WorldWideScience

Sample records for economic forecasting

  1. Forecasting oilfield economic performance

    International Nuclear Information System (INIS)

    Bradley, M.E.; Wood, A.R.O.

    1994-01-01

    This paper presents a general method for forecasting oilfield economic performance that integrates cost data with operational, reservoir, and financial information. Practices are developed for determining economic limits for an oil field and its components. The economic limits of marginal wells and the role of underground competition receive special attention. Also examined is the influence of oil prices on operating costs. Examples illustrate application of these concepts. Categorization of costs for historical tracking and projections is recommended

  2. Economic impact analysis of load forecasting

    International Nuclear Information System (INIS)

    Ranaweera, D.K.; Karady, G.G.; Farmer, R.G.

    1997-01-01

    Short term load forecasting is an essential function in electric power system operations and planning. Forecasts are needed for a variety of utility activities such as generation scheduling, scheduling of fuel purchases, maintenance scheduling and security analysis. Depending on power system characteristics, significant forecasting errors can lead to either excessively conservative scheduling or very marginal scheduling. Either can induce heavy economic penalties. This paper examines the economic impact of inaccurate load forecasts. Monte Carlo simulations were used to study the effect of different load forecasting accuracy. Investigations into the effect of improving the daily peak load forecasts, effect of different seasons of the year and effect of utilization factors are presented

  3. On the Economic Evaluation of Volatility Forecasts

    DEFF Research Database (Denmark)

    Voev, Valeri

    We analyze the applicability of economic criteria for volatility forecast evaluation based on unconditional measures of portfolio performance. The main theoretical finding is that such unconditional measures generally fail to rank conditional forecasts correctly due to the presence of a bias term...... driven by the variability of the conditional mean and portfolio weights. Simulations and a small empirical study suggest that the bias can be empirically substantial and lead to distortions in forecast evaluation. An important implication is that forecasting superiority of models using high frequency...

  4. FORECAST MANAGEMENT FOR THE ECONOMIC SYSTEM

    OpenAIRE

    Dragoº MICU; Cosmin LEFTER

    2011-01-01

    Existing turbulences in the economic environment assume a more responsible involvement from the manager’s behalf in the management process thus determing them to use adequate forms of managemet. In this context, this paper highlights the necessity of implementing management forecasting systems in the economic environment.

  5. Teaching Economic Forecasting to Undergraduates.

    Science.gov (United States)

    Donihue, Michael R.

    1995-01-01

    Contends that academic departments have come under increasing scrutiny in terms of the scope of curriculum and teaching methods. Describes a senior undergraduate economics course in which the primary objective was to give students opportunities to combine theoretical training with quantitative skills and apply them to real-world problems. (CFR)

  6. AVLIS: a technical and economic forecast

    International Nuclear Information System (INIS)

    Davis, J.I.; Spaeth, M.L.

    1986-01-01

    The AVLIS process has intrinsically large isotopic selectivity and hence high separative capacity per module. The critical components essential to achieving the high production rates represent a small fraction (approx.10%) of the total capital cost of a production facility, and the reference production designs are based on frequent replacement of these components. The specifications for replacement frequencies in a plant are conservative with respect to our expectations; it is reasonable to expect that, as the plant is operated, the specifications will be exceeded and production costs will continue to fall. Major improvements in separator production rates and laser system efficiencies (approx.power) are expected to occur as a natural evolution in component improvements. With respect to the reference design, such improvements have only marginal economic value, but given the exigencies of moving from engineering demonstration to production operations, we continue to pursue these improvements in order to offset any unforeseen cost increases. Thus, our technical and economic forecasts for the AVLIS process remain very positive. The near-term challenge is to obtain stable funding and a commitment to bring the process to full production conditions within the next five years. If the funding and commitment are not maintained, the team will disperse and the know-how will be lost before it can be translated into production operations. The motivation to preserve the option for low-cost AVLIS SWU production is integrally tied to the motivation to maintain a competitive nuclear option. The US industry can certainly survive without AVLIS, but our tradition as technology leader in the industry will certainly be lost

  7. Genetic Algorithms vs. Artificial Neural Networks in Economic Forecasting Process

    Directory of Open Access Journals (Sweden)

    Nicolae Morariu

    2008-01-01

    Full Text Available This paper aims to describe the implementa-tion of a neural network and a genetic algorithm system in order to forecast certain economic indicators of a free market economy. In a free market economy forecasting process precedes the economic planning (a management function, providing important information for the result of the last process. Forecasting represents a starting point in setting of target for a firm, an organization or even a branch of the economy. Thus, the forecasting method used can influence in a significant mode the evolution of an entity. In the following we will describe the forecasting of an economic indicator using two intelligent systems. The difference between the results obtained by this two systems are described in chapter IV.

  8. How Accurate are Government Forecast of Economic Fundamentals?

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); Ph.H.B.F. Franses (Philip Hans); M.J. McAleer (Michael)

    2009-01-01

    textabstractA government’s ability to forecast key economic fundamentals accurately can affect business confidence, consumer sentiment, and foreign direct investment, among others. A government forecast based on an econometric model is replicable, whereas one that is not fully based on an

  9. Of Needles and Haystacks: Novel Techniques for Data-Rich Economic Forecasting Data-Rich Economic Forecasting

    NARCIS (Netherlands)

    P. Exterkate (Peter)

    2011-01-01

    textabstractThis thesis discusses various novel techniques for economic forecasting. The focus is on methods that exploit the information in large data sets effectively. Each of these methods is compared to established techniques for forecasting yields on U.S. Treasury Bills, housing prices,

  10. ECONOMIC FORECASTS BASED ON ECONOMETRIC MODELS USING EViews 5

    Directory of Open Access Journals (Sweden)

    Cornelia TomescuDumitrescu,

    2009-05-01

    Full Text Available The forecast of evolution of economic phenomena represent on the most the final objective of econometrics. It withal represent a real attempt of validity elaborate model. Unlike the forecasts based on the study of temporal series which have an recognizable inertial character the forecasts generated by econometric model with simultaneous equations are after to contour the future of ones of important economic variables toward the direct and indirect influences bring the bear on their about exogenous variables. For the relief of the calculus who the realization of the forecasts based on the econometric models its suppose is indicate the use of the specialized informatics programs. One of this is the EViews which is applied because it reduces significant the time who is destined of the econometric analysis and it assure a high accuracy of calculus and of the interpretation of results.

  11. Forecasting economic aspects of future wireless services

    DEFF Research Database (Denmark)

    Falch, Morten; Henten, Anders; Saugstrup, Dan

    services be shaped like the Internet today with a large number of independent information providers offering their services directly to the customers? This deliverable will analyse economic models for delivery of ‘3G and beyond’ wireless Internet services, and assess the types of services that will drive...... the market and the business models to be applied. The analysis will take current market trends as point of departure with focus on vanguard markets with respect to 3G services....

  12. AN ECONOMIC FORECAST AND POLICY PROSPECTS

    OpenAIRE

    Brinner, Roger E.

    1992-01-01

    The economy is stagnating today because everyone is waiting for someone else to restart the recovery. Consumers are deferring major purchases until job prospects are rosier. Businesses are pushing down their inventories and payrolls until their order books surge. In essence the economic fundamentals are sound, but at this point, we need a new catalyst for recovery. It is time to implement policies that directly stimulate investment including a self-financing equipment tax credit for productiv...

  13. Forecasting models for national economic planning

    CERN Document Server

    Heesterman, A R G

    1972-01-01

    This book is about the specification of linear econometric models, and for this reason some important related fields have been deliberately omitted. I did not want to discuss the problems of parameter-estimation, at least not in any detail, as there are other books on these problems written by specialized statisticians. This book is about the models them­ selves and macro-economic models in particular. A second related sub­ ject is the policy decision that can be made with the help of a model. While I did write a chapter on policy decisions, I limited myself to some extent because of my views on planning as such. The logical approach to this problem is in terms of mathematical programming, but our models and our ideas about the policies we want are too crude for its effective utilisation. A realistic formulation of the problem should involve non­ linearities in an essential way, the models I consider (and most existing models) are linear. At the present state of econometrics, I do not really believe in suc...

  14. USING GEM - GLOBAL ECONOMIC MODEL IN ACHIEVING A GLOBAL ECONOMIC FORECAST

    Directory of Open Access Journals (Sweden)

    Camelia Madalina Orac

    2013-12-01

    Full Text Available The global economic development model has proved to be insufficiently reliable under the new economic crisis. As a result, the entire theoretical construction about the global economy needs rethinking and reorientation. In this context, it is quite clear that only through effective use of specific techniques and tools of economic-mathematical modeling, statistics, regional analysis and economic forecasting it is possible to obtain an overview of the future economy.

  15. Modeling and Forecasting Mortality With Economic Growth: A Multipopulation Approach.

    Science.gov (United States)

    Boonen, Tim J; Li, Hong

    2017-10-01

    Research on mortality modeling of multiple populations focuses mainly on extrapolating past mortality trends and summarizing these trends by one or more common latent factors. This article proposes a multipopulation stochastic mortality model that uses the explanatory power of economic growth. In particular, we extend the Li and Lee model (Li and Lee 2005) by including economic growth, represented by the real gross domestic product (GDP) per capita, to capture the common mortality trend for a group of populations with similar socioeconomic conditions. We find that our proposed model provides a better in-sample fit and an out-of-sample forecast performance. Moreover, it generates lower (higher) forecasted period life expectancy for countries with high (low) GDP per capita than the Li and Lee model.

  16. Ups and downs of economics and econophysics — Facebook forecast

    Science.gov (United States)

    Gajic, Nenad; Budinski-Petkovic, Ljuba

    2013-01-01

    What is econophysics and its relationship with economics? What is the state of economics after the global economic crisis, and is there a future for the paradigm of market equilibrium, with imaginary perfect competition and rational agents? Can the next paradigm of economics adopt important assumptions derived from econophysics models: that markets are chaotic systems, striving to extremes as bubbles and crashes show, with psychologically motivated, statistically predictable individual behaviors? Is the future of econophysics, as predicted here, to disappear and become a part of economics? A good test of the current state of econophysics and its methods is the valuation of Facebook immediately after the initial public offering - this forecast indicates that Facebook is highly overvalued, and its IPO valuation of 104 billion dollars is mostly the new financial bubble based on the expectations of unlimited growth, although it’s easy to prove that Facebook is close to the upper limit of its users.

  17. As good as it gets : Alberta economic profile and forecast

    International Nuclear Information System (INIS)

    Hirsch, T.

    2006-04-01

    This economic profile and forecast report for the province of Alberta revealed that nearly every sector of the economy is operating at full, or near full capacity. Alberta's strong economy is a result of high energy prices, rapid population growth and rising employment. Increased provincial government spending along with tax reductions for businesses also contribute to a strong economy. However, the the province still faces some economic challenges, including a general labour shortage. Forestry and agriculture are under pressure of low commodity prices and high input costs, and the province has not articulated a long-term strategy for managing non-renewable natural resource revenue. In addition, the provincial economy is highly dependent upon volatile energy prices. Despite these challenges, the report states that the momentum is on the side of continued economic growth in Alberta. The Canada West Foundation is forecasting real growth in the gross domestic product of 5.2 per cent for 2006 and 4.7 per cent for 2007. The strong energy sector is largely responsible for much of Alberta's economic growth. An estimated 20,000 wells will be drilled in the province in 2006, and high oil prices will lead to record drilling and oil sands investment. This report also highlighted the economic activity in other sectors, including manufacturing, tourism, international exports, hi-tech, forestry, agriculture, and construction. Information regarding interprovincial migration and population growth was included along with public finances. 16 figs

  18. Information Trading by Corporate Insiders Based on Accounting Accruals - Forecasting Economic Performance

    NARCIS (Netherlands)

    Hodgson, A.; van Praag, B.

    2006-01-01

    In this paper, we test whether directors’ (corporate insiders) trading in Australia, based on accounting accruals, provides incremental information in forecasting a firm's economic performance. We determine that directors’ trading on negative accruals in larger firms has greater forecasting content

  19. Economic evaluation of short-term wind power forecast in ERCOT. Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Orwig, Kirsten D.; Hodge, Bri-Mathias; Brinkman, Greg; Ela, Erik; Milligan, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Banunarayanan, Venkat; Nasir, Saleh [ICF International, Fairfax, VA (United States); Freedman, Jeff [AWS Truepower, Albany, NY (United States)

    2012-07-01

    A number of wind energy integration studies have investigated the monetary value of using day-ahead wind power forecasts for grid operation decisions. Historically, these studies have shown that large cost savings could be gained by grid operators implementing the forecasts in their system operations. To date, none of these studies have investigated the value of shorter term (0- to 6-h ahead) wind power forecasts. In 2010, the Department of Energy and the National Oceanic and Atmospheric Administration partnered to form the Wind Forecasting Improvement Project (WFIP) to fund improvements in short-term wind forecasts and determine the economic value of these improvements to grid operators. In this work, we discuss the preliminary results of the economic benefit analysis portion of the WFIP for the Electric Reliability Council of Texas. The improvements seen in the wind forecasts are examined and the economic results of a production cost model simulation are analyzed. (orig.)

  20. An economic framework for forecasting land-use and ecosystem change

    International Nuclear Information System (INIS)

    Lewis, David J.

    2010-01-01

    This paper develops a joint econometric-simulation framework to forecast detailed empirical distributions of the spatial pattern of land-use and ecosystem change. In-sample and out-of-sample forecasting tests are used to examine the performance of the parcel-scale econometric and simulation models, and the importance of multiple forecasting challenges is assessed. The econometric-simulation method is integrated with an ecological model to generate forecasts of the probability of localized extinctions of an amphibian species. The paper demonstrates the potential of integrating economic and ecological models to generate ecological forecasts in the presence of alternative market conditions and land-use policy constraints. (author)

  1. The use of economic forecasts in Danish economic policy, with special emphasis on energy and the environment

    International Nuclear Information System (INIS)

    Nielsen, Lise

    1998-01-01

    This article discusses the use of economic forecasts in Danish economic policy, with special emphasis on energy and the environment. Two different approaches have been used to forecast energy consumption and its effects on environment in Denmark and other countries. These are the macro economic and the technical approaches. The technical approach is based on technical expertise related to energy production and energy consumption, and the article asks whether the forecasts produced by this approach are superior to macro economic forecasts of energy consumption. This question is interesting because the implications for policy resulting from the two approaches seem to be different. The analysis may have relevance to other areas outside the main economic field. (au) 22 refs

  2. Vintage errors: do real-time economic data improve election forecasts?

    Directory of Open Access Journals (Sweden)

    Mark Andreas Kayser

    2015-07-01

    Full Text Available Economic performance is a key component of most election forecasts. When fitting models, however, most forecasters unwittingly assume that the actual state of the economy, a state best estimated by the multiple periodic revisions to official macroeconomic statistics, drives voter behavior. The difference in macroeconomic estimates between revised and original data vintages can be substantial, commonly over 100% (two-fold for economic growth estimates, making the choice of which data release to use important for the predictive validity of a model. We systematically compare the predictions of four forecasting models for numerous US presidential elections using real-time and vintage data. We find that newer data are not better data for election forecasting: forecasting error increases with data revisions. This result suggests that voter perceptions of economic growth are influenced more by media reports about the economy, which are based on initial economic estimates, than by the actual state of the economy.

  3. Forecast-based Interventions Can Reduce the Health and Economic Burden of Wildfires

    Science.gov (United States)

    We simulated public health forecast-based interventions during a wildfire smoke episode in rural North Carolina to show the potential for use of modeled smoke forecasts toward reducing the health burden and showed a significant economic benefit of reducing exposures. Daily and co...

  4. Forecast Accuracy and Economic Gains from Bayesian Model Averaging using Time Varying Weights

    NARCIS (Netherlands)

    L.F. Hoogerheide (Lennart); R.H. Kleijn (Richard); H.K. van Dijk (Herman); M.J.C.M. Verbeek (Marno)

    2009-01-01

    textabstractSeveral Bayesian model combination schemes, including some novel approaches that simultaneously allow for parameter uncertainty, model uncertainty and robust time varying model weights, are compared in terms of forecast accuracy and economic gains using financial and macroeconomic time

  5. Hydro-economic assessment of hydrological forecasting systems

    Science.gov (United States)

    Boucher, M.-A.; Tremblay, D.; Delorme, L.; Perreault, L.; Anctil, F.

    2012-01-01

    SummaryAn increasing number of publications show that ensemble hydrological forecasts exhibit good performance when compared to observed streamflow. Many studies also conclude that ensemble forecasts lead to a better performance than deterministic ones. This investigation takes one step further by not only comparing ensemble and deterministic forecasts to observed values, but by employing the forecasts in a stochastic decision-making assistance tool for hydroelectricity production, during a flood event on the Gatineau River in Canada. This allows the comparison between different types of forecasts according to their value in terms of energy, spillage and storage in a reservoir. The motivation for this is to adopt the point of view of an end-user, here a hydroelectricity production society. We show that ensemble forecasts exhibit excellent performances when compared to observations and are also satisfying when involved in operation management for electricity production. Further improvement in terms of productivity can be reached through the use of a simple post-processing method.

  6. The economic value of accurate wind power forecasting to utilities

    Energy Technology Data Exchange (ETDEWEB)

    Watson, S J [Rutherford Appleton Lab., Oxfordshire (United Kingdom); Giebel, G; Joensen, A [Risoe National Lab., Dept. of Wind Energy and Atmospheric Physics, Roskilde (Denmark)

    1999-03-01

    With increasing penetrations of wind power, the need for accurate forecasting is becoming ever more important. Wind power is by its very nature intermittent. For utility schedulers this presents its own problems particularly when the penetration of wind power capacity in a grid reaches a significant level (>20%). However, using accurate forecasts of wind power at wind farm sites, schedulers are able to plan the operation of conventional power capacity to accommodate the fluctuating demands of consumers and wind farm output. The results of a study to assess the value of forecasting at several potential wind farm sites in the UK and in the US state of Iowa using the Reading University/Rutherford Appleton Laboratory National Grid Model (NGM) are presented. The results are assessed for different types of wind power forecasting, namely: persistence, optimised numerical weather prediction or perfect forecasting. In particular, it will shown how the NGM has been used to assess the value of numerical weather prediction forecasts from the Danish Meteorological Institute model, HIRLAM, and the US Nested Grid Model, which have been `site tailored` by the use of the linearized flow model WA{sup s}P and by various Model output Statistics (MOS) and autoregressive techniques. (au)

  7. Forecasting performance of three automated modelling techniques during the economic crisis 2007-2009

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    In this work we consider forecasting macroeconomic variables during an economic crisis. The focus is on a speci…c class of models, the so-called single hidden-layer feedforward autoregressive neural network models. What makes these models interesting in the present context is that they form a cla...... during the economic crisis 2007–2009. Forecast accuracy is measured by the root mean square forecast error. Hypothesis testing is also used to compare the performance of the different techniques with each other....

  8. Essays on forecasting stationary and nonstationary economic time series

    Science.gov (United States)

    Bachmeier, Lance Joseph

    This dissertation consists of three essays. Chapter II considers the question of whether M2 growth can be used to forecast inflation at horizons of up to ten years. A vector error correction (VEC) model serves as our benchmark model. We find that M2 growth does have marginal predictive content for inflation at horizons of more than two years, but only when allowing for cointegration and when the cointegrating rank and vector are specified a priori. When estimating the cointegration vector or failing to impose cointegration, there is no longer evidence of causality running from M2 growth to inflation at any forecast horizon. Finally, we present evidence that M2 needs to be redefined, as forecasts of the VEC model using data on M2 observed after 1993 are worse than the forecasts of an autoregressive model of inflation. Chapter III reconsiders the evidence for a "rockets and feathers" effect in gasoline markets. We estimate an error correction model of gasoline prices using daily data for the period 1985--1998 and fail to find any evidence of asymmetry. We show that previous work suffered from two problems. First, nonstationarity in some of the regressors was ignored, leading to invalid inference. Second, the weekly data used in previous work leads to a temporal aggregation problem, and thus biased estimates of impulse response functions. Chapter IV tests for a forecasting relationship between the volume of litigation and macroeconomic variables. We analyze annual data for the period 1960--2000 on the number of cases filed, real GDP, real consumption expenditures, inflation, unemployment, and interest rates. Bivariate Granger causality tests show that several of the macroeconomic variables can be used to forecast the volume of litigation, but show no evidence that the volume of litigation can be used to forecast any of the macroeconomic variables. The analysis is then extended to bivariate and multivariate regression models, and we find similar evidence to that of the

  9. Economic assessment of flood forecasts for a risk-averse decision-maker

    Science.gov (United States)

    Matte, Simon; Boucher, Marie-Amélie; Boucher, Vincent; Fortier-Filion, Thomas-Charles

    2017-04-01

    A large effort has been made over the past 10 years to promote the operational use of probabilistic or ensemble streamflow forecasts. It has also been suggested in past studies that ensemble forecasts might possess a greater economic value than deterministic forecasts. However, the vast majority of recent hydro-economic literature is based on the cost-loss ratio framework, which might be appealing for its simplicity and intuitiveness. One important drawback of the cost-loss ratio is that it implicitly assumes a risk-neutral decision maker. By definition, a risk-neutral individual is indifferent to forecasts' sharpness: as long as forecasts agree with observations on average, the risk-neutral individual is satisfied. A risk-averse individual, however, is sensitive to the level of precision (sharpness) of forecasts. This person is willing to pay to increase his or her certainty about future events. In fact, this is how insurance companies operate: the probability of seeing one's house burn down is relatively low, so the expected cost related to such event is also low. However, people are willing to buy insurance to avoid the risk, however small, of loosing everything. Similarly, in a context where people's safety and property is at stake, the typical decision maker is more risk-averse than risk-neutral. Consequently, the cost-loss ratio is not the most appropriate tool to assess the economic value of flood forecasts. This presentation describes a more realistic framework for assessing the economic value of such forecasts for flood mitigation purposes. Borrowing from economics, the Constant Absolute Risk Aversion utility function (CARA) is the central tool of this new framework. Utility functions allow explicitly accounting for the level of risk aversion of the decision maker and fully exploiting the information related to ensemble forecasts' uncertainty. Three concurrent ensemble streamflow forecasting systems are compared in terms of quality (comparison with

  10. Moving beyond the cost-loss ratio: economic assessment of streamflow forecasts for a risk-averse decision maker

    Science.gov (United States)

    Matte, Simon; Boucher, Marie-Amélie; Boucher, Vincent; Fortier Filion, Thomas-Charles

    2017-06-01

    A large effort has been made over the past 10 years to promote the operational use of probabilistic or ensemble streamflow forecasts. Numerous studies have shown that ensemble forecasts are of higher quality than deterministic ones. Many studies also conclude that decisions based on ensemble rather than deterministic forecasts lead to better decisions in the context of flood mitigation. Hence, it is believed that ensemble forecasts possess a greater economic and social value for both decision makers and the general population. However, the vast majority of, if not all, existing hydro-economic studies rely on a cost-loss ratio framework that assumes a risk-neutral decision maker. To overcome this important flaw, this study borrows from economics and evaluates the economic value of early warning flood systems using the well-known Constant Absolute Risk Aversion (CARA) utility function, which explicitly accounts for the level of risk aversion of the decision maker. This new framework allows for the full exploitation of the information related to a forecasts' uncertainty, making it especially suited for the economic assessment of ensemble or probabilistic forecasts. Rather than comparing deterministic and ensemble forecasts, this study focuses on comparing different types of ensemble forecasts. There are multiple ways of assessing and representing forecast uncertainty. Consequently, there exist many different means of building an ensemble forecasting system for future streamflow. One such possibility is to dress deterministic forecasts using the statistics of past error forecasts. Such dressing methods are popular among operational agencies because of their simplicity and intuitiveness. Another approach is the use of ensemble meteorological forecasts for precipitation and temperature, which are then provided as inputs to one or many hydrological model(s). In this study, three concurrent ensemble streamflow forecasting systems are compared: simple statistically dressed

  11. Appraisal of artificial neural network for forecasting of economic parameters

    Science.gov (United States)

    Kordanuli, Bojana; Barjaktarović, Lidija; Jeremić, Ljiljana; Alizamir, Meysam

    2017-01-01

    The main aim of this research is to develop and apply artificial neural network (ANN) with extreme learning machine (ELM) and back propagation (BP) to forecast gross domestic product (GDP) and Hirschman-Herfindahl Index (HHI). GDP could be developed based on combination of different factors. In this investigation GDP forecasting based on the agriculture and industry added value in gross domestic product (GDP) was analysed separately. Other inputs are final consumption expenditure of general government, gross fixed capital formation (investments) and fertility rate. The relation between product market competition and corporate investment is contentious. On one hand, the relation can be positive, but on the other hand, the relation can be negative. Several methods have been proposed to monitor market power for the purpose of developing procedures to mitigate or eliminate the effects. The most widely used methods are based on indices such as the Hirschman-Herfindahl Index (HHI). The reliability of the ANN models were accessed based on simulation results and using several statistical indicators. Based upon simulation results, it was presented that ELM shows better performances than BP learning algorithm in applications of GDP and HHI forecasting.

  12. Lifetime and economic analyses of lithium-ion batteries for balancing wind power forecast error

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stroe, Ana-Irina

    2015-01-01

    is considered. In this paper, the economic feasibility of lithium-ion batteries for balancing the wind power forecast error is analysed. In order to perform a reliable assessment, an ageing model of lithium-ion battery was developed considering both cycling and calendar life. The economic analysis considers two......, it was found that for total elimination of the wind power forecast error, it is required to have a 25-MWh Li-ion battery energy storage system for the considered 2 MW WT....

  13. The economic benefit of short-term forecasting for wind energy in the UK electricity market

    International Nuclear Information System (INIS)

    Barthelmie, R.J.; Murray, F.; Pryor, S.C.

    2008-01-01

    In the UK market, the total price of renewable electricity is made up of the Renewables Obligation Certificate and the price achieved for the electricity. Accurate forecasting improves the price if electricity is traded via the power exchange. In order to understand the size of wind farm for which short-term forecasting becomes economically viable, we develop a model for wind energy. Simulations were carried out for 2003 electricity prices for different forecast accuracies and strategies. The results indicate that it is possible to increase the price obtained by around pound 5/MWh which is about 14% of the electricity price in 2003 and about 6% of the total price. We show that the economic benefit of using short-term forecasting is also dependant on the accuracy and cost of purchasing the forecast. As the amount of wind energy requiring integration into the grid increases, short-term forecasting becomes more important to both wind farm owners and the transmission/distribution operators. (author)

  14. Entropy Econometrics for combining regional economic forecasts: A Data-Weighted Prior Estimator

    Science.gov (United States)

    Fernández-Vázquez, Esteban; Moreno, Blanca

    2017-10-01

    Forecast combination has been studied in econometrics for a long time, and the literature has shown the superior performance of forecast combination over individual predictions. However, there is still controversy on which is the best procedure to specify the forecast weights. This paper explores the possibility of using a procedure based on Entropy Econometrics, which allows setting the weights for the individual forecasts as a mixture of different alternatives. In particular, we examine the ability of the Data-Weighted Prior Estimator proposed by Golan (J Econom 101(1):165-193, 2001) to combine forecasting models in a context of small sample sizes, a relative common scenario when dealing with time series for regional economies. We test the validity of the proposed approach using a simulation exercise and a real-world example that aims at predicting gross regional product growth rates for a regional economy. The forecasting performance of the Data-Weighted Prior Estimator proposed is compared with other combining methods. The simulation results indicate that in scenarios of heavily ill-conditioned datasets the approach suggested dominates other forecast combination strategies. The empirical results are consistent with the conclusions found in the numerical experiment.

  15. Neural networks and traditional time series methods: a synergistic combination in state economic forecasts.

    Science.gov (United States)

    Hansen, J V; Nelson, R D

    1997-01-01

    Ever since the initial planning for the 1997 Utah legislative session, neural-network forecasting techniques have provided valuable insights for analysts forecasting tax revenues. These revenue estimates are critically important since agency budgets, support for education, and improvements to infrastructure all depend on their accuracy. Underforecasting generates windfalls that concern taxpayers, whereas overforecasting produces budget shortfalls that cause inadequately funded commitments. The pattern finding ability of neural networks gives insightful and alternative views of the seasonal and cyclical components commonly found in economic time series data. Two applications of neural networks to revenue forecasting clearly demonstrate how these models complement traditional time series techniques. In the first, preoccupation with a potential downturn in the economy distracts analysis based on traditional time series methods so that it overlooks an emerging new phenomenon in the data. In this case, neural networks identify the new pattern that then allows modification of the time series models and finally gives more accurate forecasts. In the second application, data structure found by traditional statistical tools allows analysts to provide neural networks with important information that the networks then use to create more accurate models. In summary, for the Utah revenue outlook, the insights that result from a portfolio of forecasts that includes neural networks exceeds the understanding generated from strictly statistical forecasting techniques. In this case, the synergy clearly results in the whole of the portfolio of forecasts being more accurate than the sum of the individual parts.

  16. Medium-term electric power demand forecasting based on economic-electricity transmission model

    Science.gov (United States)

    Li, Wenfeng; Bao, Fangmin; Bai, Hongkun; Liu, Wei; Liu, Yongmin; Mao, Yubin; Wang, Jiangbo; Liu, Junhui

    2018-06-01

    Electric demand forecasting is a basic work to ensure the safe operation of power system. Based on the theories of experimental economics and econometrics, this paper introduces Prognoz Platform 7.2 intelligent adaptive modeling platform, and constructs the economic electricity transmission model that considers the economic development scenarios and the dynamic adjustment of industrial structure to predict the region's annual electricity demand, and the accurate prediction of the whole society's electricity consumption is realized. Firstly, based on the theories of experimental economics and econometrics, this dissertation attempts to find the economic indicator variables that drive the most economical growth of electricity consumption and availability, and build an annual regional macroeconomic forecast model that takes into account the dynamic adjustment of industrial structure. Secondly, it innovatively put forward the economic electricity directed conduction theory and constructed the economic power transfer function to realize the group forecast of the primary industry + rural residents living electricity consumption, urban residents living electricity, the second industry electricity consumption, the tertiary industry electricity consumption; By comparing with the actual value of economy and electricity in Henan province in 2016, the validity of EETM model is proved, and the electricity consumption of the whole province from 2017 to 2018 is predicted finally.

  17. Long-Range Socio-Economic Forecasting of World Development in the Works by IMEMO RAS

    Directory of Open Access Journals (Sweden)

    Suslov D. V.

    2011-12-01

    Full Text Available A brief overview is given of papers by the Institute of World Economy and International Relations, Russian Academy of Sciences (IMEMO RAS on long-term socio-economic forecasting of global development. The forecasting methodology is shown, its capabilities and limitations, as well as the structure, main results and characteristics of the forecasts made by IMEMO RAS since early 2000s. The «Strategic Global Outlook for 2030» has acquired features of an interdisciplinary research, and has been developed based on a system analysis of objective socio-economic indicators, long-term global and regional socio-demographic trends, and expert assessment of the future dynamics of the political situation in individual countries and in intergovernmental relations. This methodology allowed the focus to be placed primarily on the stable trends of development in the world economy and the system of international relations, their actors, structures and institutions

  18. Electrical load forecastes and correlations with economic growth

    International Nuclear Information System (INIS)

    Buter, J.

    1975-01-01

    Normally, an increase in productivity, which is commonly considered necessary for maintaining the economic position of an economic area, will result in increased demands for energy. This additional requirement must be taken into account, and this is what the capacities of power-generating facilities have to be adapted to. Thus, capital expenditures are necessary the extent of which will depend upon future development. At this point, prognostication is to help avoid misemployment of funds. Such energy prognostication is definitely needed for a period of time corresponding to the construction period for power-generating installations, hence for some five to ten years. (orig.) [de

  19. Modeling and forecasting mortality with economic growth : a multipopulation approach

    NARCIS (Netherlands)

    Boonen, T.J.; Li, H.

    2017-01-01

    Research on mortality modeling of multiple populations focuses mainly on extrapolating past mortality trends and summarizing these trends by one or more common latent factors. This article proposes a multipopulation stochastic mortality model that uses the explanatory power of economic growth. In

  20. Enhancements to the Economic Impact Forecast System (EIFS).

    Science.gov (United States)

    1984-04-01

    IU U .. A ILC.. Meww 4 """ Economia c. .- brmodc ’ The economic submodel is appropriately classified as an export base model that jointly determines...9 yes 3 Washington - 1963 State of Washington 27 no 4 Utah - 1963 State of Utah 39 yes 5 New Mexico - 1960 State of New Mexico 42 yes 6 Kansas - 1965... Mexico .311 .627 -.017 .360 .635 (13.266) (1.381) (8.507) Kansas .556 427 -.022 .616 .433 (11.270) (.854) (7156) Clinton .229 .681 -.005 .247 .677

  1. The Possibility Using the Power Production Function of Complex Variable for Economic Forecasting

    Directory of Open Access Journals (Sweden)

    Sergey Gennadyevich Svetunkov

    2016-09-01

    Full Text Available The possibility of dynamic analysis and forecasting production results using the power production functions of complex variables with real coefficients is considered. This model expands the arsenal of instrumental methods and allows multivariate production forecasts which are unattainable by other methods of real variables as the functions of complex variables simulate the production differently in comparison with the models of real variables. The values of coefficients of the power production functions of complex variables can be calculated for each statistical observation. This allows to consider the change of the coefficients over time, to analyze this trend and predict the values of the coefficients for a given term, thereby to predict the form of the production function, which forecasts the operating results. Thus, the model of the production function with variable coefficients is introduced into the scientific circulation. With this model, the inverse problem of forecasting might be solved, such as the determination of the necessary quantities of labor and capital to achieve the desired operational results. The study is based on the principles of the modern methodology of complex-valued economy, one of its sections is the complex-valued patterns of production functions. In the article, the possibility of economic forecasting is tested on the example of the UK economy. The results of this prediction are compared with the forecasts obtained by other methods, which have led to the conclusion about the effectiveness of the proposed approach and the method of forecasting at the macro levels of production systems. A complex-valued power model of the production function is recommended for the multivariate prediction of sustainable production systems — the global economy, the economies of individual countries, major industries and regions.

  2. An empirical investigation on different methods of economic growth rate forecast and its behavior from fifteen countries across five continents

    Science.gov (United States)

    Yin, Yip Chee; Hock-Eam, Lim

    2012-09-01

    Our empirical results show that we can predict GDP growth rate more accurately in continent with fewer large economies, compared to smaller economies like Malaysia. This difficulty is very likely positively correlated with subsidy or social security policies. The stage of economic development and level of competiveness also appears to have interactive effects on this forecast stability. These results are generally independent of the forecasting procedures. Countries with high stability in their economic growth, forecasting by model selection is better than model averaging. Overall forecast weight averaging (FWA) is a better forecasting procedure in most countries. FWA also outperforms simple model averaging (SMA) and has the same forecasting ability as Bayesian model averaging (BMA) in almost all countries.

  3. A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate

    Directory of Open Access Journals (Sweden)

    Laila A. Puntel

    2018-04-01

    Full Text Available Historically crop models have been used to evaluate crop yield responses to nitrogen (N rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1 evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages; (2 determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3 quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time (R2 = 0.77 using 35-years of historical weather was close to the observed and predicted yield at maturity (R2 = 0.81. Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively. At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR in 62% of the cases examined (n = 31 with an average error range of ±38 kg N ha−1 (22% of the average N rate. Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather

  4. A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate

    Science.gov (United States)

    Puntel, Laila A.; Sawyer, John E.; Barker, Daniel W.; Thorburn, Peter J.; Castellano, Michael J.; Moore, Kenneth J.; VanLoocke, Andrew; Heaton, Emily A.; Archontoulis, Sotirios V.

    2018-01-01

    Historically crop models have been used to evaluate crop yield responses to nitrogen (N) rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM) calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation) combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1) evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR) predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages); (2) determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3) quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time (R2 = 0.77) using 35-years of historical weather was close to the observed and predicted yield at maturity (R2 = 0.81). Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively). At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR) in 62% of the cases examined (n = 31) with an average error range of ±38 kg N ha−1 (22% of the average N rate). Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather years

  5. A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate.

    Science.gov (United States)

    Puntel, Laila A; Sawyer, John E; Barker, Daniel W; Thorburn, Peter J; Castellano, Michael J; Moore, Kenneth J; VanLoocke, Andrew; Heaton, Emily A; Archontoulis, Sotirios V

    2018-01-01

    Historically crop models have been used to evaluate crop yield responses to nitrogen (N) rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM) calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation) combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1) evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR) predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages); (2) determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3) quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time ( R 2 = 0.77) using 35-years of historical weather was close to the observed and predicted yield at maturity ( R 2 = 0.81). Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively). At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR) in 62% of the cases examined ( n = 31) with an average error range of ±38 kg N ha -1 (22% of the average N rate). Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather

  6. Developing integrated performance assessment and forecasting the level of financial and economic enterprise stability

    Directory of Open Access Journals (Sweden)

    Khudyakova T.A.

    2017-01-01

    Full Text Available The article deals with the problem of assessing and forecasting the level of financial and economic enterprise stability through the integrated indicators development. Currently, many enterprises operate under variable external environment, which imposes a strict requirement to consider this uncertainty. For the evaluation, analysis and prediction of the sustainability of the enterprise in the conditions of crisis we believe it possible and necessary to use the apparatus of probability theory and mathematical statistics. This problem solution will improve quantitative assessing the financial and economic stability level, forecasting possible scenarios of the enterprise development and, therefore, based on the proactive management principles and adaptation processes will greatly increase their effective functioning, as well as reduce bankruptcy probability.

  7. Forecasting performances of three automated modelling techniques during the economic crisis 2007-2009

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    2014-01-01

    . The performances of these three model selectors are compared by looking at the accuracy of the forecasts of the estimated neural network models. We apply the neural network model and the three modelling techniques to monthly industrial production and unemployment series from the G7 countries and the four......In this work we consider the forecasting of macroeconomic variables during an economic crisis. The focus is on a specific class of models, the so-called single hidden-layer feed-forward autoregressive neural network models. What makes these models interesting in the present context is the fact...... that they form a class of universal approximators and may be expected to work well during exceptional periods such as major economic crises. Neural network models are often difficult to estimate, and we follow the idea of White (2006) of transforming the specification and nonlinear estimation problem...

  8. Shadow Economy in the Context of Economic Crisis: Circumstance Analysis and the Forecasting of Consequences

    Directory of Open Access Journals (Sweden)

    Alexey Sergeyevich Naidenov

    2013-03-01

    Full Text Available The article is devoted to the problem of estimating dynamic of shadow economy in the context of socio-economic crisis negative influence. Factors and threats supporting the increase of shadow economy during the economic crisis were studied. Current situation in the Ural Federal District with regard to shadow economic activity for the period from 2006 to 2012 was represented. The results of forecasting shadow activity were given in the article on the example of Ural Federal District regions. Data obtained was used for developing target program activities, aimed at minimization of negative influence of shadow economy during the economic crisis. Special attention was given to the problem of improving the effectiveness of international cooperation concerning counteraction of shadow economic activity

  9. Forecasting economy with Bayesian autoregressive distributed lag model: choosing optimal prior in economic downturn

    OpenAIRE

    Bušs, Ginters

    2009-01-01

    Bayesian inference requires an analyst to set priors. Setting the right prior is crucial for precise forecasts. This paper analyzes how optimal prior changes when an economy is hit by a recession. For this task, an autoregressive distributed lag (ADL) model is chosen. The results show that a sharp economic slowdown changes the optimal prior in two directions. First, it changes the structure of the optimal weight prior, setting smaller weight on the lagged dependent variable compared to varia...

  10. Production forecasting and economic evaluation of horizontal wells completed in natural fractured reservoirs

    International Nuclear Information System (INIS)

    Evans, R. D.

    1996-01-01

    A technique for optimizing recovery of hydrocarbons from naturally fractured reservoirs using horizontal well technology was proposed. The technique combines inflow performance analysis, production forecasting and economic considerations, and is based on material balance analysis and linear approximations of reservoir fluid properties as functions of reservoir pressure. An economic evaluation model accounting for the time value of cash flow, interest and inflation rates, is part of the package. Examples of using the technique have been demonstrated. The method is also applied to a gas well producing from a horizontal wellbore intersecting discrete natural fractures. 11 refs., 2 tabs,. 10 figs

  11. Is the economic value of hydrological forecasts related to their quality? Case study of the hydropower sector.

    Science.gov (United States)

    Cassagnole, Manon; Ramos, Maria-Helena; Thirel, Guillaume; Gailhard, Joël; Garçon, Rémy

    2017-04-01

    The improvement of a forecasting system and the evaluation of the quality of its forecasts are recurrent steps in operational practice. However, the evaluation of forecast value or forecast usefulness for better decision-making is, to our knowledge, less frequent, even if it might be essential in many sectors such as hydropower and flood warning. In the hydropower sector, forecast value can be quantified by the economic gain obtained with the optimization of operations or reservoir management rules. Several hydropower operational systems use medium-range forecasts (up to 7-10 days ahead) and energy price predictions to optimize hydropower production. Hence, the operation of hydropower systems, including the management of water in reservoirs, is impacted by weather, climate and hydrologic variability as well as extreme events. In order to assess how the quality of hydrometeorological forecasts impact operations, it is essential to first understand if and how operations and management rules are sensitive to input predictions of different quality. This study investigates how 7-day ahead deterministic and ensemble streamflow forecasts of different quality might impact the economic gains of energy production. It is based on a research model developed by Irstea and EDF to investigate issues relevant to the links between quality and value of forecasts in the optimisation of energy production at the short range. Based on streamflow forecasts and pre-defined management constraints, the model defines the best hours (i.e., the hours with high energy prices) to produce electricity. To highlight the link between forecasts quality and their economic value, we built several synthetic ensemble forecasts based on observed streamflow time series. These inputs are generated in a controlled environment in order to obtain forecasts of different quality in terms of accuracy and reliability. These forecasts are used to assess the sensitivity of the decision model to forecast quality

  12. Short-term electric power demand forecasting based on economic-electricity transmission model

    Science.gov (United States)

    Li, Wenfeng; Bai, Hongkun; Liu, Wei; Liu, Yongmin; Wang, Yubin Mao; Wang, Jiangbo; He, Dandan

    2018-04-01

    Short-term electricity demand forecasting is the basic work to ensure safe operation of the power system. In this paper, a practical economic electricity transmission model (EETM) is built. With the intelligent adaptive modeling capabilities of Prognoz Platform 7.2, the econometric model consists of three industrial added value and income levels is firstly built, the electricity demand transmission model is also built. By multiple regression, moving averages and seasonal decomposition, the problem of multiple correlations between variables is effectively overcome in EETM. The validity of EETM is proved by comparison with the actual value of Henan Province. Finally, EETM model is used to forecast the electricity consumption of the 1-4 quarter of 2018.

  13. A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors

    International Nuclear Information System (INIS)

    Liu, Xiuli; Moreno, Blanca; García, Ana Salomé

    2016-01-01

    A combined forecast of Grey forecasting method and neural network back propagation model, which is called Grey Neural Network and Input-Output Combined Forecasting Model (GNF-IO model), is proposed. A real case of energy consumption forecast is used to validate the effectiveness of the proposed model. The GNF-IO model predicts coal, crude oil, natural gas, renewable and nuclear primary energy consumption volumes by Spain's 36 sub-sectors from 2010 to 2015 according to three different GDP growth scenarios (optimistic, baseline and pessimistic). Model test shows that the proposed model has higher simulation and forecasting accuracy on energy consumption than Grey models separately and other combination methods. The forecasts indicate that the primary energies as coal, crude oil and natural gas will represent on average the 83.6% percent of the total of primary energy consumption, raising concerns about security of supply and energy cost and adding risk for some industrial production processes. Thus, Spanish industry must speed up its transition to an energy-efficiency economy, achieving a cost reduction and increase in the level of self-supply. - Highlights: • Forecasting System Using Grey Models combined with Input-Output Models is proposed. • Primary energy consumption in Spain is used to validate the model. • The grey-based combined model has good forecasting performance. • Natural gas will represent the majority of the total of primary energy consumption. • Concerns about security of supply, energy cost and industry competitiveness are raised.

  14. Value versus Accuracy: application of seasonal forecasts to a hydro-economic optimization model for the Sudanese Blue Nile

    Science.gov (United States)

    Satti, S.; Zaitchik, B. F.; Siddiqui, S.; Badr, H. S.; Shukla, S.; Peters-Lidard, C. D.

    2015-12-01

    The unpredictable nature of precipitation within the East African (EA) region makes it one of the most vulnerable, food insecure regions in the world. There is a vital need for forecasts to inform decision makers, both local and regional, and to help formulate the region's climate change adaptation strategies. Here, we present a suite of different seasonal forecast models, both statistical and dynamical, for the EA region. Objective regionalization is performed for EA on the basis of interannual variability in precipitation in both observations and models. This regionalization is applied as the basis for calculating a number of standard skill scores to evaluate each model's forecast accuracy. A dynamically linked Land Surface Model (LSM) is then applied to determine forecasted flows, which drive the Sudanese Hydroeconomic Optimization Model (SHOM). SHOM combines hydrologic, agronomic and economic inputs to determine the optimal decisions that maximize economic benefits along the Sudanese Blue Nile. This modeling sequence is designed to derive the potential added value of information of each forecasting model to agriculture and hydropower management. A rank of each model's forecasting skill score along with its added value of information is analyzed in order compare the performance of each forecast. This research aims to improve understanding of how characteristics of accuracy, lead time, and uncertainty of seasonal forecasts influence their utility to water resources decision makers who utilize them.

  15. Effective development of the entities on the basis of forecasting of financial and economic activities

    Directory of Open Access Journals (Sweden)

    I. I. Shanin

    2017-01-01

    Full Text Available In article, the questions connected with approach on effective development of industrial enterprises on the example of the furniture entities are considered. Effective development of the entities is directed to cost reduction in case of production and implementation of products, for improvement of indicators of financial and economic activities. The research is conducted on the example of the furniture entities of the Voronezh region and Krasnodar Krai. Any entity constantly uses these or those resources connected with material, labor and finance costs. All resources, which are consumed during a certain production cycle, create a cost budget or the expense plan of the entity, which are the most important economic indicators of activities of any entity. Not always at the entities the attention is properly paid to forecasting of production expenses for a further stage of functioning. Most the entities will organize the activities in such a way that current plans pass from year to year, and at the same time the alternative ways directed to cost reduction in case of production and further sales of products aren't considered. Any entity needs forecasting and planning of costs for the following production stages, for the purposes of innovative development and effective functioning of productive activity of the entity. First, it is necessary for assessment of opportunities when financing productive activity and for further scheduling of expenses, directed to cost reduction and cost reallocation. Having analysed activities of the entities and having studied accounting (financial records, it is revealed that at the entities in 2015 in comparison with 2014, there was a decrease in outputs, but at the same time, the loss is observed. Based on the carried-out analysis, on the example of financial and economic activities of JSC GRAFSKOYE and JSC GKMF, conclusions are drawn, cost reduction allowances in case of production are revealed, and recommendations in

  16. Nonparametric Forecasting for Biochar Utilization in Poyang Lake Eco-Economic Zone in China

    Directory of Open Access Journals (Sweden)

    Meng-Shiuh Chang

    2014-01-01

    Full Text Available Agriculture is the least profitable industry in China. However, even with large financial subsidies from the government, farmers’ living standards have had no significant impact so far due to the historical, geographical, climatic factors. The study examines and quantifies the net economic and environmental benefits by utilizing biochar as a soil amendment in eleven counties in the Poyang Lake Eco-Economic Zone. A nonparametric kernel regression model is employed to estimate the relation between the scaled environmental and economic factors, which are determined as regression variables. In addition, the partial linear and single index regression models are used for comparison. In terms of evaluations of mean squared errors, the kernel estimator, exceeding the other estimators, is employed to forecast benefits of using biochar under various scenarios. The results indicate that biochar utilization can potentially increase farmers’ income if rice is planted and the net economic benefits can be achieved up to ¥114,900. The net economic benefits are higher when the pyrolysis plant is built in the south of Poyang Lake Eco-Economic Zone than when it is built in the north as the southern land is relatively barren, and biochar can save more costs on irrigation and fertilizer use.

  17. Coupling Recruitment Forecasts with Economics in the Gulf of Maine's American Lobster Fishery

    Science.gov (United States)

    Wahle, R.; Oppenheim, N.; Brady, D. C.; Dayton, A.; Sun, C. H. J.

    2016-02-01

    Accurate predictions of fishery recruitment and landings represent an important goal of fisheries science and management, but linking environmental drivers of fish population dynamics to financial markets remains a challenge. A fundamental step in that process is understanding the environmental drivers of fishery recruitment. American lobster (Homarus americanus) populations of the northwest Atlantic have been undergoing a dramatic surge, mostly driven by increases the Gulf of Maine. Settler-recruit models that track cohorts after larvae settle to the sea bed are proving useful in predicting subsequent fishery recruitment some 5-7 years later. Here we describe new recruitment forecasting models for the lobster fishery at 11 management areas from Southern New England to Atlantic Canada. We use an annual survey of juvenile year-class strength and environmental indicators to parameterize growth and mortality terms in the model. As a consequence of a recent widespread multi-year downturn in larval settlement, our models suggest that the peak in lobster abundance in the Gulf of Maine will be passed in the near future. We also present initial steps in the coupling of forecast data with economic models for the fishery. We anticipate that these models will give stakeholders and policy makers time to consider their management choices for this most valuable of the region's fisheries. Our vision is to couple our forecast model outputs to an economic model that captures the dynamics of market forces in the New England and Canadian Maritime lobster fisheries. It will then be possible to estimate the financial status of the fishery several years in advance. This early warning system could mitigate the adverse effects of a fluctuating fishery on the coastal communities that are perilously dependent upon it.

  18. Added economic value of limited area multi-EPS weather forecasting applications

    Directory of Open Access Journals (Sweden)

    Alex Deckmyn

    2012-07-01

    Full Text Available We compare the GLAMEPS system, a pan-European limited area ensemble prediction system, with ECMWF's EPS over Belgium for an extended period from March 2010 until the end of December 2010. In agreement with a previous study, we find GLAMEPS scores considerably better than ECMWF's EPS. To compute the economic value, we introduce a new relative economic value score for continuous forecasts. The added value of combining the GLAMEPS system with the LAEF system over Belgium is studied. We conclude that adding LAEF to GLAMEPS increases the value, although the increase is small compared to the improvement of GLAMEPS to ECMWF's EPS. As an added benefit we find that the combined GLAMEPS-LAEF multi-EPS system is more robust, that is, it is less vulnerable to the (accidental removal of one of its components.

  19. MULTIREGION: a simulation-forecasting model of BEA economic area population and employment. [Bureau of Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, R.J.; Westley, G.W.; Herzog, H.W. Jr.; Kerley, C.R.; Bjornstad, D.J.; Vogt, D.P.; Bray, L.G.; Grady, S.T.; Nakosteen, R.A.

    1977-10-01

    This report documents the development of MULTIREGION, a computer model of regional and interregional socio-economic development. The MULTIREGION model interprets the economy of each BEA economic area as a labor market, measures all activity in terms of people as members of the population (labor supply) or as employees (labor demand), and simultaneously simulates or forecasts the demands and supplies of labor in all BEA economic areas at five-year intervals. In general the outputs of MULTIREGION are intended to resemble those of the Water Resource Council's OBERS projections and to be put to similar planning and analysis purposes. This report has been written at two levels to serve the needs of multiple audiences. The body of the report serves as a fairly nontechnical overview of the entire MULTIREGION project; a series of technical appendixes provide detailed descriptions of the background empirical studies of births, deaths, migration, labor force participation, natural resource employment, manufacturing employment location, and local service employment used to construct the model.

  20. Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil

    International Nuclear Information System (INIS)

    Pao, Hsiao-Tien; Tsai, Chung-Ming

    2011-01-01

    This paper examines the dynamic relationships between pollutant emissions, energy consumption, and the output for Brazil during 1980-2007. The Grey prediction model (GM) is applied to predict three variables during 2008-2013. In the long-run equilibrium emissions appear to be both energy consumption and output inelastic, but energy is a more important determinant of emissions than output. This may be because Brazilian unsustainable land use and forestry contribute most to the country's greenhouse gas emissions. The findings of the inverted U-shaped relationships of both emissions-income and energy consumption-income imply that both environmental damage and energy consumption firstly increase with income, then stabilize, and eventually decline. The causality results indicate that there is a bidirectional strong causality running between income, energy consumption and emissions. In order to reduce emissions and to avoid a negative effect on the economic growth, Brazil should adopt the dual strategy of increasing investment in energy infrastructure and stepping up energy conservation policies to increase energy efficiency and reduce wastage of energy. The forecasting ability of GM is compared with the autoregressive integrated moving average (ARIMA) model over the out-of-sample period between 2002 and 2007. All of the optimal GMs and ARIMAs have a strong forecasting performance with MAPEs of less than 3%. -- Highlights: → Emissions are energy consumption and output inelastic, but energy is a more important determinant of emissions than output. → The relationship between emissions and income is an inverted U-shaped curve. → The relationship between consumption and income is an inverted U-shaped curve. → The causality results indicate that there is a bidirectional strong causality running between income, energy consumption and emissions. → The Grey prediction model is applied to predict emissions, energy consumption and output during 2008-2013.

  1. How uncertainty in socio-economic variables affects large-scale transport model forecasts

    DEFF Research Database (Denmark)

    Manzo, Stefano; Nielsen, Otto Anker; Prato, Carlo Giacomo

    2015-01-01

    A strategic task assigned to large-scale transport models is to forecast the demand for transport over long periods of time to assess transport projects. However, by modelling complex systems transport models have an inherent uncertainty which increases over time. As a consequence, the longer...... the period forecasted the less reliable is the forecasted model output. Describing uncertainty propagation patterns over time is therefore important in order to provide complete information to the decision makers. Among the existing literature only few studies analyze uncertainty propagation patterns over...

  2. 1991 Pacific Northwest loads and resources study, Pacific Northwest economic and electricity use forecast

    International Nuclear Information System (INIS)

    1992-01-01

    This publication provides detailed documentation of the load forecast scenarios and assumptions used in preparing BPA's 1991 Pacific Northwest Loads and Resources Study (the Study). This is one of two technical appendices to the Study; the other appendix details the utility-specific loads and resources used in the Study. The load forecasts and assumption were developed jointly by Bonneville Power Administration (BPA) and Northwest Power Planning Council (Council) staff. This forecast is also used in the Council's 1991 Northwest Conservation and Electric Power Plan (1991 Plan)

  3. An empirical investigation on the forecasting ability of mallows model averaging in a macro economic environment

    Science.gov (United States)

    Yin, Yip Chee; Hock-Eam, Lim

    2012-09-01

    This paper investigates the forecasting ability of Mallows Model Averaging (MMA) by conducting an empirical analysis of five Asia countries, Malaysia, Thailand, Philippines, Indonesia and China's GDP growth rate. Results reveal that MMA has no noticeable differences in predictive ability compared to the general autoregressive fractional integrated moving average model (ARFIMA) and its predictive ability is sensitive to the effect of financial crisis. MMA could be an alternative forecasting method for samples without recent outliers such as financial crisis.

  4. Are Forecast Updates Progressive?

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); Ph.H.B.F. Franses (Philip Hans); M.J. McAleer (Michael)

    2010-01-01

    textabstractMacro-economic forecasts typically involve both a model component, which is replicable, as well as intuition, which is non-replicable. Intuition is expert knowledge possessed by a forecaster. If forecast updates are progressive, forecast updates should become more accurate, on average,

  5. Development of a forecasting method of a region`s electric power demand. 1. Forecasting economic and social indexes; Chiikibetsu denryoku juyo yosoku shuhono kaihatsu ni tsuite. 1. Keizai shakai shihyo no yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Minato, Y. [Shikoku Research Institute Inc., Kagawa (Japan); Yokoi, Y. [The University of Tokushima, Tokushima (Japan)

    1996-01-20

    This paper relates to the forecasting method of the electric power demands (kWh and kW) of a region, approached by not only time series analysis but economic and social indexes. Those indexes, based on historical statistics such as census and establishment statistics, are rearranged from an administrative division to a managerial division of the electric power company, and applied as fundamental information for forecasting the area`s kWh and also sales promotion. This method of forecasting the area`s kWh is based on the concept that area`s kWh is strongly connected with the population their lifestyle and their activity within the region. In the paper, the framework of the computational model system and forecast result are discussed. The population, number of households and their members, and number of employed persons, are all evaluated. The forecasting method of the area`s population proposed here is based on the concept that the transition of population consists of both natural growth and immigration. By estimating both factors, the future area`s population can be easily forecasted. The information of whether the population is increasing or decreasing is useful for forecasting the region`s kWh and required sales promotion. 8 refs., 8 figs., 3 tabs.

  6. Forecaster Behaviour and Bias in Macroeconomic Forecasts

    OpenAIRE

    Roy Batchelor

    2007-01-01

    This paper documents the presence of systematic bias in the real GDP and inflation forecasts of private sector forecasters in the G7 economies in the years 1990–2005. The data come from the monthly Consensus Economics forecasting service, and bias is measured and tested for significance using parametric fixed effect panel regressions and nonparametric tests on accuracy ranks. We examine patterns across countries and forecasters to establish whether the bias reflects the inefficient use of i...

  7. Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model

    International Nuclear Information System (INIS)

    Pao, Hsiao-Tien; Fu, Hsin-Chia; Tseng, Cheng-Lung

    2012-01-01

    Analyses and forecasts of carbon emissions, energy consumption and real outputs are key requirements for clean energy economy and climate change in rapid growth market such as China. This paper employs the nonlinear grey Bernoulli model (NGBM) to predict these three indicators and proposes a numerical iterative method to optimize the parameter of NGBM. The forecasting ability of NGBM with optimal parameter model, namely NGBM−OP has remarkably improved, compared to the GM and ARIMA. The MAPEs of NGBM−OP for out-of-sample (2004–2009) are ranging from 1.10 to 6.26. The prediction results show that China’s compound annual emissions, energy consumption and real GDP growth is set to 4.47%, −0.06% and 6.67%, respectively between 2011 and 2020. The co-integration results show that the long-run equilibrium relationship exists among these three indicators and emissions appear to be real output inelastic and energy consumption elastic. The estimated values cannot support an EKC hypothesis, and real output is significantly negative impact on emissions. In order to promote economic and environmental quality, the results suggest that China should adopt the dual strategy of increasing energy efficiency, reducing the loss in power transmission and distribution and stepping up energy conservation policies to reduce any unnecessary wastage of energy. -- Highlights: ► The proposed NGBM-OP has a strong forecasting ability with MAPEs less than 6.3%. ► The NGBM-OP is applied to predict emissions, energy and output during 2009–2020. ► Prediction results show China will actively conserve resources and protect the environment. ► The long-run equilibrium relationship exists between emissions, energy and output. ► Emissions appear to be output inelastic and energy consumption elastic.

  8. Forecasting Economic, Social and Environmental Growth in the Sanitary and Service Sector Based on Thailand's Sustainable Development Policy

    Directory of Open Access Journals (Sweden)

    Pruethsan Sutthichaimethee

    2018-01-01

    Full Text Available The purpose of this study is to forecast the long run implementation of Thailand’s sustainable development policy in three main aspects, including economic, social and environmental aspect for the the sanitary and service sectors from 2016 until 2045. According to the national data for the years 2000–2015, based on the ARIMAX model, it has been found that Thai economy system is potentially changed and growing rapidly by 25.76%, the population has grown by 7.15%, and the Greenhouse gas emissions will gradually increase by 49.65%, in the year 2045. However, based on the analysis above, if Thailand fails to run the afore-mentioned policy properly, it will be difficulto successfully implement sustainable development, because the increased emission is moving in the same direction with economy and social aspect of Thailand.

  9. Analysis and forecast of the economic indicators of S.C DEDEMAN.SRL

    Directory of Open Access Journals (Sweden)

    Mihai FÂNARU

    2016-07-01

    Full Text Available The increasing pace of change characteristic to the contemporary era requires anticipating them on larger period of time. Researching the future becomes a constant concern of both individuals and professionals as well as some national and international bodies and institutions. As John Naisbitt states, "a man can survive only by its ability to act in the present, based on past experience, with consequences in the future. Assuming ones future, the man makes his present bearable and its past significant. Past, present and future alternatives are intertwined in anticipation and forecasting of future actions. "The bricolage market is estimated at a value of 2 billion euro, being currently dominated by Romanian players like Dedeman, Arabesque and Ambient. The approximate knowledge of the future is a way through which the bricolage company Dedeman is preparing to face the unexpected.

  10. On Forecasting Macro-Economic Indicators with the Help of Finite-Difference Equations and Econometric Methods

    Directory of Open Access Journals (Sweden)

    Polshkov Yulian M.

    2013-11-01

    Full Text Available The article considers data on the gross domestic product, consumer expenditures, gross investments and volume of foreign trade for the national economy. It is assumed that time is a discrete variable with one year iteration. The article uses finite-difference equations. It considers models with a high degree of the regulatory function of the state with respect to the consumer market. The econometric component is based on the hypothesis that each of the above said macro-economic indicators for this year depends on the gross domestic product for the previous time periods. Such an assumption gives a possibility to engage the least-squares method for building up linear models of the pair regression. The article obtains the time series model, which allows building point and interval forecasts for the gross domestic product for the next year based on the values of the gross domestic product for the current and previous years. The article draws a conclusion that such forecasts could be considered justified at least in the short-term prospect. From the mathematical point of view the built model is a heterogeneous finite-difference equation of the second order with constant ratios. The article describes specific features of such equations. It illustrates graphically the analytical view of solutions of the finite-difference equation. This gives grounds to differentiate national economies as sustainable growth economies, one-sided, weak or being in the stage of successful re-formation. The article conducts comparison of the listed types with specific economies of modern states.

  11. Using Agent-Based Models in the Analysis and Forecast of Socio-Economic Development of Territories

    Directory of Open Access Journals (Sweden)

    Vitalii Nikolaevich Makoveev

    2016-11-01

    by developers of agent-based models of socio-economic development and prospects for further research in this field. It has been established that the agent-based approach to the modeling of socio-economic development of territories is very promising, it helps improve the efficiency of forecasting regional development and management decisions due to a very detailed and realistic reconstruction of the internal structure of a region in the form of separate independent economic entities that interact with each other and with external environment, and also due to the possibility of fast processing and analysis of large amounts of data

  12. Forecasting the global shortage of physicians: an economic- and needs-based approach

    Science.gov (United States)

    Liu, Jenny X; Kinfu, Yohannes; Dal Poz, Mario R

    2008-01-01

    Abstract Objective Global achievements in health may be limited by critical shortages of health-care workers. To help guide workforce policy, we estimate the future demand for, need for and supply of physicians, by WHO region, to determine where likely shortages will occur by 2015, the target date of the Millennium Development Goals. Methods Using World Bank and WHO data on physicians per capita from 1980 to 2001 for 158 countries, we employ two modelling approaches for estimating the future global requirement for physicians. A needs-based model determines the number of physicians per capita required to achieve 80% coverage of live births by a skilled health-care attendant. In contrast, our economic model identifies the number of physicians per capita that are likely to be demanded, given each country’s economic growth. These estimates are compared to the future supply of physicians projected by extrapolating the historical rate of increase in physicians per capita for each country. Findings By 2015, the global supply of physicians appears to be in balance with projected economic demand. Because our measure of need reflects the minimum level of workforce density required to provide a basic health service that is met in all but the least developed countries, the needs-based estimates predict a global surplus of physicians. However, on a regional basis, both models predict shortages for many countries in the WHO African Region in 2015, with some countries experiencing a needs-based shortage, a demand-based shortage, or both. Conclusion The type of policy intervention needed to alleviate projected shortages, such as increasing health-care training or adopting measures to discourage migration, depends on the type of shortage projected. PMID:18670663

  13. China's economic reform and industry sector energy requirement: A forecast to 2015

    International Nuclear Information System (INIS)

    Gu, A.Y.

    1997-01-01

    With its GDP growing at an average rate of 9.8% for the last seventeen years, China has the world's fastest growing economy. This rapid pace of growth and industrialization has caused economic strain because fuel production cannot keep pace with demand, If China allows this situation to continue, significant oil imports will be necessary. In 1993, the industrial sector contributed 56% to China's GDP and consumed 61% of the total final energy. The industrial sector will remain the largest energy consumer in China well into the next century. According to China's Ninth Five-Year Plan (1996--2000), China will strengthen its ability to develop new products and will use technological advancement to promote industrial development. The Plan calls for special attention in four major areas: microelectronics technology, digital technology, software technology, and network technology. Given China's emphasis on developing light industries and on improving industrial sector energy efficiency, it is important to study the future energy demand of the industrial sector. Two scenarios for future energy requirements are studied through the year 2015: a Business As Usual (BASU) scenario and an Energy Efficient (EE) scenario. The study evaluates China's current economic reform policies and energy efficiency policies. The results of this evaluation are used to assign appropriate growth rates to industrial GDP and the industrial energy intensity for both scenarios. Results from the two scenarios are compared and analyzed

  14. Positive evolution in economic forecasting. Case study: the evolution of a company’s capital

    Directory of Open Access Journals (Sweden)

    Ion POPESCU

    2010-09-01

    Full Text Available For the economic sciences, mainly for the planning and organization disciplines, the models display a range of varieties.  For the last decades, though, the mathematics-based models seem to be the trend, partly because of their ability to rigorously concentrate the essentials and also to be programmed via the computer-based techniques, thus creating together an unheard of instrument of scientific investigation, a resourceful ‚extension’ of human intelligence. The article herein presents certain medium-term prognosis, via the dynamic modelling, elements of bifurcation theory and the Xpp software.  The case study has been the object of a research contract with the business environment.

  15. Hybrid support vector regression and autoregressive integrated moving average models improved by particle swarm optimization for property crime rates forecasting with economic indicators.

    Science.gov (United States)

    Alwee, Razana; Shamsuddin, Siti Mariyam Hj; Sallehuddin, Roselina

    2013-01-01

    Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR) and autoregressive integrated moving average (ARIMA) to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models.

  16. Hybrid Support Vector Regression and Autoregressive Integrated Moving Average Models Improved by Particle Swarm Optimization for Property Crime Rates Forecasting with Economic Indicators

    Directory of Open Access Journals (Sweden)

    Razana Alwee

    2013-01-01

    Full Text Available Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR and autoregressive integrated moving average (ARIMA to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models.

  17. Inaccuracy in traffic forecasts

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent; Holm, Mette K. Skamris; Buhl, Søren Ladegaard

    2006-01-01

    This paper presents results from the first statistically significant study of traffic forecasts in transportation infrastructure projects. The sample used is the largest of its kind, covering 210 projects in 14 nations worth US$58 billion. The study shows with very high statistical significance...... that forecasters generally do a poor job of estimating the demand for transportation infrastructure projects. The result is substantial downside financial and economic risk. Forecasts have not become more accurate over the 30-year period studied. If techniques and skills for arriving at accurate demand forecasts...... forecasting. Highly inaccurate traffic forecasts combined with large standard deviations translate into large financial and economic risks. But such risks are typically ignored or downplayed by planners and decision-makers, to the detriment of social and economic welfare. The paper presents the data...

  18. Engaging farmers on climate risk through targeted integration of bio-economic modelling and seasonal climate forecasts

    NARCIS (Netherlands)

    Nidumolu, U.B.; Lubbers, M.; Kanellopoulos, A.; Ittersum, van M.K.; Kadiyala, D.M.; Sreenivas, G.

    2016-01-01

    Seasonal climate forecasts (SCFs) can be used to identify appropriate risk management strategies and to reduce the sensitivity of rural industries and communities to climate risk. However, these forecasts have low utility among farmers in agricultural decision making, unless translated into a

  19. Japan's actual energy supply/demand in 1986 and background - drastically changing economic/energy situations upset plans and forecasts by a wide margin

    Energy Technology Data Exchange (ETDEWEB)

    Fujime, K

    1987-05-01

    In 1986 the value of the yen soared and there was a lowering of interest rates and a slump in crude oil prices. These drastic changes in economic/energy situations brought about a completely different picture of Japan's energy supply and demand from originally expected. Energy demand from large industrial users was lowered and impacts of price fluctuations on energy supply and demand were uneven. Topics covered in the paper are: economic/industrial trends; energy price trends; actual energy supply and demand including electricity, oil, town gas, coal and LNG (liquefied natural gas); trends of major energy-consuming industries and energy consumption including steel industry, paper/pulp industry, cement industry and petrochemical industry; plans/forecasts completely off the track due to drastically changing economic/energy situations.

  20. Forecast Combinations

    OpenAIRE

    Timmermann, Allan G

    2005-01-01

    Forecast combinations have frequently been found in empirical studies to produce better forecasts on average than methods based on the ex-ante best individual forecasting model. Moreover, simple combinations that ignore correlations between forecast errors often dominate more refined combination schemes aimed at estimating the theoretically optimal combination weights. In this paper we analyse theoretically the factors that determine the advantages from combining forecasts (for example, the d...

  1. Forecast combinations

    OpenAIRE

    Aiolfi, Marco; Capistrán, Carlos; Timmermann, Allan

    2010-01-01

    We consider combinations of subjective survey forecasts and model-based forecasts from linear and non-linear univariate specifications as well as multivariate factor-augmented models. Empirical results suggest that a simple equal-weighted average of survey forecasts outperform the best model-based forecasts for a majority of macroeconomic variables and forecast horizons. Additional improvements can in some cases be gained by using a simple equal-weighted average of survey and model-based fore...

  2. Electricity Consumption and Economic Growth: Analysis and Forecasts using VAR/VEC Approach for Greece with Capital Formation

    Directory of Open Access Journals (Sweden)

    Andreas Georgantopoulos

    2012-01-01

    Full Text Available This paper tests for the existence and direction of causality between electricity consumption and real gross domestic product for Greece. The study examines a trivariate system with capital formation for the period 1980-2010. Robust empirical results indicate that all variables are integrated of order one and cointegration analysis reports that cointegrating relationship exists between the variables. VAR/VEC approach suggests that all variables return to the long-run equilibrium whenever there is a deviation from the cointegrating relationship and that unidirectional causal links exists running from capital formation and electricity consumption to RGDP in the short-run implying that the economy of Greece is strongly energy dependent. Forecasts for the period 2011-2020 indicate increasing consumption of electricity and positive growth rates from 2013. Policy makers will need to liberalise the electricity sector and to turn the economy towards renewable and natural gas sources in order to reduce imports of oil and coal dependency.

  3. Economic situation of rural farms in conditions of the EU CAP - an attempt of the forecast till 2013 year

    Directory of Open Access Journals (Sweden)

    Walenty Poczta

    2009-01-01

    Full Text Available Poland’s membership in the EU gives rural farms chances to improve their economic situation. Direct payments and other instruments of Common Agricultural Policy (CAP are the main factors determining the economical status of rural farms. Growth of gross margin, as well as agricultural revenues are the results of the EU support for the rural farms. However, strong differentiation of the economic situation of the rural farms according to their size and specialisation in production is noticed. As a result, there are still rural farms, in which economic situation has not change, and revenues of the agricultural population are not sufficient to assure them life standard on a par with the parity consumption fund.

  4. Forecasting Skill

    Science.gov (United States)

    1981-01-01

    for the third and fourth day precipitation forecasts. A marked improvement was shown for the consensus 24 hour precipitation forecast, and small... Zuckerberg (1980) found a small long term skill increase in forecasts of heavy snow events for nine eastern cities. Other National Weather Service...and maximum temperature) are each awarded marks 2, 1, or 0 according to whether the forecast is correct, 8 - *- -**■*- ———"—- - -■ t0m 1 MM—IB I

  5. Forecast model for the evaluation of economic resources employed in the health care of patients with HIV infection

    Directory of Open Access Journals (Sweden)

    Sacchi P

    2012-05-01

    Full Text Available Paolo Sacchi1, Savino FA Patruno1, Raffaele Bruno1, Serena Maria Benedetta Cima1, Pietro Previtali2, Alessia Franchini2, Luca Nicolini3, Carla Rognoni4, Lucia Sacchi5, Riccardo Bellazzi4, Gaetano Filice11Divisione di Malattie Infettive e Tropicali - Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; 2Università degli Studi di Pavia – Facoltà di Economia, Pavia, Italy; 3Controllo di Gestione Fondazione IRCCS Policlinico San Matteo di Pavia, Pavia, Italy; 4Dipartimento di Informatica e Sistemistica, Universita' degli Studi di Pavia, Pavia, Italy; 5Department of Information Systems and Computing, Brunel University, London, UKBackground and aims: The total health care cost for human immunodeficiency virus (HIV patients has constantly grown in recent years. To date, there is no information about how this trend will behave over the next few years. The aim of the present study is to define a pharmacoeconomic model for the forecast of the costs of a group of chronically treated patients followed over the period 2004–2009.Methods: A pharmacoeconomics model was built to describe the probability of transition among different health states and to modify the therapy over time. A Markov model was applied to evaluate the temporal evolution of the average cost. The health care resources exploited during hospitalization were analyzed by using an “activity-based costing” method.Results: The Markov model showed that the mean total cost, after an initial increase, tended to remain stable. A total of 20 clinical records were examined. The average daily cost for each patient was EUR 484.42, with a cost for admission of EUR 6781.88.Conclusion: The treatment of HIV infection in compliance with the guidelines is also effective from the payer perspective, as it allows a good health condition to be maintained and reduces the need and the costs of hospitalizations.Keywords: health care cost, HIV, Markov model, activity-based costing

  6. Guidelines for forecasting energy demand

    International Nuclear Information System (INIS)

    Sonino, T.

    1976-11-01

    Four methodologies for forecasting energy demand are reviewed here after considering the role of energy in the economy and the analysis of energy use in different economic sectors. The special case of Israel is considered throughout, and some forecasts for energy demands in the year 2000 are presented. An energy supply mix that may be considered feasible is proposed. (author)

  7. Predicting European Union recessions in the euro era: The yield curve as a forecasting tool of economic activity

    OpenAIRE

    Gogas, Periklis; Chionis, Dionisios; Pragkidis, Ioannis

    2009-01-01

    Several studies have established the predictive power of the yield curve, ie: the difference between long and short term bond rates, in terms of real economic activity, for the U.S. and various European countries. In this paper we use data from the European Union (EU15), ranging from 1994:Q1 to 2008:Q3. The seasonally adjusted real GDP is used to extract the long run trend and the cyclical component of the European output, while the European Central Bank’s euro area government benchmark bonds...

  8. Forecast of nuclear energetics

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1976-01-01

    The forecast concerning the development of nuclear energetics is presented. Some information on economics of nuclear power plants is given. The nuclear fuel reserves are estimated on the background of power resources of the world. The safety and environment protection problems are mentioned.

  9. Load forecasting

    International Nuclear Information System (INIS)

    Mak, H.

    1995-01-01

    Slides used in a presentation at The Power of Change Conference in Vancouver, BC in April 1995 about the changing needs for load forecasting were presented. Technological innovations and population increase were said to be the prime driving forces behind the changing needs in load forecasting. Structural changes, market place changes, electricity supply planning changes, and changes in planning objectives were other factors discussed. It was concluded that load forecasting was a form of information gathering, that provided important market intelligence

  10. Long-term forecast 2010; Laangsiktsprognos 2010

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    This report presents the energy forecast to the year 2030, and two different sensitivity scenarios. The forecast is based on existing instruments, which means that the report's findings should not be considered a proper forecast of the future energy use, but as an impact assessment of existing policy instruments, given different circumstances such as economic growth and fuel prices

  11. Grand European and Asian-Pacific multi-model seasonal forecasts: maximization of skill and of potential economical value to end-users

    Science.gov (United States)

    Alessandri, A.; De Felice, M.; Catalano, F.; Lee, J. Y.; Wang, B.; Lee, D. Y.; Yoo, J. H.; Weisheimer, A.

    2017-12-01

    enhancement of the potential economic value of forecasting energy demand when using the better combinations from the Grand MME by comparison to the maximum value obtained from the better combinations of each of the two contributing MMEs. Above results are discussed in a Clim Dyn paper (Alessandri et al., 2017; doi:10.1007/s00382-016-3372-4).

  12. Grand European and Asian-Pacific multi-model seasonal forecasts: maximization of skill and of potential economical value to end-users

    Science.gov (United States)

    Alessandri, Andrea; Felice, Matteo De; Catalano, Franco; Lee, June-Yi; Wang, Bin; Lee, Doo Young; Yoo, Jin-Ho; Weisheimer, Antije

    2018-04-01

    Multi-model ensembles (MMEs) are powerful tools in dynamical climate prediction as they account for the overconfidence and the uncertainties related to single-model ensembles. Previous works suggested that the potential benefit that can be expected by using a MME amplifies with the increase of the independence of the contributing Seasonal Prediction Systems. In this work we combine the two MME Seasonal Prediction Systems (SPSs) independently developed by the European (ENSEMBLES) and by the Asian-Pacific (APCC/CliPAS) communities. To this aim, all the possible multi-model combinations obtained by putting together the 5 models from ENSEMBLES and the 11 models from APCC/CliPAS have been evaluated. The grand ENSEMBLES-APCC/CliPAS MME enhances significantly the skill in predicting 2m temperature and precipitation compared to previous estimates from the contributing MMEs. Our results show that, in general, the better combinations of SPSs are obtained by mixing ENSEMBLES and APCC/CliPAS models and that only a limited number of SPSs is required to obtain the maximum performance. The number and selection of models that perform better is usually different depending on the region/phenomenon under consideration so that all models are useful in some cases. It is shown that the incremental performance contribution tends to be higher when adding one model from ENSEMBLES to APCC/CliPAS MMEs and vice versa, confirming that the benefit of using MMEs amplifies with the increase of the independence the contributing models. To verify the above results for a real world application, the Grand ENSEMBLES-APCC/CliPAS MME is used to predict retrospective energy demand over Italy as provided by TERNA (Italian Transmission System Operator) for the period 1990-2007. The results demonstrate the useful application of MME seasonal predictions for energy demand forecasting over Italy. It is shown a significant enhancement of the potential economic value of forecasting energy demand when using the

  13. The role of forecasts in monetary policy

    OpenAIRE

    Jeffery D. Amato; Thomas Laubach

    2000-01-01

    Forecasts of future economic developments play an important role for the monetary policy decisions of central banks. For example, forecasts of goal variables can help central banks achieve their goals and make them more accountable to the public. There are two primary explanations for the benefits of forecasts. The first is that monetary policy affects goal variables such as inflation and output only with substantial lags. Policy actions should, therefore, be based on forecasts of goal variab...

  14. Exposure Forecaster

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Exposure Forecaster Database (ExpoCastDB) is EPA's database for aggregating chemical exposure information and can be used to help with chemical exposure...

  15. Strategic Forecasting

    DEFF Research Database (Denmark)

    Duus, Henrik Johannsen

    2016-01-01

    Purpose: The purpose of this article is to present an overview of the area of strategic forecasting and its research directions and to put forward some ideas for improving management decisions. Design/methodology/approach: This article is conceptual but also informed by the author’s long contact...... and collaboration with various business firms. It starts by presenting an overview of the area and argues that the area is as much a way of thinking as a toolbox of theories and methodologies. It then spells out a number of research directions and ideas for management. Findings: Strategic forecasting is seen...... as a rebirth of long range planning, albeit with new methods and theories. Firms should make the building of strategic forecasting capability a priority. Research limitations/implications: The article subdivides strategic forecasting into three research avenues and suggests avenues for further research efforts...

  16. Economics.

    Science.gov (United States)

    Palley, Paul D; Parcero, Miriam E

    2016-10-01

    A review of literature in the calendar year 2015 dedicated to environmental policies and sustainable development, and economic policies. This review is divided into these sections: sustainable development, irrigation, ecosystems and water management, climate change and disaster risk management, economic growth, water supply policies, water consumption, water price regulation, and water price valuation.

  17. Forecast Combination under Heavy-Tailed Errors

    Directory of Open Access Journals (Sweden)

    Gang Cheng

    2015-11-01

    Full Text Available Forecast combination has been proven to be a very important technique to obtain accurate predictions for various applications in economics, finance, marketing and many other areas. In many applications, forecast errors exhibit heavy-tailed behaviors for various reasons. Unfortunately, to our knowledge, little has been done to obtain reliable forecast combinations for such situations. The familiar forecast combination methods, such as simple average, least squares regression or those based on the variance-covariance of the forecasts, may perform very poorly due to the fact that outliers tend to occur, and they make these methods have unstable weights, leading to un-robust forecasts. To address this problem, in this paper, we propose two nonparametric forecast combination methods. One is specially proposed for the situations in which the forecast errors are strongly believed to have heavy tails that can be modeled by a scaled Student’s t-distribution; the other is designed for relatively more general situations when there is a lack of strong or consistent evidence on the tail behaviors of the forecast errors due to a shortage of data and/or an evolving data-generating process. Adaptive risk bounds of both methods are developed. They show that the resulting combined forecasts yield near optimal mean forecast errors relative to the candidate forecasts. Simulations and a real example demonstrate their superior performance in that they indeed tend to have significantly smaller prediction errors than the previous combination methods in the presence of forecast outliers.

  18. Forecasting metal prices: Do forecasters herd?

    DEFF Research Database (Denmark)

    Pierdzioch, C.; Rulke, J. C.; Stadtmann, G.

    2013-01-01

    We analyze more than 20,000 forecasts of nine metal prices at four different forecast horizons. We document that forecasts are heterogeneous and report that anti-herding appears to be a source of this heterogeneity. Forecaster anti-herding reflects strategic interactions among forecasters...

  19. Practical Results of Forecasting for the Natural Gas Market

    OpenAIRE

    Potocnik, Primoz; Govekar, Edvard

    2010-01-01

    Natural gas consumption forecasting is required to balance the supply and consumption of natural gas. Companies and natural gas distributors are motivated to forecast their consumption by the economic incentive model that dictates the cash flow rules corresponding to the forecasting accuracy. The rules are quite challenging but enable the company to gain positive cash flow by forecasting accurately their short-term natural gas consumption. In this chapter, some practical forecasting results f...

  20. Economism

    Directory of Open Access Journals (Sweden)

    P. Simons

    2010-07-01

    Full Text Available Modern society is characterised not only by a fascination with scientific technology as a means of solving all problems, especially those that stand in the way of material progress (technicism, but also by an obsessive interest in everything that has to do with money (economism or mammonism. The article discusses the relationship between technicism and economism, on the basis of their relationship to utilitarian thinking: the quest for the greatest happiness for the greatest number of people. Recent major studies of neo-liberalism (seen as an intensification of utilitarianism by Laval and Dardot are used as reference to the development of utilitarianism. It is suggested that the western view of the world, as expressed in economism and technicism, with a utilitarian ethics, features three absolutisations: those of theoretical thinking, technology and economics. In a second part, the article draws on the framework of reformational philosophy to suggest an approach that, in principle, is not marred by such absolutisations.

  1. Forecasting risks of natural gas consumption in Slovenia

    Energy Technology Data Exchange (ETDEWEB)

    Potocnik, Primoz; Govekar, Edvard; Grabec, Igor [Laboratory of Synergetics, Ljubljana (Slovenia). Faculty of Mechanical Engineering; Thaler, Marko; Poredos, Alojz [Laboratory for Refrigeration, Ljubljana (Slovenia). Faculty of Mechanical Engineering

    2007-08-15

    Efficient operation of modern energy distribution systems often requires forecasting future energy demand. This paper proposes a strategy to estimate forecasting risk. The objective of the proposed method is to improve knowledge about expected forecasting risk and to estimate the expected cash flow in advance, based on the risk model. The strategy combines an energy demand forecasting model, an economic incentive model and a risk model. Basic guidelines are given for the construction of a forecasting model that combines past energy consumption data, weather data and weather forecast. The forecasting model is required to estimate expected forecasting errors that are the basis for forecasting risk estimation. The risk estimation strategy also requires an economic incentive model that describes the influence of forecasting accuracy on the energy distribution systems' cash flow. The economic model defines the critical forecasting error levels that most strongly influence cash flow. Based on the forecasting model and the economic model, the development of a risk model is proposed. The risk model is associated with critical forecasting error levels in the context of various influential parameters such as seasonal data, month, day of the week and temperature. The risk model is applicable to estimating the daily forecasting risk based on the influential parameters. The proposed approach is illustrated by a case study of a Slovenian natural gas distribution company. (author)

  2. Forecasting risks of natural gas consumption in Slovenia

    International Nuclear Information System (INIS)

    Potocnik, Primoz; Thaler, Marko; Govekar, Edvard; Grabec, Igor; Poredos, Alojz

    2007-01-01

    Efficient operation of modern energy distribution systems often requires forecasting future energy demand. This paper proposes a strategy to estimate forecasting risk. The objective of the proposed method is to improve knowledge about expected forecasting risk and to estimate the expected cash flow in advance, based on the risk model. The strategy combines an energy demand forecasting model, an economic incentive model and a risk model. Basic guidelines are given for the construction of a forecasting model that combines past energy consumption data, weather data and weather forecast. The forecasting model is required to estimate expected forecasting errors that are the basis for forecasting risk estimation. The risk estimation strategy also requires an economic incentive model that describes the influence of forecasting accuracy on the energy distribution systems' cash flow. The economic model defines the critical forecasting error levels that most strongly influence cash flow. Based on the forecasting model and the economic model, the development of a risk model is proposed. The risk model is associated with critical forecasting error levels in the context of various influential parameters such as seasonal data, month, day of the week and temperature. The risk model is applicable to estimating the daily forecasting risk based on the influential parameters. The proposed approach is illustrated by a case study of a Slovenian natural gas distribution company

  3. Forecasting military expenditure

    Directory of Open Access Journals (Sweden)

    Tobias Böhmelt

    2014-05-01

    Full Text Available To what extent do frequently cited determinants of military spending allow us to predict and forecast future levels of expenditure? The authors draw on the data and specifications of a recent model on military expenditure and assess the predictive power of its variables using in-sample predictions, out-of-sample forecasts and Bayesian model averaging. To this end, this paper provides guidelines for prediction exercises in general using these three techniques. More substantially, however, the findings emphasize that previous levels of military spending as well as a country’s institutional and economic characteristics particularly improve our ability to predict future levels of investment in the military. Variables pertaining to the international security environment also matter, but seem less important. In addition, the results highlight that the updated model, which drops weak predictors, is not only more parsimonious, but also slightly more accurate than the original specification.

  4. Forecasting carbon dioxide emissions.

    Science.gov (United States)

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Econometric Models for Forecasting of Macroeconomic Indices

    Science.gov (United States)

    Sukhanova, Elena I.; Shirnaeva, Svetlana Y.; Mokronosov, Aleksandr G.

    2016-01-01

    The urgency of the research topic was stipulated by the necessity to carry out an effective controlled process by the economic system which can hardly be imagined without indices forecasting characteristic of this system. An econometric model is a safe tool of forecasting which makes it possible to take into consideration the trend of indices…

  6. Forecasting the demand for new telecommunication services

    DEFF Research Database (Denmark)

    Skouby, Knud Erik; Veiro, Bjørn

    1991-01-01

    A forecasting method that is applicable for new services, where little historical data have been recorded, is proposed. The method uses estimators based on economical, demographic and traffic data. Compared to traditional forecasting procedures that are built upon a solid historical record of dat...

  7. Quantifying forecast quality of IT business value

    NARCIS (Netherlands)

    Eveleens, J.L.; van der Pas, M.; Verhoef, C.

    2012-01-01

    This article discusses how to quantify the forecasting quality of IT business value. We address a common economic indicator often used to determine the business value of project proposals, the Net Present Value (NPV). To quantify the forecasting quality of IT business value, we develop a generalized

  8. Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: Case of Turkey

    International Nuclear Information System (INIS)

    Günay, M. Erdem

    2016-01-01

    In this work, the annual gross electricity demand of Turkey was modeled by multiple linear regression and artificial neural networks as a function population, gross domestic product per capita, inflation percentage, unemployment percentage, average summer temperature and average winter temperature. Among these, the unemployment percentage and the average winter temperature were found to be insignificant to determine the demand for the years between 1975 and 2013. Next, the future values of the statistically significant variables were predicted by time series ANN models, and these were simulated in a multilayer perceptron ANN model to forecast the future annual electricity demand. The results were validated with a very high accuracy for the years that the electricity demand was known (2007–2013), and they were also superior to the official predictions (done by Ministry of Energy and Natural Resources of Turkey). The model was then used to forecast the annual gross electricity demand for the future years, and it was found that, the demand will be doubled reaching about 460 TW h in the year 2028. Finally, it was concluded that the approach applied in this work can easily be implemented for other countries to make accurate predictions for the future. - Highlights: • Electricity demand of Turkey increased from 15.6 to 246.4 TW h in 1975–2013 period. • Population, GDP per capita, inflation and average summer temperature influence demand. • Future values of descriptor variables can be predicted by time series ANN models. • ANN model simulated by the predicted values of descriptors can forecast the demand. • Demand is forecasted to be doubled reaching about 460 TW h in the year 2028.

  9. Bayesian analyses of seasonal runoff forecasts

    Science.gov (United States)

    Krzysztofowicz, R.; Reese, S.

    1991-12-01

    Forecasts of seasonal snowmelt runoff volume provide indispensable information for rational decision making by water project operators, irrigation district managers, and farmers in the western United States. Bayesian statistical models and communication frames have been researched in order to enhance the forecast information disseminated to the users, and to characterize forecast skill from the decision maker's point of view. Four products are presented: (i) a Bayesian Processor of Forecasts, which provides a statistical filter for calibrating the forecasts, and a procedure for estimating the posterior probability distribution of the seasonal runoff; (ii) the Bayesian Correlation Score, a new measure of forecast skill, which is related monotonically to the ex ante economic value of forecasts for decision making; (iii) a statistical predictor of monthly cumulative runoffs within the snowmelt season, conditional on the total seasonal runoff forecast; and (iv) a framing of the forecast message that conveys the uncertainty associated with the forecast estimates to the users. All analyses are illustrated with numerical examples of forecasts for six gauging stations from the period 1971 1988.

  10. Short-term natural gas consumption forecasting

    International Nuclear Information System (INIS)

    Potocnik, P.; Govekar, E.; Grabec, I.

    2007-01-01

    Energy forecasting requirements for Slovenia's natural gas market were investigated along with the cycles of natural gas consumption. This paper presented a short-term natural gas forecasting approach where the daily, weekly and yearly gas consumption were analyzed and the information obtained was incorporated into the forecasting model for hourly forecasting for the next day. The natural gas market depends on forecasting in order to optimize the leasing of storage capacities. As such, natural gas distribution companies have an economic incentive to accurately forecast their future gas consumption. The authors proposed a forecasting model with the following properties: two submodels for the winter and summer seasons; input variables including past consumption data, weather data, weather forecasts and basic cycle indexes; and, a hierarchical forecasting structure in which a daily model was used as the basis, with the hourly forecast obtained by modeling the relative daily profile. This proposed method was illustrated by a forecasting example for Slovenia's natural gas market. 11 refs., 11 figs

  11. A Wind Forecasting System for Energy Application

    Science.gov (United States)

    Courtney, Jennifer; Lynch, Peter; Sweeney, Conor

    2010-05-01

    Accurate forecasting of available energy is crucial for the efficient management and use of wind power in the national power grid. With energy output critically dependent upon wind strength there is a need to reduce the errors associated wind forecasting. The objective of this research is to get the best possible wind forecasts for the wind energy industry. To achieve this goal, three methods are being applied. First, a mesoscale numerical weather prediction (NWP) model called WRF (Weather Research and Forecasting) is being used to predict wind values over Ireland. Currently, a gird resolution of 10km is used and higher model resolutions are being evaluated to establish whether they are economically viable given the forecast skill improvement they produce. Second, the WRF model is being used in conjunction with ECMWF (European Centre for Medium-Range Weather Forecasts) ensemble forecasts to produce a probabilistic weather forecasting product. Due to the chaotic nature of the atmosphere, a single, deterministic weather forecast can only have limited skill. The ECMWF ensemble methods produce an ensemble of 51 global forecasts, twice a day, by perturbing initial conditions of a 'control' forecast which is the best estimate of the initial state of the atmosphere. This method provides an indication of the reliability of the forecast and a quantitative basis for probabilistic forecasting. The limitation of ensemble forecasting lies in the fact that the perturbed model runs behave differently under different weather patterns and each model run is equally likely to be closest to the observed weather situation. Models have biases, and involve assumptions about physical processes and forcing factors such as underlying topography. Third, Bayesian Model Averaging (BMA) is being applied to the output from the ensemble forecasts in order to statistically post-process the results and achieve a better wind forecasting system. BMA is a promising technique that will offer calibrated

  12. Short-term spatio-temporal wind power forecast in robust look-ahead power system dispatch

    KAUST Repository

    Xie, Le; Gu, Yingzhong; Zhu, Xinxin; Genton, Marc G.

    2014-01-01

    forecasts, the overall cost benefits on system dispatch can be quantified. We integrate the improved forecast with an advanced robust look-ahead dispatch framework. This integrated forecast and economic dispatch framework is tested in a modified IEEE RTS 24

  13. forecasting with nonlinear time series model: a monte-carlo

    African Journals Online (AJOL)

    PUBLICATIONS1

    erated recursively up to any step greater than one. For nonlinear time series model, point forecast for step one can be done easily like in the linear case but forecast for a step greater than or equal to ..... London. Franses, P. H. (1998). Time series models for business and Economic forecasting, Cam- bridge University press.

  14. Better Forecasting for Better Planning: A Systems Approach.

    Science.gov (United States)

    Austin, W. Burnet

    Predictions and forecasts are the most critical features of rational planning as well as the most vulnerable to inaccuracy. Because plans are only as good as their forecasts, current planning procedures could be improved by greater forecasting accuracy. Economic factors explain and predict more than any other set of factors, making economic…

  15. Introduction to time series analysis and forecasting

    CERN Document Server

    Montgomery, Douglas C; Kulahci, Murat

    2008-01-01

    An accessible introduction to the most current thinking in and practicality of forecasting techniques in the context of time-oriented data. Analyzing time-oriented data and forecasting are among the most important problems that analysts face across many fields, ranging from finance and economics to production operations and the natural sciences. As a result, there is a widespread need for large groups of people in a variety of fields to understand the basic concepts of time series analysis and forecasting. Introduction to Time Series Analysis and Forecasting presents the time series analysis branch of applied statistics as the underlying methodology for developing practical forecasts, and it also bridges the gap between theory and practice by equipping readers with the tools needed to analyze time-oriented data and construct useful, short- to medium-term, statistically based forecasts.

  16. kosh Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kpdt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kewr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kiso Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kpga Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kbkw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. ktcl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. pgwt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kpsp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kbih Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kdnl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kart Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kilm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kpne Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kabi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. ptpn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kblf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. panc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kpbi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kgdv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kcmx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kdls Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. koaj Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. krhi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kbpk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. khuf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kbpi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. ktrk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kwmc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. katy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. tjmz Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kdet Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kcxp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kbur Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. krkd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. pawg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kloz Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kcec Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kdec Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. paor Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kavl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kdrt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kstl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kbfi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. khsv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. pafa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kekn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. tncm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kith Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kgnv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. ktoi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kgso Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. nstu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kmgm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. khib Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. pavd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kfar Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kluk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kwwr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. klse Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. ksts Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. koth Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kbfl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. ksgf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kpkb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. krog Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kbjc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. ksea Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kbwi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kftw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kpuw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kabq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. ksny Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. khio Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. klaf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kfoe Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. ksmx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kipt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. klch Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kink Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. krut Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kbli Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kaoo Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. klit Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. ktup Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. ktop Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. klax Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kprc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. katl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kmcn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kogb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kama Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. ptkk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kiwa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kavp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kdca Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kbwg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kdfw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kssi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. pahn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. ksrq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kpvd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kisp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kttd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. pmdy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kont Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kyng Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kcwa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kflg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. krsw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kmyl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. krbg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kril Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. ksus Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. padq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kbil Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. krfd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kdug Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. ktix Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kcod Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kslk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kgfl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kguc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kmlu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kbff Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. ksmn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kdro Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kmce Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. ktpa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kmot Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kcre Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. klws Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kotm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. khqm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kabr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. klal Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kelp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kecg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. khbg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kpbf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. konp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. pkwa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. ktvf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. paga Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. khks Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kdsm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kpsm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kgrb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kgmu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. papg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kbgm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. pamc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. klrd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. ksan Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. patk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kowb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. klru Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kfxe Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kjct Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kcrg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. paaq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kaex Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. klbx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kmia Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kpit Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kcrw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. paen Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kast Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kuin Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kmht Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kcys Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kflo Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. pakn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. pabt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. krdg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. khdn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kjac Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kphx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. Robust forecast comparison

    OpenAIRE

    Jin, Sainan; Corradi, Valentina; Swanson, Norman

    2015-01-01

    Forecast accuracy is typically measured in terms of a given loss function. However, as a consequence of the use of misspecified models in multiple model comparisons, relative forecast rankings are loss function dependent. This paper addresses this issue by using a novel criterion for forecast evaluation which is based on the entire distribution of forecast errors. We introduce the concepts of general-loss (GL) forecast superiority and convex-loss (CL) forecast superiority, and we establish a ...

  15. Weather forecast

    CERN Document Server

    Courtier, P

    1994-02-07

    Weather prediction is performed using the numerical model of the atmosphere evolution.The evolution equations are derived from the Navier Stokes equation for the adiabatic part but the are very much complicated by the change of phase of water, the radiation porocess and the boundary layer.The technique used operationally is described. Weather prediction is an initial value problem and accurate initial conditions need to be specified. Due to the small number of observations available (105 ) as compared to the dimension of the model state variable (107),the problem is largely underdetermined. Techniques of optimal control and inverse problems are used and have been adapted to the large dimension of our problem. our problem.The at mosphere is a chaotic system; the implication for weather prediction is discussed. Ensemble prediction is used operationally and the technique for generating initial conditions which lead to a numerical divergence of the subsequent forecasts is described.

  16. Assessing the vulnerability of economic sectors to climate variability to improve the usability of seasonal to decadal climate forecasts in Europe - a preliminary concept

    Science.gov (United States)

    Funk, Daniel

    2015-04-01

    Climate variability poses major challenges for decision-makers in climate-sensitive sectors. Seasonal to decadal (S2D) forecasts provide potential value for management decisions especially in the context of climate change where information from present or past climatology loses significance. However, usable and decision-relevant tailored climate forecasts are still sparse for Europe and successful examples of application require elaborate and individual producer-user interaction. The assessment of sector-specific vulnerabilities to critical climate conditions at specific temporal scale will be a great step forward to increase the usability and efficiency of climate forecasts. A concept for a sector-specific vulnerability assessment (VA) to climate variability is presented. The focus of this VA is on the provision of usable vulnerability information which can be directly incorporated in decision-making processes. This is done by developing sector-specific climate-impact-decision-pathways and the identification of their specific time frames using data from both bottom-up and top-down approaches. The structure of common VA's for climate change related issues is adopted which envisages the determination of exposure, sensitivity and coping capacity. However, the application of the common vulnerability components within the context of climate service application poses some fundamental considerations: Exposure - the effect of climate events on the system of concern may be modified and delayed due to interconnected systems (e.g. catchment). The critical time-frame of a climate event or event sequence is dependent on system-internal thresholds and initial conditions. But also on decision-making processes which require specific lead times of climate information to initiate respective coping measures. Sensitivity - in organizational systems climate may pose only one of many factors relevant for decision making. The scope of "sensitivity" in this concept comprises both the

  17. Forecasting gaming revenues in Clark County, Nevada: Issues and methods

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.K.; Bando, A.

    1992-01-01

    This paper describes the Western Area Gaming and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. Is is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry. The model is meant to forecast Clark County gaming revenues and identifies the exogenous variables that affect gaming revenues. It will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming-related economic activity resulting from changes in regional economic activity and tourism.

  18. Forecasting gaming revenues in Clark County, Nevada: Issues and methods

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.K.; Bando, A.

    1992-07-01

    This paper describes the Western Area Gaming and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. Is is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry. The model is meant to forecast Clark County gaming revenues and identifies the exogenous variables that affect gaming revenues. It will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming-related economic activity resulting from changes in regional economic activity and tourism.

  19. Hydroclimate Forecasts in Ethiopia: Benefits, Impediments, and Ways Forward

    Science.gov (United States)

    Block, P. J.

    2014-12-01

    Numerous hydroclimate forecast models, tools, and guidance exist for application across Ethiopia and East Africa in the agricultural, water, energy, disasters, and economic sectors. This has resulted from concerted local and international interdisciplinary efforts, yet little evidence exists of rapid forecast uptake and use. We will review projected benefits and gains of seasonal forecast application, impediments, and options for the way forward. Specific case studies regarding floods, agricultural-economic links, and hydropower will be reviewed.

  20. Concerning the justiciability of demand forecasts

    International Nuclear Information System (INIS)

    Nierhaus, M.

    1977-01-01

    This subject plays at present in particular a role in the course of judicial examinations of immediately enforceable orders for the partial construction licences of nuclear power plants. The author distinguishes beween three kinds of forecast decisions: 1. Appraising forecast decisions with standards of judgment taken mainly from the fields of the art, culture, morality, religion are, according to the author, only legally verifyable to a limited extent. 2. With regard to forecast decisions not arguable, e.g. where the future behaviour of persons is concerned, the same should be applied basically. 3. In contrast to this, the following is applicable for programmatic, proceedingslike, or creative forecast decisions, in particular in economics: 'An administrative estimation privilege in a prognostic sense with the consequence that the court has to accept the forecast decision which lies within the forecast margins and which cannot be disproved, and that the court may not replace this forecast decision by its own probability judgment. In these cases, administration has the right to create its own forecast standards.' Judicial control in these cases was limited to certain substantive and procedural mistakes made by the administration in the course of forecast decision finding. (orig./HP) [de

  1. Concerning the justiciability of demand forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Nierhaus, M [Koeln Univ. (Germany, F.R.)

    1977-01-01

    This subject plays at present in particular a role in the course of judicial examinations of immediately enforceable orders for the partial construction licences of nuclear power plants. The author distinguishes beween three kinds of forecast decisions: 1. Appraising forecast decisions with standards of judgment taken mainly from the fields of the art, culture, morality, religion are, according to the author, only legally verifyable to a limited extent. 2. With regard to forecast decisions not arguable, e.g. where the future behaviour of persons is concerned, the same should be applied basically. 3. In contrast to this, the following is applicable for programmatic, proceedingslike, or creative forecast decisions, in particular in economics: 'An administrative estimation privilege in a prognostic sense with the consequence that the court has to accept the forecast decision which lies within the forecast margins and which cannot be disproved, and that the court may not replace this forecast decision by its own probability judgment. In these cases, administration has the right to create its own forecast standards.' Judicial control in these cases was limited to certain substantive and procedural mistakes made by the administration in the course of forecast decision finding.

  2. Combining forecast weights: Why and how?

    Science.gov (United States)

    Yin, Yip Chee; Kok-Haur, Ng; Hock-Eam, Lim

    2012-09-01

    This paper proposes a procedure called forecast weight averaging which is a specific combination of forecast weights obtained from different methods of constructing forecast weights for the purpose of improving the accuracy of pseudo out of sample forecasting. It is found that under certain specified conditions, forecast weight averaging can lower the mean squared forecast error obtained from model averaging. In addition, we show that in a linear and homoskedastic environment, this superior predictive ability of forecast weight averaging holds true irrespective whether the coefficients are tested by t statistic or z statistic provided the significant level is within the 10% range. By theoretical proofs and simulation study, we have shown that model averaging like, variance model averaging, simple model averaging and standard error model averaging, each produces mean squared forecast error larger than that of forecast weight averaging. Finally, this result also holds true marginally when applied to business and economic empirical data sets, Gross Domestic Product (GDP growth rate), Consumer Price Index (CPI) and Average Lending Rate (ALR) of Malaysia.

  3. National Forecast Charts

    Science.gov (United States)

    code. Press enter or select the go button to submit request Local forecast by "City, St" or Prediction Center on Twitter NCEP Quarterly Newsletter WPC Home Analyses and Forecasts National Forecast to all federal, state, and local government web resources and services. National Forecast Charts

  4. Building economics

    DEFF Research Database (Denmark)

    Pedersen, D.O.(red.)

    Publikationen er på engelsk. Den omfatter alle indlæg på det fjerde internationale symposium om byggeøkonomi, der blev arrangeret af SBI for det internationale byggeforskningsråd CIB. De fem bind omhandler: Methods of Economic Evaluation, Design Optimization, Ressource Utilization, The Building...... Market og Economics and Technological Forecasting in Construction. Et indledende bind bringer statusrapporter for de fem forskningsområder, og det sidste bind sammenfatter debatten på symposiet....

  5. Forecasting freight flows

    DEFF Research Database (Denmark)

    Lyk-Jensen, Stéphanie

    2011-01-01

    Trade patterns and transport markets are changing as a result of the growth and globalization of international trade, and forecasting future freight flow has to rely on trade forecasts. Forecasting freight flows is critical for matching infrastructure supply to demand and for assessing investment...... constitute a valuable input to freight models for forecasting future capacity problems.......Trade patterns and transport markets are changing as a result of the growth and globalization of international trade, and forecasting future freight flow has to rely on trade forecasts. Forecasting freight flows is critical for matching infrastructure supply to demand and for assessing investment...

  6. Defining conservation priorities using fragmentation forecasts

    Science.gov (United States)

    David Wear; John Pye; Kurt H. Riitters

    2004-01-01

    Methods are developed for forecasting the effects of population and economic growth on the distribution of interior forest habitat. An application to the southeastern United States shows that models provide significant explanatory power with regard to the observed distribution of interior forest. Estimates for economic and biophysical variables are significant and...

  7. Forecasting in the presence of expectations

    Science.gov (United States)

    Allen, R.; Zivin, J. G.; Shrader, J.

    2016-05-01

    Physical processes routinely influence economic outcomes, and actions by economic agents can, in turn, influence physical processes. This feedback creates challenges for forecasting and inference, creating the potential for complementarity between models from different academic disciplines. Using the example of prediction of water availability during a drought, we illustrate the potential biases in forecasts that only take part of a coupled system into account. In particular, we show that forecasts can alter the feedbacks between supply and demand, leading to inaccurate prediction about future states of the system. Although the example is specific to drought, the problem of feedback between expectations and forecast quality is not isolated to the particular model-it is relevant to areas as diverse as population assessments for conservation, balancing the electrical grid, and setting macroeconomic policy.

  8. A Hybrid Approach on Tourism Demand Forecasting

    Science.gov (United States)

    Nor, M. E.; Nurul, A. I. M.; Rusiman, M. S.

    2018-04-01

    Tourism has become one of the important industries that contributes to the country’s economy. Tourism demand forecasting gives valuable information to policy makers, decision makers and organizations related to tourism industry in order to make crucial decision and planning. However, it is challenging to produce an accurate forecast since economic data such as the tourism data is affected by social, economic and environmental factors. In this study, an equally-weighted hybrid method, which is a combination of Box-Jenkins and Artificial Neural Networks, was applied to forecast Malaysia’s tourism demand. The forecasting performance was assessed by taking the each individual method as a benchmark. The results showed that this hybrid approach outperformed the other two models

  9. Forecasting the Long-Term Clinical and Economic Outcomes of Lumacaftor/Ivacaftor in Cystic Fibrosis Patients with Homozygous phe508del Mutation.

    Science.gov (United States)

    Dilokthornsakul, Piyameth; Patidar, Mausam; Campbell, Jonathan D

    2017-12-01

    To forecast lifetime outcomes and cost of lumacaftor/ivacaftor combination therapy in patients with cystic fibrosis (CF) with homozygous phe508del mutation from the US payer perspective. A lifetime Markov model was developed from a US payer perspective. The model included five health states: 1) mild lung disease (percent predicted forced expiratory volume in 1 second [FEV 1 ] >70%), 2) moderate lung disease (40% ≤ FEV 1 ≤ 70%), 3) severe lung disease (FEV 1 < 40%), 4) lung transplantation, and 5) death. All inputs were derived from published literature. We estimated lumacaftor/ivacaftor's improvement in outcomes compared with a non-CF referent population as well as CF-specific mortality estimates. Lumacaftor/ivacaftor was associated with additional 2.91 life-years (95% credible interval 2.55-3.56) and additional 2.42 quality-adjusted life-years (QALYs) (95% credible interval 2.10-2.98). Lumacaftor/ivacaftor was associated with improvements in survival and QALYs equivalent to 27.6% and 20.7%, respectively, for the survival and QALY gaps between CF usual care and their non-CF peers. The incremental lifetime cost was $2,632,249. Lumacaftor/ivacaftor increased life-years and QALYs in CF patients with the homozygous phe508del mutation and moved morbidity and mortality closer to that of their non-CF peers but it came with higher cost. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  10. Conversion of landfill biogas in electric energy. Forecasting and economic estimation reported in a case study in the province of Udine

    International Nuclear Information System (INIS)

    Goi, D.; Cirino, N.; Pivato, P.; Lizzi, G.; Dolcetti, G.

    2000-01-01

    This work presents an analysis about the recovery of electrical energy form biogas of a landfill in Province of Udine. Starting with an estimation of material composition of waste and adopting a simple stoichiometric-kinetic model, a theoretical evaluation of biogas production was conducted and subsequently results were compared to real data of biogas production estimated by electric energy produced. An economic examination about the electrical energy recovery from landfill biogas was also conducted by profit graphs [it

  11. Forecast the Impact of Bucharest – Braşov Highway on the Economic and Functional Structure of Human Settlements in Ilfov County

    Directory of Open Access Journals (Sweden)

    PETRONELA NOVĂCESCU

    2011-01-01

    Full Text Available One of the most publicized issues concerning the infrastructure of Romania is the Bucharest-Braşov highway. The long-awaited project aims to streamline the traffic between the Capital and the central part of the country, representing the central area of the Pan - European Road Corridor IV. The length of the highway on the territory of Ilfov County is 31 km, representing 17% of the total length of Bucharest- Braşov highway. The start of the highway will have strong effects on economic structure and on the way the Bucharest Metropolitan Area will work. We can expect an increase in the disparities between the settlements of Ilfov County. This pattern is also observable on the Bucharest-Ploieşti corridor where, in recent years, much of the Ilfov county's economic activities have migrated to the north, especially along that corridor. Besides economic migration, intense residential migration followed the Bucharest – Ploieşti corridor, residents of the Bucharest itself moving out to the north of Ilfov County. Probably, the future Bucharest – Braşov highway will lead to an increased suburbanization and periurbanization, this in turn giving way to the crowding of the area by businesses eager to have access to the highway. This project will likely increase the gap between north and south of Ilfov County. In addition to changes that may occur at the county level, changes will also have an impact on the localities themselves since the areas located near the highway will have an economic and demographic growth rate superior to more remote areas. In this sense, we conducted a comparative analysis between eight settlements of Ilfov county crossed by the Bucharest-Braşov highway in order to assess the impact. This analysis was based on the information obtained from site and statistical indicators that were processed to obtain a clear picture of the situation in the examined territory.

  12. Flood forecasting and uncertainty of precipitation forecasts

    International Nuclear Information System (INIS)

    Kobold, Mira; Suselj, Kay

    2004-01-01

    The timely and accurate flood forecasting is essential for the reliable flood warning. The effectiveness of flood warning is dependent on the forecast accuracy of certain physical parameters, such as the peak magnitude of the flood, its timing, location and duration. The conceptual rainfall - runoff models enable the estimation of these parameters and lead to useful operational forecasts. The accurate rainfall is the most important input into hydrological models. The input for the rainfall can be real time rain-gauges data, or weather radar data, or meteorological forecasted precipitation. The torrential nature of streams and fast runoff are characteristic for the most of the Slovenian rivers. Extensive damage is caused almost every year- by rainstorms affecting different regions of Slovenia' The lag time between rainfall and runoff is very short for Slovenian territory and on-line data are used only for now casting. Forecasted precipitations are necessary for hydrological forecast for some days ahead. ECMWF (European Centre for Medium-Range Weather Forecasts) gives general forecast for several days ahead while more detailed precipitation data with limited area ALADIN/Sl model are available for two days ahead. There is a certain degree of uncertainty using such precipitation forecasts based on meteorological models. The variability of precipitation is very high in Slovenia and the uncertainty of ECMWF predicted precipitation is very large for Slovenian territory. ECMWF model can predict precipitation events correctly, but underestimates amount of precipitation in general The average underestimation is about 60% for Slovenian region. The predictions of limited area ALADIN/Si model up to; 48 hours ahead show greater applicability in hydrological forecasting. The hydrological models are sensitive to precipitation input. The deviation of runoff is much bigger than the rainfall deviation. Runoff to rainfall error fraction is about 1.6. If spatial and time distribution

  13. Economic missions. Synthetic file: the petroleum sector in Brazil (exploration and production); the refining activity in Brazil; natural gas in Brazil: a fragile market, inferior to forecasts

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    This dossier prepared by the economic mission of the French embassy in Brazil makes a synthesis of the exploration-production and refining activities of the petroleum industry, and of the natural gas distribution market in Brazil: oil reserves and production, Petrobras company, partnership agreements with Petrobras, legal aspects, concessions, projects financing, refining capacity, refinery projects in progress or under study, para-petroleum market perspectives and opportunities, natural gas market development, pipelines network, gas utilities, privatization and foreign participation, lack of expertise and of gas infrastructures and equipments. (J.S.)

  14. Economic analysis model for total energy and economic systems

    International Nuclear Information System (INIS)

    Shoji, Katsuhiko; Yasukawa, Shigeru; Sato, Osamu

    1980-09-01

    This report describes framing an economic analysis model developed as a tool of total energy systems. To prospect and analyze future energy systems, it is important to analyze the relation between energy system and economic structure. We prepared an economic analysis model which was suited for this purpose. Our model marks that we can analyze in more detail energy related matters than other economic ones, and can forecast long-term economic progress rather than short-term economic fluctuation. From view point of economics, our model is longterm multi-sectoral economic analysis model of open Leontief type. Our model gave us appropriate results for fitting test and forecasting estimation. (author)

  15. Fuel cycle forecasting - there are forecasts and there are forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Puechl, K H

    1975-12-01

    The FORECAST-NUCLEAR computer program described recognizes that forecasts are made to answer a variety of questions and, therefore, that no single forecast is universally appropriate. Also, it recognizes that no two individuals will completely agree as to the input data that are appropriate for obtaining an answer to even a single simple question. Accordingly, the program was written from a utilitarian standpoint: it allows working with multiple projections; data inputting is simple to allow game-playing; computation time is short to minimize the cost of 'what if' assessements; and detail is internally carried to allow meaningful analysis.

  16. Fuel cycle forecasting - there are forecasts and there are forecasts

    International Nuclear Information System (INIS)

    Puechl, K.H.

    1975-01-01

    The FORECAST-NUCLEAR computer program described recognizes that forecasts are made to answer a variety of questions and, therefore, that no single forecast is universally appropriate. Also, it recognizes that no two individuals will completely agree as to the input data that are appropriate for obtaining an answer to even a single simple question. Accordingly, the program was written from a utilitarian standpoint: it allows working with multiple projections; data inputting is simple to allow game-playing; computation time is short to minimize the cost of 'what if' assessements; and detail is internally carried to allow meaningful analysis. (author)

  17. Can energy forecasts be improved?

    International Nuclear Information System (INIS)

    Rech, O.; Alban, P.

    2000-01-01

    Within the present day context of energy, characterized by the gap between short term trends and long term risks, forecasting takes on particular interest. We based our study on the evaluation of the results of some of these long term (2020) and very long term (2050) forecasts. This article looks at the overall demand for energy, whereas the evolution of each primary energy will be handled in a future article. We are restricting our analysis to a global level despite the inherent limitations of such a choice. Our approach mainly concentrates on the dynamics of the phenomena. Thus, we have noticed a simultaneous slowing down since the 1960's of the demography, economy and energy. The revenue and energy consumption per capita do not elude this tendency. At the same time, energy production leads a steep downward tendency. All in all, the forecasts have a tendency to conflict more or less with these changes. In the majority of the scenarios the anticipated rhythms of economic change and energy consumption would indicate a sudden and abrupt inverse of current dynamics. We have noticed that the single use of the average annual rate of change is insufficient to clearly present the long term tendencies that follow curved and not linear paths. Diagnostic errors made in past analyses are likely to affect the models for forecasting, for which the inferred dynamics have not been fully apprehended

  18. How uncertain are day-ahead wind forecasts?

    Energy Technology Data Exchange (ETDEWEB)

    Grimit, E. [3TIER Environmental Forecast Group, Seattle, WA (United States)

    2006-07-01

    Recent advances in the combination of weather forecast ensembles with Bayesian statistical techniques have helped to address uncertainties in wind forecasting. Weather forecast ensembles are a collection of numerical weather predictions. The combination of several equally-skilled forecasts typically results in a consensus forecast with greater accuracy. The distribution of forecasts also provides an estimate of forecast inaccuracy. However, weather forecast ensembles tend to be under-dispersive, and not all forecast uncertainties can be taken into account. In order to address these issues, a multi-variate linear regression approach was used to correct the forecast bias for each ensemble member separately. Bayesian model averaging was used to provide a predictive probability density function to allow for multi-modal probability distributions. A test location in eastern Canada was used to demonstrate the approach. Results of the test showed that the method improved wind forecasts and generated reliable prediction intervals. Prediction intervals were much shorter than comparable intervals based on a single forecast or on historical observations alone. It was concluded that the approach will provide economic benefits to both wind energy developers and investors. refs., tabs., figs.

  19. Robust Approaches to Forecasting

    OpenAIRE

    Jennifer Castle; David Hendry; Michael P. Clements

    2014-01-01

    We investigate alternative robust approaches to forecasting, using a new class of robust devices, contrasted with equilibrium correction models. Their forecasting properties are derived facing a range of likely empirical problems at the forecast origin, including measurement errors, implulses, omitted variables, unanticipated location shifts and incorrectly included variables that experience a shift. We derive the resulting forecast biases and error variances, and indicate when the methods ar...

  20. Inflation Forecast Contracts

    OpenAIRE

    Gersbach, Hans; Hahn, Volker

    2012-01-01

    We introduce a new type of incentive contract for central bankers: inflation forecast contracts, which make central bankers’ remunerations contingent on the precision of their inflation forecasts. We show that such contracts enable central bankers to influence inflation expectations more effectively, thus facilitating more successful stabilization of current inflation. Inflation forecast contracts improve the accuracy of inflation forecasts, but have adverse consequences for output. On balanc...

  1. Economic and demographic outlook

    International Nuclear Information System (INIS)

    Darby, P.M.

    1995-01-01

    Economic forecasts were produced and past trends were examined. Information was presented as a series of figures only, without accompanying text. Information provided included current exchange rates, economic growth, interest rates, housing starts, unemployment rates, personal savings rates and other economic indicators. 40 figs

  2. Reducing the network load and optimization of the economic efficiency of CHP plants by forecast-guided control; Verringerung der Netzbelastung und Optimierung der Wirtschaftlichkeit von KWK-Anlagen durch prognosegefuehrte Steuerung

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Daniel; Adelhardt, Stefan [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Sensorik; beECO GmbH, Erlangen (Germany)

    2012-07-01

    Heat-guided combined heat and power (CHP) plants often cause large compensation energy amounts, additional costs to the operator respectively and another burden on the parent network. The balance energy is caused by errors in the production forecast whose quality heavily depends on the heat load performance. This paper identifies the forecasting problems with heat-guided CHP and reveals how the accompanying cost and the network burden can be reduced. This is achieved by an improvement of the forecast in conjunction with a forecast-guided control without affecting the heat supply. In addition, an outlook on further measures to the earnings with the system is presented. (orig.)

  3. Statistical and RBF NN models : providing forecasts and risk assessment

    OpenAIRE

    Marček, Milan

    2009-01-01

    Forecast accuracy of economic and financial processes is a popular measure for quantifying the risk in decision making. In this paper, we develop forecasting models based on statistical (stochastic) methods, sometimes called hard computing, and on a soft method using granular computing. We consider the accuracy of forecasting models as a measure for risk evaluation. It is found that the risk estimation process based on soft methods is simplified and less critical to the question w...

  4. Electricity Demand Forecasting Using a Functional State Space Model

    OpenAIRE

    Nagbe , Komi; Cugliari , Jairo; Jacques , Julien

    2018-01-01

    In the last past years the liberalization of the electricity supply, the increase variability of electric appliances and their use, and the need to respond to the electricity demand in the real time had made electricity demand forecasting a challenge. To this challenge, many solutions are being proposed. The electricity demand involves many sources such as economic activities, household need and weather sources. All this sources make hard electricity demand forecasting. To forecast the electr...

  5. Electricity demand forecasting techniques

    International Nuclear Information System (INIS)

    Gnanalingam, K.

    1994-01-01

    Electricity demand forecasting plays an important role in power generation. The two areas of data that have to be forecasted in a power system are peak demand which determines the capacity (MW) of the plant required and annual energy demand (GWH). Methods used in electricity demand forecasting include time trend analysis and econometric methods. In forecasting, identification of manpower demand, identification of key planning factors, decision on planning horizon, differentiation between prediction and projection (i.e. development of different scenarios) and choosing from different forecasting techniques are important

  6. Spatial electric load forecasting

    CERN Document Server

    Willis, H Lee

    2002-01-01

    Containing 12 new chapters, this second edition contains offers increased-coverage of weather correction and normalization of forecasts, anticipation of redevelopment, determining the validity of announced developments, and minimizing risk from over- or under-planning. It provides specific examples and detailed explanations of key points to consider for both standard and unusual utility forecasting situations, information on new algorithms and concepts in forecasting, a review of forecasting pitfalls and mistakes, case studies depicting challenging forecast environments, and load models illustrating various types of demand.

  7. Forecasting with nonlinear time series models

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    In this paper, nonlinear models are restricted to mean nonlinear parametric models. Several such models popular in time series econo- metrics are presented and some of their properties discussed. This in- cludes two models based on universal approximators: the Kolmogorov- Gabor polynomial model...... applied to economic fore- casting problems, is briefly highlighted. A number of large published studies comparing macroeconomic forecasts obtained using different time series models are discussed, and the paper also contains a small simulation study comparing recursive and direct forecasts in a partic...... and two versions of a simple artificial neural network model. Techniques for generating multi-period forecasts from nonlinear models recursively are considered, and the direct (non-recursive) method for this purpose is mentioned as well. Forecasting with com- plex dynamic systems, albeit less frequently...

  8. The intersections between TRIZ and forecasting methodology

    Directory of Open Access Journals (Sweden)

    Georgeta BARBULESCU

    2010-12-01

    Full Text Available The authors’ intention is to correlate the basic knowledge in using the TRIZ methodology (Theory of Inventive Problem Solving or in Russian: Teoriya Resheniya Izobretatelskikh Zadatch as a problem solving tools meant to help the decision makers to perform more significant forecasting exercises. The idea is to identify the TRIZ features and instruments (40 inventive principles, i.e. for putting in evidence the noise and signal problem, for trend identification (qualitative and quantitative tendencies and support tools in technological forecasting, to make the decision-makers able to refine and to increase the level of confidence in the forecasting results. The interest in connecting TRIZ to forecasting methodology, nowadays, relates to the massive application of TRIZ methods and techniques for engineering system development world-wide and in growing application of TRIZ’s concepts and paradigms for improvements of non-engineering systems (including the business and economic applications.

  9. Nuclear power economic database

    International Nuclear Information System (INIS)

    Ding Xiaoming; Li Lin; Zhao Shiping

    1996-01-01

    Nuclear power economic database (NPEDB), based on ORACLE V6.0, consists of three parts, i.e., economic data base of nuclear power station, economic data base of nuclear fuel cycle and economic database of nuclear power planning and nuclear environment. Economic database of nuclear power station includes data of general economics, technique, capital cost and benefit, etc. Economic database of nuclear fuel cycle includes data of technique and nuclear fuel price. Economic database of nuclear power planning and nuclear environment includes data of energy history, forecast, energy balance, electric power and energy facilities

  10. Elements of a coastal ocean forecasting system for India

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Radhakrishnan, K.

    After about four decades of investment in infrastructure for ocean research, an appropriate initiative for India now would be to build a coastal ocean forecasting system to support the country's myriad activities in its Exclusive Economic Zone...

  11. Mid-term report on Renewable Energy Forecasting System

    International Nuclear Information System (INIS)

    Brand, A.J.; Hegberg, T.; Van der Borg, N.J.C.M.; Kok, J.K.; Van Selow, E.R.; Kamphuis, I.G.; De Noord, M.; Van Sambeek, E.J.W.

    2001-04-01

    The most important conclusions on the economical and technical feasibility of renewable energy forecasting systems are presented, next to recommendations to be followed in order to introduce such a system in the Dutch electricity market. 11 refs

  12. The case for better PV forecasting

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Efthymiou, Venizelos; Graditi, Giorgio

    2016-01-01

    Rising levels of PV penetration mean increasingly sophisticated forecasting technologies are needed to maintain grid stability and maximise the economic value of PV systems. The Grid Integration working group of the European Technology and Innovation Platform – Photovoltaics (ETIP PV) shares the ...

  13. FORECASTING MODELS IN MANAGEMENT

    OpenAIRE

    Sindelar, Jiri

    2008-01-01

    This article deals with the problems of forecasting models. First part of the article is dedicated to definition of the relevant areas (vertical and horizontal pillar of definition) and then the forecasting model itself is defined; as article presents theoretical background for further primary research, this definition is crucial. Finally the position of forecasting models within the management system is identified. The paper is a part of the outputs of FEM CULS grant no. 1312/11/3121.

  14. Forecasting in Planning

    OpenAIRE

    Ike, P.; Voogd, Henk; Voogd, Henk; Linden, Gerard

    2004-01-01

    This chapter begins with a discussion of qualitative forecasting by describing a number of methods that depend on judgements made by stakeholders, experts or other interested parties to arrive at forecasts. Two qualitative approaches are illuminated, the Delphi and scenario methods respectively. Quantitative forecasting is illustrated with a brief overview of time series methods. Both qualitative and quantitative methods are illustrated by an example. The role and relative importance of forec...

  15. The strategy of professional forecasting

    DEFF Research Database (Denmark)

    Ottaviani, Marco; Sørensen, Peter Norman

    2006-01-01

    We develop and compare two theories of professional forecasters’ strategic behavior. The first theory, reputational cheap talk, posits that forecasters endeavor to convince the market that they are well informed. The market evaluates their forecasting talent on the basis of the forecasts...... and the realized state. If the market expects forecasters to report their posterior expectations honestly, then forecasts are shaded toward the prior mean. With correct market expectations, equilibrium forecasts are imprecise but not shaded. The second theory posits that forecasters compete in a forecasting...... contest with pre-specified rules. In a winner-take-all contest, equilibrium forecasts are excessively differentiated...

  16. Structural Forecasts for the Danish Economy Using The Dynamic-AAGE Model

    DEFF Research Database (Denmark)

    Adams, Philip D; Andersen, Lill Thanning; Jacobsen, Lars Bo

    2002-01-01

    developed for MONASH has now been applied to Dynamic-AAGE to generate structural forecasts for the Danish economy. The starting point for the Dynamic-AAGE forecasts is a set of scenarios for the macro economy supplied by a specialist-forecasting agency, currently the Danish Economic Council. Expert...

  17. Beating the random walk: a performance assessment of long-term interest rate forecasts

    NARCIS (Netherlands)

    den Butter, F.A.G.; Jansen, P.W.

    2013-01-01

    This article assesses the performance of a number of long-term interest rate forecast approaches, namely time series models, structural economic models, expert forecasts and combinations thereof. The predictive performance of these approaches is compared using outside sample forecast errors, where a

  18. Energy reference forecast for 2014

    International Nuclear Information System (INIS)

    Schlesinger, Michael; Lutz, Christian

    2014-01-01

    The German Federal Ministry for Economic Affairs and Energy has commissioned three reputed institutions to prepare an energy reference forecast as well as a target scenario up to the year 2050. The results of this survey evidence a substantial need for political action if the goals of the Federal Government's energy concept are to be achieved as planned. In view of the wide range of interests among the players involved as well as the complexity of the demands facing the political leadership from diverse areas of life it appears unlikely that the targets laid down in the energy concept can be realised.

  19. The economic value of realized volatility

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunou, Bruno; Jacobs, Kris

    2014-01-01

    Many studies have documented that daily realized volatility estimates based on intraday returns provide volatility forecasts that are superior to forecasts constructed from daily returns only. We investigate whether these forecasting improvements translate into economic value added. To do so, we ...

  20. Forecasting market developments

    International Nuclear Information System (INIS)

    Weller, T.

    1997-01-01

    Traditional planning in essence consists of linear extrapolation of established facts and experience. This approach was good enough until recently, when progress would be relatively foreseeable within a stable system. The situation has been changing with developments and modifications in the global economic sector proceeding at accelerated pace, so that conventional planning methods become hopelessly inadequate. The past is of low significance to emerging markets; planners today have to keep abreast with and take into account the possible and emerging influencing factors. Experience is a factor to be replaced by intelligent analysis and conclusion within the framework of system networks. Modern scenario modelling methods are based on this approach: They are able to simulate and forecast a whole range of ''possible futures'', derived from perceivable trends. The article illustrates the novel planning methodology by assessing the future of the renewable energy sources, applying a computerized planning method (vision design) which is based on intelligent comparative analysis of all relevant trends. (Orig./RHM) [de

  1. Multidisciplinary studies of the social, economic and political impact resulting from recent advances in satellite meteorology. Volume 6: Executive summary. [technological forecasting spacecraft control/attitude (inclination) -classical mechanics

    Science.gov (United States)

    1975-01-01

    An assessment of the technological impact of modern satellite weather forecasting for the United States is presented. Topics discussed are: (1) television broadcasting of weather; (2) agriculture (crop production); (3) water resources; (4) urban development; (5) recreation; and (6) transportation.

  2. Fuzzy approach for short term load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Chenthur Pandian, S.; Duraiswamy, K.; Kanagaraj, N. [Electrical and Electronics Engg., K.S. Rangasamy College of Technology, Tiruchengode 637209, Tamil Nadu (India); Christober Asir Rajan, C. [Department of Electrical and Electronics Engineering, Pondicherry Engineering College, Pondicherry (India)

    2006-04-15

    The main objective of short term load forecasting (STLF) is to provide load predictions for generation scheduling, economic load dispatch and security assessment at any time. The STLF is needed to supply necessary information for the system management of day-to-day operations and unit commitment. In this paper, the 'time' and 'temperature' of the day are taken as inputs for the fuzzy logic controller and the 'forecasted load' is the output. The input variable 'time' has been divided into eight triangular membership functions. The membership functions are Mid Night, Dawn, Morning, Fore Noon, After Noon, Evening, Dusk and Night. Another input variable 'temperature' has been divided into four triangular membership functions. They are Below Normal, Normal, Above Normal and High. The 'forecasted load' as output has been divided into eight triangular membership functions. They are Very Low, Low, Sub Normal, Moderate Normal, Normal, Above Normal, High and Very High. Case studies have been carried out for the Neyveli Thermal Power Station Unit-II (NTPS-II) in India. The fuzzy forecasted load values are compared with the conventional forecasted values. The forecasted load closely matches the actual one within +/-3%. (author)

  3. Evaluating Forecasts, Narratives and Policy Using a Test of Invariance

    Directory of Open Access Journals (Sweden)

    Jennifer L. Castle

    2017-09-01

    Full Text Available Economic policy agencies produce forecasts with accompanying narratives, and base policy changes on the resulting anticipated developments in the target variables. Systematic forecast failure, defined as large, persistent deviations of the outturns from the numerical forecasts, can make the associated narrative false, which would in turn question the validity of the entailed policy implementation. We establish when systematic forecast failure entails failure of the accompanying narrative, which we call forediction failure, and when that in turn implies policy invalidity. Most policy regime changes involve location shifts, which can induce forediction failure unless the policy variable is super exogenous in the policy model. We propose a step-indicator saturation test to check in advance for invariance to policy changes. Systematic forecast failure, or a lack of invariance, previously justified by narratives reveals such stories to be economic fiction.

  4. A forecasting model of gaming revenues in Clark County, Nevada

    International Nuclear Information System (INIS)

    Edwards, B.; Bando, A.; Basset, G.; Rosen, A.; Meenan, C.; Carlson, J.

    1992-01-01

    This paper describes the Western Area Gaming and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. It is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry, and identify the exogenous variables that affect gaming revenues. This model will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming related economic activity resulting from future events like the siting of a permanent high-level radioactive waste repository at Yucca Mountain

  5. A forecasting model of gaming revenues in Clark County, Nevada

    International Nuclear Information System (INIS)

    Edwards, B.; Bando, A.; Bassett, G.; Rosen, A.; Carlson, J.; Meenan, C.

    1992-01-01

    This paper describes the Western Area Gaining and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. It is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry, an identify the exogenous variables that affect gaming revenues. This model will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming related economic activity resulting from future events like the siting of a permanent high-level radioactive waste repository at Yucca Mountain

  6. A forecasting model of gaming revenues in Clark County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.; Bando, A.; Bassett, G.; Rosen, A. [Argonne National Lab., IL (United States); Carlson, J.; Meenan, C. [Science Applications International Corp., Las Vegas, NV (United States)

    1992-04-01

    This paper describes the Western Area Gaming and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. It is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry, an identify the exogenous variables that affect gaming revenues. This model will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming related economic activity resulting from future events like the siting of a permanent high-level radioactive waste repository at Yucca Mountain.

  7. House Price Forecasts, Forecaster Herding, and the Recent Crisis

    Directory of Open Access Journals (Sweden)

    Christian Pierdzioch

    2012-11-01

    Full Text Available We used the Wall Street Journal survey data for the period 2006–2012 to analyze whether forecasts of house prices and housing starts provide evidence of (anti-herding of forecasters. Forecasts are consistent with herding (anti-herding of forecasters if forecasts are biased towards (away from the consensus forecast. We found that anti-herding is prevalent among forecasters of house prices. We also report that, following the recent crisis, the prevalence of forecaster anti-herding seems to have changed over time.

  8. House Price Forecasts, Forecaster Herding, and the Recent Crisis

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Pierdzioch; Ruelke

    2013-01-01

    We used the Wall Street Journal survey data for the period 2006–2012 to analyze whether forecasts of house prices and housing starts provide evidence of (anti-)herding of forecasters. Forecasts are consistent with herding (anti-herding) of forecasters if forecasts are biased towards (away from) t......) the consensus forecast. We found that anti-herding is prevalent among forecasters of house prices. We also report that, following the recent crisis, the prevalence of forecaster anti-herding seems to have changed over time....

  9. World Area Forecast System (WAFS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Area Forecast System (WAFS) is a worldwide system by which world area forecast centers provide aeronautical meteorological en-route forecasts in uniform...

  10. Price Forecasting of Electricity Markets in the Presence of a High Penetration of Wind Power Generators

    OpenAIRE

    Saber Talari; Miadreza Shafie-khah; Gerardo J. Osório; Fei Wang; Alireza Heidari; João P. S. Catalão

    2017-01-01

    Price forecasting plays a vital role in the day-ahead markets. Once sellers and buyers access an accurate price forecasting, managing the economic risk can be conducted appropriately through offering or bidding suitable prices. In networks with high wind power penetration, the electricity price is influenced by wind energy; therefore, price forecasting can be more complicated. This paper proposes a novel hybrid approach for price forecasting of day-ahead markets, with high penetration of wind...

  11. Forecasting in Planning

    NARCIS (Netherlands)

    Ike, P.; Voogd, Henk; Voogd, Henk; Linden, Gerard

    2004-01-01

    This chapter begins with a discussion of qualitative forecasting by describing a number of methods that depend on judgements made by stakeholders, experts or other interested parties to arrive at forecasts. Two qualitative approaches are illuminated, the Delphi and scenario methods respectively.

  12. Improving Garch Volatility Forecasts

    NARCIS (Netherlands)

    Klaassen, F.J.G.M.

    1998-01-01

    Many researchers use GARCH models to generate volatility forecasts. We show, however, that such forecasts are too variable. To correct for this, we extend the GARCH model by distinguishing two regimes with different volatility levels. GARCH effects are allowed within each regime, so that our model

  13. On density forecast evaluation

    NARCIS (Netherlands)

    Diks, C.

    2008-01-01

    Traditionally, probability integral transforms (PITs) have been popular means for evaluating density forecasts. For an ideal density forecast, the PITs should be uniformly distributed on the unit interval and independent. However, this is only a necessary condition, and not a sufficient one, as

  14. Forecast Accuracy Uncertainty and Momentum

    OpenAIRE

    Bing Han; Dong Hong; Mitch Warachka

    2009-01-01

    We demonstrate that stock price momentum and earnings momentum can result from uncertainty surrounding the accuracy of cash flow forecasts. Our model has multiple information sources issuing cash flow forecasts for a stock. The investor combines these forecasts into an aggregate cash flow estimate that has minimal mean-squared forecast error. This aggregate estimate weights each cash flow forecast by the estimated accuracy of its issuer, which is obtained from their past forecast errors. Mome...

  15. African Review of Economics and Finance: Submissions

    African Journals Online (AJOL)

    The African Review of Economics and Finance is a peer-reviewed, scholarly ... financial markets and institutions, asset pricing, forecasting, impact of culture and ... In: Friedman BM, Hahn FH (Eds), Handbook of monetary economics, vol.1.

  16. Spatial electric load forecasting

    CERN Document Server

    Willis, H Lee

    2002-01-01

    Spatial Electric Load Forecasting Consumer Demand for Power and ReliabilityCoincidence and Load BehaviorLoad Curve and End-Use ModelingWeather and Electric LoadWeather Design Criteria and Forecast NormalizationSpatial Load Growth BehaviorSpatial Forecast Accuracy and Error MeasuresTrending MethodsSimulation Method: Basic ConceptsA Detailed Look at the Simulation MethodBasics of Computerized SimulationAnalytical Building Blocks for Spatial SimulationAdvanced Elements of Computerized SimulationHybrid Trending-Simulation MethodsAdvanced

  17. Coal production forecast and low carbon policies in China

    International Nuclear Information System (INIS)

    Wang Jianzhou; Dong Yao; Wu Jie; Mu Ren; Jiang He

    2011-01-01

    With rapid economic growth and industrial expansion, China consumes more coal than any other nation. Therefore, it is particularly crucial to forecast China's coal production to help managers make strategic decisions concerning China's policies intended to reduce carbon emissions and concerning the country's future needs for domestic and imported coal. Such decisions, which must consider results from forecasts, will have important national and international effects. This article proposes three improved forecasting models based on grey systems theory: the Discrete Grey Model (DGM), the Rolling DGM (RDGM), and the p value RDGM. We use the statistical data of coal production in China from 1949 to 2005 to validate the effectiveness of these improved models to forecast the data from 2006 to 2010. The performance of the models demonstrates that the p value RDGM has the best forecasting behaviour over this historical time period. Furthermore, this paper forecasts coal production from 2011 to 2015 and suggests some policies for reducing carbon and other emissions that accompany the rise in forecasted coal production. - Highlights: → Improved forecasting models make full use of the advantages of individual model. → Proposed models create commendable improvements for current research. → Proposed models do not make complicated decisions about the explicit form. → We forecast coal production of China from 2011 to 2015. → We suggest some policies for reducing carbon emissions.

  18. Coal production forecast and low carbon policies in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jianzhou [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China); Dong Yao, E-mail: dongyao20051987@yahoo.cn [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China); Wu Jie; Mu Ren; Jiang He [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China)

    2011-10-15

    With rapid economic growth and industrial expansion, China consumes more coal than any other nation. Therefore, it is particularly crucial to forecast China's coal production to help managers make strategic decisions concerning China's policies intended to reduce carbon emissions and concerning the country's future needs for domestic and imported coal. Such decisions, which must consider results from forecasts, will have important national and international effects. This article proposes three improved forecasting models based on grey systems theory: the Discrete Grey Model (DGM), the Rolling DGM (RDGM), and the p value RDGM. We use the statistical data of coal production in China from 1949 to 2005 to validate the effectiveness of these improved models to forecast the data from 2006 to 2010. The performance of the models demonstrates that the p value RDGM has the best forecasting behaviour over this historical time period. Furthermore, this paper forecasts coal production from 2011 to 2015 and suggests some policies for reducing carbon and other emissions that accompany the rise in forecasted coal production. - Highlights: > Improved forecasting models make full use of the advantages of individual model. > Proposed models create commendable improvements for current research. > Proposed models do not make complicated decisions about the explicit form. > We forecast coal production of China from 2011 to 2015. > We suggest some policies for reducing carbon emissions.

  19. A fuzzy inference model for short-term load forecasting

    International Nuclear Information System (INIS)

    Mamlook, Rustum; Badran, Omar; Abdulhadi, Emad

    2009-01-01

    This paper is concerned with the short-term load forecasting (STLF) in power system operations. It provides load prediction for generation scheduling and unit commitment decisions, and therefore precise load forecasting plays an important role in reducing the generation cost and the spinning reserve capacity. Short-term electricity demand forecasting (i.e., the prediction of hourly loads (demand)) is one of the most important tools by which an electric utility/company plans, dispatches the loading of generating units in order to meet system demand. The accuracy of the dispatching system, which is derived from the accuracy of the forecasting algorithm used, will determine the economics of the operation of the power system. The inaccuracy or large error in the forecast simply means that load matching is not optimized and consequently the generation and transmission systems are not being operated in an efficient manner. In the present study, a proposed methodology has been introduced to decrease the forecasted error and the processing time by using fuzzy logic controller on an hourly base. Therefore, it predicts the effect of different conditional parameters (i.e., weather, time, historical data, and random disturbances) on load forecasting in terms of fuzzy sets during the generation process. These parameters are chosen with respect to their priority and importance. The forecasted values obtained by fuzzy method were compared with the conventionally forecasted ones. The results showed that the STLF of the fuzzy implementation have more accuracy and better outcomes

  20. Multicomponent ensemble models to forecast induced seismicity

    Science.gov (United States)

    Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.

    2018-01-01

    In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels

  1. About the National Forecast Chart

    Science.gov (United States)

    code. Press enter or select the go button to submit request Local forecast by "City, St" or Prediction Center on Twitter NCEP Quarterly Newsletter WPC Home Analyses and Forecasts National Forecast to all federal, state, and local government web resources and services. The National Forecast Charts

  2. Does money matter in inflation forecasting?

    Science.gov (United States)

    Binner, J. M.; Tino, P.; Tepper, J.; Anderson, R.; Jones, B.; Kendall, G.

    2010-11-01

    This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. In our forecasting experiment we use two nonlinear techniques, namely, recurrent neural networks and kernel recursive least squares regression-techniques that are new to macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the kernel regression technique is a finite memory predictor. The two methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naïve random walk model. The best models were nonlinear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation. Beyond its economic findings, our study is in the tradition of physicists’ long-standing interest in the interconnections among statistical mechanics, neural networks, and related nonparametric statistical methods, and suggests potential avenues of extension for such studies.

  3. Using a Software Tool in Forecasting: a Case Study of Sales Forecasting Taking into Account Data Uncertainty

    Science.gov (United States)

    Fabianová, Jana; Kačmáry, Peter; Molnár, Vieroslav; Michalik, Peter

    2016-10-01

    Forecasting is one of the logistics activities and a sales forecast is the starting point for the elaboration of business plans. Forecast accuracy affects the business outcomes and ultimately may significantly affect the economic stability of the company. The accuracy of the prediction depends on the suitability of the use of forecasting methods, experience, quality of input data, time period and other factors. The input data are usually not deterministic but they are often of random nature. They are affected by uncertainties of the market environment, and many other factors. Taking into account the input data uncertainty, the forecast error can by reduced. This article deals with the use of the software tool for incorporating data uncertainty into forecasting. Proposals are presented of a forecasting approach and simulation of the impact of uncertain input parameters to the target forecasted value by this case study model. The statistical analysis and risk analysis of the forecast results is carried out including sensitivity analysis and variables impact analysis.

  4. Marine Point Forecasts

    Science.gov (United States)

    will link to the zone forecast and then allow further zooming to the point of interest whereas on the Honolulu, HI Chicago, IL Northern Indiana, IN Lake Charles, LA New Orleans, LA Boston, MA Caribou, ME

  5. Socioeconomic Forecasting : [Technical Summary

    Science.gov (United States)

    2012-01-01

    Because the traffic forecasts produced by the Indiana : Statewide Travel Demand Model (ISTDM) are driven by : the demographic and socioeconomic inputs to the model, : particular attention must be given to obtaining the most : accurate demographic and...

  6. NYHOPS Forecast Model Results

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 3D Marine Nowcast/Forecast System for the New York Bight NYHOPS subdomain. Currents, waves, surface meteorology, and water conditions.

  7. Inflow forecasting at BPA

    Energy Technology Data Exchange (ETDEWEB)

    McManamon, A. [Bonneville Power Administration, Portland, OR (United States)

    2007-07-01

    The Columbia River Power System operates with consideration for flood control, endangered species, navigation, irrigation, water supply, recreation, other fish and wildlife concerns and power production. The Bonneville Power Association (BPA) located in Portland, Oregon is responsible for 35-40 per cent of the power consumed within the region. This presentation discussed inflow power concerns at BPA. The presentation illustrated elevational relief of projects; annual and daily variability; the hydrologic cycle; national river service weather forecasting service (NRSWFS); components of NRSWFS; and hydrologic forecast locations. Project operations and inventory were included along with a comparison of the 71-year average unregulated flow with regulated flow at the Dalles. Consistency between short-term and long-term forecasts and long-term streamflow forecasts were also illustrated in graphical format. The presentation also discussed the issue of reducing model and parameter uncertainty; reducing initial conditions uncertainty; snow updating; and reducing meteorological uncertainty. tabs., figs.

  8. CCAA seasonal forecasting

    International Development Research Centre (IDRC) Digital Library (Canada)

    Integrating meteorological and indigenous knowledge-based seasonal climate forecasts in ..... Explanation is based on spiritual and social values. Taught by .... that provided medicine and food became the subject of strict rules and practices ...

  9. Forecast Icing Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Forecast Icing Product (FIP) is an automatically-generated index suitable for depicting areas of potentially hazardous airframe icing. The FIP algorithm uses...

  10. Conditional Probabilistic Population Forecasting

    OpenAIRE

    Sanderson, W.C.; Scherbov, S.; O'Neill, B.C.; Lutz, W.

    2003-01-01

    Since policy makers often prefer to think in terms of scenarios, the question has arisen as to whether it is possible to make conditional population forecasts in a probabilistic context. This paper shows that it is both possible and useful to make these forecasts. We do this with two different kinds of examples. The first is the probabilistic analog of deterministic scenario analysis. Conditional probabilistic scenario analysis is essential for policy makers it allows them to answer "what if"...

  11. Conditional probabilistic population forecasting

    OpenAIRE

    Sanderson, Warren; Scherbov, Sergei; O'Neill, Brian; Lutz, Wolfgang

    2003-01-01

    Since policy-makers often prefer to think in terms of alternative scenarios, the question has arisen as to whether it is possible to make conditional population forecasts in a probabilistic context. This paper shows that it is both possible and useful to make these forecasts. We do this with two different kinds of examples. The first is the probabilistic analog of deterministic scenario analysis. Conditional probabilistic scenario analysis is essential for policy-makers because it allows them...

  12. Conditional Probabilistic Population Forecasting

    OpenAIRE

    Sanderson, Warren C.; Scherbov, Sergei; O'Neill, Brian C.; Lutz, Wolfgang

    2004-01-01

    Since policy-makers often prefer to think in terms of alternative scenarios, the question has arisen as to whether it is possible to make conditional population forecasts in a probabilistic context. This paper shows that it is both possible and useful to make these forecasts. We do this with two different kinds of examples. The first is the probabilistic analog of deterministic scenario analysis. Conditional probabilistic scenario analysis is essential for policy-makers because...

  13. EU pharmaceutical expenditure forecast

    OpenAIRE

    Urbinati, Duccio; Rémuzat, Cécile; Kornfeld, Åsa; Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Mzoughi, Olfa; Toumi, Mondher

    2014-01-01

    Background and Objectives: With constant incentives for healthcare payers to contain their pharmaceutical budgets, forecasting has become critically important. Some countries have, for instance, developed pharmaceutical horizon scanning units. The objective of this project was to build a model to assess the net effect of the entrance of new patented medicinal products versus medicinal products going off-patent, with a defined forecast horizon, on selected European Union (EU) Member States’ ph...

  14. Problems of Forecast

    OpenAIRE

    Kucharavy , Dmitry; De Guio , Roland

    2005-01-01

    International audience; The ability to foresee future technology is a key task of Innovative Design. The paper focuses on the obstacles to reliable prediction of technological evolution for the purpose of Innovative Design. First, a brief analysis of problems for existing forecasting methods is presented. The causes for the complexity of technology prediction are discussed in the context of reduction of the forecast errors. Second, using a contradiction analysis, a set of problems related to ...

  15. Research on energy supply, demand and economy forecasting in Japan

    International Nuclear Information System (INIS)

    Shiba, Tsuyoshi; Kamezaki, Hiroshi; Yuyama, Tomonori; Suzuki, Atsushi

    1999-10-01

    This project aims to do research on forecasts of energy demand structure and electricity generation cost in each power plant in Japan in the 21st century, considering constructing successful FBR scenario. During the process of doing research on forecasts of energy demand structure in Japan, documents published from organizations in inside and outside of Japan were collected. These documents include prospects of economic growth rate, forecasts of amount for energy supply and demand, the maximum amount of introducing new energy resources, CO2 regulation, and evaluation of energy best mixture. Organizations in Japan such as Economic Council and Japan Energy Economic Research Institute have provided long-term forecasts until the early 21st century. Meanwhile, organizations overseas have provided forecasts of economic structure, and demand and supply for energy in OECD and East Asia including Japan. In connection with forecasts of electricity generation cost in each power plant, views on the ultimate reserves and cost of resources are reviewed in this report. According to some views on oil reserves, making assumptions based on reserves/production ratio, the maximum length of the time that oil reserves will last is 150 years. In addition, this report provides summaries of cost and potential role of various resources, including solar energy and wind energy; and views on waste, safety, energy security-related externality cost, and the price of transferring CO2 emission right. (author)

  16. A framework for improving a seasonal hydrological forecasting system using sensitivity analysis

    Science.gov (United States)

    Arnal, Louise; Pappenberger, Florian; Smith, Paul; Cloke, Hannah

    2017-04-01

    Seasonal streamflow forecasts are of great value for the socio-economic sector, for applications such as navigation, flood and drought mitigation and reservoir management for hydropower generation and water allocation to agriculture and drinking water. However, as we speak, the performance of dynamical seasonal hydrological forecasting systems (systems based on running seasonal meteorological forecasts through a hydrological model to produce seasonal hydrological forecasts) is still limited in space and time. In this context, the ESP (Ensemble Streamflow Prediction) remains an attractive forecasting method for seasonal streamflow forecasting as it relies on forcing a hydrological model (starting from the latest observed or simulated initial hydrological conditions) with historical meteorological observations. This makes it cheaper to run than a standard dynamical seasonal hydrological forecasting system, for which the seasonal meteorological forecasts will first have to be produced, while still producing skilful forecasts. There is thus the need to focus resources and time towards improvements in dynamical seasonal hydrological forecasting systems which will eventually lead to significant improvements in the skill of the streamflow forecasts generated. Sensitivity analyses are a powerful tool that can be used to disentangle the relative contributions of the two main sources of errors in seasonal streamflow forecasts, namely the initial hydrological conditions (IHC; e.g., soil moisture, snow cover, initial streamflow, among others) and the meteorological forcing (MF; i.e., seasonal meteorological forecasts of precipitation and temperature, input to the hydrological model). Sensitivity analyses are however most useful if they inform and change current operational practices. To this end, we propose a method to improve the design of a seasonal hydrological forecasting system. This method is based on sensitivity analyses, informing the forecasters as to which element of

  17. Application of grafted polynomial function in forecasting cotton ...

    African Journals Online (AJOL)

    A study was conducted to forecast cotton production trend with the application of a grafted polynomial function in Nigeria from 1985 through 2013. Grafted models are used in econometrics to embark on economic analysis involving time series. In economic time series, the paucity of data and their availability has always ...

  18. Forecasting daily patient volumes in the emergency department.

    Science.gov (United States)

    Jones, Spencer S; Thomas, Alun; Evans, R Scott; Welch, Shari J; Haug, Peter J; Snow, Gregory L

    2008-02-01

    Shifts in the supply of and demand for emergency department (ED) resources make the efficient allocation of ED resources increasingly important. Forecasting is a vital activity that guides decision-making in many areas of economic, industrial, and scientific planning, but has gained little traction in the health care industry. There are few studies that explore the use of forecasting methods to predict patient volumes in the ED. The goals of this study are to explore and evaluate the use of several statistical forecasting methods to predict daily ED patient volumes at three diverse hospital EDs and to compare the accuracy of these methods to the accuracy of a previously proposed forecasting method. Daily patient arrivals at three hospital EDs were collected for the period January 1, 2005, through March 31, 2007. The authors evaluated the use of seasonal autoregressive integrated moving average, time series regression, exponential smoothing, and artificial neural network models to forecast daily patient volumes at each facility. Forecasts were made for horizons ranging from 1 to 30 days in advance. The forecast accuracy achieved by the various forecasting methods was compared to the forecast accuracy achieved when using a benchmark forecasting method already available in the emergency medicine literature. All time series methods considered in this analysis provided improved in-sample model goodness of fit. However, post-sample analysis revealed that time series regression models that augment linear regression models by accounting for serial autocorrelation offered only small improvements in terms of post-sample forecast accuracy, relative to multiple linear regression models, while seasonal autoregressive integrated moving average, exponential smoothing, and artificial neural network forecasting models did not provide consistently accurate forecasts of daily ED volumes. This study confirms the widely held belief that daily demand for ED services is characterized by

  19. Energy and electricity demand forecasting for nuclear power planning in developing countries

    International Nuclear Information System (INIS)

    1988-07-01

    This Guidebook is designed to be a reference document to forecast energy and electricity demand. It presents concepts and methodologies that have been developed to make an analytical approach to energy/electricity demand forecasting as part of the planning process. The Guidebook is divided into 6 main chapters: (Energy demand and development, energy demand analysis, electric load curve analysis, energy and electricity demand forecasting, energy and electricity demand forecasting tools used in various organizations, IAEA methodologies for energy and electricity demand forecasting) and 3 appendices (experience with case studies carried out by the IAEA, reference technical data, reference economic data). A bibliography and a glossary complete the Guidebook. Refs, figs and tabs

  20. FORECASTING TOURIST ARRIVALS TO LANGKAWI ISLAND MALAYSIA

    OpenAIRE

    Kamarul Ariffin MANSOR; Wan Irham ISHAK

    2015-01-01

    Tourism is the act of travelling for a person or group of people from their own locality to a specific destination in a short term or long term period either for leisure or business purposes. Tourism is an important sector in the Malaysian economy where tourism development will lead to the positive economic development of the country and in general improve the quality of life for all citizens. Therefore, forecasting tourist arrivals with high accuracy becomes important since it may ensure t...

  1. Olympic games in Sochi, comparison and forecast

    OpenAIRE

    Kudrina, Anastasia

    2015-01-01

    Title: Olympic Games in Sochi, comparison and prediction Goals: Based on a research of the Olympic Games in Sochi to create a forecast of future economic effects on the territorium Method: The prediction is based on the analogic situation in other countries that held the Olympic Games in the past. Induction method of representing the thought process, during which the individual facts formulate more general assertions and theories; deduction method, which are derived from the general conclusio...

  2. CBO’s Revenue Forecasting Record

    Science.gov (United States)

    2015-11-01

    by squaring the errors, it places a greater weight on larger deviations. The mean absolute error is an easier measure to understand , but the RMSE... macroeconomic measures like GDP as a guide because that relationship has been significantly altered over time by changes to provisions of tax law. Instead...CBO projects revenues largely by identifying the macroeconomic variables in its economic forecasts that constitute the bases on which the various

  3. Coping with Changes in International Classifications of Sectors and Occupations: Application in Skills Forecasting. Research Paper No 43

    Science.gov (United States)

    Kvetan, Vladimir, Ed.

    2014-01-01

    Reliable and consistent time series are essential to any kind of economic forecasting. Skills forecasting needs to combine data from national accounts and labour force surveys, with the pan-European dimension of Cedefop's skills supply and demand forecasts, relying on different international classification standards. Sectoral classification (NACE)…

  4. Operational hydrological forecasting in Bavaria. Part II: Ensemble forecasting

    Science.gov (United States)

    Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.

    2009-04-01

    In part I of this study, the operational flood forecasting system in Bavaria and an approach to identify and quantify forecast uncertainty was introduced. The approach is split into the calculation of an empirical 'overall error' from archived forecasts and the calculation of an empirical 'model error' based on hydrometeorological forecast tests, where rainfall observations were used instead of forecasts. The 'model error' can especially in upstream catchments where forecast uncertainty is strongly dependent on the current predictability of the atrmosphere be superimposed on the spread of a hydrometeorological ensemble forecast. In Bavaria, two meteorological ensemble prediction systems are currently tested for operational use: the 16-member COSMO-LEPS forecast and a poor man's ensemble composed of DWD GME, DWD Cosmo-EU, NCEP GFS, Aladin-Austria, MeteoSwiss Cosmo-7. The determination of the overall forecast uncertainty is dependent on the catchment characteristics: 1. Upstream catchment with high influence of weather forecast a) A hydrological ensemble forecast is calculated using each of the meteorological forecast members as forcing. b) Corresponding to the characteristics of the meteorological ensemble forecast, each resulting forecast hydrograph can be regarded as equally likely. c) The 'model error' distribution, with parameters dependent on hydrological case and lead time, is added to each forecast timestep of each ensemble member d) For each forecast timestep, the overall (i.e. over all 'model error' distribution of each ensemble member) error distribution is calculated e) From this distribution, the uncertainty range on a desired level (here: the 10% and 90% percentile) is extracted and drawn as forecast envelope. f) As the mean or median of an ensemble forecast does not necessarily exhibit meteorologically sound temporal evolution, a single hydrological forecast termed 'lead forecast' is chosen and shown in addition to the uncertainty bounds. This can be

  5. Gas deliverability forecasting - why bother?

    International Nuclear Information System (INIS)

    Trick, M.

    1996-01-01

    According to the author the answer to the question is an unequivocal 'yes' because gas production forecasting is extremely useful for the management and development of a gas field. To model a gas field, one must take into account reservoir performance, sandface inflow performance, wellbore pressure losses, gathering system pressure losses, and field facility performance. The integration of all these factors in a single computer-based model that incorporates proven technology will facilitate the evaluation of various development strategies. A good computer model can help to predict the most cost effective improvement methods, determine economic viability, estimate how much gas is available, evaluate whether drilling wells or adding compression will produce the most reserves, determine optimum placement of compression, evaluate changes to the gathering system, and determine if production from existing wells can be increased by wellbore modifications

  6. Frost Monitoring and Forecasting Using MODIS Land Surface Temperature Data and a Numerical Weather Prediction Model Forecasts for Eastern Africa

    Science.gov (United States)

    Kabuchanga, Eric; Flores, Africa; Malaso, Susan; Mungai, John; Sakwa, Vincent; Shaka, Ayub; Limaye, Ashutosh

    2014-01-01

    Frost is a major challenge across Eastern Africa, severely impacting agricultural farms. Frost damages have wide ranging economic implications on tea and coffee farms, which represent a major economic sector. Early monitoring and forecasting will enable farmers to take preventive actions to minimize the losses. Although clearly important, timely information on when to protect crops from freezing is relatively limited. MODIS Land Surface Temperature (LST) data, derived from NASA's Terra and Aqua satellites, and 72-hr weather forecasts from the Kenya Meteorological Service's operational Weather Research Forecast model are enabling the Regional Center for Mapping of Resources for Development (RCMRD) and the Tea Research Foundation of Kenya to provide timely information to farmers in the region. This presentation will highlight an ongoing collaboration among the Kenya Meteorological Service, RCMRD, and the Tea Research Foundation of Kenya to identify frost events and provide farmers with potential frost forecasts in Eastern Africa.

  7. Space Weather Forecasting at IZMIRAN

    Science.gov (United States)

    Gaidash, S. P.; Belov, A. V.; Abunina, M. A.; Abunin, A. A.

    2017-12-01

    Since 1998, the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN) has had an operating heliogeophysical service—the Center for Space Weather Forecasts. This center transfers the results of basic research in solar-terrestrial physics into daily forecasting of various space weather parameters for various lead times. The forecasts are promptly available to interested consumers. This article describes the center and the main types of forecasts it provides: solar and geomagnetic activity, magnetospheric electron fluxes, and probabilities of proton increases. The challenges associated with the forecasting of effects of coronal mass ejections and coronal holes are discussed. Verification data are provided for the center's forecasts.

  8. Assessment of storm forecast

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Hahmann, Andrea N.; Huus Bjerge, Martin

    When wind speed exceeds a certain value, wind turbines shut-down in order to protect their structure. This leads to sudden wind plants shut down and to new challenges concerning the secure operation of the pan-European electric system with future large scale offshore wind power. This task aims...... stopped, completely or partially, producing due to extreme wind speeds. Wind speed and power measurements from those events are presented and compared to the forecast available at Energinet.dk. The analysis looked at wind speed and wind power forecast. The main conclusion of the analysis is that the wind...... to consider it an EWP) and that the available wind speed forecasts are given as a mean wind speed over a rather large area. At wind power level, the analysis shows that prediction of accurate production levels from a wind farm experiencing EWP is rather poor. This is partially because the power curve...

  9. Financial Analysts’ Forecasts

    DEFF Research Database (Denmark)

    Stæhr, Simone

    . The primary focus is on financial analysts in the task of conducting earnings forecasts while a secondary focus is on investors’ abilities to interpret and make use of these forecasts. Simply put, financial analysts can be seen as information intermediators receiving inputs to their analyses from firm...... in the decision making and the magnitude of these constraints does sometimes vary with personal traits. Therefore, to the extent that financial analysts are subjects to behavioral biases their outputs to the investors are likely to be biased by their interpretation of information. Because investors need accuracy...... management and providing outputs to the investors. Amongst various outputs from the analysts are forecasts of earnings. According to decision theories mostly from the literature in psychology all humans are affected by cognitive constraints to some degree. These constraints may lead to unintentional biases...

  10. Wind power forecast

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Rui [Rede Electrica Nacional (REN), S.A., Lisboa (Portugal). Dept. Systems and Development System Operator; Trancoso, Ana Rosa; Delgado Domingos, Jose [Univ. Tecnica de Lisboa (Portugal). Seccao de Ambiente e Energia

    2012-07-01

    Accurate wind power forecast are needed to reduce integration costs in the electric grid caused by wind inherent variability. Currently, Portugal has a significant wind power penetration level and consequently the need to have reliable wind power forecasts at different temporal scales, including localized events such as ramps. This paper provides an overview of the methodologies used by REN to forecast wind power at national level, based on statistical and probabilistic combinations of NWP and measured data with the aim of improving accuracy of pure NWP. Results show that significant improvement can be achieved with statistical combination with persistence in the short-term and with probabilistic combination in the medium-term. NWP are also able to detect ramp events with 3 day notice to the operational planning. (orig.)

  11. Podemos prever a taxa de cambio brasileira? Evidência empírica utilizando inteligência computacional e modelos econométricos Can we forecast Brazilian exchange rates? Empirical evidences using computational intelligence and econometric models

    Directory of Open Access Journals (Sweden)

    Leandro dos Santos Coelho

    2008-12-01

    Full Text Available As abordagens de inteligência computacional, tais como sistemas nebulosos e redes neurais artificiais, têm-se gradualmente estabelecido como ferramentas robustas para a tarefa de aproximação de sistemas não-lineares complexos e previsão de séries temporais. Em aplicações envolvendo a área de Finanças, evidências empíricas anteriores indicam que modelos de inteligência computacional são mais precisos, dada sua maior capacidade em capturar não-linearidades e outros fatos estilizados presentes em séries financeiras. Nesse sentido, este artigo investiga a hipótese de que os modelos matemáticos de redes neurais perceptron multicamadas, redes neurais função de base radial e o sistema nebuloso Takagi-Sugeno (TAKAGI; SUGENO, 1985 são capazes de fornecer uma previsão fora-da-amostra mais acurada que os modelos auto-regressivos de médias móveis (ARMA e auto-regressivo de médias móveis supondo heterocedasticidade condicional auto-regressiva (ARMA-GARCH. O desempenho de previsão um-passo-à-frente dos modelos foi comparado utilizando-se séries de retorno da taxa de câmbio real/dólar (R$/US$ com freqüências de 15 minutos, 60 minutos, 120 minutos, diária e semanal. Resultados indicam que o desempenho dos modelos está diretamente relacionado à freqüência observada das séries. Além disso, os modelos de redes neurais obtiveram um desempenho superior em relação aos demais modelos considerados. A avaliação da estratégia de negociação estabelecida com base nas previsões geradas pelos modelos indicou que estratégias baseadas em modelos de redes neurais forneceram retornos superiores em relação àquelas baseadas em modelos ARMA e ARMA-GARCH e também em relação à estratégia buy-and-hold.Computational intelligence approaches, such as artificial neural networks and fuzzy systems, have become popular tools in approximating complicated nonlinear systems and time series forecasting. In Finance applications, there is

  12. Forecast of auroral activity

    International Nuclear Information System (INIS)

    Lui, A.T.Y.

    2004-01-01

    A new technique is developed to predict auroral activity based on a sample of over 9000 auroral sites identified in global auroral images obtained by an ultraviolet imager on the NASA Polar satellite during a 6-month period. Four attributes of auroral activity sites are utilized in forecasting, namely, the area, the power, and the rates of change in area and power. This new technique is quite accurate, as indicated by the high true skill scores for forecasting three different levels of auroral dissipation during the activity lifetime. The corresponding advanced warning time ranges from 22 to 79 min from low to high dissipation levels

  13. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik

    2012-01-01

    In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...... mesoscale model, allowing for both climatological estimates of icing and short term icing forecasts. The current model was able to detect periods of icing reasonably well at the warmer site. However at the cold climate site, the model was not able to remove ice quickly enough leading to large ice...

  14. Spatial load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Willis, H.L.; Engel, M.V.; Buri, M.J.

    1995-04-01

    The reliability, efficiency, and economy of a power delivery system depend mainly on how well its substations, transmission lines, and distribution feeders are located within the utility service area, and how well their capacities match power needs in their respective localities. Often, utility planners are forced to commit to sites, rights of way, and equipment capacities year in advance. A necessary element of effective expansion planning is a forecast of where and how much demand must be served by the future T and D system. This article reports that a three-stage method forecasts with accuracy and detail, allowing meaningful determination of sties and sizes for future substation, transmission, and distribution facilities.

  15. Short-term spatio-temporal wind power forecast in robust look-ahead power system dispatch

    KAUST Repository

    Xie, Le

    2014-01-01

    We propose a novel statistical wind power forecast framework, which leverages the spatio-temporal correlation in wind speed and direction data among geographically dispersed wind farms. Critical assessment of the performance of spatio-temporal wind power forecast is performed using realistic wind farm data from West Texas. It is shown that spatio-temporal wind forecast models are numerically efficient approaches to improving forecast quality. By reducing uncertainties in near-term wind power forecasts, the overall cost benefits on system dispatch can be quantified. We integrate the improved forecast with an advanced robust look-ahead dispatch framework. This integrated forecast and economic dispatch framework is tested in a modified IEEE RTS 24-bus system. Numerical simulation suggests that the overall generation cost can be reduced by up to 6% using a robust look-ahead dispatch coupled with spatio-temporal wind forecast as compared with persistent wind forecast models. © 2013 IEEE.

  16. Forecasting Housing Approvals in Australia: Do Forecasters Herd?

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Pierdzioch; Rülke

    2012-01-01

    Price trends in housing markets may reflect herding of market participants. A natural question is whether such herding, to the extent that it occurred, reflects herding in forecasts of professional forecasters. Using more than 6,000 forecasts of housing approvals for Australia, we did not find...

  17. CDM Convective Forecast Planning guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...

  18. Ontario demand forecast from January 2004 to December 2013

    International Nuclear Information System (INIS)

    2003-01-01

    This document examined the demand forecast for electricity on the Independent Market Operator (IMO)-controlled grid in Ontario for the period 2004-2013. It serves as an assessment tool to determine whether existing and proposed generation and transmission facilities in the province will be sufficient to meet future electricity needs. Changes in methodology have been made to allow for an hourly peak versus the previously reported 20-minute peak value. Actual data through to the end of October 2002 was used to re-estimate energy demand. Compared to other developed countries, the outlook for the Canadian economy is optimistic. In addition, the economic forecast is better than that which formed the basis of the last ten-year forecast. Energy demand in the median growth scenario is increasing at an annual rate of 1.1 per cent rather than 0.9 per cent for the forecasted period of 2003-2012. The combination of a higher growth rate and a higher starting point results in a 2010 forecast of 168 TWh. It is expected that peak demand will grow faster than in the previous forecast. Summer peak demand averaging an annual growth of 1.3 per cent is forecasted for the period 2003-2012, with winter peak demand averaging a growth of 0.8 per cent. Under normal weather conditions, the electricity system is expected to peak in the summer of 2005 due to the continued demand for cooling load. However, under an extreme weather scenario, the system is already summer peaking. The improved economic outlook and higher starting point resulted in a higher forecast for energy. The electricity system is expected to winter peak during the first years of the forecasted period. The heating load is not expected to experience rapid growth in the next few years. 15 tabs., 14 figs

  19. Are demand forecasting techniques applicable to libraries?

    OpenAIRE

    Sridhar, M. S.

    1984-01-01

    Examines the nature and limitations of demand forecasting, discuses plausible methods of forecasting demand for information, suggests some useful hints for demand forecasting and concludes by emphasizing unified approach to demand forecasting.

  20. Price forecasting of day-ahead electricity markets using a hybrid forecast method

    International Nuclear Information System (INIS)

    Shafie-khah, M.; Moghaddam, M. Parsa; Sheikh-El-Eslami, M.K.

    2011-01-01

    Research highlights: → A hybrid method is proposed to forecast the day-ahead prices in electricity market. → The method combines Wavelet-ARIMA and RBFN network models. → PSO method is applied to obtain optimum RBFN structure for avoiding over fitting. → One of the merits of the proposed method is lower need to the input data. → The proposed method has more accurate behavior in compare with previous methods. -- Abstract: Energy price forecasting in a competitive electricity market is crucial for the market participants in planning their operations and managing their risk, and it is also the key information in the economic optimization of the electric power industry. However, price series usually have a complex behavior due to their nonlinearity, nonstationarity, and time variancy. In this paper, a novel hybrid method to forecast day-ahead electricity price is proposed. This hybrid method is based on wavelet transform, Auto-Regressive Integrated Moving Average (ARIMA) models and Radial Basis Function Neural Networks (RBFN). The wavelet transform provides a set of better-behaved constitutive series than price series for prediction. ARIMA model is used to generate a linear forecast, and then RBFN is developed as a tool for nonlinear pattern recognition to correct the estimation error in wavelet-ARIMA forecast. Particle Swarm Optimization (PSO) is used to optimize the network structure which makes the RBFN be adapted to the specified training set, reducing computation complexity and avoiding overfitting. The proposed method is examined on the electricity market of mainland Spain and the results are compared with some of the most recent price forecast methods. The results show that the proposed hybrid method could provide a considerable improvement for the forecasting accuracy.

  1. Price forecasting of day-ahead electricity markets using a hybrid forecast method

    Energy Technology Data Exchange (ETDEWEB)

    Shafie-khah, M., E-mail: miadreza@gmail.co [Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Moghaddam, M. Parsa, E-mail: parsa@modares.ac.i [Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Sheikh-El-Eslami, M.K., E-mail: aleslam@modares.ac.i [Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2011-05-15

    Research highlights: {yields} A hybrid method is proposed to forecast the day-ahead prices in electricity market. {yields} The method combines Wavelet-ARIMA and RBFN network models. {yields} PSO method is applied to obtain optimum RBFN structure for avoiding over fitting. {yields} One of the merits of the proposed method is lower need to the input data. {yields} The proposed method has more accurate behavior in compare with previous methods. -- Abstract: Energy price forecasting in a competitive electricity market is crucial for the market participants in planning their operations and managing their risk, and it is also the key information in the economic optimization of the electric power industry. However, price series usually have a complex behavior due to their nonlinearity, nonstationarity, and time variancy. In this paper, a novel hybrid method to forecast day-ahead electricity price is proposed. This hybrid method is based on wavelet transform, Auto-Regressive Integrated Moving Average (ARIMA) models and Radial Basis Function Neural Networks (RBFN). The wavelet transform provides a set of better-behaved constitutive series than price series for prediction. ARIMA model is used to generate a linear forecast, and then RBFN is developed as a tool for nonlinear pattern recognition to correct the estimation error in wavelet-ARIMA forecast. Particle Swarm Optimization (PSO) is used to optimize the network structure which makes the RBFN be adapted to the specified training set, reducing computation complexity and avoiding overfitting. The proposed method is examined on the electricity market of mainland Spain and the results are compared with some of the most recent price forecast methods. The results show that the proposed hybrid method could provide a considerable improvement for the forecasting accuracy.

  2. Issues in midterm analysis and forecasting 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    Issues in Midterm Analysis and Forecasting 1998 (Issues) presents a series of nine papers covering topics in analysis and modeling that underlie the Annual Energy Outlook 1998 (AEO98), as well as other significant issues in midterm energy markets. AEO98, DOE/EIA-0383(98), published in December 1997, presents national forecasts of energy production, demand, imports, and prices through the year 2020 for five cases -- a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The forecasts were prepared by the Energy Information Administration (EIA), using EIA`s National Energy Modeling System (NEMS). The papers included in Issues describe underlying analyses for the projections in AEO98 and the forthcoming Annual Energy Outlook 1999 and for other products of EIA`s Office of Integrated Analysis and Forecasting. Their purpose is to provide public access to analytical work done in preparation for the midterm projections and other unpublished analyses. Specific topics were chosen for their relevance to current energy issues or to highlight modeling activities in NEMS. 59 figs., 44 tabs.

  3. Short-Term Wind Power Interval Forecasting Based on an EEMD-RT-RVM Model

    Directory of Open Access Journals (Sweden)

    Haixiang Zang

    2016-01-01

    Full Text Available Accurate short-term wind power forecasting is important for improving the security and economic success of power grids. Existing wind power forecasting methods are mostly types of deterministic point forecasting. Deterministic point forecasting is vulnerable to forecasting errors and cannot effectively deal with the random nature of wind power. In order to solve the above problems, we propose a short-term wind power interval forecasting model based on ensemble empirical mode decomposition (EEMD, runs test (RT, and relevance vector machine (RVM. First, in order to reduce the complexity of data, the original wind power sequence is decomposed into a plurality of intrinsic mode function (IMF components and residual (RES component by using EEMD. Next, we use the RT method to reconstruct the components and obtain three new components characterized by the fine-to-coarse order. Finally, we obtain the overall forecasting results (with preestablished confidence levels by superimposing the forecasting results of each new component. Our results show that, compared with existing methods, our proposed short-term interval forecasting method has less forecasting errors, narrower interval widths, and larger interval coverage percentages. Ultimately, our forecasting model is more suitable for engineering applications and other forecasting methods for new energy.

  4. Forecasting of superconducting compounds

    International Nuclear Information System (INIS)

    Savitskii, E.M.; Gribulya, V.G.; Kiseleva, N.N.

    1981-01-01

    In forecasting new superconducting intermetallic compounds of the A15 and Mo 3 Se types most promising from the viewpoint of high critical temperature Tsub(c), high critical magnetic fields Hsub(c), and high critical currents and in estimating their transition temperature it is proposed to apply cybernetic methods of computer learning

  5. Climate Forecast System

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Forecast System Home News Organization Web portal to all Federal, state and local government Web resources and services. The NCEP Climate when using the CFS Reanalysis (CFSR) data. Saha, Suranjana, and Coauthors, 2010: The NCEP Climate

  6. Foresight and Forecasts

    DEFF Research Database (Denmark)

    Kilbourn, Kyle; Bay, Marie Brøndum

    In predicting areas of growth, public innovation projects may rely on optimistic visions of technology still in development as a way of ensuring novelty for funding. This paper explores what happens when forecasts of robotic technology meets the practice of sterile supply in a preliminary stage...

  7. Hydrology and flow forecasting

    NARCIS (Netherlands)

    Vrijling, J.K.; Kwadijk, J.; Van Duivendijk, J.; Van Gelder, P.; Pang, H.; Rao, S.Q.; Wang, G.Q.; Huang, X.Q.

    2002-01-01

    We have studied and applied the statistic model (i.e. MMC) and hydrological models to Upper Yellow River. This report introduces the results and some conclusions from the model. The three models, MMC, MWBM and NAM, have be applied in the research area. The forecasted discharge by the three models

  8. NWS Marine Forecast Areas

    Science.gov (United States)

    of Commerce Ocean Prediction Center National Oceanic and Atmospheric Administration Analysis & Unified Surface Analysis Ocean Ocean Products Ice & Icebergs NIC Ice Products NAIS Iceberg Analysis Social Media Facebook Twitter YouTube Search Search For Go NWS All NOAA NWS Marine Forecast Areas

  9. The Latest Forecast.

    Science.gov (United States)

    Laurence, David

    2002-01-01

    Discusses the "latest forecast" for the future of English departments. Addresses departmental and institutional staffing practices, employment opportunities for PhDs, the acceleration of change in the institution, and the general state of the study and teaching of English. (RS)

  10. Ecological forecasts: An emerging imperative

    Science.gov (United States)

    James S. Clark; Steven R. Carpenter; Mary Barber; Scott Collins; Andy Dobson; Jonathan A. Foley; David M. Lodge; Mercedes Pascual; Roger Pielke; William Pizer; Cathy Pringle; Walter V. Reid; Kenneth A. Rose; Osvaldo Sala; William H. Schlesinger; Diana H. Wall; David Wear

    2001-01-01

    Planning and decision-making can be improved by access to reliable forecasts of ecosystem state, ecosystem services, and natural capital. Availability of new data sets, together with progress in computation and statistics, will increase our ability to forecast ecosystem change. An agenda that would lead toward a capacity to produce, evaluate, and communicate forecasts...

  11. Air Pollution Forecasts: An Overview

    Science.gov (United States)

    Bai, Lu; Wang, Jianzhou; Lu, Haiyan

    2018-01-01

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies. PMID:29673227

  12. Air Pollution Forecasts: An Overview.

    Science.gov (United States)

    Bai, Lu; Wang, Jianzhou; Ma, Xuejiao; Lu, Haiyan

    2018-04-17

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.

  13. Air Pollution Forecasts: An Overview

    Directory of Open Access Journals (Sweden)

    Lu Bai

    2018-04-01

    Full Text Available Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.

  14. Storm Prediction Center Forecast Products

    Science.gov (United States)

    select the go button to submit request Local forecast by "City, St" or "ZIP" City, St Archive NOAA Weather Radio Research Non-op. Products Forecast Tools Svr. Tstm. Events SPC Publications SPC services. Forecast Products Current Weather Watches This is the current graphic showing any severe

  15. Understanding Farmers’ Forecast Use from Their Beliefs, Values, Social Norms, and Perceived Obstacles

    Science.gov (United States)

    Hu, Qi; Pytlik Zillig, Lisa M.; Lynne, Gary D.; Tomkins, Alan J.; Waltman, William J.; Hayes, Michael J.; Hubbard, Kenneth G.; Artikov, Ikrom; Hoffman, Stacey J.; Wilhite, Donald A.

    2006-09-01

    Although the accuracy of weather and climate forecasts is continuously improving and new information retrieved from climate data is adding to the understanding of climate variation, use of the forecasts and climate information by farmers in farming decisions has changed little. This lack of change may result from knowledge barriers and psychological, social, and economic factors that undermine farmer motivation to use forecasts and climate information. According to the theory of planned behavior (TPB), the motivation to use forecasts may arise from personal attitudes, social norms, and perceived control or ability to use forecasts in specific decisions. These attributes are examined using data from a survey designed around the TPB and conducted among farming communities in the region of eastern Nebraska and the western U.S. Corn Belt. There were three major findings: 1) the utility and value of the forecasts for farming decisions as perceived by farmers are, on average, around 3.0 on a 0 7 scale, indicating much room to improve attitudes toward the forecast value. 2) The use of forecasts by farmers to influence decisions is likely affected by several social groups that can provide “expert viewpoints” on forecast use. 3) A major obstacle, next to forecast accuracy, is the perceived identity and reliability of the forecast makers. Given the rapidly increasing number of forecasts in this growing service business, the ambiguous identity of forecast providers may have left farmers confused and may have prevented them from developing both trust in forecasts and skills to use them. These findings shed light on productive avenues for increasing the influence of forecasts, which may lead to greater farming productivity. In addition, this study establishes a set of reference points that can be used for comparisons with future studies to quantify changes in forecast use and influence.

  16. Short-term Probabilistic Load Forecasting with the Consideration of Human Body Amenity

    Directory of Open Access Journals (Sweden)

    Ning Lu

    2013-02-01

    Full Text Available Load forecasting is the basis of power system planning and design. It is important for the economic operation and reliability assurance of power system. However, the results of load forecasting given by most existing methods are deterministic. This study aims at probabilistic load forecasting. First, the support vector machine regression is used to acquire the deterministic results of load forecasting with the consideration of human body amenity. Then the probabilistic load forecasting at a certain confidence level is given after the analysis of error distribution law corresponding to certain heat index interval. The final simulation shows that this probabilistic forecasting method is easy to implement and can provide more information than the deterministic forecasting results, and thus is helpful for decision-makers to make reasonable decisions.

  17. How to judge the quality and value of weather forecast products

    Science.gov (United States)

    Thornes, John E.; Stephenson, David B.

    2001-09-01

    In order to decide whether or not a weather service supplier is giving good value for money we need to monitor the quality of the forecasts and the use that is made of the forecasts to estimate their value. A number of verification statistics are examined to measure the quality of forecasts - including Miss Rate, False Alarm Rate, the Peirce Skill Score and the Odds Ratio Skill Score - and a means of testing the significance of these values is presented. In order to assess the economic value of the forecasts a value index is suggested that takes into account the cost-loss ratio and forecast errors. It is suggested that a combination of these quality and value statistics could be used by weather forecast customers to choose the best forecast provider and to set limits for performance related contracts.

  18. Verification of Global Radiation Forecasts from the Ensemble Prediction System at DMI

    DEFF Research Database (Denmark)

    Lundholm, Sisse Camilla

    To comply with an increasing demand for sustainable energy sources, a solar heating unit is being developed at the Technical University of Denmark. To make optimal use — environmentally and economically —, this heating unit is equipped with an intelligent control system using forecasts of the heat...... consumption of the house and the amount of available solar energy. In order to make the most of this solar heating unit, accurate forecasts of the available solar radiation are esstential. However, because of its sensitivity to local meteorological conditions, the solar radiation received at the surface...... of the Earth can be highly fluctuating and challenging to forecast accurately. To comply with the accuracy requirements to forecasts of both global, direct, and diffuse radiation, the uncertainty of these forecasts is of interest. Forecast uncertainties can become accessible by running an ensemble of forecasts...

  19. Added value of dynamical downscaling of winter seasonal forecasts over North America

    Science.gov (United States)

    Tefera Diro, Gulilat; Sushama, Laxmi

    2017-04-01

    Skillful seasonal forecasts have enormous potential benefits for socio-economic sectors that are sensitive to weather and climate conditions, as the early warning routines could reduce the vulnerability of such sectors. In this study, individual ensemble members of the ECMWF global ensemble seasonal forecasts are dynamically downscaled to produce ensemble of regional seasonal forecasts over North America using the fifth generation Canadian Regional Climate Model (CRCM5). CRCM5 forecasts are initialized on November 1st of each year and are integrated for four months for the 1991-2001 period at 0.22 degree resolution to produce a one-month lead-time forecast. The initial conditions for atmospheric variables are obtained from ERA-Interim reanalysis, whereas the initial conditions for land surface are obtained from a separate ERA-interim driven CRCM5 simulation with spectral nudging applied to the interior domain. The global and regional ensemble forecasts were then verified to investigate the skill and economic benefits of dynamical downscaling. Results indicate that both the global and regional climate models produce skillful precipitation forecast over the southern Great Plains and eastern coasts of the U.S and skillful temperature forecasts over the northern U.S. and most of Canada. In comparison to ECMWF forecasts, CRCM5 forecasts improved the temperature forecast skill over most part of the domain, but the improvements for precipitation is limited to regions with complex topography, where it improves the frequency of intense daily precipitation. CRCM5 forecast also yields a better economic value compared to ECMWF precipitation forecasts, for users whose cost to loss ratio is smaller than 0.5.

  20. Forecasting with quantitative methods the impact of special events in time series

    OpenAIRE

    Nikolopoulos, Konstantinos

    2010-01-01

    Abstract Quantitative methods are very successful for producing baseline forecasts of time series; however these models fail to forecast neither the timing nor the impact of special events such as promotions or strikes. In most of the cases the timing of such events is not known so they are usually referred as shocks (economics) or special events (forecasting). Sometimes the timing of such events is known a priori (i.e. a future promotion); but even then the impact of the forthcom...

  1. The Probability of Default Under IFRS 9: Multi-period Estimation and Macroeconomic Forecast

    Directory of Open Access Journals (Sweden)

    Tomáš Vaněk

    2017-01-01

    Full Text Available In this paper we propose a straightforward, flexible and intuitive computational framework for the multi-period probability of default estimation incorporating macroeconomic forecasts. The concept is based on Markov models, the estimated economic adjustment coefficient and the official economic forecasts of the Czech National Bank. The economic forecasts are taken into account in a separate step to better distinguish between idiosyncratic and systemic risk. This approach is also attractive from the interpretational point of view. The proposed framework can be used especially when calculating lifetime expected credit losses under IFRS 9.

  2. Load forecasting for supermarket refrigeration

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Aalborg Nielsen, Henrik

    This report presents a study of models for forecasting the load for supermarket refrigeration. The data used for building the forecasting models consists of load measurements, local climate measurements and weather forecasts. The load measurements are from a supermarket located in a village...... in Denmark. The load for refrigeration is the sum of all cabinets in the supermarket, both low and medium temperature cabinets, and spans a period of one year. As input to the forecasting models the ambient temperature observed near the supermarket together with weather forecasts are used. Every hour...

  3. Forecast Inaccuracies in Power Plant Projects From Project Managers' Perspectives

    Science.gov (United States)

    Sanabria, Orlando

    Guided by organizational theory, this phenomenological study explored the factors affecting forecast preparation and inaccuracies during the construction of fossil fuel-fired power plants in the United States. Forecast inaccuracies can create financial stress and uncertain profits during the project construction phase. A combination of purposeful and snowball sampling supported the selection of participants. Twenty project managers with over 15 years of experience in power generation and project experience across the United States were interviewed within a 2-month period. From the inductive codification and descriptive analysis, 5 themes emerged: (a) project monitoring, (b) cost control, (c) management review frequency, (d) factors to achieve a precise forecast, and (e) factors causing forecast inaccuracies. The findings of the study showed the factors necessary to achieve a precise forecast includes a detailed project schedule, accurate labor cost estimates, monthly project reviews and risk assessment, and proper utilization of accounting systems to monitor costs. The primary factors reported as causing forecast inaccuracies were cost overruns by subcontractors, scope gaps, labor cost and availability of labor, and equipment and material cost. Results of this study could improve planning accuracy and the effective use of resources during construction of power plants. The study results could contribute to social change by providing a framework to project managers to lessen forecast inaccuracies, and promote construction of power plants that will generate employment opportunities and economic development.

  4. An experimental system for flood risk forecasting at global scale

    Science.gov (United States)

    Alfieri, L.; Dottori, F.; Kalas, M.; Lorini, V.; Bianchi, A.; Hirpa, F. A.; Feyen, L.; Salamon, P.

    2016-12-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by an increasing range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasts, combining streamflow estimations with expected inundated areas and flood impacts. To this end, we have developed an experimental procedure for near-real time flood mapping and impact assessment based on the daily forecasts issued by the Global Flood Awareness System (GloFAS). The methodology translates GloFAS streamflow forecasts into event-based flood hazard maps based on the predicted flow magnitude and the forecast lead time and a database of flood hazard maps with global coverage. Flood hazard maps are then combined with exposure and vulnerability information to derive flood risk. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To further increase the reliability of the proposed methodology we integrated model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification of impact forecasts. The preliminary tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management. In particular, the link with social media is crucial for improving the accuracy of impact predictions.

  5. Short-term forecasting of internal migration.

    Science.gov (United States)

    Frees, E W

    1993-11-01

    A new methodological approach to the forecasting of short-term trends in internal migration in the United States is introduced. "Panel-data (or longitudinal-data) models are used to represent the relationship between destination-specific out-migration and several explanatory variables. The introduction of this methodology into the migration literature is possible because of some new and improved databases developed by the U.S. Bureau of the Census.... Data from the Bureau of Economic Analysis are used to investigate the incorporation of exogenous factors as variables in the model." The exogenous factors considered include employment and unemployment, income, population size of state, and distance between states. The author concludes that "when one...includes additional parameters that are estimable in longitudinal-data models, it turns out that there is little additional information in the exogenous factors that is useful for forecasting." excerpt

  6. FORECAST: Regulatory effects cost analysis software annual

    International Nuclear Information System (INIS)

    Lopez, B.; Sciacca, F.W.

    1991-11-01

    Over the past several years the NRC has developed a generic cost methodology for the quantification of cost/economic impacts associated with a wide range of new or revised regulatory requirements. This methodology has been developed to aid the NRC in preparing Regulatory Impact Analyses (RIAs). These generic costing methods can be useful in quantifying impacts both to industry and to the NRC. The FORECAST program was developed to facilitate the use of the generic costing methodology. This PC program integrates the major cost considerations that may be required because of a regulatory change. FORECAST automates much of the calculations typically needed in an RIA and thus reduces the time and labor required to perform these analysis. More importantly, its integrated and consistent treatment of the different cost elements should help assure comprehensiveness, uniformity, and accuracy in the preparation of needed cost estimates

  7. FORECASTING TOURIST ARRIVALS TO LANGKAWI ISLAND MALAYSIA

    Directory of Open Access Journals (Sweden)

    Kamarul Ariffin MANSOR

    2015-06-01

    Full Text Available Tourism is the act of travelling for a person or group of people from their own locality to a specific destination in a short term or long term period either for leisure or business purposes. Tourism is an important sector in the Malaysian economy where tourism development will lead to the positive economic development of the country and in general improve the quality of life for all citizens. Therefore, forecasting tourist arrivals with high accuracy becomes important since it may ensure the development and the readiness of all tourism related industries such as hotels, transportation, food and services industries and their best shape. This study focuses on tourist arrivals in Langkawi Island as one of the major tourist attractions situated in the northerly region of Peninsular Malaysia. Importantly, this paper attempts to measure and compare the performance of forecasting with Exponential Smoothing, ARIMA and ARFIMA models using the R software package.

  8. A novel economy reflecting short-term load forecasting approach

    International Nuclear Information System (INIS)

    Lin, Cheng-Ting; Chou, Li-Der

    2013-01-01

    Highlights: ► We combine MA line of TAIEX and SVR to overcome the load demands over-prediction problems caused by the economic downturn. ► The Taiwan island-wide electricity power system was used as the case study. ► Short- to middle-term MA lines of TAIEX are found to be good economic input variables for load forecasting models. - Abstract: The global economic downturn in 2008 and 2009, which was spurred by the bankruptcy of Lehman Brothers, sharply reduced the demand for electricity load. Conventional load-forecasting approaches were unable to respond to sudden changes in the economy, because these approaches do not consider the effect of economic factors. Therefore, the over-prediction problem occurred. To overcome this problem, this paper proposes a novel, economy-reflecting, short-term load forecasting (STLF) approach based on theories of moving average (MA) line of stock index and machine learning. In this approach, the stock indices decision model is designed to reflect fluctuations in the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) series, which is selected as an optimal input variable in support vector regression load forecasting model at an appropriate timing. The Taiwan island-wide hourly electricity load demands from 2008 to 2010 are used as the case study for performance benchmarking. Results show that the proposed approach with a 60-day MA of the TAIEX as economic learning pattern achieves good forecasting performance. It outperforms the conventional approach by 29.16% on average during economic downturn-affected days. Overall, the proposed approach successfully overcomes the over-prediction problems caused by the economic downturn. To the best of our knowledge, this paper is the first attempt to apply MA line theory of stock index on STLF.

  9. Ethical issues in forecasting of natural hazards

    Science.gov (United States)

    Tinti, Stefano

    2014-05-01

    Natural hazards have by definition a large impact on the society and, therefore, since the beginning of science one of the major aspiration of mankind has been the prediction of natural calamities in the attempt to avoid or to mitigate their effects. In modern societies where science and technology have gained a foundational role, forecasts and predictions have become part of the every-day life and may also influence state policies and economic development. And in parallel with the growing importance of forecasting, even ethical problems for forecasters and for forecasters communities have started to appear. In this work two of the many geo-ethical issues are considered mostly: 1) how to cope with uncertainties that are inherently associated with any forecast statement; 2) how to handle predictions in scientific journals and scientific conferences The former issue is mainly related to the impact of predictions on the general public and on managers and operators in the civil protection field. Forecasters operate in specific contexts that 1) may change from country to country, depending on the local adopted best practices, but also, which is more constraining, on the local legal regulations and laws; 2) may change from discipline to discipline according to the development of the specific knowhow and the range of the forecast (from minutes to centuries) The second issue has to do with the communication of the scientific results on predictions and on prediction methods to the audience mainly composed of scientists, and involves one of the basic elements of science. In principle, scientists should use scientific communication means (papers in scientific journals, conferences, …) to illustrate results that are sound and certain, or the methods by means of which they conduct their research. But scientists involved in predictions have inherently to do with uncertainties, and, since there is no common agreement on how to deal with them, there is the risk that scientific

  10. The forecaster's added value

    Science.gov (United States)

    Turco, M.; Milelli, M.

    2009-09-01

    To the authors' knowledge there are relatively few studies that try to answer this topic: "Are humans able to add value to computer-generated forecasts and warnings ?". Moreover, the answers are not always positive. In particular some postprocessing method is competitive or superior to human forecast (see for instance Baars et al., 2005, Charba et al., 2002, Doswell C., 2003, Roebber et al., 1996, Sanders F., 1986). Within the alert system of ARPA Piemonte it is possible to study in an objective manner if the human forecaster is able to add value with respect to computer-generated forecasts. Every day the meteorology group of the Centro Funzionale of Regione Piemonte produces the HQPF (Human QPF) in terms of an areal average for each of the 13 regional warning areas, which have been created according to meteo-hydrological criteria. This allows the decision makers to produce an evaluation of the expected effects by comparing these HQPFs with predefined rainfall thresholds. Another important ingredient in this study is the very dense non-GTS network of rain gauges available that makes possible a high resolution verification. In this context the most useful verification approach is the measure of the QPF and HQPF skills by first converting precipitation expressed as continuous amounts into ‘‘exceedance'' categories (yes-no statements indicating whether precipitation equals or exceeds selected thresholds) and then computing the performances for each threshold. In particular in this work we compare the performances of the latest three years of QPF derived from two meteorological models COSMO-I7 (the Italian version of the COSMO Model, a mesoscale model developed in the framework of the COSMO Consortium) and IFS (the ECMWF global model) with the HQPF. In this analysis it is possible to introduce the hypothesis test developed by Hamill (1999), in which a confidence interval is calculated with the bootstrap method in order to establish the real difference between the

  11. Forecasting potential crises

    International Nuclear Information System (INIS)

    Neufeld, W.P.

    1984-01-01

    Recently, the Trend Analysis Program (TAP) of the American Council of Life Insurance commissioned the Futures Group of Glastonbury, Connecticut, to examine the potential for large-scale catastrophic events in the near future. TAP was specifically concerned with five potential crises: the warming of the earth's atmosphere, the water shortage, the collapse of the physical infrastructure, the global financial crisis, and the threat of nuclear war. We are often unprepared to take action; in these cases, we lose an advantage we might have otherwise had. This is the whole idea behind forecasting: to foresee possibilities and to project how we can respond. If we are able to create forecasts against which we can test policy options and choices, we may have the luxury of adopting policies ahead of events. Rather than simply fighting fires, we have the option of creating a future more to our choosing. Short descriptions of these five potential crises and, in some cases, possible solutions are presented

  12. Space-time wind speed forecasting for improved power system dispatch

    KAUST Repository

    Zhu, Xinxin; Genton, Marc G.; Gu, Yingzhong; Xie, Le

    2014-01-01

    direction and with the seasons, hence avoiding a subjective choice of regimes. Then, results from the wind forecasts are incorporated into a power system economic dispatch model, the cost of which is used as a loss measure of the quality of the forecast

  13. Frost Forecasting for Fruitgrowers

    Science.gov (United States)

    Martsolf, J. D.; Chen, E.

    1983-01-01

    Progress in forecasting from satellite data reviewed. University study found data from satellites displayed in color and used to predict frost are valuable aid to agriculture. Study evaluated scheme to use Earth-temperature data from Geostationary Operational Environmental Satellite in computer model that determines when and where freezing temperatures endanger developing fruit crops, such as apples, peaches and cherries in spring and citrus crops in winter.

  14. Uranium price forecasting methods

    International Nuclear Information System (INIS)

    Fuller, D.M.

    1994-01-01

    This article reviews a number of forecasting methods that have been applied to uranium prices and compares their relative strengths and weaknesses. The methods reviewed are: (1) judgemental methods, (2) technical analysis, (3) time-series methods, (4) fundamental analysis, and (5) econometric methods. Historically, none of these methods has performed very well, but a well-thought-out model is still useful as a basis from which to adjust to new circumstances and try again

  15. Economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-01

    The Energy Policy and Conservation Act (EPCA) mandated that minimum energy efficiency standards be established for classes of refrigerators and refrigerator-freezers, freezers, clothes dryers, water heaters, room air conditioners, home heating equipment, kitchen ranges and ovens, central air conditioners, and furnaces. EPCA requires that standards be designed to achieve the maximum improvement in energy efficiency that is technologically feasible and economically justified. Following the introductory chapter, Chapter Two describes the methodology used in the economic analysis and its relationship to legislative criteria for consumer product efficiency assessment; details how the CPES Value Model systematically compared and evaluated the economic impacts of regulation on the consumer, manufacturer and Nation. Chapter Three briefly displays the results of the analysis and lists the proposed performance standards by product class. Chapter Four describes the reasons for developing a baseline forecast, characterizes the baseline scenario from which regulatory impacts were calculated and summarizes the primary models, data sources and assumptions used in the baseline formulations. Chapter Five summarizes the methodology used to calculate regulatory impacts; describes the impacts of energy performance standards relative to the baseline discussed in Chapter Four. Also discussed are regional standards and other program alternatives to performance standards. Chapter Six describes the procedure for balancing consumer, manufacturer, and national impacts to select standard levels. Details of models and data bases used in the analysis are included in Appendices A through K.

  16. PyForecastTools

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-22

    The PyForecastTools package provides Python routines for calculating metrics for model validation, forecast verification and model comparison. For continuous predictands the package provides functions for calculating bias (mean error, mean percentage error, median log accuracy, symmetric signed bias), and for calculating accuracy (mean squared error, mean absolute error, mean absolute scaled error, normalized RMSE, median symmetric accuracy). Convenience routines to calculate the component parts (e.g. forecast error, scaled error) of each metric are also provided. To compare models the package provides: generic skill score; percent better. Robust measures of scale including median absolute deviation, robust standard deviation, robust coefficient of variation and the Sn estimator are all provided by the package. Finally, the package implements Python classes for NxN contingency tables. In the case of a multi-class prediction, accuracy and skill metrics such as proportion correct and the Heidke and Peirce skill scores are provided as object methods. The special case of a 2x2 contingency table inherits from the NxN class and provides many additional metrics for binary classification: probability of detection, probability of false detection, false alarm ration, threat score, equitable threat score, bias. Confidence intervals for many of these quantities can be calculated using either the Wald method or Agresti-Coull intervals.

  17. Seismic forecast using geostatistics

    International Nuclear Information System (INIS)

    Grecu, Valeriu; Mateiciuc, Doru

    2007-01-01

    The main idea of this research direction consists in the special way of constructing a new type of mathematical function as being a correlation between a computed statistical quantity and another physical quantity. This type of function called 'position function' was taken over by the authors of this study in the field of seismology with the hope of solving - at least partially - the difficult problem of seismic forecast. The geostatistic method of analysis focuses on the process of energy accumulation in a given seismic area, completing this analysis by a so-called loading function. This function - in fact a temporal function - describes the process of energy accumulation during a seismic cycle from a given seismic area. It was possible to discover a law of evolution of the seismic cycles that was materialized in a so-called characteristic function. This special function will help us to forecast the magnitude and the occurrence moment of the largest earthquake in the analysed area. Since 2000, the authors have been evolving to a new stage of testing: real - time analysis, in order to verify the quality of the method. There were five large earthquakes forecasts. (authors)

  18. Statistical methods for forecasting

    CERN Document Server

    Abraham, Bovas

    2009-01-01

    The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists."This book, it must be said, lives up to the words on its advertising cover: ''Bridging the gap between introductory, descriptive approaches and highly advanced theoretical treatises, it provides a practical, intermediate level discussion of a variety of forecasting tools, and explains how they relate to one another, both in theory and practice.'' It does just that!"-Journal of the Royal Statistical Society"A well-written work that deals with statistical methods and models that can be used to produce short-term forecasts, this book has wide-ranging applications. It could be used in the context of a study of regression, forecasting, and time series ...

  19. Analysing UK real estate market forecast disagreement

    OpenAIRE

    McAllister, Patrick; Newell, G.; Matysiak, George

    2005-01-01

    Given the significance of forecasting in real estate investment decisions, this paper investigates forecast uncertainty and disagreement in real estate market forecasts. Using the Investment Property Forum (IPF) quarterly survey amongst UK independent real estate forecasters, these real estate forecasts are compared with actual real estate performance to assess a number of real estate forecasting issues in the UK over 1999-2004, including real estate forecast error, bias and consensus. The re...

  20. Effective Feature Preprocessing for Time Series Forecasting

    DEFF Research Database (Denmark)

    Zhao, Junhua; Dong, Zhaoyang; Xu, Zhao

    2006-01-01

    Time series forecasting is an important area in data mining research. Feature preprocessing techniques have significant influence on forecasting accuracy, therefore are essential in a forecasting model. Although several feature preprocessing techniques have been applied in time series forecasting...... performance in time series forecasting. It is demonstrated in our experiment that, effective feature preprocessing can significantly enhance forecasting accuracy. This research can be a useful guidance for researchers on effectively selecting feature preprocessing techniques and integrating them with time...... series forecasting models....

  1. EU pharmaceutical expenditure forecast.

    Science.gov (United States)

    Urbinati, Duccio; Rémuzat, Cécile; Kornfeld, Åsa; Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Mzoughi, Olfa; Toumi, Mondher

    2014-01-01

    With constant incentives for healthcare payers to contain their pharmaceutical budgets, forecasting has become critically important. Some countries have, for instance, developed pharmaceutical horizon scanning units. The objective of this project was to build a model to assess the net effect of the entrance of new patented medicinal products versus medicinal products going off-patent, with a defined forecast horizon, on selected European Union (EU) Member States' pharmaceutical budgets. This model took into account population ageing, as well as current and future country-specific pricing, reimbursement, and market access policies (the project was performed for the European Commission; see http://ec.europa.eu/health/healthcare/key_documents/index_en.htm). In order to have a representative heterogeneity of EU Member States, the following countries were selected for the analysis: France, Germany, Greece, Hungary, Poland, Portugal, and the United Kingdom. A forecasting period of 5 years (2012-2016) was chosen to assess the net pharmaceutical budget impact. A model for generics and biosimilars was developed for each country. The model estimated a separate and combined effect of the direct and indirect impacts of the patent cliff. A second model, estimating the sales development and the risk of development failure, was developed for new drugs. New drugs were reviewed individually to assess their clinical potential and translate it into commercial potential. The forecast was carried out according to three perspectives (healthcare public payer, society, and manufacturer), and several types of distribution chains (retail, hospital, and combined retail and hospital). Probabilistic and deterministic sensitivity analyses were carried out. According to the model, all countries experienced drug budget reductions except Poland (+€41 million). Savings were expected to be the highest in the United Kingdom (-€9,367 million), France (-€5,589 million), and, far behind them

  2. Seasonal forecasting of discharge for the Raccoon River, Iowa

    Science.gov (United States)

    Slater, Louise; Villarini, Gabriele; Bradley, Allen; Vecchi, Gabriel

    2016-04-01

    weighting procedures based on the computed potential skill (historical forecast accuracy) of the different GCMs. We find that the models describe the year-to-year variability in streamflow accurately, as well as the overall tendency towards increasing (and more variable) discharge over time. Surprisingly, forecast skill does not decrease markedly with lead time, and high flows tend to be well predicted, suggesting that these forecasts may have considerable practical applications. Further, the seasonal flow forecast accuracy is substantially improved by weighting the contribution of individual GCMs to the forecasts, and also by the inclusion of antecedent precipitation. Our results can provide critical information for adaptation strategies aiming to mitigate the costs and disruptions arising from flood and drought conditions, and allow us to determine how far in advance skillful forecasts can be issued. The availability of these discharge forecasts would have major societal and economic benefits for hydrology and water resources management, agriculture, disaster forecasts and prevention, energy, finance and insurance, food security, policy-making and public authorities, and transportation.

  3. Value of Improved Wind Power Forecasting in the Western Interconnection (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, B.

    2013-12-01

    Wind power forecasting is a necessary and important technology for incorporating wind power into the unit commitment and dispatch process. It is expected to become increasingly important with higher renewable energy penetration rates and progress toward the smart grid. There is consensus that wind power forecasting can help utility operations with increasing wind power penetration; however, there is far from a consensus about the economic value of improved forecasts. This work explores the value of improved wind power forecasting in the Western Interconnection of the United States.

  4. The energy markets to 1995 - sector demand forecasts and summary. [United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, J

    1983-01-01

    Energy demand forecasts are often based on assumptions which are uncertain and dependent upon both political and economic factors. However, there is a need for long-term energy forecasting for the benefit of industry and commerce. CIRS (Cambridge Information and Research Services Limited) have tried to fulfill this need, based on forecasts of useful heat demand sector by sector which are then converted to heat energy supply and primary requirements. The first such forecast was produced in 1975. This 1983 updated projection examines coal, oil and gas supplies in the UK to the year 1995.

  5. 2015 Plan. Project 2: the electric power sector and the Brazilian economy: insertion and forecasts

    International Nuclear Information System (INIS)

    1993-05-01

    This project shows the economic and the energetic view of the Brazilian electric power sector, mentioning the actual conjuncture; the economy evolution; some sector forecasts; demographical aspects; international price of petroleum and National Energetic Matrix. (C.G.C.)

  6. Evaluation of Probabilistic Disease Forecasts.

    Science.gov (United States)

    Hughes, Gareth; Burnett, Fiona J

    2017-10-01

    The statistical evaluation of probabilistic disease forecasts often involves calculation of metrics defined conditionally on disease status, such as sensitivity and specificity. However, for the purpose of disease management decision making, metrics defined conditionally on the result of the forecast-predictive values-are also important, although less frequently reported. In this context, the application of scoring rules in the evaluation of probabilistic disease forecasts is discussed. An index of separation with application in the evaluation of probabilistic disease forecasts, described in the clinical literature, is also considered and its relation to scoring rules illustrated. Scoring rules provide a principled basis for the evaluation of probabilistic forecasts used in plant disease management. In particular, the decomposition of scoring rules into interpretable components is an advantageous feature of their application in the evaluation of disease forecasts.

  7. Forest resource economics and policy research

    International Nuclear Information System (INIS)

    Ellefson, P.V.

    1989-01-01

    This book contains chapters relating to forest economics. Included are the following chapters: Forecasting demand and supply of forest resources, products, and services; Wood fiber production; Forestry sector environmental effects

  8. Improving Global Flood Forecasting using Satellite Detected Flood Extent

    NARCIS (Netherlands)

    Revilla Romero, B.

    2016-01-01

    Flooding is a natural global phenomenon but in many cases is exacerbated by human activity. Although flooding generally affects humans in a negative way, bringing death, suffering, and economic impacts, it also has potentially beneficial effects. Early flood warning and forecasting systems, as well

  9. Operational hydrological forecasting in Bavaria. Part I: Forecast uncertainty

    Science.gov (United States)

    Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.

    2009-04-01

    In Bavaria, operational flood forecasting has been established since the disastrous flood of 1999. Nowadays, forecasts based on rainfall information from about 700 raingauges and 600 rivergauges are calculated and issued for nearly 100 rivergauges. With the added experience of the 2002 and 2005 floods, awareness grew that the standard deterministic forecast, neglecting the uncertainty associated with each forecast is misleading, creating a false feeling of unambiguousness. As a consequence, a system to identify, quantify and communicate the sources and magnitude of forecast uncertainty has been developed, which will be presented in part I of this study. In this system, the use of ensemble meteorological forecasts plays a key role which will be presented in part II. Developing the system, several constraints stemming from the range of hydrological regimes and operational requirements had to be met: Firstly, operational time constraints obviate the variation of all components of the modeling chain as would be done in a full Monte Carlo simulation. Therefore, an approach was chosen where only the most relevant sources of uncertainty were dynamically considered while the others were jointly accounted for by static error distributions from offline analysis. Secondly, the dominant sources of uncertainty vary over the wide range of forecasted catchments: In alpine headwater catchments, typically of a few hundred square kilometers in size, rainfall forecast uncertainty is the key factor for forecast uncertainty, with a magnitude dynamically changing with the prevailing predictability of the atmosphere. In lowland catchments encompassing several thousands of square kilometers, forecast uncertainty in the desired range (usually up to two days) is mainly dependent on upstream gauge observation quality, routing and unpredictable human impact such as reservoir operation. The determination of forecast uncertainty comprised the following steps: a) From comparison of gauge

  10. Housing price forecastability: A factor analysis

    DEFF Research Database (Denmark)

    Møller, Stig Vinther; Bork, Lasse

    2017-01-01

    We examine U.S. housing price forecastability using principal component analysis (PCA), partial least squares (PLS), and sparse PLS (SPLS). We incorporate information from a large panel of 128 economic time series and show that macroeconomic fundamentals have strong predictive power for future...... movements in housing prices. We find that (S)PLS models systematically dominate PCA models. (S)PLS models also generate significant out-of-sample predictive power over and above the predictive power contained by the price-rent ratio, autoregressive benchmarks, and regression models based on small datasets....

  11. Energy reference forecast for 2014; Energiereferenzprognose 2014

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, Michael [Prognos AG, Basel (Switzerland). Energie, Infrastruktur; Lindenberger, Dietmar [Koeln Univ. (Germany). Energiewirtschaftliches Inst. (EWI); Lutz, Christian [GWS mbH, Osnabrueck (Germany). Energie und Klima

    2014-10-15

    The German Federal Ministry for Economic Affairs and Energy has commissioned three reputed institutions to prepare an energy reference forecast as well as a target scenario up to the year 2050. The results of this survey evidence a substantial need for political action if the goals of the Federal Government's energy concept are to be achieved as planned. In view of the wide range of interests among the players involved as well as the complexity of the demands facing the political leadership from diverse areas of life it appears unlikely that the targets laid down in the energy concept can be realised.

  12. Application of seasonal rainfall forecasts and satellite rainfall observations to crop yield forecasting for Africa

    Science.gov (United States)

    Greatrex, H. L.; Grimes, D. I. F.; Wheeler, T. R.

    2009-04-01

    Rain-fed agriculture is of utmost importance in sub-Saharan Africa; the FAO estimates that over 90% of food consumed in the region is grown in rain-fed farming systems. As the climate in sub-Saharan Africa has a high interannual variability, this dependence on rainfall can leave communities extremely vulnerable to food shortages, especially when coupled with a lack of crop management options. The ability to make a regional forecast of crop yield on a timescale of months would be of enormous benefit; it would enable both governmental and non-governmental organisations to be alerted in advance to crop failure and could facilitate national and regional economic planning. Such a system would also enable individual communities to make more informed crop management decisions, increasing their resilience to climate variability and change. It should be noted that the majority of crops in the region are rainfall limited, therefore the ability to create a seasonal crop forecast depends on the ability to forecast rainfall at a monthly or seasonal timescale and to temporally downscale this to a daily time-series of rainfall. The aim of this project is to develop a regional-scale seasonal forecast for sub-Saharan crops, utilising the General Large Area Model for annual crops (GLAM). GLAM would initially be driven using both dynamical and statistical seasonal rainfall forecasts to provide an initial estimate of crop yield. The system would then be continuously updated throughout the season by replacing the seasonal rainfall forecast with daily weather observations. TAMSAT satellite rainfall estimates are used rather than rain-gauge data due to the scarcity of ground based observations. An important feature of the system is the use of the geo-statistical method of sequential simulation to create an ensemble of daily weather inputs from both the statistical seasonal rainfall forecasts and the satellite rainfall estimates. This allows a range of possible yield outputs to be

  13. Analysis and forecast of railway coal transportation volume based on BP neural network combined forecasting model

    Science.gov (United States)

    Xu, Yongbin; Xie, Haihong; Wu, Liuyi

    2018-05-01

    The share of coal transportation in the total railway freight volume is about 50%. As is widely acknowledged, coal industry is vulnerable to the economic situation and national policies. Coal transportation volume fluctuates significantly under the new economic normal. Grasp the overall development trend of railway coal transportation market, have important reference and guidance significance to the railway and coal industry decision-making. By analyzing the economic indicators and policy implications, this paper expounds the trend of the coal transportation volume, and further combines the economic indicators with the high correlation with the coal transportation volume with the traditional traffic prediction model to establish a combined forecasting model based on the back propagation neural network. The error of the prediction results is tested, which proves that the method has higher accuracy and has practical application.

  14. Global Energy Forecasting Competition 2012

    DEFF Research Database (Denmark)

    Hong, Tao; Pinson, Pierre; Fan, Shu

    2014-01-01

    The Global Energy Forecasting Competition (GEFCom2012) attracted hundreds of participants worldwide, who contributed many novel ideas to the energy forecasting field. This paper introduces both tracks of GEFCom2012, hierarchical load forecasting and wind power forecasting, with details...... on the aspects of the problem, the data, and a summary of the methods used by selected top entries. We also discuss the lessons learned from this competition from the organizers’ perspective. The complete data set, including the solution data, is published along with this paper, in an effort to establish...

  15. An independent system operator's perspective on operational ramp forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Porter, G. [New Brunswick System Operator, Fredericton, NB (Canada)

    2010-07-01

    One of the principal roles of the power system operator is to select the most economical resources to reliably supply electric system power needs. Operational wind power production forecasts are required by system operators in order to understand the impact of ramp event forecasting on dispatch functions. A centralized dispatch approach can contribute to a more efficient use of resources that traditional economic dispatch methods. Wind ramping events can have a significant impact on system reliability. Power systems can have constrained or robust transmission systems, and may also be islanded or have large connections to neighbouring systems. Power resources can include both flexible and inflexible generation resources. Wind integration tools must be used by system operators to improve communications and connections with wind power plants. Improved wind forecasting techniques are also needed. Sensitivity to forecast errors is dependent on current system conditions. System operators require basic production forecasts, probabilistic forecasts, and event forecasts. Forecasting errors were presented as well as charts outlining the implications of various forecasts. tabs., figs.

  16. Global disease monitoring and forecasting with Wikipedia.

    Science.gov (United States)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y; Priedhorsky, Reid

    2014-11-01

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with r2 up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.

  17. Global disease monitoring and forecasting with Wikipedia.

    Directory of Open Access Journals (Sweden)

    Nicholas Generous

    2014-11-01

    Full Text Available Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with r2 up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.

  18. Seasonal forecasting of fire over Kalimantan, Indonesia

    Science.gov (United States)

    Spessa, A. C.; Field, R. D.; Pappenberger, F.; Langner, A.; Englhart, S.; Weber, U.; Stockdale, T.; Siegert, F.; Kaiser, J. W.; Moore, J.

    2015-03-01

    Large-scale fires occur frequently across Indonesia, particularly in the southern region of Kalimantan and eastern Sumatra. They have considerable impacts on carbon emissions, haze production, biodiversity, health, and economic activities. In this study, we demonstrate that severe fire and haze events in Indonesia can generally be predicted months in advance using predictions of seasonal rainfall from the ECMWF System 4 coupled ocean-atmosphere model. Based on analyses of long, up-to-date series observations on burnt area, rainfall, and tree cover, we demonstrate that fire activity is negatively correlated with rainfall and is positively associated with deforestation in Indonesia. There is a contrast between the southern region of Kalimantan (high fire activity, high tree cover loss, and strong non-linear correlation between observed rainfall and fire) and the central region of Kalimantan (low fire activity, low tree cover loss, and weak, non-linear correlation between observed rainfall and fire). The ECMWF seasonal forecast provides skilled forecasts of burnt and fire-affected area with several months lead time explaining at least 70% of the variance between rainfall and burnt and fire-affected area. Results are strongly influenced by El Niño years which show a consistent positive bias. Overall, our findings point to a high potential for using a more physical-based method for predicting fires with several months lead time in the tropics rather than one based on indexes only. We argue that seasonal precipitation forecasts should be central to Indonesia's evolving fire management policy.

  19. Ticket consumption forecast for Brazilian championship games

    Directory of Open Access Journals (Sweden)

    Adriana Bruscato Bortoluzzo

    Full Text Available Abstract For the efficiency of sales and marketing management of athletic clubs, it is crucial to find a way to appropriately estimate the level of demand for sporting events. More precise estimates allow for an appropriate financial and operational plan and a higher quality of service delivered to the fans. The focus of this study is to analyze and forecast the ticket consumption for soccer games in Brazilian stadiums. We compare the results of the regression model with normally distributed errors (benchmark, the TOBIT model and the Gamma generalized linear model. The models include explanatory variables related to the economic environment, product quality, as well as monetary and non-monetary incentives that people are given to attend sporting events at stadiums. We show that most of these variables are statistically significant to explain the amount of fans that go to stadiums. We used different measures of accuracy to evaluate the performance of demand forecasts and concluded that Gamma generalized linear model presented better results to forecast the ticket consumption for Brazilian championship games, when compared to a benchmark.

  20. The BCRA’s Small Economic Model

    OpenAIRE

    Pedro Elosegui; Guillermo Escudé; Lorena Garegnani; Juan Martín Sotes Paladino

    2007-01-01

    The use of macroeconomic forecasting models is a common practice in central banks for monetary policy design, for the analysis of the current economic developments and for medium and long term forecasts. Among those models, the small-scale macroeconomic models stand out. Though relatively simple, they are structured and take into account the transmission mechanisms that relate the main variables of interest: the interest rate, the exchange rate, GDP and inflation. The Small Economic Model (ME...

  1. Long-term economic outlook. Annual review

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    This review provides economic growth forecast tables for Ontario, Canada, the US, Western Europe, and Japan. Economic growth, government policy, the long-term prospects for inflation, interest rates and foreign exchange rates, trends in the Canadian dollar, and energy markets and prices are also reviewed. Data generally cover 1965-2025. Appendices give a summary of historical and forecast data. 18 figs., 16 tabs.

  2. Forecasting in Complex Systems

    Science.gov (United States)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.

    2014-12-01

    Complex nonlinear systems are typically characterized by many degrees of freedom, as well as interactions between the elements. Interesting examples can be found in the areas of earthquakes and finance. In these two systems, fat tails play an important role in the statistical dynamics. For earthquake systems, the Gutenberg-Richter magnitude-frequency is applicable, whereas for daily returns for the securities in the financial markets are known to be characterized by leptokurtotic statistics in which the tails are power law. Very large fluctuations are present in both systems. In earthquake systems, one has the example of great earthquakes such as the M9.1, March 11, 2011 Tohoku event. In financial systems, one has the example of the market crash of October 19, 1987. Both were largely unexpected events that severely impacted the earth and financial systems systemically. Other examples include the M9.3 Andaman earthquake of December 26, 2004, and the Great Recession which began with the fall of Lehman Brothers investment bank on September 12, 2013. Forecasting the occurrence of these damaging events has great societal importance. In recent years, national funding agencies in a variety of countries have emphasized the importance of societal relevance in research, and in particular, the goal of improved forecasting technology. Previous work has shown that both earthquakes and financial crashes can be described by a common Landau-Ginzburg-type free energy model. These metastable systems are characterized by fat tail statistics near the classical spinodal. Correlations in these systems can grow and recede, but do not imply causation, a common source of misunderstanding. In both systems, a common set of techniques can be used to compute the probabilities of future earthquakes or crashes. In this talk, we describe the basic phenomenology of these systems and emphasize their similarities and differences. We also consider the problem of forecast validation and verification

  3. Macroeconomic Forecasts in Models with Bayesian Averaging of Classical Estimates

    Directory of Open Access Journals (Sweden)

    Piotr Białowolski

    2012-03-01

    Full Text Available The aim of this paper is to construct a forecasting model oriented on predicting basic macroeconomic variables, namely: the GDP growth rate, the unemployment rate, and the consumer price inflation. In order to select the set of the best regressors, Bayesian Averaging of Classical Estimators (BACE is employed. The models are atheoretical (i.e. they do not reflect causal relationships postulated by the macroeconomic theory and the role of regressors is played by business and consumer tendency survey-based indicators. Additionally, survey-based indicators are included with a lag that enables to forecast the variables of interest (GDP, unemployment, and inflation for the four forthcoming quarters without the need to make any additional assumptions concerning the values of predictor variables in the forecast period.  Bayesian Averaging of Classical Estimators is a method allowing for full and controlled overview of all econometric models which can be obtained out of a particular set of regressors. In this paper authors describe the method of generating a family of econometric models and the procedure for selection of a final forecasting model. Verification of the procedure is performed by means of out-of-sample forecasts of main economic variables for the quarters of 2011. The accuracy of the forecasts implies that there is still a need to search for new solutions in the atheoretical modelling.

  4. Flood Forecasting Based on TIGGE Precipitation Ensemble Forecast

    Directory of Open Access Journals (Sweden)

    Jinyin Ye

    2016-01-01

    Full Text Available TIGGE (THORPEX International Grand Global Ensemble was a major part of the THORPEX (Observing System Research and Predictability Experiment. It integrates ensemble precipitation products from all the major forecast centers in the world and provides systematic evaluation on the multimodel ensemble prediction system. Development of meteorologic-hydrologic coupled flood forecasting model and early warning model based on the TIGGE precipitation ensemble forecast can provide flood probability forecast, extend the lead time of the flood forecast, and gain more time for decision-makers to make the right decision. In this study, precipitation ensemble forecast products from ECMWF, NCEP, and CMA are used to drive distributed hydrologic model TOPX. We focus on Yi River catchment and aim to build a flood forecast and early warning system. The results show that the meteorologic-hydrologic coupled model can satisfactorily predict the flow-process of four flood events. The predicted occurrence time of peak discharges is close to the observations. However, the magnitude of the peak discharges is significantly different due to various performances of the ensemble prediction systems. The coupled forecasting model can accurately predict occurrence of the peak time and the corresponding risk probability of peak discharge based on the probability distribution of peak time and flood warning, which can provide users a strong theoretical foundation and valuable information as a promising new approach.

  5. Functional dynamic factor models with application to yield curve forecasting

    KAUST Repository

    Hays, Spencer

    2012-09-01

    Accurate forecasting of zero coupon bond yields for a continuum of maturities is paramount to bond portfolio management and derivative security pricing. Yet a universal model for yield curve forecasting has been elusive, and prior attempts often resulted in a trade-off between goodness of fit and consistency with economic theory. To address this, herein we propose a novel formulation which connects the dynamic factor model (DFM) framework with concepts from functional data analysis: a DFM with functional factor loading curves. This results in a model capable of forecasting functional time series. Further, in the yield curve context we show that the model retains economic interpretation. Model estimation is achieved through an expectation- maximization algorithm, where the time series parameters and factor loading curves are simultaneously estimated in a single step. Efficient computing is implemented and a data-driven smoothing parameter is nicely incorporated. We show that our model performs very well on forecasting actual yield data compared with existing approaches, especially in regard to profit-based assessment for an innovative trading exercise. We further illustrate the viability of our model to applications outside of yield forecasting.

  6. FORECASTING NEW PRODUCT SALES

    Directory of Open Access Journals (Sweden)

    R. Siriram

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper tests the accuracy of using Linear regression, Logistics regression, and Bass curves in selected new product rollouts, based on sales data. The selected new products come from the electronics and electrical engineering and information and communications technology industries. The eight selected products are: electronic switchgear, electric motors, supervisory control and data acquisition systems, programmable logic controllers, cell phones, wireless modules, routers, and antennas. We compare the Linear regression, Logistics regression and Bass curves with respect to forecasting using analysis of variance. The accuracy of these three curves is studied and conclusions are drawn. We use an expert panel to compare the different curves and provide lessons for managers to improve forecasting new product sales. In addition, comparison between the two industries is drawn, and areas for further research are indicated.

    AFRIKAANSE OPSOMMING: Hierdie artikel toets die akkuraatheid van die gebruik van linêere regressie, logistiese regressie en Bass-krommes by die bekendstelling van nuwe produkte gebaseer op verkoopsdata. Die geselekteerde nuwe produkte is uit die elektriese en elektroniese asook informasietegnologie- en kommunikasie bedrywe. Linêere regressie, logistiese regressie en Bass-krommes word vergelyk ten opsigte van vooruitskatting deur variansie te ontleed. Die akkuraatheid word ontleed en gevolgtrekkings gemaak. Die doel is om vooruitskatting van nuwe produkverkope te verbeter.

  7. Issues in Forecasting CMEs

    Science.gov (United States)

    Pizzo, V. J.

    2017-12-01

    I will present my view of the current status of space weather forecasting abilities related to CMEs. This talk will address the large-scale aspects, but specifically not energetic particle phenomena. A key point is that all models, whether sophisticated numerical contraptions or quasi-empirical ones, are only as good as the data you feed them. Hence the emphasis will be on observations and analysis methods. First I will review where we stand with regard to the near-Sun quantitative data needed to drive any model, no matter how complex or simple-minded, and I will discuss technological roadblocks that suggest it may be some time before we see any meaningful improvements beyond what we have today. Then I cover issues related to characterizing CME propagation out through the corona and into interplanetary space, as well as to observational limitations in the vicinity of 1 AU. Since none of these observational constraints are likely to be resolved anytime soon, the real challenge is to make more informed use of what is available. Thus, this talk will focus on how we may identify and pursue the most profitable approaches, for both forecast and research applications. The discussion will highlight a number of promising leads, including those related to inclusion of solar backside information, joint magnetograph observations from L5 and Earth, how to use (not just run) ensembles, more rational use of HI observations, and suggestions for using cube-sats for deep space observations of CMEs and MCs.

  8. Drought forecasting in Luanhe River basin involving climatic indices

    Science.gov (United States)

    Ren, Weinan; Wang, Yixuan; Li, Jianzhu; Feng, Ping; Smith, Ronald J.

    2017-11-01

    Drought is regarded as one of the most severe natural disasters globally. This is especially the case in Tianjin City, Northern China, where drought can affect economic development and people's livelihoods. Drought forecasting, the basis of drought management, is an important mitigation strategy. In this paper, we evolve a probabilistic forecasting model, which forecasts transition probabilities from a current Standardized Precipitation Index (SPI) value to a future SPI class, based on conditional distribution of multivariate normal distribution to involve two large-scale climatic indices at the same time, and apply the forecasting model to 26 rain gauges in the Luanhe River basin in North China. The establishment of the model and the derivation of the SPI are based on the hypothesis of aggregated monthly precipitation that is normally distributed. Pearson correlation and Shapiro-Wilk normality tests are used to select appropriate SPI time scale and large-scale climatic indices. Findings indicated that longer-term aggregated monthly precipitation, in general, was more likely to be considered normally distributed and forecasting models should be applied to each gauge, respectively, rather than to the whole basin. Taking Liying Gauge as an example, we illustrate the impact of the SPI time scale and lead time on transition probabilities. Then, the controlled climatic indices of every gauge are selected by Pearson correlation test and the multivariate normality of SPI, corresponding climatic indices for current month and SPI 1, 2, and 3 months later are demonstrated using Shapiro-Wilk normality test. Subsequently, we illustrate the impact of large-scale oceanic-atmospheric circulation patterns on transition probabilities. Finally, we use a score method to evaluate and compare the performance of the three forecasting models and compare them with two traditional models which forecast transition probabilities from a current to a future SPI class. The results show that the

  9. THE ACCURACY AND BIAS EVALUATION OF THE USA UNEMPLOYMENT RATE FORECASTS. METHODS TO IMPROVE THE FORECASTS ACCURACY

    Directory of Open Access Journals (Sweden)

    MIHAELA BRATU (SIMIONESCU

    2012-12-01

    Full Text Available In this study some alternative forecasts for the unemployment rate of USA made by four institutions (International Monetary Fund (IMF, Organization for Economic Co-operation and Development (OECD, Congressional Budget Office (CBO and Blue Chips (BC are evaluated regarding the accuracy and the biasness. The most accurate predictions on the forecasting horizon 201-2011 were provided by IMF, followed by OECD, CBO and BC.. These results were gotten using U1 Theil’s statistic and a new method that has not been used before in literature in this context. The multi-criteria ranking was applied to make a hierarchy of the institutions regarding the accuracy and five important accuracy measures were taken into account at the same time: mean errors, mean squared error, root mean squared error, U1 and U2 statistics of Theil. The IMF, OECD and CBO predictions are unbiased. The combined forecasts of institutions’ predictions are a suitable strategy to improve the forecasts accuracy of IMF and OECD forecasts when all combination schemes are used, but INV one is the best. The filtered and smoothed original predictions based on Hodrick-Prescott filter, respectively Holt-Winters technique are a good strategy of improving only the BC expectations. The proposed strategies to improve the accuracy do not solve the problem of biasness. The assessment and improvement of forecasts accuracy have an important contribution in growing the quality of decisional process.

  10. Global Ensemble Forecast System (GEFS) [1 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Ensemble Forecast System (GEFS) is a weather forecast model made up of 21 separate forecasts, or ensemble members. The National Centers for Environmental...

  11. A Hybrid Method Based on Singular Spectrum Analysis, Firefly Algorithm, and BP Neural Network for Short-Term Wind Speed Forecasting

    Directory of Open Access Journals (Sweden)

    Yuyang Gao

    2016-09-01

    Full Text Available With increasing importance being attached to big data mining, analysis, and forecasting in the field of wind energy, how to select an optimization model to improve the forecasting accuracy of the wind speed time series is not only an extremely challenging problem, but also a problem of concern for economic forecasting. The artificial intelligence model is widely used in forecasting and data processing, but the individual back-propagation artificial neural network cannot always satisfy the time series forecasting needs. Thus, a hybrid forecasting approach has been proposed in this study, which consists of data preprocessing, parameter optimization and a neural network for advancing the accuracy of short-term wind speed forecasting. According to the case study, in which the data are collected from Peng Lai, a city located in China, the simulation results indicate that the hybrid forecasting method yields better predictions compared to the individual BP, which indicates that the hybrid method exhibits stronger forecasting ability.

  12. Regional-seasonal weather forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

    1980-08-01

    In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

  13. Forecasting the future of biodiversity

    DEFF Research Database (Denmark)

    Fitzpatrick, M. C.; Sanders, Nate; Ferrier, Simon

    2011-01-01

    , but their application to forecasting climate change impacts on biodiversity has been limited. Here we compare forecasts of changes in patterns of ant biodiversity in North America derived from ensembles of single-species models to those from a multi-species modeling approach, Generalized Dissimilarity Modeling (GDM...... climate change impacts on biodiversity....

  14. Forecasts: uncertain, inaccurate and biased?

    DEFF Research Database (Denmark)

    Nicolaisen, Morten Skou; Ambrasaite, Inga; Salling, Kim Bang

    2012-01-01

    Cost Benefit Analysis (CBA) is the dominating methodology for appraisal of transport infrastructure projects across the globe. In order to adequately assess the costs and benefits of such projects two types of forecasts are crucial to the validity of the appraisal. First are the forecasts of cons....... It is recommended that more attention is given to monitoring completed projects so future forecasts can benefit from better data availability through systematic ex-post evaluations, and an example of how to utilize such data in practice is presented.......Cost Benefit Analysis (CBA) is the dominating methodology for appraisal of transport infrastructure projects across the globe. In order to adequately assess the costs and benefits of such projects two types of forecasts are crucial to the validity of the appraisal. First are the forecasts...... of construction costs, which account for the majority of total project costs. Second are the forecasts of travel time savings, which account for the majority of total project benefits. The latter of these is, inter alia, determined by forecasts of travel demand, which we shall use as a proxy for the forecasting...

  15. Ensemble hydromoeteorological forecasting in Denmark

    DEFF Research Database (Denmark)

    Lucatero Villasenor, Diana

    forecasts where a dampening of the differences of precipitation quality occurs. Seasonal meteorological forecasts are possible due to changes of large scale patterns of the ocean and land, such as el Niño, that evolve at a much slower pace than the atmosphere, which can have an impact on its evolution later...

  16. Now, Here's the Weather Forecast...

    Science.gov (United States)

    Richardson, Mathew

    2013-01-01

    The Met Office has a long history of weather forecasting, creating tailored weather forecasts for customers across the world. Based in Exeter, the Met Office is also home to the Met Office Hadley Centre, a world-leading centre for the study of climate change and its potential impacts. Climate information from the Met Office Hadley Centre is used…

  17. Method of forecasting power distribution

    International Nuclear Information System (INIS)

    Kaneto, Kunikazu.

    1981-01-01

    Purpose: To obtain forecasting results at high accuracy by reflecting the signals from neutron detectors disposed in the reactor core on the forecasting results. Method: An on-line computer transfers, to a simulator, those process data such as temperature and flow rate for coolants in each of the sections and various measuring signals such as control rod positions from the nuclear reactor. The simulator calculates the present power distribution before the control operation. The signals from the neutron detectors at each of the positions in the reactor core are estimated from the power distribution and errors are determined based on the estimated values and the measured values to determine the smooth error distribution in the axial direction. Then, input conditions at the time to be forecast are set by a data setter. The simulator calculates the forecast power distribution after the control operation based on the set conditions. The forecast power distribution is corrected using the error distribution. (Yoshino, Y.)

  18. Energy forecasts, perspectives and methods

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, J E; Mogren, A

    1984-01-01

    The authors have analyzed different methods for long term energy prognoses, in particular energy consumption forecasts. Energy supply and price prognoses are also treated, but in a less detailed manner. After defining and discussing the various methods/models used in forecasts, a generalized discussion of the influence on the prognoses from the perspectives (background factors, world view, norms, ideology) of the prognosis makers is given. Some basic formal demands that should be asked from any rational forecast are formulated and discussed. The authors conclude that different forecasting methodologies are supplementing each other. There is no best method, forecasts should be accepted as views of the future from differing perspectives. The primary prognostic problem is to show the possible futures, selecting the wanted future is a question of political process.

  19. Forecasting and Warning of Tropical Cyclones in China

    Directory of Open Access Journals (Sweden)

    Bangzhong Wang

    2007-10-01

    Full Text Available With the development of the global economy, the impact of tropical cyclones has become far-reaching. Thus they are a fundamental issue to be addressed both nationally and globally. The socio-economic impact is particularly noticeable in developing countries, especially China. This paper begins with the effects of cyclones on regional and global economies. Then a brief introduction to the past and current situations and progress in cyclones forecasting and warning in China are presented. Finally the paper gives recommendations about improving and perfecting the tropical cyclone forecasting and warning systems.

  20. Sirocco - Fukushima Forecast Description

    International Nuclear Information System (INIS)

    2011-01-01

    SYMPHONIE-NH is the non-hydrostatic ocean model following the Boussinesq hydrostatic SYMPHONIE-2010 model developed by the Sirocco system team (CNRS and Toulouse University). Both are using an Arakawa type finite difference method for the C grid. The R and D team generally gives priority to a physically based approach of modelling (global conservation of the mechanical energy, consistency of pressure and density, accuracy of the bottom pressure torque,...) that tends to favour low order and robust numerical schemes. Most of the physical and numerical options (Non-Hydrostatic, free surface, generalised coordinates combined to an ALE method,...) are particularly suitable for the coastal area. At the request of the International Atomic Energy Agency (IAEA, March 14, 2011), SIROCCO is delivering every day a real time 6-day forecast bulletin of the dispersion in seawater of radionuclides emitted by the Fukushima nuclear plant. The simulations are based on the S2010.18 release of the 3D SIROCCO ocean circulation model. The system is operational since March 24 and the bulletin is available on an 'open-access' basis since March 28. The model uses a stretched horizontal grid with a variable horizontal resolution: from 600 m x 600 m at the nearest grid point from Fukushima, to 5 km x 5 km offshore. The initial fields (T, S, U, V, SSH) and the lateral open boundary conditions are provided by the Mercator PSY4V1R3 system (one field per day, horizontal resolution 1/12 deg. x 1/12 deg.). At the sea surface, the ocean model is forced by the meteorological fluxes delivered every 3 hours by ECMWF.i The tidal forcing at the lateral open boundaries is provided by the T-UGO model, implemented for this purpose by the SIROCCO team on the Japanese Pacific coast. Some details are given on the methodology: Bathymetry, Initialization and large scale forcing, Tides, Atmospheric forcing, Forecast protocol, and Scenario for radioactive tracers

  1. Sirocco - Fukushima Forecast Description

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-04-10

    SYMPHONIE-NH is the non-hydrostatic ocean model following the Boussinesq hydrostatic SYMPHONIE-2010 model developed by the Sirocco system team (CNRS and Toulouse University). Both are using an Arakawa type finite difference method for the C grid. The R and D team generally gives priority to a physically based approach of modelling (global conservation of the mechanical energy, consistency of pressure and density, accuracy of the bottom pressure torque,...) that tends to favour low order and robust numerical schemes. Most of the physical and numerical options (Non-Hydrostatic, free surface, generalised coordinates combined to an ALE method,...) are particularly suitable for the coastal area. At the request of the International Atomic Energy Agency (IAEA, March 14, 2011), SIROCCO is delivering every day a real time 6-day forecast bulletin of the dispersion in seawater of radionuclides emitted by the Fukushima nuclear plant. The simulations are based on the S2010.18 release of the 3D SIROCCO ocean circulation model. The system is operational since March 24 and the bulletin is available on an 'open-access' basis since March 28. The model uses a stretched horizontal grid with a variable horizontal resolution: from 600 m x 600 m at the nearest grid point from Fukushima, to 5 km x 5 km offshore. The initial fields (T, S, U, V, SSH) and the lateral open boundary conditions are provided by the Mercator PSY4V1R3 system (one field per day, horizontal resolution 1/12 deg. x 1/12 deg.). At the sea surface, the ocean model is forced by the meteorological fluxes delivered every 3 hours by ECMWF.i The tidal forcing at the lateral open boundaries is provided by the T-UGO model, implemented for this purpose by the SIROCCO team on the Japanese Pacific coast. Some details are given on the methodology: Bathymetry, Initialization and large scale forcing, Tides, Atmospheric forcing, Forecast protocol, and Scenario for radioactive tracers

  2. Forecasting global atmospheric CO2

    International Nuclear Information System (INIS)

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.

    2014-01-01

    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  3. Staged decision making based on probabilistic forecasting

    Science.gov (United States)

    Booister, Nikéh; Verkade, Jan; Werner, Micha; Cranston, Michael; Cumiskey, Lydia; Zevenbergen, Chris

    2016-04-01

    Flood forecasting systems reduce, but cannot eliminate uncertainty about the future. Probabilistic forecasts explicitly show that uncertainty remains. However, as - compared to deterministic forecasts - a dimension is added ('probability' or 'likelihood'), with this added dimension decision making is made slightly more complicated. A technique of decision support is the cost-loss approach, which defines whether or not to issue a warning or implement mitigation measures (risk-based method). With the cost-loss method a warning will be issued when the ratio of the response costs to the damage reduction is less than or equal to the probability of the possible flood event. This cost-loss method is not widely used, because it motivates based on only economic values and is a technique that is relatively static (no reasoning, yes/no decision). Nevertheless it has high potential to improve risk-based decision making based on probabilistic flood forecasting because there are no other methods known that deal with probabilities in decision making. The main aim of this research was to explore the ways of making decision making based on probabilities with the cost-loss method better applicable in practice. The exploration began by identifying other situations in which decisions were taken based on uncertain forecasts or predictions. These cases spanned a range of degrees of uncertainty: from known uncertainty to deep uncertainty. Based on the types of uncertainties, concepts of dealing with situations and responses were analysed and possible applicable concepts where chosen. Out of this analysis the concepts of flexibility and robustness appeared to be fitting to the existing method. Instead of taking big decisions with bigger consequences at once, the idea is that actions and decisions are cut-up into smaller pieces and finally the decision to implement is made based on economic costs of decisions and measures and the reduced effect of flooding. The more lead-time there is in

  4. Estimating the benefits of single value and probability forecasting for flood warning

    Directory of Open Access Journals (Sweden)

    J. S. Verkade

    2011-12-01

    Full Text Available Flood risk can be reduced by means of flood forecasting, warning and response systems (FFWRS. These systems include a forecasting sub-system which is imperfect, meaning that inherent uncertainties in hydrological forecasts may result in false alarms and missed events. This forecasting uncertainty decreases the potential reduction of flood risk, but is seldom accounted for in estimates of the benefits of FFWRSs. In the present paper, a method to estimate the benefits of (imperfect FFWRSs in reducing flood risk is presented. The method is based on a hydro-economic model of expected annual damage (EAD due to flooding, combined with the concept of Relative Economic Value (REV. The estimated benefits include not only the reduction of flood losses due to a warning response, but also consider the costs of the warning response itself, as well as the costs associated with forecasting uncertainty. The method allows for estimation of the benefits of FFWRSs that use either deterministic or probabilistic forecasts. Through application to a case study, it is shown that FFWRSs using a probabilistic forecast have the potential to realise higher benefits at all lead-times. However, it is also shown that provision of warning at increasing lead-time does not necessarily lead to an increasing reduction of flood risk, but rather that an optimal lead-time at which warnings are provided can be established as a function of forecast uncertainty and the cost-loss ratio of the user receiving and responding to the warning.

  5. A hybrid approach for probabilistic forecasting of electricity price

    DEFF Research Database (Denmark)

    Wan, Can; Xu, Zhao; Wang, Yelei

    2014-01-01

    to the nonstationarities involved in market clearing prices (MCPs), it is rather difficult to accurately predict MCPs in advance. The challenge is getting intensified as more and more renewable energy and other new technologies emerged in smart grids. Therefore transformation from traditional point forecasts...... electricity price forecasting is proposed in this paper. The effectiveness of the proposed hybrid method has been validated through comprehensive tests using real price data from Australian electricity market.......The electricity market plays a key role in realizing the economic prophecy of smart grids. Accurate and reliable electricity market price forecasting is essential to facilitate various decision making activities of market participants in the future smart grid environment. However, due...

  6. A Novel Approach to Forecasting the Bulk Freight Market

    Directory of Open Access Journals (Sweden)

    Vangelis Tsioumas

    2017-03-01

    Full Text Available The fast-paced and ever changing freight market compels maritime executives to use sound forecasting tools. This paper aims to enhance the forecasting accuracy of the Baltic Dry Index (BDI by means of developing a multivariate Vector Autoregressive model with exogenous variables (VARX. The proposed model incorporates the Chinese steel production, the dry bulk fleet development and a new composite indicator, the Dry Bulk Economic Climate Index (DBECI. The predictive power of this approach is evaluated against a univariate ARIMA framework, which serves as a benchmark model. The selection of explanatory variables and the model specification are validated using a series of pertinent tests. The results demonstrate that the VARX model outperforms the ARIMA approach, suggesting that the selected independent variables can substantially improve the accuracy of BDI forecasts. The present study is of interest to maritime practitioners, as it provides useful insights into the direction of the freight market and allows them to make informed decisions.

  7. Forecasting tourist arrivals to balearic islands using genetic programming

    Directory of Open Access Journals (Sweden)

    Rosselló-Nadal, Jaume

    2007-01-01

    Full Text Available Traditionally, univariate time-series models have largely dominated forecasting for international tourism demand. In this paper, the ability of a Genetic Program (GP to predict monthly tourist arrivals from UK and Germany to Balearic Islands (Spain is explored. GP has already been employed satisfactorily in different scientific areas, including economics. The technique shows different advantages regarding to other forecasting methods. Firstly, it does not assume a priori a rigid functional form of the model. Secondly, it is more robust and easy-to-use than other non-parametric methods. Finally, it provides explicitly a mathematical equation which allows a simple ad hoc interpretation of the results. Comparing the performance of the proposed technique against other method commonly used in tourism forecasting (no-change model, Moving Average and ARIMA, the empirical results reveal that GP can be a valuable tool in this field.

  8. Climate Forecast System Version 2 (CFSv2) Operational Forecasts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Forecast System Version 2 (CFSv2) produced by the NOAA National Centers for Environmental Prediction (NCEP) is a fully coupled model representing the...

  9. Black Sea coastal forecasting system

    Directory of Open Access Journals (Sweden)

    A. I. Kubryakov

    2012-03-01

    Full Text Available The Black Sea coastal nowcasting and forecasting system was built within the framework of EU FP6 ECOOP (European COastalshelf sea OPerational observing and forecasting system project for five regions: the south-western basin along the coasts of Bulgaria and Turkey, the north-western shelf along the Romanian and Ukrainian coasts, coastal zone around of the Crimea peninsula, the north-eastern Russian coastal zone and the coastal zone of Georgia. The system operates in the real-time mode during the ECOOP project and afterwards. The forecasts include temperature, salinity and current velocity fields. Ecosystem model operates in the off-line mode near the Crimea coast.

  10. Magnetogram Forecast: An All-Clear Space Weather Forecasting System

    Science.gov (United States)

    Barghouty, Nasser; Falconer, David

    2015-01-01

    Solar flares and coronal mass ejections (CMEs) are the drivers of severe space weather. Forecasting the probability of their occurrence is critical in improving space weather forecasts. The National Oceanic and Atmospheric Administration (NOAA) currently uses the McIntosh active region category system, in which each active region on the disk is assigned to one of 60 categories, and uses the historical flare rates of that category to make an initial forecast that can then be adjusted by the NOAA forecaster. Flares and CMEs are caused by the sudden release of energy from the coronal magnetic field by magnetic reconnection. It is believed that the rate of flare and CME occurrence in an active region is correlated with the free energy of an active region. While the free energy cannot be measured directly with present observations, proxies of the free energy can instead be used to characterize the relative free energy of an active region. The Magnetogram Forecast (MAG4) (output is available at the Community Coordinated Modeling Center) was conceived and designed to be a databased, all-clear forecasting system to support the operational goals of NASA's Space Radiation Analysis Group. The MAG4 system automatically downloads nearreal- time line-of-sight Helioseismic and Magnetic Imager (HMI) magnetograms on the Solar Dynamics Observatory (SDO) satellite, identifies active regions on the solar disk, measures a free-energy proxy, and then applies forecasting curves to convert the free-energy proxy into predicted event rates for X-class flares, M- and X-class flares, CMEs, fast CMEs, and solar energetic particle events (SPEs). The forecast curves themselves are derived from a sample of 40,000 magnetograms from 1,300 active region samples, observed by the Solar and Heliospheric Observatory Michelson Doppler Imager. Figure 1 is an example of MAG4 visual output

  11. Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm

    International Nuclear Information System (INIS)

    Hong, Wei-Chiang

    2011-01-01

    Support vector regression (SVR), with hybrid chaotic sequence and evolutionary algorithms to determine suitable values of its three parameters, not only can effectively avoid converging prematurely (i.e., trapping into a local optimum), but also reveals its superior forecasting performance. Electric load sometimes demonstrates a seasonal (cyclic) tendency due to economic activities or climate cyclic nature. The applications of SVR models to deal with seasonal (cyclic) electric load forecasting have not been widely explored. In addition, the concept of recurrent neural networks (RNNs), focused on using past information to capture detailed information, is helpful to be combined into an SVR model. This investigation presents an electric load forecasting model which combines the seasonal recurrent support vector regression model with chaotic artificial bee colony algorithm (namely SRSVRCABC) to improve the forecasting performance. The proposed SRSVRCABC employs the chaotic behavior of honey bees which is with better performance in function optimization to overcome premature local optimum. A numerical example from an existed reference is used to elucidate the forecasting performance of the proposed SRSVRCABC model. The forecasting results indicate that the proposed model yields more accurate forecasting results than ARIMA and TF-ε-SVR-SA models. Therefore, the SRSVRCABC model is a promising alternative for electric load forecasting. -- Highlights: → Hybridizing the seasonal adjustment and the recurrent mechanism into an SVR model. → Employing chaotic sequence to improve the premature convergence of artificial bee colony algorithm. → Successfully providing significant accurate monthly load demand forecasting.

  12. Evaluating Forecasting Models for Unemployment Rates by Gender in Selected European Countries

    Directory of Open Access Journals (Sweden)

    Ksenija Dumičić

    2017-03-01

    Full Text Available The unemployment can be considered as one of the main economic problems. The aim of this article is to examine the differences in male and female unemployment rates in selected European countries and to predict their future trends by using different statistical forecasting models. Furthermore, the impact of adding a new data point on the selection of the most appropriate statistical forecasting model and on the overall forecasting errors values is also evaluated. Male and female unemployment rates are observed for twelve European countries in the period from 1991 to 2014. Four statistical forecasting models have been selected and applied and the most appropriate model is considered to be the one with the lowest overall forecasting errors values. The analysis has shown that in the period from 1991 to 2014 the decreasing trend of unemployment rates in the short-run is forecasted for more Eastern Balkan than the EU-28 countries. An additional data point for male and female unemployment rates in 2014 led to somewhat smaller forecasting errors in more than half of the observed countries. However, the additional data point does not necessarily improve forecasting performances of the used statistical forecasting models.

  13. Economic dynamics of all members of the United Nations

    CERN Document Server

    Chukwu, Ethelbert Nwakuche

    2014-01-01

    This book provides an enduring response to modern economic problems and the consequent crises, dealing with the economic modelling of nations and the forecasting of economic growth. The main arguments embodied constitute the creation of jobs and the restoration of economic growth, using the implicit acceptance of analysis on differential models and neutral systems for controlling the wealth of nations.

  14. An interdisciplinary approach for earthquake modelling and forecasting

    Science.gov (United States)

    Han, P.; Zhuang, J.; Hattori, K.; Ogata, Y.

    2016-12-01

    Earthquake is one of the most serious disasters, which may cause heavy casualties and economic losses. Especially in the past two decades, huge/mega earthquakes have hit many countries. Effective earthquake forecasting (including time, location, and magnitude) becomes extremely important and urgent. To date, various heuristically derived algorithms have been developed for forecasting earthquakes. Generally, they can be classified into two types: catalog-based approaches and non-catalog-based approaches. Thanks to the rapid development of statistical seismology in the past 30 years, now we are able to evaluate the performances of these earthquake forecast approaches quantitatively. Although a certain amount of precursory information is available in both earthquake catalogs and non-catalog observations, the earthquake forecast is still far from satisfactory. In most case, the precursory phenomena were studied individually. An earthquake model that combines self-exciting and mutually exciting elements was developed by Ogata and Utsu from the Hawkes process. The core idea of this combined model is that the status of the event at present is controlled by the event itself (self-exciting) and all the external factors (mutually exciting) in the past. In essence, the conditional intensity function is a time-varying Poisson process with rate λ(t), which is composed of the background rate, the self-exciting term (the information from past seismic events), and the external excitation term (the information from past non-seismic observations). This model shows us a way to integrate the catalog-based forecast and non-catalog-based forecast. Against this background, we are trying to develop a new earthquake forecast model which combines catalog-based and non-catalog-based approaches.

  15. Short-term load forecasting of power system

    Science.gov (United States)

    Xu, Xiaobin

    2017-05-01

    In order to ensure the scientific nature of optimization about power system, it is necessary to improve the load forecasting accuracy. Power system load forecasting is based on accurate statistical data and survey data, starting from the history and current situation of electricity consumption, with a scientific method to predict the future development trend of power load and change the law of science. Short-term load forecasting is the basis of power system operation and analysis, which is of great significance to unit combination, economic dispatch and safety check. Therefore, the load forecasting of the power system is explained in detail in this paper. First, we use the data from 2012 to 2014 to establish the partial least squares model to regression analysis the relationship between daily maximum load, daily minimum load, daily average load and each meteorological factor, and select the highest peak by observing the regression coefficient histogram Day maximum temperature, daily minimum temperature and daily average temperature as the meteorological factors to improve the accuracy of load forecasting indicators. Secondly, in the case of uncertain climate impact, we use the time series model to predict the load data for 2015, respectively, the 2009-2014 load data were sorted out, through the previous six years of the data to forecast the data for this time in 2015. The criterion for the accuracy of the prediction is the average of the standard deviations for the prediction results and average load for the previous six years. Finally, considering the climate effect, we use the BP neural network model to predict the data in 2015, and optimize the forecast results on the basis of the time series model.

  16. Earthquake number forecasts testing

    Science.gov (United States)

    Kagan, Yan Y.

    2017-10-01

    We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness

  17. 25 years of time series forecasting

    NARCIS (Netherlands)

    de Gooijer, J.G.; Hyndman, R.J.

    2006-01-01

    We review the past 25 years of research into time series forecasting. In this silver jubilee issue, we naturally highlight results published in journals managed by the International Institute of Forecasters (Journal of Forecasting 1982-1985 and International Journal of Forecasting 1985-2005). During

  18. Estimates of Uncertainty around the RBA's Forecasts

    OpenAIRE

    Peter Tulip; Stephanie Wallace

    2012-01-01

    We use past forecast errors to construct confidence intervals and other estimates of uncertainty around the Reserve Bank of Australia's forecasts of key macroeconomic variables. Our estimates suggest that uncertainty about forecasts is high. We find that the RBA's forecasts have substantial explanatory power for the inflation rate but not for GDP growth.

  19. Recurrent networks for wave forecasting

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    , merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper presents an application of the Artificial Neural Network, namely Backpropagation Recurrent Neural Network (BRNN) with rprop update algorithm for wave forecasting...

  20. Ensemble forecasting of species distributions.

    Science.gov (United States)

    Araújo, Miguel B; New, Mark

    2007-01-01

    Concern over implications of climate change for biodiversity has led to the use of bioclimatic models to forecast the range shifts of species under future climate-change scenarios. Recent studies have demonstrated that projections by alternative models can be so variable as to compromise their usefulness for guiding policy decisions. Here, we advocate the use of multiple models within an ensemble forecasting framework and describe alternative approaches to the analysis of bioclimatic ensembles, including bounding box, consensus and probabilistic techniques. We argue that, although improved accuracy can be delivered through the traditional tasks of trying to build better models with improved data, more robust forecasts can also be achieved if ensemble forecasts are produced and analysed appropriately.