 'responses to hypothetical market' method were used to estimate objectively the environmental external costs by electric source, respectively. Finally, the role of nuclear power in securing electricity supply in a liberalized electricity market was analyzed. This study made efforts to investigate whether nuclear power generation with high investment cost could be favored in a liberalized market by using 'option value' analysis of investments.

  15. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Song, Ki Dong; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Kim, H. S.

    2000-12-01

    This study identified the role of nuclear energy in the following three major aspects. First of all, this study carried out cost effectiveness of nuclear as a CDM technology, which is one of means of GHG emission reduction in UNFCCC. Secondly, environmental externalities caused by air pollutants emitted by power options were estimated. The 'observed market behaviour' method and 'responses to hypothetical market' method were used to estimate objectively the environmental external costs by electric source, respectively. Finally, the role of nuclear power in securing electricity supply in a liberalized electricity market was analyzed. This study made efforts to investigate whether nuclear power generation with high investment cost could be favored in a liberalized market by using 'option value' analysis of investments

  16. Economical scale of nuclear energy application

    International Nuclear Information System (INIS)

    2001-01-01

    The nuclear energy industry is supported by two wheels of radiation and energy applications. When comparing both, they have some different sides, such as numbers of employees and researchers, numbers and scales of works, effect on society, affecting effects and regions of industrial actions, problems on safety, viewpoint on nuclear proliferation protection and safety guarantee, energy security, relationship to environmental problem, efforts on wastes disposal, and so on. Here described on economical scale of radiation application in fields of industry, agriculture, and medicine and medical treatment, and on economical scale of energy application in nuclear power generation and its instruments and apparatus. (G.K.)

  17. Nuclear Power, Energy Economics and Energy Security

    International Nuclear Information System (INIS)

    2013-01-01

    Economic development requires reliable, affordable electricity that is provided in sufficient quantities to satisfy the minimum energy requirements at a local, regional or national level. As simple as this recipe for economic development appears, technological, infrastructural, financial and developmental considerations must be analysed and balanced to produce a national energy strategy. Complicating that task is the historic fact that energy at the desired price and in the desired quantities can be neither taken for granted nor guaranteed. Energy economics and energy security determine the options available to nations working to establish a sustainable energy strategy for the future.

  18. Nuclear energy: technical, economical and ecological data

    International Nuclear Information System (INIS)

    Anon.

    1975-04-01

    This information document aims to present all the different aspects of nuclear energy and the economic, industrial and ecological data from which the French nuclear energy programme was worked out, the techniques and the sites were chosen. Prepared with the collaboration of experts from the public services interested, this document attempts to cover all the questions raised and to provide answers (dependence with respect to oil versus the advantages of nuclear energy, environment and siting problems, consequences for public health and radiation protection, organization of nuclear industry [fr

  19. Geopolitical and Economic Aspects of Nuclear Energy

    Directory of Open Access Journals (Sweden)

    Stanislaw Z. Zhiznin

    2015-01-01

    Full Text Available Nuclear power in its present form was created during the Cold War and is its heritage. The main objective of nuclear energy at that time, along with energy, was the creation and accumulation of nuclear materials. To this aim a existing nuclear power plants based on uranium-plutonium cycle. Everything else - the processing of radioactive waste and spent nuclear fuel, storage, recycling themselves nuclear power plant after its end of life, the risks of proliferation of nuclear materials and other environmental issues - minor. It was also believed that the nuclear power plant - the most reliable and safe plant. During the last twenty years all over the world the number of new orders for nuclear aggregates has decreased. That happens for a number of reasons, including public resistance, that the construction of new NPP and the excess of energy utilities in many markets, which is mainly connected with high market competition in energy markets and low economic indicators of the current nuclear utilities. The technology that consists of low capital costs, a possibility for quick construction and guarantied exploitation quality is on the winners side, but currently this technology is absent. However, despite abovementioned downsides, as the experience of state corporation "Rosatom"has shown, many developing countries of the South-east Asia, The middle East, African regions express high interest in the development of nuclear energy in their countries. The decision whether to develop nuclear energy or to continue to develop is, in the end, up to the choice of the tasks that a country faces. The article describes these "minor" issues, as well as geopolitical and economic problems of the further development of nuclear energy.

  20. The economics of nuclear energy

    International Nuclear Information System (INIS)

    Brooks, L.G.; Motamen, H.

    1984-01-01

    Attitudes towards nuclear power in one country have always been more influenced by developments elsewhere than is the case with any other industry, with the possible exception of the defence industries. This book is a series of essays on different aspects of nuclear power as seen from different countries. The conclusion that they all arrive at, with one possibly neutral exception, is that nuclear power is the most attractive option on offer for future growth in electricity generation

  1. Project management for economical nuclear energy

    International Nuclear Information System (INIS)

    Majerle, P.P.

    2005-01-01

    The price of electricity is significantly influenced by the cost of the initial generation asset. The cost of the initial nuclear generation asset is significantly influenced by the design and construction duration. Negative variations in the cost and duration of actual design and construction have historically impacted the early relative economics of nuclear power generation. Successful management of plant design information will mitigate the risks of the design and construction of future nuclear plants. Information management tools that can model the integrated delivery of large complex projects enable the project owners to accurately evaluate project progress, as well as the economic impact of regulatory, political, or market activities not anticipated in the project execution plan. Significant differences exist in the electrical energy markets, project delivery models, and fuel availability between continents and countries. However, each market and project delivery model is challenged by the need to produce economical electrical energy. The information management system presented in this paper provides a means to capture in a single integrated computerized database the design information developed during plant design, procurement, and construction and to allow this information to be updated and retrieved in real time by all project participants. Utilization of the information management system described herein will enable diverse project teams to rapidly and reliably input, share, and retrieve power plant information, thereby supporting project management's goal to make good on its commitment to the economic promise of tomorrow's nuclear electrical power generation by achieving cost-effective construction. (authors)

  2. Nuclear energy centers: Economic and environmental problems

    International Nuclear Information System (INIS)

    Dollezhal', N.A.; Bobolovich, V.N.; Emel'yanov, I.Ya.; Kochenov, A.S.; Koryakin, Yu.I.; Stolyarevskij, A.Ya.; Chernyaev, V.A.; Ponomarev-Stepnoj, N.N.; Protsenko, A.M.

    1977-01-01

    The report deals with qualitative and quantitative analysis of factors and problems, which may arise in the nearest future with the dispersion of sites of nuclear and fuel cycle plants. These problems arise with a large increase in the transportation of radioactive nuclear fuel, the necessity in valuable land and water resources, delay in construction and scheduled commercial operation of nuclear power plant, increase in the cost of labour and other economic and environmental factors and limitations. The report has an analysis of one of the ways of decreasing these difficulties, connected with the construction of large nuclear energy centres, consisting of a cluster of reactors on a single reactor site with the combined capacity of 40,000-50,000 MWe. The centres may consist, for example, of a cluster of conventional nuclear power plants that mainly consist of fast breeders and fuel cycle plants. They should be located in regions with a low density population and low value and deficiency of land and water resources. Electricity will be transmitted to consumers. The social-economic functions of such centres as factors that give birth to industrial regions are considered. Also given is the comparative estimate of benefits and problems of these two ways of further development of nuclear power system [ru

  3. Nuclear energy as an instrument of economic policy

    International Nuclear Information System (INIS)

    Thiriet, L.

    1984-01-01

    This chapter is a review of how nuclear power can help achieve energy policy objectives, illustrated with examples based on experience in France. It is preceded by a preliminary consideration of the global economic background for the development of nuclear power today. Headings are: introduction; world-wide economic environment; nuclear energy and inflation; nuclear energy and external constraints; nuclear energy, foreign currency and employment in the French context. (U.K.)

  4. Nuclear energy consumption and economic growth in nine developed countries

    International Nuclear Information System (INIS)

    Wolde-Rufael, Yemane; Menyah, Kojo

    2010-01-01

    This article attempts to test the causal relationship between nuclear energy consumption and real GDP for nine developed countries for the period 1971-2005 by including capital and labour as additional variables. Using a modified version of the Granger causality test developed by Toda and Yamamoto (1995), we found a unidirectional causality running from nuclear energy consumption to economic growth in Japan, Netherlands and Switzerland; the opposite uni-directional causality running from economic growth to nuclear energy consumption in Canada and Sweden; and a bi-directional causality running between economic growth and nuclear energy consumption in France, Spain, the United Kingdom and the United States. In Spain, the United Kingdom and the USA, increases in nuclear energy consumption caused increases in economic growth implying that conservation measures taken that reduce nuclear energy consumption may negatively affect economic growth. In France, Japan, Netherlands and Switzerland increases in nuclear energy consumption caused decreases in economic growth, suggesting that energy conservation measure taken that reduce nuclear energy consumption may help to mitigate the adverse effects of nuclear energy consumption on economic growth. In Canada and Sweden energy conservation measures affecting nuclear energy consumption may not harm economic growth.

  5. Technical progress of nuclear energy: economic and environmental prospects

    International Nuclear Information System (INIS)

    Naudet, G.

    1994-01-01

    This document deals with three different aspects of the nuclear energy: first the operating and economic performances of nuclear power plants in the world, the French nuclear competitiveness. Then, the technical and economic perspectives about reactors and fuels cycle and the advantages towards atmospheric pollution are discussed to favour a new worldwide nuclear development. (TEC). 8 refs., 4 figs., 6 tabs

  6. Emerging nuclear energy systems: Economic challenge: Revision 1

    International Nuclear Information System (INIS)

    Nuckolls, J.H.

    1986-01-01

    Future nuclear energy systems may achieve substantially lower energy costs than those of existing fossil energy systems and comparable capital costs. Such low cost nuclear energy would provide a strong economic incentive to minimize the use of fossil fuels. If these low cost nuclear energy systems emerge in the next few decades, 21st century civilization may be able to avert potentially disastrous CO 2 induced global climate changes. 12 refs., 1 fig

  7. A panel study of nuclear energy consumption and economic growth

    International Nuclear Information System (INIS)

    Apergis, Nicholas; Payne, James E.

    2010-01-01

    This study examines the relationship between nuclear energy consumption and economic growth for sixteen countries within a multivariate panel framework over the period 1980-2005. Pedroni's (1999, 2004) heterogeneous panel cointegration test reveals there is a long-run equilibrium relationship between real GDP, nuclear energy consumption, real gross fixed capital formation, and the labor force with the respective coefficients positive and statistically significant. The results of the panel vector error correction model finds bidirectional causality between nuclear energy consumption and economic growth in the short-run while unidirectional causality from nuclear energy consumption to economic growth in the long-run. Thus, the results provide support for the feedback hypothesis associated with the relationship between nuclear energy consumption and economic growth.

  8. Nuclear energy and economic competitiveness in several normative systems

    International Nuclear Information System (INIS)

    Thomas, S.

    2009-01-01

    The serious challenge imposed by the necessity of reducing the gases emission of greenhouse effect in the electric generation sector, it has renovated the interest in the new plants construction of nuclear energy. Nevertheless, since the use of the nuclear energy began to descend ago more of 25 years, it is has speculated continually about the possible nuclear rebirth. Are such predictions based in solid basis or are mere groundless prognostics? The objective of the present document is to analyze the economic aspects of the nuclear energy, to identify the key factors that they allow to determine its competitiveness and to sound the possible markets for the new plants of nuclear energy. To achieve this, it is divided in the following sections: Revision of the current state of the nuclear energy, including the location, the type and capacity of the plants; Identification of the variables that determine the economic situation of the nuclear energy; Revision of the recent predictions and of the economic aspects of the Olkiluoto nuclear power plant of Finland; A revision by market of the possible future of the new nuclear facilities in the coming decade. (Author)

  9. Energy and economic milestones in Nigeria: Role of nuclear technology

    International Nuclear Information System (INIS)

    Dahunsi, S.O.A.

    2011-01-01

    Electric power supply could be the driving force critical to poverty reduction, economic growth and sustainable development in developing countries like Nigeria. Comparative analysis of several promising technologies that could be explored to achieve energy sufficiency however shows that nuclear power is more economically competitive and outstanding despite the relatively high initial capital cost. Furthermore, one of the critical conditions in deciding to invest in a specific electric power technology is the overall cost component of the new technology, nuclear therefore is in many places competitive with other forms of electricity generation. The fundamental attraction is about harnessing the sources of energy which takes cognizance of the environmental effects of burning fossil fuel and its security of supply. This paper therefore highlights the benefits of inclusion of nuclear energy in the Nigeria energy mix, a sine qua non for economic and social development, safer environment, wealth creation and a long term energy security.

  10. Nuclear power economic database

    International Nuclear Information System (INIS)

    Ding Xiaoming; Li Lin; Zhao Shiping

    1996-01-01

    Nuclear power economic database (NPEDB), based on ORACLE V6.0, consists of three parts, i.e., economic data base of nuclear power station, economic data base of nuclear fuel cycle and economic database of nuclear power planning and nuclear environment. Economic database of nuclear power station includes data of general economics, technique, capital cost and benefit, etc. Economic database of nuclear fuel cycle includes data of technique and nuclear fuel price. Economic database of nuclear power planning and nuclear environment includes data of energy history, forecast, energy balance, electric power and energy facilities

  11. Economic competitiveness of seawater desalinated by nuclear and fossil energy

    International Nuclear Information System (INIS)

    Tian Li; Wang Yongqing; Guo Jilin; Liu Wei

    2001-01-01

    The levelized discounted production water cost method and the new desalination economic evaluation program (DEEP1.1) were used to compare the economics of desalination using nuclear or fossil energy. The results indicate that nuclear desalination is more economic than fossil desalination with reverse osmosis (RO), multi-effect distillation (MED) and multi-stage flash (MSF). The desalination water cost varies depending on the desalination technology and the water plant size from 0.52-1.98 USD·m -3 with the lowest water price by RO and the highest by MSF. The sensitivity factors for the economic competitiveness increases in order of the discounted rate, desalination plant scale, fossil fuel price, specific power plant investment, seawater temperature and total dissolve solid (TDS). The highest water cost is about 22.6% more than the base case

  12. Is nuclear energy reasonable with national economic regards?

    International Nuclear Information System (INIS)

    Scholz, L.

    1989-01-01

    In answering the question of whether a nuclear phaseout can be acceptable with national economic respects, one is confronted with the following basic question: Are the risks associated with nuclear energy reasonable in terms of safety and the conservation of the environment. Effective and responsible action in this question presupposes a clear political will and judgment. Because of the necessity of having to put up in the case of nuclear energy - a basic innovation whose development has yet a long way to go - with nuclear legal terms, are faced with a dilemma. In the opinion of energy engineers and the energy industry, the central part of the controversy on nuclear power is about the problem of coming to terms on what will be acceptable to the population as necessary precautionary measures for the event of an accident. Obviously, it is for the legislator to decide on the compatibility and social adequacy of a risk, not for the judge to interpret it on the basis of nuclear legal terms. Our national economy is now and in the future challenged with the task to research, develop, and realize hazard-prone technologies in order to shape the future. Where readiness to accept risks can no longer be assumed in the future, development prospects will be curbed in parallel. What national economic consequences will result from this, and whether they will be acceptable with national econiomic regards, is a question that has not so far been dealt with by the studies on a phaseout of nuclear energy. (orig./HSCH) [de

  13. Nuclear energy-economic growth nexus in OECD countries. A panel data analysis

    International Nuclear Information System (INIS)

    Ozcan, Burcu; Ari, Ayse

    2016-01-01

    The relationship between nuclear energy consumption and economic growth in 13 OECD countries from 1980 to 2012 is analyzed. The panel causality results supported the feedback hypothesis in both the short-run and long-run. There is a positive relationship between nuclear energy consumption and economic growth. As such, nuclear energy consumption and economic growth complement and reinforce each other. Nuclear energy conservation policies may negatively affect economic growth rates.

  14. Nuclear energy-economic growth nexus in OECD countries. A panel data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Burcu [Firat Univ., Elazig (Turkey). Dept. of Economics; Ari, Ayse [Nigde Univ. (Turkey). Dept. of Economics

    2016-01-15

    The relationship between nuclear energy consumption and economic growth in 13 OECD countries from 1980 to 2012 is analyzed. The panel causality results supported the feedback hypothesis in both the short-run and long-run. There is a positive relationship between nuclear energy consumption and economic growth. As such, nuclear energy consumption and economic growth complement and reinforce each other. Nuclear energy conservation policies may negatively affect economic growth rates.

  15. Economic efficency and competitive position of nuclear energy today

    International Nuclear Information System (INIS)

    Schmitt, D.

    1988-01-01

    In spite of the relaxation making itself felt at the moment on the world energy markets, the competitive position of nuclear power from either existing or shortly to be connected power plants remains safe. Any attempt at doing without this extraordinarily convenient vehicle of power generation would mean to severely force up costs and expenses. The competitive position of existing nuclear power plants is assumed to remain untouched through the coming decade. In spite of the presently very low world market prices imported coal is especially affected by, even abstract economic analyses show nuclear energy to come out superior to all other alternatives providing for the electric power supply of the Federal Republic of Germany. Once the over-capacity is reduced and under control, a longer-term superior competitive position of nuclear power, however, presupposes a rise in prices full level with those of the neighbor countries. At any rate and for the time being, the divergence of electric power from imported coal prices which was even obvious in the mean load range has diminished. The superior position of nuclear power in the base load range can be maintained through avoiding further rises in operating costs by gradual rationalization and standardization. (orig./HP) [de

  16. 76 FR 14437 - Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of...

    Science.gov (United States)

    2011-03-16

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0055] Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of Final Design Approval The U.S. Nuclear Regulatory Commission has issued a final design approval (FDA) to GE Hitachi Nuclear Energy (GEH) for the economic...

  17. Global economics/energy/environmental (E3) modeling of long-term nuclear energy futures

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Davidson, J.W.; Bathke, C.G.; Arthur, E.D.; Wagner, R.L. Jr.

    1997-01-01

    A global energy, economics, environment (E 3 ) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Using this model, consistent nuclear energy scenarios are constructed. A spectrum of future is examined at two levels in a hierarchy of scenario attributes in which drivers are either external or internal to nuclear energy. Impacts of a range of nuclear fuel-cycle scenarios are reflected back to the higher-level scenario attributes. An emphasis is placed on nuclear materials inventories (in magnitude, location, and form) and their contribution to the long-term sustainability of nuclear energy and the future competitiveness of both conventional and advanced nuclear reactors

  18. Nuclear energy and global warming: a new economic view

    International Nuclear Information System (INIS)

    Rokhshad Hejazi

    2009-01-01

    This paper tries to state energy situation and then energy policy globally in economic view and then offer the practical solution. Besides above questions, the most important questions that will be answered are: What is the energy position, in economic view? and what is the most important priority among environmental issues? According to present conditions and environmental challenges what is the way map for energy supply? Is the priority for environment and energy with an economic sight, in present and future, same as the past? (Author)

  19. On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth

    International Nuclear Information System (INIS)

    Apergis, Nicholas; Payne, James E.; Menyah, Kojo; Wolde-Rufael, Yemane

    2010-01-01

    This paper examines the causal relationship between CO 2 emissions, nuclear energy consumption, renewable energy consumption, and economic growth for a group of 19 developed and developing countries for the period 1984-2007 using a panel error correction model. The long-run estimates indicate that there is a statistically significant negative association between nuclear energy consumption and emissions, but a statistically significant positive relationship between emissions and renewable energy consumption. The results from the panel Granger causality tests suggest that in the short-run nuclear energy consumption plays an important role in reducing CO 2 emissions whereas renewable energy consumption does not contribute to reductions in emissions. This may be due to the lack of adequate storage technology to overcome intermittent supply problems as a result electricity producers have to rely on emission generating energy sources to meet peak load demand. (author)

  20. On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth

    Energy Technology Data Exchange (ETDEWEB)

    Apergis, Nicholas [Department of Banking and Financial Management, University of Piraeus, Karaoli and Dimitriou 80, Piraeus, ATTIKI 18534 (Greece); Payne, James E. [Department of Economics, Illinois State University, Normal, IL 61790-4200 (United States); Menyah, Kojo [London Metropolitan Business School, London Metropolitan University, 84 Moorgate, London, EC2M 6SQ (United Kingdom); Wolde-Rufael, Yemane

    2010-09-15

    This paper examines the causal relationship between CO{sub 2} emissions, nuclear energy consumption, renewable energy consumption, and economic growth for a group of 19 developed and developing countries for the period 1984-2007 using a panel error correction model. The long-run estimates indicate that there is a statistically significant negative association between nuclear energy consumption and emissions, but a statistically significant positive relationship between emissions and renewable energy consumption. The results from the panel Granger causality tests suggest that in the short-run nuclear energy consumption plays an important role in reducing CO{sub 2} emissions whereas renewable energy consumption does not contribute to reductions in emissions. This may be due to the lack of adequate storage technology to overcome intermittent supply problems as a result electricity producers have to rely on emission generating energy sources to meet peak load demand. (author)

  1. Causal relationship between nuclear energy consumption and economic growth: A multi-country analysis

    International Nuclear Information System (INIS)

    Yoo, Seung-Hoon; Ku, Se-Ju

    2009-01-01

    This paper attempts to investigate the causal relationship between nuclear energy consumption and economic growth using the data from six countries among 20 countries that have used nuclear energy for more than 20 years until 2005. To this end, time-series techniques including the tests for unit roots, co-integration, and Granger-causality are employed to Argentina, France, Germany, Korea, Pakistan, and Switzerland. The main conclusion is that the causal relationship between nuclear energy consumption and economic growth is not uniform across countries. In the case of Switzerland, there exists bi-directional causality between nuclear energy consumption and economic growth. This means that an increase in nuclear energy consumption directly affects economic growth and that economic growth also stimulates further nuclear energy consumption. The uni-directional causality runs from economic growth to nuclear energy consumption without any feedback effects in France and Pakistan, and from nuclear energy to economic growth in Korea. However, any causality between nuclear energy consumption and economic growth in Argentina and Germany is not detected.

  2. Oil prices, nuclear energy consumption, and economic growth: New evidence using a heterogeneous panel analysis

    International Nuclear Information System (INIS)

    Lee, Chien-Chiang; Chiu, Yi-Bin

    2011-01-01

    This paper applies panel data analysis to examine the short-run dynamics and long-run equilibrium relationships among nuclear energy consumption, oil prices, oil consumption, and economic growth for developed countries covering the period 1971-2006. The panel cointegration results show that in the long run, oil prices have a positive impact on nuclear energy consumption, suggesting the existence of the substitution relationship between nuclear energy and oil. The long-run elasticity of nuclear energy with respect to real income is approximately 0.89, and real income has a greater impact on nuclear energy than do oil prices in the long run. Furthermore, the panel causality results find evidence of unidirectional causality running from oil prices and economic growth to nuclear energy consumption in the long run, while there is no causality between nuclear energy consumption and economic growth in the short run. - Research highlights: → We examine the relationship among nuclear energy consumption, oil prices, oil consumption, and economic growth for developed countries. → The existence of the substitution relationship between nuclear energy and oil. → Real income has a greater impact on nuclear energy than do oil prices in the long run. → An unidirectional causality running from oil prices and economic growth to nuclear energy consumption in the long run.

  3. Energy consumption and economic growth on the focus on nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Ozkan, Filiz [Sakarya Univ., Sakarya (Turkey). Dept. of Financial Econometric; Pektas, Ali Osman [Bahcesehir Univ., Istanbul (Turkey). Dept. of Civil Engineering; Ozkan, Omer [Istanbul Medeniyet Univ. (Turkey). Dept. of Civil Engineering

    2017-01-15

    Since the quest for global and personal prosperity, the drive to eradicate poverty and the motivation to ensure sustainability for the world are collectively dependent on a supply of safe, emissions-free power there are many studies in literature focuses on the relationship between economic growth and energy consumption. This study tries to enlarge the dimensions of these researches by using a large dataset. The second aim of this study is to focus on Nuclear energy consumption. According to the empirical results of the study, Energy consumption is found as co-integrated with the GDP in all 55 countries. There exist bidirectional causality between nuclear, renewable energy consumption and the GDP. Additionally, the unidirectional causality extends from economic growth to hydroelectric, petroleum, coal and total energy consumption.

  4. Energy consumption and economic growth on the focus on nuclear energy

    International Nuclear Information System (INIS)

    Ozkan, Filiz; Pektas, Ali Osman; Ozkan, Omer

    2017-01-01

    Since the quest for global and personal prosperity, the drive to eradicate poverty and the motivation to ensure sustainability for the world are collectively dependent on a supply of safe, emissions-free power there are many studies in literature focuses on the relationship between economic growth and energy consumption. This study tries to enlarge the dimensions of these researches by using a large dataset. The second aim of this study is to focus on Nuclear energy consumption. According to the empirical results of the study, Energy consumption is found as co-integrated with the GDP in all 55 countries. There exist bidirectional causality between nuclear, renewable energy consumption and the GDP. Additionally, the unidirectional causality extends from economic growth to hydroelectric, petroleum, coal and total energy consumption.

  5. Chinese imperative: nuclear energy to bridge geographic and economic gaps

    International Nuclear Information System (INIS)

    Zongyu, T.

    1994-01-01

    Encouraged by successful operation of its first three nuclear units -Quinshan-1 (own design) and Daya Bay-1 and -2 (Framatome) - China is rapidly preparing to expand both sites. The immediate need is to overcome the shortage of electricity on the East coast. Medium to long term, the need is to ensure power for economic growth throughout China. (author) 2 figs., 1 tab

  6. Economics of nuclear energy production systems: reactors and fuel cycle

    International Nuclear Information System (INIS)

    Bouchard, J.; Proust, E.; Gautrot, J.J.; Tinturier, B.

    2003-01-01

    The present paper relies on the main European economic studies on the comparative costs of electricity generation, published over the last six years, to show that nuclear power meets the challenge and is an economically competitive choice in the European electricity market. Indeed, although these studies were made for different purposes, by different actors and based on different methods, they all converge to show that the total base-load generation cost for new nuclear plants build in Europe is projected to be in the range of 22 to 32 euros/MWh, a total generation cost that may be 20% cheaper than the cost for combined cycle gas turbine (CCGT) units. Moreover, the prospects of internalization of the greenhouse gas emission cost in the total generation cost will boost even further the competitiveness of nuclear against gas-fired plants in Europe. All this is confirmed by the most recent French detailed study (DIDEME 2003), essentially performed from an investor standpoint, which concludes, for base-load generation units starting operation around 2015, that nuclear power, with a levelled generation cost of 28,4 euros/MWh, is more competitive than CCGTs (35 euros/MWh). This study also shows an overnight investment cost for nuclear power, based on the considered scenario (a series of 10 EPR units including a ''demonstrator''), of less than 1300 euros/kWe. The other major challenge, waste management obviously also includes an economic dimension. This issue is addressed in the present paper which provides a synthesis of relevant detailed French and OECD economic studies on the cost assessment of the fuel cycle back-end. (author)

  7. Aspects of the economic policy of nuclear energy programs

    International Nuclear Information System (INIS)

    Thiriet, L.

    1976-01-01

    The authors wonders what would involve for the French economy, if we had to resort to nuclear power: compulsory financial effort, long delays for creating the necessary industrial equipment, cost for supply safety of fissile material, impact on balance of payments, energy price improvements and stabilization. It is concluded that nuclear power plant development does not demand excessive financial effort, it should only be a question of planning and when oil prices are fivefold multiplied, speeding up of nuclear power plant programmes constitutes the only possible counterstroke if one is to avoid severe losses in balance of payments [fr

  8. The Economic Potential of Three Nuclear-Renewable Hybrid Energy Systems Providing Thermal Energy to Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    This report is one of a series of reports that Idaho National Laboratory and National Renewable Energy Laboratory are producing to investigate the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). Previous reports provided results of an analysis of two N-R HES scenarios. This report builds that analysis with a Texas-synthetic gasoline scenario providing the basis in which the N-R HES sells heat directly to an industrial customer. Subsystems were included that convert electricity to heat, thus allowing the renewable energy subsystem to generate heat and benefit from that revenue stream. Nuclear and renewable energy sources are important to consider in the energy sector's evolution because both are considered to be clean and non-carbon-emitting energy sources.

  9. The Economic Potential of Three Nuclear-Renewable Hybrid Energy Systems Providing Thermal Energy to Industry

    International Nuclear Information System (INIS)

    Ruth, Mark; Cutler, Dylan; Flores-Espino, Francisco; Stark, Greg; Jenkin, Thomas

    2016-01-01

    This report is one of a series of reports that Idaho National Laboratory and National Renewable Energy Laboratory are producing to investigate the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). Previous reports provided results of an analysis of two N-R HES scenarios. This report builds that analysis with a Texas-synthetic gasoline scenario providing the basis in which the N-R HES sells heat directly to an industrial customer. Subsystems were included that convert electricity to heat, thus allowing the renewable energy subsystem to generate heat and benefit from that revenue stream. Nuclear and renewable energy sources are important to consider in the energy sector's evolution because both are considered to be clean and non-carbon-emitting energy sources.

  10. Energy economics of nuclear and coal fired power plant

    International Nuclear Information System (INIS)

    Lee, Kee Won; Cho, Joo Hyun; Kim, Sung Rae; Choi, Hae Yoon

    1995-01-01

    The upturn of Korean nuclear power program can be considered to have started in early 70's while future plants for the construction of new nuclear power plants virtually came to a halt in United States. It is projected that power plant systems from combination of nuclear and coal fired types might shift to all coal fired type, considering the current trend of construction on the new plants in the United States. However, with the depletion of natural resources, it is desirable to understand the utilization of two competitive utility technologies in terms of of invested energy. Presented in this paper is a comparison between two systems, nuclear power plant and coal fired steam power plant in terms of energy investment. The method of comparison is Net Energy Analysis (NEA). In doing so, Input-Output Analysis (IOA) among industries and commodities is done. Using these information, net energy ratios are calculated and compared. NEA is conducted for power plants in U.S. because the availability of necessary data are limited in Korea. Although NEA does not offer conclusive solution, this method can work as a screening process in decision making. When considering energy systems, results from such analysis can be used as a general guideline. 2 figs., 12 tabs., 5 refs. (Author)

  11. Bounds test approach to cointegration and causality between nuclear energy consumption and economic growth in India

    International Nuclear Information System (INIS)

    Wolde-Rufael, Yemane

    2010-01-01

    This paper attempts to examine the dynamic relationship between economic growth, nuclear energy consumption, labor and capital for India for the period 1969-2006. Applying the bounds test approach to cointegration developed by we find that there was a short- and a long-run relationship between nuclear energy consumption and economic growth. Using four long-run estimators we also found that nuclear energy consumption has a positive and a statistically significant impact on India's economic growth. Further, applying the approach to Granger causality and the variance decomposition approach developed by , we found a positive and a significant uni-directional causality running from nuclear energy consumption to economic growth without feedback. This implies that economic growth in India is dependent on nuclear energy consumption where a decrease in nuclear energy consumption may lead to a decrease in real income. For a fast growing energy-dependent economy this may have far-reaching implications for economic growth. India's economic growth can be frustrated if energy conservation measures are undertaken without due regard to the negative impact they have on economic growth.

  12. Economics of nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    Bertel, E.

    2006-01-01

    The paper is based on a recent OECD study on projected costs of generating electricity and other NEA studies on external costs including carbon emissions and global climate change risks. The overall objective of the analysis is to provide key elements for assessing nuclear energy in a sustainable development perspective, taking into account social and environmental aspects. Levelised lifetime costs of generating electricity are presented and compared for nuclear power plants and alternative generation technologies including gas-fired, coal-fired and wind power plants. The data presented refer to state-of-the-art power plants that could be commissioned by 2015 or earlier. Cost drivers and their variability from country to country and technology to technology are analysed. The paper also addresses external costs and benefits of nuclear energy as compared with those of alternative options. In particular, it provides insights regarding the impact of policy measures to reduce greenhouse gas emissions on the relative competitiveness of fossil-fuelled power plants and nearly carbon-free technologies (e.g., nuclear or wind). Other external costs such as social concerns, environmental impacts of residual emissions and contribution to security of energy supply are discussed

  13. The role of nuclear energy in Brazilian energy matrix: environmental and socio-economical aspects

    International Nuclear Information System (INIS)

    Bones, Ubiratan A.; Schirmer, Priscila; Ceolin, Celina

    2017-01-01

    Due to the great increase demand for energy in the world, the continuous expansion of industrialization and the increase of consumption, together with the indispensable search for the sustainability of human acts, the need for diversification of the energy matrix and the search for less polluting energy comes increasing. Nuclear energy is increasingly seen as an option to contain greenhouse gas emissions and reduce dependence on fossil fuels. In this context, although it is not a source of renewable energy and also not the solution to all Brazilian problems, it can contribute to the expansion of the Brazilian energy matrix, being the only thermal source capable of guaranteeing the constant supply of energy without emitting greenhouse gases, considering that Brazil dominates nuclear fuel cycle technology and has large uranium reserves. However, this is a topic that generates a great deal of insecurity and questioning, making important the development of this work, both for a better understanding of the public, and to contribute and encourage future research through an evaluation of its environmental and socioeconomic aspects, discussing its risks and assessing the possibilities of expanding its use, including a panoramic view of nuclear energy in Brazil. In addition, for the full development of a country, it is necessary to diversify its energy sources, focusing on environmental and economic sustainability and reducing the vulnerability of the system

  14. Underground nuclear energy complexes - technical and economic advantages

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Carl W [Los Alamos National Laboratory; Kunze, Jay F [IDAHO STATE UNIV; Giraud, Kellen M [BABECOCK AND WILCOX; Mahar, James M [IDAHO STATE UNIV

    2010-01-01

    Underground nuclear power plant parks have been projected to be economically feasible compared to above ground instalIations. This paper includes a thorough cost analysis of the savings, compared to above ground facilities, resulting from in-place entombment (decommissioning) of facilities at the end of their life. reduced costs of security for the lifetime of the various facilities in the underground park. reduced transportation costs. and reduced costs in the operation of the waste storage complex (also underground). compared to the fair share of the costs of operating a national waste repository.

  15. The social and economic impact of nuclear energy in Brazil

    International Nuclear Information System (INIS)

    Marques, E.

    1976-01-01

    A model for structural analysis is introduced and discussed. An application is made to the 'Brazilian Nuclear System' defined by a structural matrix lying upon 42 factors (of which 11 are political 7 economic, 9 technological, 6 sociological, 7 ecological and 2 psychdogical, whose interactions are evalueted. The hierarchical ordering of these 42 factors shows the preponderance of the political ones, the technological factors being the least important. The study is completed by calculating the impact of a PWR pant construction in Brazilian territory, using an enlarged input-output method the sectorial impacts are determined for industrial production, value added, inderect imports and capital goods industries [pt

  16. Economics of the Nuclear Energy Considered CO2 Emission

    International Nuclear Information System (INIS)

    Kim, Su Jin; Kim, Yong Min

    2011-01-01

    The energy consumption in Korea has greatly increased along with its rapid economic growth and industrialization since the 1970s. Total energy consumption increased at an average annual growth rate. Due to the lack of domestic energy resources, however, the overseas dependence rate of energy consumption has continuously increased. Also Climate change, resulting from increases in greenhouse gas emissions (GHG), is considered one of the biggest environmental dangers facing the world today. The objective and approach of this study are to compare the different types of scenarios in terms of the power plant type and CO 2 emission from each power plant. We estimated cost of electricity generation using fuel cost, O and M cost(Operation and Maintenance Cost) and CO 2 emission

  17. Nuclear energy consumption, oil consumption and economic growth in G-6 countries: Bootstrap panel causality test

    International Nuclear Information System (INIS)

    Chu, Hsiao-Ping; Chang Tsangyao

    2012-01-01

    This study applies bootstrap panel Granger causality to test whether energy consumption promotes economic growth using data from G-6 countries over the period of 1971–2010. Both nuclear and oil consumption data are used in this study. Regarding the nuclear consumption-economic growth nexus, nuclear consumption causes economic growth in Japan, the UK, and the US; economic growth causes nuclear consumption in the US; nuclear consumption and economic growth show no causal relation in Canada, France and Germany. Regarding oil consumption-economic growth nexus, we find that there is one-way causality from economic growth to oil consumption only in the US, and that oil consumption does not Granger cause economic growth in G-6 countries except Germany and Japan. Our results have important policy implications for the G-6 countries within the context of economic development. - Highlights: ► Bootstrap panel Granger causality test whether energy consumption promotes economic growth. ► Data from G-6 countries for both nuclear and oil consumption data are used. ► Results have important policy implications within the context of economic development.

  18. The part of nuclear energy in the economy of the European Economic Community

    International Nuclear Information System (INIS)

    Swadzba, S.

    1987-01-01

    The importance of nuclear energy for the economy of the EEC countries is decsribed. Its consumption is growing in last years as well as its share in the production of electrical energy and in the global consumption of primary energy. These tendencies are numerically illustrated. The strategic importance of nuclear energy and its economic advantages for the EEC are shown too. 3 refs., 4 tabs. (author)

  19. Economic chances and problems of the peaceful uses of nuclear energy in an evolutionary context

    International Nuclear Information System (INIS)

    Hohn, B.

    1992-01-01

    To organize and ensure energy supply is of pivotal importance for social development. Therefore, the paper focuses on the issue of nuclear energy within the stress field of society, technology, energy and evolution. Nuclear energy use is studied with regard to its evolutionary fit, on the basis of an integrating analysis overriding economic considerations. So the criterion of customary economics is expanded by the evaluation criterion of evolutionary principles. After considering the theoretical structure of environment and resource economy and its limits, the evolutionary background of energy and energy use is examined. Evolution strategies are outlined to show how structures and orders are formed in the course of evolution and how energy resources are exploited. In view of the global ecological crisis, solution strategies require a solid concept of an evolutionary fitting energy system the requirement profile of which can be obtained, by means of fitting criteria, from a synthesis of economic theory and the outlined evolution strategies. In order to sound the evolutionary fit of nuclear energy use on the basis of the theoretical foundations of economics and evolution and of the fitting criteria obtained from their synthesis, the status of the problem and its multifacetted interconnections are structured. Critical analysis of the peaceful use of nuclear energy is performed by means of a systematics which is to ensure that the mental order gradually approaches the evaluation of the evolutionary fit of nuclear power. (orig./HSCH) [de

  20. Energy: nuclear energy

    International Nuclear Information System (INIS)

    Lung, M.

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  1. Nuclear energy and economic competitiveness in several normative systems; Energia nuclear y competitividad economica en varios sistemas normativos

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S. [University of Greenwich, 30 Park Row, London SE10 9LS (United Kingdom)

    2009-07-01

    The serious challenge imposed by the necessity of reducing the gases emission of greenhouse effect in the electric generation sector, it has renovated the interest in the new plants construction of nuclear energy. Nevertheless, since the use of the nuclear energy began to descend ago more of 25 years, it is has speculated continually about the possible nuclear rebirth. Are such predictions based in solid basis or are mere groundless prognostics? The objective of the present document is to analyze the economic aspects of the nuclear energy, to identify the key factors that they allow to determine its competitiveness and to sound the possible markets for the new plants of nuclear energy. To achieve this, it is divided in the following sections: Revision of the current state of the nuclear energy, including the location, the type and capacity of the plants; Identification of the variables that determine the economic situation of the nuclear energy; Revision of the recent predictions and of the economic aspects of the Olkiluoto nuclear power plant of Finland; A revision by market of the possible future of the new nuclear facilities in the coming decade. (Author)

  2. Economic and geopolitical dimensions of renewable vs. nuclear energy in North Africa

    International Nuclear Information System (INIS)

    Marktanner, Marcus; Salman, Lana

    2011-01-01

    Addressing issues of renewable energy in North Africa must incorporate concerns regarding the compatibility of energy mixes with the nature of political regimes, their geopolitical relevance, and their socio-economic effects, in addition to economic cost-benefit deliberations. One important and under-researched aspect of nuclear energy refers to the trade-off between socio-economic development and political power conservation. Competing interests in North Africa's energy market as well as aspects of regional cooperation capacity are important when assessing the choice between renewable and nuclear energy. Therefore, the future course of meeting North Africa's energy needs is subject to a complex political and economic interplay between domestic and geopolitical development interests. The objective of this paper is to explore this complexity in more detail. We argue that the identification of any energy alternative as superior is hardly convincing unless certain standards of inclusive governance are met. We also find that it is important to highlight political-economic differences between energy importers like Morocco and Tunisia and energy exporters like Algeria, Libya, and Egypt. - Research highlights: → North Africa confronted with severe energy supply challenges in near future. → Trade-off between socio-economic development and political power conservation matters. → Economic and geopolitical dimensions of trade-off heterogeneous across North Africa.

  3. OIL MARKET, NUCLEAR ENERGY CONSUMPTION AND ECONOMIC GROWTH: EVIDENCE FROM EMERGING ECONOMIES

    Directory of Open Access Journals (Sweden)

    Hanan Naser

    2014-04-01

    Full Text Available This paper empirically examines the relationship between oil consumption, nuclear energy consumption, oil price and economic growth in four emerging economies (Russia, China, South Korea, and India over the period from 1965 to 2010. Applying a modified version of the granger causality test developed by Toda and Yamamoto, we find that the level of world crude oil prices (WTI plays a crucial role in determining the economic growth in the investigated countries. The results suggest that there is a unidirectional causality running from real GDP to oil consumption in China and South Korea, while bidirectional relationship between oil consumption and real GDP growth appears in India. Furthermore, the results propose that while nuclear energy stimulates economic growth in both South Korea and India, the rapid increase in China economic growth requires additional usage of nuclear energy.

  4. Nuclear energy

    International Nuclear Information System (INIS)

    Hesketh, Ross.

    1985-01-01

    The subject is treated under the headings: nuclear energy -what is it; fusion (principles; practice); fission (principles); reactor types and systems (fast (neutron) reactors as breeders; fast reactors; thermal reactors; graphite-moderated thermal reactors; the CANDU reactor; light water reactors - the BWR and the PWR); the nuclear fuel cycle (waste storage; fuel element manufacture; enrichment processes; uranium mining); safety and risk assessment; the nuclear power industry and the economy (regulating authorities; economics; advantages and disadvantages). (U.K.)

  5. Can renewable energy replace nuclear power in Korea? An economic valuation analysis

    International Nuclear Information System (INIS)

    Park, Soo Ho; Jung, Woo Jin; Kim, Tae Hwan; Lee, Sang Yong Tom

    2016-01-01

    This paper studies the feasibility of renewable energy as a substitute for nuclear and energy by considering Korean customers' willingness to pay (WTP). For this analysis, we use the contingent valuation method to estimate the WTP of renewable energy, and then estimate its value using ordered logistic regression. To replace nuclear power and fossil energy with renewable energy in Korea, an average household is willing to pay an additional 102,388 Korean Won (KRW) per month (approx. US $85). Therefore, the yearly economic value of renewable energy in Korea is about 19.3 trillion KRW (approx. US $16.1 billion). Considering that power generation with only renewable energy would cost an additional 35 trillion KRW per year, it is economically infeasible for renewable energy to be the sole method of low-carbon energy generation in Korea

  6. Can Renewable Energy Replace Nuclear Power in Korea? An Economic Valuation Analysis

    Directory of Open Access Journals (Sweden)

    Soo-Ho Park

    2016-04-01

    Full Text Available This paper studies the feasibility of renewable energy as a substitute for nuclear and energy by considering Korean customers' willingness to pay (WTP. For this analysis, we use the contingent valuation method to estimate the WTP of renewable energy, and then estimate its value using ordered logistic regression. To replace nuclear power and fossil energy with renewable energy in Korea, an average household is willing to pay an additional 102,388 Korean Won (KRW per month (approx. US $85. Therefore, the yearly economic value of renewable energy in Korea is about 19.3 trillion KRW (approx. US $16.1 billion. Considering that power generation with only renewable energy would cost an additional 35 trillion KRW per year, it is economically infeasible for renewable energy to be the sole method of low-carbon energy generation in Korea.

  7. Can renewable energy replace nuclear power in Korea? An economic valuation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Ho [Korea Institute for Advancement of Technology, Korea Technology Center, Seoul (Korea, Republic of); Jung, Woo Jin [Graduate School of Information, Yonsei University, Seoul (Korea, Republic of); Kim, Tae Hwan; Lee, Sang Yong Tom [School of Business, Hanyang University, Seoul (Korea, Republic of)

    2016-04-15

    This paper studies the feasibility of renewable energy as a substitute for nuclear and energy by considering Korean customers' willingness to pay (WTP). For this analysis, we use the contingent valuation method to estimate the WTP of renewable energy, and then estimate its value using ordered logistic regression. To replace nuclear power and fossil energy with renewable energy in Korea, an average household is willing to pay an additional 102,388 Korean Won (KRW) per month (approx. US $85). Therefore, the yearly economic value of renewable energy in Korea is about 19.3 trillion KRW (approx. US $16.1 billion). Considering that power generation with only renewable energy would cost an additional 35 trillion KRW per year, it is economically infeasible for renewable energy to be the sole method of low-carbon energy generation in Korea.

  8. Global economics/energy/environmental (E{sup 3}) modeling of long-term nuclear energy futures

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A.; Davidson, J.W.; Bathke, C.G.; Arthur, E.D.; Wagner, R.L. Jr.

    1997-09-01

    A global energy, economics, environment (E{sup 3}) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Using this model, consistent nuclear energy scenarios are constructed. A spectrum of future is examined at two levels in a hierarchy of scenario attributes in which drivers are either external or internal to nuclear energy. Impacts of a range of nuclear fuel-cycle scenarios are reflected back to the higher-level scenario attributes. An emphasis is placed on nuclear materials inventories (in magnitude, location, and form) and their contribution to the long-term sustainability of nuclear energy and the future competitiveness of both conventional and advanced nuclear reactors.

  9. Chinese imperative: nuclear energy to bridge geographic and economic gaps

    International Nuclear Information System (INIS)

    Tson'yu, T.

    1995-01-01

    Strategic aims and macroeconomical indices on nuclear power engineering are briefly considered. Forecasts on growth of indices for NPP electrical power production are presented. The social-geographical causes and specificity of China stimulating the broad-scale development of nuclear power engineering in China are emphasized. 2 figs.; 1 tab

  10. CO2 emissions, nuclear energy, renewable energy and economic growth in the US

    International Nuclear Information System (INIS)

    Menyah, Kojo; Wolde-Rufael, Yemane

    2010-01-01

    This study explores the causal relationship between carbon dioxide (CO 2 ) emissions, renewable and nuclear energy consumption and real GDP for the US for the period 1960-2007. Using a modified version of the Granger causality test, we found a unidirectional causality running from nuclear energy consumption to CO 2 emissions without feedback but no causality running from renewable energy to CO 2 emissions. The econometric evidence seems to suggest that nuclear energy consumption can help to mitigate CO 2 emissions, but so far, renewable energy consumption has not reached a level where it can make a significant contribution to emissions reduction.

  11. Nuclear energy 1985: Nuclear power as an economic factor of growing importance

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Summary of the results of the Technical Sessions and Poster Sessions of the ten Technical Sections: Reactor physics; thermodynamics and fluid dynamics; safety of nuclear facilities; fuel cycle and waste management; fuel elements and fuel element materials; components and component materials; quality assurance; construction and operation of nuclear facilities; fusion technology; energy systems - energy industry; atomic law, radiation protection law, law on the protection against misances, related fields of law. Separate records are available for each paper. (HP) [de

  12. Energy economics and supply

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This section of the book, Part I, consists of four chapters (1--4). Chapter 1, Energy and the Economic Future, covers the following subjects: general economics of energy; predicting energy demand; a model of energy and the economy; and interpretations. Chapter 2, Uranium and Fossil Fuel Supplies, covers the following subjects: uranium resources; oil and gas supplies; coal resources. Chapter 3, Economics of Nuclear Power, covers information on sources of uncertainty; cost of nuclear power; cost of coal-generated electricity. Chapter 4, Alternative Energy Sources, sums information on solar energy, geothermal energy, fusion power, conservation, and transmission

  13. The impact of economic uncertainty on the energy decision making process: Nuclear energy in Israel

    International Nuclear Information System (INIS)

    Bargur, J.

    1984-01-01

    The study presented here is based on an analysis undertaken to evaluate the feasibility of establishing nuclear power plants in Israel. While the actual figures for the various sensitivity tests are somewhat disguised because of the sensitivity of the topic, the relative impact of moving from one assumption to another is presented and analysed. A matrix of qualitative results has been formulated for this analysis and, once these relationships have been established qualitatively, subjective weights have been applied to the various assumptions of the three most relevant parameters, the deviations from the most probable coal price, discount rate and level of investment. The analysis evaluates the impact of these weights on the decision as to whether the project prospects are most favourable, are of marginal value, or should be rejected. The significance of this analysis is its demonstration of the major role to be played by the economic planner within each country, and his responsibility to provide macro-economic guidelines for evaluating major infrastructural undertakings such as energy projects

  14. Nuclear energy economics in a sustainable development perspective

    International Nuclear Information System (INIS)

    Bertel, E.; Morrison, R.

    2001-01-01

    In order to contribute effectively to sustainable development goals, a technology option must meet the test of economic efficiency to justify its use of scarce capital. However, in a sustainable development perspective, this test should be considered in a broad context, taking into account the need to preserve capital assets of all kinds: natural, man-made, human and social. Assessments of competitiveness in this context should be based upon comparisons of full costs to society of a product or a service. At present, many of the costs associated with the supply of goods and services are not reflected in their market prices. Economists are looking for ways of valuing these costs and incorporating them into price, i.e. internalizing the externalities. Within a sustainable development framework, getting the prices right so that market mechanisms can operate efficiently implies taking into account social and environmental costs for present and future generations. On that basis, the comparative assessment of alternative technologies will become an effective policy-making tool. (authors)

  15. Economics of nuclear power

    International Nuclear Information System (INIS)

    Reichle, L.F.C.

    1977-01-01

    Mr. Reichle feels that the economic advantages of pursuing nuclear power should prompt Congress and the administration to seek ways of eliminating undue delays and enabling industry to proceed with the design, construction, and management of nuclear plants and facilities. Abundant, low-cost energy, which can only be supplied by coal and nuclear, is vital to growth in our gross national product, he states. While conservation efforts are commendable, we must have more energy if we are to maintain our standard of living. Current energy resources projections into the next century indicate an energy gap of 42 quads with a 3 percent growth and 72 quads with a 4 percent growth. Comparisons of fuel prices, plant capital investment, and electric generation costs are developed for both coal and nuclear energy; these show that nuclear energy has a clear advantage economically as long as light water reactors are supplemented by breeder reactor development and the nuclear industry can demonstrate that these reactors are safe, reliable, and compatible with the environment. Mr. Reichle says excessive regulation and legal challenges combined with public apathy toward developing nuclear energy are delaying decisions and actions that should be taken now

  16. Economics of seawater desalination with innovative nuclear reactors and other energy sources: the EURODESAL project

    International Nuclear Information System (INIS)

    Nisan, S.; Volpi, L.

    2004-01-01

    This paper summarises our recent investigations undertaken as part of the EURODESAL project on nuclear desalination, which were carried out by a consortium of four EU and one Canadian, Industrials and two leading EU R and D organisations. Major results of the project, in particular of its economic evaluation work package as discussed in this paper, are: 1. A coherent demonstration of the technical feasibility of nuclear desalination through the development of technical principles for the optimum cogeneration of electricity and water and by exploring the unique capabilities of the innovative nuclear reactors and desalination technologies; verification that the integrated system design does not adversely affect nuclear reactor safety. 2. The development of codes and methods for an objective assessment of the competitiveness and sustainability of proposed solutions through comparison, in European conditions, with fossil and renewable energy based solutions. The results obtained so far seem to be quite encouraging as regards the economical viability of nuclear desalination options. Thus, for example, specific desalination costs ($/m 3 of desalted water) for nuclear systems such as the AP600 and the French PWR900 (reference base case), coupled to Multiple Effect Distillation (MED) or the Reverse Osmosis (RO) processes, are 30% to 60% lower than fossil energy based systems using pulverised coal and natural gas with combined cycle, at low discount rates and recommended fuel prices. Even in the most unfavourable scenarios for nuclear energy (discount rates = 10%, low fossil fuel prices) desalination costs with the nuclear options with the nuclear reactors are 7% to 15% lower, depending upon the desalination capacities. Furthermore, with the high performance coupling schemes developed by the EURODESAL partners, the specific desalination costs of nuclear systems are reduced by another 2% to 14%, even without system and design optimisation. (author)

  17. The Economic Potential of Two Nuclear-Renewable Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    This report is one of a series of reports that investigate the technical and economic aspects of Nuclear-Renewable Hybrid Energy Systems. It provides the results of an analysis of two scenarios. The first is a Texas-synthetic gasoline scenario and the second is an Arizona-desalination scenario. The analysis focuses on the economics of the N-R HESs and how they compare to other options, including configurations without all the subsystems in each N-R HES and alternatives in which natural gas provides the energy.

  18. Economics and environmental impacts of nuclear energy in comparison with other energy systems

    International Nuclear Information System (INIS)

    Bennett, L.

    1994-01-01

    The results of the 1992 OECD/NEA-IEA study on comparative electricity generation costs of nuclear and fossil-fuelled power plants are presented. It is focused on plants that could be commercially available for commissioning in the year 2000 or shortly thereafter. The generation costs for nuclear, relative to coal or natural gas fuelled power plants, are shown. The attractiveness of these three main fuel options for large base load power stations for commissioning around the year 2000 is critically dependent on the discount rate required by the utility or government. Higher discount rates (10%) favour the low investment cost option, gas, whilst lower discount rates (5%) favour the low fuel cost option. The role of nuclear power in avoiding greenhouse gas emissions is illustrated, as well as penetration of nuclear power, displacing fossil fuels for electricity generation and annual change in CO 2 emissions in varies countries from 1975 to 1992 as a function of the nuclear share in electricity generation for 1992. A comparison between quantities of fuel and wastes for nuclear and fossil fuelled power plants is given. Some issues of impacts of particular energy sources on health and the environment are outlined. In the conclusions, nuclear power is considered to be the most likely non-fossil-fuel technology that could be deployed on a large scale for electricity generation, if the objectives of advanced nuclear power development programmes are met and social acceptability of nuclear energy is reached. 9 figs., 2 ann., 16 refs. (I.P.)

  19. Energy policy, economic and engineering issues of the extension of Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Aszodi, Attila; Boros, Ildiko; Kovacs, Arnold

    2014-01-01

    The four operating blocks of the Paks Nuclear Power Plant are of Russian design. They entered into operation three decades ago, between 1982 and 1987. In 2013 they produced 15 TWh out of the 42 TWh energy consumption of Hungary, that is they produced 36% of the energy demand. In the beginning of 2014 the Hungarian and the Russian governments signed the agreement on the extension of Paks site with building two new blocks, producing 1200 MW each. The paper summarizes the energy policy, engineering, safety and economic aspects of the extension. (TRA)

  20. Electricity and nuclear energy

    International Nuclear Information System (INIS)

    Krafft, P.

    1987-01-01

    Consequences of getting out from nuclear energy are discussed. It is concluded that the Chernobyl accident is no reason to withdraw confidence from Swiss nuclear power plants. There are no sufficient economizing potential and other energies at disposal to substitute nuclear energy. Switching to coal, oil and gas would increase environmental damages. Economic and social cost of getting out would be too high

  1. Nuclear power economics

    Energy Technology Data Exchange (ETDEWEB)

    Emsley, Ian; Cobb, Jonathan [World Nuclear Association, London (United Kingdom)

    2017-04-15

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  2. Nuclear power economics

    International Nuclear Information System (INIS)

    Emsley, Ian; Cobb, Jonathan

    2017-01-01

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  3. The Economic Potential of Two Nuclear-Renewable Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    Tightly coupled nuclear-renewable hybrid energy systems (N-R HESs) are an option that can generate zero-carbon, dispatchable electricity and provide zero-carbon energy for industrial processes at a lower cost than alternatives. N-R HESs are defined as systems that are managed by a single entity and link a nuclear reactor that generates heat, a thermal power cycle for heat to electricity conversion, at least one renewable energy source, and an industrial process that uses thermal and/or electrical energy. This report provides results of an analysis of two N-R HES scenarios. The first is a Texas-synthetic gasoline scenario that includes four subsystems: a nuclear reactor, thermal power cycle, wind power plant, and synthetic gasoline production technology. The second is an Arizona-desalination scenario with its four subsystems a nuclear reactor, thermal power cycle, solar photovoltaics, and a desalination plant. The analysis focuses on the economics of the N-R HESs and how they compare to other options, including configurations without all the subsystems in each N-R HES and alternatives where the energy is provided by natural gas.

  4. The Economic Potential of Nuclear-Renewable Hybrid Energy Systems Producing Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    This report is one in a series of reports that Idaho National Laboratory and the Joint Institute for Strategic Energy Analysis are publishing that address the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). This report discusses an analysis of the economic potential of a tightly coupled N-R HES that produces electricity and hydrogen. Both low and high temperature electrolysis options are considered in the analysis. Low-temperature electrolysis requires only electricity to convert water to hydrogen. High temperature electrolysis requires less electricity because it uses both electricity and heat to provide the energy necessary to electrolyze water. The study finds that, to be profitable, the examined high-temperature electrosis and low-temperature electrosis N-R HES configurations that produce hydrogen require higher electricity prices, more electricity price volatility, higher natural gas prices, or higher capacity payments than the reference case values of these parameters considered in this analysis.

  5. The rank of nuclear technology in terms of economic policy and energy policy

    International Nuclear Information System (INIS)

    Engelmann, U.

    1984-01-01

    Once the nuclear power plants presently under construction are completed, the exisiting basic load deficit will be done with, except for regional peculiarities. The need for redeployment of the power plant pool caused by the 1973/74 energy crisis is then virtually exhausted in terms of basic load. Taking into consideration the special role of black coal in power production, further nuclear power plants will be necessary in the Federal Republic of Germany mainly if the power demand increases and/or to replace decommissioned plants. The role of nuclear technology is not restricted to the domestic demand; particularly in threshold countries the market can provide some compensation. Nuclear technology is a factor of economic policy; the Federal Government points this out in its negotiations with foreign countries. However, it is noteworthy that the third biggest political party in the Federal Republic of Germany want to stop all presently existing nuclear power plants. The best rebuttal of such political debate is properly operating nuclear plants and the steadily growing percentage of electricity they produce as well as lower electricity price in those Lander of the Federal Republic of Germany who did not put on ideological blinkers in face of nuclear technology. (orig./HSCH) [de

  6. On the cointegration and causality between oil market, nuclear energy consumption, and economic growth: evidence from developed countries

    International Nuclear Information System (INIS)

    Naser, Hanan

    2017-01-01

    This study uses Johansen cointegration technique to examine both the equilibrium relationship and the causality between oil consumption, nuclear energy consumption, oil price and economic growth. To do so, four industrialized countries including the USA, Canada, Japan, and France are investigated over the period from 1965 to 2010. The cointegration test results suggest that the proposed variables tend to move together in the long run in all countries. In addition, the causal linkage between the variables is scrutinized through the exogeneity test. The results point that energy consumption (i.e., oil or nuclear) has either a predictive power for economic growth, or feedback impact with real GDP growth in all countries. Results suggest that oil consumption is not only a major factor of economic growth in all the investigated countries, it also has a predictive power for real GDP in the USA, Japan, and France. Precisely, increasing oil consumption by 1% increases the economic growth in Canada by 3.1%., where increasing nuclear energy consumption by 1% in Japan and France increases economic growth by 0.108 and 0.262%, respectively. Regarding nuclear energy consumption-growth nexus, results illustrate that nuclear energy consumption has a predictive power for real economic growth in the USA, Canada, and France. On the basis of speed of adjustment, it is concluded that there is bidirectional causality between oil consumption and economic growth in Canada. On the other hand, there is bidirectional causal relationship between nuclear energy consumption and real GDP growth in Japan. (orig.)

  7. On the cointegration and causality between oil market, nuclear energy consumption, and economic growth: evidence from developed countries

    Energy Technology Data Exchange (ETDEWEB)

    Naser, Hanan [Arab Open University, Faculty of Business Studies, A' ali (Bahrain)

    2017-06-15

    This study uses Johansen cointegration technique to examine both the equilibrium relationship and the causality between oil consumption, nuclear energy consumption, oil price and economic growth. To do so, four industrialized countries including the USA, Canada, Japan, and France are investigated over the period from 1965 to 2010. The cointegration test results suggest that the proposed variables tend to move together in the long run in all countries. In addition, the causal linkage between the variables is scrutinized through the exogeneity test. The results point that energy consumption (i.e., oil or nuclear) has either a predictive power for economic growth, or feedback impact with real GDP growth in all countries. Results suggest that oil consumption is not only a major factor of economic growth in all the investigated countries, it also has a predictive power for real GDP in the USA, Japan, and France. Precisely, increasing oil consumption by 1% increases the economic growth in Canada by 3.1%., where increasing nuclear energy consumption by 1% in Japan and France increases economic growth by 0.108 and 0.262%, respectively. Regarding nuclear energy consumption-growth nexus, results illustrate that nuclear energy consumption has a predictive power for real economic growth in the USA, Canada, and France. On the basis of speed of adjustment, it is concluded that there is bidirectional causality between oil consumption and economic growth in Canada. On the other hand, there is bidirectional causal relationship between nuclear energy consumption and real GDP growth in Japan. (orig.)

  8. Nuclear energy

    International Nuclear Information System (INIS)

    Kuhn, W.

    1986-01-01

    This loose-leaf collection is made up of five didactically prepared units covering the following subjects: basic knowledge on nuclear energy, nuclear energy in relation to energy economy, site issues, environmental compatibility of nuclear energy, and nuclear energy in the focus of political and social action. To this was added a comprehensive collection of material: specific scientific background material, a multitude of tables, diagrams, charts etc. for copying, as well as 44 transparent charts, mostly in four colours. (orig./HP) [de

  9. Analysis of economic and infrastructure issues associated with hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Summers, W.A.; Gorensek, M.B.; Danko, E.; Schultz, K.R.; Richards, M.B.; Brown, L.C.

    2004-01-01

    Consideration is being given to the large-scale transition of the world's energy system from one based on carbon fuels to one based on the use of hydrogen as the carrier. This transition is necessitated by the declining resource base of conventional oil and gas, air quality concerns, and the threat of global climate change linked to greenhouse gas emissions. Since hydrogen can be produced from water using non-carbon primary energy sources, it is the ideal sustainable fuel. The options for producing the hydrogen include renewables (e.g. solar and wind), fossil fuels with carbon sequestration, and nuclear energy. A comprehensive study has been initiated to define economically feasible concepts and to determine estimates of efficiency and cost for hydrogen production using next generation nuclear reactors. A unique aspect of the study is the assessment of the integration of a nuclear plant, a hydrogen production process and the broader infrastructure requirements. Hydrogen infrastructure issues directly related to nuclear hydrogen production are being addressed, and the projected cost, value and end-use market for hydrogen will be determined. The infrastructure issues are critical, since the combined cost of storing, transporting, distributing, and retailing the hydrogen product could well exceed the cost of hydrogen production measured at the plant gate. The results are expected to be useful in establishing the potential role that nuclear hydrogen can play in the future hydrogen economy. Approximately half of the three-year study has been completed. Results to date indicate that nuclear produced hydrogen can be competitive with hydrogen produced from natural gas for use at oil refineries or ammonia plants, indicating a potential early market opportunity for large-scale centralized hydrogen production. Extension of the hydrogen infrastructure from these large industrial users to distributed hydrogen users such as refueling stations and fuel cell generators could

  10. Technical and economical conditions of nuclear energy usage continuation in Lithuania

    International Nuclear Information System (INIS)

    Gylys, J.; Ziedelis, S.; Klevas, V.

    2005-01-01

    The main producer of electric energy in Lithuania is Ignalina NPP with its two RBMK-1500 type reactors. It covers up to 86% of total annual electricity production. The compulsory premature closure of Ignalina NPP due to the decision of EU authorities will decrease maximum power generating capacity to 3273 MW in the year 2010 (slump of 42% in respect to 5698 MW of the year 2000) and it will cause a complex of serious technical, economical, ecological, and social consequences. The most important ones for energy sector are the negative power balance and the shortage of power generating capacity which can emerge straight after closure of the second unit of Ignalina NPP. An attempt has been taken to prove, that the most realistic way for replacement of lost power generating capacities is the construction of new nuclear or combined cycle gas turbine power plants. The results of the comparative analysis of their effectiveness and competitiveness are presented in the paper. Estimating the basic prevailing technical and economical factors and three possible scenarios of economy growth, the changes of power balance and levelised cost of produced electricity are compared. It is demonstrated that a new modern nuclear power plant would be competitive and it would be even a more favourable option in respect to a combined cycle gas turbine power plant due to the relatively lower energy production cost, especially when estimating the possible future growth of price for fossil fuel. (authors)

  11. Nuclear energy

    International Nuclear Information System (INIS)

    1978-01-01

    2 1/2 years ago a consultation group was formed to help the Section for Social Questions of the Council of Churches in the Netherlands, to answer questions in the area of nuclear energy. During this time the character of the questions has changed considerably. In the beginning people spoke of fear and anxiety over the plans for the application of this new technical development but later this fear and anxiety turned to protest and opposition. This brochure has been produced to enlighten people and try and answer their alarm, by exploring the many facets of the problems. Some of these problems are already being deeply discussed by the public, others play no role in the forming of public opinion. The points of view of the churches over nuclear energy are not expressed, the brochure endeavours to express that nuclear energy problems are a concern for the churches. Technical and economic information and the most important social questions are discussed. (C.F.)

  12. Nuclear Energy in Europe does not involve only Economic and Technical issues

    International Nuclear Information System (INIS)

    Lallier, M.; Blanchon, B.; Barra, J.

    2010-01-01

    In the past, France built its fleet of nuclear power plants from a purely national perspective. Today, all nuclear stakeholders are faced with the Europeanization of projects at a time when there is an upsurge of interest in this form of energy. Each program has to achieve a balance between on the one hand design, operation and regulation, and on the other the industrial, economic and social policies of each country. One very important point is the disparity between the nuclear and safety cultures of the States intending to make use of this power source. In this very particular industry, industrial and occupational risks are closely linked. Technical progress has indeed been made, but the role of the human individual, despite being a strong link in the safety chain, is currently under-estimated. Recognition of the place of the individual, human health protection, the professional culture and high-level social guarantees are all inseparable from nuclear safety. As recognised by recent studies, widespread use of subcontracting, the resulting flow of workers between States and social dumping all jeopardize worker skills and health. The construction of a European hub responsible for the overall design of nuclear safety and radiation protection, tailored to the reality of each country, is therefore essential. What is needed is transparency, with an efficient social dialogue but also under the control of the citizens and staff... while going far beyond the confines of Europe. (authors)

  13. Energy system, electricity market and economic studies on increasing nuclear power capacity

    International Nuclear Information System (INIS)

    Forsstrom, J.; Pursiheimo, E.; Kekkonen, V.; Honkatukia, J.

    2010-04-01

    Objective of this research project is to examine effects of addition of nuclear capacity from three different angles by using energy system, electricity market and economic analysis. In each area the analysis is based on computational methods. Finland is a member of Nordic electricity market which is further connected to networks of Continental Europe and Russia. Due to the foreign connections Finland has been able to import inexpensive electricity from its neighboring countries and this state is expected to continue. Addition of nuclear capacity lowers electricity import demand, affects level of electricity price decreasingly and decreases shortfall of installed production capacity. Substantial additions of nuclear power capacity and generous import supply have disadvantageous effect on profitability of combined heat and power production. The development of import possibilities depends on progression of difficult-to-estimate balance between electricity consumption and production in the neighboring countries. Investments on nuclear power increase national product during the construction phase. Growth of employment is also rather significant, especially during the construction phase. In the long term permanent jobs will be created too. Increase of employment is held back by increasing real wages, but it is though evident that consumer purchasing power is improved due to these nuclear power developments. (orig.)

  14. The prospects of nuclear energy in the economy of the European Economic Community by 2000

    International Nuclear Information System (INIS)

    Swadzba, S.

    1987-01-01

    The forecast for nuclear energy in the EEC countries by 2000 on the base of the growth of national income and energy demand is presented. There are discussed the prospects of electric energy production and the part of nuclear energy in it asa well as the expected share of nuclear energy in the consumption and in the production of primary energy. A short appraisal of these forecasts is presented. 5 tabs. (author)

  15. Desalting and Nuclear Energy

    Science.gov (United States)

    Burwell, Calvin C.

    1971-01-01

    Future use of nuclear energy to produce electricity and desalted water is outlined. Possible desalting processes are analyzed to show economic feasibility and the place in planning in world's economic growth. (DS)

  16. Analysing the long-run relationship among oil market, nuclear energy consumption, and economic growth: An evidence from emerging economies

    International Nuclear Information System (INIS)

    Naser, Hanan

    2015-01-01

    The primary objectives of this paper is to scrutinize the long-run relationship and the causal linkage between oil consumption, nuclear energy consumption, oil prices and economic growth. For this purpose, Johansen cointegration technique is applied using time series data for four emerging economies: Russia, China, South Korea and India, over the period from 1965 to 2010. Johansen cointegration results indicate that there is a long-run relationship between the proposed variables in each country. Exclusion tests show that both energy sources enter the cointegration space significantly (except for Russia), which suggests that energy has a long-run impact on economic growth. Results of the causal linkage between the variables point that energy consumption (i.e., oil or nuclear) has either a predictive power for economic growth, or a feedback impact between with real Gross Domestic Product (GDP) growth in all countries. Hence, energy conservation policies might harmful negative consequences on the growth of economic for this group of countries. - Highlights: • There is a long-run relationship among oil market, nuclear energy consumption, and economic growth. • Countries are energy dependent in stimulating economic growth. • There is feedback impact between oil consumption and economic growth in three out of four countries. • An increase in oil prices has drawbacks on emerging economies growth

  17. Nuclear economics and privatisation

    International Nuclear Information System (INIS)

    Evans, N.L.

    1987-01-01

    In this paper the compatibility of the British government's two policies of privatisation of the electricity supply industry and the development of nuclear power is considered. The structures that a privatised electricity supply industry might have looked at, especially those which might have greatest effect on the position of nuclear power. Only three alternatives for Sizewell-B - a pressurized water reactor, an advanced gas-cooled reactor or a large coal-fired power station were considered. The economic case was made using a discount rate o 5% -lower than would be taken by private sector companies. This has an important effect on the economic advantage of one fuel over another. Changes in the electricity supply industry with privatisation are discussed. These might lead to consideration of a greater range of options for meeting demand (eg renewable energy sources) as the emphasis would be on profitability. (UK)

  18. Evaluation of economical introduction of nuclear fusion based on a long-term world energy and environment model

    International Nuclear Information System (INIS)

    Tokimatsu, K.; Asaoka, Y.; Okano, K.; Konishi, S.; Ogawa, Y.; Yamaji, K.

    2003-01-01

    Debates about whether or not to invest heavily in nuclear fusion as a future innovative energy option have been made within the context of energy technology development strategies. The time frame by which nuclear fusion could become competitive in the energy market has not been adequately studied, nor has roles of the nuclear fusion in energy systems and the environment. The present study has two objectives. One is to reveal the conditions under which nuclear fusion could be introduced economically (hereafter, we refer to such introductory conditions as breakeven prices) in future energy systems. The other objective is to evaluate the future roles of nuclear fusion in energy systems and in the environment. Here we chose two roles that nuclear fusion will take on when breakeven prices are achieved: i) reduction of annual global total energy systems cost, and ii) mitigation of carbon tax (shadow price of carbon) under CO 2 constraints. Future uncertainties are key issues in evaluating nuclear fusion. Here we treated the following uncertainties: energy demand scenarios, introduction time frame for nuclear fusion, capacity projections of nuclear fusion, CO 2 target in 2100. From our investigations, we conclude that the presently designed nuclear fusion reactors may be ready for economical introduction into energy systems beginning around 2050-2060, and we can confirm that the favorable introduction of the reactors would reduce both the annual energy systems cost and the carbon tax (the shadow price of carbon) under a CO 2 concentration constraint; however, latter introduction of them decreases the cost and the tax less than five times. Earlier introduction of nuclear fusion reactors are desirable for energy systems and environment. (author)

  19. Nuclear energy consumption and economic growth in OECD countries: Cross-sectionally dependent heterogeneous panel causality analysis

    International Nuclear Information System (INIS)

    Nazlioglu, Saban; Lebe, Fuat; Kayhan, Selim

    2011-01-01

    The purpose of this study is to determine the direction causality between nuclear energy consumption and economic growth in OECD countries. The empirical model that includes capital and labor force as the control variables is estimated for the panel of fourteen OECD countries during the period 1980-2007. Apart from the previous studies in the nuclear energy consumption and economic growth relationship, this study utilizes the novel panel causality approach, which allows both cross-sectional dependency and heterogeneity across countries. The findings show that there is no causality between nuclear energy consumption and economic growth in eleven out of fourteen cases, supporting the neutrality hypothesis. As a sensitivity analysis, we also conduct Toda-Yamamoto time series causality method and find out that the results from the panel causality analysis are slightly different than those from the time-series causality analysis. Thereby, we can conclude that the choice of statistical tools in analyzing the nature of causality between nuclear energy consumption and economic growth may play a key role for policy implications. - Highlights: → Causality between nuclear energy consumption and economic growth is examined for OECD countries. → Panel causality method, which allows cross-sectional dependency and heterogeneity, is utilized. → The neutrality hypothesis is supported.

  20. Nuclear power in the energy economics of the German Democratic Republic

    International Nuclear Information System (INIS)

    Hildebrand, H.J.

    1977-01-01

    The present structure of the energy economy in the German Democratic Republic (East Germany) is described and the need of nuclear power stations for the future supply of energy is demonstrated. The selection of the type of nuclear reactor, the existing operating experience with nuclear equipment and the collaboration in this field with the U.S.S.R. is described. The training of personnel in nuclear techniques is noted. (H.E.G.)

  1. Nuclear energy

    International Nuclear Information System (INIS)

    Wethe, Per Ivar

    2009-01-01

    Today we know two forms of nuclear energy: fission and fusion. Fission is the decomposition of heavy nuclei, while fusion is the melting together of light nuclei. Both processes create a large surplus of energy. Technologically, we can currently only use fission to produce energy in today's nuclear power plants, but there is intense research worldwide in order to realize a controlled fusion process. In a practical context, today's nuclear energy is a sustained source of energy since the resource base is virtually unlimited. When fusion technology is realized, the resource supply will be a marginal problem. (AG)

  2. Energy economics

    Energy Technology Data Exchange (ETDEWEB)

    Develi, Abdulkadir; Kaynak, Selahattin (eds.)

    2012-07-01

    Energy resources, the basic input in every area of the economy, have a fundamental function for society's welfare. Traditional energy resources are, however, rapidly decreasing. Energy supply has been falling behind in meeting global demand, and is causing increased focus on efficiency and economy concepts in recent energy policies. Since the existing energy resources are not spread evenly among the countries, but instead are concentrated in certain regions and countries, a monopolistic situation arises. Equally, supply assurance is an issue, since the energy supply is held by certain regions and countries who have monopolistic pricing power. Both the EU and many other countries are studying how to marketize energy. This book focuses on the importance of energy and the problems posed by it. It will be useful for the academic community, related sectors and decision makers.

  3. Sustainable nuclear energy dilemma

    Directory of Open Access Journals (Sweden)

    Afgan Naim H.

    2013-01-01

    Full Text Available Sustainable energy development implies the need for the emerging potential energy sources which are not producing adverse effect to the environment. In this respect nuclear energy has gained the complimentary favor to be considered as the potential energy source without degradation of the environment. The sustainability evaluation of the nuclear energy systems has required the special attention to the criteria for the assessment of nuclear energy system before we can make firm justification of the sustainability of nuclear energy systems. In order to demonstrate the sustainability assessment of nuclear energy system this exercise has been devoted to the potential options of nuclear energy development, namely: short term option, medium term option, long term option and classical thermal system option. Criteria with following indicators are introduced in this analysis: nuclear indicator, economic indicator, environment indicator, social indicator... The Sustainability Index is used as the merit for the priority assessment among options under consideration.

  4. Nuclear power and other energy sources in the context of a smooth and practical social and economic development

    International Nuclear Information System (INIS)

    Sumitra, T.

    1996-01-01

    The dilemma on the adoption of nuclear energy for electricity generation has been going on for many years. On the one hand, nuclear energy is considered to be technically proven, relatively cheap and environmental friendly but concerns about the risk of a major accident and safe disposal of long-lived radioactive wastes are still controversial. On the other hand, the hope for cheap, clean and practical energy sources, such as renewable energy sources, is still alive and often cited as the real and only alternative to fossil fuels. This paper describes some arguments concerning all alternatives in the context of a smooth and practical social and economic development of a country. (author)

  5. Economics of nuclear power

    International Nuclear Information System (INIS)

    Roth, B.F.

    1977-01-01

    The economics of electricity supply and production in the FRG is to see on the background of the unique European interconnected grid system which makes very significant contributions to the availability of standby energy and peak load power. On this basis and the existing high voltage grid system, we can build large nuclear generating units and realise the favorable cost aspects per installed KW and reduced standby power. An example of calculating the overall electricity generating costs based on the present worth method is explained. From the figures shown, the sensitivity of the generating costs with respect to the different cost components can be derived. It is apparent from the example used, that the major advantage of nuclear power stations compared with fossil fired stations lies in the relatively small percentage fraction contributed by the fuel costs to the electricity generating costs. (orig.) [de

  6. Nuclear energy consumption, oil prices, and economic growth: Evidence from highly industrialized countries

    International Nuclear Information System (INIS)

    Lee, Chien-Chiang; Chiu, Yi-Bin

    2011-01-01

    This study utilizes the Johansen cointegration technique, the Granger non-causality test of Toda and Yamamoto (1995), the generalized impulse response function, and the generalized forecast error variance decomposition to examine the dynamic interrelationship among nuclear energy consumption, real oil price, oil consumption, and real income in six highly industrialized countries for the period 1965-2008. Our empirical results indicate that the relationships between nuclear energy consumption and oil are as substitutes in the U.S. and Canada, while they are complementary in France, Japan, and the U.K. Second, the long-run income elasticity of nuclear energy is larger than one, indicating that nuclear energy is a luxury good. Third, the results of the Granger causality test find evidence of unidirectional causality running from real income to nuclear energy consumption in Japan. A bidirectional relationship appears in Canada, Germany and the U.K., while no causality exists in France and the U.S. We also find evidence of causality running from real oil price to nuclear energy consumption, except for the U.S., and causality running from oil consumption to nuclear energy consumption in Canada, Japan, and the U.K., suggesting that changes in price and consumption of oil influence nuclear energy consumption. Finally, the results observe transitory initial impacts of innovations in real income and oil consumption on nuclear energy consumption. In the long run the impact of real oil price is relatively larger compared with that of real income on nuclear energy consumption in Canada, Germany, Japan, and the U.S.

  7. Nuclear energy consumption, oil prices, and economic growth: Evidence from highly industrialized countries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chien-Chiang, E-mail: cclee@cm.nsysu.edu.tw; Chiu, Yi-Bin

    2011-03-15

    This study utilizes the Johansen cointegration technique, the Granger non-causality test of Toda and Yamamoto (1995), the generalized impulse response function, and the generalized forecast error variance decomposition to examine the dynamic interrelationship among nuclear energy consumption, real oil price, oil consumption, and real income in six highly industrialized countries for the period 1965-2008. Our empirical results indicate that the relationships between nuclear energy consumption and oil are as substitutes in the U.S. and Canada, while they are complementary in France, Japan, and the U.K. Second, the long-run income elasticity of nuclear energy is larger than one, indicating that nuclear energy is a luxury good. Third, the results of the Granger causality test find evidence of unidirectional causality running from real income to nuclear energy consumption in Japan. A bidirectional relationship appears in Canada, Germany and the U.K., while no causality exists in France and the U.S. We also find evidence of causality running from real oil price to nuclear energy consumption, except for the U.S., and causality running from oil consumption to nuclear energy consumption in Canada, Japan, and the U.K., suggesting that changes in price and consumption of oil influence nuclear energy consumption. Finally, the results observe transitory initial impacts of innovations in real income and oil consumption on nuclear energy consumption. In the long run the impact of real oil price is relatively larger compared with that of real income on nuclear energy consumption in Canada, Germany, Japan, and the U.S.

  8. Nuclear power economics

    International Nuclear Information System (INIS)

    Moynet, G.

    1987-01-01

    The economical comparison of nuclear power plants with coal-fired plants in some countries or areas are analyzed. It is not difficult to show that nuclear power will have a significant and expanding role to play in providing economic electricity in the coming decades. (Liu)

  9. Technical and economic evaluation of potable water production through desalination of seawater by using nuclear energy and other means

    International Nuclear Information System (INIS)

    1992-09-01

    The present report contains an assessment of the need for desalination, information on the most promising desalination processes and energy sources, as well as on nuclear reactor systems proposed by potential suppliers worldwide. The main part of the report is devoted to evaluating the economic viability of seawater desalination by using nuclear energy, in comparison with fossil fuels. This evaluation encompasses a broad range of both nuclear and fossil plant sizes and technologies, and combinations with desalination processes. Finally, relevant safety and institutional aspects are briefly discussed. 27 refs, figs and tabs

  10. The future of nuclear energy in Sweden: An introductory economic analysis

    International Nuclear Information System (INIS)

    Banks, F.E.

    1996-01-01

    According to many observers, Swedish nuclear electricity is the safest in the world, owing to the high technological level in Sweden. This electricity is also among the least expensive because of the high capacity factors in Swedish nuclear installations. Even so, there may soon be an attempt to begin dismantling the Swedish nuclear sector, which in turn, could lead to serious problems for the Swedish macroeconomy. This article attempts to provide an analysis of some of the key economic issues associated with a Swedish nuclear retreat

  11. Stake and limit of nuclear energy on the respect of social, cultural and economic rights of African people

    International Nuclear Information System (INIS)

    KABORE Al Hassan

    2009-06-01

    The development of the capacities of energy production generates economic, social and cultural progress. However the energy production, especially that related to nuclear power, comprises many risks for man and his environment. These risks are primarily related to safety and health. In the developing countries like Burkina Faso, the nuclear engineering is used in the field of socio-economic and cultural development, and is beneficial to agriculture, medicine, the breeding, the research and management of water resources. The use of this nuclear engineering must however be subjected to the safety standards in the prospect of minimizing dangers such as accident risks, the stealing of sealed sources or its use by unqualified people. Its use should also be done in line with respecting human rights according to the convention on the complementary repair of damages. That would help reduce considerably the impacts of the use of nuclear engineering on human rights relating to public health, the environment and to the food [fr

  12. Nuclear energy in Ukraine in the conditions of political-economical crisis

    International Nuclear Information System (INIS)

    Kuharchuk, N. P.; Kosharnaya, O. P.; Siora, A. A.; Reshetitskij, S. V.

    2015-01-01

    From the point of view of energy security, nuclear industry in Ukraine has quite a lot of potential: availability of own raw uranium resources, domestic production of equipment for nuclear power plants, monitoring and control systems for nuclear power plants, design and construction organizations, energy engineering; availability of human resources, personnel training, experience with NPP, the infrastructure to support the operation of nuclear power plants; preservation of low CO 2 emissions. The Ukrainian government considers the priority development of nuclear industry as one of the most urgent tasks at the current stage of development Ukrainian fuel and energy complex, which will be enshrined in the Energy Strategy of Ukraine until 2035, which is in the stage of adoption

  13. Meeting world energy needs. The economic and environmental aspects of the nuclear option

    International Nuclear Information System (INIS)

    Ward, D.P.; Chalpin, D.M.

    1994-01-01

    Tabulated capital, operating, and overall production costs for nuclear, coal, and gas-fuelled power show that nuclear power is a viable option for meeting the world's energy needs. The advantage of nuclear, otherwise limited to certain markets, is seen to be much greater when credit is taken for environmental factors, namely emissions of carbon dioxide and acidic gases by fossil-fuelled plants. 5 figs

  14. Nuclear energy

    International Nuclear Information System (INIS)

    1996-01-01

    Several issues concerning nuclear energy in France during 1996 are presented: permission of a demand for installing underground laboratories in three sites (Marcoule, Bure and Chapelle-Baton); a report assessing the capacity of Superphenix plant to operate as a research tool; the project of merging between Framatome and Gec-Alsthom companies; the revision of a general report on nuclear energy in France; the issue of military plutonium management

  15. The key role of nuclear energy to strengthen economic safety for France and the European Union

    International Nuclear Information System (INIS)

    Jouette, Isabelle; Le Ngoc, Boris; Chenu, Anne; Nieuviaert, Jean-Jacques

    2015-01-01

    This publication first discusses how to improve the external safety (energy independence) for France. It outlines that nuclear energy is a safety factor for the economy, that France needs to reduce its dependence on fossil energies through an electrification of uses, that imports of fossil energies can be reduced by developing nuclear research. In a second part, it discusses how to improve internal supply safety for France and for the EU. It evokes the crisis situation faced by the European electricity market, outlines the need to invest in existing nuclear production capacities, the need to stabilize the electric system, and to take better advantage of non-carbon energies (possible future technological advances of the energy sector are evoked)

  16. Nuclear power, an essential economic and energy policy resource for France

    International Nuclear Information System (INIS)

    Thiriet, Lucien

    1980-01-01

    In the face of oil challenge and its effects on the balance of payments, the nuclear energy development is a key factor in the easing of external pressures and the promotion of both growth and employment [fr

  17. Annual meeting of the nuclear forum Switzerland 2013. The 2050 energy strategy in the context of economic reality

    International Nuclear Information System (INIS)

    Rey, Matthias

    2013-01-01

    At this year's annual meeting of the Nuclear Forum Switzerland (Nuklearforums Schweiz) once again the 2050 Energy Strategy of the Swiss Federal Council (Schweizer Bundesrat) was the main topic. President Corina Eichenberger warned against political arbitrariness and reckless endangerment of the Swiss electricity supply. Instead she called for a more logical, a more rational and more a pragmatic discussion. Accordingly, Eichenberger dismissed clearly politically motivated operation restrictions for Swiss nuclear power plants. The guest speakers Prof. Peter Egger of the Economic Institute of the ETH Zurich and Christoph Mader, President of scienceindustries, discussed consequences of the 2050 energy strategy for economy and industry. About 130 guests from the nuclear industry, politicians and industry took part in the Annual Meeting of the Nuclear Forum to the Hotel Bellevue in Bern Switzerland. Again, the event 'The 2050 energy strategy in the context of economic reality' was of main interest due to the recent energy policy discussions. Corinna Eichenberger, President of the association, stated, that the audience received an deep view into the economic consequences of the 2050 energy strategy from the perspective of science and industry. (orig.)

  18. Nuclear energy option, as seen from the economic point of view

    International Nuclear Information System (INIS)

    Kuehne, K.

    1980-01-01

    The attempt is made to assess realistically the prospects of utilizing nuclear energy. The emphasis is more on realization probabilities in connection with other energy sources than on strategies and planning. In doing so, safety and environmental issues are left out. The developments of nearly two decades are outlined. The data presented come from quotations of numerous recognized studies. As a result, the author is sceptical vis-a-vis the minimum and maximum values set up for individual energy sources by the year 2000. A few critical remarks are made on the economy of nuclear energy compared to coal and petroleum. (UA) [de

  19. Nuclear energy

    International Nuclear Information System (INIS)

    Hladky, S.

    1985-01-01

    This booklet appeared in a series on technical history. It tries to communicate some of the scientific, technical and social stresses, which have been connected with the application of nuclear energy since its discovery. The individual sections are concerned with the following subjects: the search for the 'smallest particles'; the atomic nucleus; nuclear fission; the 'Manhattan Project'; the time after this - from the euphoria of the 1950's via disillusionment and change of opinion to the state of nuclear energy at the start of the 1980's. The booklet contains many details and is generously illustrated. (HSCH) [de

  20. Nuclear energy and society

    International Nuclear Information System (INIS)

    Bakacs, Istvan; Czeizel, Endre; Hajdu, Janos; Marx, Gyoergy.

    1984-01-01

    The text of a round-table discussion held on the occasion of the 50th anniversary of the discovery of neutron is given. The participants were the Chief Engineer of the Paks Nuclear Power Plant, the first nuclear power plant in Hungary started in November 1982, a geneticist treating the problems of genetic damages caused by nuclear and chemical effects, a nuclear physicist and a journalist interested in the social aspects of nuclear energy. They discussed the political, economical and social problems of nuclear energy in the context of its establishment in Hungary. (D.Gy.)

  1. Competitiveness and range of applications of nuclear power, as seen in the light of recent developments in the field of energy economic and energy policy

    International Nuclear Information System (INIS)

    Michaelis, H.

    1975-01-01

    At the reactor conferences in Karlsruhe in 1973 and in Berlin in 1974 the author gave his views on the competitive position of nuclear energy in the German Federal Republic and described how the determining factors in cost development, both for conventional energy generation and for nuclear power generation, have developed since October 1971. Basic data were provided by the paper by B. Bergmann and H. Kraemer (KFA Juelich) 'Technical and economic state in October 1971 as well as prospects for nuclear energy in power economics in the German Federal Republic' (Juel-827-HT - February 1972). The author now shows to what extent the determining factors for the competitive capacity of nuclear energy in the Federal Republic of Germany have changed until April 1975. (orig.) [de

  2. Nuclear energy

    International Nuclear Information System (INIS)

    Rippon, S.

    1984-01-01

    Do we need nuclear energy. Is it safe. What are the risks. Will it lead to proliferation. The questions are endless, the answers often confused. In the vigorous debates that surround the siting and operation of nuclear power plants, it is all too easy to lose sight of the central issues amid the mass of arguments and counter-arguments put forward. And there remains the doubt, who do we believe. This book presents the facts, simply, straightforwardly, and comprehensibly. It describes the different types of nuclear reactor, how they work, how energy is produced and transformed into usable power, how nuclear waste is handled, what safeguards are built in to prevent accident, contamination and misuse. More important, it does this in the context of the real world, examining the benefits as well as the dangers of a nuclear power programme, quantifying the risks, and providing an authoritative account of the nuclear industry worldwide. Technically complex and politically controversial, the contribution of nuclear energy to our future energy requirements is a crucial topic of our time. (author)

  3. Nuclear energy

    International Nuclear Information System (INIS)

    Seidel, J.

    1990-01-01

    This set of questions is based on an inquiry from the years 1987 to 1989. About 250 people af all age groups - primarily, however, young people between 16 and 25 years of age - were asked to state the questions they considered particularly important on the subject of nuclear energy. The survey was carried out without handicaps according to the brain-storming principle. Although the results cannot claim to be representative, they certainly reflect the areas of interest of many citizens and also their expectations, hopes and fears in connection with nuclear energy. The greater part of the questions were aimed at three topic areas: The security of nuclear power-stations, the effects of radioactivity on people and the problem of waste disposal. The book centres around these sets of questions. The introduction gives a general survey of the significance of nuclear energy as a whole. After this follow questions to do with the function of nuclear power stations, for the problems of security and waste disposal - which are dealt with in the following chapters - are easier to explain and to understand if a few physical and technical basics are understood. In the final section of the book there are questions on the so-called rejection debate and on the possibility of replacing nuclear energy with other energy forms. (orig./HP) [de

  4. Nuclear energy

    International Nuclear Information System (INIS)

    Panait, A.

    1994-01-01

    This is a general report presenting the section VII entitled Nuclear Power of the National Conference on Energy (CNE '94) held in Neptun, Romania, on 13-16 June 1994. The problems addressed were those relating to electric power produced by nuclear power plant, to heat secondary generation, to quality assurance, to safety, etc. A special attention was paid to the commissioning of the first Romanian nuclear power unit, the Cernavoda-1 reactor of CANDU type. The communications were grouped in four subsections. These were: 1. Quality assurance, nuclear safety, and environmental protection; 2. Nuclear power plant, commissioning, and operation; 3. Nuclear power plant inspection, maintenance, and repairs, heavy water technology; 4. Public opinion education. There were 22 reports, altogether

  5. The nuclear economic fraud

    International Nuclear Information System (INIS)

    Jeffery, J.W.

    1982-01-01

    Reference is made to a previous publication on the comparative economics of electricity from nuclear and coal-fired power plants. The present paper discusses further publications on this topic, and continues under the headings: propaganda money; the commitment of the CEGB to nuclear power; how to have nuclear electricity without paying for it; hiding the real nuclear costs; the effect of nuclear power on coal prices - the dilemma of nuclear power and dear coal or restricted nuclear power and cheap coal; the effects on electricity prices; the future of coal prices and subsidies; summary of the costs of building nuclear power stations; minimum total costs; the driving forces behind the nuclear programme. (U.K.)

  6. Economic assessment of nuclear energy from systems theory's point of view

    International Nuclear Information System (INIS)

    Iliffe, C.

    1976-01-01

    A report is given on how systems theory can be incorporated in nuclear energy and in which manner it can be applied. As opposed to previous considerations in which the development of nuclear energy in the form of cost effects of the energy produced in a nuclear power plant was assessed and the power plant was considered as insular plant, today this is replaced by the investigation of the individual nuclear power plants by a system of several such plants. The economy criterium of such a system is considered as the quotient of 'discounted' expenditure and discounted electro-energy production. The total discounted electricity generation by the nuclear power plant system also includes the energy production of new nuclear power plants to come and allows their special economy assessment. This method eliminates the question of the buying and selling price of plutonium and the interest payment of the expenditure for using Pn fuel. The discount programme, the systems costs, concessions in discounting, the minimization of the consumption, and the plutonium valuation are individually dealt with in detail. The solution to the linear three-interval programme is given in the appendix. (HR/LH) [de

  7. Nuclear energy

    International Nuclear Information System (INIS)

    Reuss, Paul

    2012-01-01

    With simple and accessible explanations, this book presents the physical principles, the history and industrial developments of nuclear energy. More than 25 years after the Chernobyl accidents and few months only after the Fukushima one, it discusses the pros and cons of this energy source with its assets and its risks. (J.S.)

  8. The German energy policy as a consequence of Fukushima. The scientific discussion between nuclear phase-out and economic growth

    International Nuclear Information System (INIS)

    Radtke, Joerg

    2013-01-01

    The book on the German energy policy as a consequence includes the following contributions: The German energy turnaround - scientific contributions. The energy turnaround in Germany - issue of interdisciplinary science. The transformation of the energy systems as social and technical challenge, - on the need of integrating energy research. Transformations and transformation blockades in the German energy system. The German energy turnaround in the context of international best practice. Energy turnaround also in Japan? - The chances of a nuclear phase-out. Possibilities and limits of public participation for the realization of an energy turnaround. Public energy in Germany - a model for participation? A plea for a comprehensive analysis of the energy turnaround in relation to the omnipresent crisis. Challenges and development in the German energy industry - consequences of the increasing percentage of renewable energies on the costs and the security of supply. Research funding and innovation promotion in the area of selected renewable energies. The economic chances of an energy turnaround. The need of appropriate monetary boundary conditions for the energy turnaround and the possibilities of an organization. The human factor in the context of the energy turnaround - environmental-psychological research approaches. The legal contribution to the energy turnaround. Vulnerability and resilience of energy systems. Geography of renewable energies -spatial constraints of a sustainable energy system. Critics and alternatives: The German energy turnaround that is no turnaround.

  9. Economics of nuclear and renewables

    International Nuclear Information System (INIS)

    Khatib, Hisham; Difiglio, Carmine

    2016-01-01

    This paper provides an assessment of the economic challenges faced by both nuclear power and “new” renewable electricity technologies. The assessment reflects the need to incorporate new renewables into power grids and issues faced in dispatching power and their effect on traditional electricity technologies as well as the need for transmission extension and/or grid reinforcement. Wider introduction of smart grids and the likely demise of nuclear in some OECD countries are bound to enhance the future prospects for new renewables. However, their immediate future expansion will depend on continued subsidies, which are becoming difficult to sustain in present economic circumstances. Development of large energy storage facilities and carbon pricing could significantly enhance future renewable energy prospects. Correspondingly, expanding renewable energy, in spite of their popularity with some governments and sections of the public, is likely to face challenges which will slow their present rapid progress. Nuclear is now shied away from in many industrialized countries and having mixed prospects in developing economies. In many instances, it suffers from high initial costs, long lead times and often excessive construction delays. Nuclear power also faces challenging risks – investment as well as regulatory. In contrast to renewables, its share of global energy consumption is declining. - Highlights: •Renewables are increasing their energy share. •Renewables system cost is higher than their production cost. •Nuclear share is not increasing and their costs are not reduced. •Discount rate and subsidies are important in economics of renewables and nuclear.

  10. Economics of nuclear power projects

    International Nuclear Information System (INIS)

    Chu, I.H.

    1985-01-01

    Nuclear power development in Taiwan was initiated in 1956. Now Taipower has five nuclear units in smooth operation, one unit under construction, two units under planning. The relatively short construction period, low construction costs and twin unit approach had led to the significant economical advantage of our nuclear power generation. Moreover betterment programmes have further improved the availability and reliability factors of our nuclear power plants. In Taipower, the generation cost of nuclear power was even less than half of that of oil-fired thermal power in the past years ever since the nuclear power was commissioned. This made Taipower have more earnings and power rates was even dropped down in March 1983. As Taiwan is short of energy sources and nuclear power is so well-demonstrated nuclear power will be logically the best choice for Taipower future projects

  11. Nuclear energy, economy, ecology

    International Nuclear Information System (INIS)

    Stoffaes, C.

    1995-01-01

    As its operating role, its economic competitiveness and its technological control in the area of nuclear energy, the France has certainly to take initiatives in a nuclear renewal activity. The France is criticized in the world for its exclusive position about nuclear energy, but it is well situated to attract attention on the coal risks and particularly about its combustion for environment. (N.C.)

  12. Nuclear energy

    International Nuclear Information System (INIS)

    Luxo, Armand.

    1977-01-01

    The reasons and conditions of utilizing nuclear power in developing countries are examined jointly with the present status and future uses already evaluated by some organizations. Some consequences are deduced in the human, financial scientific and technological fields, with provisional suggestions for preparing the nuclear industry development in these countries. As a conclusion trends are given to show how the industrialized countries having gained a long scientific and technological experience in nuclear energy can afford their assistance in this field, to developing countries [fr

  13. And what if France banned nuclear energy: what would be the economic impact?

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    This article reviews the different consequences of a supposed ban of nuclear energy in France. Natural gas burnt in combined-cycle plants would be the best surrogate to nuclear energy. This would imply a deterioration of the foreign trade balance (30 milliard F.Francs of purchase of foreign gas each year) and a dramatic increase in the emission of greenhouse effect gases (+ 40.10 6 tons). The rise of electricity costs might trigger a general rise of the cost of the work and then a higher unemployment rate. The global effect to the French economy could be similar to that of a major worldwide oil crisis. (A.C.)

  14. Relative economic incentives for hydrogen from nuclear, renewable, and fossil energy sources

    International Nuclear Information System (INIS)

    Gorensek, Maximilian B.; Forsberg, Charles W.

    2009-01-01

    The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because ''free'' oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen. (author)

  15. Exergetic, technological and economic study for transport of nuclear fuel energy to distant consumers

    International Nuclear Information System (INIS)

    Pozdeev, V.V.; Dobrovol'skij, S.P.; Shiryaev, V.K.

    1989-01-01

    Seven versions of energy transport from HTGR base power source are considered. Energy trasnport using electricity is taken as the main variant. The most promising among considered systems is the variant with steam conversion of methane, which can be used for three methods of energy transport: by converted gas, hydrogen and carbon monoxide. Exergetic method of analysis was used to compare different products, used by heat and electric showed that exergetic and economic efficiency of HTGR energy transport by hydrogen appeared to be the highest. Besides this, absolute ecologic purity is provided

  16. Energy consumption and economic development

    International Nuclear Information System (INIS)

    Tremblay, M.T.

    1994-01-01

    Speaking as an economic planner, the author of this address suggests a scenario that is rather pessimistic for the future of nuclear energy. He emphasizes that technological change will lead to economic growth, but then supposes that improvements in hydrogen energy and solar energy, combined with global competition, may lead to a fall rather than an increase in oil prices early in the next century. The 10 year lead time for bringing a nuclear station from design to commissioning makes it difficult to predict the economics of operation

  17. West Europe without Nuclear Energy

    International Nuclear Information System (INIS)

    1999-01-01

    This document contains basic conclusions of discussion if West Europe can exist without nuclear energy: 1. Presumptions for the nuclear energy removal 2. Regional and international consulting 3. Economic competition 4. Role of the nuclear energy 5. Situation in the energetic industry 6. Costs, safety and public relations 7. Energy policy

  18. Economic competitiveness of nuclear power in China

    International Nuclear Information System (INIS)

    Hu Chuanwen

    2005-01-01

    Development of nuclear power in China has made a good progress. Currently, economic competitiveness of nuclear power compared to fossil-fuelled power plants is one of the major problems which hamper its development. This article presents the economic competitiveness of nuclear power in China with two-level analyses. First, levelized lifetime cost method is adopted for electricity generation cost comparisons. Important factors influencing economic competitiveness of nuclear power are described. Furthermore, a broad economic evaluation of the full fuel chain of nuclear power and fossil-fuelled plants is discussed concerning macro social-economic issues, environmental and health impacts. The comprehensive comparative assessment would be carried out for decision making to implement nuclear power programme. In consideration of external costs and carbon value, the economic competitiveness of nuclear power would be further improved. Facing swift economic growth, huge energy demand and heavy environmental burden, nuclear power could play a significant role in sustainable development in China. (authors)

  19. Nuclear economics: Issues and facts

    International Nuclear Information System (INIS)

    Hudson, C.R.

    1993-01-01

    Nuclear economics has become on the more prominent topics related to nuclear power. Beyond the subjects of nuclear safety and waste disposal, questions and concerns of nuclear power economics have emerged with growing frequency in utility board rooms, in state and federal regulatory proceedings, and in the media. What has caused nuclear power economics to become such a popular topic? This paper addresses issues and facts related to historical nuclear plant costs, new nuclear plant projections, and warning signals for future plants

  20. Economics of nuclear power

    International Nuclear Information System (INIS)

    Bupp, I.C.; Derian, J.C.; Donsimoni, M.P.; Treitel, R.

    1975-01-01

    Present trends in nuclear reactor costs are interpreted as the economic result of a fundamental debate regarding the social acceptability of nuclear power. Rising capital costs for nuclear power plants are evaluated through statistical analysis of time-related factors, characteristics of licensing and construction costs, physical characteristics of reactors, and geographic and site-related factors. Conclusions are drawn regarding the impact of social acceptability on reactor costs, engineering estimates of future costs, and the possibility of increased potential relative competitiveness for coal-fueled plants. 7 references. (U.S.)

  1. Clean energy : nuclear energy world

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    This book explains the nuclear engineering to kids with easy way. There are explanations of birth of nuclear energy such as discover of nuclear and application of modern technology of nuclear energy, principles and structure of nuclear power plant, fuel, nuclear waste management, use of radiation for medical treatment, food supplies, industry, utilization of neutron. It indicates the future of nuclear energy as integral nuclear energy and nuclear fusion energy.

  2. Economics of the Nuclear Energy Considered CO{sub 2} Emission

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Jin; Kim, Yong Min [Catholic University of Daegu, Gyeongsan (Korea, Republic of)

    2011-05-15

    The energy consumption in Korea has greatly increased along with its rapid economic growth and industrialization since the 1970s. Total energy consumption increased at an average annual growth rate. Due to the lack of domestic energy resources, however, the overseas dependence rate of energy consumption has continuously increased. Also Climate change, resulting from increases in greenhouse gas emissions (GHG), is considered one of the biggest environmental dangers facing the world today. The objective and approach of this study are to compare the different types of scenarios in terms of the power plant type and CO{sub 2} emission from each power plant. We estimated cost of electricity generation using fuel cost, O and M cost(Operation and Maintenance Cost) and CO{sub 2} emission

  3. Nuclear Energy General Objectives

    International Nuclear Information System (INIS)

    2011-01-01

    considered and the specific goals to be achieved at different stages of implementation, all of which are consistent with the Basic Principles. The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste Management and Decommissioning Objectives. All four Objectives publications follow the same structure. For each topic in the area, the objectives are described in accordance with the sequence in the Basic Principles publication. Within each of these four Objectives publications, the individual topics that make up each area are addressed. The topics included in Nuclear General Objectives are Energy Systems Analysis and Development of Strategies for Nuclear Energy, Economics, Infrastructure, Management Systems, Human Resources and Knowledge Management. The diversity of the topics contained in Nuclear General Objectives necessitated incorporating some repetition in order to simplify access to the relevant information for the various interested audiences.

  4. The expansion of nuclear power vs. a more economical use of energy as solutions to the CO2-problem?

    International Nuclear Information System (INIS)

    Conrad, F.

    1989-01-01

    The importance of nuclear power in managing the CO 2 problem is one of the hotly debated topics in energy and environmental policies. For a foreseeable time, nuclear power is the only abundant energy source free from CO 2 , the use of which can even be intensified if and when necessary. The concepts in energy policy and the environmental strategies in this fact is taken into account are currently being compared by energy critics in quantitative and financial terms with energy conservation as a more economical way of using energy that would make the expansion of nuclear power appear a relatively ineffective and much too expensive way of averting the climatic catastrophe. Especially the climatologist Professor W. Bach, member of the Committee of Inquiry set up by the German Federal Parliament to investigate ways and means of protecting the climate, expressed himself to that effect last year. His opinion is based on a study by D. Keepin and G. Katz written in 1988 at the Rocky Mountain Institute, Colorado, the center of action of A. Lovins. That study is the subject of this comment. (orig.) [de

  5. The economics of nuclear energy revisited: lessons from the use of a complex technology subject to major accidents

    International Nuclear Information System (INIS)

    Finon, D.

    2012-01-01

    The Fukushima accident again raises the issue of the social and economic viability of nuclear technology. To reassess this viability, we analyze the methods used to internalize the external costs of nuclear energy. These have over time become increasingly complex technologically and specifically affected by major accidents. This combination has served to upset the classical learning curve, calling into question nuclear cost base, social acceptance in the face of climate change and profitability for investors. It has become essential to put in place independent institutions to regulate the safety aspect of nuclear technology and these form a hindrance to its standardization, in turn affecting competitiveness. Nevertheless, the paper argues that the new sequence of internalization of external costs triggered by Fukushima will have limited effects on overall costs, because of previous measures already taken to improve safety. The complexity of nuclear technology is reaching its asymptote: the challenge of 'learning from major accidents' will decrease. On the other hand, the independence and competence of nuclear safety authorities in all countries must be revamped to maximize safety and minimize residual risks. This cannot just be done by decree. However, it is the only way to preserve this global public good - the social acceptance of nuclear technology

  6. International nuclear energy guide

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Separate abstracts are included for each of the papers presented concerning current technical and economical events in the nuclear field. Twelve papers have been abstracted and input to the data base. The ''international nuclear energy guide'' gives a general directory of the name, the address and the telephone number of the companies and bodies quoted in this guide; a chronology of the main events 1982. The administrative and professional organization, the nuclear courses and research centers in France are presented, as also the organization of protection and safety, and of nuclear fuel cycle. The firms concerned by the design and the construction of NSSS and the allied nuclear firms are also presented. The last part of this guide deals with the nuclear energy in the world: descriptive list of international organizations, and, the nuclear activities throughout the world (alphabetical order by countries) [fr

  7. Energy: nuclear energy; Energies: l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Lung, M. [Societe Generale pour les Techniques Nouvelles (SGN), 78 - Saint-Quentin-en-Yvelines (France)

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  8. Radioactivity and nuclear energy

    International Nuclear Information System (INIS)

    Hoffmann, J.; Kuczera, B.

    2001-05-01

    The terms radioactivity and nuclear energy, which have become words causing irritation in the political sphere, actually represent nothing but a large potential for innovative exploitation of natural resources. The contributions to this publication of the Karlsruhe Research Center examine more closely three major aspects of radioactivity and nuclear energy. The first paper highlights steps in the history of the discovery of radioactivity in the natural environment and presents the state of the art in health physics and research into the effects of exposure of the population to natural or artificial radionuclides. Following contributions focus on: Radiochemical methods applied in the medical sciences (diagnostic methods and devices, therapy). Nuclear energy and electricity generation, and the related safety policies, are an important subject. In this context, the approaches and pathways taken in the field of nuclear science and technology are reported and discussed from the angle of nuclear safety science, and current trends are shown in the elaboration of advanced safety standards relating to nuclear power plant operation and ultimate disposal of radioactive wastes. Finally, beneficial aspects of nuclear energy in the context of a sustainable energy policy are emphasized. In particular, the credentials of nuclear energy in the process of building an energy economy based on a balanced energy mix which combines economic and ecologic advantages are shown. (orig./CB) [de

  9. Economic analysis of energy system considering the uncertainties of crude oil, natural gas and nuclear utilization employing stochastic dynamic programming

    International Nuclear Information System (INIS)

    Hasegawa, Keita; Komiyama, Ryoichi; Fujii, Yasumasa

    2016-01-01

    The paper presents an economic rationality analysis of power generation mix by stochastic dynamic programming considering fuel price uncertainties and supply disruption risks such as import disruption and nuclear power plant shutdown risk. The situation revolving around Japan's energy security adopted the past statistics, it cannot be applied to a quantitative analysis of future uncertainties. Further objective and quantitative evaluation methods are required in order to analyze Japan's energy system and make it more resilient in sight of long time scale. In this paper, the authors firstly develop the cost minimization model considering oil and natural gas price respectively by stochastic dynamic programming. Then, the authors show several premises of model and an example of result with related to crude oil stockpile, liquefied natural gas stockpile and nuclear power plant capacity. (author)

  10. Nuclear power safety economics

    International Nuclear Information System (INIS)

    Legasov, V.A.; Demin, V.F.; Shevelev, Ya.V.

    1984-01-01

    The existing conceptual and methodical basis for the decision-making process insuring safety of the nuclear power and other (industrial and non-industrial) human activities is critically analyzed. Necessity of development a generalized economic safety analysis method (GESAM) is shown. Its purpose is justifying safety measures. Problems of GESAM development are considered including the problem of costing human risk. A number of suggestions on solving them are given. Using the discounting procedure in the assessment of risk or detriment caused by harmful impact on human health is substantiated. Examples of analyzing some safety systems in the nuclear power and other spheres of human activity are given

  11. Economics of nuclear power

    International Nuclear Information System (INIS)

    Marwah, O.S.

    1982-01-01

    There can be no precise economic measures, in the abstract, of the costs of nuclear power production in the less-developed countries (LDCs). The conditions that affect the calculations have to be evaluated specifically for each country and individually for each nuclear-related project in that country. These conditions are a combination of internal and external factors, and their mix for one project can change during the course of construction. The author lists 21 factors that may vary according to individual national costs. 6 references, 4 tables

  12. Economic estimation of the external effect on the security of energy and public acceptance for nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Fujimoto, Noboru; Morita, Koji; Fukuda, Kenji

    2000-01-01

    Energy taxes in Japan, i. e., three laws of electric power source, crude oil customs duties and oil taxes, as well as the fuel stock of the power plants have been investigated, and the economical estimation for the nuclear power generation has been carried out from standpoints of the security of energy and public acceptance. For the security, it has been clear that the nuclear power is advanced in internalization of fuel stock by external economy and diversification of electric power source by external diseconomy, but oil and LNG thermal power generation is not sufficiently internalized. None of the power source has paid for the compensation for the risk in public acceptance. The fuel stock for the thermal power is estimated to be for about one week to a month, whereas nuclear power plants have a potential stock that lasts for 3 years. The external effect could go up to 35 billion yen if it is converted to fuel. The predominance, therefore, of the nuclear power for the security of energy is confirmed. Also, it is presumable that the external cost for the fuel stock, so called, is larger than the one for risk and CO 2 reduction. (author)

  13. Nuclear energy, understand the future

    International Nuclear Information System (INIS)

    Bauquis, P.R.; Barre, B.

    2006-01-01

    In spite of its first use for military needs, the nuclear became a substitution energy, especially for the electric power production. For many scientist the nuclear seems to be the main part to the world energy supply in an economic growth context, provided the radioactive wastes problems is solved. From the military origins to the electric power generation, this book explains the technical economical and political aspects of the nuclear energy. (A.L.B.)

  14. Nuclear energy today

    International Nuclear Information System (INIS)

    2003-01-01

    Energy is the power of the world's economies, whose appetite for this commodity is increasing as the leading economies expand and developing economies grow. How to provide the energy demanded while protecting our environment and conserving natural resources is a vital question facing us today. Many parts of our society are debating how to power the future and whether nuclear energy should play a role. Nuclear energy is a complex technology with serious issues and a controversial past. Yet it also has the potential to provide considerable benefits. In pondering the future of this imposing technology, people want to know. - How safe is nuclear energy? - Is nuclear energy economically competitive? - What role can nuclear energy play in meeting greenhouse gas reduction targets? - What can be done with the radioactive waste it generates? - Does its use increase the risk of proliferation of nuclear weapons? - Are there sufficient and secure resources to permit its prolonged exploitation? - Can tomorrow's nuclear energy be better than today's? This publication provides authoritative and factual replies to these questions. Written primarily to inform policy makers, it will also serve interested members of the public, academics, journalists and industry leaders. (author)

  15. Nuclear energy, the climate and nuclear disarmament

    International Nuclear Information System (INIS)

    Knapp, V.

    1998-01-01

    The main concern of Pugwash, with very good reason, is nuclear disarmament, but a negative attitude towards nuclear energy is not only futile, but counterproductive as it misses opportunities to appropriately influence its development. Since nuclear energy cannot be abandoned for ecological (decrease in greenhouse gases emission) and economic reasons as a long term energy source, then efforts should be devoted to make it safe from proliferation, which is possible from scientific and technological point of view

  16. Problems of attracting nuclear energy resources in order to provide economical and rational consumption of fossil fuels

    International Nuclear Information System (INIS)

    Nazarov, E.K.; Nikitin, A.T.; Ponomarev-Stepnoy, N.N.; Protsenko, A.N.; Stolyarevskii, A.Ya.; Doroshenko, N.A.

    1990-01-01

    Depletion of fossil fuel resources and the gradual increase in cost of their extraction and transportation to the places of their consumption put forward into a line of the most urgent tasks the problem of rational and economical utilization of fuel and energy resources, as well as introduction of new energy sources into various sectors of the national economy. The nuclear energy sources which are widely spread in power engineering have not yet been used to a proper extent in the sectors of industrial technologies and residential space heating, which are the most energy consuming sectors in the national economy. The most effective way of solving this problem can be the development and commercialization of high temperature nuclear reactors, as the majority of power consuming industrial processes and those involved in chemico-thermal systems of distant heat transmission demand the temperature of a heat carrier generated by nuclear reactors and assimilated by the above processes to be in the range from 900 0 to 1000 0 C. (author)

  17. Economic competitiveness of electricity production means inside smart grids: application to nuclear energy and variable renewable energies

    International Nuclear Information System (INIS)

    Keppler, J.H.; Baritaud, M.; Berthelemy, M.

    2017-01-01

    For a long time the comparison of the production costs of electricity from various primary sources were made on the basis of levelised costs of electricity (LCOE). LCOE is in fact the cost of the technology used for the production. In recent years solar and wind energies have seen their LCOE drop sharply (-60 % for solar power in 5 years) while nuclear energy's LCOE is now stabilized. In order to assess the cost of renewable energies, LCOE are not sufficient because variable energies like solar or wind power require other means of production to compensate their variability. Another point is that renewable energies are decentralized and as a consequence require investments to develop the power distribution system. This analysis presents a new methodology to compare the costs of electricity production means. This methodology takes into account LCOE and a system cost that represents the cost of the effects of the technology on the rest of the electricity production system. (A.C.)

  18. Benchmarking of nuclear economics tools

    International Nuclear Information System (INIS)

    Moore, Megan; Korinny, Andriy; Shropshire, David; Sadhankar, Ramesh

    2017-01-01

    Highlights: • INPRO and GIF economic tools exhibited good alignment in total capital cost estimation. • Subtle discrepancies in the cost result from differences in financing and the fuel cycle assumptions. • A common set of assumptions was found to reduce the discrepancies to 1% or less. • Opportunities for harmonisation of economic tools exists. - Abstract: Benchmarking of the economics methodologies developed by the Generation IV International Forum (GIF) and the International Atomic Energy Agency’s International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), was performed for three Generation IV nuclear energy systems. The Economic Modeling Working Group of GIF developed an Excel based spreadsheet package, G4ECONS (Generation 4 Excel-based Calculation Of Nuclear Systems), to calculate the total capital investment cost (TCIC) and the levelised unit energy cost (LUEC). G4ECONS is sufficiently generic in the sense that it can accept the types of projected input, performance and cost data that are expected to become available for Generation IV systems through various development phases and that it can model both open and closed fuel cycles. The Nuclear Energy System Assessment (NESA) Economic Support Tool (NEST) was developed to enable an economic analysis using the INPRO methodology to easily calculate outputs including the TCIC, LUEC and other financial figures of merit including internal rate of return, return of investment and net present value. NEST is also Excel based and can be used to evaluate nuclear reactor systems using the open fuel cycle, MOX (mixed oxide) fuel recycling and closed cycles. A Super Critical Water-cooled Reactor system with an open fuel cycle and two Fast Reactor systems, one with a break-even fuel cycle and another with a burner fuel cycle, were selected for the benchmarking exercise. Published data on capital and operating costs were used for economics analyses using G4ECONS and NEST tools. Both G4ECONS and

  19. Symposium on Nuclear Energy. Proceedings

    International Nuclear Information System (INIS)

    1981-01-01

    The energy problem poses a big challenge to a developing country like the Philippines. The development of renewable energy sources is not enough. Aware then of the limitations of these energy sources, in spite of arguments against nuclear energy we have no other recourse but to go nuclear. This symposium emphasizes the importance of energy development to attain the country's progress and discusses the pros and economics of nuclear power. (RTD)

  20. Communication techniques and nuclear energy

    International Nuclear Information System (INIS)

    Carpintero Santamaria, N.

    2005-01-01

    The paper presents some thoughts on several factors related to nuclear energy and the way they are presented by the mass media, usually provoking controversy to the Spanish society and thus, undermining public acceptance. Some possibilities for boosting nuclear energy among public opinion are suggested, emphasizing the fact that nuclear power is essential because it is both ecologically and economically sound. (Author)

  1. Nuclear power economics and technology: an overview

    International Nuclear Information System (INIS)

    1992-01-01

    Intended for the non-specialist reader interested in energy and environmental policy matters, this report presents an overview of the current expert consensus on the status of nuclear power technology and its economic position. It covers the potential demand for nuclear energy, its economic competitivity, and the relevant aspects of reactor performance and future technological developments. The report provides an objective contribution to the ongoing scientific and political debate about what nuclear power can offer, now and in the future, in meeting the world's growing demand for energy and in achieving sustainable economic development. 24 refs., 18 figs;, 12 tabs., 5 photos

  2. Energy system, electricity market and economic studies on increasing nuclear power capacity; Ydinvoimahankkeiden periaatepaeaetoekseen liittyvaet energia- ja kansantaloudelliset selvitykset

    Energy Technology Data Exchange (ETDEWEB)

    Forsstrom, J.; Pursiheimo, E.; Kekkonen, V.; Honkatukia, J.

    2010-04-15

    Objective of this research project is to examine effects of addition of nuclear capacity from three different angles by using energy system, electricity market and economic analysis. In each area the analysis is based on computational methods. Finland is a member of Nordic electricity market which is further connected to networks of Continental Europe and Russia. Due to the foreign connections Finland has been able to import inexpensive electricity from its neighboring countries and this state is expected to continue. Addition of nuclear capacity lowers electricity import demand, affects level of electricity price decreasingly and decreases shortfall of installed production capacity. Substantial additions of nuclear power capacity and generous import supply have disadvantageous effect on profitability of combined heat and power production. The development of import possibilities depends on progression of difficult-to-estimate balance between electricity consumption and production in the neighboring countries. Investments on nuclear power increase national product during the construction phase. Growth of employment is also rather significant, especially during the construction phase. In the long term permanent jobs will be created too. Increase of employment is held back by increasing real wages, but it is though evident that consumer purchasing power is improved due to these nuclear power developments. (orig.)

  3. Essays in energy economics

    Energy Technology Data Exchange (ETDEWEB)

    Malischek, Raimund

    2016-10-25

    This thesis presents four essays in energy economics. The first essay investigates one of the workhorse models of resource economics, the Hotelling model of an inter-temporally optimizing resource extracting firm. The Hotelling model provides a convincing theory of fundamental concepts like resource scarcity, but very few empirical validations of the model have been conducted. This essay attempts to empirically validate the Hotelling model by first expanding it to include exploration activity and market power and then using a newly constructed data set for the uranium mining industry to test whether a major resource extracting mining firm in the industry is following the theory's predictions. The results show that the theory is rejected in all considered settings. The second and third essays investigate the difference in market outcomes under spot-market based trade as compared to long-term contract based trade in oligopolistic markets with investments. The second essay investigates analytically the difference in market outcomes in an electricity market setting, showing that investments and consumer welfare may be higher under spot-market based trade than under long-term contracts. The third essay proposes techniques to solve large-scale models of this kind, empirically, by exploring the practicability of this approach in an application to the international metallurgical coal market. The final essay investigates the influence of policy uncertainty on investment decisions. With France debating the role of nuclear technology, this essay analyses how policy uncertainty regarding nuclear power in France may feature in the French and European power sector. Applying a stochastic model for the European power system, the analysis shows that the costs of uncertainty in this particular application are rather low compared to the overall costs of a nuclear phase-out.

  4. Essays in energy economics

    International Nuclear Information System (INIS)

    Malischek, Raimund

    2016-01-01

    This thesis presents four essays in energy economics. The first essay investigates one of the workhorse models of resource economics, the Hotelling model of an inter-temporally optimizing resource extracting firm. The Hotelling model provides a convincing theory of fundamental concepts like resource scarcity, but very few empirical validations of the model have been conducted. This essay attempts to empirically validate the Hotelling model by first expanding it to include exploration activity and market power and then using a newly constructed data set for the uranium mining industry to test whether a major resource extracting mining firm in the industry is following the theory's predictions. The results show that the theory is rejected in all considered settings. The second and third essays investigate the difference in market outcomes under spot-market based trade as compared to long-term contract based trade in oligopolistic markets with investments. The second essay investigates analytically the difference in market outcomes in an electricity market setting, showing that investments and consumer welfare may be higher under spot-market based trade than under long-term contracts. The third essay proposes techniques to solve large-scale models of this kind, empirically, by exploring the practicability of this approach in an application to the international metallurgical coal market. The final essay investigates the influence of policy uncertainty on investment decisions. With France debating the role of nuclear technology, this essay analyses how policy uncertainty regarding nuclear power in France may feature in the French and European power sector. Applying a stochastic model for the European power system, the analysis shows that the costs of uncertainty in this particular application are rather low compared to the overall costs of a nuclear phase-out.

  5. The Physics of Plutonium Fuels - A Review of Organization for Economic Cooperation and Development/Nuclear Energy Agency Activities

    International Nuclear Information System (INIS)

    Hesketh, Kevin; Delpech, Marc; Sartori, Enrico

    2000-01-01

    In 1993, the Organization for Economic Cooperation and Development/Nuclear Energy Agency first convened the Working Group on the Physics of Plutonium Recycle (WPPR) (now renamed the Working Party on the Physics of Plutonium Fuels and Innovative Fuel Cycles). Since its inception, the WPPR (whose task has now been expanded to include innovative fuel cycles) has published six volumes of detailed results from analyses of plutonium fuel in pressurized water reactors and fast reactors. A seventh volume on the physics of plutonium fuel in boiling water reactors is in preparation. The analyses have been mostly in the form of theoretical benchmark exercises for situations beyond current experience, for which multinational contributions provide a basis for comparison of diverse calculational methods and nuclear data libraries. The overall activities of the WPPR are reviewed and summarized

  6. I wonder nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Cheol

    2009-04-15

    This book consists seven chapters, which are powerful nuclear energy, principle of nuclear fission, nuclear energy in our daily life, is nuclear energy safe?, what is radiation?, radiation spread in pur daily life and radiation like a spy. It adds nuclear energy story through quiz. This book with pictures is for kids to explain nuclear energy easily.

  7. Nuclear energy prospects to 2000

    International Nuclear Information System (INIS)

    1982-01-01

    This report describes the potential and trends of electricity use in OECD-countries as the main parameter of nuclear power development, including oil displacement and future generation mix, gives a most recent assessment of nuclear power growth to the year 2000, deals with supply and demand considerations covering the whole fuel cycle, assesses the impact of the nuclear contribution on the overall energy situation according to three energy scenarios and the consequences of a possible nuclear shortfall, and finally reviews other factors influencing nuclear energy growth such as security of supply, economics of nuclear power production as wells as public and utility confidence in nuclear power

  8. Should we embrace nuclear energy?

    International Nuclear Information System (INIS)

    Nolch, Guy

    2006-01-01

    During his recent tour of North America, Australian Prime Minister John Howard called for a 'full-blooded debate' about the place of nuclear power in the nation's energy mix. 'I have a very open mind on the development of nuclear energy in my own country,' he said. Treasurer Peter Costello said that only economic arguments precluded Australia's move to nuclear energy. 'If it becomes commercial, we should have it,' he said on 23 May. But in reality the 'debate' had already been adjudicated. Three days later the Australian Nuclear Science and Technology Organisation (ANSTO) presented Science Minister Julie Bishop with a report that delivered Costello's economic justification for nuclear power

  9. Finnish energy outlook - role of nuclear energy

    International Nuclear Information System (INIS)

    Santaholma, J.

    2004-01-01

    New nuclear power partly covers additional electricity demand and replaces retiring power plants in coming decades after 2010. Nuclear energy secures stable, economical and predictable electricity price as well as operation environment for the electricity intensive industry for coming decades. Nuclear energy also reduces the dependence on electricity import of Finland. Nuclear energy partly enables, together with renewable, fulfilment of Finland's Kyoto commitments. Solutions for nuclear waste management are a condition sine qua non for sound nuclear programmes. Funding has been arranged. All this is carried out in Finland in a transparent way and in accordance with any democratic requirements. (author)

  10. Nuclear energy: a sensible alternative

    International Nuclear Information System (INIS)

    Ott, K.O.; Spinrad, B.I.

    1985-01-01

    This book presents information on energy futures; energy demand, energy supplies; exclusive paths and difficult choices--hard, soft, and moderate energy paths; an energy-deficient society; energy shortages; economics of light-water reactors; fast breeder reactor economics; international cooperation in the nuclear field; nuclear recycling; alternative fuels, fuel cycles, and reactors; the nuclear weapons proliferation issue; paths to a world with more reliable nuclear safeguards; the homemade bomb issue; LWR risk assessment; accident analysis and risk assessment; the waste disposal risk; radon problems; risks in our society; health effects of low-level radiation; routine releases of radioactivity from the nuclear industry; low-level radioactivity and infant mortality; the myth of plutonium toxicity; myths about high-level radioactive waste; the aging reactor myth; the police state myth; insurance and nuclear power--the Price-Anderson Act; and solar and nuclear power as partners

  11. Nuclear energy and information

    International Nuclear Information System (INIS)

    Chen Baisong

    1996-01-01

    The information tells us that since the first chain reaction discovery about 50 years ago up to now, there are more than 400 commercial nuclear power plants connected to electricity supply net works. The electricity supplied by nuclear power plants has exceeded 2000 TWH, which represents almost 17% of the total electricity generated in the world and this proportion is still increasing. The accumulated operating experience of nuclear power plants reach more than 6000 reactor-year. Quite high average life time energy availability factors demonstrate the good reliability of nuclear power plants. The present status of the electricity development in the world shows that nuclear power has become an imperative and exclusively realistic alternative energy source. All of these information demonstrate that nuclear power as a safe, clean and less cost power source has already been widely accepted in the world. In Asia and Pacific region, the fast development of economy provides a vast possibility for the development of nuclear power. In China, shortage of electricity has become the 'bottle neck' which retards the economic development nowadays. China has already drawn up the plan for the development of nuclear power. The information is of great significance to promote the development of nuclear power. It could be said that without information, nuclear power could not be smoothly introduced in any country or region. (J.P.N.)

  12. International nuclear energy guide

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The aim of this French-English bilingual Guide is to present a synthesis embracing all the aspects and all the implications of the development of nuclear energy by situating it both within the French administrative and professional framework and in the world context. Special attention has been paid to the protection of man and the environment and to safety and security problems; most of the other questions -technological, economic, industrial- which arise at all points in the nuclear cycle. Teaching and research are outlined and a special appendix is devoted to nuclear information [fr

  13. Nuclear energy

    International Nuclear Information System (INIS)

    2007-01-01

    This digest document was written by members of the union of associations of ex-members and retired people of the Areva group (UARGA). It gives a comprehensive overview of the nuclear industry world, starting from radioactivity and its applications, and going on with the fuel cycle (front-end, back-end, fuel reprocessing, transports), the nuclear reactors (PWR, BWR, Candu, HTR, generation 4 systems), the effluents from nuclear facilities, the nuclear wastes (processing, disposal), and the management and safety of nuclear activities. (J.S.)

  14. Parliament and nuclear energy

    International Nuclear Information System (INIS)

    Laermann, K.H.

    1993-01-01

    The paper provides a historical review of the behaviour of Parliament in the discussion about utilizing nuclear energy. An analysis of the positions taken and reasons advanced so far is necessary, because it is only from its results that promising strategies appropriate to bring about a consensus can be derived. There is no doubt that it is a genuine task of the democratically legitimated bodies to strive for a consensus in energy policy, in particular nuclear energy, in the interest of the whole State, with the legislative, executive and economic bodies combining their efforts. The reservedness of Parliament is regrettable. At the moment, however, there is the positive effect of the discussion being revived. It should be conducted rationally in the joint interest of reaching a political consensus and, on that basis, a broad acceptance of nuclear energy utilization. (orig./HSCH) [de

  15. Nuclear Energy in Romania

    International Nuclear Information System (INIS)

    Biro, L.

    2003-01-01

    The new energy approach towards nuclear, due to the growing political support at the beginning of this century, is the result of a complexity of economical, social, political and technological factors. The history of peaceful use of nuclear energy in Romania goes back 45 years. Considering the strategic importance of the energy sector in developing the national economy on sustainable basis, the sector evolution should be outlined through prognosis and strategies on different horizons of time, so that the development perspectives and the energy supply to be correctly estimated. This necessity is emphasized in the Governmental Program of the present administration, which takes into consideration Romanian Economic Strategy on medium term and also The Government Action Plan on 2000-2004, agreed with the European Commission. In order to implement the Governmental Program, the Ministry of Industries and Resources elaborates the National Energy Strategy. The Government Action Plan draw up the conclusion that Unit 2 from Cernavoda NPP must be finalized. This solution fits the least-cost energy development planning and answers to environment requirements. Romania became a Member State of the Agency in 1957. From the mid-1960s to the mid-1970s its technical co-operation program with the Agency covered mainly research in nuclear physics and some medical and other applications of radiation and isotopes. Since 1976, when the Romanian nuclear power program was embarking to use CANDU-type reactors, the Agency has supported mainly the activities related to the Cernavoda NPP. In the framework of the Romanian accession process to the European structures, CNCAN co-operates with European Commission for transposition of the communautaire acquis in the field of nuclear activities. Romania has had laws in place governing the regulation of nuclear activities since 1974. They were remained in force throughout and subsequent to the national constitutional changes started in 1989 until 1996

  16. Nuclear energy - a professional assessment

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The report falls under the headings: the role of the Watt Committee in nuclear energy; supply and demand, and economics of nuclear power; technical means (types of reactor; fuel cycle; nuclear energy for applications other than large-scale electricity generation); availability of resources (nuclear fuel; British industrial capacity; manpower requirements for a British nuclear power programme); environment (environmental issues; disposal of radioactive wastes); balance of risk and advantage in the peaceful use of nuclear energy (proliferation; safety and risk; benefits; public acceptability, awareness, education); summary and general comments.

  17. Nuclear energy - a professional assessment

    International Nuclear Information System (INIS)

    1984-01-01

    The report falls under the headings: the role of the Watt Committee in nuclear energy; supply and demand, and economics of nuclear power; technical means (types of reactor; fuel cycle; nuclear energy for applications other than large-scale electricity generation); availability of resources (nuclear fuel; British industrial capacity; manpower requirements for a British nuclear power programme); environment (environmental issues; disposal of radioactive wastes); balance of risk and advantage in the peaceful use of nuclear energy (proliferation; safety and risk; benefits; public acceptability, awareness, education); summary and general comments. (U.K.)

  18. Economic challenges of nuclear power

    International Nuclear Information System (INIS)

    Legee, F.; Devezeaux de Lavergne, J.G.; Duquesnoy, T.; Mathonniere, G.

    2012-01-01

    The costs of nuclear power is detailed. Concerning the construction costs, the mean value over the French fleet of reactors is 1,2 billions euros/GWe and 1.5 billions euros/GWe when the engineering and pre-exploitation costs are included. The construction costs of future reactors will be far higher than expected: 6 billion euros versus 3.5 billions euros for the EPR. The Audit Office has recently made public the real cost of today's nuclear electricity in France: 54 euros/MWh, this value is given by the CCE method and includes all the aspects of nuclear energy: construction, operation, dismantling, maintenance, upgrading works required for life extension, new safety requirements due to Fukushima feedback and long-term managing of wastes. The cost of nuclear accidents is not taken into account. The costs of dismantling can be estimated from the feedback experience from the dismantling of nuclear reactors in the Usa, the value obtained is consistent with the OECD rule that states that it represents 15% of the construction cost. The economic impact of decommissioning a plant after 40 years of operating life while its operating life could have been extended to reach 50 or even 60 years has a cost of losing 1 billion to 2 billion euros per reactor. Despite the fact that tomorrow's nuclear systems will be more expensive than today's, it will stay in a competitive range. (A.C.)

  19. Nuclear energy

    International Nuclear Information System (INIS)

    1978-01-01

    This brochure is intended as a contribution to a better and more general understanding of one of the most urgent problems of present society. Emphasis is laid on three issues that are always raised in the nuclear debate: 1) Fuel cycle, 2) environmental effects of nuclear power plants, 3) waste disposal problems. (GL) [de

  20. Nuclear energy outlook 2008

    International Nuclear Information System (INIS)

    2008-01-01

    With the launch today of its first Nuclear Energy Outlook, the OECD Nuclear Energy Agency (NEA) makes an important contribution to ongoing discussions of nuclear energy's potential role in the energy mixes of its member countries. As world energy demand continues to grow unabated, many countries face serious concerns about the security of energy supplies, rising energy prices and climate change stemming from fossil fuel consumption. In his presentation, the NEA Director-General Luis Echavarri is emphasizing the role that nuclear power could play in delivering cost-competitive and stable supplies of energy, while also helping to reduce greenhouse gas emissions. In one Outlook scenario, existing nuclear power technologies could provide almost four times the current supply of nuclear-generated electricity by 2050. Under this scenario, 1400 reactors of the size commonly in use today would be in operation by 2050. But in order to accomplish such an expansion, securing political and societal support for the choice of nuclear energy is vital. An ongoing relationship between policy makers, the nuclear industry and society to develop knowledge building and public involvement will become increasingly important, the publication notes. Moreover, governments have a clear responsibility to maintain continued effective safety regulation, advance efforts to develop radioactive waste disposal solutions and uphold and reinforce the international non-proliferation regime. The authors find that the security of energy from nuclear power is more reliable than that for oil or gas. Additionally, uranium's high energy density means that transport is less vulnerable to disruption, and storing a large energy reserve is easier than for fossil fuels. One tonne of uranium produces the same energy as 10 000 to 16 000 tonnes of oil using current technology. Ongoing technological developments are likely to improve that performance even more. Until the middle of the century the dominant reactor

  1. Multi-objective technico-economic optimization of energy conversion systems: hydrogen and electricity cogeneration from Generation IV nuclear reactor

    International Nuclear Information System (INIS)

    Gomez, A.

    2008-01-01

    With the increase in environmental considerations, such as the control of greenhouse emissions, and with the decrease in the fossil energy resources, hydrogen is currently considered as a promising energy vector. One of the main technological challenges of a future hydrogen economy is its large scale production without fossil fuel emissions. Under this context, nuclear energy is particularly adapted for hydrogen massive production by thermochemical cycles or high temperature electrolysis. One of the selected nuclear systems is the Very High Temperature Reactor (950 C/1200 C), cooled with helium, and dedicated to hydrogen production or to hydrogen electricity cogeneration. The main objective of this investigation, within the framework of a collaboration between CEA, French Atomic Agency (Cadarache) and LGC (Toulouse), consists in defining a technico-economic optimization methodology of electricity-hydrogen cogeneration systems, in order to identify and propose promising development strategies. Among the massive production processes of hydrogen, the thermochemical cycle Iodine-Sulphur has been considered. Taking into account the diversity of the used energies (i.e., heat and electricity) on the one hand and of the produced energies (hydrogen and electricity) on the other hand of the studied cogeneration system, an exergetic approach has been developed due to its ability to consider various energy forms on the same thermodynamical basis. The CYCLOP software tool (CEA) is used for the thermodynamic modelling of these systems. The economic criterion, calculated using the SEMER software tool (CEA), is based on the minimization of the total production site cost over its lifespan i.e., investment, operating costs and nuclear fuel cost. Capital investment involves the development of cost functions adapted to specific technologies and their specific operating conditions. The resulting optimization problems consist in maximizing the energy production, while minimizing the

  2. Glossary of nuclear energy

    International Nuclear Information System (INIS)

    Seo, Du Hwan

    1987-01-01

    This book gives descriptions of explanations of terminologies concerning to nuclear energy such as analysis of financial safety of nuclear energy, radwaste disposal, fast breeder reactor, nuclear reactor and device, nuclear fuel and technique for concentration, using of nuclear energy radiation and measurement, plan for development of nuclear energy and international institution. This book includes 160 terms on nuclear energy and arranges in Korean alphabetical order.

  3. World nuclear energy paths

    International Nuclear Information System (INIS)

    Connolly, T.J.; Hansen, U.; Jaek, W.; Beckurts, K.H.

    1979-01-01

    In examing the world nuclear energy paths, the following assumptions were adopted: the world economy will grow somewhat more slowly than in the past, leading to reductions in electricity demand growth rates; national and international political impediments to the deployment of nuclear power will gradually disappear over the next few years; further development of nuclear power will proceed steadily, without serious interruption but with realistic lead times for the introduction of advanced technologies. Given these assumptions, this paper attempts a study of possible world nuclear energy developments, disaggregated on a regional and national basis. The scenario technique was used and a few alternative fuel-cycle scenarios were developed. Each is an internally consistent model of technically and economically feasible paths to the further development of nuclear power in an aggregate of individual countries and regions of the world. The main purpose of this modeling exercise was to gain some insight into the probable international locations of reactors and other nuclear facilities, the future requirements for uranium and for fuel-cycle services, and the problems of spent-fuel storage and waste management. The study also presents an assessment of the role that nuclear power might actually play in meeting future world energy demand

  4. Sector Economic Outlook. Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-15

    The energy sector is a key driver of the economic pillar of Vision 2030. As the economy grows, urbanization intensifies and incomes increase, corporate and household demand for energy also rises. To meet this growth in demand for energy, the sector needs to increase investments and diversify into more sources of energy such as geothermal and wind power. It is therefore critical that focus is directed towards development and sustainability of the energy sector to ensure delivery of least cost power that will improve Kenya's competitiveness and achieve the Vision 2030 objective of 10% average annual economic growth.

  5. Nuclear energy and renewable energies

    International Nuclear Information System (INIS)

    1994-01-01

    The nuclear energy and the renewable energies namely: solar energy, wind energy, geothermal energy and biomass are complementary. They are not polluting and they are expected to develop in the future to replace the fossil fuels

  6. Nuclear energy

    International Nuclear Information System (INIS)

    Lotter, A.C.

    1979-01-01

    The recent, terrifying threat of a major calamity at Pennsylvania's Three Mile Island power plant near Harrisburg reverberated across practically the whole of the civilised world. An almost incredible sequence of human and mechanical failures at this installation had stopped just short of disaster and had brought the unthinkable perilously close to happening. The accident had sprayed radioactive waste into the air and had led to the large scale evacuation of people from the endangered area, disrupted hundreds of thousands of lives and caused a crippling setback to the nuclear industry. In this article the author discusses the impact the Harrisburg incident has had on the nuclear industry

  7. Economics of wind energy

    International Nuclear Information System (INIS)

    Ranganathan, V.; Kumar, H.P.S.

    1991-01-01

    Conventional economic analysis of wind energy often ignores the fact that it is not an energy source available on tap, but is intermittent. The analysis at times is discriminatory in the sense that the costs of transmission and distribution are added to the central grid alternative but the costs of the locational constraints of wind energy siting are not quantified. This paper evaluates wind energy after correcting for these two factors. The results are not encouraging

  8. Nuclear Energy

    International Nuclear Information System (INIS)

    1982-11-01

    A brief indication is given of the United Kingdom nuclear power programme including descriptions of the fission process, the Magnox, AGR and PWR type reactors, the recycling process, waste management and decommissioning, safety precautions, the prototype fast reactor at Dounreay, and the JET fusion experiment. (U.K.)

  9. Nuclear generation cost management and economic benefits

    International Nuclear Information System (INIS)

    Horton, E.P.; Sepa, T.R.

    1989-01-01

    The CANDU-Pressurized Heavy Water (CANDU-PHW) type of nuclear generating station has been developed jointly by Atomic Energy of Canada Limited and Ontario Hydro. This report discusses the cost management principles used for Ontario Hydro's CANDU-PHW program, current cost management initiatives, and the economic benefits of nuclear power to the provinces of Ontario and New Brunswick, in Canada

  10. Competitive economics of nuclear power

    International Nuclear Information System (INIS)

    Hellman, R.

    1981-01-01

    Some 12 components of a valid study of the competitive economics of a newly ordered nuclear power plant are identified and explicated. These are then used to adjust the original cost projections of four authoritative studies of nuclear and coal power economics

  11. Nuclear energy and civilization

    International Nuclear Information System (INIS)

    Soentono, S.

    1996-01-01

    The role of energy is indeed very important since without it there will be no living-things in this world. A country's ability to cultivate energy determines the levels of her civilization and wealth. Sufficient energy supply is needed for economic growth, industrialization, and modernization. In a modern civilization, the prosperity and security of a country depends more on the capability of her people rather than the wealth of her natural resources. Energy supplies the wealth, prosperity and security, and sufficient reliable continuous supply of energy secures the sustainable development. The energy supply to sustain the development has to improve the quality of life covering also the quality of environment to support the ever increasing demand of human race civilization. Energy has a closer relationship with civilization in a modern society and will have to become even closer in the future more civilized and more modern society. The utilization of nuclear energy has, however, some problems and challenges, e.g. misleading information and understanding which need serious efforts for public information, public relation, and public acceptance, and possible deviation of nuclear materials for non-peaceful uses which needs serious efforts for technological and administrative barriers, precaution, prevention, safety, physical protection, safeguard, and transparency. These require cooperation among nuclear community. The cooperation should be more pronounced by heterogeneous growing Asian countries to reach harmony for mutual benefits toward better civilization. (J.P.N.)

  12. Advanced nuclear plants: Meeting the economic challenge

    International Nuclear Information System (INIS)

    Redding, J.R.; MacGregor, P.R.

    1993-01-01

    This article examines the economic challenges to nuclear power meeting the forecasted power demand of the end of the century. The topics of the article include the economic challenge, safety, competition from other energy sources, a US case study, environmental costs, capital costs, reducing operation and maintenance costs, and non-technical features

  13. Possible development of the world-wide improvement of nuclear energy considering economical, social and political aspects

    International Nuclear Information System (INIS)

    Jaek, W.

    1981-01-01

    Accepting the fact that the growing world energy demand cannot be met in the long term without an increasing use of nuclear energy one has to pay more attention to its possible expansion and consequently also to the geographical distribution of nuclear plants in the world. Due to future large scale deployment problems may arise in the areas of uranium supply, waste disposal, nonprofileration, safeguards, acceptability, and nuclear transfer. Based on the World Energy Conference (1977) global energy scenario a country-by-country analysis has been made to evaluate the possible contribution of nuclear energy in each country within the next 40 years. Against this background the problems of the head- and tail-end of the nuclear fuel cycle are discussed in detail and compared with the international trade of nonnuclear fuels. (orig.) [de

  14. Nuclear energy and energy security

    International Nuclear Information System (INIS)

    Mamasakhlisi, J.

    2010-01-01

    Do Georgia needs nuclear energy? Nuclear energy is high technology and application of such technology needs definite level of industry, science and society development. Nuclear energy is not only source of electricity production - application of nuclear energy increases year-by-year for medical, science and industrial use. As an energy source Georgia has priority to extend hydro-power capacity by reasonable use of all available water resources. In parallel regime the application of energy efficiency and energy conservation measures should be considered but currently this is not prioritized by Government. Meanwhile this should be taken into consideration that attempts to reduce energy consumption by increasing energy efficiency would simply raise demand for energy in the economy as a whole. The Nuclear energy application needs routine calculation and investigation. For this reason Government Commission is already established. But it seems in advance that regional nuclear power plant for South-Caucasus region would be much more attractive for future

  15. Energy, electricity and nuclear power

    International Nuclear Information System (INIS)

    Reuss, P.; Naudet, G.

    2008-01-01

    After an introduction recalling what energy is, the first part of this book presents the present day energy production and consumption and details more particularly the electricity 'vector' which is an almost perfect form of energy despite the fact that it is not a primary energy source: it must be generated from another energy source and no large scale storage of this energy is possible. The second part of the book is devoted to nuclear energy principles and to the related technologies. Content: 1 - What does energy mean?: the occurrence of the energy concept, the classical notion of energy, energy notion in modern physics, energy transformations, energy conservation, irreversibility of energy transformations, data and units used in the energy domain; 2 - energy production and consumption: energy systems, energy counting, reserves and potentialities of energy resources, production of primary energies, transport and storage of primary energies, energy consumption, energy saving, energy markets and prices, energy indicators; 3 - electric power: specificity of electricity and the electric system, power networks, power generation, electricity storage, power consumption and demand, power generation economics, electricity prices and market; 4 - physical principles of nuclear energy: nuclei structure and binding energy, radioactivity and nuclear reactions, nuclear reactions used in energy generation, basics of fission reactors physics; 5 - nuclear techniques: historical overview, main reactor types used today, perspectives; 6 - fuel cycle: general considerations, uranium mining, conversion, enrichment, fuel fabrication, back-end of the cycle, plutonium recycle in water cooled reactors; 7 - health and environmental aspects of nuclear energy: effects on ionizing radiations, basics of radiation protection, environmental impacts of nuclear energy, the nuclear wastes problem, specific risks; 8 - conclusion; 9 - appendixes (units, physics constants etc..)

  16. Nuclear energy. Selective bibliography

    International Nuclear Information System (INIS)

    2011-07-01

    This bibliography gathers articles and books from the French National Library about civil nuclear energy, its related risks, and its perspectives of evolution: general overview (figures, legal framework, actors and markets, policies); what price for nuclear energy (environmental and health risks, financing, non-proliferation policy); future of nuclear energy in energy policies (nuclear energy versus other energies, nuclear phase-out); web sites selection

  17. Open discussions on nuclear energy

    International Nuclear Information System (INIS)

    1978-01-01

    In the first part, economic prospects in the world and in the European Community and their repercussions on energy demand are examined. Supply structure and growth scenari are outlined. Present and potential contribution of nuclear energy to energy supply is developed. The pros and cons are given. In the second part is examined how the production and use of various form of energy including nuclear energy, can affect health and the environment, with special reference to waste of all kinds. Safety problems and risk of accidents are examined in both non nuclear and nuclear sectors. Prospects for a low energy society and economic and social implications of the use of new forms of energy are also discussed

  18. Nuclear energy worldwide

    International Nuclear Information System (INIS)

    Fertel, M.

    2000-01-01

    In this short paper the author provides a list of tables and charts concerning the nuclear energy worldwide, the clean air benefits of nuclear energy, the nuclear competitiveness and the public opinion. He shows that the nuclear energy has a vital role to play in satisfying global energy and environmental goals. (A.L.B)

  19. Nuclear energy in Europe and the world

    International Nuclear Information System (INIS)

    Koenig, H.H.; Brown, Boveri und Cie A.G., Mannheim

    1982-01-01

    The author provides an account of opinions expressed at the 1982 Euratom Congress on the world's economical situation, public views on nuclear energy, the energy problem of the third world an on the development status of nuclear technology. (orig.) [de

  20. Nuclear power and economic development: India

    International Nuclear Information System (INIS)

    Srinivasan, T.N.

    1983-01-01

    It is useful in discussing proliferation problems linked to nuclear power to examine the history of nuclear power in India and the development of her capacity to produce heavy water, fabricate fuel rods, and process spent fuel. The author presents the few published economic analyses of the role of nuclear energy in India's development, then discusses issues relating to the Non-Proliferation Treaty (NPT) from India's point of view. The chapter concludes with some proposals for making the NPT more attractive so that nonsignatories will reconsider their position. One step should be to instill greater confidence that scientists in nonweapons states will be able to pursue their research in nuclear physics and that their electricity planners will have access to nuclear technology if they find it economically viable. A dramatic step toward nuclear disarmament will be the voluntary renunciation of nuclear weapons by one or more of the weapons states. 18 references, 2 tables

  1. Nuclear energy

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The Administrative Court of Braunschweig judges the Ordinance on Advance Funding of Repositories (EndlagervorausleistungsVO) to be void. The Hannover Regional Court passes a basic judgment concerning the Gorleben salt mine (repository) and an action for damages. The Federal Administrative Court dismisses actions against part-permits for the Hanau fuel element fabrication plant. The Koblenz Higher Administrative Court dismisses actions against a part-permit for the Muelheim-Kaerlich reactor. 31st Amendment of the German Criminal Code passed, involving amendments in environmental criminal code, defined in the 2nd amendment to the Act on Unlowful Practices Causing Damage to the Environment (UKG); here: Amendments to the law relating to the criminal code and penal provisions governing unlawful conduct in the operation of nuclear installations. (orig.) [de

  2. Problems of attracting nuclear energy resources in order to provide economical and rational consumption of fossil fuels

    International Nuclear Information System (INIS)

    Nazarov, E.K.; Nikitin, A.T.; Ponomarev-Stepnoy, N.N.; Protsenko, A.N.; Stolyarevskii, A.Ya.; Doroshenko, N.A.

    1990-01-01

    The solution of problems related to increasing costs of fossil fuels and application of nuclear energy in the industrial sector could be the development and commercialization of high temperature nuclear reactors, as the majority of power consuming industrial processes demand that the temperature of heat carrier generated to be in the range from 900-1000 deg. C. In the Soviet Union the strategy adopted for solving energy supply problems was named 'nuclear-hydrogen power engineering and technologies'. Based on analytic research and taking into account the present state of the art, the new alternative energy sources, e.g. nuclear ones, should be introduced into the industry by the following steps: development and mastering of stable operation of high-temperature nuclear reactors; search of rational technical solutions for heat discharge from nuclear reactors; utilisation of meet the power demand of existing production plants; complete substitution of organic raw materials burned now with nuclear energy; review the conditions and development of organizational and engineering solutions acceptable for implementing the nuclear energy in commercial processes

  3. Problems of attracting nuclear energy resources in order to provide economical and rational consumption of fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, E K; Nikitin, A T; Ponomarev-Stepnoy, N N; Protsenko, A N; Stolyarevskii, A Ya; Doroshenko, N A [State Institute of Nitrogen Industry, Moscow (USSR); [I.V. Kurchatov Institute of Atomic Energy, Moscow (USSR)

    1990-07-01

    The solution of problems related to increasing costs of fossil fuels and application of nuclear energy in the industrial sector could be the development and commercialization of high temperature nuclear reactors, as the majority of power consuming industrial processes demand that the temperature of heat carrier generated to be in the range from 900-1000 deg. C. In the Soviet Union the strategy adopted for solving energy supply problems was named 'nuclear-hydrogen power engineering and technologies'. Based on analytic research and taking into account the present state of the art, the new alternative energy sources, e.g. nuclear ones, should be introduced into the industry by the following steps: development and mastering of stable operation of high-temperature nuclear reactors; search of rational technical solutions for heat discharge from nuclear reactors; utilisation of meet the power demand of existing production plants; complete substitution of organic raw materials burned now with nuclear energy; review the conditions and development of organizational and engineering solutions acceptable for implementing the nuclear energy in commercial processes.

  4. The IAEA energy and economic data bank

    International Nuclear Information System (INIS)

    Charpentier, J.P.; Russell, J.E.

    1978-01-01

    In 1976, the IAEA established a computerized energy and economic data bank not only on nuclear energy but on other forms of energy as well. The purpose of the data bank is to provide in a unified and systematic way energy and related economic data needed for long-term energy planning. A computer program permits the production of a variety of up-to-date tables and graphs

  5. Nuclear energy and climate change

    International Nuclear Information System (INIS)

    Gonzalez Jimenez, A.

    2002-01-01

    Energy is one of the essential motives for social and economic development of the humanity. Nuclear energy is a feasible option to stand up to a larger demand of energy, and it is playing, and will continue playing in the future, a decisive role in the debate about climate change and sustainable development, and in the efforts to reduce the CO 2 emissions. (Author)

  6. Nuclear energy and nuclear weapons

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1983-06-01

    We all want to prevent the use of nuclear weapons. The issue before us is how best to achieve this objective; more specifically, whether the peaceful applications of nuclear energy help or hinder, and to what extent. Many of us in the nuclear industry are working on these applications from a conviction that without peaceful nuclear energy the risk of nuclear war would be appreciably greater. Others, however, hold the opposite view. In discussing the subject, a necessary step in allaying fears is understanding some facts, and indeed facing up to some unpalatable facts. When the facts are assessed, and a balance struck, the conclusion is that peaceful nuclear energy is much more part of the solution to preventing nuclear war than it is part of the problem

  7. The role of nuclear energy in Brazilian energy matrix: environmental and socio-economical aspects; O papel da energia nuclear na matriz energética brasileira: aspectos socioeconômicos e ambientais

    Energy Technology Data Exchange (ETDEWEB)

    Bones, Ubiratan A.; Schirmer, Priscila; Ceolin, Celina, E-mail: biraabones@gmail.com, E-mail: schirmerpriscila@gmail.com, E-mail: celina.ceolin@gmail.com [Universidade Federal de Santa Maria (UFSM), RS (Brazil)

    2017-07-01

    Due to the great increase demand for energy in the world, the continuous expansion of industrialization and the increase of consumption, together with the indispensable search for the sustainability of human acts, the need for diversification of the energy matrix and the search for less polluting energy comes increasing. Nuclear energy is increasingly seen as an option to contain greenhouse gas emissions and reduce dependence on fossil fuels. In this context, although it is not a source of renewable energy and also not the solution to all Brazilian problems, it can contribute to the expansion of the Brazilian energy matrix, being the only thermal source capable of guaranteeing the constant supply of energy without emitting greenhouse gases, considering that Brazil dominates nuclear fuel cycle technology and has large uranium reserves. However, this is a topic that generates a great deal of insecurity and questioning, making important the development of this work, both for a better understanding of the public, and to contribute and encourage future research through an evaluation of its environmental and socioeconomic aspects, discussing its risks and assessing the possibilities of expanding its use, including a panoramic view of nuclear energy in Brazil. In addition, for the full development of a country, it is necessary to diversify its energy sources, focusing on environmental and economic sustainability and reducing the vulnerability of the system.

  8. Nuclear energy data

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of basic statistics on electricity generation and nuclear power in OECD countries. The reader will find quick and easy reference to the present status of and projected trends in total electricity generating capacity, nuclear generating capacity, and actual electricity production as well as on supply and demand for nuclear fuel cycle services [fr

  9. Nuclear energy data 2010

    CERN Document Server

    2010-01-01

    This 2010 edition of Nuclear Energy Data , the OECD Nuclear Energy Agency's annual compilation of official statistics and country reports on nuclear energy, provides key information on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035 in OECD member countries. This comprehensive overview provides authoritative information for policy makers, experts and other interested stakeholders.

  10. Review of nuclear energy

    International Nuclear Information System (INIS)

    Mattila, L.; Anttila, M.; Pirilae, P.; Vuori, S.

    1997-05-01

    The report is an overview on the production of the nuclear energy all over the world. The amount of production at present and in future, availability of the nuclear fuel, development of nuclear technology, environmental and safety issues, radioactive waste management and commissioning of the plants and also the competitivity of nuclear energy compared with other energy forms are considered. (91 refs.)

  11. Economic risks of the capacity expansion of electric power generation: impact of the nuclear energy

    International Nuclear Information System (INIS)

    Nieva G, R.

    2009-01-01

    Uncertainty and risks are inherent to the electric systems planning. The long period of construction that is characteristic of the electric sector works, as well as the long useful life of the generation assets and electric power transmission, they force to plan the expansion of the electric systems along horizons from 10 to 25 years. In periods so long of time it is impossible to predict with certainty the elements of the environment that could influence in the taking of decisions, like they are: the growth and the distribution of the electric power demand, the readiness and fuel prices; the investment costs of the technological options of generation and transmission, as well as the duration of the construction of future projects of new capacity addition. All expansion plan that will be propose, will be exposed to the uncertainty of the environment, gives place to risks or undesirable consequences. The nature of the risks, the strategies to delimit them and the outlines to assign them between the different interested parts and the diverse economic agents, depend in great measure of the legal and normative mark of the sector. In this work these topics are approached inside the reference mark of the Mexican public service of electric power. (Author)

  12. Economic development and nuclear geography

    International Nuclear Information System (INIS)

    Giraud, Andre.

    1976-01-01

    In a study previously presented at the European Nuclear Conference on the Maturity of Nuclear Energy (Paris-1975), an overall balance of the world energy needs had been drawn and the part played by nuclear energy had been underlined. A model is presented here, which, on the basis of the present situation in each country (i.e. its population, level of development, and level of power consumption), of selected outlines of foreseeable growth, and the possible mechanics of introduction and penetration of nuclear power, offers the possibility of simulating the evolution of nuclear capacity in that country [fr

  13. Nuclear energy applications - ethical considerations

    International Nuclear Information System (INIS)

    Hoermann, K.

    1980-01-01

    Following an Austrian referendum in 1978 which showed a small majority against operation of nuclear power stations, the economic penalties involved by this decision are qualitatively discussed, with emphasis on reduced standards of living. Religious considerations are examined and the difficulty of obtaining informed public opinion is stressed. Alternative sources of energy, including nuclear fusion, are briefly referred to. (G.M.E.)

  14. Is nuclear energy acceptable

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1977-01-01

    Nuclear hazards are assessed as being unique only in the sense of their unfamiliarity, with future development of nuclear energy dependent on overcoming public fears. Economics is clearly in favor of properly operated nuclear energy facilities for long-term power generation. Risks arise over the potential for human error to permit improper operation and for an industry shutdown because of a reactor accident. Attempts to ascertain accident probabilities have revealed that emergency core cooling systems and containment are not simply parallel, but operate in series and provide more safety than was thought. Insurance liability, resting on the small probability of very costly damage, is felt to be best placed on the utility with the government providing ultimate protection in the event of a potentially bankrupting accident. Problems of nuclear waste handling and low-level release are felt to be solvable with present technology. Proliferation is felt to be a political problem that is incidental to power plants. Public concern is blamed on possible diversion of materials for weapons, unfamiliarity with radiation, and the demand for meticulous handling of materials and operations. Burner reactors are projected to phase out and be replaced by breeder reactors that are operated in physical isolation under strict security by a professional cadre aware of its responsibility. A restructuring of the nuclear industry is called for so that the generation of power can be insulated from the distribution and marketing functions. (13 references)

  15. Nuclear energy data

    International Nuclear Information System (INIS)

    2002-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional textual and graphical information as compared with previous editions. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (authors)

  16. Nuclear energy data

    International Nuclear Information System (INIS)

    2003-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional textual and graphical information as compared with previous editions. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (author)

  17. Energy and Economic Crisis

    International Nuclear Information System (INIS)

    2000-01-01

    The relationship between the economy and the energy is much more complex of what looks. However, they are continued making, in some cases, absolute statements that used to listen in the past as dogmas, among those that are highly correlated in energy consumption and the Gross National Product GNP and that the countries follow the same development pattern more or less, mainly in connection with the energy consumption. Such statements are not completely misses, neither completely correct and they have behind many simplifications. Of a part, of the historical evolution analysis of several countries or groups of countries on long periods, it confirms the fact that the economic growth, induces an increment in general in the total consumption of energy and vice versa: Energy available with more speed and to smaller price it favors the economic development. Other important factors that impact in the growth of the energy consumption, besides the economic development, are, among, the population's increment, the state of technological development and the cultural customs of use

  18. Nuclear energy and external constraints

    International Nuclear Information System (INIS)

    Lattes, R.; Thiriet, L.

    1983-01-01

    The structural factors of this crisis probably predominate over factors arising out the economic situation, even if explanations vary in this respect. In this article devoted to nuclear energy, a possible means of Loosering external constraints the current international economic environment is firstly outlined; the context in which the policies of industrialized countries, and therefore that of France, must be developed. An examination of the possible role of energy policies in general and nuclear policies in particular as an instrument of economic policy in providing a partial solution to this crisis, will then enable to quantitatively evaluate the effects of such policies at a national level [fr

  19. The Economics of America's Energy Future.

    Science.gov (United States)

    Simmons, Henry

    This is an Energy Research and Development Administration (ERDA) pamphlet which reviews economic and technical considerations for the future development of energy sources. Included are sections on petroleum, synthetic fuels, oil shale, nuclear power, geothermal power, and solar energy. Also presented are data pertaining to U.S. energy production…

  20. Status on the Development of a Modeling and Simulation Framework for the Economic Assessment of Nuclear Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon Michelle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert Arthur [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Jong Suk [Idaho National Lab. (INL), Idaho Falls, ID (United States); Deason, Wesley Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard Doin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    An effort to design and build a modeling and simulation framework to assess the economic viability of Nuclear Hybrid Energy Systems (NHES) was undertaken in fiscal year 2015 (FY15). The purpose of this report is to document the various tasks associated with the development of such a framework and to provide a status on its progress. Several tasks have been accomplished. First, starting from a simulation strategy, a rigorous mathematical formulation has been achieved in which the economic optimization of a Nuclear Hybrid Energy System is presented as a constrained robust (under uncertainty) optimization problem. Some possible algorithms for the solution of the optimization problem are presented. A variation of the Simultaneous Perturbation Stochastic Approximation algorithm has been implemented in RAVEN and preliminary tests have been performed. The development of the software infrastructure to support the simulation of the whole NHES has also moved forward. The coupling between RAVEN and an implementation of the Modelica language (OpenModelica) has been implemented, migrated under several operating systems and tested using an adapted model of a desalination plant. In particular, this exercise was focused on testing the coupling of the different code systems; testing parallel, computationally expensive simulations on the INL cluster; and providing a proof of concept for the possibility of using surrogate models to represent the different NHES subsystems. Another important step was the porting of the RAVEN code under the Windows™ operating system. This accomplishment makes RAVEN compatible with the development environment that is being used for dynamic simulation of NHES components. A very simplified model of a NHES on the electric market has been built in RAVEN to confirm expectations on the analysis capability of RAVEN to provide insight into system economics and to test the capability of RAVEN to identify limit surfaces even for stochastic constraints. This

  1. The central role of energy in Soddy's holistic and critical approach to nuclear science, economics, and social responsibility

    International Nuclear Information System (INIS)

    Trenn, T.J.

    1979-01-01

    The following aspects of Soddy's life and work are discussed: early work with Rutherford leading to the conviction that atoms contained an immense store of energy; his belief that this energy could be released and controlled for the benefit of mankind; his growing concern with the fundamental problems of social economics and the social responsibility of scientists; and his interest in economics and monetary reform. (U.K.)

  2. Energy Storage Economics

    Energy Technology Data Exchange (ETDEWEB)

    Elgqvist, Emma M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-07

    This presentation provides an overview on energy storage economics including recent market trends, battery terminology and concepts, value streams, challenges, and an example of how photovoltaics and storage can be used to lower demand charges. It also provides an overview of the REopt Lite web tool inputs and outputs.

  3. Economic analysis of nuclear power generation

    International Nuclear Information System (INIS)

    Song, Ki Dong; Choi, Young Myung; Kim, Hwa Sup; Lee, Man Ki; Moon, Kee Hwan; Kim, Seung Su

    1997-12-01

    The major contents in this study are as follows : - long-term forecast to the year of 2040 is provided for nuclear electricity generating capacity by means of logistic curve fitting method. - the role of nuclear power in a national economy is analyzed in terms of environmental regulation. To do so, energy-economy linked model is developed. By using this model, the benefits from the introduction of nuclear power in Korea are estimated. Study on inter-industry economic activity for nuclear industry is carried out by means of an input-output analysis. Nuclear industry is examined in terms of inducement effect of production, of value-added, and of import. - economic analysis of nuclear power generation is performed especially taking into consideration wide variations of foreign currency exchange rate. The result is expressed in levelized generating costs. (author). 27 refs., 24 tabs., 44 figs

  4. Status on the Development of a Modeling and Simulation Framework for the Economic Assessment of Nuclear Hybrid Energy

    International Nuclear Information System (INIS)

    Epiney, Aaron Simon; Chen, Jun; Rabiti, Cristian

    2016-01-01

    Continued effort to design and build a modeling and simulation framework to assess the economic viability of Nuclear Hybrid Energy Systems (NHES) was undertaken in fiscal year (FY) 2016. The purpose of this report is to document the various tasks associated with the development of such a framework and to provide a status of their progress. Several tasks have been accomplished. First, a synthetic time history generator has been developed in RAVEN, which consists of Fourier series and autoregressive moving average model. The former is used to capture the seasonal trend in historical data, while the latter is to characterize the autocorrelation in residue time series (e.g., measurements with seasonal trends subtracted). As demonstration, both synthetic wind speed and grid demand are generated, showing matching statistics with database. In order to build a design and operations optimizer in RAVEN, a new type of sampler has been developed with highly object-oriented design. In particular, simultaneous perturbation stochastic approximation algorithm is implemented. The optimizer is capable to drive the model to optimize a scalar objective function without constraint in the input space, while the constraints handling is a work in progress and will be implemented to improve the optimization capability. Furthermore, a simplified cash flow model of the performance of an NHES in the electric market has been developed in Python and used as external model in RAVEN to confirm expectations on the analysis capability of RAVEN to provide insight into system economics and to test the capability of RAVEN to identify limit surfaces. Finally, an example calculation is performed that shows the integration and proper data passing in RAVEN of the synthetic time history generator, the cash flow model and the optimizer. It has been shown that the developed Python models external to RAVEN are able to communicate with RAVEN and each other through the newly developed RAVEN capability called “EnsembleModel”.

  5. Improving Safety, Economic, Substantiality, and Security of Nuclear Energy with Canadian Super-Critical Water-cooled Reactor Concept

    International Nuclear Information System (INIS)

    Hamilton, Holly; Pencer, Jeremy; Yetisir, Metin; Leung, Laurence

    2012-01-01

    Super-Critical Water-cooled Reactor is one of the six design concepts being developed under the Generation IV International Forum. It is the only concept evolving from the water-cooled reactors and taking advantages of the balance-of-plant design and operation experience of the fossil-power plants. Canada is developing the SCR concept from the well-established pressure-tube reactor technology. The Canadian SCWR maintains modular design approach using relative small fuel channels with the separation of coolant and moderator. It is equipped with an advanced fuel channel design that is capable to transfer decay heat from the fuel to the moderator under the long-term cooling stage. Coupled with the advanced passive-moderator cooling system, cooling of fuel and fuel channel is continuous even without external power or operator intervention. The Canadian SCWR is operating at a pressure of 25 MPa with a core outlet temperature of 625 deg. C. This has led to a drastic increase in thermal efficiency to 48% from 34% of the current fleet of reactors (a 40% rise in relative efficiency). With the high core outlet temperature, a direct thermal cycle has been adopted and has led to simplification in plant design attributing to the cost reduction compared to the current reactor designs. The Canadian SCWR adopts the advanced Thorium fuel cycle to enhance the substantiality, economic, and security. than uranium in the world (estimated to be three times more). This provides the long-term fuel supply. Thorium's price is stable compared to uranium and is consistently lower than uranium. This would maintain the predictability and economic of fuel supply. Thorium itself is a non-fissile material and once irradiated requires special handling. This improves proliferative resistance. The objective of this paper is to highlight these improvements in generating nuclear energy with the Canadian SCWR

  6. Status on the Development of a Modeling and Simulation Framework for the Economic Assessment of Nuclear Hybrid Energy

    Energy Technology Data Exchange (ETDEWEB)

    Epiney, Aaron Simon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chen, Jun [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Continued effort to design and build a modeling and simulation framework to assess the economic viability of Nuclear Hybrid Energy Systems (NHES) was undertaken in fiscal year (FY) 2016. The purpose of this report is to document the various tasks associated with the development of such a framework and to provide a status of their progress. Several tasks have been accomplished. First, a synthetic time history generator has been developed in RAVEN, which consists of Fourier series and autoregressive moving average model. The former is used to capture the seasonal trend in historical data, while the latter is to characterize the autocorrelation in residue time series (e.g., measurements with seasonal trends subtracted). As demonstration, both synthetic wind speed and grid demand are generated, showing matching statistics with database. In order to build a design and operations optimizer in RAVEN, a new type of sampler has been developed with highly object-oriented design. In particular, simultaneous perturbation stochastic approximation algorithm is implemented. The optimizer is capable to drive the model to optimize a scalar objective function without constraint in the input space, while the constraints handling is a work in progress and will be implemented to improve the optimization capability. Furthermore, a simplified cash flow model of the performance of an NHES in the electric market has been developed in Python and used as external model in RAVEN to confirm expectations on the analysis capability of RAVEN to provide insight into system economics and to test the capability of RAVEN to identify limit surfaces. Finally, an example calculation is performed that shows the integration and proper data passing in RAVEN of the synthetic time history generator, the cash flow model and the optimizer. It has been shown that the developed Python models external to RAVEN are able to communicate with RAVEN and each other through the newly developed RAVEN capability called “EnsembleModel”.

  7. Nuclear energy and the nuclear energy industry

    International Nuclear Information System (INIS)

    Bromova, E.; Vargoncik, D.; Sovadina, M.

    2013-01-01

    A popular interactive multimedia publication on nuclear energy in Slovak. 'Nuclear energy and energy' is a modern electronic publication that through engaging interpretation, combined with a number of interactive elements, explains the basic principles and facts of the peaceful uses of nuclear energy. Operation of nuclear power plants, an important part of the energy resources of developed countries, is frequently discussed topic in different social groups. Especially important is truthful knowledgeability of the general public about the benefits of technical solutions, but also on the risks and safety measures throughout the nuclear industry. According to an online survey 'Nuclear energy and energy' is the most comprehensive electronic multimedia publication worldwide, dedicated to the popularization of nuclear energy. With easy to understand texts, interactive and rich collection of accessories stock it belongs to modern educational and informational titles of the present time. The basic explanatory text of the publication is accompanied by history and the present time of all Slovak nuclear installations, including stock photos. For readers are presented the various attractions legible for the interpretation, which help them in a visual way to make a more complete picture of the concerned issue. Each chapter ends with a test pad where the readers can test their knowledge. Whole explanatory text (72 multimedia pages, 81,000 words) is accompanied by a lot of stock of graphic materials. The publication also includes 336 photos in 60 thematic photo galleries, 45 stock charts and drawings, diagrams and interactive 31 videos and 3D models.

  8. Finnish energy outlook - role of nuclear energy

    International Nuclear Information System (INIS)

    Santaholma, J.

    2004-01-01

    In this presentation author deals with production a consumption of electricity in the Finland. New nuclear power partly covers additional electricity demand and replaces retiring power plants in coming decades after 2010. Nuclear energy secures stable, economical and predictable electricity price as well as operation environment for the electricity intensive industry for coming decades. Nuclear energy also reduces the dependence on electricity import of Finland. Nuclear energy partly enables, together with renewable, fulfilment of Finland's Kyoto commitments. Solutions for nuclear waste management are a condition sine qua non for sound nuclear programmes. Funding has been arranged. All this is carried out in Finland in a transparent way and in accordance with any democratic requirements. (author)

  9. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    2008-01-01

    The booklet provides and up-to-date overview of the use of nuclear energy in Finland as well as future plans regarding the nuclear energy sector. It is intended for people working in the nuclear or energy sector in other countries, as well as for those international audiences and decision-makers who would like to have extra information on this particular energy sector. In the booklet nuclear energy is described as part of the Finnish electricity market

  10. Economics of nuclear electricity

    International Nuclear Information System (INIS)

    Frederick, G.

    1997-01-01

    On the sites of Tihange and Doel in Belgium, a total of seven nuclear generating units with an aggregate installed power of 5807 MWe are operated. Construction of another unit at Doel was postponed indefinitely in 1988 after the Chernobyl accident. Electrabel holds a 25% interest in the Chooz B-1 and B-2 nuclear generating units under construction in France near the Belgian border. In terms of gross installed nuclear generating capacity worldwide, Belgium holds twelfth place; when ranked according to the contribution to public electricity supply, the country holds third place with a 57% share. Before decisions are taken about future nuclear power plants, above all the fuel costs of gas-fired cogeneration plants and the capital costs of nuclear power plants must be weighed. Current evaluation of all costs shows the use of nuclear power for electricity generation to be ten percent more expensive than that of natural gas. However, those responsible in the power supply industry feel that this short-term competitive situation is only one factor out of many others, such as safety issues, diversification in sourcing and deliveries, climatic influences, and employment. The development and construction of advanced reactors will result in the desired cost reduction and lead to a new era of nuclear power, also in Europe. (orig.) [de

  11. Economical aspects of nuclear energetics

    International Nuclear Information System (INIS)

    Celinski, Z.

    2000-01-01

    The economical aspects of nuclear power generation in respect to costs of conventional energetics have been discussed in detail. The costs and competitiveness of nuclear power have been considered on the base of worldwide trends taking into account investment and fuel costs as well as 'social' costs being result of impact of different types of energetics on environment, human health etc

  12. Nuclear energy in Japan

    International Nuclear Information System (INIS)

    Guillemard, B.

    1978-01-01

    After having described the nuclear partners in Japan, the author analyzes the main aspects of Japan's nuclear energy: nuclear power plants construction program; developping of light water reactors; fuel cycle politics [fr

  13. Nuclear: an energy in territories

    International Nuclear Information System (INIS)

    Le Ngoc, Boris

    2016-01-01

    After having briefly outlined that introducing a relationship between geography and nuclear energy is a quite recent approach, and by often quoting a researcher (Teva Meyer) specialised in Swedish energy issues, the author briefly discusses how nuclear energy structures territories through meshing and 'polarisation' effects, and economic and social impacts. He also discusses whether territories then become dependent on nuclear activity, what happens when a nuclear plant stops, how the existence of a nuclear plant becomes an identity market for a territory, and how material flows also deal with geography. In the last part, the author notices that in Germany, nuclear industry is considered as an industry like any other one. He finally outlines that geography could be useful to achieve energy transition

  14. Nuclear energy data 2011

    CERN Document Server

    2011-01-01

     . Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of statistics and country reports on nuclear energy, contains official information provided by OECD member country governments on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035. For the first time, it includes data for Chile, Estonia, Israel and Slovenia, which recently became OECD members. Key elements of this edition show a 2% increase in nuclear and total electricity production and a 0.5% increase in nuclear generating ca

  15. Desalination and nuclear energy

    International Nuclear Information System (INIS)

    Romeijn, A.A.

    1992-01-01

    The techniques for fresh water production from seawater have matured and capacities have increased considerably over the past decades. It is feasible to combine seawater desalination with the generation of electricity since power stations can provide energy and low grade heat during off peak periods for the purpose of fresh water production. A dual purpose installation, combining a seawater desalination facility with a light water reactor power generation station promises interesting possibilities. The case in South Africa, where nuclear power stations are most economically sited far from the inland coal fields, is discussed. 1 ill

  16. Nuclear energy data 2005

    CERN Document Server

    Publishing, OECD

    2005-01-01

    This 2005 edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers a projection horizon lengthened to 2025 for the first time.  It presents the reader with a comprehensive overview on the status and trends in nuclear electricity generation in OECD countries and in the various sectors of the nuclear fuel cycle.

  17. Nuclear issues in the Canadian energy context

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Participants holding a wide spectrum of views and representing the nuclear industry, churches, anti-nuclear groups, and the general public participated in sessions on the ethics of nuclear power, waste disposal, health and environmental effects of energy development, decision making and the regulatory process, and the economics of nuclear and other energy sources.

  18. Nuclear energy and international cooperation

    International Nuclear Information System (INIS)

    Oshima, Keiichi

    1981-01-01

    There is no need to emphasize that nuclear energy cannot be developed without international cooperation at either the industrial or the academic level. In the meanwhile, there have been some marked political, economic and social changes in recent years which are posing constraints to the international cooperation in nuclear energy. The problems and constraints impeding nuclear power programs cannot be overcome by only one nation; international cooperation with common efforts to solve the problems is essential. Nuclear energy is different from fossil energy resources in that it is highly technology-intensive while others are resource-intensive. International cooperation in technology has an entirely different importance in the field of nuclear energy. Educational institutions will play a role in a new era of the international cooperation. (Mori, K.)

  19. Nuclear energy basic knowledge

    International Nuclear Information System (INIS)

    Volkmer, Martin

    2013-11-01

    The following topics are dealt with: Atoms, nuclear decays and radioactivity, energy, nuclear fission and the chain reaction, controlled nuclear fission, nuclear power plants, safety installations in nuclear power plants, fuel supply and disposal, radiation measurement and radiation exposition of man. (HSI)

  20. Nuclear energy - some aspects

    International Nuclear Information System (INIS)

    Bandeira, Fausto de Paula Menezes

    2005-05-01

    This work presents a brief history of research and development concerning to nuclear technology worldwide and in Brazil, also information about radiations and radioactive elements as well; the nuclear technology applications; nuclear reactor types and functioning of thermonuclear power plants; the number of existing nuclear power plants; the nuclear hazards occurred; the national fiscalization of nuclear sector; the Brazilian legislation in effect and the propositions under proceduring at House of Representatives related to the nuclear energy

  1. The economics of nuclear power

    International Nuclear Information System (INIS)

    Hunt, H.; Betteridge, G.

    1978-01-01

    It is stated that nuclear power stations throughout the world are now providing consumers with substantially the cheapest electricity, except in areas with extensive hydro-power or cheap, clean, local coal. Thermal nuclear power stations will continue to provide economic electricity until the cost of uranium rises to several times the present level; fast reactors have the potential to continue to stabilise the cost of electricity and by moderating demand for other fuels will keep down their cost also. Headings of this paper include -The historical perspective; methods of comparing nuclear and fossil generating costs; historical comparisons of UK nuclear and fossil generating costs; waste storage and decommissioning; future changes in costs; criteria for future investment in nuclear power; alternative methods of comparison; total system cost analysis; the economics of fast reactors; and the ultimate role of fast reactors. 13 references. (author)

  2. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  3. Questioning the economic viability of nuclear power

    International Nuclear Information System (INIS)

    Murota, Takeshi

    1981-01-01

    In the United States, the pioneer in nuclear power generation, the economic aspect of nuclear power is now questioned. Its economy in Japan is supported by the entirely monopolistic nature of the power generating firms. The economy of the nuclear power generation in Japan is first examined in its original cost. It is then analyzed in legislative economics. In the conventional arguments, the authorities in favor of nuclear power stick to its practical safety, acknowledging its potential danger, while the people against it adheres to its danger. Thus both arguments go in parallel, never converging. It is attempted to elucidate through the atomic energy damage compensation system, on the boundary between legislation and economy, to whom nuclear power generation is safe, and to whom it is dangerous. (J.P.N.)

  4. Wind energy economics

    International Nuclear Information System (INIS)

    Milborrow, D.J.

    1995-01-01

    The economics of wind energy have improved rapidly in the past few years, with improvements in machine performance and increases in size both contributing to reduce costs. These trends are examined and future costs assessed. As bank loan periods for wind projects are shorter than for thermal plant, the effect on the price of wind energy is discussed. It is argued that wind energy has a higher value than that of centralised plant, since it is fed into the low voltage distribution network and it follows that the price of wind energy is converging with its value. The paper also includes a brief review of the capacity credit of wind plant and an assessment of the cost penalties which are incurred due to the need to hold extra plant on part load. These penalties are shown to be small. (author)

  5. Department of Nuclear Energy

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: The activities of Department was engaged in the selected topics in nuclear fission reactor science and engineering. Present and future industry competitiveness, economic prosperity and living standards within the world are strongly dependent on maintaining the availability of energy at reasonable prices and with security of supply. Also, protection of man and the environment from the harmful effects of all uses of energy is an important element of the quality of life especially in Europe. It is unrealistic to assume that the technology for renewable (hydro, wind, solar and biomass) available within a 20-30 year perspective could provide the production capacity to replace present use of nuclear power and at the same time substantially reduce the use of fossil fuels, especially when considering that energy demand in industrialized countries can be expected to continue to increase even within a framework of overall energy conservation and continued improvement of efficiency in energy usage. In the area of nuclear fission, we continue support to maintain and develop the competence needed to ensure the safety of existing and future reactors and other nuclear installations. In addition support is given to explore the potential for improving present fission technology from a sustainable development point of view. The focus on advanced modelling of improved reactor and fuel cycle concepts, including supporting experimental research, with a view to improving the utilisation of the inherent energy content of uranium and other nuclear fuels, whilst at the same time reducing the amount of long-lived radioactive waste produced. A common scientific understanding of the frequently used concept of ''reasonable assurance of safety'' for the long-term, post-closure phase of repositories for spent fuel and high-level waste developed in order to ensure reasonably equivalent legal interpretations in environmental impact assessment and licensing procedures. Also, research is

  6. Economic evaluation of nuclear plant project

    International Nuclear Information System (INIS)

    Tolba, Adel.

    1988-01-01

    The present work is an attempt to prepare a ''fair price'' estimate to serve as bench mark in the course of economic evaluation of bids to construct nuclear power plants. The methodology of determining the present value of all capital investment is used. Running costs of nuclear fuel, operation, and maintenance are also determined. As a result, levelized energy cost is calculated. Sensitivity analysis for different parameters has been conducted, and the results of which are included in this paper

  7. The state of energy resources and role of nuclear energy

    International Nuclear Information System (INIS)

    Rosen, M.; )

    1999-01-01

    The present and future global energy demand has been assessed. The nuclear energy contribution in world energy balance has been discussed taking into account economical, social and environmental circumstances

  8. Nuclear energy data

    International Nuclear Information System (INIS)

    2004-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional graphical information as compared with previous editions allowing a rapid comparison between capacity and requirements in the various phases of the nuclear fuel cycle. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (author)

  9. Economic consideration for Indonesia's nuclear power program

    International Nuclear Information System (INIS)

    Ahimsa, D.; Sudarsono, B.

    1987-01-01

    Indonesia experienced relatively high economic growth during the 1970s and the energy supply system was strained to keep up with demand. Several energy studies were thus carried out around 1980, including a nuclear power planning study and a nuclear plant feasibility study. During the 1980s, economic growth rates were subtantially lower, but surprisingly electricity demand remained fairly high. In 1984 it was therefore decided to update previous nuclear power studies. This effort was completed in 1986. Using energy projections and cost estimates developed during the updating of previous nuclear power studies, the paper discusses the economic justification for a nuclear power program in Indonesia. Results of the update, including computer runs of MAED and WASP models supplied by the IAEA, will be presented along with appropriate sensitivity analysis. These results are then analyzed in the light of 1986 developments in international oil price. Preparations for the forthcoming nuclear power program are described, including the construction of a multi-purpose reactor and associated laboratories in Serpong, near Jakarta. (author)

  10. Economics of generating electricity from nuclear power

    International Nuclear Information System (INIS)

    Boadu, H.O.

    2001-01-01

    The paper reviews and compares experiences and projected future construction and electricity generation costs for nuclear and fossil fired power plants. On the basis of actual operating experience, nuclear power has been demonstrated to be economically competitive with other base load generation options, and international studies project that this economic competitiveness will be largely maintained in the future, over a range of conditions and in a number of countries. However, retaining and improving this competitive position requires concerted efforts to ensure that nuclear plants are constructed within schedule and budgets, and are operated reliably and efficiently. Relevant cost impacting factors is identified, and conclusions for successful nuclear power plant construction and operation are drawn. The desire to attain sustainable development with balanced resource use and control of the environmental and climate impacts of energy systems could lead to renewed interest in nuclear power as an energy source that does not emit greenhouse gases, thus contributing to a revival of the nuclear option. In this regard, mitigation of emissions from fossil-fuelled power plants could lead to restrictions of fossil fuel use and/or result in higher costs of fossil based generation, thus improving the economic competitiveness of nuclear power (au)

  11. Hydrogen and nuclear energy

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.I.; Hancox, W.T.; Pendergast, D.R.

    1999-01-01

    The current world-wide emphasis on reducing greenhouse gas (GHG) emissions provides an opportunity to revisit how energy is produced and used, consistent with the need for human and economic growth. Both the scale of the problem and the efforts needed for its resolution are extremely large. We argue that GHG reduction strategies must include a greater penetration of electricity into areas, such as transportation, that have been the almost exclusive domain of fossil fuels. An opportunity for electricity to displace fossil fuel use is through electrolytic production of hydrogen. Nuclear power is the only large-scale commercially proven non-carbon electricity generation source, and it must play a key role. As a non-carbon power source, it can also provide the high-capacity base needed to stabilize electricity grids so that they can accommodate other non-carbon sources, namely low-capacity factor renewables such as wind and solar. Electricity can be used directly to power standalone hydrogen production facilities. In the special case of CANDU reactors, the hydrogen streams can be preprocessed to recover the trace concentrations of deuterium that can be re-oxidized to heavy water. World-wide experience shows that nuclear power can achieve high standards of public safety, environmental protection and commercially competitive economics, and must . be an integral part of future energy systems. (author)

  12. A handbook of nuclear energy. Vol. 2

    International Nuclear Information System (INIS)

    Michaelis, H.

    1982-01-01

    With this new edition of his book 'Nuclear energy', first edited in 1977, which is extremely enlarged and brought up to date, the author has given an overall picture of nuclear energy in which the physical and technical basis and the industrial, economic and environmental aspects of nuclear energy are discussed in a systematic outline. In this second volume the topics of nuclear fuel cycle, safety and environment, and international policies against the proliferation of nuclear weapons are discussed. (UA) [de

  13. Economic analysis of the hydrogen production by means of the thermo-chemistry process iodine-sulfur with nuclear energy

    International Nuclear Information System (INIS)

    Solorzano S, C.; Francois L, J. L.

    2011-11-01

    In this work an economic study was realized about a centralized plant of hydrogen production that works by means of a thermo-chemistry cycle of sulfur-iodine and uses heat coming from a nuclear power plant of IV generation, with base in the software -Hydrogen Economic Evaluation Programme- obtained through the IAEA. The sustainable technology that is glimpsed next for the generation of hydrogen is to great scale and based on processes of high temperature coupled to nuclear power plants, being the most important the cycle S-I and the electrolysis to high temperature, for what objective references are presented that can serve as base for the taking of decisions for its introduction in Mexico. After detailing the economic models that uses the software for the calculation of the even cost of hydrogen production and the characteristics, so much of the nuclear plant constituted by fourth generation reactors, as of the plant of hydrogen production, is proposed a -base- case, obtaining a preliminary even cost of hydrogen production with this process; subsequently different cases are studied starting from which are carried out sensibility analysis in several parameters that could rebound in this cost, taking into account that these reactors are still in design and planning stages. (Author)

  14. Nuclear energy dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-15

    This book is a dictionary for nuclear energy which lists the technical terms in alphabetical order. It adds four appendixes. The first appendix is about people involved with nuclear energy. The second one is a bibliography and the third one is a checklist of German, English and Korean. The last one has an index. This book gives explanations on technical terms of nuclear energy such as nuclear reaction and atomic disintegration.

  15. Nuclear energy dictionary

    International Nuclear Information System (INIS)

    1978-03-01

    This book is a dictionary for nuclear energy which lists the technical terms in alphabetical order. It adds four appendixes. The first appendix is about people involved with nuclear energy. The second one is a bibliography and the third one is a checklist of German, English and Korean. The last one has an index. This book gives explanations on technical terms of nuclear energy such as nuclear reaction and atomic disintegration.

  16. Nuclear energy in Spain

    International Nuclear Information System (INIS)

    Villota, C. de

    2007-01-01

    Carlos Villota. Director of Nuclear Energy of UNESA gave an overview of the Spanish nuclear industry, the utility companies and the relevant institutions. Companies of the nuclear industry include firms that produce heavy components or equipment (ENSA), manufacturers of nuclear fuel (ENUSA), engineering companies, the National Company for Radioactive Waste Management (ENRESA), and nuclear power plants (nine units at seven sites). Nuclear energy is a significant component of the energy mix in Spain: 11% of all energy produced in Spain is of nuclear origin, whilst the share of nuclear energy in the total electricity generation is approximately 23%. The five main players of the energy sector that provide for the vast majority of electricity production, distribution, and supply have formed the Spanish Electricity Industry Association (UNESA). The latter carries out co-ordination, representation, management and promotion tasks for its members, as well as the protection of their business and professional interests. In the nuclear field, UNESA through its Nuclear Energy Committee co-ordinates aspects related to nuclear safety and radiological protection, regulation, NPP operation and R and D. Regarding the institutional framework of the nuclear industry, ENSA, ENUSA and ENRESA are controlled by the national government through the Ministry of Economy and Finance and the Ministry of Science and Technology. All companies of the nuclear industry are licensed by the Ministry of Industry, Tourism and Trade (MITYC), while the regulatory body is the Nuclear Safety Council (CSN). It is noteworthy that CSN is independent of the government, as it reports directly to Parliament. (author)

  17. Nuclear Energy in Perspective

    International Nuclear Information System (INIS)

    1989-01-01

    This report provides the interested non-specialist reader with insights on five major issues associated with nuclear power generation: nuclear development and economics, protection of man and the environment, power plant safety, radioactive waste management and compensation for damage from a nuclear accident

  18. Soft energy vs nuclear energy

    International Nuclear Information System (INIS)

    Ando, Yoshio

    1981-01-01

    During the early 1960s, a plentiful, inexpensive supply of petroleum enabled Japanese industry to progress rapidly; however, almost all of this petroleum was imported. Even after the first oil crisis of 1973, the recent annual energy consumption of Japan is calculated to be about 360 million tons in terms of petroleum, and actual petroleum forms 73% of total energy. It is necessary for Japan to reduce reliance on petroleum and to diversify energy resources. The use of other fossil fuels, such as coal, LNG and LPG, and hydraulic energy, is considered as an established alternative. In this presentation, the author deals with new energy, namely soft energy and nuclear energy, and discusses their characteristics and problems. The following kinds of energy are dealt with: a) Solar energy, b) Geothermal energy, c) Ocean energy (tidal, thermal, wave), d) Wind energy, e) Biomass energy, f) Hydrogen, g) Nuclear (thermal, fast, fusion). To solve the energy problem in future, assiduous efforts should be made to develop new energy systems. Among them, the most promising alternative energy is nuclear energy, and various kinds of thermal reactor systems have been developed for practical application. As a solution to the long-term future energy problem, research on and development of fast breeder reactors and fusion reactors are going on. (author)

  19. Energy and economic tables 1950-1991

    International Nuclear Information System (INIS)

    1994-02-01

    This publication, prepared by the Planning and Economic Studies Section of the Division of Nuclear Power, presents summaries of data contained in the IAEA Energy and Economic Data Bank (EEDB). The data for each country are presented in a standardized format and in consistent system units. Aggregated data for the whole world, and for eight world subdivisions, are also presented in the same format

  20. Political aspects of nuclear energy

    International Nuclear Information System (INIS)

    Kiener, E.

    1989-01-01

    In Switzerland as in other countries public opinion on nuclear energy has drastically changed with time. Surveys show that a majority at present favours abandoning nuclear energy in Switzerland, but does not consider feasible an immediate switchover to other forms of energy. The behaviour is contradictory because increasingly more electric power is used, even after Chernobyl. The resistence has many facets. The debate is largely focused on the question of future technological and economic development. Nuclear energy also became the scapegoat for a development of the last few decades it has not been responsible for (destruction of the environment, waste of natural resources). For the sake of the environment and future economic development, the continued use of nuclear energy has to be ensured. This calls for great efforts in order to convince the people that nuclear power is an essential and logical part of our energy supply. In this process, the fear of a nuclear energy and the unease about industrial society must not be dismissed as irrelevant. (orig.)

  1. The present global financial and economic crisis and the oil crises of the 1970s. Opposite turning points in the development of economic growth, energy supply, and the role of nuclear power?

    International Nuclear Information System (INIS)

    Herrmann, Dieter

    2012-01-01

    After decades of extensive economic growth, the oil crises in the 1970s enforced the transition to intensive growth in a manner conserving resources, combined with a fundamental turnaround in the development of global energy supply and the role of nuclear power. Meanwhile, the world has changed considerably as a result of population growth, technical progress, and globalization - and it is in the throes of another crisis. The contribution shows, on the basis of empirical indicators, that higher commodity prices halted the period of intense growth already in late 2007. The following global financial and economic crisis can be interpreted plausibly as a return to extensive economic growth worldwide. This is likely to have far-reaching consequences for the future development of global energy supply and the role of nuclear power. (orig.)

  2. Is nuclear economical in comparison to renewables?

    International Nuclear Information System (INIS)

    Suna, Demet; Resch, Gustav

    2016-01-01

    The European Union is divided on the issue of electricity production. While there is consensus that generation technologies need to be low on greenhouse gas emissions, the question of whether to use renewables or nuclear to meet this power demand is highly controversial. Both options still require financial support and this is not going to change in the near future. This raises the question of where public money should be invested in order to achieve greater economic efficiency: into support for renewable energies (RE) or support for nuclear power plants? This paper sets out to answer this question. The detailed model-based prospective scenario assessment performed in this study provides the basis for estimating future cost developments. After discussing the existing support schemes for renewables, the paper compares these with a nuclear model. The comparison is conducted exemplarily for the United Kingdom (UK) at a country level and for the EU 28 overall. The recent state aid case for the construction of the Hinkley Point nuclear power plant (NPP) in the UK serves as the model for the nuclear option. - Highlights: • State aids for new nuclear power is compared with incentives for renewables. • Hinkley Point C in the UK is considered as example for new nuclear power. • Comparison is conducted for the UK at a country level and for the EU 28 overall. • Analysis shows that renewable energies are more economical than nuclear power.

  3. Nuclear energy, needs and policies

    International Nuclear Information System (INIS)

    Yousefpour, B.; Rahimi, A.R.

    2002-01-01

    As an oil-and gas-rich state, Iran is among the main energy exporting countries of the world. No doubt, economic development in a country causes increase in its energy demand. Having a glance at the statistics of energy consumption in Iran during the past three decades reveals that energy consumption has been quadrupled. Due to dependability of the country's energy-supply system on fossil industries and thanks to the increasing demand, social and economic development will face great problems. For this reason, the problem has prompted Iranian officials to diversify the country's energy-supply system, as it has been give top priority in the policies of the first and second plans. The discovered and undiscovered fields of applied nuclear sciences and technologies indicate the importance of transferring and developing nuclear technologies for different countries' economic systems. Like many other countries, Iran is also in dire need of transferring nuclear technology and applying the related sciences in various fields, paving the way for economic, agricultural, medical development and having a more active presence in the international markets through quality and standard products. Iran has all the time called for a Middle East region free of nuclear weapons and expressed its concern over production and development of atomic weapons by certain regional countries and called it a serious threat to its national and regional security

  4. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of the booklet is to provide an up-to-date overview of the use of nuclear energy in Finland as well as future plans regarding the nuclear energy sector. It is intended for people working in the nuclear energy or other energy sectors in other countries, as well as for those international audiences and decision-makers who would like to have extra information on this particular energy sector. Nuclear energy is described as part of the Finnish electricity market. (orig.)

  5. Nuclear energy and environment

    International Nuclear Information System (INIS)

    Alves, R.N.

    1987-01-01

    A general view about the use of energy for brazilian development is presented. The international situation of the nuclear field and the pacific utilization of nuclear energy in Brazil are commented. The safety concepts used for reactor and nuclear facilities licensing, the environmental monitoring program and radiation protection program used in Brazil are described. (E.G.) [pt

  6. Nuclear energy data 2007

    International Nuclear Information System (INIS)

    2007-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers projections lengthened to 2030 for the first time and information on the development of new centrifuge enrichment capacity in member countries. The compilation gives readers a comprehensive and easy-to-access overview of the current situation and expected trends in various sectors of the nuclear fuel cycle, providing authoritative information to policy makers, experts and academics working in the nuclear energy field

  7. The macro-economic significance of nuclear power

    International Nuclear Information System (INIS)

    Brookes, L.G.

    1983-01-01

    The role of energy in economic systems and interpretation of energy statistics are discussed together with energy conservation and the two-way interaction between energy and economic activity. Misconceptions about the relative roles of energy conservation and new energy supply, and about the link between energy investment and jobs are described. It is concluded that price-induced energy saving measures are appropriate but not sufficient when energy prices rise; they should be accompanied by measures to increase the supply of low-cost/low-priced energy. The role of nuclear energy is two-fold: first, as a contribution to new energy supply and, secondly, in offering new economic opportunities. (UK)

  8. Competitive economics: nuclear and coal power

    International Nuclear Information System (INIS)

    Hellman, R.

    1984-01-01

    Ignorance of the comparative economics and prematurity in adopting light water reactors characterize the nuclear industry, which has defied the laws of logic for learning. The absence of valid authoritative data to determine the economics of a newly ordered nuclear power plant is what leads to the methodological problems in making comparisons with coal. The author's solution adjusts the four most authoritative studies to reality: by the Atomic Energy Commission in 1975, a team of TRW and Mitre Corp. for ERDA in 1976, by the Nuclear Regulatory Commission in 1979, and by Exxon. The adjustments, which include original costs adjusted for lifetime; capital adjustments for sufflation, construction time, unit life, and capacity factor; fuel adjustments, and other adjustments involving management, replacement, maintenance, fuel prices, waste disposal, etc.) show that the total busbar cost per kWh from nuclear power units is 2.2 times that of coal. 7 references, 1 table

  9. Essays in Energy Economics

    Science.gov (United States)

    Myers, Erica Catherine

    This dissertation combines research on three topics in applied energy economics. The first two papers investigate whether consumers are informed about and pay attention to energy costs in residential housing. The first paper explores this issue in the rental housing market, while the second paper focuses on housing purchases. The third paper, based on joint work with AJ Bostian and Harrison Fell, uses a laboratory experiment to test the effects of positive versus negative cost shocks on mulit-unit procurement auction performance. The first paper explores whether there are energy cost information asymmetries between landlords and tenants. If tenants are uninformed about energy costs, landlords cannot capitalize energy efficiency investments into higher rents, leading to under-investment. I exploit variation in energy costs in the form of relative heating fuel price changes in the northeastern United States where some apartment units heat with oil and some units heat with natural gas. I develop a search model to describe the matching of landlords and tenants, and derive predictions about the incidence of relative fuel price changes, tenant turnover, and efficiency investments under both symmetric and asymmetric information. My model predicts that, under symmetric full information, these outcomes will not differ depending on whether landlords or tenants pay for energy. In contrast, under asymmetric information, the demand of uninformed tenants for units that heat with oil rather than gas will not shift when oil prices rise relative to gas prices. In a search model, this leads to different market outcomes when landlords, rather than tenants, pay for energy. I find that the capitalization of energy prices into rents, turnover rates, and energy efficiency investments differ between the two payment regimes in ways that are consistent with asymmetric information. The second paper explores whether home buyers are myopic about future energy costs. I exploit variation in

  10. Nuclear energy has a future

    International Nuclear Information System (INIS)

    Sorin, F.

    2012-01-01

    Nuclear energy appears to be a main asset to France in the context of the worldwide economic slump. Nuclear power provides a cheap electricity that spares the buying power of households and increases the competitiveness of French enterprises. Nuclear industry with major companies like EDF, AREVA and CEA and 450 small and medium-sized enterprises, represents a core resistant to industrial decline. Nuclear industry is a good provider of work and globally it represents 2% of all the jobs in France. Concerning the trade balance, nuclear power plays twice; first by exporting equipment and services for a value of 7 billions euros a year and secondly by sparing the cost of energy imports that would be necessary if nuclear power was not here which is estimated to 20 billions euros a year. (A.C.)

  11. The future of nuclear energy

    International Nuclear Information System (INIS)

    Schmidt-Kuester, W.J.

    2000-01-01

    Europe is one of the world leaders in nuclear technology advancement. The development of spent fuel reprocessing is but one example of this. This process continues today with the development by France and Germany of the European Pressurised-Water Reactor. Nuclear research and development work is continuing in Europe, and must be continued in the future, if Europe is to retain its world leadership position in the technological field and on the commercial front. If we look at the benefits, which nuclear energy has to offer, in economic and environmental terms, 1 support the view that nuclear is an energy source whose time has come again. This is not some fanciful notion or wishful thinking. There is clear evidence of greater long-term reliance on nuclear energy. Perhaps we do not see new nuclear plants springing up in Europe, but we do see ambitious nuclear power development programmes underway in places like China, Japan and Korea. Closer to home, Finland is seriously considering the construction of a new nuclear unit. Elsewhere, in Europe and the US, we see a growing trend towards nuclear plant life extension and plant upgrades geared towards higher production capacity. These are all signs that nuclear will be around for a long time to come and that nuclear will indeed have a future

  12. Nuclear energy - status and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Rogner, Hans-Holger; MacDonald, Alan

    2007-07-01

    Rising expectations best characterize the current prospects of nuclear power in a world that is confronted with a burgeoning demand for energy, higher energy prices, energy supply security concerns and growing environmental pressures. It appears that the inherent economic and environmental benefits of the technology and its excellent performance record over the last twenty years are beginning to tilt the balance of political opinion and public acceptance in favour of nuclear power. Nuclear power is a cost-effective supply-side technology for mitigating climate change and can make a substantial contribution to climate protection. This paper reviews the current status of nuclear power and its fuel cycle and provides an outlook on where nuclear power may be headed in the short-to-medium run (20 to 40 years from now). (auth)

  13. Nuclear energy and independence

    International Nuclear Information System (INIS)

    Rotblat, J.

    1978-01-01

    The pro-nuclear lobby in the United Kingdom won its battle. The Report on the Windscale Inquiry strongly endorsed the application by British Nuclear Fuels (a company owned by the government) to set up a plant to reprocess spent oxide fuels from thermal reactors; a motion in Parliament to postpone a decision was heavily defeated. The Windscale Inquiry was an attempt to settle in a civilized manner what has been tried in other countries by demonstrations and violence. In this exercise, a High Court Judge was given the task of assessing an enormous mass of highly complex technical and medical material, as well as economic, social, and political arguments. The outcome is bitterly disappointing to the objectors, all of whose arguments were rejected. Although the question of whether Britain should embark on a fast breeder reactor program was specifically excluded from the Inquiry, it clearly had a bearing on it. A decision not to proceed with the reprocessing plant would have made a fast breeder program impossible; indeed, the Report argues that such a decision would involve throwing away large indigenous energy resources, a manifest advocacy of the fast breeder. Other arguments for the decision to go ahead with the reprocessing plant included the need to keep the nuclear industry alive, and the profit which Britain will make in processing fuels from other countries, particularly Japan. The author comments further on present UK policy, taking a dissenting view, and then comments on the paper, Nuclear Energy and the Freedom of the West, by A.D. Sakharov

  14. Public attitudes to nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    van der Pligt, J; Eiser, J R; Spears, R

    1984-09-01

    The last decade has seen a marked increase in public concern about nuclear energy. As a consequence, it is now recognized that the future of nuclear energy will not only depend on technical and economic factors, but that public acceptability of this technology will play a crucial role in its long-term future. This paper summarizes trends in public reactions to nuclear power in various countries and discusses a number of studies on public beliefs and attitudes to nuclear power in general, and to the building of a nuclear power plant near to one's home. It is concluded that the qualitative aspects of the possible risks of nuclear energy play an important role in the public's perception of this technology. It is also clear, however, that differences in perception of the risks do not embrace all the relevant aspects of the public's assessment of nuclear energy. Public reaction is also related to more-general beliefs and values, such as emphasis on economic versus social priorities, attitudes to technology and environmental concern. 11 references.

  15. Nuclear liability, nuclear safety, and economic efficiency

    International Nuclear Information System (INIS)

    Wood, W.C.

    1980-01-01

    This dissertation applies the methods of economic analysis to nuclear liability and Price-Anderson. First the legislative history is reviewed; in that history the economic role of liability in affecting safety and allocating risk was virtually ignored. Succeeding chapters reformulate issues from the policy debate and subject them to economic analysis. A persistent issue is whether nuclear utilities respond to their limited liability by allowing a higher probability of serious accident. Comparative-static analysis shows that limited liability does lead to a higher chance of accidents, though the effect may be small. The analysis also shows that safety is achieved in a more capital-intensive manner than is cost-minimizing and that limited liability causes reactor owners to favor more heavily populated sites for plants. Therefore, the siting decision makes potential loss greater even if there is no change in the probability of an accident. Citizens' preferences on nuclear liability are examined next, starting with the nature of coverage that would be just in the sense of contraction theories such as John Rawls' Theory of Justice. Citizens behind Rawls' veil of ignorance, forced to be fair because of their ignorance of whether they will be harmed, unanimously choose a high level of coverage. The just level of coverage is greater than the existing $560 million. Second, the nature of economically efficient liability coverage is determined and contrasted with coverage that would emerge from a democratic system of public choice. Population and expected damage profiles indicate that majorities could easily be formed among groups of citizens expecting to suffer little of the damage of a nuclear accident. Thus, majority voting on liability arrangements is likely to produce an inefficiently low level of coverage

  16. The economic costs of energy

    International Nuclear Information System (INIS)

    Brookes, L.G.

    1980-01-01

    At a recent symposium, the economic costs of nuclear power were examined in four lectures which considered; (1) The performance of different types, size and ages of nuclear power plants. (2) The comparison between coal and nuclear power costs based on the principle of net effective cash. (3) The capital requirements of a nuclear programme. (4) The comparative costs, now and in the future, of coal-fired and nuclear plants. It is concluded that uncertainties seem to get greater rather than smaller with time probably due to the high and fluctuating world inflation rates and the great uncertainty about world economic performance introduced by the politicising of world oil supplies. (UK)

  17. Current economic cost, the ARENH (Regulated Access to the Historic (EDF) Nuclear Energy Supplier) price, the differential rent and the scarcity rent of nuclear power: some observations

    International Nuclear Information System (INIS)

    Percebois, J.

    2012-01-01

    This article sets out to explain the ARENH mechanism, the regulated price at which the EDF (France's historic monopoly supplier) must sell part of its production to its competitors in the framework of the Nome Act (New Organisation of the Electricity Market). This price by its nature is different from the Current Economic Cost (CEC) of nuclear power, as estimated by France's Government Accounting Office in its report submitted in January 2012. These two approaches revert to the problem of the determination of the scarcity rent of nuclear power in the context of the liberalised European market, in which nuclear power benefits from a 'cost' advantage relative to thermal electricity generated from fossil fuels. Furthermore, scarcity rent is not the same thing as differential rent. Selling a nuclear kWh at the price of a 'gas' kWh at certain times results in a differential rent enabling nuclear generated power to cover fixed costs. One can only speak of scarcity rent for nuclear power when the price at which the kWh is sold allows the recovery of more than is necessary to cover overall costs of nuclear power and it is this scarcity rent and its allocation that is the subject of debate. (author)

  18. Nuclear energy, radiation and environment

    International Nuclear Information System (INIS)

    Rajan, M.P.

    2013-01-01

    Over the past few decades, energy has been the subject of much debate. Energy is the backbone of technology and economic development. Today, most machines run on electricity and they are needed to make anything and everything. Hence, our energy requirements have spiraled in the years following the industrial revolution. This rapid increase in use of energy has created problems of demand and supply in addition to the environmental consciousness which picked momentum in last decades of 20 th century. The impending crisis the world over due to overuse of nonrenewable energy sources to reduce this gap shall soon lead to a situation for all concerned to take a prudent decision to tap other sources of energy, including relatively new renewable sources. Future economic growth crucially depends on the long-term availability of energy from sources that are affordable, accessible and environmentally friendly. The drive for more energy has had the happy consequences of spawning new technologies and improving earlier ones. Emphasis on renewable sources has resulted in viable harnessing of solar, wind and tidal energies. Even though these sources offer relatively clean energy, their potential to supply reliable energy in large scale in an economically viable way is limited. Nuclear energy offers a major source of commercial energy, which is economic, reliable and environmentally benign

  19. Nuclear energy and nuclear technology

    International Nuclear Information System (INIS)

    Luescher, E.

    1982-01-01

    This book originated in the training courses for teachers of grammar- and secondary schools in Dillingen (Bavaria). The aim of these courses is to become informed about the latest state in one field of physics. The lectures are well-known experts in the respective fields. In the latest study (1980) of the National Academy of Sciences the experts came to the conclusion that without further development nuclear power plants the utilization of too much coal would become necessary and involve irreversible environmental damage (see chapter 6). There are two important obstacles impeding the further extension of nuclear energy. The first problem to be solved is the processing and storage of radioactive waste. This is a more technical task and can be treated in a satisfactory way. The second obstacle is less easy to take as the population has to be convinced that a nuclear power plant can be operated with almost unbelievable safety (see chapter 5) and be shut down safely in the case of incidents. The most promising possibility of controlled nuclear fusion as energy source is still many decades- if feasible at all- away from being performed (see chapter. 7). In the Soviet Union 25% of the electric energy production shall be proceed from nuclear power plants by the year 1990. (orig./GL) [de

  20. Nuclear energy questions

    International Nuclear Information System (INIS)

    This work pack contains illustrated booklets entitled: 'Uranium mining'; 'Reactors and radiation'; 'Nuclear waste'; 'Work book on energy'; 'Alternatives now'; 'Future energy choices'; 'Resources handbook'; and 'Tutors' guidelines': a map entitled 'Nuclear power in Britain': and two coloured pictures entitled 'Nuclear prospects' and 'Safe energy'. A cover note states that the material has been prepared for use in schools and study groups. (U.K.)

  1. Germany bars nuclear energy

    International Nuclear Information System (INIS)

    Gaullier, V.

    1999-01-01

    Germany wants a future without nuclear energy, the different steps about the going out of nuclear programs are recalled. The real choice is either fossil energies with their unquestionable safety levels but with an increase of the greenhouse effect or nuclear energy with its safety concerns and waste management problems but without pollutant emission. The debate will have to be set in most European countries. (A.C.)

  2. What will abandonment of nuclear energy cost?

    International Nuclear Information System (INIS)

    Schneider, H.K.

    1988-01-01

    The Federal Republic of Germany holds position five on the list of the world's biggest energy consumers. This alone is a fact that puts special emphasis on the public discussion about the peaceful use of nuclear energy, in addition to the current events such as incidents and accidents in nuclear installations. A sober review of the pros and cons of nuclear energy for power generation has to take into account the economic effects and the costs to be borne by the national economy as a result of immediate abandonment of nuclear energy. The article in hand discusses chances, problems, and alternatives to nuclear energy (solar energy and wind power). (orig.) [de

  3. Nuclear energy and society

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Shimooka, Hiroshi; Tanaka, Yasumasa; Fujii, Yasuhiko; Misima, Tsuyoshi

    2004-01-01

    Nuclear energy has a strong relation to a society. However, due to accidents and scandals having occurred in recent years, people's reliability to nuclear energy has significantly swayed and is becoming existence of a worry. Analyzing such a situation and grasping the problem contained are serious problems for people engaging in nuclear field. In order that nuclear energy is properly used in society, communication with general public and in nuclear power plant site area are increasingly getting important as well as grasping the situation and surveying measures for overcoming the problems. On the basis of such an analysis, various activities for betterment of public acceptance of nuclear energy by nuclear industry workers, researchers and the government are proposed. (J.P.N.)

  4. The situation of the nuclear energy in the world

    International Nuclear Information System (INIS)

    Souza, Jair Albo Marques de

    1996-12-01

    This work presents an overview of the nuclear energy in the world. It approaches the following main topics: kinds of nuclear power plants; operation experience of the nuclear plants; environmental and social aspects of the nuclear energy; economic aspects of the nuclear energy; development of the reactors technology and supply of the nuclear fuel

  5. Economic prerequisites for the development of nuclear power

    International Nuclear Information System (INIS)

    Chernilin, Y.F.

    1995-01-01

    The development of nuclear power, as no other field of human endeavor, has revealed the need for predicting the consequences of nuclear power not only in the production of energy itself, but also in the ecology, economics, and even politics. On the one hand, the future of nuclear power is determined by a society's attitude toward nuclear power and depends on economic possibilities. On the other hand, the future society and the economic situation that will develop in the world will largely depend on the amount of energy accessible to mankind and the method used to obtain it, and therefore also the relative contribution of atomic energy to the total balance of energy production. In declaring its attitude toward nuclear power, society is now determining to a definite extent not only the future of nuclear power but also nuclear power itself. This article is an abstract of the entire report

  6. Introduction to nuclear energy

    International Nuclear Information System (INIS)

    2004-01-01

    After some descriptions about atoms, fission and fusion, explanations are given about the functioning of a nuclear power plant. The safety with the different plans of emergency and factors that lead to a better nuclear safety are exposed, then comes a part for the environmental protection; the fuel cycle is tackled. Some historical aspects of nuclear energy finish this file. (N.C.)

  7. Nuclear energy technology

    Science.gov (United States)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  8. Nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    Bertel, E.; Wilmer, P.

    2001-01-01

    The characteristics of nuclear energy are reviewed and assessed from a sustainable development perspective highlighting key economic, environmental and social issues, challenges and opportunities relevant for energy policy making.. The analysis covers the potential role of nuclear energy in increasing the human and man-made capital assets of the world while preserving its natural and environmental resource assets as well as issues to be addressed in order to enhance the contribution of nuclear energy to sustainable development goals. (author)

  9. Nuclear energy and security

    International Nuclear Information System (INIS)

    Blejwas, Thomas E.; Sanders, Thomas L.; Eagan, Robert J.; Baker, Arnold B.

    2000-01-01

    Nuclear power is an important and, the authors believe, essential component of a secure nuclear future. Although nuclear fuel cycles create materials that have some potential for use in nuclear weapons, with appropriate fuel cycles, nuclear power could reduce rather than increase real proliferation risk worldwide. Future fuel cycles could be designed to avoid plutonium production, generate minimal amounts of plutonium in proliferation-resistant amounts or configurations, and/or transparently and efficiently consume plutonium already created. Furthermore, a strong and viable US nuclear infrastructure, of which nuclear power is a large element, is essential if the US is to maintain a leadership or even participatory role in defining the global nuclear infrastructure and controlling the proliferation of nuclear weapons. By focusing on new fuel cycles and new reactor technologies, it is possible to advantageously burn and reduce nuclear materials that could be used for nuclear weapons rather than increase and/or dispose of these materials. Thus, the authors suggest that planners for a secure nuclear future use technology to design an ideal future. In this future, nuclear power creates large amounts of virtually atmospherically clean energy while significantly lowering the threat of proliferation through the thoughtful use, physical security, and agreed-upon transparency of nuclear materials. The authors must develop options for policy makers that bring them as close as practical to this ideal. Just as Atoms for Peace became the ideal for the first nuclear century, they see a potential nuclear future that contributes significantly to power for peace and prosperity

  10. Nuclear energy in view

    International Nuclear Information System (INIS)

    1982-01-01

    This leaflet advertises the availability of the following from UKAEA: film and video titles (nuclear fuel cycle; energy for all; power from the atom; using radioactivity; fast reactor; energy - the nuclear option; principles of fission; radiation); slide-tape packs (16 titles); other information services. (U.K.)

  11. Nuclear Energy, Long Term Requirements

    International Nuclear Information System (INIS)

    Knapp, V.

    2006-01-01

    There are serious warnings about depletion of oil and gas and even more serious warnings about dangers of climate change caused by emission of carbon dioxide. Should developed countries be called to replace CO2 emitting energy sources as soon as possible, and the time available may not be longer then few decades, can nuclear energy answer the call and what are the requirements? Assuming optimistic contribution of renewable energy sources, can nuclear energy expand to several times present level in order to replace large part of fossil fuels use? Paper considers intermediate and long-term requirements. Future of nuclear power depends on satisfactory answers on several questions. First group of questions are those important for near and intermediate future. They deal with economics and safety of nuclear power stations in the first place. On the same time scale a generally accepted concept for radioactive waste disposal is also required. All these issues are in the focus of present research and development. Safer and more economical reactors are targets of international efforts in Generation IV and INPRO projects, but aiming further ahead these innovative projects are also addressing issues such as waste reduction and proliferation resistance. However, even assuming successful technical development of these projects, and there is no reason to doubt it, long term and large-scale nuclear power use is thereby not yet secured. If nuclear power is to play an essential role in the long-term future energy production and in reduction of CO2 emission, than several additional questions must be replied. These questions will deal with long-term nuclear fuel sufficiency, with necessary contribution of nuclear power in sectors of transport and industrial processes and with nuclear proliferation safety. This last issue is more political then technical, thus sometimes neglected by nuclear engineers, yet it will have essential role for the long-term prospects of nuclear power. The

  12. Nuclear energy in China

    International Nuclear Information System (INIS)

    Gourievidis, G.

    1984-01-01

    Having first outlined the main problems China must resolve in the field of energy supply, this paper presents the nuclear option trends established by the government, recalls the different stages in the nuclear Chinese development programme, achievements and projects. The organization of nuclear research and industry, as also the fuel cycle situation and uranium resources are then described. Finally, the international nuclear cooperation policy carried out by the chinese government and more particularly the agreement settled with France are presented [fr

  13. Economics of nuclear gas stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Frank, G W [Austral Oil Company Incorporated, Houston, TX (United States); Coffer, H F; Luetkehans, G R [CER Geonuclear Corporation, Las Vegas, NV (United States)

    1970-05-01

    Nuclear stimulation of the Mesaverde Formation in the Piceance Basin appears to be the only available method that can release the contained gas economically. In the Rulison Field alone estimates show six to eight trillion cubic feet of gas may be made available by nuclear means, and possibly one hundred trillion cubic feet could be released in the Piceance Basin. Several problems remain to be solved before this tremendous gas reserve can be tapped. Among these are (1) rates of production following nuclear stimulation; (2) costs of nuclear stimulation; (3) radioactivity of the chimney gas; and (4) development of the ideal type of device to carry out the stimulations. Each of these problems is discussed in detail with possible solutions suggested. First and foremost is the rate at which gas can be delivered following nuclear stimulation. Calculations have been made for expected production behavior following a 5-kiloton device and a 40-kiloton device with different permeabilities. These are shown, along with conventional production history. The calculations show that rates of production will be sufficient if costs can be controlled. Costs of nuclear stimulation must be drastically reduced for a commercial process. Project Rulison will cost approximately $3.7 million, excluding lease costs, preliminary tests, and well costs. At such prices, nothing can possibly be commercial; however, these costs can come down in a logical step-wise fashion. Radiation contamination of the gas remains a problem. Three possible solutions to this problem are included. (author)

  14. Economics of nuclear gas stimulation

    International Nuclear Information System (INIS)

    Frank, G.W.; Coffer, H.F.; Luetkehans, G.R.

    1970-01-01

    Nuclear stimulation of the Mesaverde Formation in the Piceance Basin appears to be the only available method that can release the contained gas economically. In the Rulison Field alone estimates show six to eight trillion cubic feet of gas may be made available by nuclear means, and possibly one hundred trillion cubic feet could be released in the Piceance Basin. Several problems remain to be solved before this tremendous gas reserve can be tapped. Among these are (1) rates of production following nuclear stimulation; (2) costs of nuclear stimulation; (3) radioactivity of the chimney gas; and (4) development of the ideal type of device to carry out the stimulations. Each of these problems is discussed in detail with possible solutions suggested. First and foremost is the rate at which gas can be delivered following nuclear stimulation. Calculations have been made for expected production behavior following a 5-kiloton device and a 40-kiloton device with different permeabilities. These are shown, along with conventional production history. The calculations show that rates of production will be sufficient if costs can be controlled. Costs of nuclear stimulation must be drastically reduced for a commercial process. Project Rulison will cost approximately $3.7 million, excluding lease costs, preliminary tests, and well costs. At such prices, nothing can possibly be commercial; however, these costs can come down in a logical step-wise fashion. Radiation contamination of the gas remains a problem. Three possible solutions to this problem are included. (author)

  15. Nuclear energy inquiries

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1993-02-01

    Our choice of energy sources has important consequences for the economy and the environment. Nuclear energy is a controversial energy source, subject to much public debate. Most individuals find it difficult to decide between conflicting claims and allegations in a variety of technical subjects. Under these circumstances, knowledge of various relevant inquiries can be helpful. This publication summarizes the composition and major findings of more than thirty nuclear energy inquiries. Most of the these are Canadian, but others are included where they have relevance. The survey shows that, contrary to some claims, virtually every aspect of nuclear energy has been subject to detailed scrutiny. The inquiries' reports include many recommendations on how nuclear energy can be exploited safely, but none rejects it as an acceptable energy source when needed. (Author) 38 refs

  16. Nuclear Energy Data 2013

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of statistics and country reports documenting the status of nuclear power in the OECD area. Information provided by member country governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projected generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants declined in 2012 as a result of operational issues at some facilities and suspended operation at all but two reactors in Japan. Nuclear safety was further strengthened in 2012 following safety reviews prompted by the Fukushima Daiichi nuclear power plant accident. Governments committed to maintaining nuclear power in the energy mix pursued initiatives to increase nuclear generating capacity. In Turkey, plans were finalised for the construction of the first four reactors for commercial electricity production. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'Statlinks'. For each StatLink, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link [fr

  17. Energy economics and financial markets

    Energy Technology Data Exchange (ETDEWEB)

    Dorsman, Andre [Vrije Univ. Amsterdam (Netherlands). Dept. of Finance; Simpson, John L. [Curtin Univ., Perth, WA (Australia). School of Economics and Finance; Westerman, Wim (eds.) [Groningen Univ. (Netherlands). Faculty of Economics and Business Economics, Econometrics and Finance

    2013-10-01

    Deals with the upcoming theme of energy issues. Links energy issues with economics and financial markets. Combines global focus with specific regional and local examples. Unites theoretical insights with timely data and practical insights. Specialized author team from all over the world. Energy issues feature frequently in the economic and financial press. Specific examples of topical energy issues come from around the globe and often concern economics and finance. The importance of energy production, consumption and trade raises fundamental economic issues that impact the global economy and financial markets. This volume presents research on energy economics and financial markets related to the themes of supply and demand, environmental impact and renewables, energy derivatives trading, and finance and energy. The contributions by experts in their fields take a global perspective, as well as presenting cases from various countries and continents.

  18. Emerging trends in nuclear energy

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1984-01-01

    Nuclear energy is faltering in many places - especially in the USA: should it be written off. The author sees underlying trends that justify a more optimistic view of nuclear energy's future - the continuing tendency for the electricity intensity of economic activity to rise while the total energy intensity falls; a consistently favourable price trend for electricity compared with energy prices generally - a trend that may become more favourable if his judgment that nuclear plants will turn out to be very long-lived is borne out by events; the substitution of electricity-based processes in industry for older processes; and the development of ultra-safe reactors which will remove once and for all the fears of accidents such as the one that occurred at Three Mile Island. (author)

  19. Public awareness of nuclear energy

    International Nuclear Information System (INIS)

    Aykol, F.; Tanker, E.; Oezkan, R.; Atila, B.; Seckin, O.; Guerel, Z.; Aksu, M. L.

    2001-01-01

    The history of civilization is full of striking examples of nations which were not able to develop their technology either disappeared from the stage of the history or lost their independence and were forced to live under the domination of others. The major cause of the wars that caused the lives of millions of people in 20th century is, to possess the energy sources, which are the basis of social and economic development. Ataturk has shown a personal interest to energy issue saying t o be industrialized is a must for the development . The encouragement of industry act in 1927 stated t he most important priority of Turkey is the energy problem . For economic and social wealth, freeing the country from the dependency on other countries and solving the energy bottleneck, the Turkish media is to know the nuclear technology rather than being scared of it and realize that it is the integral part of the solution of the energy problem. In conclusion Turkey is to realize and do necessities of the nuclear era in order to catch a bright future. Due to these facts, this study aims to furnish the public with bare facts of nuclear energy and technology to eliminate the biased wiew regarding to nuclear technology

  20. Is nuclear energy justifiable?

    International Nuclear Information System (INIS)

    Roth, E.

    1988-01-01

    This is a comment on an article by Prof. Haerle a theologist, published earlier under the same heading, in which the use of nuclear energy is rejected for ethical reasons. The comment contents the claim mode by the first author that theologists, because they have general ethical competency, must needs have competency to decide on the fittest technique (of energy conversion) for satisfying, or potentially satisfying, the criteria of responsible action. Thus, an ethical comment on, for instance, nuclear energy is beyond the scope of the competency of the churches. One is only entitled as a private person to objecting to nuclear energy, not because of one's position in the church. (HSCH) [de

  1. Perspectives for nuclear energy

    International Nuclear Information System (INIS)

    Baugnet, J.-M.; Abderrahim, H.A.; Dekeyser, J.; Meskens, G.

    1998-09-01

    In Belgium, approximately 60 percent of the produced electricity is generated by nuclear power. At present, nuclear power production tends to stagnate in Europe and North America but is still growing in Asia. The document gives an overview of the present status and the future energy demand with emphasis on electric power. Different evaluation criteria including factors hindering and factors promoting the expansion of nuclear power as well as requirements of new nuclear power plants are discussed. The extension of the lifetime of existing facilities as well as fuel supply are taken into consideration. A comparative assesment of nuclear power with other energy sources is made. The report concludes with estimating the contribution and the role of nuclear power in future energy demand as well as with an overview of future reactors and research and development programmes

  2. Nuclear Energy Data - 2014

    International Nuclear Information System (INIS)

    2014-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of statistics and country reports documenting the status of nuclear power in the OECD area. Information provided by member country governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projected generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants remained steady in 2013 despite the progressive shutdown of all reactors in Japan leading up to September and the permanent closure of six reactors in the OECD area. Governments committed to maintaining nuclear power in the energy mix advanced plans for increasing nuclear generating capacity, and progress was made in the development of deep geological repositories for spent nuclear fuel, with Finland expected to have the first such facility in operation in the early 2020's. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'StatLinks'. For each StatLink, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link. (authors)

  3. Nuclear Energy Data - 2016

    International Nuclear Information System (INIS)

    2016-01-01

    Nuclear Energy Data is the Nuclear Energy Agency's annual compilation of statistics and country reports documenting nuclear power status in NEA member countries and in the OECD area. Information provided by governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projections of nuclear generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants increased slightly in 2015, by 0.2% and 0.1%, respectively. Two new units were connected to the grid in 2015, in Russia and Korea; two reactors returned to operation in Japan under the new regulatory regime; and seven reactors were officially shut down - five in Japan, one in Germany and one in the United Kingdom. Governments committed to having nuclear power in the energy mix advanced plans for developing or increasing nuclear generating capacity, with the preparation of new build projects progressing in Finland, Hungary, Turkey and the United Kingdom. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'Stat Links'. For each Stat Link, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link. (authors)

  4. Essays in Energy Economics

    Science.gov (United States)

    Spurlock, Cecily Anna

    In this dissertation I explore two aspects of the economics of energy. The first focuses on consumer behavior, while the second focuses on market structure and firm behavior. In the first chapter, I demonstrate evidence of loss aversion in the behavior of households on two critical peak pricing experimental tariffs while participating in the California Statewide Pricing Pilot. I develop a model of loss aversion over electricity expenditure from which I derive two sets of testable predictions. First, I show that when there is a higher probability that a household is in the loss domain of their value function for the bill period, the more strongly they cut back peak consumption. Second, when prices are such that households are close to the kink in their value function - and would otherwise have expenditure skewed into the loss domain---I show evidence of disproportionate clustering at the kink. In essence this means that the occurrence of critical peak days did not only result in a reduction of peak consumption on that day, but also spilled over to further reduction of peak consumption on regular peak days for several weeks thereafter. This was similarly true when temperatures were high during high priced periods. This form of demand adjustment resulted in households experiencing bill-period expenditures equal to what they would have paid on the standard non-dynamic pricing tariff at a disproportionate rate. This higher number of bill periods with equal expenditure displaced bill periods in which they otherwise would have paid more than if they were on standard pricing. In the second chapter, I explore the effects of two simultaneous changes in minimum energy efficiency and Energy Star standards for clothes washers. Adapting the Mussa and Rosen (1978) and Ronnen (1991) second-degree price discrimination model, I demonstrate that clothes washer prices and menus adjusted to the new standards in patterns consistent with a market in which firms had been price

  5. Dossier nuclear energy

    International Nuclear Information System (INIS)

    1993-11-01

    The present Dutch government compiled the title document to enable the future Dutch government to declare its opinion on the nuclear energy problemacy. The most important questions which occupy the Dutch society are discussed: safe application and risks of nuclear energy, radioactive wastes and other environmental aspects, and the possible danger of misusing nuclear technology. In chapter two attention is paid to the policy, as formulated by the Dutch government, with regard to risks of nuclear power plants. Next the technical safety regulations that have to be met are dealt with. A brief overview is given of the state of the art of commercially available nuclear reactors, as well as reactors under development. The nuclear waste problem is the subject of chapter three. Attention is paid to the Dutch policy that has been formulated and is executed, the OPLA-program, in which the underground storage of radioactive wastes is studied, the research on the conversion of long-lived radioactive isotopes to short-lived radioactive isotopes, and planned research programs. In chapter four, other environmental effects of the use of nuclear power are taken into consideration, focusing on the nuclear fuel cycle. International obligations and agreements to guarantee the peaceful use of nuclear energy (non-proliferation) are mentioned and discussed in chapter four. In chapter six the necessity to carry out surveys to determine public support for the use of nuclear energy is outlined. In the appendices nuclear energy reports in the period 1986-present are listed. Also the subject of uranium supplies is discussed and a brief overview of the use of nuclear energy in several other countries is given. 2 tabs., 5 annexes, 63 refs

  6. Nuclear Energy Data - 2017

    International Nuclear Information System (INIS)

    2017-01-01

    Nuclear Energy Data is the Nuclear Energy Agency's annual compilation of statistics and country reports documenting nuclear power status in NEA member countries and in the OECD area. Information provided by governments includes statistics on total electricity produced by all sources and by nuclear power, fuel cycle capacities and requirements, and projections to 2035, where available. Country reports summarise energy policies, updates of the status in nuclear energy programs and fuel cycle developments. In 2016, nuclear power continued to supply significant amounts of low-carbon baseload electricity, despite strong competition from low-cost fossil fuels and subsidised renewable energy sources. Three new units were connected to the grid in 2016, in Korea, Russia and the United States. In Japan, an additional three reactors returned to operation in 2016, bringing the total to five under the new regulatory regime. Three reactors were officially shut down in 2016 - one in Japan, one in Russia and one in the United States. Governments committed to having nuclear power in the energy mix advanced plans for developing or increasing nuclear generating capacity, with the preparation of new build projects making progress in Finland, Hungary, Turkey and the United Kingdom. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports

  7. The nuclear energy debate

    International Nuclear Information System (INIS)

    Hardy, D.

    1984-01-01

    We have not been able to obtain closure in the nuclear energy debate because the public perception of nuclear energy is out of sync with reality. The industry has not been about to deal with the concerns of those opposed to nuclear energy because its reaction has been to generate and disseminate more facts rather than dealing with the serious moral and ethical questions that are being asked. Nuclear proponents and opponents appeal to different moral communities, and those outside each community cannot concede that the other might be right. The Interfaith Program for Public Awareness of Nuclear Issues (IPPANI) has been formed, sponsored by members of the Jewish, Baha'i, Roman Catholic, United, and Anglican faiths, to provide for a balanced discussion of the ethical aspects of energy. (L.L.)

  8. International symposium on uranium production and raw materials for the nuclear fuel cycle - Supply and demand, economics, the environment and energy security. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The IAEA periodically organizes nical meetings and international symposia on all areas of the uranium production cycle. This publication contains 160 extended synopses related to the 2005 international symposium on 'Uranium Production and Raw Materials for the Nuclear Fuel Cycle - Supply and Demand, Economics, the Environment and Energy Security'. They cover all areas of natural uranium resources and production cycle including uranium supply and demand; uranium geology and deposit; uranium exploration; uranium mining and milling; waste management; and environment and regulation. Each synopsis was indexed individually.

  9. Nuclear energy and jobs

    International Nuclear Information System (INIS)

    Goldfinger, N.

    1976-01-01

    Mr. Goldfinger, Research Director of AFL-CIO, examines the problem of energy in general, nuclear in particular, and the employment relationship. The energy shortages in the U.S. and its dependence on oil are cited. Directly connected with this serious problem relating to energy are jobs, income, and living standards. If energy is not available, industries will be unable to expand to meet the needs of the growing population; and prices of goods will rise. From an evaluation of what experts have said, Mr. Goldfinger concludes that increased coal production and better coal technology cannot meet energy demands; so the sharp increase both in volume and as a percentage of total energy needed in the future will have to come from nuclear power. Development of alternative sources is necessary, he feels, and intense research on these is needed now. The employment impact in the nuclear energy scenario is analyzed according to the trades involved. It is estimated that 1.5 million jobs in the nuclear industry would be open by the year 2000 if nuclear is to provide one-fourth of energy supplies. The employment picture, assuming abandonment of nuclear energy, is then discussed

  10. Nuclear power - economics and safety

    International Nuclear Information System (INIS)

    Jones, P.

    1989-01-01

    The market for steam coal is largely related to its use in electricity production and here it has to compete with hydrocarbon fuels, renewable sources and nuclear power. The criteria for fuel choice by utilities are partly economic, partly environmental, partly questions of convenience and fuel supply diversity, and partly a reaction to public and political pressures. The relative importance attached to these factors and even perceptions of the factors themselves differ from country to country and utility to utility so that there is no universal consensus on the ''right balance'' of alternative means of generation. Some countries like France and Belgium are heavily committed to nuclear power while others like Australia are committed to coal. Most have no overwhelming commitment to any one source and operate a mixture of plants, although some like Sweden and Austria have decided either to phase out or not to operate nuclear plants. The net result is that there are now some 400 nuclear reactors in operation in 26 countries with over 200 under construction or planned. However, nuclear power's future prospects were not helped by the Three Mile Island and Chernobyl accidents. Coal has also suffered over concerns about gaseous emissions, acid rain and the effects of mining operations. Nuclear critics worry about the disposal of radioactive wastes whilst critics of coal use (and fossil/wood-fuel) worry about global climatic effects of carbon dioxide and nitrogen oxides. This paper looks at some of the facts about nuclear power and its future prospects and how they are likely to affect coal demand. It is concluded that coal does not face an easy future. (author)

  11. Economic Analysis of Several Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Gao, Fanxing; Kim, Sung Ki

    2012-01-01

    Economics is one of the essential criteria to be considered for the future deployment of the nuclear power. With regard to the competitive power market, the cost of electricity from nuclear power plants is somewhat highly competitive with those from the other electricity generations, averaging lower in cost than fossil fuels, wind, or solar. However, a closer look at the nuclear power production brings an insight that the cost varies within a wide range, highly depending on a nuclear fuel cycle option. The option of nuclear fuel cycle is a key determinant in the economics, and therefrom, a comprehensive comparison among the proposed fuel cycle options necessitates an economic analysis for thirteen promising options based on the material flow analysis obtained by an equilibrium model as specified in the first article (Modeling and System Analysis of Different Fuel Cycle Options for Nuclear Power Sustainability (I): Uranium Consumption and Waste Generation). The objective of the article is to provide a systematic cost comparison among these nuclear fuel cycles. The generation cost (GC) generally consists of a capital cost, an operation and maintenance cost (O and M cost), a fuel cycle cost (FCC), and a decontaminating and decommissioning (D and D) cost. FCC includes a frontend cost and a back-end cost, as well as costs associated with fuel recycling in the cases of semi-closed and closed cycle options. As a part of GC, the economic analysis on FCC mainly focuses on the cost differences among fuel cycle options considered and therefore efficiently avoids the large uncertainties of the Generation-IV reactor capital costs and the advanced reprocessing costs. However, the GC provides a more comprehensive result covering all the associated costs, and therefrom, both GC and FCC have been analyzed, respectively. As a widely applied tool, the levelized cost (mills/KWh) proves to be a fundamental calculation principle in the energy and power industry, which is particularly

  12. Questions and answers on nuclear energy

    International Nuclear Information System (INIS)

    1989-04-01

    Leading questions about nuclear power are posed. These include questions about how much extra radioactivity in the environments is due to the nuclear industry, the risk of a nuclear accident, radioactive wastes, nuclear power as a solution to the greenhouse effect, alternative energy sources, and the economics of nuclear power. The answers are presented from the view point of the authors, members of Greenpeace. A glossary, notes and references are included. (UK)

  13. Social and economic impact of nuclear electricity in Britain

    International Nuclear Information System (INIS)

    White, D.

    1985-01-01

    The paper concerns a study of the social and economic impact of nuclear energy in the U.K., undertaken by an independent writer. Fears and risks; nuclear power is proven; cost comparisons; the nuclear industry; social impact and public relations; are all discussed. (U.K.)

  14. Nuclear energy from radioactive waste

    International Nuclear Information System (INIS)

    Schwarzenberg, M.

    1998-01-01

    The global energy demand is increasing. Sound forecasts indicate that by the year 2020 almost eight thousand million people will be living on our planet, and generating their demand for energy will require conversion of about 20 thousand million tonnes of coal equivalents a year. Against this background scenario, a new concept for energy generation elaborated by nuclear scientists at CERN attracts particular interest. The concept describing a new nuclear energy source and technology intends to meet the following principal requirements: create a new energy source that can be exploited in compliance with extremely stringent safety requirements; reduce the amount of long-lived radioactive waste; substantially reduce the size of required radwaste repositories; use easily available natural fuels that will not need isotopic separation; prevent the risk of proliferation of radioactive materials; process and reduce unwanted actinides as are generated by the operation of current breeder reactors; achieve high efficiency both in terms of technology and economics. (orig./CB) [de

  15. Nuclear energy: the real costs; and reply

    International Nuclear Information System (INIS)

    Jeffery, J.W.; Jones, P.M.S.

    1982-01-01

    Comments are made on a review by Jones (Atom. 306 April 1982) of 'Nuclear Energy: the Real Costs' - a special report by the Committee for the Study of the Economics of Nuclear Electricity, and criticisms contained in the review of the analysis of nuclear costs presented in the report are discussed. Dr Jones replies. (U.K.)

  16. Political electricity: What future for nuclear energy

    International Nuclear Information System (INIS)

    Price, T.

    1993-01-01

    Political Electricity first reviews the history of nuclear power development in nine countries (USA, France, Japan, UK, West Germany, Sweden, Italy, Switzerland, Australia). Second the book analyses major issues shaping the future of the industry: nuclear power economincs, nuclear hazards, alternative energy economics, and greenhouse gas constraints

  17. Axiology of nuclear energy

    International Nuclear Information System (INIS)

    Sawada, Tetsuo

    2003-01-01

    Nuclear energy was born in World War II and it has grown within the regime of Cold War. When the Cold War came to the end around early 1990 s, we who have benefited by the development of nuclear energy must have been challenged with a new tide of civilization change. Although it has not been so much closely questioned since then, such a new movement, that was submerging, abruptly manifested on September 11, 2001. Then, many of us realized that global circumstances, especially concerned with security, must have actually changed with the reordering of the world basic structures. This paper describes on the thoughts to reveal the cause and background of the event on September 11 with the linkage to nuclear energy development, or nuclear civilization in pursuit of the future regime of nuclear in harmonization with the global society in 21st century. (author)

  18. Development of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Wakeham, John [Secretary of State for Energy, London (UK)

    1991-06-01

    The Government's views on the development of nuclear energy are outlined. In this country, we continue to see some important advantages in maintaining nuclear power generation. It increases diversity, and so helps to maintain security of energy supply. It does not produce greenhouse gases or contribute to acid rain. But it is equally clear that nuclear costs must be brought under control whilst at the same time maintaining the high standards of safety and environmental protection which we have come to expect in the UK. The three main elements which the nuclear industry must address in the future are summarized. First the costs of nuclear generation must be reduced. Secondly, once the feasibility and costings of PWRs have been established consideration must be given to the choices for the future energy policy and thirdly new reactor designs should be standardized so the benefits of replication can be realised. (author).

  19. Information report nuclear energy in Europe

    International Nuclear Information System (INIS)

    Montesquiou, A. de

    2002-01-01

    This report takes stock on the nuclear energy situation in Europe. The European Union with more than 40% of the nuclear power capacity in the world, is already confronted with the nuclear energy place and stakes in the future energy policy. The report si presented in two main parts. The first part, ''the assets and the weaknesses of the nuclear energy'', deals with the economical aspects which historically based the choice of the nuclear energy and the induced impacts on the environment. The competitiveness of the nuclear energy but also the wastes management problem are discussed. The second part, ''the diplomatic and juridical framework of the nuclear energy development'', details and presents the limits of the EURATOM treaty. (A.L.B.)

  20. Energy Parodoxes in Economics

    Directory of Open Access Journals (Sweden)

    Burdo O.G.

    2013-04-01

    Full Text Available The analysis of the energy situation in the world and in the Post-Soviet area was carried out. The main focus was on the energy problems in Ukraine. The current paper presents existing energy sector paradoxes. Issues of the comfort level and of the natural environment dependence on the energy resources consumption are being discussed. The relationship between the human life quality level and the level of energy consumption is shown. The analysis of the energy resources distribution in the world is provided. The likely review of the energy re-sources market is forecasted. State energy policies and strategies are being compared. The high profitability of the centralized energy supply management in municipalities is being underlined. Issues regarding the scientific poten-tial and the energy management development are considered. The compliance of energy resource prices with the level of thermal protection of buildings and with energy projects investment principles is being analyzed. The importance of the market-based choice of energy resources considering energy company mergers and decision power concentration is presented. The compliance between the energy policy of Ukraine and the obligations resulting from gas contract with Russia is being discussed. The role of energy in the agricultural processing chain is analyzed.

  1. Society response to nuclear energy

    International Nuclear Information System (INIS)

    Santamaria, N. C.

    2007-01-01

    Energy demand in the world is growing increasingly, among other factors due to economic development. Every way of producing electricity has got their own drawbacks and has implicit environmental impact. Among all the energy sources, nuclear energy is the most polemic because of the way it is presented by the mass media. This aspect provokes controversy to occidental societies which reject this kind of energy with arguments normally based on a wrong and insufficient knowledge of the matter. The antinuclear discourse, promoted late in the seventies, has gone deeply into the collective social unconscious and has undermined public acceptance of nuclear energy due to the fact, deeply exploited by antinuclear groups, of linking nuclear energy with the atomic bombing of Hiroshima and Nagasaki. In this sense, it is important to mention that in Japan there was a profound resentment and opposition to nuclear energy, because the memory of the nuclear bombings was permanently alive. However when the Japanese government told its people that this energy was necessary to boost their industrial development, Japanese citizens in an unprecedented attitude of patriotism overcame their most antagonist feelings, in order to contribute to the industrial development of their country. The result was that most of them voted in favour. Presently Japan gets 30% of its energy by means of 56 nuclear power plants and 1 more is under construction. Antinuclear groups took as their best emblem the accident of Chernobyl to justify their opposition to the nuclear power plants. The manipulation of this accident has been one of the most shameful in the nuclear history. It is widely known among the experts that the reactor used in Chernobyl was a type of military plutonium converter with a positive temperature reactivity coefficient, which made very dangerous its functioning. Any nuclear regulatory commission in democratic and responsible countries would have never authorized the use of this reactor

  2. Environmentalists for nuclear energy

    International Nuclear Information System (INIS)

    Comby, B.

    2001-01-01

    Fossil fuels such as coal oil, and gas, massively pollute the Earth atmosphere (CO, CO 2 , SOX, NOX...), provoking acid rains and changing the global climate by increasing the greenhouse effect, while nuclear energy does not participate in these pollutions and presents well-founded environmental benefits. Renewable energies (solar, wind) not being able to deliver the amount of energy required by populations in developing and developed countries, nuclear energy is in fact the only clean and safe energy available to protect the planet during the 21 century. The first half of the book, titled The Atomic Paradox, describes in layman language the risks of nuclear power, its environmental impact, quality and safety standards, waste management, why a power reactor is not a bomb, energy alternatives, nuclear weapons, and other major global and environmental problems. In each case the major conclusions are framed for greater emphasis. Although examples are taken from the French nuclear power program, the conclusions are equally valid elsewhere. The second half of the book is titled Information on Nuclear Energy and the Environment and briefly provides a historical survey, an explanation of the different types of radiation, radioactivity, dose effects of radiation, Chernobyl, medical uses of radiation, accident precautions, as well as a glossary of terms and abbreviations and a bibliography. (author)

  3. Nuclear Energy and the Environment.

    Science.gov (United States)

    International Atomic Energy Agency, Vienna (Austria).

    "Nuclear Energy and the Environment" is a pocket folder of removable leaflets concerned with two major topics: Nuclear energy and Nuclear Techniques. Under Nuclear Energy, leaflets concerning the topics of "Radiation--A Fact of Life,""The Impact of a Fact: 1963 Test Ban Treaty,""Energy Needs and Nuclear Power,""Power Reactor Safety,""Transport,"…

  4. A comprehensive economic evaluation of integrated desalination systems using fossil fuelled and nuclear energies and including their environmental costs

    International Nuclear Information System (INIS)

    Nisan, S.; Benzarti, N.

    2008-01-01

    Seawater desalination is now widely accepted as an attractive alternative source of freshwater for domestic and industrial uses. Despite the considerable progress made in the relevant technologies desalination, however, remains an energy intensive process in which the energy cost is the paramount factor. This Study is a first of a kind in that we have integrated the environmental costs into the power and desalination costs. The study has focused on the seawater desalination cost evaluation of the following systems. It is supposed that they will be operating in the co-generation mode (Simultaneous production of electrical power and desalted water) in 2015: Fossil fuelled based systems such as the coal and oil fired plants and the gas turbine combined cycle plant, coupled to MED, and RO; Pressurised water reactors such as the PWR-900 and the AP-600, coupled to MED, and RO; High temperature reactors such as the GT-MHR, the PBMR, coupled to MED, with the utilisation of virtually free waste-heat provided by these reactors. The study is made in real site-specific conditions of a site In Southern Europe. Sensitivity studies for different parameters such as the fossil fuel prices, interest and discount rates, power costs etc., have also been undertaken. The results obtained are then used to evaluate the financial interest of selected integrated desalination systems in terms of a detailed cash flow analysis, providing the net present values, pay back periods and the internal rate of returns. Analysis of the results shows that among the fossil fuelled systems the power and desalination costs by circulating fluidized bed coal fired plant would be the lowest with current coal prices. Those by oil fired plants would be highest. In all cases, integrated nuclear energy systems would lead to considerably lower power and water costs than the corresponding coal based systems. When external costs for different energies are internalized in power and water costs, the relative cost

  5. Role of nuclear energy in Thailand

    International Nuclear Information System (INIS)

    Chongkum, Somporn

    2003-01-01

    Nuclear energy in Thailand can be highlighted when the Office of Atomic Energy for Peace (OAEP) was established since 1961 for taking role of nuclear safety regulation, conducting research and promotion for peaceful uses of nuclear energy. Its main facilities were the 1 megawatt Thai Research Reactor-1 (TRR-1) and the Cobalt-60 Gamma Irradiator. Since then there have been substantial progress made on utilization of nuclear energy in various institutions and in private sectors. Nowaday, there are around 500 units of nuclear energy users in Thailand, i.e. 100 units in medicine, 150 units in education and 250 units in industry. In terms of nuclear power for electricity generation, the Electricity Generating Authority of Thailand (EGAT) has conducted the activities to support the nuclear power plant project since 1972 however, because there is widespread public concerned about nuclear safety, waste disposal and recently economic problems in Thailand, nuclear energy option is not put in immediate plan for alternative energy resource. Within the short future, increased in economical, demand fir electricity and safe operation of nuclear plants will likely be demonstrated and recognized. Nuclear energy should remain as an option in the long-term energy strategies for Thailand. (author)

  6. Journalism and nuclear energy

    International Nuclear Information System (INIS)

    Mills, M.P.

    1987-01-01

    The question as to why nuclear energy is a point of friction between journalists and the expert community is discussed. The areas in which the two communities fail to communicate are highlighted and the opportunities that exist for improved nuclear journalism are identified briefly. (author)

  7. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1989-03-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  8. Nuclear energy and medicine

    International Nuclear Information System (INIS)

    1988-01-01

    The applications of nuclear energy on medicine, as well as the basic principles of these applications, are presented. The radiological diagnosis, the radiotherapy, the nuclear medicine, the radiological protection and the production of radioisotopes are studied. (M.A.C.) [pt

  9. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.; Mattila, L.

    1990-08-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out at the Technical Research Centre of Finland (VTT) in 1990. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Utilities and industry also contribute to some projects

  10. Nuclear energy related research

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1991-10-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1991. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  11. Nuclear energy related research

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-05-01

    The annual Research Programme Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  12. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.

    1988-02-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  13. Canada's nuclear achievement. Technical and economic perspectives

    International Nuclear Information System (INIS)

    Rummery, T.E.; Macpherson, J.A.

    1995-01-01

    Canada's leading role and eminent accomplishments in nuclear development now span more than half a century. They encompass aspects as diverse as the design and sale of nuclear power reactors and research reactor technology, to the establishment of a corps of scientists, engineers and technologists with the expertise to address a wide scope of important nuclear science issues. The success of a country of modest technical and financial resources, like Canada, in the highly technical and very competitive nuclear field is surprising to many Canadians, and does not fit the usual image we have of ourselves as 'drawers of water and hewers of wood'. For this reason alone, Canada's nuclear achievement makes an interesting and timely story. To address the many facets of Canada's nuclear activities over the past 50 years would obviously require space far beyond that available in this paper. We have therefore limited this review to highlights we judge to be the most pertinent and interesting from an historical, technical and economic perspective. We also indicate briefly our view of the future of nuclear power in the overall context of energy needs in a world that is becoming more industrial and increasingly environmentally conscious. (author) 22 refs., 7 figs

  14. Nuclear energy: a reassessment

    International Nuclear Information System (INIS)

    McClure, J.A.; Nader, R.; Udall, M.K.; Walske, C.

    1980-01-01

    This edited transcript of a televised American Enterprise Institute Public Poicy Forum explores the role of nuclear technology in energy production in the US today. A panel made up of Senator James A. McClure, Ralph Nader, Representative Morris K. Udall, and Dr. Carl Walske and moderated by John Charles Daly examines the lessons learned from the accident at the Three Mile Island Nuclear Plant and the public attitudes toward nuclear energy, particularly in light of this accident. The experts discuss alternative energy sources, such as coal, gas, biomass, and solar power as well as conservation and more efficient use of present facilities. The issues of nuclear waste disposal and transport and US commitments to countries not self-sufficient in their energy needs are also explored

  15. Nuclear energy in Europe

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A country by country study of nuclear energy in the various European countries: Austria, Belgium, Bulgaria, Czechoslovakia, Denmark, Federal German Republic, Finland, German Democratic Republic, Great Britain, Holland, Hungary, Italy, Poland, Rumania, Spain, Sweden, Switzerland, USSR and Yugoslavia [fr

  16. Regional economic impacts of nuclear power plants

    International Nuclear Information System (INIS)

    Isard, W.; Reiner, T.; Van Zele, R.; Stratham, J.

    1976-08-01

    This study of economic and social impacts of nuclear power facilities compares a nuclear energy center (NEC) consisting of three surrogate sites in Ocean County, New Jersey with nuclear facilities dispersed in the Pennsylvania - New Jersey - Maryland area. The NEC studied in this report is assumed to contain 20 reactors of 1200 MW(e) each, for a total NEC capacity of 24,000 MW(e). Following the Introductory chapter, Chapter II discusses briefly the methodological basis for estimating impacts. This part of the analysis only considers impacts of wages and salaries and not purchase of construction materials within the region. Chapters III and IV, respectively, set forth the scenarios of an NEC at each of three sites in Ocean County, N.J. and of a pattern of dispersed nuclear power plants of total equivalent generating capacity. In each case, the economic impacts (employment and income) are calculated, emphasizing the regional effects. In Chapter V these impacts are compared and some more general conclusions are reported. A more detailed analysis of the consequences of the construction of a nuclear power plant is given in Chapter VI. An interindustry (input-output) study, which uses rather finely disaggregated data to estimate the impacts of a prototype plant that might be constructed either as a component of the dispersed scenario or as part of an NEC, is given. Some concluding remarks are given in Chapter VII, and policy questions are emphasized

  17. Nuclear energy. Unmasking the mystery

    International Nuclear Information System (INIS)

    1988-08-01

    The Standing Committee on Energy, Mines and Resources of the House of Commons of Canada undertook a study of the economics of nuclear power in Canada. This is its report on the evidence it heard. It found that maintaining the nuclear power option is vital to Canada's interests. The Committee recommended that: the schedule for establishing a commercial high-level radioactive waste repository be advanced; the basic insurance coverage on nuclear facilities be raised; the federal government increase its financial support of Atomic Energy of Canada Ltd. (AECL); AECL expand its research and development activities, including non-nuclear R and D; AECL be allowed to hold a minority interest in any component of AECL that is privatized; any new entity created by privatization from AECL be required to remain under Canadian control; the Atomic Energy Control Act be altered to allow the Atomic Energy Control Board (AECB) to recover costs through licensing fees and user charges, while the AECB's parliamentary appropriation is increased to offset remaining costs of operations; membership on the AECB be increased from one to five full-time members, retaining the present four part-time members; the AECB hold its hearings in public; the name of the AECB be changed so it is more readily distinguishable from AECL; the AECB establish an office of public information; and that federal and provincial governments cooperate more closely to identify opportunities where more efficient use of electricity could be achieved and to promote those measures that can attain the greatest economic efficiency

  18. Nuclear energy in Armenia

    International Nuclear Information System (INIS)

    Gevorgyan, S.; Kharazyan, V.

    2000-01-01

    This summary represents an overview of the energy situation in Armenia and, in particular, the nuclear energy development during the last period of time. the energy sector of Armenia is one of the most developed economy branches of the country. The main sources of energy are oil products, natural gas, nuclear energy, hydropower, and coal. In the period of 1985-1988 the consumption of these energy resources varied between 12-13 million tons per year of oil equivalent. Imported energy sources accounted for 96% of the consumption. During the period 1993-1995 the consumption dropped to 3 million tons per year. Electricity in Armenia is produced by three thermal, one nuclear, and two major hydroelectric cascades together with a number small hydro units. The total installed capacity is 3558 MW. Nuclear energy in Armenia began its development during the late 1960's. Since the republic was not rich in natural reserves of primary energy sources and the only domestic source of energy was hydro resource, it was decided to build a nuclear power plant in Armenia. The Armenian Nuclear Power Plant (ANPP) Unit 1 was commissioned in 1996 and Unit 2 in 1980. The design of the ANPP was developed in 1968-1969 and was based on the project of Units 3 and 4 of the Novovoronezh NPP. Both units of the plant are equipped with reactors WWER-440 (V -270) type, which are also in use in some power stations in Russian Federation, Bulgaria, and Slovakia. Currently in Armenia, 36% of the total electricity production is nuclear power electricity. (authors)

  19. Nuclear energy in limelight of publicity. [Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Bergmaier, H

    1978-12-12

    The future of nuclear energy is discussed considering economical, political and environmental protection questions raised in Switzerland on eve of the national referendum held in February 1979. It is argued that the objections are unfounded and it is shown that Switzerland cannot afford to be without nuclear energy needed to maintain the required rate of growth of the economy.

  20. Future development of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Nuclear energy development in Japan has passed about 30 years, and reaches to a step to supply about 35 % of total electric power demand. However, together with globalization of economic and technical development, its future progressing method is required for its new efforts. Among such conditions, when considering a state of future type nuclear energy application, its contribution to further environmental conservation and international cooperation is essential, and it is required for adoption to such requirement how it is made an energy source with excellent economics.The Research Committee on 'Engineering Design on Nuclear Energy Systems' established under recognition in 1998 has been carried out some discussions on present and future status of nuclear energy development. And so forth under participation of outer specialists. Here were summarized on two year's committee actions containing them and viewpoints of nuclear industries, popularization of nuclear system technology, and so forth. (G.K.)

  1. The nuclear energy policy challenges

    International Nuclear Information System (INIS)

    Hanne, H.

    2009-01-01

    At a time when the nuclear question mobilizes attentions and when a new cycle of debates about non-proliferation opens up, the author recalls the constraints and challenges of a nuclear power generation policy. After a brief history of the development of nuclear energy in France and in the rest of the world, the author presents the risks linked with this energy source (TMI and Chernobyl accidents), the particularities of the fuel cycle with its safety and security aspects, and the promises of some past and future reactor technologies (FBR's and fusion reactors). Then, the author stresses on the importance of investments in this domain as illustrated by the launching of new nuclear programs in France, UK, Italy, Finland and in the US, and by the willing of some emerging countries to develop this energy source (China, India, United Arab Emirates, Jordan..). Finally, nuclear energy must not be considered as a privilege of developed countries but should benefit to the rest of the world as well since it promotes economic development thanks to an abundant and cheap energy. (J.S.)

  2. That compromising nuclear energy

    International Nuclear Information System (INIS)

    Mink, E.

    1981-01-01

    This book discusses a wide range of aspects of nuclear energy and its problems. Social and ideological as well as more technical sides of the nuclear controversy are dealt with. The author argues that just more information on the subject cannot solve the problem anyhow, as technologists naively hold. Being a christian, the author believes that the Bible can show us a way out, even as to these energy problems. (G.J.P.)

  3. Risk communication: Nuclear energy

    International Nuclear Information System (INIS)

    Peters, H.P.

    1991-01-01

    The emphasis is put on communication processes, here in particular with regard to nuclear energy. Not so much dealt with are questions concerning political regulation, the constellation of power between those becoming active and risk perception by the population. Presented are individual arguments, political positions and decision-making processes. Dealt with in particular are safety philosophies, risk debates, and attempts to 'channel' all sides to the subject of nuclear energy. (DG) [de

  4. Deliberations about nuclear energy

    International Nuclear Information System (INIS)

    Boskma, P.; Smit, W.A.; Vries, G.H. de; Dijk, G. van; Groenewold, H.J.; Jelsma, J.; Tans, P.P.; Doorn, W. van

    1975-01-01

    This report is a discussion of points raised in three safety studies dealing with nuclear energy. It reviews the problems that must be faced in order to form a safe and practical energy policy with regard to health and the environment (potential hazards, biological effects and radiation dose norms), the proliferation of nuclear weapons, reactor accidents (including their causes, consequences and evacuation problems that arise), the fallout and contamination problems, and security (both reactor security and national security)

  5. The greenhouse effect and nuclear energy

    International Nuclear Information System (INIS)

    Coulter, J.

    1988-01-01

    The author argues that nuclear power will do little to mitigate the problem of the greenhouse effect and is likely to exacerbate it. Changes since the mid 1970s illustrate the close linking of nuclear and economic growth with the associated growth of fossil fill consumption, the inability of nuclear power to substitute for fossil either technically or economically, and the greater contribution that can be made to energy availability and to reduction of carbon dioxide release by conservation

  6. Economic analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Owen, P.S.; Parker, M.B.; Omberg, R.P.

    1979-05-01

    The report presents several methods for estimating the power costs of nuclear reactors. When based on a consistent set of economic assumptions, total power costs may be useful in comparing reactor alternatives. The principal items contributing to the total power costs of a nuclear power plant are: (1) capital costs, (2) fuel cycle costs, (3) operation and maintenance costs, and (4) income taxes and fixed charges. There is a large variation in capital costs and fuel expenses among different reactor types. For example, the standard once-through LWR has relatively low capital costs; however, the fuel costs may be very high if U 3 O 8 is expensive. In contrast, the FBR has relatively high capital costs but low fuel expenses. Thus, the distribution of expenses varies significantly between these two reactors. In order to compare power costs, expenses and revenues associated with each reactor may be spread over the lifetime of the plant. A single annual cost, often called a levelized cost, may be obtained by the methods described. Levelized power costs may then be used as a basis for economic comparisons. The paper discusses each of the power cost components. An exact expression for total levelized power costs is derived. Approximate techniques of estimating power costs will be presented

  7. Minutes of Proceedings and Evidence of the Standing Committee on Energy, Mines and Resources Respecting: In accordance with its mandate under Standing Order 96(2), an examination of the economics of nuclear power in Canada

    International Nuclear Information System (INIS)

    1988-01-01

    The Standing Committee on Energy, Mines and Resources met with TransAlta Utilities for an examination of an example of non-nuclear power's economic future versus that of nuclear power in Canada. TransAlta discusses coal power generation and the development of new technology for cleaner emissions

  8. Minutes of Proceedings and Evidence of the Standing Committee on Energy, Mines and Resources Respecting: In accordance with its mandate under Standing Order 96(2), an examination of the economics of nuclear power in Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-31

    The Standing Committee on Energy, Mines and Resources met with TransAlta Utilities for an examination of an example of non-nuclear power`s economic future versus that of nuclear power in Canada. TransAlta discusses coal power generation and the development of new technology for cleaner emissions.

  9. The realities of nuclear power: international economic and regulatory experience

    International Nuclear Information System (INIS)

    Thomas, S.D.

    1988-01-01

    The book is aimed at the energy industry, energy ministries, nuclear power organisations and national agencies. A description is given of a framework for evaluating nuclear power technology development, along with the economic evaluation of nuclear power. The contrasting records are examined of four of the major users of nuclear power - the USA, the Federal Republic of Germany, Canada and France, and factors are identified which have been important in determining the success or otherwise of each of the four nuclear power programmes. Finally the future of nuclear power is discussed. (U.K.)

  10. Nuclear energy in Korea

    International Nuclear Information System (INIS)

    Ahn, J.-H.

    2000-01-01

    The total electricity generated in 1998 was 215,300 GWh with 43,261 MWe of total installed capacity of electric power, while in 1978 when the first Nuclear Power Plant began operation it was 31,510 GWh with 6,916 MWe installed capacity. The share of nuclear power generation in 1998 increased up to 41.7%. Currently, 16 units of nuclear power are operating with an additional four units under construction. Nuclear power has contributed to enhancing energy security and supplying stable energy for Korea. The government's strong commitment to the nuclear power program together with a long-term national policy resulted in favorable conditions for KEPCO to manage the program and promote increasing levels of national participation in successive nuclear power projects. The role of nuclear power as a sustainable energy resource can not be emphasized enough with respect to global environmental issues. Increasing the share of nuclear power in the total installed capacity for electricity generation will undoubtedly play a very important role. (author)

  11. Economics of alternative energy sources

    International Nuclear Information System (INIS)

    Ryle, M.

    1977-01-01

    It is stated that an important part of the oil and natural gas at present consumed in the UK is used for the heating of buildings, a demand which shows large diurnal, day-to-day and annual fluctuations. The replacement of this energy by nuclear-generated electricity, as at present envisaged, would require the construction of some 250 GW of additional capacity by the end of the century, a programme which does not seem feasible. By incorporating relatively cheap short term storage in the form of low-grade heat, the generating capacity required to fulfil peak demand could be reduced by more than 50%. As soon as such storage is provided, however, other sources of energy should become viable and attractive alternatives, and the UK is well situated to make use of wind, wave, and tidal power. It seems likely that the value of North Sea oil/gas reserves as feedstock to the chemical industry will rise sufficiently to make an early reduction in their consumption as fuel of great economic importance. (author)

  12. Economics of alternative energy sources.

    Science.gov (United States)

    Ryle, M

    1977-05-12

    An important part of the oil and natural gas at present consumed in the UK is used for the heating of buildings, a demand which shows large diurnal, day-to-day and annual fluctuations. The replacement of this energy by nuclear-generated electricity, as at present envisaged, would require the construction of some 250 GW of additional capacity by the end of the century, a progamme which does not seem feasible. By incorporating relatively cheap, short term storage in the form of low-grade heat, the generating capacity required to fulfil peak demand could be reduced by more than 50%. As soon as such storage is provided, however, other sources of energy become viable and attractive alternatives, and the UK is well situated to make use of wind, wave, and tidal power. It seems likely that the value of North Sea oil/gas reserves as feedstock to the chemical industry will rise sufficiently to make an early reduction in their consumption as fuel of great economic importance.

  13. Initial estimates of the economical attractiveness of a nuclear closed Brayton combined cycle operating with firebrick resistance-heated energy storage

    Directory of Open Access Journals (Sweden)

    Florian Chavagnat

    2018-04-01

    Full Text Available The Firebrick Resistance-Heated Energy Storage (FIRES concept developed by the Massachusetts Institute of Technology aims to enhance profitability of the nuclear power industry in the next decades. Studies carried out at Massachusetts Institute of Technology already provide estimates of the potential revenue from FIRES system when it is applied to industrial heat supply, the likely first application. Here, we investigate the possibility of operating a power plant (PP with a fluoride-salt-cooled high-temperature reactor and a closed Brayton cycle. This variant offers features such as enhanced nuclear safety as well as flexibility in design of the PP but also radically changes the way of operating the PP. This exploratory study provides estimates of the revenue generated by FIRES in addition to the nominal revenue of the stand-alone fluoride-salt-cooled high-temperature reactor, which are useful for defining an initial design. The electricity price data is based on the day-ahead markets of Germany/Austria and the United States (Iowa. The proposed method derives from the equation of revenue introduced in this study and involves simple computations using MatLab to compute the estimates. Results show variable economic potential depending on the host grid but stress a high profitability in both regions. Keywords: Firebrick Resistance-Heated Energy Storage, Nuclear Power Plant, Revenue Estimate, Storage System

  14. Nuclear energy - a spiritual perspective

    International Nuclear Information System (INIS)

    Jones, M.

    1983-01-01

    The subject is covered in chapters entitled: the search for energy (historical); from uranium to the bomb (radioactivity); the principle of fission (atomic structure; isotopes); fear of nuclear reactors (types of reactor; antinuclear groups; economic argument; socio-political argument; psychological argument); Capra and the dance of life; elements and ethers (life ethers and subtle elements); origins of matter (etheric forces; the primal matrix); the balance of gold and silver (etheric forces, which can only be directly perceived in the spirit); Lucifer, Ahriman and nuclear accident; Christ's resurrection and the essence of matter; the opening of the abyss; the divine mother. (U.K.)

  15. Why is nuclear energy indispensable

    International Nuclear Information System (INIS)

    Keiser, G.

    1981-01-01

    The third update of the Federal Government's energy programme refers to the subject nuclear energy only with the idea that for energy and industrial political reasons nuclear energy should make a further increasing contribution to power generation in the field of base load. It is true, the annex contains - in form of an abstract - the results of a study of the three energy-economic Institutes which also contain some precise data on the necessary expansion of the Atomic Energy Act. The wording of the update report, however, clearly says that the Federal Government does not adopt the forecastings of the Institutes especially those for the capacity of nuclear power plants considered to be necessary by 1995 (37 000 to 39 500 MW). So, for a number of comprehensible reasons, the Federal Government consciously rejects a nuclear power plant programme such as Government and Parliament have recently decided on in France. Just for this reason, it seems to be reasonable to consider carefully which data and facts have to be taken into account with such a programme and to which results such a - let's say experimental - evaluation could lead. This is the purpose of this contribution. (orig.) [de

  16. Nuclear energy in our future

    International Nuclear Information System (INIS)

    Hennies, H.H.

    1988-01-01

    Nuclear energy for electricity generation will extend its market portion in Europe in the coming decades because: 1) its economic and/or environment-relevant advantages compared with the fossil energy sources are so explicit that the latter will no longer be competitive; 2) the improvements of the system engineering, which are presently being implemented and are to be expected in the future, will enhance the safety facilities to the extent that accident risk will cease to be a decisive factor; 3) energy-saving effects or the use of solar energy will not provide an appropriate large scale alternative for coal and/or nuclear energy; 4) the problems of radioactive waste disposal will be definitely solved within the foreseeable future. Considering all the technological systems available the light water reactor will continue to dominate. The change to the breeder reactor is not yet under discussion because of the medium-term guaranteed uranium supply. The use of nuclear technology in the heating market will depend for the moment on the availability and cost of oil and gas development. In principle nuclear energy can play an important role also in this sector

  17. Comparing nuclear power with other energy sources

    International Nuclear Information System (INIS)

    Rey, Francisco C.

    2001-01-01

    The economics of electric generation of nuclear, hydro, oil and gas origin are compared. A similar comparison is also made from the health and environment standpoint for the fossil, nuclear, solar and wind generation. A risk assessment for energies of different origin is outlined and the significance of the greenhouse effect is emphasised. A comprehensive economic and environmental evaluation is recommended for the energy planning

  18. The national debate on energy transition. An economic taking into account of nuclear risks. Note to the 'scenarios' sub-group of the group of experts

    International Nuclear Information System (INIS)

    Dessus, Benjamin

    2013-01-01

    In this note, the author presents and discusses three important aspects of risks associated to nuclear energy: the ethical aspect (acceptability of risks of occurrence of a major accident, of risks related to the nuclear fuel cycle, of risks related to proliferation), the economic and financial aspects excluding accidents, and the economic and financial aspects of an accident (assessment of the cost of a major accident, risk of occurrence of a major accident, building up of a dedicated fund)

  19. Nuclear Energy Institute (NEI) summary

    International Nuclear Information System (INIS)

    2001-01-01

    The Nuclear Energy Institute (NEI) provided a brief presentation on the state of energy demand in the United States and discussed the improving economics for new nuclear power plants. He discussed the consolidation of companies under deregulation and the ability of these larger companies to undertake large capital projects such as nuclear power plant construction. He discussed efforts under way to support a new generation of plants but noted that there needs to be greater certainty in the licensing process. He discussed infrastructure challenges in terms of people, hardware, and services to support new and current plants. He stated that there needs to be fair and equitable licensing fees and decommissioning funding assurance for innovative modular designs such as the PBMR. He concluded that NRC challenges will include resolving 10 CFR Part 52 implementation issues, establishing an efficient and predictable process for siting, COL permits and inspection, and an increasing regulatory workload

  20. Energy, environment, and economics

    Energy Technology Data Exchange (ETDEWEB)

    Commoner, B

    1979-09-01

    In this interview, Dr. Barry Commoner discusses his analysis of energy problems as a function of the Second Law of Thermodynamics, i.e., that energy is necessary in order to perform work. As outlined in his book The Poverty of Power, a good thermodynamic approach matches the amount of energy expended with the task to be done. Electric transport is more energy efficient than private automobiles and illustrates how capital is wasted and social harm done to increase private profit. Inefficient energy use is the result of basing conservation efforts on the First rather than the Second Law. Commoner advocates social changes that give society more control over the means of production and the way resources are used. He feels the relative merits of solar energy and breeder reactors should be debated and a choice made, preferably for solar, to make a gradual transition to renewable resources. (DCK)

  1. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    1979-01-01

    These notes have been prepared by the Department of Energy to provide information and to answer questions often raised about nuclear energy and the nuclear industry and in the hope that they will contribute to the public debate about the future of nuclear energy in the UK. The subject is dealt with under the headings; contribution of nuclear power, energy forecasts, nuclear fuels and reactor types, cost, thermal reactor strategy, planning margin, safety, nuclear licensing, unlike an atomic bomb, radiation, waste disposal, transport of nuclear materials, emergency arrangements at nuclear sites, siting of nuclear stations, security of nuclear installations, world nuclear programmes, international regulation and non-proliferation, IAEA safeguards arrangements in the UK, INFCE, and uranium supplies. (U.K.)

  2. Nuclear energy and the environment

    International Nuclear Information System (INIS)

    El-Hinnawi, E.E.

    1980-01-01

    Chapters are presented concerning the environmental impact of mining and milling of radioactive ores, upgrading processes, and fabrication of nuclear fuels; environmental impacts of nuclear power plants; non-radiological environmental implications of nuclear energy; radioactive releases from nuclear power plant accidents; environmental impact of reprocessing; nuclear waste disposal; fuel cycle; and the future of nuclear energy

  3. Nuclear energy terms

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    This is an English-Afrikaans / Afrikaans-English dictionary compiled by the Technical Language Committee of the Atomic Energy Board in collaboration with the Vaktaalburo of the Suid-Afrikaanse Akademie vir Wetenskap en Kuns containing 8515 terms on nuclear energy.

  4. Nuclear energy terms

    International Nuclear Information System (INIS)

    1976-01-01

    This is an English-Afrikaans / Afrikaans-English dictionary compiled by the Technical Language Committee of the Atomic Energy Board in collaboration with the Vaktaalburo of the Suid-Afrikaanse Akademie vir Wetenskap en Kuns containing 8515 terms on nuclear energy

  5. How competitive is nuclear energy?

    International Nuclear Information System (INIS)

    Keppler, J.H.

    2010-01-01

    The economic competitiveness of nuclear energy will be crucial for determining its future share in world electricity production. In addition, the widespread liberalization of power markets, in particular in OECD countries, reinforces the role of commercial criteria in technology selection . The recently published IEA/NEA study on Projected Costs of Generating Electricity: 2010 Edition (IEA/NEA, 2010) provides important indications regarding the relative competitiveness of nuclear energy in OECD member countries as well as in four non-OECD countries (Brazil, China, Russia and South Africa). The results highlight the paramount importance of discount rates and, to a lesser extent, carbon and fuel prices when comparing different technologies. Going beyond this general finding, the study also shows that the relative competitiveness of nuclear energy varies widely from one major region to another, and even from country to country. While the study provides a useful snapshot of the costs of generating electricity with different technologies, it does not provide an absolute picture of the competitiveness of nuclear energy. Like any study, Projected Costs of Generating Electricity makes a number of common assumptions about discount rates as well as carbon and fuel prices. In addition, its calculations are based on a methodology that is referred to as the levelised cost of electricity (LCOE), which assumes that all risks are included in the interest or discount rate, which determines the cost of capital. In other words, neither the electricity price risk for nuclear and renewables, nor the carbon and fuel price risk for fossil fuels such as coal and gas, receive specific consideration. The decisions of private investors, however, will depend to a large extent on their individual appreciations of these risks. The competitiveness of nuclear energy thus depends on three different factors which may vary greatly from market to market: interest rates, carbon and fuel prices, and

  6. The role of nuclear energy in times of energy transition

    International Nuclear Information System (INIS)

    2012-01-01

    Since the reactor catastrophe in Fukushima, the risk of nuclear power has once again become more evident to the public and has also led to a rethinking of politics in Europe. Slogans like ''Nuclear Power, No Thanks!'', ''Get Out of Euratom'' are making more and more the rounds. The phase-out of nuclear energy is the topic that is increasingly provoking people to think. But how should one handle this? What role will nuclear energy play in a distant future? Central factors such as the economic viability of renewable energy sources and the environmental and social compatibility of production and distribution must be taken into account, while at the same time the reduction of pollutants and greenhouse gases must continue. If this is done without nuclear energy, is the rapid abandonment of nuclear energy even necessary or does nuclear energy generation have to be used as a temporary solution? (roessner)

  7. Economics of symbiotic nuclear fleets at equilibrium

    International Nuclear Information System (INIS)

    Bidaud, Adrien; Guillemin, P.; Lecarpentier, David

    2008-01-01

    Many decades of industrial experience have proven that thermal reactors are able to provide a safe, reliable and competitive source of electricity. The higher construction costs of fast reactors compared to thermal reactors could be compensated by their better use of fissile material during the probable fast development of nuclear energy in the first half of the century. Thus, despite the over-cost of their cores, on the longer term, fast reactors are expected to take the lead in the nuclear reactor race. In the mean term, multi-strata symbiotic parks, using high conversion-rate thermal reactors, may delay fast reactor start up. We compare projected fuel cycle costs and cost of electricity of various symbiotic nuclear fleets, on the basis of a simple economic model and elementary costs estimated on publicly available data. These parameters and their evolution over reactor-life time scale can hardly be estimated. That is why we look at the sensitivities of our results to large modifications of the input parameters. The aim of our simple economic model is to understand which reactor characteristics should be optimized to enhance their economic performance when working as a single symbiotic fleet. (authors)

  8. Nuclear energy. Ambiguous lessons from history

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Nuclear power is treated from the historical viewpoint; in particular, the question is discussed whether hopes and expectations from the beginning of the 'nuclear era' have come true. It is suggested that the efforts were driven by political rather than economic considerations. It is demonstrated that the development of nuclear power was no consequence of the oil crisis; actually the situation developed the other way round: the oil crisis was a consequence of the failure of the nuclear option. The fact that the nuclear programme failed to bring the expected results to Western countries is analyzed. The contribution of nuclear to total energy generated will not reach - in the near future at least - the expected proportion: nuclear is actually less competitive because the threat to the environment which some opponents attach to nuclear energy has become mirrored in economic aspects. (M.D.). 33 refs

  9. Guidance for the application of an assessment methodology for Innovative Nuclear Energy Systems. INPRO manual - Economics. Vol. 2 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. This publication elaborates on the guidance given in the INPRO report 'Methodology for the assessment of innovative nuclear reactors and fuel cycles', IAEA-TECDOC-1434 (2004), and the previous INPRO report 'Guidance for the evaluation for innovative nuclear reactors and fuel cycles', IAEA-TECDOC-1362 (2003) in the area of economics. The information presented in Volume 1 of the INPRO manual should be considered to be an integral part of this volume and the user should be familiar with that information. The goal of the INPRO Manual for the area of economics (Volume 2) is to provide guidance for performing an INPRO assessment, as described in Volume 1 of the INPRO manual, in the area of economics. The manual is not intended to provide guidance on how to design an INS to meet the INPRO requirements in the area of economics: rather, the focus is on the assessment method and the evaluation of the INPRO criteria in the area of economics. The INPRO assessor, i.e. the individual or group of individuals carrying out the assessment, is assumed to be knowledgeable in the area of economics and financial analysis. The INPRO assessment will either confirm that the INPRO economic criteria are fulfilled

  10. Energy abundance and economic progress

    International Nuclear Information System (INIS)

    Schurr, S.H.

    1983-01-01

    A discussion is presented on the benefits of energy abundance and on the links between energy supply, economic growth and human welfare in the United States. It is argued that the restoration of energy abundance with dependable sources of supply should be a major national objective. (U.K.)

  11. Nuclear energy versus coal

    International Nuclear Information System (INIS)

    Storm van Leeuwen, J.W.

    1980-01-01

    An analysis is given of the consequences resulting from the Dutch government's decision to use both coal and uranium for electricity production. The energy yields are calculated for the total conversion processes, from the mine to the processing of waste and the demolition of the installations. The ecological aspects considered include the nature and quantity of the waste produced and its effect on the biosphere. The processing of waste is also considered here. Attention is given to the safety aspects of nuclear energy and the certainties and uncertainties attached to nuclear energy provision, including the value of risk-analyses. Employment opportunities, the economy, nuclear serfdom and other social aspects are discussed. The author concludes that both sources have grave disadvantages and that neither can become the energy carrier of the future. (C.F.)

  12. Nuclear energy and society

    International Nuclear Information System (INIS)

    Baiquni, A.

    1982-01-01

    A great deal of energy will be needed for industrial development. The risks of energy production can be either individual or social in nature. Individual risk occurs in different places and different times to individuals in a certain period of time. Social risk occurs to several people in a time. People tend to refuse a nuclear power plant because of its social risk. This attitude is based more on feelings than reason. In fact radiation from a nuclear power plant is only 0.15% while radiation from medical instruments and from the environment is 99%. From the safety, pollution effect, price, and uses point of view, it can be concluded that nuclear energy is the most appropriate energy to face the future of the nation. (RUW)

  13. The plain man's case for nuclear energy

    International Nuclear Information System (INIS)

    Brookes, L.G.

    1976-01-01

    This paper embraces most of the matters discussed at a recent debate held by the Oxford Environmental Group. The author attempts (a) to explain why nuclear power is needed and why there is no sensible alternative, (b) attempts to put nuclear hazards in perspective and to expose some of the fallacies in the arguments advanced by environmentalist and conservationist groups, and (c) shows why more rapid progress may be expected in future in the building up of nuclear power. Amongst matters discussed are - zero economic growth proposals, the energy gap, world nuclear programme, nuclear fuel supplies, nuclear energy as the only viable prospect, and assessment of nuclear hazards. It is concluded that the momentum of the nuclear programme must be maintained if nuclear energy is to provide the insurance against future fuel problems that it alone can provide. (U.K.)

  14. Freedom from nuclear energy myth

    International Nuclear Information System (INIS)

    Kim, Wonsik

    2001-09-01

    This book generalizes the history of nuclear energy with lots of myths. The contents of this book are a fundamental problem of nuclear power generation, the myth that nuclear energy is infinite energy, the myth that nuclear energy overcomes the crisis of oil, the myth that nuclear energy is cheap, safe and clean, the myth that nuclear fuel can be recycled, the myth that nuclear technology is superior and the future and present of nuclear energy problem related radiation waste and surplus of plutonium.

  15. Nuclear energy is promising

    International Nuclear Information System (INIS)

    Spitz, H.

    2000-02-01

    This document summarizes the different talks given by the participants to the winter meeting on nuclear energy which took place in Germany on January 27 and 28 2000. Representatives of the following companies and organisations attended the meeting: Deutsches Atomforum e.V., Bayernwerk AG, IG Bergau, Chemie und Energie, Siemens AG - energy production, VEBA AG and one public opinion poll institute. (J.S.)

  16. Economic aspects of the social rehabilitation of nuclear power

    International Nuclear Information System (INIS)

    Gitel'man, L.D.; Ratnikov, B.E.

    1992-01-01

    This article highlights the state of affairs regarding nuclear power in Russia at this time in the post-Chernobyl era. environmentalists and others are leveling criticisms at nuclear power stating that nuclear plants should be shutdown and preservation can offset the demands for electricity. The authors are advised to examine a new consensus for developing nuclear power, which could form the basis of a new program of social rehabilitation, and not a singular rejection of constructing new nuclear power plants. Public acceptance of nuclear power can be obtained only by resolving contradictions and by harmonizing the interests of all social groups and of all subjects of economic relationships, which in one way or another are connected to the financing and functioning of nuclear power plants (the local population, personnel, energy users, regional energy organizations, and local government). A strategy oriented to overall acceptance of nuclear power should consider intra area factors and also external economic environments: the choice of nuclear power plant location on the basis of careful and independent expertise with the use of rigid social-economic criteria and a sharp increase in the attention to human factors. Important features in changes in the economic environments are the transition to a marketplace economy, the reorientation of budget expenditures to social goals, and the expansion of regional economic independence. This requires a significant strengthening of the regional control of electrification and the creation of corresponding economic mechanisms

  17. Nuclear hybrid energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  18. Nuclear energy and insurance

    International Nuclear Information System (INIS)

    Ekener, H.

    1997-01-01

    It examines the technical, scientific and legal issues relating to the peaceful use of atomic energy in Turkey. The first fifteen chapters give a general overview of the atom and radioactivity; the chapters which follow this section are more technical and deal with the causes of nuclear accidents in reactors.A number of chapters cover legal issues, for example the conditions and procedures involved in the insurance market and the risks linked to operation of a nuclear power plant.The following subjects are examined in relation to nuclear insurance: risks during construction; fire during operation of the plants and other causes of accidents; risks due to the transport of radioactive materials and waste etc. The final chapters reproduce the principle legislative texts in force in Turkey in the field of nuclear energy, and also certain regulations which establish competent regulatory bodies

  19. Energy supply and nuclear energy

    International Nuclear Information System (INIS)

    Heitzer, H.

    1977-01-01

    The author emphasizes the necessity and importance of nuclear energy for the energy supply and stresses the point that it is extremely important to return to objective arguments instead of having emotional disputes. In this connection, it would be necessary for the ministries in question to have clear-cut political responsibility from which, under no circumstances, they may escape, and which they cannot pass on to the courts either. Within the framework of listing present problems, the author is concerned with the possibility of improved site planning, the introduction of a plan approval procedure and questions concerning immediately enforceable nuclear licences. He also deals with a proposal, repeatedly made, to improve nuclear licensing procedures on the one hand by introducing a project-free site-appointment procedure, and on the other hand by introducing a simplified licensing procedure for facilities of the same kind. Splitting the procedure into site and facility would make sense solely for the reason that in many cases the objections are, above all, directed against the site. (HP) [de

  20. Alternatives to nuclear energy

    International Nuclear Information System (INIS)

    Terrado, E.N.

    1981-01-01

    This article discusses several possibilities as alternatives to nuclear energy and their relevance to the Philippine case. The major present and future fuel alternatives to petroleum and nuclear energy are coal, geothermal heat, solar energy and hydrogen, the first two of which are being used. Different conversion technologies are also discussed for large scale electricity production namely solar thermal electric conversion (STC), photovoltaic electric power system (PEPS) and ocean thermal energy conversion (OTEC). Major environmental considerations affect the choice of energy sources and technologies. We have the problem of long term accumulation of radioactive waste in the case of nuclear energy; in geothermal and fossil-fuels carbon dioxide uranium and accumulation may cause disastrous consequences. With regard to Philippine option, the greatest considerations in selecting alternative energy options would be resources availability - both energy and financial and technology status. For the country's energy plan, coal and geothermal energy are expected to play a significant role. The country's coal resources are 1.4 billion metric tons. For geothermal energy, 25 volcanic centers were identified and has a potential equivalent to 2.5 x 10 6 million barrels of oil. Solar energy if harnessed, being in the sunbelt, averaging some 2000 hours a year could be an energy source. The present dilemma of the policy maker is whether national resources are better spent on large scale urban-based energy projects or whether those should be focused on small scale, rural oriented installations which produced benefits to the more numerous and poorer members of the population. (RTD)

  1. Nuclear energy and environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    The film stresses that a drastic reduction in carbon dioxide emissions, mainly from the burning of fossil fuels, must be achieved to limit a dangerous concentration of greenhouse gases in the atmosphere. It compares the environmental costs of different energy sources, in particular the wastes of a coal-fired versus a nuclear plant, and mentions the measures taken to reinforce protection against the risk of nuclear accidents

  2. Teachers and nuclear energy

    International Nuclear Information System (INIS)

    1994-01-01

    The aims of the seminar were: to exchange national experience in informing and assisting teachers in the nuclear field, and to determine the conditions for improving the effectiveness of these programmes; to develop an international understanding on the basic training and information requirements to assist secondary-school teachers in discussing nuclear energy in an appropriately wide and balanced context at school; to study the respective contributions of national authorities, industry and relevant institutes in this endeavour

  3. Nuclear energy: beliefs, values, and acceptability

    Energy Technology Data Exchange (ETDEWEB)

    van der Pligt, J; Eiser, J R

    1985-06-01

    The last decade has seen a dramatic increase in public concern about nuclear energy. As a consequence, it has become recognized that the future of nuclear energy will not only depend on technical and economic factors, but that public acceptability of this technology will play a crucial role in the long-term future of nuclear energy. Research has shown a considerable divergence in public and expert assessment of the risks associated with nuclear energy. Qualitative aspects of risks play a dominant role in the public's perception of risks, and it seems necessary for experts to recognize this in order to improve relations with the general public. It is also clear, however, that differences in the perception of risks do not embrace all the relevant aspects of the public's assessment of nuclear energy. Public reaction is also related to more general beliefs and values, and the issue of nuclear energy is embedded in a much wider moral and political domain. 8 references.

  4. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    Kilpi, K.; Palmen, B.

    1983-01-01

    Finland currently generates about 40% of its electricity from nuclear power. This achievement of worldwide record magnitude is based on long-lasting efforts to build and maintain the competent infrastructure and close international cooperation required by this demanding technology. This booklet published by the Finnish Atomic Energy Commission gives an overview of nuclear energy and related organizations in Finland. It describes the utility companies and nuclear power production, the manufacturing industry and its export potential, research and educational activities and the legal framework and authorities for nuclear safety and administration. International cooperation has been essential for Finland in developing its nuclear energy capacity and appreciation is espressed to many countries and international organizations which have contributed to this. At the same time Finnish organizations are willing to share the experiences and know-how they have gained in building nuclear power in a small country. This is a road which will be followed by many other countries in the decades to come. It is hoped that this booklet will also help to open new channels of cooperation in such efforts

  5. French nuclear energy policy

    International Nuclear Information System (INIS)

    Ferrari, A.; Bertel, E.

    1980-11-01

    The French energy policy is supported by a lucid view of the situation of our country and the constraints linked to the international context. This statement implies, the definition of a French policy or energy production essentially based on national resources, uranium, and especially for long term, technical know how which allows using plutonium in breeder reactors. This policy implies an effort in R and D, and industrial development of nuclear field, both in reactor construction and at all levels of fuel cycle. This coherent scientific and financial effort has been pursued since the beginning of years 60, and has placed France among the first nuclear countries in the world. Now this effort enables the mastership of a strong nuclear industry capable to assure the energy future of the country [fr

  6. Nuclear energy and development

    International Nuclear Information System (INIS)

    1991-01-01

    Today, about 80 developing countries are using nuclear techniques in various sectors of their national economies. In the sector of industry, the radiation processing using gamma rays of high energy electrons has grown. While in the sector of health care, an estimated 10000 gamma cameras-imaging instruments are used in combination with radioisotopes in medical diagnosis. In the field of agriculture there is, nearly, 1000 crop varieties derived from radiaton-induced mutations which are grown worldwide. Furthermore and concerning the energy sector there is 417 nuclear power plants operating in 26 countries, accounting for just 16% of the world's total electricity production; the nuclear energy helped in developing and supporting a variety of sciences. 2 tabs

  7. Republic of Lithuania law on nuclear energy. No. I-1613

    International Nuclear Information System (INIS)

    1996-01-01

    Law on Nuclear Energy adopted by the Parliament 14 November, 1996 has the main goals of ensuring nuclear safety, peaceful use of nuclear energy and preventing from illegal use of nuclear materials. The basic assumptions of the law reinforce obligations of Lithuania under Convention on Nuclear Safety. The law determines fundamentals on nuclear energy management, principles for the state regulation for nuclear safety and radiation protection, guidelines for licensing in nuclear energy, special requirements for the design and construction of nuclear energy facilities, basic conditions for the operation of nuclear energy installations, basic requirements for the transportation and storage of nuclear and radioactive materials, basic requirements for preventing nuclear or radiation related incidents together with procedures for elimination of consequences, basic economic and financial conditions for nuclear energy and specificity of working relations in nuclear energy

  8. Man, environment and nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Gardan, J

    1978-10-01

    The acceptability of nuclear fission as energy source is governed by three factors, economic, ecological and sociological. the economic context the gradual exhaustion of fossil fuels is a result of ever-increasing demands. The biological risk concept which determines the acceptable industrial application level is the second factor to be considered. The danger of radioactive contamination is almost unexistent except in the accident hypothesis, and power stations are built with excessive safeguards against hypothetical accidents. The idea of systematic processing of all working effluent to reduce radioactive waste discharge by several orders of magnitude is being examined. The only serious problems seem to be the disposal of radioactive wastes and the plutonium non-proliferation question bound up with breeder reactors. Whereas vitrification offers some solution to the radioactive waste conditioning problem, responsibility for the proliferation of nuclear weapons rests with the human conscience alone. The development of nuclear power stations over several decades seems to present no inacceptable danger and offers the best compromise betweengrowth and minimum risk requirements. The third factor to be accounted for is the opposition displayed by a fraction of the population to the development of nuclear energy for peaceful applications.

  9. Man, environment and nuclear energy

    International Nuclear Information System (INIS)

    Gardan, Jacques.

    1978-10-01

    The acceptability of nuclear fission as energy source is governed by three factors, economic, ecological and sociological. It is necessary to account first for the economic context and for the state of natural resources: gradual exhaustion of fossil fuels as a result of ever-increasing demands. The biological risk concept which determines the acceptable industrial application level is the second factor to be considered. The danger of radioactive contamination is almost inexistent except in the accident hypothesis, and power stations are built with excessive safeguards against hypothetical accidents. The idea of systematic processing of all working effluent to reduce radioactive waste discharge by several orders of magnitude (zero release principle) is being examined. At present, the waste discharge levels are always well below the limits set by the CIPR and present no danger to the population. The only serious problems seem to be the disposal of radioactive wastes and the plutonium non-proliferation question bound up with breeder reactors. Whereas vitrification, the new 'Synroc' process, offer some solution to the radioactive waste conditioning problem, responsibility for the proliferation of nuclear weapons rests with the human conscience alone. The development of nuclear power stations over several decades seems to present no inacceptable danger and offers the best compromise between growth and minimum risk requirements. The third factor to be accounted for is the opposition displayed by a fraction of the population to the development of nuclear energy for peaceful applications [fr

  10. Worldwide energy prospects and nuclear contribution

    International Nuclear Information System (INIS)

    1999-04-01

    With a growing up worldwide population and a better standard of living, the global energy consumption will rise. The CO 2 emissions will increase too because of todays share of fossil fuels in the energy sources. This paper analyzes the possible contribution of nuclear energy in this context: economical and environmental aspects, political aspects (distribution of energy resources, energy dependence), energy efficiency, reduction of CO 2 emissions. (J.S.)

  11. [Intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    1989-01-01

    This report summarizes work in experimental Intermediate Energy Nuclear Physics carried out between October 1, 1988 and October 1, 1989 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under grant DE-FG02-86ER-40269 with the United States Department of Energy. The experimental program is very broadly based, including pion-nucleon studies at TRIUMF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/WNR. In addition, a number of other topics related to accelerator physics are described in this report

  12. On the Role of Nuclear Energy

    Science.gov (United States)

    Parsegian, V. Lawrence

    1974-01-01

    The author elaborates on the thesis that much of the confusion and argument about the role of nuclear energy in meeting the energy needs of the nation and the world is caused by failure to place the known facts in perspective with respect to time, to hazards that accompany the use of energy in any form, to economics, and to ultimate limitations in…

  13. The nuclear energy debate

    International Nuclear Information System (INIS)

    Rippon, S.

    1976-01-01

    With reference to the public discussion which is taking place at the moment concerning the future of nuclear energy in the UK, the document from the Advisory Council on Research and Development for Fuel and Power and also the report of the Royal Commission on Environmental Pollution are considered. Although there have been many other projections of UK and world energy requirements prepared by many different organisations, few cover such a wide range of scenarios in such detail as the ACORD report. The Royal Commission report contains many reassuring findings on the more extreme claims of the worldwide anti-nuclear movement, but one cannot read it without gaining the impression that the nuclear option is the energy source they would most like to do without. It is felt that against this background, it would seem to be time for the power industry to stop defending nuclear energy as an acceptable necessity and rather promoting it as the best energy option. (U.K.)

  14. The geometry of nuclear energy

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1992-01-01

    In a personal assessment of the ethics of nuclear energy, the author challenges some of the conventional wisdom surrounding the subject, and concludes that for many applications nuclear energy is the energy source of ethical choice

  15. Nuclear energy versus other energy sources

    International Nuclear Information System (INIS)

    King, F.K.

    1994-01-01

    This paper deals with nuclear and other sources of energy as they relate to the production of electricity. It first examines the current role of electricity in the world and its means of production and how future economic growth, associated with growing populations striving for better living conditions, will lead to increased demands for new electricity generation. The second part of the paper deals with the health and environmental impacts of the major options for generating electricity likely to be used to meet this need, and how a comparative assessment of these impacts is important to understand the full implications of electricity generation planning decisions. 6 refs, 12 figs

  16. Nuclear energy and nuclear technology in Switzerland

    International Nuclear Information System (INIS)

    Graf, P.

    1975-01-01

    The energy crisis, high fuel costs and slow progress in the development of alternative energy sources, e.g. solar energy have given further impetus to nuclear power generation. The Swiss nuclear energy programme is discussed and details are given of nuclear station in operation, under construction, in the project stage and of Swiss participation in foreign nuclear stations. Reference is made to the difficulties, delays and resulting cost increases caused by local and regional opposition to nuclear power stations. The significant contributions made by Swiss industry and Swiss consulting engineers are discussed. (P.G.R.)

  17. Nuclear energy and communication

    International Nuclear Information System (INIS)

    1998-01-01

    This article contains information related to the support that the Latin-American countries have counted, from the International Atomic Energy Agency, for the development and application of the nuclear energy in different fields. In the particular case of Costa Rica, it mentions some projects included in the program ARCAL. The achievements reached in the year 1998 and the goals proposed for 1999-2000. (S. Grainger) [es

  18. High energy nuclear excitations

    International Nuclear Information System (INIS)

    Gogny, D.; Decharge, J.

    1983-09-01

    The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering

  19. Nuclear energy for a sustainable development

    International Nuclear Information System (INIS)

    Guerrini, B.; Oriolo, F.

    2001-01-01

    Nuclear power currently produces over 628 M tep of the generated energy in 1997 avoiding about 1978 Mt of CO 2 emission and gives a significant contribution to reducing greenhouse gas emission. The competitive position of nuclear power might be strengthened, if market forces or government policy were able to give energy security and to control greenhouse gas, relying upon market mechanism and including environmental costs in economic analysis. In this case, taking into account the entire up-stream and down-stream chains for electricity generation, it can be seen that the greenhouse emission from nuclear plants, is lower than that of renewable energy chains. This paper investigates the potential role of nuclear power in global energy supply up to 2020 and analyzes the opportunities and the challenges for research, governments and nuclear industries of a broad nuclear power development in response to environmental concerns. The authors think that nuclear energy will have to compete in the same framework and under the same conditions as all other energy sources and so analyze the possibility of re-launching nuclear energy: it will have to couple nuclear safety and economic competitiveness [it

  20. Vision of nuclear energy

    International Nuclear Information System (INIS)

    1987-01-01

    A study about the perspectives of nuclear energy, in Japan, for the next 40 years is shown. The present tendencies are analyzed as well as the importance that the subject adquires for the economy and the industry. At the same time, the parameters of the governmental, private and foreign participation are established in the frame of the technological development. The aim fixed for the year 2030 can be divided into; 1: from 1986 to 2010-development of the technology of nuclear fuel cycle already stablished and in process of maturity. The LWR technology will reach a very advanced stage. The fast breeder reactors (FBRs) will become commercially available, and the nuclear fuel cycle will reach its maturity in Japan; 2: from 2011 to 2030-commercial use of the FBRS and further advance in the nuclear fuel cycle. (M.E.L.) [es

  1. Transportation economics and energy

    Science.gov (United States)

    Soltani Sobh, Ali

    The overall objective of this research is to study the impacts of technology improvement including fuel efficiency increment, extending the use of natural gas vehicle and electric vehicles on key parameters of transportation. In the first chapter, a simple economic analysis is used in order to demonstrate the adoption rate of natural gas vehicles as an alternative fuel vehicle. The effect of different factors on adoption rate of commuters is calculated in sensitivity analysis. In second chapter the VMT is modeled and forecasted under influence of CNG vehicles in different scenarios. The VMT modeling is based on the time series data for Washington State. In order to investigate the effect of population growth on VMT, the per capita model is also developed. In third chapter the effect of fuel efficiency improvement on fuel tax revenue and greenhouse emission is examined. The model is developed based on time series data of Washington State. The rebound effect resulted from fuel efficiency improvement is estimated and is considered in fuel consumption forecasting. The reduction in fuel tax revenue and greenhouse gas (GHG) emissions as two outcomes of lower fuel consumption are computed. In addition, the proper fuel tax rate to restitute the revenue is suggested. In the fourth chapter effective factors on electric vehicles (EV) adoption is discussed. The constructed model is aggregated binomial logit share model that estimates the modal split between EV and conventional vehicles for different states over time. Various factors are incorporated in the utility function as explanatory variables in order to quantify their effect on EV adoption choices. The explanatory variables include income, VMT, electricity price, gasoline price, urban area and number of EV stations.

  2. Nuclear energy related research

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kilpi, K.

    1985-01-01

    This research programme plan for 1985 covers the nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT

  3. Nuclear remains an economic and ecologic asset

    International Nuclear Information System (INIS)

    Le Ngoc, Boris

    2015-01-01

    The author herein outlines the several benefits of nuclear energy and nuclear industry for France. He first outlines that France possesses 97 per cent of de-carbonated electricity thanks to nuclear energy (77 pc) and renewable energies (20 pc, mainly hydraulic), and that renewable energies must be developed in the building and transport sectors to be able to get rid of the environmentally and financially costly fossil energies. He outlines that reactor maintenance and the nuclear fuel cycle industry are fields of technological leadership for the French nuclear industry which is, after motor industry and aircraft industry, the third industrial sector in France. He indicates that nuclear electricity is to remain the most competitive one, and that nuclear energy and renewable energies must not be opposed to it but considered as complementary in the struggle against climate change, i.e. to reduce greenhouse gas emissions and to get rid of the prevalence of fossil energies

  4. Questions about the future of the nuclear energy

    International Nuclear Information System (INIS)

    2001-12-01

    The nuclear energy became a society subject much debated. This analysis discusses in three chapters the different interrogations concerning the nuclear energy: the comparison between the different energy sources to justify the preservation of the nuclear energy in France and in the world, the compatibility of the nuclear energy with the different socio-economic choices as the main condition of its development, and the role of the Government to transform the energy policy on the society choice. (A.L.B.)

  5. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Hylten, G.

    1982-01-01

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  6. The church and nuclear energy

    International Nuclear Information System (INIS)

    Phillips, G.O.

    1978-03-01

    The subject is covered in sections, entitled: foreword (explaining that report is a synopsis of the Hearing on Nuclear Energy arranged by the World Council of Churches, held in Sigtune, Sweden, June 24 to 29, 1975); humanity's energy needs); alternative sources of energy (nuclear fission, nuclear fusion, non-nuclear processes; some generalisations (concerning the advantages and disadvantages of nuclear energy to various sections of the world); what risks are acceptable (radiation hazards, reactor safety, radioactive wastes, misuse of Pu, safeguarding); nuclear weapons; nuclear energy - a challenge to the Churches; social and ethical issues; certain conclusions; postscript -the American move. (U.K.)

  7. 50 questions and 50 answers about nuclear energy

    International Nuclear Information System (INIS)

    1999-01-01

    The textbook composed of 10 chapters which are limited energy resource and increasing energy use, mini knowledge of nuclear energy, current state of nuclear, state of nuclear power generation, nuclear fuel cycle, necessity and economic feasibility of nuclear power generation, safety of nuclear power generation, the occurrence of radioactive waste and disposal, management of radioactive waste, explanation of false insistence related radioactive waste and daily life and radiation.

  8. Economic analysis model for total energy and economic systems

    International Nuclear Information System (INIS)

    Shoji, Katsuhiko; Yasukawa, Shigeru; Sato, Osamu

    1980-09-01

    This report describes framing an economic analysis model developed as a tool of total energy systems. To prospect and analyze future energy systems, it is important to analyze the relation between energy system and economic structure. We prepared an economic analysis model which was suited for this purpose. Our model marks that we can analyze in more detail energy related matters than other economic ones, and can forecast long-term economic progress rather than short-term economic fluctuation. From view point of economics, our model is longterm multi-sectoral economic analysis model of open Leontief type. Our model gave us appropriate results for fitting test and forecasting estimation. (author)

  9. Nuclear energy and radiation

    International Nuclear Information System (INIS)

    Myers, D.K.; Johnson, J.R.

    1980-01-01

    Both the light water reactor and the Canadian heavy water reactor systems produce electricity cheaply and efficiently. They produce some fissionable byproducts, which can be recycled to extend energy sources many-fold. Besides the production of electrical power, the nuclear industry produces various radioistopes used for treatment of cancer, in diagnostic procedures in nuclear medicine, in ionization smoke detectors, and as radioactive tracers with various technological applications including the study of the mechanisms of life. The increment in environmental radiation levels resulting from operation of nuclear power reactors represents a very small fraction of the radiation levels to which we are all exposed from natural sources, and of the average radiation exposures resulting from diagnostic procedures in the healing arts. The total health hazard of the complete nuclear power cycle is generally agreed to be smaller than the hazards associated with the generation of an equal amount of electricity from most other currently available sources of energy. The hazards from energy production in terms of shortened life expectancy are much smaller in all cases than the resulting increase in health and life expectancy. (auth)

  10. Non-nuclear energies

    International Nuclear Information System (INIS)

    Nifenecker, H.

    2007-01-01

    The different meanings of the word 'energy', as understood by economists, are reviewed and explained. Present rates of consumption of fossil and nuclear fuels are given as well as corresponding reserves and resources. The time left before exhaustion of these reserves is calculated for different energy consumption scenarios. On finds that coal and nuclear only allow to reach the end of this century. Without specific dispositions, the predicted massive use of coal is not compatible with any admissible value of global heating. Thus, we discuss the clean coal techniques, including carbon dioxide capture and storage. One proceeds with the discussion of availability and feasibility of renewable energies, with special attention to electricity production. One distinguishes controllable renewable energies from those which are intermittent. Among the first we find hydroelectricity, biomass, and geothermal and among the second, wind and solar. At world level, hydroelectricity will, most probably, remain the main renewable contributor to electricity production. Photovoltaic is extremely promising for providing villages remote deprived from access to a centralized network. Biomass should be an important source of bio-fuels. Geothermal energy should be an interesting source of low temperature heat. Development of wind energy will be inhibited by the lack of cheap and massive electricity storage; its contribution should not exceed 10% of electricity production. Its present development is totally dependent upon massive public support. A large part of this paper follows chapters of the monograph 'L'energie de demain: technique, environnement, economie', EDP Sciences, 2005. (author)

  11. Economics on nuclear techniques application in industry

    International Nuclear Information System (INIS)

    Kato, Masao

    1979-01-01

    The economics of the application of nuclear techniques to industry is discussed. Nuclear techniques were applied to gauging (physical measurement), analysis, a radioactive tracer method, electrolytic dissociation, and radiography and were found to be very economical. They can be applied to manufacturing, mining, oceano-engineering, environmental engineering, and construction, all of which have a great influence on economics. However, because the application of a radioactive tracer technique does not have a direct influence on economics, it is difficult to estimate how beneficial it is. The cost-benefit ratio method recommended by IAEA was used for economical calculations. Examples of calculations made in gauging and analysis are given. (Ueda, J.)

  12. General information about nuclear energy

    International Nuclear Information System (INIS)

    2002-04-01

    The following briefing notes were written to provide background information about nuclear power in Europe for journalists covering ENC 2002. They deal with four separate aspects of nuclear electricity generation: Economics; Environment; Safety; Waste Management. (authors)

  13. Nuclear energy between science and public

    International Nuclear Information System (INIS)

    Bobnar, B.

    1992-01-01

    The objective of the presented research was to establish the presence and the structure of nuclear energy as a theme in Slovenian mass media and at the same time to answer the question what chances an active Slovenian reader had in the year 1991 to either strengthen or change his opinion on nuclear power. Measurement and analysis of chosen relevant variables in 252 contributions in six Slovenian mass media publications in the year 1991 showed that the most frequent nuclear theme was decommissioning and closing down of a nuclear power plant. Other themes followed in the order of the frequency of appearance: nuclear energy as an economic issue, waste disposal, NPP Krsko operation, influence on health, information about events, seismic questions. The scientific theme - nuclear energy, was intensely represented in chosen Slovenian mass media publications in 1991. Common to all nuclear themes is that they were being presented from the political point of view. (author) [sl

  14. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  15. Nuclear energy and nuclear weapons proliferation

    International Nuclear Information System (INIS)

    1989-01-01

    A summary of the report dispatched in the middle of 1978 by the Atlantic Council of United States, organized by North American citizens, is presented. The report considers the relation between the production of nucleoelectric energy and the capacity of proliferation of nuclear weapons. The factors which affect the grade of proliferation risk represented by the use of nuclear energy in the world comparing this risk with the proliferation risks independently of nuclear energy, are examined. (M.C.K.) [pt

  16. Emerging nuclear energy systems and nuclear weapon proliferation

    International Nuclear Information System (INIS)

    Gsponer, A.; Sahin, S.; Jasani, B.

    1983-01-01

    Generally when considering problems of proliferation of nuclear weapons, discussions are focused on horizontal proliferation. However, the emerging nuclear energy systems currently have an impact mainly on vertical proliferation. The paper indicates that technologies connected with emerging nuclear energy systems, such as fusion reactors and accelerators, enhance the knowledge of thermonuclear weapon physics and will enable production of military useful nuclear materials (including some rare elements). At present such technologies are enhancing the arsenal of the nuclear weapon states. But one should not forget the future implications for horizontal proliferation of nuclear weapons as some of the techniques will in the near future be within the technological and economic capabilities of non-nuclear weapon states. Some of these systems are not under any international control. (orig.) [de

  17. Empirical essays on energy economics

    Energy Technology Data Exchange (ETDEWEB)

    Thoenes, Stefan

    2013-06-13

    The main part of this thesis consists of three distinct essays that empirically analyze economic issues related to energy markets in the United States and Europe. The first chapter provides an introduction and discusses the motivation for the different analyses pursued in this thesis. The second chapter examines attention effects in the market for hybrid vehicles. We show that local media coverage, gasoline price changes and unprecedented record gasoline prices have a significant impact on the consumers' attention. As attention is not directly observable, we analyze online search behavior as a proxy for the revealed consumer attention. Our study is based on a unique weekly panel dataset for 19 metropolitan areas in the US. Additionally, we use monthly state-level panel data to show that the adoption rate of hybrid vehicles is robustly related to our measure of attention. Our results show that the consumers' attention fluctuates strongly and systematically. The third chapter shows how the effect of fuel prices varies with the level of electricity demand. It analyzes the relationship between daily prices of electricity, natural gas and carbon emission allowances with a semiparametric varying smooth coefficient cointegration model. This model is used to analyze the market impact of the nuclear moratorium by the German Government in March 2011. Futures prices of electricity, natural gas and emission allowances are used to show that the market efficiently accounts for the suspended capacity and correctly expects that several nuclear plants will not be switched on after the moratorium. In the fourth chapter, we develop a structural vector autoregressive model (VAR) for the German natural gas market. In particular, we illustrate the usefulness of our approach by disentangling the effects of different fundamental influences during four specific events: The financial crisis starting in 2008, the Russian-Ukrainian gas dispute in January 2009, the Libyan civil war

  18. Empirical essays on energy economics

    International Nuclear Information System (INIS)

    Thoenes, Stefan

    2013-01-01

    The main part of this thesis consists of three distinct essays that empirically analyze economic issues related to energy markets in the United States and Europe. The first chapter provides an introduction and discusses the motivation for the different analyses pursued in this thesis. The second chapter examines attention effects in the market for hybrid vehicles. We show that local media coverage, gasoline price changes and unprecedented record gasoline prices have a significant impact on the consumers' attention. As attention is not directly observable, we analyze online search behavior as a proxy for the revealed consumer attention. Our study is based on a unique weekly panel dataset for 19 metropolitan areas in the US. Additionally, we use monthly state-level panel data to show that the adoption rate of hybrid vehicles is robustly related to our measure of attention. Our results show that the consumers' attention fluctuates strongly and systematically. The third chapter shows how the effect of fuel prices varies with the level of electricity demand. It analyzes the relationship between daily prices of electricity, natural gas and carbon emission allowances with a semiparametric varying smooth coefficient cointegration model. This model is used to analyze the market impact of the nuclear moratorium by the German Government in March 2011. Futures prices of electricity, natural gas and emission allowances are used to show that the market efficiently accounts for the suspended capacity and correctly expects that several nuclear plants will not be switched on after the moratorium. In the fourth chapter, we develop a structural vector autoregressive model (VAR) for the German natural gas market. In particular, we illustrate the usefulness of our approach by disentangling the effects of different fundamental influences during four specific events: The financial crisis starting in 2008, the Russian-Ukrainian gas dispute in January 2009, the Libyan civil war in 2011 as

  19. Public acceptance of nuclear energy

    International Nuclear Information System (INIS)

    Reis, J.S.B.

    1984-01-01

    Man, being unacquainted with the advantages of Nuclear Energy associates it with the manufacture of weaponry. However, the benefits of Nuclear Energy is received daily. In Brazil the public has not taken an anti-nuclear position; it is recognized that the Nuclear Plan exists exclusively for peaceful purposes and the authorities keep the community well informed. The Comision Nacional de Energia Nuclear along with the Instituto de Radioproteccion y Dosimetria, Instituto de Ingenieria Nuclear and the Instituto de Investigaciones Energeticas y Nucleares has developed in 27 years of existence, a gradual, accute and effective long term programme for the formation of potentially receptive opinion of Nuclear Energy. (Author)

  20. Non-nuclear energies

    International Nuclear Information System (INIS)

    Nifenecker, Herve

    2006-01-01

    The different meanings of the word 'energy', as understood by economists, are reviewed and explained. Present rates of consumption of fossil and nuclear fuels are given as well as corresponding reserves and resources. The time left before exhaustion of these reserves is calculated for different energy consumption scenarios. On finds that coal and nuclear only allow to reach the end of this century. Without specific dispositions, the predicted massive use of coal is not compatible with any admissible value of global heating. Thus, we discuss the clean coal techniques, including carbon dioxide capture and storage. On proceeds with the discussion of availability and feasibility of renewable energies, with special attention to electricity production. One distinguishes controllable renewable energies from those which are intermittent. Among the first we find hydroelectricity, biomass, and geothermal and among the second, wind and solar. At world level, hydroelectricity will, most probably, remain the main renewable contributor to electricity production. Photovoltaic is extremely promising for providing villages remote deprived from access to a centralized network. Biomass should be an important source of biofuels. Geothermal energy should be an interesting source of low temperature heat. Development of wind energy will be inhibited by the lack of cheap and massive electricity storage; its contribution should not exceed 10% of electricity production. Its present development is totally dependent upon massive public support. (author)

  1. Electrofluid gasification of coal with nuclear energy

    International Nuclear Information System (INIS)

    Pulsifer, A.H.; Wheelock, T.D.

    1978-01-01

    The gasification of coal by reaction with steam requires addition of large amounts of energy. This energy can be supplied by a high-temperature nuclear reactor which is coupled to a fluidized bed gasifier either thermally or electrically via an electrofluid gasifier. A comparison of the economics of supplying energy by these two alternatives demonstrates that electrofluid gasification in combination with a high-temperature nuclear reactor may in some circumstances be economically attractive. In addition, a review of recent experiments in small-scale electrofluid gasifiers indicates that this method of gasification is technically feasible. (Auth.)

  2. Electrofluid gasification of coal with nuclear energy

    International Nuclear Information System (INIS)

    Pulsifer, A.H.; Wheelock, T.D.

    1978-01-01

    The gasification of coal by reaction with steam requires the addition of large amounts of energy. This energy can be supplied by a high-temperature nuclear reactor which is coupled to a fluidized bed gasifier either thermally or electrically via an electrofluid gasifier. A comparison of the economics of supplying energy by these two alternatives demonstrates that electrofluid gasification in combination with a high-temperature nuclear reactor may in some circumstances be economically attractive. In addition, a review of recent experiments in small-scale electrofluid gasifiers indicates that this method of gasification is technically feasible

  3. Assessment of nuclear fuel cycles with respect to assurance of energy supply; economic aspects; environmental aspects; non-proliferation

    International Nuclear Information System (INIS)

    1979-01-01

    This paper, which was presented to all INFCE Working Groups gives a broad qualitative assessment in tabular form of the following five fuel cycles: LWR once-through, LWR with thermal recycle, HWR once-through, HTR with uranium recycle, fast breeder reactor. The assessment is given of the assurance of supply aspects, the macro- and micro-economic aspects, the environmental aspects, and the non-proliferation, including safeguards, aspects of each fuel cycle

  4. A century of nuclear energy

    International Nuclear Information System (INIS)

    Hug, M.

    2009-01-01

    The author proposes a history of the French nuclear industry and nuclear energy since the Nobel prizes of 1903 and 1911. He describes and comments the context of the energy production sector before the development of the nuclear energy, the development of the institutional context, the successive and different nuclear technologies, the main characteristics of the French program at its beginning, the relationship between the nuclear energy and the public, the main accidents and lessons learned from them, the perspectives of evolution of nuclear energy

  5. Nuclear energy technology: theory and practice of commercial nuclear power

    International Nuclear Information System (INIS)

    Knief, R.A.

    1982-01-01

    Reviews Nuclear Energy Technology: Theory and Practice of Commercial Nuclear Power by Ronald Allen Knief, whose contents include an overview of the basic concepts of reactors and the nuclear fuel cycle; the basics of nuclear physics; reactor theory; heat removal; economics; current concerns at the front and back ends of the fuel cycle; design descriptions of domestic and foreign reactor systems; reactor safety and safeguards; Three Mile Island; and a brief overview of the basic concepts of nuclear fusion. Both magnetic and inertial confinement techniques are clearly outlined. Also reviews Nuclear Fuel Management by Harry W. Graves, Jr., consisting of introductory subjects (e.g. front end of fuel cycle); core physics methodology required for fuel depletion calculations; power capability evaluation (analyzes physical parameters that limit potential core power density); and fuel management topics (economics, loading arrangements and core operation strategies)

  6. The Brazilian Nuclear Energy Program

    International Nuclear Information System (INIS)

    Carvalho, H.G. de

    1980-01-01

    A survey is initially of the international-and national situation regarding energetic resources. The Brazilian Nuclear Energy Policy and the Brazilian Nuclear Program are dealt with, as well as the Nuclear Cooperation agreement signed with the Federal Republic of Germany. The situation of Brazil regarding Uranium and the main activities of the Brazilian Nuclear Energy Commission are also discussed [pt

  7. Uranium and nuclear energy: 1990

    International Nuclear Information System (INIS)

    1991-01-01

    Since the last Symposium of the Uranium Institute in 1989 several major world events have occurred. First there has been an energy glut characterized by low and fairly stable oil prices. Secondly there have been important political developments in Eastern Europe. There are twenty-six papers included in this book; all are indexed separately. The discussions following each session are included in the book but not indexed. The keynote address considers the prospects and challenges for nuclear power. There are three papers on the factors affecting electricity demand and supply, three on the market for uranium, papers on Canadian and Australian uranium policies, five papers on recycling, four on the evolving attitudes to nuclear power especially in the United Kingdom and Japan, three papers on the economics of nuclear power, two on regulatory developments and three on future investment in nuclear power in the USSR, Hungary and Ontario. As well as a symposium summary and list of participants there are two annexes, the first a list of nuclear power plants worldwide, the second a list of uranium production facilities. (UK)

  8. Nuclear energy risks and benefits

    International Nuclear Information System (INIS)

    Jansen, S.D.; Bailey, R.E.; Randolph, J.C.; Hartnett, J.P.; Mastanaiah, K.

    1981-09-01

    The report was prepared as part of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program. The study region consists of all of Kentucky, most of West Virginia, and substantial portions of Illinois, Indiana, Ohio, and Pennsylvania. By 1988, coal-fired electrical generating capacity in the region is expected to total over 100,000 MWe, versus about 11,000 MWe projected for nuclear-fueled capacity by that year. Thus, the ORBES emphasis was on coal-fired generation. This report attempts to fill in some of the gaps in the relative lack of emphasis on the risks and benefits of nuclear electricity production in the study region. It covers the following topics: (1) basic facts about radiation, (2) an overview of the current regulatory framework of the nuclear industry, (3) health risks associated with electricity production by LWRs, (4) the risks of nuclear proliferation, terrorism, and sabotage, (5) comparative economics and healthy risks of coal versus nuclear, and (6) the March 1979 accident at Three Mile Island

  9. Nuclear energy and insurance

    International Nuclear Information System (INIS)

    Dow, J.C.

    1989-01-01

    It was the risk of contamination of ships from the Pacific atmospheric atomic bomb tests in the 1940's that seems first to have set insurers thinking that a limited amount of cover would be a practical possibility if not a commercially-attractive proposition. One Chapter of this book traces the early, hesitant steps towards the evolution of ''nuclear insurance'', as it is usually called; a term of convenience rather than exactitude because it seems to suggest an entirely new branch of insurance with a status of its own like that of Marine, Life or Motor insurance. Insurance in the field of nuclear energy is more correctly regarded as the application of the usual, well-established forms of cover to unusual kinds of industrial plant, materials and liabilities, characterised by the peculiar dangers of radioactivity which have no parallel among the common hazards of industry and commerce. It had, and still has, the feature that individual insurance underwriters are none too keen to look upon nuclear risks as a potential source of good business and profit. Only by joining together in Syndicates or Pools have the members of the national insurance markets been able to make proper provision for nuclear risks; only by close international collaboration among the national Pools have the insurers of the world been able to assemble adequate capacity - though still, even after thirty years, not sufficient to provide complete coverage for a large nuclear installation. (author)

  10. Glossary of nuclear energy

    International Nuclear Information System (INIS)

    1990-01-01

    TNC 90 focuses on nuclear energy technology. Some more basic or less central terms which were included in the previous glossary, TNC 55, have not been included in this version. About 1200 definitions in swedish included together with translations to english, german and french. The terms have been listed in alphabetical order. To make it easier to look up a certain term or terms that stand for related concepts the terms have been systematically arranged in a special index. (L.E.)

  11. Nuclear energy - an option for Croatian sustainable development

    International Nuclear Information System (INIS)

    Mikulicic, V.; Skanata, D.; Simic, Z.

    1996-01-01

    The uncertainties of growth in Croatian future energy, particularly electricity demand, together with growing environmental considerations and protection constraints, are such that Croatia needs to have flexibility to respond by having the option of expanding the nuclear sector. The paper deals with nuclear energy as an option for croatian sustainable economic development. The conclusion is that there is a necessity for extended use of nuclear energy in Croatia because most certainly nuclear energy can provide energy necessary to sustain progress. (author)

  12. Nuclear energy in Malaysia

    International Nuclear Information System (INIS)

    Jacob, F.X.

    1996-01-01

    The Malaysian Vision 2020 envisages doubling of the its economy every ten years for the next three decades. The Second Outline Perspective plan 1991-2000 (OPP2), also known as the National Development Policy (NDP) will set the pace to enable Malaysia to become a fully developed nation by the year 2020. The Malaysian economy is targeted to grow at 7 percent per annum in the decade of OPP2. In view of the targets set under Vision 2020, it is important to ensure that energy does not become a constraint to growth, and this sector develops in a least cost basis. Energy is crucial for industrialization and no modern industrial state can function without it. The paper presents a description of the main utilities in the country. Their installed capacities, maximum demand, generation mix and customers served are discussed. The electricity demand forecast till the year 2020 is presented. The paper presents this for 4 scenarios - a low growth, business as usual scenario, a moderate growth, business as usual scenario, a moderate growth, energy efficient scenario and a targeted growth, energy efficient scenario. The energy resources in the country is described together with its energy policy. The country's four-fuel policy is elaborated with the various options discussed. The environmental and pricing policies with regards to energy is also briefly given. Finally the nuclear option is presented in this context of the country's energy policy. The country had undertaken various studies for the nuclear option. These studies are given in the paper. The purpose of these studies and what the government decided is also discussed. Finally the prospects for the nuclear option in the future for the country is discussed. It is concluded that while, for the present, the nuclear option is not considered by the government, this may not be so in the future. The various reasons for this is given and the paper concludes that it may be prudent to keep this option under constant review. (J.P.N.)

  13. Global architecture of innovative nuclear energy

    International Nuclear Information System (INIS)

    Andreeva-Andrievskaya, L.N.; Kagramanyan, V.S.; Usanov, V.I.; )

    2011-01-01

    The study Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors including a Closed Fuel Cycle (GAINS), aimed at harmonization of tools used to assess various options for innovative development of nuclear energy, modeling of jointly defined scenarios and analysis of obtained results is presented in the paper. Objectives and methods of the study, issues of spent fuel and fissile materials management are discussed. Investment risks and economic indicators are also described [ru

  14. The nuclear energy: understand the future

    International Nuclear Information System (INIS)

    Barre, B.

    2007-01-01

    The nuclear appears for many scientists as the main contribution to the world energy supply in the context of a normal development, with a management of radioactive wastes in such a way that they create no hazard for the human and the environment. From the military origins to the electric power application, this book explains the technical, economical and political aspects of the nuclear energy, the challenges and the promises. (A.L.B.)

  15. Nuclear energy achievements and prospects

    International Nuclear Information System (INIS)

    Lewiner, Colette

    1992-01-01

    Within half a century nuclear energy achieved very successful results. Only for European Community, nuclear energy represents 30% in electricity generation. At this stage, one state that the nuclear energy winning cards are competitiveness and Gentleness to the environment. Those winning cards will still be master cards for the 21st century, provided nuclear energy handles rigorously: Safety in concept and operation of power plants; radioactive waste management, and communication

  16. Dictionary of nuclear energy termination

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-04-15

    This book lists termination of nuclear energy such as abbreviation, symbol, unit of nuclear energy, radiological unit, the symbol for element, isotope chart and the periodic table. This book contains about 5500 words involving to nuclear energy with index in Korean and English. It arranges alphabetically. So, with this book, it is easy and fast to find out the glossary, unit and symbol on nuclear energy.

  17. Dictionary of nuclear energy termination

    International Nuclear Information System (INIS)

    1983-04-01

    This book lists termination of nuclear energy such as abbreviation, symbol, unit of nuclear energy, radiological unit, the symbol for element, isotope chart and the periodic table. This book contains about 5500 words involving to nuclear energy with index in Korean and English. It arranges alphabetically. So, with this book, it is easy and fast to find out the glossary, unit and symbol on nuclear energy.

  18. Nuclear energy and social impact

    International Nuclear Information System (INIS)

    Carpintero-Santamarsia, N.

    2010-01-01

    Economic development and population increase are boosting a new process of energy demand all around the world which implies also a protection of the environment and, consequently, the reduction of emissions of CO 2 , a challenge that has to be solved. Fossil fuels represent the cheapest costs in capital and have as common features that their exploitation is based on largely known technologies, having developed a big experience in construction, operation and maintenance. However they are big environment polluters. Nuclear energy fulfils three of the main objectives that should be pursued for a steady development: 1. It does not emit Greenhouse gases. 2. It is the cheapest produced energy. 3. It guarantees a security in its supply due to the fact, among others, that it is not conditioned by external factors. However, as any other energy source, nuclear power has its own drawbacks. Some are real and some are fictitious. For this reason it becomes necessary to improve the social image of this source of energy, so as to counteract the negative consequences of the antinuclear discourse, promoted late in the seventies that has permanently undermined public acceptance

  19. Economical aspects of a nuclear power plant project

    International Nuclear Information System (INIS)

    Meldonian, N.L.; Santos, E.M. dos

    1992-01-01

    This work describes different aspects and parameters that should be regarded as guidelines for economic evaluation of small and medium power plant projects. The main objective of an economic evaluation is to establish the plant's unitary cost and its economic figure of merit. To achieve that, a number of studies must be undertaken to compare the global competitiveness of a nuclear power plant with other energetic alternatives. These studies involve macro economy, energy generation, electricity transmission and global feasibility of the enterprise. It is concluded that the economic evaluation of a nuclear power plant should be considered as the culmination of a long process of planning at a national level. The main reasons are the investments involved, the technological developments required and political implications of the utilization of nuclear power energy. (author)

  20. Hydrogen economy and nuclear energy

    International Nuclear Information System (INIS)

    Knapp, V.

    2004-01-01

    Global energy outlooks based on present trends, such as WETO study, give little optimism about fulfilling Kyoto commitments in controlling CO2 emissions and avoiding unwanted climate consequences. Whilst the problem of radioactive waste has a prominence in public, in spite of already adequate technical solutions of safe storage for future hundreds and thousands of years, there s generally much less concern with influence of fossil fuels on global climate. In addition to electricity production, process heat and transportation are approximately equal contributors to CO2 emission. Fossil fuels in transportation present also a local pollution problem in congested regions. Backed by extensive R and D, hydrogen economy is seen as the solution, however, often without much thought where from the hydrogen in required very large quantities may come. With welcome contributions from alternative sources, nuclear energy is the only source of energy capable of producing hydrogen in very large amounts, without parallel production of CO2. Future high temperature reactors could do this most efficiently. In view of the fact that nuclear weapon proliferation is not under control, extrapolation from the present level of nuclear power to the future level required by serious attempts to reduce global CO2 emission is a matter of justified concern. Finding the sites for many hundreds of new reactors would, alone, be a formidable problem in developed regions with high population density. What is generally less well understood and not validated is that the production of nuclear hydrogen allows the required large increases of nuclear power without the accompanied increase of proliferation risks. Unlike electricity, hydrogen can be economically shipped or transported by pipelines to places very far from the place of production. Thus, nuclear production of hydrogen can be located and concentrated at few remote, controllable sites, far from the population centers and consumption regions. At such

  1. Global Warming; Can Nuclear Energy Help?

    International Nuclear Information System (INIS)

    Knapp, V.

    1998-01-01

    Kyoto conference is setting the targets and limits for CO 2 emission. In the same time energy consumption is increasing, especially in developing world. If developing countries attain even a moderate fraction of energy consumption of developed countries, this will lead into large increase of total CO 2 emission, unless there is a strong increase of energy production by CO 2 non-emitting sources. Of two major candidates, solar and nuclear energy, the second is technically and economically much closer to ability to accomplish the task. The requirements for a large scale use of nuclear energy and the role of IAEA are discussed. (author)

  2. ECONOMIC EFFECTS OF ENERGY POLICIES

    Directory of Open Access Journals (Sweden)

    Mihaela ȘTEȚ

    2014-12-01

    Full Text Available This paper highlights some of the issues raised by the implementation of energy policies and the fiscal measures in the energy sector and it aims to identify the impact of energy policies at regional level. It is emphasized, along with the environmental impact of the use of renewable resources and economic and social effects on sustainable regional development which can generate state intervention through direct and indirect, financial and non-financial instruments. Given the complex energy profile of Romania, the paper reveals also, the problems that have had to face in the last two decades and the impact of energy policies of Romanian governments. The research is based on an analysis of statistics, publications in energy sector, as well as primary and specific legislation.

  3. India's nuclear energy programme: prospects and challenges

    International Nuclear Information System (INIS)

    Gupta, Arvind

    2011-01-01

    India has announced ambitious plans to expand its nuclear energy programme nearly 15 fold in the next 20 years, from the current 4,500 MWe to about 62,000 MWe by 2032. By 2020, India's Department of Atomic Energy (DAE) plans to install 20,000 MWe of nuclear power generation capacity (the fifth largest in the world). The department has plans beyond 2030 too. According to these plans India will have the capacity to produce 275 GWe (Giga Watt of electricity) of nuclear power by the year 2052. The DAE's projections are summarised. This is a truly ambitious plan. Without sufficient quantities of energy, India cannot hope to become a global power. Its dream of registering eight to nine per cent economic growth per annum will remain just that, a dream. Even with such ambitious plans on the nuclear energy front, the share of nuclear power in the overall energy mix will remain small. Currently nuclear energy constitutes only about three per cent of the total energy consumed in India. If the current projections are realised, the share of nuclear energy in the total energy output will still be about 20 per cent. India takes pride in its nuclear programme. Over the years, successive governments have fully supported the DAE's plans. This support is likely to continue in the future. In fact, following the Indo-US civil nuclear deal and the Nuclear Suppliers Group (NSG) waiver in 2008, the mood in India has turned upbeat. India is now getting integrated into the global nuclear regime even though it has not signed the Nuclear Non Proliferation Treaty (NNPT). The NSG waiver has, however, allowed India to enter into civil nuclear cooperation with several countries

  4. Energy taxation and economic growth

    International Nuclear Information System (INIS)

    Seymour, Adam; Mabro, Robert.

    1994-01-01

    These two linked articles look at the relationship between policies aimed at taxing various energy sources and economic growth in the country, raising such taxes in order to decide how such fiscal policy can best serve the needs of developing nations. It is argued that, while many developing nations seek to protect internal energy markets by taxing imported petroleum products, a policy of domestic energy prices being set at the same level as their international equivalent costs is more consistent with the efficient management of long-term structural adjustment programmes. (UK)

  5. Report on nuclear energy in Belgium

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The findings of a Commission set up in 1975 to report to Belgium's Minister of Economic Affairs on the various aspects of the question of nuclear energy are discussed. The Commission is basically in favour of the increased use of nuclear energy for the production of electricity, but emphasises that the main purpose of its Report is to furnish reasoned judgements to serve as the basis for informed debate. It concludes that the matter is essentially political. Economic, technical, public health and environmental aspects are considered. The present nuclear power programme is briefly reviewed, including reactors planned for up to 1982. The main conclusions of the Report are summarised, including economic and financial considerations. The possibilities of alternative sources of energy are considered, and it is concluded that only coal, oil and natural gas could be important for Belgium in the short or medium term. A policy of diversification should be favoured. (U.K.)

  6. For a rational energy transition based on nuclear energy

    International Nuclear Information System (INIS)

    Chalmin, Philippe

    2014-06-01

    After having recalled the meaning of the concept of energy transition, and stated that this concept is a fuzzy one, this paper addresses the issue of the future of energy through the concept of Energy returned on Energy invested (EROI). It discusses this approach by outlining that energy is the initial driver of economy, and by showing that only hydroelectricity, coal, nuclear and wind energy have a sufficient return rate, and that shale gas is an energy source for the short and medium term. Then, based on data related to world energy resources and consumption, to electric power production from various sources, to pollution health impacts, to electricity prices for industries and for households, it discusses the sustainability of the energy mix regarding energy reserves, health issues, and economic issues. Some examples (Spain, Germany) illustrate economic problems faced by some renewable energies. Finally, the authors outline that, thanks to its nuclear policy, France is the western country which is the most committed in energy transition. Some proposals are made to support nuclear energy, to reduce the use of fossil energies, to launch an ambitious research policy (on energy storage, on photovoltaic energy, on CO 2 hydrogenation, on hydrogen as a fuel), in favour of energy mixes decided at national levels in Europe

  7. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    Chester, K.

    1982-01-01

    In order to make a real contribution to the nuclear energy debate (is nuclear energy the limitless solution to man's energy problems or the path to man's destruction) people must be aware of the facts. The Science Reference Library (SRL) has a collection of the primary sources of information on nuclear energy - especially journals. This guideline aims to draw attention to the up-to-date literature on nuclear energy and its technology, freely available for consultation in the main Holborn reading room. After explanations of where to look for particular types of information and the SRL classification, the booklet gives lists and brief notes on the sources held. These are abstracting and indexing periodicals and periodicals. Reports, conference proceedings, patents, bibliographies, directories, year-books and buyer's guides are covered very briefly but not listed. Nuclear reactor data and organisations are also listed with brief details of each. (U.K.)

  8. Economical and strategical aspects of Brazilian-Germany nuclear agreement

    International Nuclear Information System (INIS)

    Carvalho, J.F. de.

    1981-01-01

    The strategical and economical aspects of Brazilian-Germany nuclear agreement are analyzed in three aspects: 1) The nuclear agreement in the context of the Brazilian economic - and social development process, considering the availability of energetic resouces of the country. Political implications. Considerations about creation and transfer of technology. 2) The economy aspects involved in the agreement. Comparison costs of electrical energy generated in a nuclear power plants and hydroelectric plant in Brazil. Impacts on the industrial development. 3) Strategical aspects. (E.G.) [pt

  9. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  10. Nuclear energy and climate change; Energia nuclear y cambio climatico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Jimenez, A.

    2002-07-01

    Energy is one of the essential motives for social and economic development of the humanity. Nuclear energy is a feasible option to stand up to a larger demand of energy, and it is playing, and will continue playing in the future, a decisive role in the debate about climate change and sustainable development, and in the efforts to reduce the CO{sub 2} emissions. (Author)

  11. Nuclear energy: exit or revival? International aspects

    International Nuclear Information System (INIS)

    2001-11-01

    This colloquium took place less than 1 year after the decision of the US of revival of their nuclear program. Thus the international context has changed, even if nuclear contestation remains as strong as in the past. Among governments, some positions preach the banishment of nuclear energy while others consider the nuclear option as the only solution to meet the growing up energy demand and the future environmental and economical stakes. This report makes a synthesis of the different talks given by the participants during the 3 round tables of the colloquium on the future of nuclear energy: the ecological stake, the democratic stake, and the energy policy stake. Four talks of French government representatives open and conclude the debates of the different round tables. (J.S.)

  12. Nuclear energy in Turkey. Recent developments

    International Nuclear Information System (INIS)

    Alper, Z.

    2014-01-01

    Full text : The global demand for electricity is rapidly increasing. There is growing uncertainty in regard to the supply and prices of oil and natural gas. These considerations have opened new prospects for the development of nuclear energy on a global state. Despite the negative impact of the Fukushima Daichi accident, still some countries are considering or have expressed interest in developing nuclear power programmes. As the country using nuclear technology is primarily responsible for safety and as operational safety cannot be out sourced, building of sound safety expertise and strong safety culture is an essential precondition for the country introducing nuclear technology. Turkey's energy policy is naturally focused on the security, sustainability and competitiveness of energy supply. It is designed to sustain targeted economic and social growth in the long run. Turkey remains resolutely committed to the goal of ensuring safe, secure and peaceful utilization of nuclear energy

  13. Nuclear energy supports sustainable development

    International Nuclear Information System (INIS)

    Koprda, V.

    2005-01-01

    The article is aimed at acceptability, compatibility and sustainability of nuclear energy as non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy , radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously abjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  14. Nuclear energy in Spain

    International Nuclear Information System (INIS)

    Isla, M.

    1984-01-01

    The 'Plan Energetico Nacional de 1983' (1983 National Energy Program)(PEN-83) was approved recently by the Spanish Government and presented to the 'Cortes Espanolas' (Spanish Parliament) in May 1984. The PEN-83 is being discussed at present in the Parliament and it is possible that some modifications be introduced, but expectedly will be rather limited and minor. PEN-83 covers the period 1983-1992. It includes a comparative analysis of the evolution and situation in OECD countries and in Spain. In Spain the offer, supply and consumption of primary energy and of the interrelation with other economic indicators, such as the gross domestic product, inflation rate and unemployment compared with that of the industrialized OECD countries, has shown a much lower capability to adapt its structure to the energy price increases

  15. Annual meeting of the nuclear forum Switzerland 2013. The 2050 energy strategy in the context of economic reality; Jahresversammlung des Nuklearforums Schweiz 2013. Die Energiestrategie 2050 im Kontext der wirtschaftlichen Realitaet

    Energy Technology Data Exchange (ETDEWEB)

    Rey, Matthias [Nuklearforum Schweiz/Forum nucleaire suisse, Bern (Switzerland). Media Relations

    2013-07-15

    At this year's annual meeting of the Nuclear Forum Switzerland (Nuklearforums Schweiz) once again the 2050 Energy Strategy of the Swiss Federal Council (Schweizer Bundesrat) was the main topic. President Corina Eichenberger warned against political arbitrariness and reckless endangerment of the Swiss electricity supply. Instead she called for a more logical, a more rational and more a pragmatic discussion. Accordingly, Eichenberger dismissed clearly politically motivated operation restrictions for Swiss nuclear power plants. The guest speakers Prof. Peter Egger of the Economic Institute of the ETH Zurich and Christoph Mader, President of scienceindustries, discussed consequences of the 2050 energy strategy for economy and industry. About 130 guests from the nuclear industry, politicians and industry took part in the Annual Meeting of the Nuclear Forum to the Hotel Bellevue in Bern Switzerland. Again, the event 'The 2050 energy strategy in the context of economic reality' was of main interest due to the recent energy policy discussions. Corinna Eichenberger, President of the association, stated, that the audience received an deep view into the economic consequences of the 2050 energy strategy from the perspective of science and industry. (orig.)

  16. Inevitability of nuclear energy

    International Nuclear Information System (INIS)

    Ramanna, R.

    1997-01-01

    The Indian atomic energy programme that has been launched in the late 1940s, with the courageous vision of Homi Bhabha, had made remarkable progress during the fifties, sixties and till the mid-seventies, leading to the establishment of a comprehensive base of nuclear science, technology and engineering, and the setting up of nuclear power stations. After the Pokharan experiment in 1974, the programme had to face a hostile attitude from the Western powers, with the stoppage of flow of technology and equipment from the West. The programme had shown the resilience to face the challenge, and march ahead, developing a range of indigenous capabilities both within the Department and in the Indian industry, though with a certain loss in the momentum. The successful design, construction and operation of the 100 Mw(t) research reactor Dhruva in Trombay, and the successful commissioning of the Fast Breeder Test Reactor in Kalpakkam, with a unique plutonium-uranium carbide fuel of Indian design, are significant capability demonstrations in the latter phase. On the power front, the twin-unit power stations at Narora (UP) and Kakrapar (Gujarat) have shown excellent performance, with respect to plant availability and capacity factor. This article presents an assessment of the progress achieved so far, amidst the difficulties encountered. Factors accounting for the apparently slow pace of growth are discussed, and the public concerns regarding nuclear safety and safety regulations are also addressed. In a situation where acute power shortages have become a fact of life, and difficulties can be foreseen in the development of coal and hydel resources (which are also limited in extent), the importance of pursuing the nuclear energy option is re-iterated. The need for unstinted government support to the program at this stage is also emphasized. (author)

  17. A perfect match: Nuclear energy and the National Energy Strategy

    International Nuclear Information System (INIS)

    1990-11-01

    In the course of developing the National Energy Strategy, the Department of Energy held 15 public hearings, heard from more than 375 witnesses and received more than 1000 written comments. In April 1990, the Department published an Interim Report on the National Energy Strategy, which compiles those public comments. The National Energy Strategy must be based on actual experience and factual analysis of our energy, economic and environmental situation. This report by the Nuclear Power Oversight committee, which represents electric utilities and other organizations involved in supplying electricity from nuclear energy to the American people, provides such an analysis. The conclusions here are based on hard facts and actual worldwide experience. This analysis of all the available data supports -- indeed, dictates -- expanded reliance on nuclear energy in this nation's energy supply to achieve the President's goals. 33 figs

  18. Nuclear power and other energy

    International Nuclear Information System (INIS)

    Doederlein, J.M.

    1975-01-01

    A comparison is made between nuclear power plants, gas-fuelled thermal power plants and oil-fired thermal power plants with respect to health factors, economy, environment and resource exploitation, with special reference to the choice of power source to supplement Norwegian hydroelectric power. Resource considerations point clearly to nuclear power, but, while nuclear power has an overall economic advantage, the present economic situation makes its heavy capital investment a disadvantage. It is maintained that nuclear power represents a smaller environmental threat than oil or gas power. Finally, statistics are given showing that nuclear power involves smaller fatality risks for the population than many other hazards accepted without question. (JIW)

  19. Innovation in nuclear energy technology

    International Nuclear Information System (INIS)

    Dujardin, Th.; Bertel, E.; Kwang Seok, Lee; Foskolos, K.

    2007-01-01

    Innovation has been a driving force for the success of nuclear energy and remains essential for its sustainable future. Many research and development programmes focus on enhancing the performance of power plants in operation, current fuel design and characteristics, and fuel cycle processes used in existing facilities. Generally performed under the leadership of the industry. Some innovation programmes focus on evolutionary reactors and fuel cycles, derived from systems of the current generation. Such programmes aim at achieving significant improvements, in the field of economics or resource management for example, in the medium term. Often, they are undertaken by the industry with some governmental support as they require basic research together with technological development and adaptation. Finally, large programmes, often undertaken in an international, intergovernmental framework are devoted to design and development of a new generation of systems meeting the goals of sustainable development in the long term. Driving forces for nuclear innovation vary depending on the target technology, the national framework and the international context surrounding the research programme. However, all driving factors can be grouped in three categories: market drivers, political drivers and technology drivers. Globally, innovation in the nuclear energy sector is a success story but is a lengthy process that requires careful planning and adequate funding to produce successful outcomes

  20. Christianity and nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Spaemann, R.

    1980-01-01

    The author is of the opinion that the ethical aspect suffers no rival points of view. From that he concludes the necessity of a fair public discussion about the rank and urgency of the goods, values, and interests in hand. He calls for a moratorium: before the final option on the future way of energy supply, the scientific and economic competitional advantage of the strict course of large-scale technologies must be balanced. In order to render medium-scale technologies comparable at all from the economic and technical point of view, alternative technology research ought to be promoted for a couple of years under the same financial conditions and with the same expenditure of personnel.

  1. Christianity and nuclear energy

    International Nuclear Information System (INIS)

    Spaemann, R.

    1980-01-01

    The author is of the opinion that the ethical aspect suffers no rival points of view. From that he concludes the necessity of a fair public discussion about the rank and urgency of the goods, values, and interests in hand. He calls for a moratory: before the final option on the future way of energy supply the scientific and economic competitional advantage of the strict course of large-scale technologies must be balanced. In order to render medium-scale technologies comparable at all from the economic and technical point of view alternative technology research ought to be promoted for a couple of years under the same financial conditions and with the same expenditure of personnel. (HSCH) [de

  2. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume V. Economics and systems analysis

    International Nuclear Information System (INIS)

    1980-06-01

    This NASAP assessment considers the economics of alternative nuclear reactor and fuel-cycle systems in the light of possible patterns of uranium supply and energy demand, as well as the economic implications of improvng the proliferation resistance of the various systems. The assessment focuses on the costs of alternative nuclear technologies and the possible timing of their implementation, based on their economic attractiveness

  3. Nuclear power debate: moral, economic, technical, and political issues

    International Nuclear Information System (INIS)

    Meyers, D. III.

    1977-01-01

    The pace at which nuclear power will develop is clouded with uncertainties. At the end of 1976 in the United States, 61 nuclear reactors were operating, representing slightly more than 9 percent of the country's total generating capacity. Another 168 reactors were either planned, under construction, or on order. Outside the United States, commitments to nuclear power grew by 17 percent in 1975 over 1974. Indonesia, Turkey, and Poland ordered nuclear plants, bringing to 41 the number of countries committed to nuclear energy. In 1976, 112 nuclear reactors were operating in 18 countries; an additional 342 plants were planned, on order, or under construction. The speed at which nuclear power will continue to grow is dependent on a number of factors: the rate at which demand for energy increases, the changing economics of alternative methods of energy production, the processes by which decisions affecting nuclear power development are made, and the degree to which they satisfy public concerns about the safety of nuclear energy. This book addresses itself to these factors as follows: Economic issues: At what rate will demand for energy increase, and how can that demand be met. (Chapter 2.) How cost-competitive are the major alternative methods of producing electricity that now exist--nuclear power and coal. (Chapter 3.) Decision making issues: Are the processes by which decisions to proceed with development of nuclear power, both in government and in industry, adequate to protect the interests of the public and of investors. (Chapters 4 and 5.) Safety issues: Are nuclear power plants themselves safe. (Chapters 6 and 7.) Can adequate safeguards be established to ensure protection against misuse of the products or by-products of those plants and to ensure the permanent safe storage of radioactive wastes

  4. Can we live without nuclear energy?

    International Nuclear Information System (INIS)

    Lipphardt, G.

    1987-01-01

    Demands for a withdrawal of nuclear energy are usually based on alleged safety deficiencies of nuclear power plants. Renewable energy sources, electricity saving and heat-power coupling should make possible the replacement of nuclear power plants. But are solar and wind energy sources real alternatives, by which electricity can be generated cheaply and sufficiently? Or could the energy problem be solved by saving energy without lowering our standard of living and narrowing the development of our industry? Must we instead burn expensive and rare fossil fuels that also have many disadvantages? For the chemical industries of the Federal Republic of Germany and Switzerland who are very large electricity consumers these are essential questions, on which their future competitiveness depends. The question naturally then arises whether our nuclear power plants are really so unsafe that we are obliged to accept solutions that are far from ideal. The present technical and economical article tries to answer these questions. 22 refs., 9 figs., 1 tab

  5. Nuclear energy: Promise and problems

    International Nuclear Information System (INIS)

    Richter, B.

    2005-01-01

    Nuclear energy is having a renaissance driven by both old fashioned supply and demand, and environmental concerns. Oil and gas prices have exploded and show no signs of returning to the levels of only a few years ago. Coal is not in short supply, but the pollution it generates has severe economic and health consequences. Concern about greenhouse gases and global warming has caused the environmental movement to begin a reassessment of the role of nuclear in the world's energy portfolio. The full potential of nuclear energy will be achieved only if governments and the public are satisfied that it is safe, that the radioactive waste can be safely disposed of, and that the risk of the proliferation of nuclear weapons is low. The first criterion has been met with designs that are inherently safer than current LWRs, primarily through design simplification, reducing the number of critical components, and advanced control and monitoring technologies. Operating safety has to be assured through good practices and a rigorous, independent inspection process. The second criterion, waste disposal, is a problem where the science and technology (S and T) communities have the primary role in a solution. Many believe that it is solved in principle, but there has as yet been no solution in practice. I will report on where I think we have gotten and what needs to be done. The third criterion, proliferation resistance, is one that the S and T communities cannot solve on their own. The best that S and T can do is to make proliferation difficult, and to make sure that any attempts are discovered early. The rest can be handled only by enforceable international agreements. Safeguards technology needs more attention. (author)

  6. Low Energy Nuclear Reactions?

    CERN Multimedia

    CERN. Geneva; Faccini, R.

    2014-01-01

    After an introduction to the controversial problem of Low Energy Nuclear Reactions (LENR) catalyzed by neutrons on metallic hydride surfaces we present the results of an experiment, made in collaboration with ENEA Labs in Frascati, to search neutrons from plasma discharges in electrolytic cells. The negative outcome of our experiment goes in the direction of ruling out those theoretical models expecting LENR to occur in condensed matter systems under specific conditions. Our criticism on the theoretical foundations of such models will also be presented.

  7. Ethics and Nuclear Energy

    International Nuclear Information System (INIS)

    Nezic, N.; Dodig, D.

    2000-01-01

    Should the scientist be a morally unbiased person? This is the eternal question asked by many great thinkers interested in science. The answer is hard to find. Scientists are expected to take into consideration the consequences of their actions before they actually start ot act. Sometimes they have to make certain sacrifices in order to help mankind. Unfortunately, we are witnesses of some intelligent, but inhuman and selfish people carrying out their even most destructive ideas. In this paper the relation between scientists and experts in the field of nuclear energy and the public will be discussed. (author)

  8. Nuclear Energy Literature Review

    International Nuclear Information System (INIS)

    Simic, Z.; Wastin, F.

    2016-01-01

    In the light of five years after a major accident at the Fukushima Daiichi nuclear power plant it is interesting to make nuclear energy related literature review. There is a number of accidents related reports from all major international institutions (like the IAEA and OECD NEA) and research organizations have drawn conclusions and lessons to learn from this terrible accident. These reports are the result of expert and scientific analyses carried out during these five years and they present ideal sources for both understanding what has happened and what can be learned in order to avoid and mitigate effects of such events in the future. From a wider perspective it is also interesting to analyze the impact on research and development (R and D) activities. This literature review is performed with hope to gain some useful insights from the analysis of the volume and topics in all research activities related to the Fukushima accident and nuclear energy (NE) altogether. This kind of review should at least provide an overview of trends and provide base for better planning of future activities. This paper analyzes the published NE related research of over more than 50 years with focus on three major nuclear accidents (TMI, Chernobyl and Fukushima). It has been performed using Scopus tools and database, and mainly focuses on statistics related to the subjects, countries, keywords and type of publishing. It also analyses how responsive is nuclear energy related R and D regarding the volume and subjects, and how is that research spread among most active countries. Nuclear power accidents influence increase and change of research. Both accidents, Chernobyl and Fukushima had maximum share in all nuclear power related papers at similar yearly level (9 percent in 1991 and 12 percent in 2015 respectively). TMI peaked at the 2.5 percent share in 1982. Engineering is the most frequent subjects for TMI and cumulative NE related publishing. Medicine and environmental science subjects

  9. Does nuclear energy save global environment?

    International Nuclear Information System (INIS)

    Matsui, Kazuaki

    2006-01-01

    Since the ecological footprint analysis in 1970s suggested changing consumption patterns and overpopulation concerns, energy policy such as energy conservation and use of renewable energy has become of prime importance. Several results of the long-term energy demand and supply analysis in 2050 or 2100 to reduce drastically carbon dioxide emission as a measure against global warming, showed the necessity of nuclear power deployment as well as maximum efforts to save energy, exploitation of the separation and disposal of carbon dioxide, and shifting energy sources to fuels that emit less greenhouse gases or non-fossil fuels. As a promising means to contribute to long-term energy supply, nuclear power generation is expected with improving safety, economic efficiency, environmental adaptability, and nuclear proliferation resistance of the technologies. (T.Tanaka)

  10. Clean energy, non-clean energy, and economic growth in the MIST countries

    International Nuclear Information System (INIS)

    Pao, Hsiao-Tien; Li, Yi-Ying; Hsin-Chia Fu

    2014-01-01

    This paper explores the causal relationship between clean (renewable/nuclear) and non-clean energy consumption and economic growth in emerging economies of the MIST (Mexico, Indonesia, South Korea, and Turkey) countries. The panel co-integration tests reveal that there is a long-term equilibrium relationship among GDP, capital formation, labor force, renewable/nuclear, and fossil fuel energy consumption. The panel causality results indicate that (1) there is a positive unidirectional short-run causality from fossil fuel energy consumption to economic growth with a bidirectional long-run causality; (2) there is a unidirectional long-run causality from renewable energy consumption to economic growth with positive bidirectional short-run causality, and a long-run causality from renewable to fossil fuel energy consumption with negative short-run feedback effects; and (3) there is a bidirectional long-run causality between nuclear energy consumption and economic growth and a long-run causality from fossil fuel energy consumption to nuclear energy consumption with positive short-run feedback effects. These suggest that MIST countries should be energy-dependent economies and that energy conservation policies may depress their economic development. However, developing renewable and nuclear energy is a viable solution for addressing energy security and climate change issues, and creating clean and fossil fuel energy partnerships could enhance a sustainable energy economy. - Highlights: • This novel study can provide more robust bases to strengthen sustainable energy policy settings. • Fossil fuel/nuclear energy use and economic growth is bidirectional causality. • Renewable energy consumption long term causes economic growth. • There is substitutability between renewable and fossil fuel energy. • Clean and non-clean energy partnerships can achieve a sustainable energy economy

  11. Present Status of Nuclear Energy

    Czech Academy of Sciences Publication Activity Database

    Wagner, Vladimír

    2013-01-01

    Roč. 2013, SI (2013), s. 89-94 ISSN 0375-8842. [European Nuclear Forum. Praha, 12.05.2013-13.05.2013] Institutional support: RVO:61389005 Keywords : nuclear energy * nuclear reactors * electricity production Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  12. High energy nuclear physics

    International Nuclear Information System (INIS)

    Meyer, J.

    1988-01-01

    The 1988 progress report of the High Energy Nuclear Physics laboratory (Polytechnic School, France), is presented. The Laboratory research program is focused on the fundamental physics of interactions, on the new techniques for the acceleration of charged particles and on the nuclei double beta decay. The experiments are performed on the following topics: the measurement of the π 0 inclusive production and the photons production in very high energy nuclei-nuclei interactions and the nucleon stability. Concerning the experiments under construction, a new detector for LEP, the study and simulation of the hadronic showers in a calorimeter and the H1 experiment (HERA), are described. The future research programs and the published papers are listed [fr

  13. Solar nuclear energy

    International Nuclear Information System (INIS)

    Tlalka, R.

    1977-01-01

    Brief characteristics are given of solar radiation and of its spectral range. The relation is derived for the gas pressure in the centre of the Sun and the mechanism is described of particle interactions in the Sun. Using the Eddington model the basic nuclear reactions in the Sun are described, namely the proton-proton chain and the C-N cycle. The energy transfer is discussed from the Sun to the boundaries of the Earth atmosphere and inside the atmosphere. The measurement of solar energy is conducted with actinometers, i.e., pyrheliometers, pyranometers and combinations thereof. The results of solar radiation measurement in different weather conditions are graphically represented. (J.B.)

  14. Speaking of nuclear energy

    International Nuclear Information System (INIS)

    Gillen, V.A.

    1992-01-01

    At the 1989 International Atomic Energy Agency (IAEA) General Conference, the Japanese Government pledged an extra-budgetary contribution for a three-year enhanced public information programme. On this basis the programme was developed centering on a series of two-day regional media seminars. It was determined that these seminars were to be informative and educational, and provide balanced, honest background material on the subject of nuclear energy. The speakers chosen were a mix of IAEA and outside experts from around the world. About 500 participants from 20 countries took part over the initial three years of the programme. This document contains a selection of speeches and topics that, is believed, captured the essence of the information presented during the regional seminars

  15. Topical subjects of nuclear energy

    International Nuclear Information System (INIS)

    Baumgaertel, G.; Borsch, P.; Halaszovich, S.; Laser, M.; Paschke, M.; Richter, B.; Stein, G.; Stippler, R.; Wagner, H.J.

    1990-01-01

    The report supplements and extends basic information contained in the seminar report 'Use and risk of nuclear energy' (Juel-Conf-17). The contributions deal with nuclear waste management, measures to avoid the misuse of nuclear fuels, and the properties and use of plutonium. As against the last edition, the subject 'Energy and environment' has been added. (orig.) [de

  16. Education of nuclear energy specialists

    International Nuclear Information System (INIS)

    Paulikas, V.

    1999-01-01

    Preparation system of nuclear energy specialists in Lithuania is presented. Nuclear engineers are being prepared at Kaunas University of Technology. Post-graduates students usually continue studies at Obninsk Nuclear Energy Institute in Russia. Many western countries like Sweden, Finland and US is providing assistance in education of Lithuanian specialists. Many of them were trained in these countries

  17. Nuclear energy and the public

    International Nuclear Information System (INIS)

    Kyd, D.R.

    1994-01-01

    This paper is the opening speech from a national seminar on the uses for nuclear energy in everyday life. The speaker, the public information director for the International Atomic Energy Agency (IAEA), stresses the peaceful uses of nuclear energy. He points out that used for peaceful purposes, and prudently, nuclear energy applications have, tremendous benefits to offer mankind in both the industrial world and developing nations

  18. Quantum nuclear pasta and nuclear symmetry energy

    Science.gov (United States)

    Fattoyev, F. J.; Horowitz, C. J.; Schuetrumpf, B.

    2017-05-01

    Complex and exotic nuclear geometries, collectively referred to as "nuclear pasta," are expected to appear naturally in dense nuclear matter found in the crusts of neutron stars and supernovae environments. The pasta geometries depend on the average baryon density, proton fraction, and temperature and are critically important in the determination of many transport properties of matter in supernovae and the crusts of neutron stars. Using a set of self-consistent microscopic nuclear energy density functionals, we present the first results of large scale quantum simulations of pasta phases at baryon densities 0.03 ≤ρ ≤0.10 fm-3 , proton fractions 0.05 ≤Yp≤0.40 , and zero temperature. The full quantum simulations, in particular, allow us to thoroughly investigate the role and impact of the nuclear symmetry energy on pasta configurations. We use the Sky3D code that solves the Skyrme Hartree-Fock equations on a three-dimensional Cartesian grid. For the nuclear interaction we use the state-of-the-art UNEDF1 parametrization, which was introduced to study largely deformed nuclei, hence is suitable for studies of the nuclear pasta. Density dependence of the nuclear symmetry energy is simulated by tuning two purely isovector observables that are insensitive to the current available experimental data. We find that a minimum total number of nucleons A =2000 is necessary to prevent the results from containing spurious shell effects and to minimize finite size effects. We find that a variety of nuclear pasta geometries are present in the neutron star crust, and the result strongly depends on the nuclear symmetry energy. The impact of the nuclear symmetry energy is less pronounced as the proton fractions increase. Quantum nuclear pasta calculations at T =0 MeV are shown to get easily trapped in metastable states, and possible remedies to avoid metastable solutions are discussed.

  19. Is nuclear energy ethically justifiable?

    International Nuclear Information System (INIS)

    Zuend, H.

    1988-01-01

    Nuclear technology brings the chance to provide an essential long term contribution to the energy supply of the world population and to use the raw materials uranium and thorium which have no other use. The use of nuclear energy is ethically justifiable providing certain simple fundamental rules for the design of nuclear facilities are observed. Such rules were clearly violated before the reactor accident at Chernobyl. They are, however, observed in our existing nuclear power plants. Compared with other energy systems nuclear energy has, with the exception of natural gas, the lowest risk. The consideration of the ethical justification of nuclear energy must also include the question of withdrawal. A withdrawal would have considerable social consequences for the industrial nations as well as for the developing countries. The problem of spreading alarm (and concern) by the opponents of nuclear energy should also be included in the ethical justification. 8 refs., 2 figs

  20. Nuclear energy in the world

    International Nuclear Information System (INIS)

    Grippi, Sidney

    2006-01-01

    The chapter reports the nuclear energy beginning in the world including a chronology of the atomic bomb birth, the annual growth rate of electronuclear energy in the world, a comparison of energy production in thermoelectric bases

  1. The nuclear energy outlook--a new book from the OECD nuclear energy agency.

    Science.gov (United States)

    Yoshimura, Uichiro

    2011-01-01

    This paper summarizes the key points of a report titled Nuclear Energy Outlook, published in 2008 by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, which has 30 member nations. The report discusses the commitment of many nations to increase nuclear power generating capacity and the potential rate of building new electricity-generating nuclear plants by 2030 to 2050. The resulting decrease in carbon dioxide emissions from fossil fuel combustion resulting from an increase in nuclear power sources is described. Other topics that are discussed include the need to develop non-proliferative nuclear fuels, the importance of developing geological disposal facilities or reprocessing capabilities for spent nuclear fuel and high-level radioactive waste materials, and the requirements for a larger nuclear workforce and greater cost competitiveness for nuclear power generation. Copyright © 2010 Health Physics Society

  2. Nuclear power phaseout policy and the economic implications for Germany

    International Nuclear Information System (INIS)

    Pfaffenberger, W.

    1999-01-01

    Implementation of Germany's nuclear power phaseout policy and the expected consequences are discussed in this paper, referring to environmental aspects and Germany's international commitments under the UN Framework Convention on Climate Change, implications for the national economy, the required structural transformation of the energy industry, and changes in the general legal setting for the energy sector. Proposals are discussed for modifying the planned nuclear power phaseout policy so as to make the process of winding down nuclear generation more compatible with economic, social, and environmental policy conditions. (orig./CB) [de

  3. Is nuclear energy ethically justifiable?

    International Nuclear Information System (INIS)

    Zuend, H.

    1987-01-01

    Nuclear technology offers the chance to make an extremely long term contribution to the energy supply of the earth. The use of nuclear energy is ethically justifiable, provided that several fundamental rules are obeyed during the technical design of nuclear installations. Such fundamental rules were unequivocally violated in the nuclear power plant Chernobyl. They are, however, fulfilled in the existing Swiss nuclear power plants. Improvements are possible in new nuclear power plants. Compared to other usable energy systems nuclear energy is second only to natural gas in minimal risk per generated energy unit. The question of ethical justification also may rightly be asked of the non-use of nuclear energy. The socially weakest members of the Swiss population would suffer most under a renunciation of nuclear energy. Future prospects for the developing countries would deteriorate considerably with a renunciation by industrial nations of nuclear energy. The widely spread fear concerning the nuclear energy in the population is a consequence of non-objective discussion. 8 refs., 2 figs

  4. The German energy policy as a consequence of Fukushima. The scientific discussion between nuclear phase-out and economic growth; Die deutsche ''Energiewende'' nach Fukushima. Der wissenschaftliche Diskurs zwischen Atomausstieg und Wachstumsdebatte

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, Joerg [Bremen Univ. (Germany). Arbeitsgruppe fuer Energie und Infrastruktur; Hennig, Bettina (ed.) [Forschungsstelle Nachhaltigkeit und Klimapolitik, Leipzig (Germany)

    2013-07-01

    The book on the German energy policy as a consequence includes the following contributions: The German energy turnaround - scientific contributions. The energy turnaround in Germany - issue of interdisciplinary science. The transformation of the energy systems as social and technical challenge, - on the need of integrating energy research. Transformations and transformation blockades in the German energy system. The German energy turnaround in the context of international best practice. Energy turnaround also in Japan? - The chances of a nuclear phase-out. Possibilities and limits of public participation for the realization of an energy turnaround. Public energy in Germany - a model for participation? A plea for a comprehensive analysis of the energy turnaround in relation to the omnipresent crisis. Challenges and development in the German energy industry - consequences of the increasing percentage of renewable energies on the costs and the security of supply. Research funding and innovation promotion in the area of selected renewable energies. The economic chances of an energy turnaround. The need of appropriate monetary boundary conditions for the energy turnaround and the possibilities of an organization. The human factor in the context of the energy turnaround - environmental-psychological research approaches. The legal contribution to the energy turnaround. Vulnerability and resilience of energy systems. Geography of renewable energies -spatial constraints of a sustainable energy system. Critics and alternatives: The German energy turnaround that is no turnaround.

  5. Future nuclear energy scenarios for Europe

    International Nuclear Information System (INIS)

    Roelofs, F.; Van Heek, A.

    2010-01-01

    Nuclear energy is back on the agenda worldwide. In order to prepare for the next decades and to set priorities in nuclear R and D and investment, market share scenarios are evaluated. This allows to identify the triggers which influence the market penetration of future nuclear reactor technologies. To this purpose, scenarios for a future nuclear reactor park in Europe have been analysed applying an integrated dynamic process modelling technique. Various market share scenarios for nuclear energy are derived including sub-variants with regard to the intra-nuclear options taken, e.g. introduction date of Gen-III (i.e. EPR) and Gen-IV (i.e. SCWR, HTR, FR) reactors, level of reprocessing, and so forth. The assessment was undertaken using the DANESS code which allows to provide a complete picture of mass-flow and economics of the various nuclear energy system scenarios. The analyses show that the future European nuclear park will exist of combinations of Gen-III and Gen-IV reactors. This mix will always consist of a set of reactor types each having its specific strengths. Furthermore, the analyses highlight the triggers influencing the choice between different nuclear energy deployment scenarios. In addition, a dynamic assessment is made with regard to manpower requirements for the construction of a future nuclear fleet in the different scenarios. (authors)

  6. Topical subjects in nuclear energy policy

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In making peaceful use of nuclear energy it remains the paramount duty of the federal government to see to it that safety is given absolute priority over any economic aspects. Nuclear energy does agree with ethics as long as we will not slacken in our efforts to achieve a maximum of safety. - Fuel reprocessing serves the purpose of closing the nuclear fuel cycle: It increases safety, permits safe disposal and saves raw material resources. - A new bill for the prevention of radiation damage to the population was drawn up and presented. (HSCH) [de

  7. Nuclear energy and the new era

    International Nuclear Information System (INIS)

    Sefidvash, F.

    1992-01-01

    The problem of the utilization of nuclear energy is not only technical but also has important social, economic, political and ethical ramifications. Therefore, to discuss nuclear energy for the future, a vision of the new era needs to be identified. A model for the new era, as a natural consequence of growing interdependence among nations and the process of human evolution is described. The problems of inherent and passive safety, waste disposal, ecology, proliferation, economy and regulatory institutions in the new era are discussed. The particular role of small nuclear power reactors and their potential advantages are described. (author). 12 refs

  8. Economic development and nuclear proliferation: an overview

    International Nuclear Information System (INIS)

    Smith, G.W.; Soligo, R.

    1983-01-01

    The authors argue that the impact of nuclear-weapons programs on the development prospects of countries economically able to undertake such programs would likely be fairly small. The amounts involved and the backward linkages are usually sufficiently small that nuclear-weapons programs in most less-developed countries (LDCs) can be considered an enclave activity. On the other hand, economic development clearly facilitates bomb development. The chapter sets forth the main characteristics of economic growth that are likely to facilitate bomb development, then considers the ''bomb levy'' necessary for various types of countries to produce bombs on a scale considered appropriate for LDCs. It concludes that it will be policy-imposed costs rather than economic costs in themselves that will prevent determined LDC governments of moderate income and population from developing nuclear weapons. 16 references, 2 tables

  9. SAFE testing nuclear rockets economically

    International Nuclear Information System (INIS)

    Howe, Steven D.; Travis, Bryan; Zerkle, David K.

    2003-01-01

    Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the Rover/NERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M

  10. Financing aspects of nuclear power plant construction under Polish economic conditions

    International Nuclear Information System (INIS)

    Besant-Jones, John E.

    1999-01-01

    Within the framework of the new Polish Energy Law the different issues important far financing a programme to develop nuclear power power in Poland such as: economic competitiveness of nuclear power, financing options for nuclear power projects, managing the various risks for financing nuclear power as well as nuclear and business liability are considered. The importance of policy issues is stressed

  11. The European Nuclear Energy Tribunal

    International Nuclear Information System (INIS)

    Marchetti, D.

    1977-01-01

    The European Nuclear Energy Tribunal was set up within the Organisation for European Economic Co-operation (now the Organisation for Economic Co-operation and Development) on 20th December 1957 under the Convention on Security Control. Seven independent judges are appointed for five years by decision of the Council of the Organisation; if the Tribunal includes no judge of the nationality of a party in a dispute submitted to it, the Government concerned may select an additional judge in that case. The Tribunal is competent in matters of security control, third party liability and activities of one of the Organisation's joint undertakings. At the request of any Government party to the Security Control Convention, to the Eurochemic Convention or to the Paris Convention and Brussels Supplementary Convention it may be convened to resolve any dispute concerning the interpretation or application thereof. While the Tribunal has not yet been called upon to exercise its judgment it is nonetheless an important and necessary instrument for Member States engaged in nuclear activities at international level. (NEA) [fr

  12. Nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Verfondern, K.

    2007-01-01

    In the long term, H 2 production technologies will be strongly focusing on CO 2 -neutral or CO 2 -free methods. Nuclear with its virtually no air-borne pollutants emissions appears to be an ideal option for large-scale centralized H 2 production. It will be driven by major factors such as production rates of fossil fuels, political decisions on greenhouse gas emissions, energy security and independence of foreign oil uncertainties, or the economics of large-scale hydrogen production and transmission. A nuclear reactor operated in the heat and power cogeneration mode must be located in close vicinity to the consumer's site, i.e., it must have a convincing safety concept of the combined nuclear/ chemical production plant. A near-term option of nuclear hydrogen production which is readily available is conventional low temperature electrolysis using cheap off-peak electricity from present nuclear power plants. This, however, is available only if the share of nuclear in power production is large. But as fossil fuel prices will increase, the use of nuclear outside base-load becomes more attractive. Nuclear steam reforming is another important near-term option for both the industrial and the transportation sector, since principal technologies were developed, with a saving potential of some 35 % of methane feedstock. Competitiveness will benefit from increasing cost level of natural gas. The HTGR heated steam reforming process which was simulated in pilot plants both in Germany and Japan, appears to be feasible for industrial application around 2015. A CO 2 emission free option is high temperature electrolysis which reduces the electricity needs up to about 30 % and could make use of high temperature heat and steam from an HTGR. With respect to thermochemical water splitting cycles, the processes which are receiving presently most attention are the sulfur-iodine, the Westinghouse hybrid, and the calcium-bromine (UT-3) cycles. Efficiencies of the S-I process are in the

  13. The nuclear energy in France

    International Nuclear Information System (INIS)

    Pedroso, L.J.

    1983-01-01

    An overview of the nuclear energy in France is done. The great centers and the great research lines of the French nuclear program, as well as its present status and prospects for the future are presented. (EG) [pt

  14. Nuclear energy and greenhouse effect

    International Nuclear Information System (INIS)

    Strub, R.A.

    1991-01-01

    The contribution of nuclear power plants against the greenhouse effects is evaluated, not only nuclear energy is unable to fight greenhouse effect increase but long life wastes endanger environment. 8 refs

  15. Nuclear energy and public acceptance

    International Nuclear Information System (INIS)

    El Osery, I.A.

    1988-01-01

    The soundness of use of nuclear energy in electric energy generation has received public concern due to the public highly exaggerated fear of nuclear power. It is the purpose of this paper to clear up some issues of public misunderstanding of nuclear power. Those of most importance are the unjustified fears about safety of nuclear power plants and the misunderstanding of nuclear risks and fears of nuclear power plants environmental impact. The paper is addressed to the public and aims at clarifying these issues in simple, correct, and convincing terms in such a way that links the gap between the scientists of nuclear energy and the general public; this gap which the media has failed to cover and failed to convey honestly and correctly the scientific facts about nuclear energy from the scientists standards to the public

  16. Present market for nuclear energy

    International Nuclear Information System (INIS)

    Marzo, M.A.S.

    1987-01-01

    The present market for nuclear energy is present since nuclear production and electric power generation to the utilization of radioisotopes in medicine and biology. Some data about the main world suppliers to this market are shown. (E.G.) [pt

  17. Energy paper II: Nuclear energy revival

    International Nuclear Information System (INIS)

    Anonymous

    2008-01-01

    ESI Energy paper is called 'Issue Paper' awarded by think-tank Energy Security Institute. The second issue focuses on the energy security of countries from the perspective of Renaissance of construction of nuclear power plants. Topicality is documented by fluctuations in fossil fuel prices on the world commodity markets and by extortionate potential, disposed by their main producers. The Slovak Republic is actively engaged into international dialogue on the need for the development of nuclear energy.

  18. Environment, energy, and economic performance

    Energy Technology Data Exchange (ETDEWEB)

    Oberndorfer, Ulrich

    2009-09-25

    This thesis analyzes the relationship between environmental regulation as well as energy market developments on the one hand, and economic performance on the other. Due to its economic effects environmental regulation is controversially disputed. The thesis shows, however, that the economic impacts of the recently adopted climate policy in Europe, namely of the implementation of the European Union Emission Trading Scheme, have been modest at most. Consistent with economic theory, the low stringency of this regulatory measure that is aimed at combating man-made climate change is identified as one important driver of this result. Moreover, results presented in this thesis also indicate the important role which the political economy plays for the design of environmental regulation in general. These mechanisms are shown to be a driver of the low stringency and, consequently, of the small economic effects during the first phase of the European Union Emission Trading Scheme. The thesis highlights the role of investment stimulation if the goal of environmental regulation is not only the protection of the environment, but also the compatibility with economic goals. This thesis also provides new insights into the role of energy market developments for the economy. In this respect, the relevance of the EU carbon market for the financial market performance of European electricity generators is shown. Besides, this thesis particularly demonstrates the paramount importance of oil market developments for the economy as a whole. It suggests that amongst all natural resources, oil is the most relevant one to the pricing of Eurozone energy stocks. It is also shown that besides oil prices, oil volatility plays an important role for stock market development. Finally, the thesis highlights the relevance of oil market developments to the overall economy, in showing that unemployment in Germany is strongly affected by oil price shocks. In this respect, it also opposes claims that the

  19. The Economics of Wind Energy

    International Nuclear Information System (INIS)

    Krohn, S.; Morthorst, P.E.; Awerbuch, S.

    2009-03-01

    This report is the result of an effort by the European Wind Energy Association (EWEA) to assemble a team of professional economists to assess the costs, benefits and risks associated with wind power generation. In particular, the authors were asked to evaluate the costs and benefits to society of wind energy compared to other forms of electricity production. In the present context of increasing energy import dependency in industrialised countries as well as the volatility of fuel prices and their impact on GDP, the aspects of energy security and energy diversification have to be given particular weight in such an analysis. Chapter 1 examines the basic (riskless) cost components of wind energy, as it leaves the wind farm, including some international comparisons and a distinction between onshore and offshore technologies. Chapter 2 illustrates other costs, mainly risks that are also part of the investment and thus have to be incorporated in the final price at which electricity coming from wind can be sold in the markets. The chapter discusses why the electricity market for renewable energy sources (RES) is regulated and how different support systems and institutional settings affect the final cost (and hence, price) of wind power. Chapter 3 discusses how the integration of wind energy is modifying the characteristics and management of the electrical system including grids, and how such modifications can affect the global price of electricity. Chapter 4 analyses how the external benefits of wind energy, such as its lower environmental impact and the lower social risk it entails can be incorporated into its valuation. Chapter 5 develops a methodology for the correct economic comparison of electricity costs coming from wind and from fuel-intensive coal and gas power generation. Chapter 5 uses as a starting point the methodology currently applied by the International Energy Agency (IEA) and improves it by incorporating some of the elements described in the previous

  20. Nuclear energy development and national economy

    International Nuclear Information System (INIS)

    Fukami, Hiroaki

    1982-01-01

    The utilization and development of nuclear power in Japan are now advanced on the basis of a fact that nuclear power generation has taken root in the country. The scale of nuclear power generation is currently a total of 22 power plants with aggregate capacity over 15,500 MW, 16% of the total power generation. There are still two alternate arguments: i.e. whether nuclear energy can be a complete substitute of petroleum or not, because the consumption of petroleum is necessary for the fuel cycle. Due to the rise of petroleum price, the nuclear power generation is now positively economical. On the other hand, the promotion of nuclear power can lead to the saving in foreign currency. While the economy in nuclear power is through the use of LWRs presently, the research and development efforts in ATRs, FBRs, etc. are essential for the future. (Mori, K.)