WorldWideScience

Sample records for ecological life-support system

  1. Controlled Ecological Life Support System Breadboard Project - 1988

    Science.gov (United States)

    Knott, W. M.

    1989-01-01

    The Controlled Ecological Life Support System (CELSS) Breadboard Project, NASA's effort to develop the technology required to produce a functioning bioregenerative system, is discussed. The different phases of the project and its current status are described. The relationship between the project components are shown, and major project activities for fiscal years 1989-1993 are listed. The biomass production chamber to be used by the project is described.

  2. Controlled ecological life support system breadboard project, 1988

    Science.gov (United States)

    Knott, W. M.

    1990-01-01

    The Closed Ecological Life Support System (CELSS) Breadboard Project, NASA's effort to develop the technology required to produce a functioning bioregenerative system, is discussed. The different phases of the project and its current status are described. The relationship between the project components are shown, and major project activities for fiscal years 1989 to 1993 are listed. The Biomass Production Chamber (BPC) became operational and tests of wheat as a single crop are nearing completion.

  3. Achieving Closure for Bioregenerative Life Support Systems: Engineering and Ecological Challenges, Research Opportunities

    Science.gov (United States)

    Dempster, William; Allen, John P.

    Closed systems are desirable for a number of purposes: space life support systems where precious life-supporting resources need to be kept inside; biospheric systems; where global ecological pro-cesses can be studied in great detail and testbeds where research topics requiring isolation from the outside (e.g. genetically modified organisms; radioisotopes) can be studied in isolation from the outside environment and where their ecological interactions and fluxes can be studied. But to achieve and maintain closure raises both engineering and ecological challenges. Engineering challenges include methods of achieving closure for structures of different materials, and devel-oping methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is devel-oping means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differen-tials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro-and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and

  4. Nutrition and food technology for a Controlled Ecological Life Support System (CELSS)

    Science.gov (United States)

    Glaser, P. E.; Mabel, J. A.

    1981-01-01

    Food technology requirements and a nutritional strategy for a Controlled Ecological Life Support System (CELSS) to provide adequate food in an acceptable form in future space missions are discussed. The establishment of nutritional requirements, dietary goals, and a food service system to deliver acceptable foods in a safe and healthy form and the development of research goals and priorities were the main objectives of the study.

  5. Evaluation of engineering foods for closed Ecological Life Support System (CELSS)

    Science.gov (United States)

    Karel, M.

    1982-01-01

    A nutritionally adequate and acceptable diet was evaluated and developed. A design for a multipurpose food plant is discussed. The types and amounts of foods needed to be regenerated in a partially closed ecological life support system (PCELSS) were proposed. All steps of food processes to be utilized in the multipurpose food plant of PCELSS were also considered. Equipment specifications, simplification of the proposed processes, and food waste treatment were analyzed.

  6. Controlled ecological life support systems: Development of a plant growth module

    Science.gov (United States)

    Averner, Mel M.; Macelroy, Robert D.; Smernoff, David T.

    1987-01-01

    An effort was made to begin defining the scientific and technical requirements for the design and construction of a ground-based plant growth facility. In particular, science design criteria for the Plant Growth Module (PGM) of the Controlled Ecological Life Support System (CELSS) were determined in the following areas: (1) irradiation parameters and associated equipment affecting plant growth; (2) air flow; (3) planting, culture, and harvest techniques; (4) carbon dioxide; (5) temperature and relative humidity; (6) oxygen; (7) construction materials and access; (8) volatile compounds; (9) bacteria, sterilization, and filtration; (10) nutrient application systems; (11) nutrient monitoring; and (12) nutrient pH and conductivity.

  7. Controlled Ecological Life Support Systems (CELSS) conceptual design option study

    Science.gov (United States)

    Oleson, Melvin; Olson, Richard L.

    1986-01-01

    Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.

  8. Preparation and analysis of standardized waste samples for Controlled Ecological Life Support Systems (CELSS)

    Science.gov (United States)

    Carden, J. L.; Browner, R.

    1982-01-01

    The preparation and analysis of standardized waste samples for controlled ecological life support systems (CELSS) are considered. Analysis of samples from wet oxidation experiments, the development of ion chromatographic techniques utilizing conventional high pressure liquid chromatography (HPLC) equipment, and an investigation of techniques for interfacing an ion chromatograph (IC) with an inductively coupled plasma optical emission spectrometer (ICPOES) are discussed.

  9. The maximization of the productivity of aquatic plants for use in controlled ecological life support systems (CELSS)

    Science.gov (United States)

    Thompson, B. G.

    Lemna minor (common duckweed) and a Wolffia sp. were grown in submerged growth systems. Submerged growth increased the productivity/unit volume (P/UV) of the organisms and may allow these plants to be used in a controlled ecological life support system (CELSS).

  10. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    Science.gov (United States)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  11. Closed ecological life-support systems and their applications

    Science.gov (United States)

    Gitelson, Josef I.

    The advent of man-made closed ecosystems (CES) is a solution of the fundamental problem-egress of humans beyond the Earth's biosphere, providing biological basis for exploitation of Space and celestial bodies. Yet, before proceeding to these ambitious project elements of closed life-support biotechnologies, there can be found diverse applications on Earth in human settlements providing for high quality of life under extreme environment conditions: high latitudes, deserts, mountains and industrially polluted areas. This presentation considers these variations of terrestrial applications of CELSS technologies. The version of CES under development is based on making direct use of the light energy in plant photosynthesis. In this case life support of one man on the Earth orbit requires solar light collected from 5-10m2. Among terrestrial applications of prime importance is the development of an ecohome designed to provide people with a high quality of life in Arctic and Antarctic territories. The developed technology of cascade employment of energy makes possible (expending 10-15 kw of installed power per a house-3-5 member family) to provide for: permanent supply of fresh vitamin-full vegetables, absorption and processing oaf excreta, purification of water and air in the living quarters, habitual colour and light conditions in the premises in winter making up to sensorial deprivation and, finally, psychological comfort of close contact with the plants during the long polar night. Ecohabitat based on the technology described in realistic today and depends only on the energy available and the resolution and readiness (sagacity) of the decision-makers to be committed with ecohome assigning. The ecological and economical significance of construction of ecohabitats for the northern territories of Canada, Alaska and Russia is apparent. This principle can be used (with considerable economy of energy and construction costs) to maintain normal partial pressure of oxygen inside

  12. The Controlled Ecological Life Support System Antarctic Analog Project: Prototype Crop Production and Water Treatment System Performance

    Science.gov (United States)

    Bubenheim, David L.; Flynn, Michael T.; Bates, Maynard; Schlick, Greg; Kliss, Mark (Technical Monitor)

    1997-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP), is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the NASA. The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for sewage treatment, water recycle and crop production are being evaluated at Ames Research Center. The product water from sewage treatment using a Wiped-Film Rotating Disk is suitable for input to the crop production system. The crop production system has provided an enhanced level of performance compared with projected performance for plant-based life support: an approximate 50% increase in productivity per unit area, more than a 65% decrease in power for plant lighting, and more than a 75% decrease in the total power requirement to produce an equivalent mass of edible biomass.

  13. Incineration for resource recovery in a closed ecological life support system

    Science.gov (United States)

    Upadhye, R. S.; Wignarajah, K.; Wydeven, T.

    1993-01-01

    A functional schematic, including mass and energy balance, of a solid waste processing system for a controlled ecological life support system (CELSS) was developed using Aspen Plus, a commercial computer simulation program. The primary processor in this system is an incinerator for oxidizing organic wastes. The major products derived from the incinerator are carbon dioxide and water, which can be recycled to a crop growth chamber (CGC) for food production. The majority of soluble inorganics are extracted or leached from the inedible biomass before they reach the incinerator, so that they can be returned directly to the CGC and reused as nutrients. The heat derived from combustion of organic compounds in the incinerator was used for phase-change water purification. The waste streams treated by the incinerator system conceptualized in this work are inedible biomass from a CGC, human urine (including urinal flush water) and feces, humidity condensate, shower water, and trash. It is estimated that the theoretical minimum surface area required for the radiator to reject the unusable heat output from this system would be 0.72 sq m/person at 298 K.

  14. Engineering stategies and implications of using higher plants for throttling gas and water exchange in a controlled ecological life support system

    Science.gov (United States)

    Chamberland, Dennis; Wheeler, Raymond M.; Corey, Kenneth A.

    1993-01-01

    Engineering stategies for advanced life support systems to be used on Lunar and Mars bases involve a wide spectrum of approaches. These range from purely physical-chemical life support strategies to purely biological approaches. Within the context of biological based systems, a bioengineered system can be devised that would utilize the metabolic mechanisms of plants to control the rates of CO2 uptake and O2 evolution (photosynthesis) and water production (transpiration). Such a mechanism of external engineering control has become known as throttling. Research conducted at the John F. Kennedy Space Center's Controlled Ecological Life Support System Breadboard Project has demonstrated the potential of throttling these fluxes by changing environmental parameters affecting the plant processes. Among the more effective environmental throttles are: light and CO2 concentration for controllingthe rate of photsynthesis and humidity and CO2 concentration for controlling transpiration. Such a bioengineered strategy implies control mechanisms that in the past have not been widely attributed to life support systems involving biological components and suggests a broad range of applications in advanced life support system design.

  15. Robotics in a controlled, ecological life support system

    Science.gov (United States)

    Miles, Gaines E.; Krom, Kimberly J.

    1993-01-01

    Controlled, Ecological Life Support Systems (CELSS) that utilize plants to provide food, water and oxygen could consume considerable amounts of labor unless crop production, recovery and processing are automated. Robotic manipulators equipped with special end-effectors and programmed to perform the sensing and materials handling tasks would minimize the amount of astronaut labor required. The Human Rated Test Facility (HRTF) planned for Johnson Space Center could discover and demonstrate techniques of crop production which can be reliably integrated with machinery to minimize labor requirements. Before the physical components (shelves, lighting fixtures, etc.) can be selected, a systems analysis must be performed to determine which alternative processes should be followed and how the materials handling tasks should be automated. Given that the current procedures used to grow crops in a CELSS may not be the best methods to automate, then what are the alternatives? How may plants be grown, harvested, processed for food, and the inedible components recycled? What commercial technologies current exist? What research efforts are underway to develop new technologies which might satisfy the need for automation in a CELSS? The answers to these questions should prove enlightening and provide some of the information necessary to perform the systems analysis. The planting, culturing, gathering, threshing and separation, food processing, and recovery of inedible portions of wheat were studied. The basic biological and materials handling processes of each task are defined and discussed. Current practices at Johnson Space Center and other NASA centers are described and compared to common production practices in the plant production industry. Technologies currently being researched which might be applicable are identified and illustrated. Finally, based on this knowledge, several scenarios are proposed for automating the tasks for wheat.

  16. Study on O2-supplying characteristics of Azolla in Controlled Ecological Life Support System

    Science.gov (United States)

    Chen, Min; Deng, Sufang; Yang, Youquang; Huang, Yibing; Liu, Zhongzhu

    Azolla has high growth and propagation rate, strong photosynthetic O2-releasing ability and rich nutrient value. It is able to be used as salad-type vegetable, and can also be cultured on wet bed in multi-layer condition. Hence, it possesses a potential functioning as providing O2, fresh vegetable and absorbing CO2 for Controlled Ecological Life Support System in space. In this study, we try to make clear the O2-providing characteristics of Azolla in controlled close chamber under manned condition in order to lay a foundation for Azolla as a biological component in the next ground simulated experiment and space application. A closed test cham-ber of Controlled Ecological Life Support System and Azolla wet-culturing devices were built to measure the changes of atmospheric O2-CO2 concentration inside chamber under "Azolla-fish -men" coexisting condition. The results showed that, the amount of O2 consumption is 80.49 83.07 ml/h per kilogram fish, the amount of CO2 emissions is 70.49 73.56 ml/(kg • h); O2 consumption of trial volunteers is 19.71 L/h, the volume of respiration release CO2 18.90 L/h .Artificial light intensity of Azolla wet culture under 70009000 Lx, people respiration and Azolla photosynthesis complemented each other, the atmospheric O2-CO2 concentration inside chamber maintained equilibration. Elevated atmospheric CO2 concentrations in close chamber have obvious effects on enhancing Azolla net photosynthesis efficiency. This shows that Azolla has strong photosynthetic O2-releasing ability, which equilibrates the O2-CO2 concentration inside chamber in favor of human survival, and then verifies the prospect of Azolla in space application.

  17. Non-methane hydrocarbons in a controlled ecological life support system.

    Science.gov (United States)

    Dai, Kun; Yu, Qingni; Zhang, Zhou; Wang, Yuan; Wang, Xinming

    2018-02-01

    Non-methane hydrocarbons (NMHCs) are vital to people's health and plants' growth, especially inside a controlled ecological life support system (CELSS) built for long-term space explorations. In this study, we measured 54 kinds of NMHCs to study their changing trends in concentration levels during a 4-person-180-day integrated experiment inside a CELSS with four cabins for plants growing and other two cabins for human daily activities and resources management. During the experiment, the total mixing ratio of measured NMHCs was 423 ± 283 ppbv at the first day and it approached 2961 ± 323 ppbv ultimately. Ethane and propane were the most abundant alkanes and their mixing ratios kept growing from 27.5 ± 19.4 and 31.0 ± 33.6 ppbv to 2423 ± 449 ppbv and 290 ± 10 ppbv in the end. For alkenes, ethylene and isoprene presented continuously fluctuating states during the experimental period with average mixing ratios of 30.4 ± 19.3 ppbv, 7.4 ± 5.8 ppbv. For aromatic hydrocarbons, the total mixing ratios of benzene, toluene, ethylbenzene and xylenes declined from 48.0 ± 44 ppbv initially to 3.8 ± 1.1 ppbv ultimately. Biomass burning, sewage treatment, construction materials and plants all contributed to NMHCs inside CELSS. In conclusion, the results demonstrate the changing trends of NMHCs in a long-term closed ecological environment's atmosphere which provides valuable information for both the atmosphere management of CELSS and the exploration of interactions between humans and the total environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaluation of engineering foods for Controlled Ecological Life Support Systems (CELSS)

    Science.gov (United States)

    Karel, M.

    1982-01-01

    The feasibility of developing acceptable and reliable engineered foods for use in controlled ecological support systems (CELSS) was evaluated. Food resupply and regeneration are calculated, flow charts of food processes in a multipurpose food pilot plant are presented, and equipment for a multipurpose food pilot plant and potential simplification of processes are discussed. Food-waste treatment and water usage in food processing and preparation are also considered.

  19. Suggestions for crops grown in controlled ecological life-support systems, based on attractive vegetarian diets

    Science.gov (United States)

    Salisbury, F. B.; Clark, M. A.

    1996-01-01

    Assuming that crops grown in controlled ecological life-support systems (CELSS) should provide a basis for meals that are both nutritious and attractive (to taste and vision), and that CELSS diets on the moon or Mars or in space-craft during long voyages will have to be mostly vegetarian, a workshop was convened at the Johnson Space Center, Houston, Texas, U.S.A. on 19 to 21 January, 1994. Participants consisted of trained nutritionists and others; many of the approximately 18 presenters who discussed possible diets were practicing vegetarians, some for more than two decades. Considering all the presentations, seven conclusions (or points for discussion) could be formulated: nutritious vegetarian diets are relatively easily to formulate, vegetarian diets are healthy, variety is essential in vegetarian diets, some experiences (e.g., Bios-3 and Biosphere 2) are relevant to planning of CELSS diets, physical constraints will limit the choice of crops, a preliminary list of recommended crops can be formulated, and this line of research has some potential practical spinoffs. The list of crops and the reasons for including specific crops might be of interest to professionals in the field of health and nutrition as well as to those who are designing closed ecological systems.

  20. Suggestions for crops grown in controlled ecological life-support systems, based on attractive vegetarian diets

    Science.gov (United States)

    Salisbury, F. B.; Clark, M. A. Z.

    Assuming that crops grown in controlled ecological life-support systems (CELSS) should provide a basis for meals that are both nutritious and attractive (to taste and vision), and that CELSS diets on the moon or Mars or in space-craft during long voyages will have to be mostly vegetarian, a workshop was convened at the Johnson Space Center, Houston, Texas, U.S.A. on 19 to 21 January, 1994. Participants consisted of trained nutritionists and others; many of the approximately 18 presenters who discussed possible diets were practicing vegetarians, some for more than two decades. Considering all the presentations, seven conclusions (or points for discussion) could be formulated: nutritious vegetarian diets are relatively easily to formulate, vegetarian diets are healthy, variety is essential in vegetarian diets, some experiences (e.g., Bios-3 and Biosphere 2) are relevant to planning of CELSS diets, physical constraints will limit the choice of crops, a preliminary list of recommended crops can be formulated, and this line of research has some potential practical spinoffs. The list of crops and the reasons for including specific crops might be of interest to professionals in the field of health and nutrition as well as to those who are designing closed ecological systems.

  1. Ecological Challenges for Closed Systems

    Science.gov (United States)

    Nelson, Mark; Dempster, William; Allen, John P.

    2012-07-01

    Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, the sustaining of healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and measures and options which may be necessary to ensure long-term operation of closed ecological systems.

  2. Controlled ecological life support systems; Proceedings of Workshop II of the 26th COSPAR Plenary Meeting, Toulouse, France, June 30-July 11, 1986

    Science.gov (United States)

    Macelroy, R. D. (Editor); Smernoff, D. T. (Editor)

    1987-01-01

    The present conference on the development status of Controlled Ecological Life Support Systems (CELSSs) discusses food production and gas exchange with the Spirulina blue-green alga, biomass recycling for greater energy efficiency in algal culture CELSSs, algal proteins for food processing in a CELSS, a CELSS with photosynthetic N2-fixing cyanobacteria, the NASA CELSS program, and vapor compression ditillation and membrane technology for water revitalization. Also discussed are a fundamental study of CELSS gas monitoring, the application of catalytic wet oxidation to CELSS, a large-scale perspective on ecosystems, Japanese CELSS research activities, the use of potatoes in bioregenerative life-support, wheat production in controlled environments, and a trickle water and feeding system in plant culture.

  3. [Habitability and life support systems].

    Science.gov (United States)

    Nefedov, Iu G; Adamovich, B A

    1988-01-01

    This paper discusses various aspects of space vehicle habitability and life support systems. It describes variations in the chemical and microbial composition of an enclosed atmosphere during prolonged real and simulated flights. The paper gives a detailed description of life support systems and environmental investigations onboard the Mir station. It also outlines the development of space vehicle habitability and life support systems as related to future flights.

  4. Key ecological challenges for closed systems facilities

    Science.gov (United States)

    Nelson, Mark; Dempster, William F.; Allen, John P.

    2013-07-01

    Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet, recycling nutrients and maintaining soil fertility, the maintenance of healthy air and water and preventing the loss of critical elements from active circulation. In biospheric facilities, the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and backup technologies and strategic options which may be necessary to ensure long-term operation of closed ecological systems.

  5. Creation of closed life support systems

    Science.gov (United States)

    Gitelson, I.

    The 40-year-long experience in devising ecological systems with a significantly closed material cycling (CES), which are intended for human life support outside the Earth's biosphere, allows us to state that this problem has been largely solved technically. To test the terrestrial prototypes of these systems: Bios in Krasnoyarsk, the Terrestrial Ecological System (TES) in Moscow, and Bioplex in Houston, crews of humans stayed inside them over long periods of time. In Bios-3 humans could be fully (100%) provided with regenerated air and water and with a vegetable part (80%) of their diet. One human requires 4.5 kW of light energy, which is equal to the light energy incident on an 8-m2 surface perpendicular to solar rays in the Earth's orbit. The regeneration of air and water can be alternatively performed by a 17-L2 microalgal cultivator with a light-receiving surface of 8 m at 2 kW of light energy or by a conveyer culture of agricultural plants. To regenerate the vegetable part of2 the diet to the full, the area must increase to 31.5 m per person. Similar values have been obtained in the TES and in Bioplex. It can be concluded that the system is ready to be implemented in the engineering-technical designs of specific versions: for orbital flights, for missions to Mars and other planets, and for stations on the Moon and Mars. To improve the CES further, a number of new key problems should be resolved. The first of them are: to robotize the technological processes and to establish an optimized system of the internal control of the CES by the crew working in it; to develop a hybrid physicochemical-biological technology for returning the dead-end products of biosynthesis into the system's cycling; to solve the fundamental problem of regenerating the human ration completely inside the CES by the autotrophic chemo - and photosynthesis. Once this problem is solved, the energy requirements for life support in space will be significantly reduced. This will also considerably

  6. Introduction to Life Support Systems

    Science.gov (United States)

    Perry, Jay

    2017-01-01

    This course provides an introduction to the design and development of life support systems to sustain humankind in the harsh environment of space. The life support technologies necessary to provide a respirable atmosphere and clean drinking water are emphasized in the course. A historical perspective, beginning with open loop systems employed aboard the earliest crewed spacecraft through the state-of-the-art life support technology utilized aboard the International Space Station today, will provide a framework for students to consider applications to possible future exploration missions and destinations which may vary greatly in duration and scope. Development of future technologies as well as guiding requirements for designing life support systems for crewed exploration missions beyond low-Earth orbit are also considered in the course.

  7. Design Rules for Life Support Systems

    Science.gov (United States)

    Jones, Harry

    2002-01-01

    This paper considers some of the common assumptions and engineering rules of thumb used in life support system design. One general design rule is that the longer the mission, the more the life support system should use recycling and regenerable technologies. A more specific rule is that, if the system grows more than half the food, the food plants will supply all the oxygen needed for the crew life support. There are many such design rules that help in planning the analysis of life support systems and in checking results. These rules are typically if-then statements describing the results of steady-state, "back of the envelope," mass flow calculations. They are useful in identifying plausible candidate life support system designs and in rough allocations between resupply and resource recovery. Life support system designers should always review the design rules and make quick steady state calculations before doing detailed design and dynamic simulation. This paper develops the basis for the different assumptions and design rules and discusses how they should be used. We start top-down, with the highest level requirement to sustain human beings in a closed environment off Earth. We consider the crew needs for air, water, and food. We then discuss atmosphere leakage and recycling losses. The needs to support the crew and to make up losses define the fundamental life support system requirements. We consider the trade-offs between resupplying and recycling oxygen, water, and food. The specific choices between resupply and recycling are determined by mission duration, presence of in-situ resources, etc., and are defining parameters of life support system design.

  8. Bioregenerative life-support systems

    Science.gov (United States)

    Mitchell, C. A.

    1994-01-01

    Long-duration future habitation of space involving great distances from Earth and/or large crew sizes (eg, lunar outpost, Mars base) will require a controlled ecological life-support system (CELSS) to simultaneously revitalize atmosphere (liberate oxygen and fix carbon dioxide), purify water (via transpiration), and generate human food (for a vegetarian diet). Photosynthetic higher plants and algae will provide the essential functions of biomass productivity in a CELSS, and a combination of physicochemical and bioregenerative processes will be used to regenerate renewable resources from waste materials. Crop selection criteria for a CELSS include nutritional use characteristics as well as horticultural characteristics. Cereals, legumes, and oilseed crops are used to provide the major macronutrients for the CELSS diet. A National Aeronautics and Space Administration (NASA) Specialized Center of Research and Training (NSCORT) was established at Purdue University to establish proof of the concept of the sustainability of a CELSS. The Biosphere 2 project in Arizona is providing a model for predicted and unpredicted situations that arise as a result of closure in a complex natural ecosystem.

  9. The controlled ecological life support system Antarctic analog project: Analysis of wastewater from the South Pole Station, Antarctica, volume 1

    Science.gov (United States)

    Flynn, Michael T.; Bubenheim, David L.; Straight, Christian L.; Belisle, Warren

    1994-01-01

    The Controlled Ecological Life Support system (CELSS) Antarctic Analog Project (CAAP) is a joint National Science Foundation (NSF) and NASA project for the development, deployment and operation of CELSS technologies at the Amundsen-Scott South Pole Station. NASA goals are operational testing of CELSS technologies and the conduct of scientific studies to facilitate technology selection and system design. The NSF goals are that the food production, water purification, and waste treatment capabilities which will be provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, and minimize environmental impacts associated with human presence on the polar plateau. This report presents an analysis of wastewater samples taken from the Amundsen-Scott South Pole Station, Antarctica. The purpose of the work is to develop a quantitative understanding of the characteristics of domestic sewage streams at the South Pole Station. This information will contribute to the design of a proposed plant growth/waste treatment system which is part of the CELSS Antarctic Analog Project (CAAP).

  10. Mutant strains of Spirulina (Arthrospira) platensis to increase the efficiency of micro-ecological life support systems

    Science.gov (United States)

    Brown, Igor

    The European Micro-Ecological Life Support System Alternative (MELiSSA) is an advanced idea for organizing a bioregenerative system for long term space flights and extraterrestrial settlements (Hendrickx, De Wever et al., 2005). Despite the hostility of both lunar and Martian environments to unprotected life, it seems possible to cultivate photosynthetic bacteria using closed bioreactors illuminated and heated by solar energy. Such reactors might be employed in critical processes, e.g. air revitalization, foodcaloric and protein source, as well as an immunomodulators production. The MELiSSA team suggested cyanobacterium Spirulina as most appropriate agent to revitalize air and produce a simple "fast" food. This is right suggestion because Spirulina was recently shown to be an oxygenic organism with the highest level of O2 production per unit mass (Ananyev et al., 2005). Chemical composition of Spirulina includes proteins (55Aiming to make Spirulina cultivation in life support systems like MELiSSA more efficient, we selected Spirulina mutant strains with increased fraction of methionine in the biomass of this cyanobacterium and compared the effect of parental wild strain of Spirulina and its mutants on the tendency of such experimental illnesses as radiationinduced lesions and hemolythic anemia. Results: It was found that mutant strains 198B and 27G contain higher quantities of total protein, essential amino acids, c-phycocyanin, allophycocyanin and chlorophyll a than parental wild strain of S. platensis. The strain 198B is also characterized with increased content of carotenoids. Revealed biochemical peculiarities of mutant strains suggest that these strains can serve as an additional source of essential amino acids as well as phycobiliproteins and carotenoids for the astronauts. Feeding animals suffering from radiation-induced lesions, c-phycocyanin, extracted from strain 27G, led to a correction in deficient dehydrogenase activity and energy-rich phosphate levels

  11. Mathematical Modeling Of Life-Support Systems

    Science.gov (United States)

    Seshan, Panchalam K.; Ganapathi, Balasubramanian; Jan, Darrell L.; Ferrall, Joseph F.; Rohatgi, Naresh K.

    1994-01-01

    Generic hierarchical model of life-support system developed to facilitate comparisons of options in design of system. Model represents combinations of interdependent subsystems supporting microbes, plants, fish, and land animals (including humans). Generic model enables rapid configuration of variety of specific life support component models for tradeoff studies culminating in single system design. Enables rapid evaluation of effects of substituting alternate technologies and even entire groups of technologies and subsystems. Used to synthesize and analyze life-support systems ranging from relatively simple, nonregenerative units like aquariums to complex closed-loop systems aboard submarines or spacecraft. Model, called Generic Modular Flow Schematic (GMFS), coded in such chemical-process-simulation languages as Aspen Plus and expressed as three-dimensional spreadsheet.

  12. Controlled Ecological Life Support Systems (CELSS) physiochemical waste management systems evaluation

    Science.gov (United States)

    Oleson, M.; Slavin, T.; Liening, F.; Olson, R. L.

    1986-01-01

    Parametric data for six waste management subsystems considered for use on the Space Station are compared, i.e.: (1) dry incineration; (2) wet oxidation; (3) supercritical water oxidation; (4) vapor compression distillation; (5) thermoelectric integrated membrane evaporation system; and (6) vapor phase catalytic ammonia removal. The parameters selected for comparison are on-orbit weight and volume, resupply and return to Earth logistics, power consumption, and heat rejection. Trades studies are performed on subsystem parameters derived from the most recent literature. The Boeing Engineering Trade Study (BETS), an environmental control and life support system (ECLSS) trade study computer program developed by Boeing Aerospace Company, is used to properly size the subsystems under study. The six waste treatment subsystems modeled in this program are sized to process the wastes for a 90-day Space Station mission with an 8-person crew, and an emergency supply period of 28 days. The resulting subsystem parameters are compared not only on an individual subsystem level but also as part of an integrated ECLSS.

  13. Aromatic hydrocarbons in a controlled ecological life support system during a 4-person-180-day integrated experiment.

    Science.gov (United States)

    Dai, Kun; Yu, Qingni; Zhang, Zhou; Wang, Yuan; Wang, Xinming

    2018-01-01

    Indoor air quality is vital to the health and comfort of people who live inside a controlled ecological life support system (CELSS) built for long-term space explorations. Here we measured aromatic hydrocarbons to assess their sources and health risks during a 4-person-180-day integrated experiment inside a CELSS with four cabins for growing crops, vegetables and fruits and other two cabins for working, accommodations and resources management. During the experiment, the average concentrations of benzene, ethylbenzene, m,p-xylenes and o-xylene were found to decrease exponentially from 7.91±3.72, 37.2±35.2, 100.8±111.7 and 46.8±44.1μg/m 3 to 0.39±0.34, 1.4±0.5, 2.8±0.7 and 2.1±0.9μg/m 3 , with half-lives of 25.3, 44.8, 44.7 and 69.3days, respectively. Toluene to benzene ratios indicated emission from construction materials or furniture to be a dominant source for toluene, and concentrations of toluene fluctuated during the experiment largely due to the changing sorption by growing plants. The cancer and no-cancer risks based on exposure pattern of the crews were insignificant in the end of the experiment. This study also suggested that using low-emitting materials/furniture, growing plants and purifying air actively would all help to lower hazardous air pollutants inside CELSS. Broadly, the results would benefit not only the development of safe and comfort life support systems for space exploration but also the understanding of interactions between human and the total environment in closed systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. NASA Advanced Exploration Systems: Advancements in Life Support Systems

    Science.gov (United States)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA’s Habitability Architecture Team.

  15. Pythium invasion of plant-based life support systems: biological control and sources

    Science.gov (United States)

    Jenkins, D. G.; Cook, K. L.; Garland, J. L.; Board, K. F.; Sager, J. C. (Principal Investigator)

    2000-01-01

    Invasion of plant-based life support systems by plant pathogens could cause plant disease and disruption of life support capability. Root rot caused by the fungus, Pythium, was observed during tests of prototype plant growth systems containing wheat at the Kennedy Space Center (KSC). We conducted experiments to determine if the presence of complex microbial communities in the plant root zone (rhizosphere) resisted invasion by the Pythium species isolated from the wheat root. Rhizosphere inocula of different complexity (as assayed by community-level physiological profile: CLPP) were developed using a dilution/extinction approach, followed by growth in hydroponic rhizosphere. Pythium growth on wheat roots and concomitant decreases in plant growth were inversely related to the complexity of the inocula during 20-day experiments in static hydroponic systems. Pythium was found on the seeds of several different wheat cultivars used in controlled environmental studies, but it is unclear if the seed-borne fungal strain(s) were identical to the pathogenic strain recovered from the KSC studies. Attempts to control pathogens and their effects in hydroponic life support systems should include early inoculation with complex microbial communities, which is consistent with ecological theory.

  16. Developing Sustainable Life Support System Concepts

    Science.gov (United States)

    Thomas, Evan A.

    2010-01-01

    Sustainable spacecraft life support concepts may allow the development of more reliable technologies for long duration space missions. Currently, life support technologies at different levels of development are not well evaluated against each other, and evaluation methods do not account for long term reliability and sustainability of the hardware. This paper presents point-of-departure sustainability evaluation criteria for life support systems, that may allow more robust technology development, testing and comparison. An example sustainable water recovery system concept is presented.

  17. Preliminary study of the space adaptation of the MELiSSA life support system

    Science.gov (United States)

    Mas-Albaigès, Joan L.; Duatis, Jordi; Podhajsky, Sandra; Guirado, Víctor; Poughon, Laurent

    MELiSSA (Micro-Ecological Life Support System Alternative) is an European Space Agency (ESA) project focused on the development of a closed regenerative life support system to aid the development of technologies for future life support systems for long term manned planetary missions, e.g. a lunar base or missions to Mars. In order to understand the potential evolution of the MELiSSA concept towards its future use in the referred manned planetary mission context the MELiSSA Space Adaptation (MSA) activity has been undertaken. MSA's main objective is to model the different MELiSSA compartments using EcosimPro R , a specialized simulation tool for life support applications, in order to define a preliminary MELiSSA implementation for service in a man-tended lunar base scenario, with a four-member crew rotating in six-month increments, and performing the basic LSS functions of air revitalization, food production, and waste and water recycling. The MELiSSA EcosimPro R Model features a dedicated library for the different MELiSSA elements (bioreactors, greenhouse, crew, interconnecting elements, etc.). It is used to dimension the MELiSSA system in terms of major parameters like mass, volume and energy needs, evaluate the accuracy of the results and define the strategy for a progressive loop closure from the initial required performance (approx.100 The MELiSSA configuration(s) obtained through the EcosimPro R simulation are further analysed using the Advanced Life Support System Evaluation (ALISSE) metric, relying on mass, energy, efficiency, human risk, system reliability and crew time, for trade-off and optimization of results. The outcome of the MSA activity is, thus, a potential Life Support System architecture description, based on combined MELiSSA and other physico-chemical technologies, defining its expected performance, associated operational conditions and logistic needs.

  18. Life Support Systems: Environmental Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Life Support Systems project Environmental Monitoring (EM) systems task objectives are to develop and demonstrate onboard...

  19. Integration, design, and construction of a CELSS breadboard facility for bioregenerative life support system research

    Science.gov (United States)

    Prince, R.; Knott, W.; Buchanan, Paul

    1987-01-01

    Design criteria for the Biomass Production Chamber (BPC), preliminary operating procedures, and requirements for the future development of the Controlled Ecological Life Support System (CELSS) are discussed. CELSS, which uses a bioregenerative system, includes the following three major units: (1) a biomass production component to grow plants under controlled conditions; (2) food processing components to derive maximum edible content from all plant parts; and (3) waste management components to recover and recycle all solids, liquids, and gases necessary to support life. The current status of the CELSS breadboard facility is reviewed; a block diagram of a simplified version of CELSS and schematic diagrams of the BPS are included.

  20. Life Support Systems: Wastewater Processing and Water Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Wastewater Processing and Water Management task: Within an integrated life support system, water...

  1. Learning to Control Advanced Life Support Systems

    Science.gov (United States)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  2. Monitoring ethylene emissions from plants cultured for a controlled ecological life support system

    Science.gov (United States)

    Corey, Kenneth A.

    1995-01-01

    Emission of hydrocarbons and other volatile compounds by materials and organisms in closed environments will be a major concern in the design and management of advanced life support systems with a bioregenerative component. Ethylene, a simple hydrocarbon synthesized by plants, is involved in the elicitation of a wide range of physiological responses. In closed environments, ethylene may build up to levels which become physiologically active. In several growouts of 'Yecora Rojo' wheat in Kennedy Space Center's Biomass Production Chamber (BPC), it was observed that leaf flecking and rolling occurred in the sealed environment and was virtually eliminated when potassium permanganate was used to scrub the atmospheric environment. It was suggested that ethylene, which accumulated to about 60 ppb in the chamber and which was effectively absorbed by potassium permanganate, was responsible for the symptoms. The objectives of this work were to: (1) determine rates of ethylene evolution from lettuce (Lactuca sativa cultivar Waldemann's Green) and wheat (Triticum aestivum cultivar Yecora Rojo) plants during growth and development; (2) determine the effects of exposure of whole, vegetative stage plants to exogenous ethylene concentrations in the range of what would develop in closed environment growth chambers; and (3) develop predictive functions for changes in ethylene concentration that would develop under different cropping and closed environment configurations. Results will lead to the development of management strategies for ethylene in bioregenerative life support systems.

  3. Plasma-Assisted Life and Ecological Operating System (PALEOS)

    Data.gov (United States)

    National Aeronautics and Space Administration — Practical implementation of long-duration, human space missions will require robust, reliable, advanced life support systems. Such systems have been the subject of...

  4. Man-Made Closed Ecological Systems as Model of Natural Ecosystems and as Means to Provide High Quality of Human Life in Adverse Environment

    Science.gov (United States)

    Gitelson, I. I.; Harper, Lynn (Technical Monitor)

    1994-01-01

    For its more than thirty year long history, the experimental creation of closed ecological systems has from its very sources been distinctly and strongly motivated by the development of human life-support systems for space. As the trend developed its fundamental significance and broad opportunities of terrestrial applications of the technologies under development were coming to the foreground. Nowadays, it can be argued that development of closed ecosystems is experimental foundation of a new branch of ecology biospherics, the goal of which is to comprehend the regularities of existence of the biosphere as a unique in the Universe (in that part of it that we know, at least) closed ecosystem. Closed technologies can be implemented in life-support systems under adverse conditions of life on the Earth - in Arctic and Antarctic latitudes, deserts, high mountains or deep in the ocean, as well as under the conditions of polluted water and air. In space where the environment is hostile for life all around the cell of life should be sealed and the life-support system as close to the ideally closed cyclic turnover of the matter as possible. Under terrestrial conditions designers should strive for maximum closure of the limiting factor: water - in deserts, oxygen - in high mountains, energy - in polar latitudes, etc. Essential closure of a life-support systems withstands also pollution of the environment by the wastes of human vital activity. This is of particular importance for the quarantine of visited planets, and on the Earth under the conditions of deficient heat in high latitudes and water in and areas. The report describes experimental ecosystem 'BIOS' and exohabitats being designed on its basis, which are adapted to various conditions, described capacities of the Center for Closed Ecosystems in Drasnoyarsk for international collaboration in research and education in this field.

  5. Reproducible analyses of microbial food for advanced life support systems

    Science.gov (United States)

    Petersen, Gene R.

    1988-01-01

    The use of yeasts in controlled ecological life support systems (CELSS) for microbial food regeneration in space required the accurate and reproducible analysis of intracellular carbohydrate and protein levels. The reproducible analysis of glycogen was a key element in estimating overall content of edibles in candidate yeast strains. Typical analytical methods for estimating glycogen in Saccharomyces were not found to be entirely aplicable to other candidate strains. Rigorous cell lysis coupled with acid/base fractionation followed by specific enzymatic glycogen analyses were required to obtain accurate results in two strains of Candida. A profile of edible fractions of these strains was then determined. The suitability of yeasts as food sources in CELSS food production processes is discussed.

  6. Axiomatic Design of Space Life Support Systems

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    Systems engineering is an organized way to design and develop systems, but the initial system design concepts are usually seen as the products of unexplained but highly creative intuition. Axiomatic design is a mathematical approach to produce and compare system architectures. The two axioms are:- Maintain the independence of the functional requirements.- Minimize the information content (or complexity) of the design. The first axiom generates good system design structures and the second axiom ranks them. The closed system human life support architecture now implemented in the International Space Station has been essentially unchanged for fifty years. In contrast, brief missions such as Apollo and Shuttle have used open loop life support. As mission length increases, greater system closure and increased recycling become more cost-effective.Closure can be gradually increased, first recycling humidity condensate, then hygiene wastewater, urine, carbon dioxide, and water recovery brine. A long term space station or planetary base could implement nearly full closure, including food production. Dynamic systems theory supports the axioms by showing that fewer requirements, fewer subsystems, and fewer interconnections all increase system stability. If systems are too complex and interconnected, reliability is reduced and operations and maintenance become more difficult. Using axiomatic design shows how the mission duration and other requirements determine the best life support system design including the degree of closure.

  7. Closed bioregenerative life support systems: Applicability to hot deserts

    Science.gov (United States)

    Polyakov, Yuriy S.; Musaev, Ibrahim; Polyakov, Sergey V.

    2010-09-01

    Water scarcity in hot deserts, which cover about one-fifth of the Earth's land area, along with rapid expansion of hot deserts into arable lands is one of the key global environmental problems. As hot deserts are extreme habitats characterized by the availability of solar energy with a nearly complete absence of organic life and water, space technology achievements in designing closed ecological systems may be applicable to the design of sustainable settlements in the deserts. This review discusses the key space technology findings for closed biogenerative life support systems (CBLSS), which can simultaneously produce food, water, nutrients, fertilizers, process wastes, and revitalize air, that can be applied to hot deserts. Among them are the closed cycle of water and the acceleration of the cycling times of carbon, biogenic compounds, and nutrients by adjusting the levels of light intensity, temperature, carbon dioxide, and air velocity over plant canopies. Enhanced growth of algae and duckweed at higher levels of carbon dioxide and light intensity can be important to provide complete water recycling and augment biomass production. The production of fertilizers and nutrients can be enhanced by applying the subsurface flow wetland technology and hyper-thermophilic aerobic bacteria for treating liquid and solid wastes. The mathematical models, optimization techniques, and non-invasive measuring techniques developed for CBLSS make it possible to monitor and optimize the performance of such closed ecological systems. The results of long-duration experiments performed in BIOS-3, Biosphere 2, Laboratory Biosphere, and other ground-based closed test facilities suggest that closed water cycle can be achieved in hot-desert bioregenerative systems using the pathways of evapotranspiration, condensation, and biological wastewater treatment technologies. We suggest that the state of the art in the CBLSS design along with the possibility of using direct sunlight for

  8. Need for Cost Optimization of Space Life Support Systems

    Science.gov (United States)

    Jones, Harry W.; Anderson, Grant

    2017-01-01

    As the nation plans manned missions that go far beyond Earth orbit to Mars, there is an urgent need for a robust, disciplined systems engineering methodology that can identify an optimized Environmental Control and Life Support (ECLSS) architecture for long duration deep space missions. But unlike the previously used Equivalent System Mass (ESM), the method must be inclusive of all driving parameters and emphasize the economic analysis of life support system design. The key parameter for this analysis is Life Cycle Cost (LCC). LCC takes into account the cost for development and qualification of the system, launch costs, operational costs, maintenance costs and all other relevant and associated costs. Additionally, an effective methodology must consider system technical performance, safety, reliability, maintainability, crew time, and other factors that could affect the overall merit of the life support system.

  9. Generic Modeling of a Life Support System for Process Technology Comparison

    Science.gov (United States)

    Ferrall, J. F.; Seshan, P. K.; Rohatgi, N. K.; Ganapathi, G. B.

    1993-01-01

    This paper describes a simulation model called the Life Support Systems Analysis Simulation Tool (LiSSA-ST), the spreadsheet program called the Life Support Systems Analysis Trade Tool (LiSSA-TT), and the Generic Modular Flow Schematic (GMFS) modeling technique. Results of using the LiSSA-ST and the LiSSA-TT will be presented for comparing life support system and process technology options for a Lunar Base with a crew size of 4 and mission lengths of 90 and 600 days. System configurations to minimize the life support system weight and power are explored.

  10. Life Support Systems: Oxygen Generation and Recovery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Life Support Systems project Oxygen Generation and Recovery technology development area encompasses several sub-tasks in an...

  11. Ecological Systems Theory: Using Spheres of Influence to Support Small-unit Climate and Training

    Science.gov (United States)

    2016-03-01

    identifying the model’s elements and influential individuals, define spheres of influence and construct a model that details the ecological systems...Research Report 1997 Ecological Systems Theory: Using Spheres of Influence to Support Small-unit Climate and Training...Technical review by: Sena Garven, U.S. Army Research Institute Michael D. Wood , Walter Reed Army Institute of Research

  12. [Habitability and biological life support systems for man].

    Science.gov (United States)

    Gazenko, O G; Grigor'ev, A I; Meleshko, G I; Shepelev, E Ia

    1990-01-01

    This paper discusses general concepts and specific details of the habitability of space stations and planetary bases completely isolated from the Earth for long periods of time. It emphasizes inadequacy of the present-day knowledge about natural conditions that provide a biologically acceptable environment on the Earth as well as lack of information about life support systems as a source of consumables (oxygen, water, food) and a tool for waste management. The habitability of advanced space vehicles is closely related to closed bioregenerative systems used as life support systems.

  13. Integration of Biological, Physical/Chemical and Energy Efficient Systems in the CELSS Antarctic Analog: Performance of Prototype Systems and Issues for Life Support

    Science.gov (United States)

    Bubenheim, David L.; Flynn, Michael T.; Lamparter, Richard; Bates, Maynard; Kliss, Mark (Technical Monitor)

    1998-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP), and the National Aeronautics and Space Administration (NASA). The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle, and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety, and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions, such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for waste treatment, water recycle, resource recovery and crop production are being evaluated in a testbed at Ames Research Center. The combined performance of these biological and physical/chemical systems as an integrated function in support of the human habitat will be discussed. Overall system performance will be emphasized. The effectiveness and efficiency of component technologies will be discussed in the context of energy and mass flow within the system and contribution to achieving a mass and energy conservative system. Critical to the discussion are interfaces with habitat functions outside of the closed-loop life support: the ability of the system to satisfy the life support requirements of the habitat and the ability to define input requirements. The significance of analog functions in relation to future Mars habitats will be discussed.

  14. NASA Advanced Explorations Systems: Advancements in Life Support Systems

    Science.gov (United States)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies

  15. Use of the decision support system RECASS NT (Radio Ecological Analysis Support System) for anti terrorism actions

    International Nuclear Information System (INIS)

    Bulgakov, V.G.; Gariyants, A.M.; Kosykh, V.S.; Shershakov, V.M.

    2006-01-01

    Decision support system RECASS NT (Radio Ecological Analysis Support System) was developed and is still enhancing in Federal Service Roshydromet for providing on-line estimates and prognoses of radiation and chemical situation in the event of an emergency, including acts of terrorism, as well as to estimate transboundary pollutants transport. RECASS NT has been installed at all ten NPPs of the Russian Federation, in Crisis Centers of Roshydromet, concern Rosenergoatom and Minatom, at plants for destroying chemical weapons. The paper describes the structure of RECASS NT system and discuss its possible application in case of an emergency on examples of using the system during radiation emergency response exercises at NPPs. RECASS NT can be used for developing recommendations regarding time when anti terrorism operations are better to be started with a view to minimize damage

  16. The CELSS Antarctic Analog Project: An Advanced Life Support Testbed at the Amundsen-Scott South Pole Station, Antarctica

    Science.gov (United States)

    Straight, Christian L.; Bubenheim, David L.; Bates, Maynard E.; Flynn, Michael T.

    1994-01-01

    CELSS Antarctic Analog Project (CAAP) represents a logical solution to the multiple objectives of both the NASA and the National Science Foundation (NSF). CAAP will result in direct transfer of proven technologies and systems, proven under the most rigorous of conditions, to the NSF and to society at large. This project goes beyond, as it must, the generally accepted scope of CELSS and life support systems including the issues of power generation, human dynamics, community systems, and training. CAAP provides a vivid and starkly realistic testbed of Controlled Ecological Life Support System (CELSS) and life support systems and methods. CAAP will also be critical in the development and validation of performance parameters for future advanced life support systems.

  17. Life Support Systems: Trace Contaminant and Particulate Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Trace Contaminant and Particulate Control task: Work in the area of trace contamination and...

  18. Efficacy of oxygen-supplying capacity of Azolla in a controlled life support system

    Science.gov (United States)

    Chen, Min; Deng, Sufang; Yang, Youquan; Huang, Yibing; Liu, Chongchu

    2012-02-01

    Azolla shows high growth and propagation rates, strong photosynthetic O2-releasing ability and high nutritional value. It is suitable as a salad vegetable and can be cultured on a multi-layered wet bed. Hence, it possesses potential as a fresh vegetable, and to release O2 and absorb CO2 in a Controlled Ecological Life Support System in space. In this study, we investigated the O2-providing characteristics of Azolla in a closed chamber under manned, controlled conditions to lay a foundation for use of Azolla as a biological component in ground simulation experiments for space applications. A closed test chamber, representing a Controlled Ecological Life Support System including an Azolla wet-culture device, was built to measure the changes in atmospheric O2 and CO2 concentrations inside the chamber in the presence of coexisting Azolla, fish and men. The amount of O2 consumed by fish was 0.0805-0.0831 L kg-1 h-1 and the level of CO2 emission was 0.0705-0.0736 L kg-1 h-1; O2 consumption by the two trial volunteers was 19.71 L h-1 and the volume of respiration-released CO2 was 18.90 L h-1. Under 7000-8000 Lx artificial light and Azolla wet-culture conditions, human and fish respiration and Azolla photosynthesis were complementary, thus the atmospheric O2 and CO2 concentrations inside chamber were maintained in equilibrium. The increase in atmospheric CO2 concentration in the closed chamber enhanced the net photosynthesis efficiency of the Azolla colony. This study showed that Azolla has strong photosynthetic O2-releasing ability, which equilibrates the O2 and CO2 concentrations inside the chamber in favor of human survival and verifies the potential of Azolla for space applications.

  19. (abstract) Generic Modeling of a Life Support System for Process Technology Comparisons

    Science.gov (United States)

    Ferrall, J. F.; Seshan, P. K.; Rohatgi, N. K.; Ganapathi, G. B.

    1993-01-01

    This paper describes a simulation model called the Life Support Systems Analysis Simulation Tool (LiSSA-ST), the spreadsheet program called the Life Support Systems Analysis Trade Tool (LiSSA-TT), and the Generic Modular Flow Schematic (GMFS) modeling technique. Results of using the LiSSA-ST and the LiSSA-TT will be presented for comparing life support systems and process technology options for a Lunar Base and a Mars Exploration Mission.

  20. Starship Life Support

    Science.gov (United States)

    Jones, Harry W.

    2009-01-01

    The design and mass cost of a starship and its life support system are investigated. The mission plan for a multi generational interstellar voyage to colonize a new planet is used to describe the starship design, including the crew habitat, accommodations, and life support. Only current technology is assumed. Highly reliable life support systems can be provided with reasonably small additional mass, suggesting that they can support long duration missions. Bioregenerative life support, growing crop plants that provide food, water, and oxygen, has been thought to need less mass than providing stored food for long duration missions. The large initial mass of hydroponics systems is paid for over time by saving the mass of stored food. However, the yearly logistics mass required to support a bioregenerative system exceeds the mass of food solids it produces, so that supplying stored dehydrated food always requires less mass than bioregenerative food production. A mixed system that grows about half the food and supplies the other half dehydrated has advantages that allow it to breakeven with stored dehydrated food in about 66 years. However, moderate increases in the hydroponics system mass to achieve high reliability, such as adding spares that double the system mass and replacing the initial system every 100 years, increase the mass cost of bioregenerative life support. In this case, the high reliability half food growing, half food supplying system does not breakeven for 389 years. An even higher reliability half and half system, with three times original system mass and replacing the system every 50 years, never breaks even. Growing food for starship life support requires more mass than providing dehydrated food, even for multigeneration voyages of hundreds of years. The benefits of growing some food may justify the added mass cost. Much more efficient recycling food production is wanted but may not be possible. A single multigenerational interstellar voyage to

  1. Crop Production for Advanced Life Support Systems - Observations From the Kennedy Space Center Breadboard Project

    Science.gov (United States)

    Wheeler, R. M.; Sager, J. C.; Prince, R. P.; Knott, W. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Peterson, B. V.; Goins, G. D.

    2003-01-01

    The use of plants for bioregenerative life support for space missions was first studied by the US Air Force in the 1950s and 1960s. Extensive testing was also conducted from the 1960s through the 1980s by Russian researchers located at the Institute of Biophysics in Krasnoyarsk, Siberia, and the Institute for Biomedical Problems in Moscow. NASA initiated bioregenerative research in the 1960s (e.g., Hydrogenomonas) but this research did not include testing with plants until about 1980, with the start of the Controlled Ecological Life Support System (CELSS) Program. The NASA CELSS research was carried out at universities, private corporations, and NASA field centers, including Kennedy Space Center (KSC). The project at KSC began in 1985 and was called the CELSS Breadboard Project to indicate the capability for plugging in and testing various life support technologies; this name has since been dropped but bioregenerative testing at KSC has continued to the present under the NASA s Advanced Life Support (ALS) Program. A primary objective of the KSC testing was to conduct pre-integration tests with plants (crops) in a large, atmospherically closed test chamber called the Biomass Production Chamber (BPC). Test protocols for the BPC were based on observations and growing procedures developed by university investigators, as well as procedures developed in plant growth chamber studies at KSC. Growth chamber studies to support BPC testing focused on plant responses to different carbon dioxide (CO2) concentrations, different spectral qualities from various electric lamps, and nutrient film hydroponic culture techniques.

  2. US ecology data system

    International Nuclear Information System (INIS)

    Crase, A.

    1987-01-01

    The US Ecology computer data system was instituted March 1, 1982. This system was designed to manage the increasing flow of paperwork and data associated with the receipt and disposal of low-level radioactive waste at Richland, Washington and Beatty, Nevada. The system was modified and upgraded in 1984 to accommodate a revised shipping manifest pursuant to the requirements of 10 CFR 20.311. The data system is used to generate various reports for both internal and external distribution. The computer system is located at US Ecology's corporate headquarters in Louisville, Kentucky. Remote access terminals are located at the disposal sites. The system is supported by a Wang VS-100 processor. In addition to supporting the radwaste data system, the system supports a chemical waste data base, word processing, and electronic mail. The management and operation of this data base are described. 19 figures

  3. Soybean cultivation for Bioregenerative Life Support Systems (BLSSs): The effect of hydroponic system and nitrogen source

    Science.gov (United States)

    Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A.; Barbieri, Giancarlo; De Pascale, Stefania

    2014-02-01

    Soybean [Glycine max (L.) Merr.] is one of the plant species selected within the European Space Agency (ESA) Micro-Ecological Life Support System Alternative (MELiSSA) project for hydroponic cultivation in Biological Life Support Systems (BLSSs), because of the high nutritional value of seeds. Root symbiosis of soybean with Bradirhizobium japonicum contributes to plant nutrition in soil, providing ammonium through the bacterial fixation of atmospheric nitrogen. The aim of this study was to evaluate the effects of two hydroponic systems, Nutrient Film Technique (NFT) and cultivation on rockwool, and two nitrogen sources in the nutrient solution, nitrate (as Ca(NO3)2 and KNO3) and urea (CO(NH2)2), on root symbiosis, plant growth and seeds production of soybean. Plants of cultivar 'OT8914', inoculated with B. japonicum strain BUS-2, were grown in a growth chamber, under controlled environmental conditions. Cultivation on rockwool positively influenced root nodulation and plant growth and yield, without affecting the proximate composition of seeds, compared to NFT. Urea as the sole source of N drastically reduced the seed production and the harvest index of soybean plants, presumably because of ammonium toxicity, even though it enhanced root nodulation and increased the N content of seeds. In the view of large-scale cultivation for space colony on planetary surfaces, the possibility to use porous media, prepared using in situ resources, should be investigated. Urea can be included in the nutrient formulation for soybean in order to promote bacterial activity, however a proper ammonium/nitrate ratio should be maintained.

  4. Educational tool for modeling and simulation of a closed regenerative life support system

    Science.gov (United States)

    Arai, Tatsuya; Fanchiang, Christine; Aoki, Hirofumi; Newman, Dava J.

    For long term missions on the moon and Mars, regenerative life support systems emerge as a promising key technology for sustaining successful explorations with reduced re-supply logistics and cost. The purpose of this study was to create a simple model of a regenerative life support system which allows preliminary investigation of system responses. A simplified regenerative life support system was made with MATLAB Simulink ™. Mass flows in the system were simplified to carbon, water, oxygen and carbon dioxide. The subsystems included crew members, animals, a plant module, and a waste processor, which exchanged mass into and out of mass reservoirs. Preliminary numerical simulations were carried out to observe system responses. The simplified life support system model allowed preliminary investigation of the system response to perturbations such as increased or decreased number of crew members. The model is simple and flexible enough to add new components, and also possible to numerically predict non-linear subsystem functions and responses. Future work includes practical issues such as energy efficiency, air leakage, nutrition, and plant growth modeling. The model functions as an effective teaching tool about how a regenerative advanced life support system works.

  5. Considering Intermittent Dormancy in an Advanced Life Support Systems Architecture

    Science.gov (United States)

    Sargusingh, Miriam J.; Perry, Jay L.

    2017-01-01

    Many advanced human space exploration missions being considered by the National Aeronautics and Space Administration (NASA) include concepts in which in-space systems cycle between inhabited and uninhabited states. Managing the life support system (LSS) may be particularly challenged during these periods of intermittent dormancy. A study to identify LSS management challenges and considerations relating to dormancy is described. The study seeks to define concepts suitable for addressing intermittent dormancy states and to evaluate whether the reference LSS architectures being considered by the Advanced Exploration Systems (AES) Life Support Systems Project (LSSP) are sufficient to support this operational state. The primary focus of the study is the mission concept considered to be the most challenging-a crewed Mars mission with an extensive surface stay. Results from this study are presented and discussed.

  6. Calcium bioavailability of vegetarian diets in rats: potential application in a bioregenerative life-support system

    Science.gov (United States)

    Nickel, K. P.; Nielsen, S. S.; Smart, D. J.; Mitchell, C. A.; Belury, M. A.

    1997-01-01

    Calcium bioavailability of vegetarian diets containing various proportions of candidate crops for a controlled ecological life-support system (CELSS) was determined by femur 45Ca uptake. Three vegetarian diets and a control diet were labeled extrinsically with 45Ca and fed to 5-wk old male rats. A fifth group of rats fed an unlabeled control diet received an intraperitoneal (IP) injection of 45Ca. There was no significant difference in mean calcium absorption of vegetarian diets (90.80 +/- 5.23%) and control diet (87.85 +/- 5.25%) when calculated as the percent of an IP dose. The amounts of phytate, oxalate, and dietary fiber in the diets did not affect calcium absorption.

  7. Closure of Regenerative Life Support Systems: Results of the Lunar-Mars Life Support Test Project

    Science.gov (United States)

    Barta, Daniel; Henninger, D.; Edeen, M.; Lewis, J.; Smth, F.; Verostko, C.

    2006-01-01

    Future long duration human exploration missions away from Earth will require closed-loop regenerative life support systems to reduce launch mass, reduce dependency on resupply and increase the level of mission self sufficiency. Such systems may be based on the integration of biological and physiocochemical processes to produce potable water, breathable atmosphere and nutritious food from metabolic and other mission wastes. Over the period 1995 to 1998 a series of ground-based tests were conducted at the National Aeronautics and Space Administration, Johnson Space Center, to evaluate the performance of advanced closed-loop life support technologies with real human metabolic and hygiene loads. Named the Lunar-Mars Life Support Test Project (LMLSTP), four integrated human tests were conducted with increasing duration, complexity and closure. The first test, LMLSTP Phase I, was designed to demonstrate the ability of higher plants to revitalize cabin atmosphere. A single crew member spent 15 days within an atmospherically closed chamber containing 11.2 square meters of actively growing wheat. Atmospheric carbon dioxide and oxygen levels were maintained by control of the rate of photosynthesis through manipulation of light intensity or the availability of carbon dioxide and included integrated physicochemical systems. During the second and third tests, LMLSTP Phases II & IIa, four crew members spent 30 days and 60 days, respectively, in a larger sealed chamber. Advanced physicochemical life support hardware was used to regenerate the atmosphere and produce potable water from wastewater. Air revitalization was accomplished by using a molecular sieve and a Sabatier processor for carbon dioxide absorption and reduction, respectively, with oxygen generation performed by water hydrolysis. Production of potable water from wastewater included urine treatment (vapor compression distillation), primary treatment (ultrafiltration/reverse osmosis and multi-filtration) and post

  8. Services and Supports, Partnership, and Family Quality of Life: Focus on Deaf-Blindness

    Science.gov (United States)

    Kyzar, Kathleen B.; Brady, Sara E.; Summers, Jean Ann; Haines, Shana J.; Turnbull, Ann P.

    2016-01-01

    In this study, the authors examined the moderating effects of partnership on the relationship between services and supports adequacy and family quality of life (FQOL) for families of children with deaf-blindness ages birth to 21. A social-ecological approach enabled examining the impact of disability on the family system. A survey, consisting of…

  9. A Decision Support System Based on Soil Ecological Criteria: Results from the European ECOGEN Project

    DEFF Research Database (Denmark)

    Cortet, J.; Bohanec, M.; ?nidar?ic, M.

    and the public who are concerned about the possible ecological implications. The ECOGEN (www.ecogen.dk) project Soil ecological and economic evaluation of genetically modified crops is an EU-funded project aimed at combining simple lab tests, multi-species model ecosystems and field studies to acquire...... mechanistic and realistic knowledge about economic and ecological impacts of GM crops on the soil (Cortet et al, 2005, Griffiths et al, 2005, Vercesi et al, 2005). Economic trade-offs are assessed and related to ecological effects (Scatasta at al, 2005). One of the goals of the project is to develop...... a computer-based decision support system for the assessment of economic and ecological impacts of using GM crops, with special emphasis on soil biology and ecology. For model development, we have taken the approach of qualitative multi-attribute modeling (Bohanec 2003). The idea is to develop a hierarchical...

  10. International Space Station Environmental Control and Life Support System Status: 2010 - 2011

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.

    2010-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2010 and February 2011 and the continued permanent presence of six crew members on ISS. Work continues on the last of the Phase 3 pressurized elements, commercial cargo resupply vehicles, and extension of the ISS service life from 2015 to 2020 or beyond.

  11. Effect of salt stress on growth and physiology in amaranth and lettuce: Implications for bioregenerative life support system

    Science.gov (United States)

    Qin, Lifeng; Guo, Shuangsheng; Ai, Weidang; Tang, Yongkang; Cheng, Quanyong; Chen, Guang

    2013-02-01

    Growing plants can be used to clean waste water in bioregenerative life support system (BLSS). However, NaCl contained in the human urine always restricts plant growth and further reduces the degree of mass cycle closure of the system (i.e. salt stress). This work determined the effect of NaCl stress on physiological characteristics of plants for the life support system. Amaranth (Amaranthus tricolor L. var. Huahong) and leaf lettuce (Lactuca sativa L. var. Luoma) were cultivated at nutrient solutions with different NaCl contents (0, 1000, 5000 and 10,000 ppm, respectively) for 10 to 18 days after planted in the Controlled Ecological Life Support System Experimental Facility in China. Results showed that the two plants have different responses to the salt stress. The amaranth showed higher salt-tolerance with NaCl stress. If NaCl content in the solution is below 5000 ppm, the salt stress effect is insignificant on above-ground biomass output, leaf photosynthesis rate, Fv/Fm, photosynthesis pigment contents, activities of antioxidant enzymes, and inducing lipid peroxidation. On the other hand, the lettuce is sensitive to NaCl which significantly decreases those indices of growth and physiology. Notably, the lettuce remains high productivity of edible biomass in low NaCl stress, although its salt-tolerant limitation is lower than amaranth. Therefore, we recommended that amaranth could be cultivated under a higher NaCl stress condition (lettuce should be under a lower NaCl stress (<1000 ppm) for water cleaning in future BLSS.

  12. International Space Station Environmental Control and Life Support System Status: 2014-2015

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.

    2015-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners' activities on them, covering the period of time between March 2014 and February 2015. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial crew vehicles, and work to try and extend ISS service life.

  13. Plant growth and mineral recycle trade-offs in different scenarios for a CELSS. [Closed Ecological Life Support System

    Science.gov (United States)

    Ballou, E. V.; Wydeven, T.; Spitze, L. A.

    1982-01-01

    Data for hydroponic plant growth in a manned system test is combined with nutritional recommendations to suport trade-off calculations for closed and partially closed life support system scenarios. Published data are used as guidelines for the masses of mineral nutrients needed for higher plant production. The results of calculations based on various scenarios are presented for various combinations of plant growth chamber utilization and fraction of mineral recycle. Estimates are made of the masses of material needed to meet human nutritional requirements in the various scenarios. It appears that food production from a plant growth chamber with mineral recycle is favorable to reduction of the total launch weight in missions exceeding 3 years.

  14. SADA: Ecological Risk Based Decision Support System for Selective Remediation

    Science.gov (United States)

    Spatial Analysis and Decision Assistance (SADA) is freeware that implements terrestrial ecological risk assessment and yields a selective remediation design using its integral geographical information system, based on ecological and risk assessment inputs. Selective remediation ...

  15. Book Review: Evolutionary Ecology of Birds: Life Histories, Mating ...

    African Journals Online (AJOL)

    Abstract. Book Title: Evolutionary Ecology of Birds: Life Histories, Mating Systems and Extinction. Book Authors: P.M. Bennett & I.P.F. Owens. Oxford University. Press. 2002. Pp. 272. Price £24.95 (paperback). ISBN 0 19 851089 6.

  16. Crop candidates for the bioregenerative life support systems in China

    Science.gov (United States)

    Chunxiao, Xu; Hong, Liu

    The use of plants for life support applications in space is appealing because of the multiple life support functions by the plants. Research on crops that were grown in the life support system to provide food and oxygen, remove carbon dioxide was begun from 1960. To select possible crops for research on the bioregenerative life support systems in China, criteria for the selection of potential crops were made, and selection of crops was carried out based on these criteria. The results showed that 14 crops including 4 food crops (wheat, rice, soybean and peanut) and 7 vegetables (Chinese cabbage, lettuce, radish, carrot, tomato, squash and pepper) won higher scores. Wheat ( Triticum aestivum L.), rice ( Oryza sativa L.), soybean ( Glycine max L.) and peanut ( Arachis hypogaea L.) are main food crops in China. Chinese cabbage ( Brassica campestris L. ssp. chinensis var. communis), lettuce ( Lactuca sativa L. var. longifolia Lam.), radish ( Raphanus sativus L.), carrot ( Daucus carota L. var. sativa DC.), tomato ( Lycopersicon escalentum L.), squash ( Cucurbita moschata Duch.) and pepper ( Capsicum frutescens L. var. longum Bailey) are 7 vegetables preferred by Chinese. Furthermore, coriander ( Coriandum sativum L.), welsh onion ( Allium fistulosum L. var. giganteum Makino) and garlic ( Allium sativum L.) were selected as condiments to improve the taste of space crew. To each crop species, several cultivars were selected for further research according to their agronomic characteristics.

  17. Life Support Goals Including High Closure and Low Mass Should Be Reconsidered Using Systems Analysis

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    Recycling space life support systems have been built and tested since the 1960s and have operated on the International Space Station (ISS) since the mid 2000s. The development of space life support has been guided by a general consensus focused on two important related goals, increasing system closure and reducing launch mass. High closure is achieved by recycling crew waste products such as carbon dioxide and condensed humidity. Recycling directly reduces the mass of oxygen and water for the crew that must be launched from Earth. The launch mass of life support can be further reduced by developing recycling systems with lower hardware mass and reduced power. The life support consensus has also favored using biological systems. The goal of increasing closure using biological systems suggests that food should be grown in space and that biological processors be used for air, water, and waste recycling. The goal of reducing launch mass led to use of Equivalent System Mass (ESM) in life support advocacy and technology selection. The recent consensus assumes that the recycling systems architecture developed in the 1960s and implemented on ISS will be used on all future long missions. NASA and other project organizations use the standard systems engineering process to guide hardware development. The systems process was used to develop ISS life support, but it has been less emphasized in planning future systems for the moon and Mars. Since such missions are far in the future, there has been less immediate need for systems engineering analysis to consider trade-offs, reliability, and Life Cycle Cost (LCC). Preliminary systems analysis suggests that the life support consensus concepts should be revised to reflect systems engineering requirements.

  18. Life support systems analysis and technical trades for a lunar outpost

    Science.gov (United States)

    Ferrall, J. F.; Ganapathi, G. B.; Rohatgi, N. K.; Seshan, P. K.

    1994-01-01

    The NASA/JPL life support systems analysis (LISSA) software tool was used to perform life support system analysis and technology trades for a Lunar Outpost. The life support system was modeled using a chemical process simulation program on a steady-state, one-person, daily basis. Inputs to the LiSSA model include metabolic balance load data, hygiene load data, technology selection, process operational assumptions and mission parameter assumptions. A baseline set of technologies has been used against which comparisons have been made by running twenty-two cases with technology substitutions. System, subsystem, and technology weights and powers are compared for a crew of 4 and missions of 90 and 600 days. By assigning a weight value to power, equivalent system weights are compared. Several less-developed technologies show potential advantages over the baseline. Solid waste treatment technologies show weight and power disadvantages but one could have benefits associated with the reduction of hazardous wastes and very long missions. Technology development towards reducing the weight of resupplies and lighter materials of construction was recommended. It was also recommended that as technologies are funded for development, contractors should be required to generate and report data useful for quantitative technology comparisons.

  19. International Space Station Environmental Control and Life Support System Status: 2011-2012

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J.

    2011-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners activities on them, covering the period of time between March 2011 and February 2012. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to no later than 2028. 1

  20. Science in the city region: establishing Liverpool’s life science ecology

    Directory of Open Access Journals (Sweden)

    Dane Anderton

    2016-01-01

    Full Text Available This article focuses on the development of soft and hard infrastructures to support a life science ecology in a peripheral European city region. Liverpool City Region has received almost £1.7bn in capital investment through the EU Cohesion Policy to redevelop the city region and reinvigorate its economy towards knowledge based industries. The analysis of the city regions life science ecology highlights the uneven development of hard and soft infrastructures. Due to the diversity of firms within the region it has proven difficult to establish soft infrastructure related to scientific knowledge. The outcome has led to soft infrastructures being more business support orientated rather than scientific knowledge based, reducing inter-firm connections on a product or service basis. The evidence shows that not all types of soft infrastructure emerge as an outcome of investment. Hence, policy makers need to provide a clearer narrative on their investments, focusing on fewer core competencies rather than breadth of activities.

  1. A simulation based optimization approach to model and design life support systems for manned space missions

    Science.gov (United States)

    Aydogan, Selen

    This dissertation considers the problem of process synthesis and design of life-support systems for manned space missions. A life-support system is a set of technologies to support human life for short and long-term spaceflights, via providing the basic life-support elements, such as oxygen, potable water, and food. The design of the system needs to meet the crewmember demand for the basic life-support elements (products of the system) and it must process the loads generated by the crewmembers. The system is subject to a myriad of uncertainties because most of the technologies involved are still under development. The result is high levels of uncertainties in the estimates of the model parameters, such as recovery rates or process efficiencies. Moreover, due to the high recycle rates within the system, the uncertainties are amplified and propagated within the system, resulting in a complex problem. In this dissertation, two algorithms have been successfully developed to help making design decisions for life-support systems. The algorithms utilize a simulation-based optimization approach that combines a stochastic discrete-event simulation and a deterministic mathematical programming approach to generate multiple, unique realizations of the controlled evolution of the system. The timelines are analyzed using time series data mining techniques and statistical tools to determine the necessary technologies, their deployment schedules and capacities, and the necessary basic life-support element amounts to support crew life and activities for the mission duration.

  2. Space Station Environmental Control/Life Support System engineering

    Science.gov (United States)

    Miller, C. W.; Heppner, D. B.

    1985-01-01

    The present paper is concerned with a systems engineering study which has provided an understanding of the overall Space Station ECLSS (Environmental Control and Life Support System). ECLSS/functional partitioning is considered along with function criticality, technology alternatives, a technology description, single thread systems, Space Station architectures, ECLSS distribution, mechanical schematics per space station, and Space Station ECLSS characteristics. Attention is given to trade studies and system synergism. The Space Station functional description had been defined by NASA. The ECLSS will utilize technologies which embody regenerative concepts to minimize the use of expendables.

  3. Earth Applications of Closed Ecological Systems: Relevance to the Development of Sustainability in our Global Biosphere

    Science.gov (United States)

    Dempster, W.; van Thillo, M.; Alling, A.; Allen, J.; Silverstone, S.; Nelson, M.

    The parallels between the challenges facing bioregenerative life support and closed ecological systems and those in our global biosphere are striking. At the scale of the current global technosphere and human population, it is increasingly obvious that the biosphere can no longer be counted on to be vast enough to safely buffer and absorb technogenic and anthropogenic pollutants. With an increasing percentage of the world's natural resources and primary productivity being dictated by, and directed to, humans, our species is starting to appreciate its survival and quality of life depends on regulating its activities, and insuring that crucial biogeochemical cycles continue to function. This shift of consciousness has led to the widespread call for moving towards the sustainability of human activities. For researchers working on bioreenerative life support, the small volumes and faster cycling times have made it obvious that systems must be created in to ensure renewal of water and atmosphere, nutrient recycling, and where all technical systems can be safely integrated with the maintenance of safe environmental conditions. The development of technical systems that can be fully integrated with the living systems that they support should be a harbinger of new perspectives in the global environment. The paper will review some of these environmental technologies which are emerging from bioregenerative life support system research such as high-yield intensive agricultural methods, waste treatment and nutrient recycling, air purification, modeling, sensor and control systems and their potential applications in the global biosphere. In addition, a review of the human experience in closed ecological systems shows that these can offer opportunities for public education and consciousness-changing of how humans regard our global biosphere.

  4. Astroecology, cosmo-ecology, and the future of life

    Directory of Open Access Journals (Sweden)

    Michael N. Mautner

    2014-12-01

    Full Text Available Astroecology concerns the relations between life and space resources, and cosmo-ecology extrapolates these relations to cosmological scales. Experimental astroecology can quantify the amounts of life that can be derived from space resources. For this purpose, soluble carbon and electrolyte nutrients were measured in asteroid/meteorite materials. Microorganisms and plant cultures were observed to grow on these materials, whose fertilities are similar to productive agricultural soils. Based on measured nutrient contents, the 1022 kg carbonaceous asteroids can yield 1018 kg biomass with N and P as limiting nutrients (compared with the estimated 1015 kg biomass on Earth. These data quantify the amounts of life that can be derived from asteroids in terms of time-integrated biomass [BIOTAint = biomass (kg × lifetime (years], as 1027 kg-years during the next billion years of the Solar System (a thousand times the 1024 kg-years to date. The 1026 kg cometary materials can yield biota 10 000 times still larger. In the galaxy, potential future life can be estimated based on stellar luminosities. For example, the Sun will develop into a white dwarf star whose 1015 W luminosity can sustain a BIOTAint of 1034 kg-years over 1020 years. The 1012 main sequence and white and red dwarf stars can sustain 1046 kg-years of BIOTAint in the galaxy and 1057 kg-years in the universe. Life has great potentials in space, but the probability of present extraterrestrial life may be incomputable because of biological and ecological complexities. However, we can establish and expand life in space with present technology, by seeding new young solar systems. Microbial representatives of our life-form can be launched by solar sails to new planetary systems, including extremophiles suited to diverse new environments, autotrophs and heterotrophs to continually form and recycle biomolecules, and simple multicellulars to jump-start higher evolution. These programs can be motivated

  5. International Space Station Environmental Control and Life Support System Status: 2008 - 2009

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.; Gentry, Gregory J.

    2009-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2008 and February 2009. The ISS continued permanent crew operations, with the continuation of Phase 3 of the ISS Assembly Sequence. Work continues on the last of the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.

  6. Novel Composite Membrane for Space Life Supporting System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space life-supporting systems require effective removal of metabolic CO2 from the cabin atmosphere with minimal loss of O2. Conventional techniques, using either...

  7. The Logistics Management Decision Support System (LMDSS) : an effective tool to reduce life cycle support costs of aviation systems

    OpenAIRE

    Moore, Ellen E.; Snyder, Carolynn M.

    1998-01-01

    Approved for public release; distribution is unlimited This thesis assesses the capability of the Logistics Management Decision Support System (LMDSS) to meet the information needs of Naval Air Systems Command (NAVAIR) logistics managers based on surveys of logistics managers and interviews with LMDSS program representatives. The LMDSS is being introduced as a tool to facilitate action by NAVAIR logistics managers to reduce the life cycle support costs of aviation systems while protecting ...

  8. Ecological alarm system for Itaipu

    Energy Technology Data Exchange (ETDEWEB)

    Faehser, L.

    1984-05-01

    At Itaipu, on the Rio Parana, Brazil and Paraguay are constructing the world's largest hydro-electric power plant with a capacity seven times as high as that of Assuan. An information system is intended to give fair warning in case of threatening ecological conditions. The computer-supported alarm system had four objectives: 1. presentation of the present ecological situation; 2. evaluation of the ecological risks; 3. warning about ecological deficits; 4. suggestions for establishing ecological stability. In a first step the available inventory data concerning soil, topography, vegetation and water were evaluated by expert groups according to their risk grade (0-4) and ecological weight (1-10). The product of these evaluations indicates the ecological deficit (0-40). At a threshold value of 30, the information system automatically signals ecological alarm and locates the centre of danger via computer-plotted maps and tables. The necessary data are supplied periodically by selected measurement stations. Quantification of ecological facts enables the persons who are responsible for decisions at Itaipu to recognize, avoid, or diminish elements of danger even if they have little or no ecological knowledge. The file of data that has been compiled so far should be extended parallel with the development in the Itaipu area. With the help of factor analysis connections of cause and effect can be detected in this extremely complex reservoir system which has hardly been explored yet.

  9. International Space Station Environmental Control and Life Support System Status: 2009 - 2010

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J.

    2010-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non -regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2009 and February 2010. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence and an increase of the ISS crew size from three to six. Work continues on the last of the Phase 3 pressurized elements.

  10. Advanced Life Support Project Plan

    Science.gov (United States)

    2002-01-01

    Life support systems are an enabling technology and have become integral to the success of living and working in space. As NASA embarks on human exploration and development of space to open the space frontier by exploring, using and enabling the development of space and to expand the human experience into the far reaches of space, it becomes imperative, for considerations of safety, cost, and crew health, to minimize consumables and increase the autonomy of the life support system. Utilizing advanced life support technologies increases this autonomy by reducing mass, power, and volume necessary for human support, thus permitting larger payload allocations for science and exploration. Two basic classes of life support systems must be developed, those directed toward applications on transportation/habitation vehicles (e.g., Space Shuttle, International Space Station (ISS), next generation launch vehicles, crew-tended stations/observatories, planetary transit spacecraft, etc.) and those directed toward applications on the planetary surfaces (e.g., lunar or Martian landing spacecraft, planetary habitats and facilities, etc.). In general, it can be viewed as those systems compatible with microgravity and those compatible with hypogravity environments. Part B of the Appendix defines the technology development 'Roadmap' to be followed in providing the necessary systems for these missions. The purpose of this Project Plan is to define the Project objectives, Project-level requirements, the management organizations responsible for the Project throughout its life cycle, and Project-level resources, schedules and controls.

  11. Model implementation for dynamic computation of system cost for advanced life support

    Science.gov (United States)

    Levri, J. A.; Vaccari, D. A.

    2004-01-01

    Life support system designs for long-duration space missions have a multitude of requirements drivers, such as mission objectives, political considerations, cost, crew wellness, inherent mission attributes, as well as many other influences. Evaluation of requirements satisfaction can be difficult, particularly at an early stage of mission design. Because launch cost is a critical factor and relatively easy to quantify, it is a point of focus in early mission design. The method used to determine launch cost influences the accuracy of the estimate. This paper discusses the appropriateness of dynamic mission simulation in estimating the launch cost of a life support system. This paper also provides an abbreviated example of a dynamic simulation life support model and possible ways in which such a model might be utilized for design improvement. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  12. Architecture and life support systems for a rotating space habitat

    Science.gov (United States)

    Misra, Gaurav

    Life Support Systems are critical to sustain human habitation of space over long time periods. As orbiting space habitats become operational in the future, support systems such as atmo-sphere, food, water etc. will play a very pivotal role in sustaining life. To design a long-duration space habitat, it's important to consider the full gamut of human experience of the environment. Long-term viability depends on much more than just the structural or life support efficiency. A space habitat isn't just a machine; it's a life experience. To be viable, it needs to keep the inhabitants satisfied with their condition. This paper provides conceptual research on several key factors that influence the growth and sustainability of humans in a space habitat. Apart from the main life support system parameters, the architecture (both interior and exterior) of the habitat will play a crucial role in influencing the liveability in the space habitat. In order to ensure the best possible liveability for the inhabitants, a truncated (half cut) torus is proposed as the shape of the habitat. This structure rotating at an optimum rpm will en-sure 1g pseudo gravity to the inhabitants. The truncated torus design has several advantages over other proposed shapes such as a cylinder or a sphere. The design provides minimal grav-ity variation (delta g) in the living area, since its flat outer pole ensures a constant gravity. The design is superior in economy of structural and atmospheric mass. Interior architecture of the habitat addresses the total built environment, drawing from diverse disciplines includ-ing physiology, psychology, and sociology. Furthermore, factors such as line of sight, natural sunlight and overhead clearance have been discussed in the interior architecture. Substantial radiation shielding is also required in order to prevent harmful cosmic radiations and solar flares from causing damage to inhabitants. Regolith shielding of 10 tons per meter square is proposed for the

  13. Life after Newton: an ecological metaphysic.

    Science.gov (United States)

    Ulanowicz, R E

    1999-05-01

    Ecology may indeed be 'deep', as some have maintained, but perhaps much of the mystery surrounding it owes more simply to the dissonance between ecological notions and the fundamentals of the modern synthesis. Comparison of the axioms supporting the Newtonian world view with those underlying the organicist and stochastic metaphors that motivate much of ecosystems science reveals strong disagreements--especially regarding the nature of the causes of events and the scalar domains over which these causes can operate. The late Karl Popper held that the causal closure forced by our mechanical perspective on nature frustrates our attempts to achieve an 'evolutionary theory of knowledge.' He suggested that the Newtonian concept of 'force' must be generalized to encompass the contingencies that arise in evolutionary processes. His reformulation of force as 'propensity' leads quite naturally to a generalization of Newton's laws for ecology. The revised tenets appear, however, to exhibit more scope and allow for change to arise from within a system. Although Newton's laws survive (albeit in altered form) within a coalescing ecological metaphysic, the axioms that Enlightenment thinkers appended to Newton's work seem ill-suited for ecology and perhaps should yield to a new and coherent set of assumptions on how to view the processes of nature.

  14. The ecological half-life of 137Cs in undisturbed silt soil

    International Nuclear Information System (INIS)

    Drosg, M.

    2012-01-01

    The time necessary to safely cultivate agricultural areas after they have been contaminated by radioactivity (e.g. after the Chernobyl accident) is not determined by the physical half-life of the radioactive isotopes in question but by their (usually much shorter) ecological half-life (). This half-life not only depends on the type of soil but also on whether the soil was fertilized or not. Therefore it is not possible to determine an ecological half-life that is universally valid. However, the value for undisturbed, unfertilized soil should provide a general indication for the duration of ecological half-life. In a silt soil in Vienna, Austria, the ecological half-life of 137 Cs was determined to be 0.8 years, which is much shorter than the physical half-life of 30 years. - Highlights: ► Absolute measurements of 137 Cs radioactivity in leaves of perennial plants. ► The natural 40 K radioactivity served as reference. ► The ecological half-life of 137 Cs in loamy soil was determined.

  15. System Engineering and Integration of Controls for Advanced Life Support

    Science.gov (United States)

    Overland, David; Hoo, Karlene; Ciskowski, Marvin

    2006-01-01

    The Advanced Integration Matrix (AIM) project at the Johnson Space Center (JSC) was chartered to study and solve systems-level integration issues for exploration missions. One of the first issues identified was an inability to conduct trade studies on control system architectures due to the absence of mature evaluation criteria. Such architectures are necessary to enable integration of regenerative life support systems. A team was formed to address issues concerning software and hardware architectures and system controls.. The team has investigated what is required to integrate controls for the types of non-linear dynamic systems encountered in advanced life support. To this end, a water processing bioreactor testbed is being developed which will enable prototyping and testing of integration strategies and technologies. Although systems such as the water bioreactors exhibit the complexities of interactions between control schemes most vividly, it is apparent that this behavior and its attendant risks will manifest itself among any set of interdependent autonomous control systems. A methodology for developing integration requirements for interdependent and autonomous systems is a goal of this team and this testbed. This paper is a high-level summary of the current status of the investigation, the issues encountered, some tentative conclusions, and the direction expected for further research.

  16. Atmospheric dynamics and bioregenerative technologies in a soil-based ecological life support system: Initial results from biosphere 2

    Science.gov (United States)

    Nelson, M.; Dempster, W.; Alvarez-Romo, N.; MacCallum, T.

    1994-11-01

    Biosphere 2 is the first man-made, soil-based, bioregenerative life support system to be developed and tested. The utilization and amendment of local space resources, e.g. martian soil or lunar regolith, for agricultural and other purposes will be necesary if we are to minimize the requirement for Earth materials in the creation of long-term off-planet bases and habitations. Several of the roles soil plays in Biosphere 2 are 1) for air purification 2) as a key component in created wetland systems to recycle human and animal wastes and 3) as nutrient base for a sustainable agricultural cropping program. Initial results from the Biosphere 2 closure experiment are presented. These include the accelerated cycling rates due to small reservoir sizes, strong diurnal and seasonal fluxes in atmospheric CO2, an unexpected and continuing decline in atmospheric oxygen, overall maintenance of low levels of trace gases, recycling of waste waters through biological regeneration systems, and operation of an agriculture designed to provide diverse and nutritionally adequate diets for the crew members.

  17. Atmospheric dynamics and bioregenerative technologies in a soil-based ecological life support system: initial results from Biosphere 2.

    Science.gov (United States)

    Nelson, M; Dempster, W; Alvarez-Romo, N; MacCallum, T

    1994-11-01

    Biosphere 2 is the first man-made, soil-based, bioregenerative life support system to be developed and tested. The utilization and amendment of local space resources, e.g. martian soil or lunar regolith, for agricultural and other purposes will be necessary if we are to minimize the requirement for Earth materials in the creation of long-term off-planet bases and habitations. Several of the roles soil plays in Biosphere 2 are 1) for air purification 2) as a key component in created wetland systems to recycle human and animal wastes and 3) as nutrient base for a sustainable agricultural cropping program. Initial results from the Biosphere 2 closure experiment are presented. These include the accelerated cycling rates due to small reservoir sizes, strong diurnal and seasonal fluxes in atmospheric CO2, an unexpected and continuing decline in atmospheric oxygen, overall maintenance of low levels of trace gases, recycling of waste waters through biological regeneration systems, and operation of an agriculture designed to provide diverse and nutritionally adequate diets for the crew members.

  18. Ecological mechanisms for the coevolution of mating systems and defence.

    Science.gov (United States)

    Campbell, Stuart A

    2015-02-01

    The diversity of flowering plants is evident in two seemingly unrelated aspects of life history: sexual reproduction, exemplified by the stunning variation in flower form and function, and defence, often in the form of an impressive arsenal of secondary chemistry. Researchers are beginning to appreciate that plant defence and reproduction do not evolve independently, but, instead, may have reciprocal and interactive (coevolutionary) effects on each other. Understanding the mechanisms for mating-defence interactions promises to broaden our understanding of how ecological processes can generate these two rich sources of angiosperm diversity. Here, I review current research on the role of herbivory as a driver of mating system evolution, and the role of mating systems in the evolution of defence strategies. I outline different ecological mechanisms and processes that could generate these coevolutionary patterns, and summarize theoretical and empirical support for each. I provide a conceptual framework for linking plant defence with mating system theory to better integrate these two research fields.

  19. Supporting Multiple Cognitive Processing Styles Using Tailored Support Systems

    International Nuclear Information System (INIS)

    Tuan Q. Tran; Karen M. Feigh; Amy R. Pritchett

    2007-01-01

    According to theories of cognitive processing style or cognitive control mode, human performance is more effective when an individual's cognitive state (e.g., intuition/scramble vs. deliberate/strategic) matches his/her ecological constraints or context (e.g., utilize intuition to strive for a 'good-enough' response instead of deliberating for the 'best' response under high time pressure). Ill-mapping between cognitive state and ecological constraints are believed to lead to degraded task performance. Consequently, incorporating support systems which are designed to specifically address multiple cognitive and functional states e.g., high workload, stress, boredom, and initiate appropriate mitigation strategies (e.g., reduce information load) is essential to reduce plant risk. Utilizing the concept of Cognitive Control Models, this paper will discuss the importance of tailoring support systems to match an operator's cognitive state, and will further discuss the importance of these ecological constraints in selecting and implementing mitigation strategies for safe and effective system performance. An example from the nuclear power plant industry illustrating how a support system might be tailored to support different cognitive states is included

  20. Phase Change Permeation Technology For Environmental Control Life Support Systems

    Science.gov (United States)

    Wheeler, Raymond M.

    2014-01-01

    Use of a phase change permeation membrane (Dutyion [Trademark]) to passively and selectively mobilize water in microgravity to enable improved water recovery from urine/brine for Environment Control and Life Support Systems (ECLSS) and water delivery to plans for potential use in microgravity.

  1. Closed Ecological Life Support Systems (CELSS) Test Facility

    Science.gov (United States)

    Macelroy, Robert D.

    1992-01-01

    The CELSS Test Facility (CTF) is being developed for installation on Space Station Freedom (SSF) in August 1999. It is designed to conduct experiments that will determine the effects of microgravity on the productivity of higher (crop) plants. The CTF will occupy two standard SSF racks and will accommodate approximately one square meter of growing area and a canopy height of 80 cm. The growth volume will be isolated from the external environment, allowing stringent control of environmental conditions. Temperature, humidity, oxygen, carbon dioxide, and light levels will all be closely controlled to prescribed set points and monitored. This level of environmental control is needed to prevent stress and allow accurate assessment of microgravity effect (10-3 to 10-6 x g). Photosynthetic rates and respiration rates, calculated through continuous recording of gas concentrations, transpiration, and total and edible biomass produced will be measured. Toxic byproducts will be monitored and scrubbed. Transpiration water will be collected within the chamber and recycled into the nutrient solution. A wide variety of crop plants, e.g., wheat, soy beans, lettuce, potatoes, can be accommodated and various nutrient delivery systems and light delivery systems will be available. In the course of its development, the CTF will exploit fully, and contribute importantly, to the state-of-art in closed system technology and plant physiology.

  2. Bioregenerative life support system for a lunar base

    Science.gov (United States)

    Liu, H.; Wang, J.; Manukovsky, N. S.; Kovalev, V. S.; Gurevich, Yu. L.

    We have studied a modular approach to construction of bioregenerative life support system BLSS for a lunar base using soil-like substrate SLS for plant cultivation Calculations of massflow rates in BLSS were based mostly on a vegetarian diet and biological conversion of plant residues in SLS Plant candidate list for lunar BLSS includes the following basic species rice Oryza sativa soy Glycine max sweet potato Ipomoea batatas and wheat Triticum aestivum To reduce the time necessary for transition of the system to steady state we suggest that the first seeding and sprouting could be made on Earth

  3. Civic Ecology: A Postmodern Approach to Ecological Sustainability

    Science.gov (United States)

    Lopes, V. L.

    2013-12-01

    Human agency is transforming the planetary processes at unprecedented rates risking damaging essential life-support systems. Climate change, massive species extinction, land degradation, resources depletion, overpopulation, poverty and social injustice are all the result of human choices and non-sustainable ways of life. The survival of our modern economic systems depends upon insatiable consumption - a simple way of life no longer satisfies most people. Detached, instrumental rationality has created an ideal of liberalism based on individual pursuit of self-interest, leading the way into unprecedented material progress but bringing with it human alienation, social injustice, and ecological degradation. The purpose of this presentation is to introduce a community-based systems response to a growing sense that the interlocked social-ecological crisis is as much a problem of human thought and behavior as it is about identifying carrying capacities and CO2 concentrations in the atmosphere. This approach, referred to here as civic ecology, presents a new and important paradigm shift in sustainability practice that attempts to bring together and integrate ecological ideas and postmodern thinking. As such, it is as much a holistic, dynamic, and synergistic approach to ecological sustainability, as it is a philosophy of life and ethical perspective born of ecological understanding and insight. Civic ecology starts with the proposition that the key factor determining the health of the ecosphere is the behavior of human beings, and therefore many of the most important issues related to sustainability lie in the areas of human thought and culture. Thus, the quest for sustainability must include as a central concern the transformation of psychological and behavioral patterns that have become an imminent danger to planetary health. At the core of this understanding is a fundamental paradigm shift from the basic commitments of modern Western culture to its model of mechanism

  4. Life support for aquatic species - past; present; future

    Science.gov (United States)

    Slenzka, K.

    Life Support is a basic issue since manned space flight began. Not only to support astronauts and cosmonauts with the essential things to live, however, also animals which were carried for research to space etc together with men need support systems to survive under space conditions. Most of the animals transported to space participate at the life support system of the spacecraft. However, aquatic species live in water as environment and thus need special developments. Research with aquatic animals has a long tradition in manned space flight resulting in numerous life support systems for them starting with simple plastic bags up to complex support hardware. Most of the recent developments have to be identified as part of a technological oriented system and can be described as small technospheres. As the importance arose to study our Earth as the extraordinary Biosphere we live in, the modeling of small ecosystems began as part of ecophysiological research. In parallel the investigations of Bioregenerative Life Support Systems were launched and identified as necessity for long-term space missions or traveling to Moon and Mars and beyond. This paper focus on previous developments of Life Support Systems for aquatic animals and will show future potential developments towards Bioregenerative Life Support which additionally strongly benefits to our Earth's basic understanding.

  5. Ecological interactions are evolutionarily conserved across the entire tree of life.

    Science.gov (United States)

    Gómez, José M; Verdú, Miguel; Perfectti, Francisco

    2010-06-17

    Ecological interactions are crucial to understanding both the ecology and the evolution of organisms. Because the phenotypic traits regulating species interactions are largely a legacy of their ancestors, it is widely assumed that ecological interactions are phylogenetically conserved, with closely related species interacting with similar partners. However, the existing empirical evidence is inadequate to appropriately evaluate the hypothesis of phylogenetic conservatism in ecological interactions, because it is both ecologically and taxonomically biased. In fact, most studies on the evolution of ecological interactions have focused on specialized organisms, such as some parasites or insect herbivores, belonging to a limited subset of the overall tree of life. Here we study the evolution of host use in a large and diverse group of interactions comprising both specialist and generalist acellular, unicellular and multicellular organisms. We show that, as previously found for specialized interactions, generalized interactions can be evolutionarily conserved. Significant phylogenetic conservatism of interaction patterns was equally likely to occur in symbiotic and non-symbiotic interactions, as well as in mutualistic and antagonistic interactions. Host-use differentiation among species was higher in phylogenetically conserved clades, irrespective of their generalization degree and taxonomic position within the tree of life. Our findings strongly suggest a shared pattern in the organization of biological systems through evolutionary time, mediated by marked conservatism of ecological interactions among taxa.

  6. Life Support Filtration System Trade Study for Deep Space Missions

    Science.gov (United States)

    Agui, Juan H.; Perry, Jay L.

    2017-01-01

    The National Aeronautics and Space Administrations (NASA) technical developments for highly reliable life support systems aim to maximize the viability of long duration deep space missions. Among the life support system functions, airborne particulate matter filtration is a significant driver of launch mass because of the large geometry required to provide adequate filtration performance and because of the number of replacement filters needed to a sustain a mission. A trade analysis incorporating various launch, operational and maintenance parameters was conducted to investigate the trade-offs between the various particulate matter filtration configurations. In addition to typical launch parameters such as mass, volume and power, the amount of crew time dedicated to system maintenance becomes an increasingly crucial factor for long duration missions. The trade analysis evaluated these parameters for conventional particulate matter filtration technologies and a new multi-stage particulate matter filtration system under development by NASAs Glenn Research Center. The multi-stage filtration system features modular components that allow for physical configuration flexibility. Specifically, the filtration system components can be configured in distributed, centralized, and hybrid physical layouts that can result in considerable mass savings compared to conventional particulate matter filtration technologies. The trade analysis results are presented and implications for future transit and surface missions are discussed.

  7. Hybrid Life Support System Technology Demonstrations

    Science.gov (United States)

    Morrow, R. C.; Wetzel, J. P.; Richter, R. C.

    2018-02-01

    Demonstration of plant-based hybrid life support technologies in deep space will validate the function of these technologies for long duration missions, such as Mars transit, while providing dietary variety to improve habitability.

  8. Micropollutants in closed life-support systems: the case of triclosan, a biocide excreted via urine

    Science.gov (United States)

    Mastroleo, Felice; Pycke, Benny; Boon, Nico; de Wever, Heleen; Hendrickx, Larissa; Mastroleo, Felice; Wattiez, Ruddy; Mergeay, Max; Verstraete, Willy

    OBJECTIVES: The impact of triclosan on the growth and physiology of the bacterium Rhodospirillum rubrum was studied in the frame of the regenerative life-support system, Micro- Ecological Life Support System Alternative (MELiSSA). A wide range of compounds, such as steroid hormones, pharmaceuticals and personal care products, might enter the life support system via the excrements that are to be treated and recycled. Triclosan was chosen as the first compound to be tested because MELiSSA is a closed system, which is consequently particularly sensitive to compounds inhibiting the microbial metabolism. Because triclosan is increasingly used as an antimicrobial biocide in hygienic formulations (such as toothpaste, mouthwash, deodorants, etc.) and due to its chemical stability, it is considered an emerging pollutant in terrestrial ecosystems. METHODS: In a first phase, the triclosan concentration expected in the life-support system was estimated, the Minimal Inhibitory Concentration (MIC) was determined via plating, and the effect on growth kinetics was assessed by comparing growth parameters in the Gompertz model. In a second phase, the secondary effects of triclosan on cell physiology and gene expression were studied through flow-cytometry and microarray analyses, respectively. RESULTS: Based on the pharmacokinetic data from literature, the predicted concentration range is estimated to be 6-25µg/L triclosan in the Rhodospirillum rubrum compartment of the MELiSSA. The minimal inhibitory concentration of triclosan was determined to be 71 µg/L after 7 days of exposure on Sistrom medium. Upon exposure to 50-200µg/L triclosan, triclosan-resistant mutants of Rhodospirillum rubrum arose spontaneously at high frequency (3.1 ∗ 10 - 4). Analysis of the growth kinetics of the wild-type revealed that triclosan causes an important elongation of the lag-phase and a decrease in growth rate. At concentrations higher than 75mg/L(LD = 500mg/L), triclosan is bactericidal to wild

  9. Ecological and general systems an introduction to systems ecology

    CERN Document Server

    Odum, Howard T.

    1994-01-01

    Using an energy systems language that combines energetics, kinetics, information, cybernetics, and simulation, Ecological and General Systems compares models of many fields of science, helping to derive general systems principles. First published as Systems Ecology in 1983, Ecological and General Systems proposes principles of self-organization and the designs that prevail by maximizing power and efficiency. Comparisons to fifty other systems languages are provided. Innovative presentations are given on earth homeostasis (Gaia); the inadequacy of presenting equations without network relationships and energy constraints; the alternative interpretation of high entropy complexity as adaptive structure; basic equations of ecological economics; and the energy basis of scientific hierarchy.

  10. Biological life-support systems for Mars mission.

    Science.gov (United States)

    Gitelson, J I

    1992-01-01

    Mars mission like the Lunar base is the first venture to maintain human life beyond earth biosphere. So far, all manned space missions including the longest ones used stocked reserves and can not be considered egress from biosphere. Conventional path proposed by technology for Martian mission LSS is to use physical-chemical approaches proved by the experience of astronautics. But the problem of man living beyond the limits of the earth biosphere can be fundamentally solved by making a closed ecosystem for him. The choice optimum for a Mars mission LSS can be substantiated by comparing the merits and demerits of physical-chemical and biological principles without ruling out possible compromise between them. The work gives comparative analysis of ecological and physical-chemical principles for LSS. Taking into consideration universal significance of ecological problems with artificial LSS as a particular case of their solution, complexity and high cost of large-scale experiments with manned LSS, it would be expedient for these works to have the status of an International Program open to be joined. A program of making artificial biospheres based on preceding experience and analysis of current situation is proposed.

  11. Rewriting the Matrix of Life. Biomedia Between Ecological Crisis and Playful Actions

    Directory of Open Access Journals (Sweden)

    Christoph Neubert, Serjoscha Wiemer

    2014-09-01

    Full Text Available The paper discusses concepts of ‘nature’ and ‘life’ as subjected to historical changes. The 21st century seems to be obsessed with ‘life’ and ‘nature’, which are reconfigured as objects of simulation practices and of a multitude of technoscientific enterprises as well as of political struggle. The historical influences and epistemological shifts of systems thinking are significant within two distinctive and interwoven fields: On the one hand the discourse of environmentalism with the paradigm of ecological crises, centered around ideas of resource management, sustainability, the general idea of an ‘endangered nature’ and the interconnectedness of global politics and individual actions. On the other hand the optimistic promises of artificial life, with synthetic biology and digital cyborg technologies as its avantgarde, which are very much driven by the idea of technoscientific mastery to surpass natures ‘weakness’ and by desires to improve ‘life’ and to even refashion ‘life itself’. On the field of historical ecology, concepts of systems thinking are traced back to the middle of the 19th century, where ecological thought emerged at the intersections of biology and geography. Meandering between vitalistic, holistic, and mechanistic concepts, between living and non-living elements, systems ecology finally substitutes ‘nature’, which in turn is re-established in its new ‘gestalt’ as computer simulated world model since the early 1970s. Resurrected as an interrelation of system variables at the level of global simulations ‘nature’ strikes as a zombie. As a second turning point of the rewriting of the matrix, of life we will discuss the advance of ‘games’ since the early 1970ies, with the example of ‘Game of life’ (‘Life’ as a significant landmark. When ‘life’ becomes ‘Life’, it is by computerized modeling in terms of dynamic processes. Computer games can be thought of as instances of

  12. The Measurement and Role of Ecological Resilience Systems Theory Across Domain-Specific Outcomes: The Domain-Specific Resilient Systems Scales.

    Science.gov (United States)

    Maltby, John; Day, Liz; Hall, Sophie S; Chivers, Sally

    2017-10-01

    Research suggests that trait resilience may be best understood within an ecological resilient systems theory, comprising engineering, ecological, and adaptive capacity resilience. However, there is no evidence as to how this theory translates to specific life domains. Data from two samples (the United States, n = 1,278; the United Kingdom, n = 211) facilitated five studies that introduce the Domain-Specific Resilient Systems Scales for assessing ecological resilient systems theory within work, health, marriage, friendships, and education. The Domain-Specific Resilient Systems Scales are found to predict unique variance in job satisfaction, lower job burnout, quality-of-life following illness, marriage commitment, and educational engagement, while controlling for factors including sex, age, personality, cognitive ability, and trait resilience. The findings also suggest a distinction between the three resilience dimensions in terms of the types of systems to which they contribute. Engineering resilience may contribute most to life domains where an established system needs to be maintained, for example, one's health. Ecological resilience may contribute most to life domains where the system needs sustainability in terms of present and future goal orientation, for example, one's work. Adaptive Capacity may contribute most to life domains where the system needs to be retained, preventing it from reaching a crisis state, for example, work burnout.

  13. MELiSSA celebrates 25 years of research into life support

    International Nuclear Information System (INIS)

    2015-01-01

    MELiSSA (Micro-Ecological Life Support System Alternative) is a collaborative project with the European Space Agency ESA and various other scientific partners. The objective of MELiSSA is to develop a system that is able to provide manned space missions with food, drinking water and oxygen autonomously in space. Drinkable water and oxygen are currently being made in the international space station ISS by filtering waste water and by electrolysing water. However, such physiochemical technologies do not offer a solution for food. The MELiSSA project intends to reuse waste products, which include CO2, water, stools and urine from the astronauts, and even the perspiration moisture in the cabin and to transfer these into food through the use of micro-organisms.

  14. Application of ecological interface design in nuclear power plant (NPP operator support system

    Directory of Open Access Journals (Sweden)

    Alexey Anokhin

    2018-05-01

    Full Text Available Most publications confirm that an ecological interface is a very efficient tool to supporting operators in recognition of complex and unusual situations and in decision-making. The present article describes the experience of implementation of an ecological interface concept for visualization of material balance in a drum separator of RBMK-type NPPs. Functional analysis of the domain area was carried out and revealed main factors and contributors to the balance. The proposed ecological display was designed to facilitate execution of the most complicated cognitive operations, such as comparison, summarizing, prediction, etc. The experimental series carried out at NPPs demonstrated considerable reduction of operators' mental load, time of reaction, and error rate. Keywords: Ecological Interface Design, Experimental Evaluation, Model, Work Domain Analysis

  15. Life Support for Deep Space and Mars

    Science.gov (United States)

    Jones, Harry W.; Hodgson, Edward W.; Kliss, Mark H.

    2014-01-01

    How should life support for deep space be developed? The International Space Station (ISS) life support system is the operational result of many decades of research and development. Long duration deep space missions such as Mars have been expected to use matured and upgraded versions of ISS life support. Deep space life support must use the knowledge base incorporated in ISS but it must also meet much more difficult requirements. The primary new requirement is that life support in deep space must be considerably more reliable than on ISS or anywhere in the Earth-Moon system, where emergency resupply and a quick return are possible. Due to the great distance from Earth and the long duration of deep space missions, if life support systems fail, the traditional approaches for emergency supply of oxygen and water, emergency supply of parts, and crew return to Earth or escape to a safe haven are likely infeasible. The Orbital Replacement Unit (ORU) maintenance approach used by ISS is unsuitable for deep space with ORU's as large and complex as those originally provided in ISS designs because it minimizes opportunities for commonality of spares, requires replacement of many functional parts with each failure, and results in substantial launch mass and volume penalties. It has become impractical even for ISS after the shuttle era, resulting in the need for ad hoc repair activity at lower assembly levels with consequent crew time penalties and extended repair timelines. Less complex, more robust technical approaches may be needed to meet the difficult deep space requirements for reliability, maintainability, and reparability. Developing an entirely new life support system would neglect what has been achieved. The suggested approach is use the ISS life support technologies as a platform to build on and to continue to improve ISS subsystems while also developing new subsystems where needed to meet deep space requirements.

  16. The study of residential life support environment system to initiate policy on sustainable simple housing

    Science.gov (United States)

    Siahaan, N. M.; Harahap, A. S.; Nababan, E.; Siahaan, E.

    2018-02-01

    This study aims to initiate sustainable simple housing system based on low CO2 emissions at Griya Martubung I Housing Medan, Indonesia. Since it was built in 1995, between 2007 until 2016 approximately 89 percent of houses have been doing various home renewal such as restoration, renovation, or reconstruction. Qualitative research conducted in order to obtain insights into the behavior of complex relationship between various components of residential life support environment that relates to CO2 emissions. Each component is studied by conducting in-depth interviews, observation of the 128 residents. The study used Likert Scale to measure residents’ perception about components. The study concludes with a synthesis describing principles for a sustainable simple housing standard that recognizes the whole characteristics of components. This study offers a means for initiating the practice of sustainable simple housing developments and efforts to manage growth and preserve the environment without violating social, economics, and ecology.

  17. International Space Station Environmental Control and Life Support System Previous Year Status for 2013 - 2014

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.

    2015-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners' activities on them, covering the period of time between March 2013 and February 2014. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial crew vehicles, and work to try and extend ISS service life.

  18. Challenges for Life Support Systems in Space Environments, Including Food Production

    Science.gov (United States)

    Wheeler, Raymond M.

    2012-01-01

    Environmental Control and Life Support Systems (ECLSS) refer to the technologies needed to sustain human life in space environments. Histor ically these technologies have focused on providing a breathable atmo sphere, clean water, food, managing wastes, and the associated monitoring capabilities. Depending on the space agency or program, ELCSS has sometimes expanded to include other aspects of managing space enviro nments, such as thermal control, radiation protection, fire detection I suppression, and habitat design. Other times, testing and providing these latter technologies have been associated with the vehicle engi neering. The choice of ECLSS technologies is typically driven by the mission profile and their associated costs and reliabilities. These co sts are largely defined by the mass, volume, power, and crew time req uirements. For missions close to Earth, e.g., low-Earth orbit flights, stowage and resupply of food, some 0 2, and some water are often the most cost effective option. But as missions venture further into spa ce, e.g., transit missions to Mars or asteroids, or surface missions to Moon or Mars, the supply line economics change and the need to clos e the loop on life support consumables increases. These are often ref erred to as closed loop or regenerative life support systems. Regardless of the technologies, the systems must be capable of operating in a space environment, which could include micro to fractional g setting s, high radiation levels, and tightly closed atmospheres, including perhaps reduced cabin pressures. Food production using photosynthetic o rganisms such as plants by nature also provides atmospheric regenerat ion (e.g., CO2 removal and reduction, and 0 2 production), yet to date such "bioregenerative" technologies have not been used due largely t o the high power requirements for lighting. A likely first step in te sting bioregenerative capabilities will involve production of small a mounts of fresh foods to supplement to crew

  19. Right to life in constitution: An ecological view

    Directory of Open Access Journals (Sweden)

    Orlović Slobodan P.

    2014-01-01

    Full Text Available This work deals with the right to life from the specific ecological view. Actually, it is analysing the relationship between two human rights defined by the Constitution: the right to life and the right to healthy environment. Their relationship is very close and, specifically said, it is: obvious, conditional, permanent and growing. This could not bet concluded if the time of occurrence (Constitutional regulation of these rights is considered. The right to life is the oldest human right while the right to healthy environment belongs to new generation of human rights. However, if the contents of the right to life and the right to healthy environment are compared, it becomes clear that those two human rights are interwoven with each other. Development of states and change of life conditions of citizens will also change the content of right to life, by following ecological standards. This means that the interdependence of those two rights will be larger and more complex.

  20. Earth applications of closed ecological systems: relevance to the development of sustainability in our global biosphere.

    Science.gov (United States)

    Nelson, M; Allen, J; Alling, A; Dempster, W F; Silverstone, S

    2003-01-01

    The parallels between the challenges facing bioregenerative life support in artificial closed ecological systems and those in our global biosphere are striking. At the scale of the current global technosphere and expanding human population, it is increasingly obvious that the biosphere can no longer safely buffer and absorb technogenic and anthropogenic pollutants. The loss of biodiversity, reliance on non-renewable natural resources, and conversion of once wild ecosystems for human use with attendant desertification/soil erosion, has led to a shift of consciousness and the widespread call for sustainability of human activities. For researchers working on bioregenerative life support in closed systems, the small volumes and faster cycling times than in the Earth's biosphere make it starkly clear that systems must be designed to ensure renewal of water and atmosphere, nutrient recycling, production of healthy food, and safe environmental methods of maintaining technical systems. The development of technical systems that can be fully integrated and supportive of living systems is a harbinger of new perspectives as well as technologies in the global environment. In addition, closed system bioregenerative life support offers opportunities for public education and consciousness changing of how to live with our global biosphere. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  1. Automated Subsystem Control for Life Support System (ASCLSS)

    Science.gov (United States)

    Block, Roger F.

    1987-01-01

    The Automated Subsystem Control for Life Support Systems (ASCLSS) program has successfully developed and demonstrated a generic approach to the automation and control of space station subsystems. The automation system features a hierarchical and distributed real-time control architecture which places maximum controls authority at the lowest or process control level which enhances system autonomy. The ASCLSS demonstration system pioneered many automation and control concepts currently being considered in the space station data management system (DMS). Heavy emphasis is placed on controls hardware and software commonality implemented in accepted standards. The approach demonstrates successfully the application of real-time process and accountability with the subsystem or process developer. The ASCLSS system completely automates a space station subsystem (air revitalization group of the ASCLSS) which moves the crew/operator into a role of supervisory control authority. The ASCLSS program developed over 50 lessons learned which will aide future space station developers in the area of automation and controls..

  2. Decision support for life extension of technical systems through virtual age modelling

    International Nuclear Information System (INIS)

    Pérez Ramírez, Pedro A.; Utne, Ingrid Bouwer

    2013-01-01

    This article presents a virtual age model for decision support regarding life extension of ageing repairable systems. The aim of the model is to evaluate different life extension decision alternatives and their impact on the future performance of the system. The model can be applied to systems operated continuously (e.g., process systems) and systems operated on demand (e.g., safety systems). Deterioration and efficiency of imperfect maintenance is assessed when there is limited or no degradation data, and only failure and maintenance data is available. Systems that are in operation can be studied, meaning that the systems may be degraded. The current degradation is represented by a “current virtual age”, which is calculated from recorded maintenance data. The model parameters are estimated with the maximum likelihood method. A case study illustrates the application of the model for life extension of two fire water pumps in an oil and gas facility. The performance of the pump system is assessed with respect to number of failures, safety unavailability and costs during the life extension period. -- Highlights: ► Life extension assessment of technical systems using virtual age model is proposed. ► A virtual age model is generalised for systems in stand-by and continuous operation. ► The concept of current virtual age describes technical condition of the system. ► Different decision alternatives for life extension can be easily analysed. ► The decision process is improved even when only scarce failure data is available

  3. Bioregenerative Life Support System Research as part of the DLR EDEN Initiative

    Science.gov (United States)

    Bamsey, Matthew; Schubert, Daniel; Zabel, Paul; Poulet, Lucie; Zeidler, Conrad

    In 2011, the DLR Institute of Space Systems launched a research initiative called EDEN - Evolution and Design of Environmentally-closed Nutrition-Sources. The research initiative focuses on bioregenerative life support systems, especially greenhouse modules, and technologies for future crewed vehicles. The EDEN initiative comprises several projects with respect to space research, ground testing and spin-offs. In 2014, EDEN’s new laboratory officially opened. This new biological cleanroom laboratory comprises several plant growth chambers incorporating a number of novel controlled environment agriculture technologies. This laboratory will be the nucleus for a variety of plant cultivation experiments within closed environments. The utilized technologies are being advanced using the pull of space technology and include such items as stacked growth systems, PAR-specific LEDs, intracanopy lighting, aeroponic nutrient delivery systems and ion-selective nutrient sensors. The driver of maximizing biomass output per unit volume and energy has much application in future bioregenerative life support systems but can also provide benefit terrestrially. The EDEN laboratory also includes several specially constructed chambers for advancing models addressing the interaction between bioregenerative and physical-chemical life support systems. The EDEN team is presently developing designs for containerized greenhouse modules. One module is planned for deployment to the German Antarctic Station, Neumayer III. The shipping container based system will provide supplementation to the overwintering crew’s diet, provide psychological benefit while at the same time advancing the technology and operational readiness of harsh environment plant production systems. In addition to hardware development, the EDEN team has participated in several early phase designs such as for the ESA Greenhouse Module for Space System and for large-scale vertical farming. These studies often utilize the

  4. Space Life-Support Engineering Program

    Science.gov (United States)

    Seagrave, Richard C. (Principal Investigator)

    1995-01-01

    This report covers the seventeen months of work performed under an extended one year NASA University Grant awarded to Iowa State University to perform research on topics relating to the development of closed-loop long-term life support systems with the initial principal focus on space water management. In the first phase of the program, investigators from chemistry and chemical engineering with demonstrated expertise in systems analysis, thermodynamics, analytical chemistry and instrumentation, performed research and development in two major related areas; the development of low-cost, accurate, and durable sensors for trace chemical and biological species, and the development of unsteady-state simulation packages for use in the development and optimization of control systems for life support systems. In the second year of the program, emphasis was redirected towards concentrating on the development of dynamic simulation techniques and software and on performing a thermodynamic systems analysis, centered on availability or energy analysis, in an effort to begin optimizing the systems needed for water purification. The third year of the program, the subject of this report, was devoted to the analysis of the water balance for the interaction between humans and the life support system during space flight and exercise, to analysis of the cardiopulmonary systems of humans during space flight, and to analysis of entropy production during operation of the air recovery system during space flight.

  5. Life Support Baseline Values and Assumptions Document

    Science.gov (United States)

    Anderson, Molly S.; Ewert, Michael K.; Keener, John F.

    2018-01-01

    The Baseline Values and Assumptions Document (BVAD) provides analysts, modelers, and other life support researchers with a common set of values and assumptions which can be used as a baseline in their studies. This baseline, in turn, provides a common point of origin from which many studies in the community may depart, making research results easier to compare and providing researchers with reasonable values to assume for areas outside their experience. This document identifies many specific physical quantities that define life support systems, serving as a general reference for spacecraft life support system technology developers.

  6. Putting Flow–Ecology Relationships into Practice: A Decision-Support System to Assess Fish Community Response to Water-Management Scenarios

    Directory of Open Access Journals (Sweden)

    Jennifer Cartwright

    2017-03-01

    Full Text Available This paper presents a conceptual framework to operationalize flow–ecology relationships into decision-support systems of practical use to water-resource managers, who are commonly tasked with balancing multiple competing socioeconomic and environmental priorities. We illustrate this framework with a case study, whereby fish community responses to various water-management scenarios were predicted in a partially regulated river system at a local watershed scale. This case study simulates management scenarios based on interactive effects of dam operation protocols, withdrawals for municipal water supply, effluent discharges from wastewater treatment, and inter-basin water transfers. Modeled streamflow was integrated with flow–ecology relationships relating hydrologic departure from reference conditions to fish species richness, stratified by trophic, reproductive, and habitat characteristics. Adding a hypothetical new water-withdrawal site was predicted to increase the frequency of low-flow conditions with adverse effects for several fish groups. Imposition of new reservoir release requirements was predicted to enhance flow and fish species richness immediately downstream of the reservoir, but these effects were dissipated further downstream. The framework presented here can be used to translate flow–ecology relationships into evidence-based management by developing decision-support systems for conservation of riverine biodiversity while optimizing water availability for human use.

  7. Putting flow-ecology relationships into practice: A decision-support system to assess fish community response to water-management scenarios

    Science.gov (United States)

    Cartwright, Jennifer M.; Caldwell, Casey; Nebiker, Steven; Knight, Rodney

    2017-01-01

    This paper presents a conceptual framework to operationalize flow–ecology relationships into decision-support systems of practical use to water-resource managers, who are commonly tasked with balancing multiple competing socioeconomic and environmental priorities. We illustrate this framework with a case study, whereby fish community responses to various water-management scenarios were predicted in a partially regulated river system at a local watershed scale. This case study simulates management scenarios based on interactive effects of dam operation protocols, withdrawals for municipal water supply, effluent discharges from wastewater treatment, and inter-basin water transfers. Modeled streamflow was integrated with flow–ecology relationships relating hydrologic departure from reference conditions to fish species richness, stratified by trophic, reproductive, and habitat characteristics. Adding a hypothetical new water-withdrawal site was predicted to increase the frequency of low-flow conditions with adverse effects for several fish groups. Imposition of new reservoir release requirements was predicted to enhance flow and fish species richness immediately downstream of the reservoir, but these effects were dissipated further downstream. The framework presented here can be used to translate flow–ecology relationships into evidence-based management by developing decision-support systems for conservation of riverine biodiversity while optimizing water availability for human use.

  8. Advanced Technologies to Improve Closure of Life Support Systems

    Science.gov (United States)

    Barta, Daniel J.

    2016-01-01

    As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Candidate technologies will potentially improve the recovery of oxygen from about 50% (for the CRA) to as much as 100% for technologies who's end product is solid carbon. Improving the efficiency of water recycling and recovery can be achieved by the addition of advanced technologies to recover water from brines and solid wastes. Bioregenerative technologies may be utilized for water reclaimation and also for the production of food. Use of higher plants will simultaneously benefit atmosphere revitalization and water recovery through photosynthesis and transpiration. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.

  9. Human life support for advanced space exploration

    Science.gov (United States)

    Schwartzkopf, S. H.

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  10. EMDS users guide (version 2.0): knowledge-based decision support for ecological assessment.

    Science.gov (United States)

    Keith M. Reynolds

    1999-01-01

    The USDA Forest Service Pacific Northwest Research Station in Corvallis, Oregon, has developed the ecosystem management decision support (EMDS) system. The system integrates the logical formalism of knowledge-based reasoning into a geographic information system (GIS) environment to provide decision support for ecological landscape assessment and evaluation. The...

  11. Ecological and biological systems under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, V S; Nenishkiene, V B

    1989-01-01

    The behaviour of biological and ecological systems under extreme conditions (high and low temperatures, electromagnetic fields of different frequencies, ultraviolet. X-ray and gamma radiation) is analyzed. The ecosystems of macro- and microalgae living in salt, brackinsh and fresh waters are considered in the evolutional aspect basing on their chemical and biochemical composition taking into account the mechanism of radionuclide uptake by water plant cells, osmotic regulation, water and ice structures, combined water in a living organism. The problems of life-support in cosmic flights and of mastering the planets of the Solar system, for instance Mars and Venus, utilizing some microalgae and bacteria with high adaptive properties are discussed. Abnormal water points and their role in the metabolism of a water plant cell are estimated. The 'life niches' are determined at the temperatures exceeding 100 deg C and the possibility of existence for living organisms in high pressure and temperature is grounded. Attempts are made to change the metabolism of the plant and animal cell by subjecting it to the action of electromagnetic and thermal fields, heavy water, chemical and pharmocological substances changing the structure of bound water. 333 refs.; 79 tabs.

  12. Trends in biomedical engineering: focus on Patient Specific Modeling and Life Support Systems.

    Science.gov (United States)

    Dubini, Gabriele; Ambrosi, Davide; Bagnoli, Paola; Boschetti, Federica; Caiani, Enrico G; Chiastra, Claudio; Conti, Carlo A; Corsini, Chiara; Costantino, Maria Laura; D'Angelo, Carlo; Formaggia, Luca; Fumero, Roberto; Gastaldi, Dario; Migliavacca, Francesco; Morlacchi, Stefano; Nobile, Fabio; Pennati, Giancarlo; Petrini, Lorenza; Quarteroni, Alfio; Redaelli, Alberto; Stevanella, Marco; Veneziani, Alessandro; Vergara, Christian; Votta, Emiliano; Wu, Wei; Zunino, Paolo

    2011-01-01

    Over the last twenty years major advancements have taken place in the design of medical devices and personalized therapies. They have paralleled the impressive evolution of three-dimensional, non invasive, medical imaging techniques and have been continuously fuelled by increasing computing power and the emergence of novel and sophisticated software tools. This paper aims to showcase a number of major contributions to the advancements of modeling of surgical and interventional procedures and to the design of life support systems. The selected examples will span from pediatric cardiac surgery procedures to valve and ventricle repair techniques, from stent design and endovascular procedures to life support systems and innovative ventilation techniques.

  13. How to Establish a Bioregenerative Life Support System for Long-Term Crewed Missions to the Moon or Mars.

    Science.gov (United States)

    Fu, Yuming; Li, Leyuan; Xie, Beizhen; Dong, Chen; Wang, Mingjuan; Jia, Boyang; Shao, Lingzhi; Dong, Yingying; Deng, Shengda; Liu, Hui; Liu, Guanghui; Liu, Bojie; Hu, Dawei; Liu, Hong

    2016-12-01

    To conduct crewed simulation experiments of bioregenerative life support systems on the ground is a critical step for human life support in deep-space exploration. An artificial closed ecosystem named Lunar Palace 1 was built through integrating efficient higher plant cultivation, animal protein production, urine nitrogen recycling, and bioconversion of solid waste. Subsequently, a 105-day, multicrew, closed integrative bioregenerative life support systems experiment in Lunar Palace 1 was carried out from February through May 2014. The results show that environmental conditions as well as the gas balance between O 2 and CO 2 in the system were well maintained during the 105-day experiment. A total of 21 plant species in this system kept a harmonious coexistent relationship, and 20.5% nitrogen recovery from urine, 41% solid waste degradation, and a small amount of insect in situ production were achieved. During the 105-day experiment, oxygen and water were recycled, and 55% of the food was regenerated. Key Words: Bioregenerative life support systems (BLSS)-Space agriculture-Space life support-Waste recycle-Water recycle. Astrobiology 16, 925-936.

  14. Missing ecology: integrating ecological perspectives with the social-ecological system framework

    Directory of Open Access Journals (Sweden)

    Graham Epstein

    2013-08-01

    Full Text Available The social-ecological systems framework was designed to provide a common research tool for interdisciplinary investigations of social-ecological systems. However, its origin in institutional studies of the commons belies its interdisciplinary ambitions and highlights its relatively limited attention to ecology and natural scientific knowledge. This paper considers the biophysical components of the framework and its epistemological foundations as it relates to the incorporation of knowledge from the natural sciences. It finds that the mixture of inductive and deductive reasoning associated with socially-oriented investigations of these systems is lacking on the ecological side, which relies upon induction alone. As a result the paper proposes the addition of a seventh core sub-system to the social-ecological systems framework, ecological rules, which would allow scholars to explicitly incorporate knowledge from the natural sciences for deductive reasoning. The paper shows, through an instructive case study, how the addition of ecological rules can provide a more nuanced description of the factors that contribute to outcomes in social-ecological systems.

  15. Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    Science.gov (United States)

    Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad

    2016-01-01

    NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  16. Environmental control and life support - Partially closed system will save big money

    Science.gov (United States)

    Guy, W. W.

    1983-01-01

    Although the NASA space station has not yet been completely defined, realistic estimates may be made of the environmental control and life support system requirements entailed by a crew of eight, a resupply interval of 90 days, an initial launch which includes expendables for the first resupply interval, 7.86 lb/day of water per person, etc. An appraisal of these requirements is presented which strongly suggests the utility of a partially closed life support system. Such a scheme would give the crew high quality water to drink, and recycle nonpotable water from hand washing, bathing, clothes and dish washing, and urinal flushing. The excess recovery process water is electrolyzed to provide metabolic and leakage oxygen. The crew would drink electrolysis water and atmospheric humidity control moisture-derived water.

  17. Hydroponic cultivation of soybean for Bioregenerative Life Support Systems (BLSSs)

    Science.gov (United States)

    De Pascale, Stefania; De Micco, Veronica; Aronne, Giovanna; Paradiso, Roberta

    For long time our research group has been involved in experiments aiming to evaluate the possibility to cultivate plants in Space to regenerate resources and produce food. Apart from investigating the response of specific growth processes (at morpho-functional levels) to space factors (namely microgravity and ionising radiation), wide attention has been dedicated to agro-technologies applied to ecologically closed systems. Based on technical and human dietary requirements, soybean [Glycine max (L.) Merr.] is studied as one of the candidate species for hydroponic (soilless) cultivation in the research program MELiSSA (Micro-Ecological Life Support System Alternative) of the European Space Agency (ESA). Soybean seeds show high nutritional value, due to the relevant content of protein, lipids, dietary fiber and biologically active substances such as isoflavones. They can produce fresh sprouts or be transformed in several edible products (soymilk and okara or soy pulp). Soybean is traditionally grown in open field where specific interactions with soil microrganisms occur. Most available information on plant growth, seed productivity and nutrient composition relate to cultivated varieties (cultivars) selected for soil cultivation. However, in a space outpost, plant cultivation would rely on soilless systems. Given that plant growth, seed yield and quality strictly depend on the environmental conditions, to make successful the cultivation of soybean in space, it was necessary to screen all agronomic information according to space constraints. Indeed, selected cultivars have to comply with the space growth environment while providing a suitable nutritional quality to fulfill the astronauts needs. We proposed an objective criterion for the preliminary theoretical selection of the most suitable cultivars for seed production, which were subsequently evaluated in bench tests in hydroponics. Several Space-oriented experiments were carried out in a closed growth chamber to

  18. Don't Trust a Management Metric, Especially in Life Support

    Science.gov (United States)

    Jones, Harry W.

    2014-01-01

    Goodhart's law states that metrics do not work. Metrics become distorted when used and they deflect effort away from more important goals. These well-known and unavoidable problems occurred when the closure and system mass metrics were used to manage life support research. The intent of life support research should be to develop flyable, operable, reliable systems, not merely to increase life support system closure or to reduce its total mass. It would be better to design life support systems to meet the anticipated mission requirements and user needs. Substituting the metrics of closure and total mass for these goals seems to have led life support research to solve the wrong problems.

  19. International Space Station Environmental Control and Life Support System Status for the Prior Year: 2011 - 2012

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J

    2013-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the prior year, covering the period of time between March 2011 and February 2012. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the last of the Phase 3 pressurized elements, the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to at least 2028.

  20. Conceptual design of a bioregenerative life support system containing crops and silkworms

    Science.gov (United States)

    Hu, Enzhu; Bartsev, Sergey I.; Liu, Hong

    2010-04-01

    This article summarizes a conceptual design of a bioregenerative life support system for permanent lunar base or planetary exploration. The system consists of seven compartments - higher plants cultivation, animal rearing, human habitation, water recovery, waste treatment, atmosphere management, and storages. Fifteen kinds of crops, such as wheat, rice, soybean, lettuce, and mulberry, were selected as main life support contributors to provide the crew with air, water, and vegetable food. Silkworms fed by crop leaves were designated to produce partial animal nutrition for the crew. Various physical-chemical and biological methods were combined to reclaim wastewater and solid waste. Condensate collected from atmosphere was recycled into potable water through granular activated carbon adsorption, iodine sterilization, and trace element supplementation. All grey water was also purified though multifiltration and ultraviolet sterilization. Plant residue, human excrement, silkworm feces, etc. were decomposed into inorganic substances which were finally absorbed by higher plants. Some meat, ingredients, as well as nitrogen fertilizer were prestored and resupplied periodically. Meanwhile, the same amount and chemical composition of organic waste was dumped to maintain the steady state of the system. A nutritional balanced diet was developed by means of the linear programming method. It could provide 2721 kcal of energy, 375.5 g of carbohydrate, 99.47 g of protein, and 91.19 g of fat per capita per day. Silkworm powder covered 12.54% of total animal protein intakes. The balance of material flows between compartments was described by the system of stoichiometric equations. Basic life support requirements for crews including oxygen, food, potable and hygiene water summed up to 29.68 kg per capita per day. The coefficient of system material closure reached 99.40%.

  1. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    Science.gov (United States)

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key

  2. Exploration Life Support Technology Development for Lunar Missions

    Science.gov (United States)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey

    2009-01-01

    Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.

  3. Life Support with Failures and Variable Supply

    Science.gov (United States)

    Jones, Harry

    2010-01-01

    The life support system for long duration missions will recycle oxygen and water to reduce the material resupply mass from Earth. The impact of life support failures was investigated by dynamic simulation of a lunar outpost habitat life support model. The model was modified to simulate resupply delays, power failures, recycling system failures, and storage failures. Many failures impact the lunar outpost water supply directly or indirectly, depending on the water balance and water storage. Failure effects on the water supply are reduced if Extra Vehicular Activity (EVA) water use is low and the water supply is ample. Additional oxygen can be supplied by scavenging unused propellant or by production from regolith, but the amounts obtained can vary significantly. The requirements for oxygen and water can also vary significantly, especially for EVA. Providing storage buffers can improve efficiency and reliability, and minimize the chance of supply failing to meet demand. Life support failures and supply variations can be survivable if effective solutions are provided by the system design

  4. Bioregenerative Life Support Systems Test Complex (Bio-Plex) Food Processing System: A Dual System

    Science.gov (United States)

    Perchonok, Michele; Vittadini, Elena; Peterson, Laurie J.; Swango, Beverly E.; Toerne, Mary E.; Russo, Dane M. (Technical Monitor)

    2001-01-01

    A Bioregenerative Life Support Test Complex, BIO-Plex, is currently being constructed at the Johnson Space Center (JSC) in Houston, TX. This facility will attempt to answer the questions involved in developing a lunar or planetary base. The Food Processing System (FPS) of the BIO-Plex is responsible for supplying food to the crew in coordination with the chosen mission scenario. Long duration space missions require development of both a Transit Food System and of a Lunar or Planetary Food System. These two systems are intrinsically different since the first one will be utilized in the transit vehicle in microgravity conditions with mostly resupplied foods, while the second will be used in conditions of partial gravity (hypogravity) to process foods from crops grown in the facility. The Transit Food System will consist of prepackaged food of extended shelf life. It will be supplemented with salad crops that will be consumed fresh. Microgravity imposes significant limitation on the ability to handle food and allows only for minimal processing. The challenge is to develop food systems similar to the International Space Station or Shuttle Food Systems but with a shelf life of 3 - 5 years. The Lunar or Planetary Food System will allow for food processing of crops due to the presence of some gravitational force (1/6 to 1/3 that of Earth). Crops such as wheat, soybean, rice, potato, peanut, and salad crops, will be processed to final products to provide a nutritious and acceptable diet for the crew. Not only are constraints imposed on the FPS from the crops (e.g., crop variation, availability, storage and shelf-life) but also significant requirements are present for the crew meals (e.g., RDA, high quality, safety, variety). The FPS becomes a fulcrum creating the right connection from crops to crew meals while dealing with issues of integration within a closed self-regenerative system (e.g., safe processing, waste production, volumes, air contaminations, water usage, etc

  5. International Space Station Environmental Control and Life Support System Status for the Prior Year: 2010-2011

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J.

    2012-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the prior year, covering the period of time between March 2010 and February 2011. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the last of the Phase 3 pressurized elements, the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to no later than 2028.

  6. Canadian advanced life support capacities and future directions

    Science.gov (United States)

    Bamsey, M.; Graham, T.; Stasiak, M.; Berinstain, A.; Scott, A.; Vuk, T. Rondeau; Dixon, M.

    2009-07-01

    Canada began research on space-relevant biological life support systems in the early 1990s. Since that time Canadian capabilities have grown tremendously, placing Canada among the emerging leaders in biological life support systems. The rapid growth of Canadian expertise has been the result of several factors including a large and technically sophisticated greenhouse sector which successfully operates under challenging climatic conditions, well planned technology transfer strategies between the academic and industrial sectors, and a strong emphasis on international research collaborations. Recent activities such as Canada's contribution of the Higher Plant Compartment of the European Space Agency's MELiSSA Pilot Plant and the remote operation of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic continue to demonstrate Canadian capabilities with direct applicability to advanced life support systems. There is also a significant latent potential within Canadian institutions and organizations with respect to directly applicable advanced life support technologies. These directly applicable research interests include such areas as horticultural management strategies (for candidate crops), growth media, food processing, water management, atmosphere management, energy management, waste management, imaging, environment sensors, thermal control, lighting systems, robotics, command and data handling, communications systems, structures, in-situ resource utilization, space analogues and mission operations. With this background and in collaboration with the Canadian aerospace industry sector, a roadmap for future life support contributions is presented here. This roadmap targets an objective of at least 50% food closure by 2050 (providing greater closure in oxygen, water recycling and carbon dioxide uptake). The Canadian advanced life support community has chosen to focus on lunar surface infrastructure and not low Earth orbit or transit systems (i.e. microgravity

  7. Lunar Surface Scenarios: Habitation and Life Support Systems for a Pressurized Rover

    Science.gov (United States)

    Anderson, Molly; Hanford, Anthony; Howard, Robert; Toups, Larry

    2006-01-01

    Pressurized rovers will be a critical component of successful lunar exploration to enable safe investigation of sites distant from the outpost location. A pressurized rover is a complex system with the same functions as any other crewed vehicle. Designs for a pressurized rover need to take into account significant constraints, a multitude of tasks to be performed inside and out, and the complexity of life support systems to support the crew. In future studies, pressurized rovers should be given the same level of consideration as any other vehicle occupied by the crew.

  8. Space station environmental control and life support systems test bed program - an overview

    Science.gov (United States)

    Behrend, Albert F.

    As the National Aeronautics and Space Administration (NASA) begins to intensify activities for development of the Space Station, decisions must be made concerning the technical state of the art that will be baselined for the initial Space Station system. These decisions are important because significant potential exists for enhancing system performance and for reducing life-cycle costs. However, intelligent decisions cannot be made without an adequate assessment of new and ready technologies, i.e., technologies which are sufficiently mature to allow predevelopment demonstrations to prove their application feasibility and to quantify the risk associated with their development. Therefore, the NASA has implemented a technology development program which includes the establishment of generic test bed capabilities in which these new technologies and approaches can be tested at the prototype level. One major Space Station subsystem discipline in which this program has been implemented is the environmental control and life support system (ECLSS). Previous manned space programs such as Gemini, Apollo, and Space Shuttle have relied heavily on consumables to provide environmental control and life support services. However, with the advent of a long-duration Space Station, consumables must be reduced within technological limits to minimize Space Station resupply penalties and operational costs. The use of advanced environmental control and life support approaches involving regenerative processes offers the best solution for significant consumables reduction while also providing system evolutionary growth capability. Consequently, the demonstration of these "new technologies" as viable options for inclusion in the baseline that will be available to support a Space Station initial operational capability in the early 1990's becomes of paramount importance. The mechanism by which the maturity of these new regenerative life support technologies will be demonstrated is the Space

  9. Ecological support for rural land-use planning.

    Science.gov (United States)

    David M. Theobald; Thomas Spies; Jeff Kline; Bruce Maxwell; N. T. Hobbs; Virginia H. Dale

    2005-01-01

    How can ecologists be more effective in supporting ecologically informed rural land-use planning and policy? Improved decision making about rural lands requires careful consideration of how ecological information and analyses can inform specific planning and policy needs. We provide a brief overview of rural land-use planning, including recently developed approaches to...

  10. Life sciences report 1987

    Science.gov (United States)

    1987-01-01

    Highlighted here are the major research efforts of the NASA Life Sciences Division during the past year. Topics covered include remote health care delivery in space, space biomedical research, gravitational biology, biospherics (studying planet Earth), the NASA Closed Ecological Life Support System (CELSS), exobiology, flight programs, international cooperation, and education programs.

  11. Ventilation Transport Trade Study for Future Space Suit Life Support Systems

    Science.gov (United States)

    Kempf, Robert; Vogel, Matthew; Paul, Heather L.

    2008-01-01

    A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.

  12. NextSTEP Hybrid Life Support

    Data.gov (United States)

    National Aeronautics and Space Administration — NextSTEP Phase I Hybrid Life Support Systems (HLSS) effort assessed options, performance, and reliability for various mission scenarios using contractor-developed...

  13. Predictive systems ecology.

    Science.gov (United States)

    Evans, Matthew R; Bithell, Mike; Cornell, Stephen J; Dall, Sasha R X; Díaz, Sandra; Emmott, Stephen; Ernande, Bruno; Grimm, Volker; Hodgson, David J; Lewis, Simon L; Mace, Georgina M; Morecroft, Michael; Moustakas, Aristides; Murphy, Eugene; Newbold, Tim; Norris, K J; Petchey, Owen; Smith, Matthew; Travis, Justin M J; Benton, Tim G

    2013-11-22

    Human societies, and their well-being, depend to a significant extent on the state of the ecosystems that surround them. These ecosystems are changing rapidly usually in response to anthropogenic changes in the environment. To determine the likely impact of environmental change on ecosystems and the best ways to manage them, it would be desirable to be able to predict their future states. We present a proposal to develop the paradigm of predictive systems ecology, explicitly to understand and predict the properties and behaviour of ecological systems. We discuss the necessary and desirable features of predictive systems ecology models. There are places where predictive systems ecology is already being practised and we summarize a range of terrestrial and marine examples. Significant challenges remain but we suggest that ecology would benefit both as a scientific discipline and increase its impact in society if it were to embrace the need to become more predictive.

  14. Integration of lessons from recent research for "Earth to Mars" life support systems

    Science.gov (United States)

    Nelson, M.; Allen, J. P.; Alling, A.; Dempster, W. F.; Silverstone, S.; van Thillo, M.

    Development of reliable and robust strategies for long-term life support for mbox planetary exploration needs to be built on real-time experimentation to verify and improve system components Also critical is the incorporation of a range of viable options to handle potential short-term life system imbalances This paper revisits some of the conceptual framework for a Mars base prototype previously advanced Mars on Earth in the light of three years of experimentation by the authors in the Laboratory Biosphere further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls For example crops of sweet potatoes exceeded original Mars base prototype projections by 83 ultradwarf Apogee wheat by 27 pinto bean by 240 and cowpeas slightly exceeded anticipated dry bean yield These production levels although they may be increased with further optimization of lighting regimes environmental parameters crop density etc offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research Soil also offers several distinct advantages the capability to be created using in-situ space resources reducing reliance on consumables and imported resources and more easily recycling and

  15. Developing Reliable Life Support for Mars

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    A human mission to Mars will require highly reliable life support systems. Mars life support systems may recycle water and oxygen using systems similar to those on the International Space Station (ISS). However, achieving sufficient reliability is less difficult for ISS than it will be for Mars. If an ISS system has a serious failure, it is possible to provide spare parts, or directly supply water or oxygen, or if necessary bring the crew back to Earth. Life support for Mars must be designed, tested, and improved as needed to achieve high demonstrated reliability. A quantitative reliability goal should be established and used to guide development t. The designers should select reliable components and minimize interface and integration problems. In theory a system can achieve the component-limited reliability, but testing often reveal unexpected failures due to design mistakes or flawed components. Testing should extend long enough to detect any unexpected failure modes and to verify the expected reliability. Iterated redesign and retest may be required to achieve the reliability goal. If the reliability is less than required, it may be improved by providing spare components or redundant systems. The number of spares required to achieve a given reliability goal depends on the component failure rate. If the failure rate is under estimated, the number of spares will be insufficient and the system may fail. If the design is likely to have undiscovered design or component problems, it is advisable to use dissimilar redundancy, even though this multiplies the design and development cost. In the ideal case, a human tended closed system operational test should be conducted to gain confidence in operations, maintenance, and repair. The difficulty in achieving high reliability in unproven complex systems may require the use of simpler, more mature, intrinsically higher reliability systems. The limitations of budget, schedule, and technology may suggest accepting lower and

  16. The Legacy of Biosphere 2 for Biospherics and Closed Ecological System Research

    Science.gov (United States)

    Allen, J.; Alling, A.; Nelson, M.

    health resulting from the calorie-restricted but nutrient dense Biosphere 2 diet was the first such scientifically-controlled experiment with humans. The success of Biosphere in creating a diversity of terrestrial and marine environments, from rainforest to coral reef, allowed detailed studies with comprehensive measurements such that the dynamics of these complex biomic systems can be better understood. The coral reef ecosystem, the largest artificial reef ever built, catalyzed methods of study now being applied to planetary coral reef systems. Restoration ecology can learn much from the creation and dynamics of adaptation of the biomes in Biosphere 2. The international interest that Biosphere 2 generated has given new impetus to the public recognition of the sciences of biospheres, biospherics, biomes and closed ecological life systems. The facility is still being used as an educational facility by Columbia University as an introduction to the study of the biosphere and complex system ecology. The many lessons learned from Biosphere 2, from its successes, surprises and challenges, is being used by its key team of creators as the foundations for their design of a laboratory-sized closed ecological system and Mars on Earth prototype life support system for Mars exploration and can be an important foundation for future advances in biospherics and closed ecological system research.

  17. Mass balances for a biological life support system simulation model

    Science.gov (United States)

    Volk, Tyler; Rummel, John D.

    1987-01-01

    Design decisions to aid the development of future space based biological life support systems (BLSS) can be made with simulation models. The biochemistry stoichiometry was developed for: (1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; (2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and (3) operation of the waste processor. Flux values for all components are derived for a steady state system with wheat as the sole food source. The large scale dynamics of a materially closed (BLSS) computer model is described in a companion paper. An extension of this methodology can explore multifood systems and more complex biochemical dynamics while maintaining whole system closure as a focus.

  18. Advanced anaerobic bioconversion of lignocellulosic waste for the melissa life support system

    Science.gov (United States)

    Lissens, G.; Verstraete, W.; Albrecht, T.; Brunner, G.; Creuly, C.; Dussap, G.; Kube, J.; Maerkl, H.; Lasseur, C.

    The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal matter and 10% green algae) into biogas was investigated in the context of the MELiSSA loop (Micro-Ecological Life Support System Alternative). The treatment comprised a series of processes, i.e. a mesophilic laboratory scale CSTR (continuously stirred tank reactor), an upflow biofilm reactor, a fiber liquefaction reactor employing the rumen bacterium Fibrobacter succinogenes and a hydrothermolysis system in near-critical water. By the one-stage CSTR, a biogas yield of 75% with a specific biogas production of 0.37 l biogas g-1 VSS (volatile suspended solids) added at a RT (hydraulic retention time) of 20-25 d was obtained. Biogas yields could not be increased considerably at higher RT, indicating the depletion of readily available substrate after 25 d. The solids present in the CSTR-effluent were subsequently treated in two ways. Hydrothermal treatment (T ˜ 310-350C, p ˜ 240 bar) resulted in effective carbon liquefaction (50-60% without and 83% with carbon dioxide saturation) and complete sanitation of the residue. Application of the cellulolytic Fibrobacter succinogenes converted remaining cellulose contained in the CSTR-effluent into acetate and propionate mainly. Subsequent anaerobic digestion of the hydrothermolysis and the Fibrobacter hydrolysates allowed conversion of 48-60% and 30%, respectively. Thus, the total process yielded biogas corresponding with conversions up to 90% of the original organic matter. It appears that particularly mesophilic digestion in conjunction with hydrothermolysis offers interesting features for (nearly) the MELiSSA system. The described additional technologies show that complete and hygienic carbon and energy recovery from human waste within MELiSSA is technically feasible, provided that the extra energy needed for the thermal treatment is guaranteed.

  19. The embodiment design of the heat rejection system for the portable life support system

    Science.gov (United States)

    Stuckwisch, Sue; Francois, Jason; Laughlin, Julia; Phillips, Lee; Carrion, Carlos A.

    1994-01-01

    The Portable Life Support System (PLSS) provides a suitable environment for the astronaut in the Extravehicular Mobility Unit (EMU), and the heat rejection system controls the thermal conditions in the space suit. The current PLSS sublimates water to the space environment; therefore, the system loses mass. Since additional supplies of fluid must be available on the Space Shuttle, NASA desires a closed heat rejecting system. This document presents the embodiment design for a radiative plate heat rejection system without mass transfer to the space environment. This project will transform the concept variant into a design complete with material selection, dimensions of the system, layouts of the heat rejection system, suggestions for manufacturing, and financial viability.

  20. Guiding Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    Science.gov (United States)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    The National Aeronautics and Space Administration's (NASA) technology development roadmaps provide guidance to focus technological development in areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-flight maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  1. Ecological relationship analysis of the urban metabolic system of Beijing, China

    International Nuclear Information System (INIS)

    Li Shengsheng; Zhang Yan; Yang Zhifeng; Liu Hong; Zhang Jinyun

    2012-01-01

    Cities can be modelled as giant organisms, with their own metabolic processes, and can therefore be studied using the same tools used for biological metabolic systems. The complicated distribution of compartments within these systems and the functional relationships among them define the system's network structure. Taking Beijing as an example, we divided the city's internal system into metabolic compartments, then used ecological network analysis to calculate a comprehensive utility matrix for the flows between compartments within Beijing's metabolic system from 1998 to 2007 and to identify the corresponding functional relationships among the system's compartments. Our results show how ecological network analysis, utility analysis, and relationship analysis can be used to discover the implied ecological relationships within a metabolic system, thereby providing insights into the system's internal metabolic processes. Such analyses provide scientific support for urban ecological management. - Highlights: ► Urban metabolic processes can be analyzed by treating cities as superorganisms. ► We developed an ecological network model for an urban system. ► We studied the system's network relationships using ecological network analysis. ► We developed indices for judging the system's synergism and degree of stability. - Using Beijing as an example of an urban superorganism, we used ecological network analysis to describe the ecological relationships among the urban metabolic system's compartments.

  2. Next Generation Life Support Project Status

    Science.gov (United States)

    Barta, Daniel J.; Chullen, Cinda; Pickering, Karen D.; Cox, Marlon; Towsend, Neil; Campbell, Colin; Flynn, Michael; Wheeler, Raymond

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by NASA s Game Changing Development Program. The NGLS Project is developing life support technologies (including water recovery and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processor (AWP). The RCA swing bed and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Advanced Extravehicular Mobility Unit, with focus on test article development and integrated testing in an Advanced PLSS in cooperation with the Advanced Extra Vehicular Activity (EVA) Project. An RCA swing-bed provides integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The VOR technology will significantly increase the number of pressure settings available to the space suit. Current space suit pressure regulators are limited to only two settings whereas the adjustability of the advanced regulator will be nearly continuous. The AWP effort, based on natural biological processes and membrane-based secondary treatment, will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water. This paper will provide a status of technology development activities and future plans.

  3. Life cycle impact assessment (LCIA) using the ecological scarcity ...

    African Journals Online (AJOL)

    After it is done, the inventory will be interpreted to the environmental impacts in life cycle impact assessment (LCIA). Two LCIA methods identified were “midpoint and endpoint” approaches. The ecological scarcity (ecopoints) is an LCIA method using “midpoint” approach. From the analysis to both life cycle stages, analysis ...

  4. Role of the ecological audit in information support of the domestic market of eco-textile

    Directory of Open Access Journals (Sweden)

    Semak Bohdan B.

    2014-01-01

    Full Text Available The goal of the article is the study of the place and role of the ecological audit in the system of ecological management of textile enterprises of Ukraine, ecologisation of technologies of textile manufacture, formation of the range and quality and ensuring ecological safety of products of textile enterprises. In the result of the study the article specifies the role and place of the ecological audit in formation of the system of ecological management of enterprises of the domestic textile industry. Special attention is paid to the role of the ecological audit in information support to participants of the domestic eco-textile market. The article justifies expediency of the use of results of ecological audit of textile products with the aim of increasing its competitiveness in the market. It is expedient to conduct further studies in the directions of development of mechanisms of introduction of the ecological audit at textile enterprises of Ukraine and study of influence of ecological audit of products of domestic textile enterprises upon satisfaction of growing ecological needs of consumers of these products in Ukraine.

  5. Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management

    Science.gov (United States)

    Levri, Julie A.; Fisher, John W.; Alazraki, Michael P.; Hogan, John A.

    2002-01-01

    Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.

  6. Study of basic-life-support training for college students.

    Science.gov (United States)

    Srivilaithon, Winchana; Amnaumpatanapon, Kumpon; Limjindaporn, Chitlada; Imsuwan, Intanon; Daorattanachai, Kiattichai

    2015-03-01

    To study about attitude and knowledge regarding basic-life-support among college students outside medical system. The cross-sectional study in the emergency department of Thammasat Hospital. The authors included college students at least aged 18 years old and volunteers to be study subjects. The authors collected data about attitudes and knowledge in performing basic-life-support by using set of questionnaires. 250 college students participated in the two hours trainingprogram. Most ofparticipants (42.4%) were second-year college students, of which 50 of 250 participants (20%) had trained in basic-life-support program. Twenty-seven of 250 participants (10.8%) had experience in basic-life-support outside the hospital. Most of participants had good attitude for doing basic-life-support. Participants had a significant improved score following training (mean score 8.66 and 12.34, respectively, pbasic-life-support to cardiac arrest patient. The training program in basic-life-support has significant impact on knowledge after training.

  7. Systems Engineering and Integration for Advanced Life Support System and HST

    Science.gov (United States)

    Kamarani, Ali K.

    2005-01-01

    Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.

  8. FileNet's BPM life-cycle support

    NARCIS (Netherlands)

    Netjes, M.; Reijers, H.A.; Aalst, van der W.M.P.

    2006-01-01

    Business Process Management (BPM) systems provide a broad range of facilities to enact and manage operational business processes. Ideally, these systems should provide support for the complete BPM life-cycle: (re)design, configuration, execution, control, and diagnosis of processes. In the research

  9. IMPROVEMENT OF LIFE SUPPORT SYSTEMS OF PASSENGER ROLLING STOCK: PATENT REVIEW

    Directory of Open Access Journals (Sweden)

    S. R. Kolesnykov

    2018-02-01

    Full Text Available Purpose. Inventors and researchers of the world are focused on improvements of basic life support systems including provision of quality microclimate parameters in a car of the rolling stock. The research is aimed at reviewing and analyzing patents in the field of climate comfort, heating, ventilation and air conditioning (CCHVAC of railway passenger cars (the chronological framework: 2011-2017 from the date of publication. Мethodology. During the study there were reviewed patents (foreign and domestic ones in the field of CCHVAC in passenger vehicles, in particular railway cars, their optimization and ways of managing them. Patent search was carried out according to certain search criteria: keywords, time frames and in various patent systems of the world. An interdisciplinary approach was used. Findings. Based on the search results, 157 patents were found, 21 documents of which were selected for analysis. Patents are systematized into three groups: "New technical and technological solutions in systems and functioning facilities of HVAC ", "New and improved solutions for HVAC system management in a vehicle", "Air ozonation in passenger cars". It is established that all patents have one of the aspects that have solutions to the issues of more environmentally friendly, energy efficient and safe application of CCHVAC systems in railway transport. Originality. It was proved a high level of link penetration in various technical fields, which include patents with CCHVAC. It is established that it is characteristic for them to designate the majority of patent solutions for use not in the purely railway industry, but in transport in general. Practical value. Confirmation of the high level of link penetration in various technical fields will make it possible to reflect technical problems with CCHVAC and technologies for their solution throughout the world. This will contribute to a more intensive technological upgrade in the improvement of life support

  10. Microbiological characterization of a regenerative life support system

    Science.gov (United States)

    Koenig, D. W.; Bruce, R. J.; Mishra, S. K.; Barta, D. J.; Pierson, D. L.

    1994-01-01

    A Variable Pressure Plant Growth Chamber (VPGC), at the Johnson Space Center's (JSC) ground based Regenerative Life Support Systems (RLSS) test bed, was used to produce crops of soil-grown lettuce. The crops and chamber were analyzed for microbiological diversity during lettuce growth and after harvest. Bacterial counts for the rhizosphere, spent nutrient medium, heat exchanger condensate, and atmosphere were approximately 10(exp 11) Colony Forming Units (CFU)/g, 10(exp 5) CFU/ml, 10(exp 5)CFU/ml, and 600 CFU/m sq, repectively. Pseudomonas was the predominant bacterial genus. Numbers of fungi were about 10(exp 5) CFU/g in the rhizosphere, 4-200 CFU/ml in the spent nutient medium, 110 CFU/ml in the heat exchanger condensate, and 3 CFU/cu m in the atmosphere. Fusarium and Trichoderma were the predominant fungal genera.

  11. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  12. Ecological assessment of integrated bioenergy systems using the Sustainable Process Index

    International Nuclear Information System (INIS)

    Krotscheck, C.; Konig, F.; Obernberger, I.

    2000-01-01

    Biomass utilisation for energy production presently faces an uphill battle against fossil fuels. The use of biomass must offer additional benefits to compensate for higher prices: on the basis of a life cycle assessment (using BEAM to evaluate a variety of integrated bioenergy systems in connection with the Sustainable Process Index as a highly aggregated environmental pressure index) it is shown that integrated bioenergy systems are superior to fossil fuel systems in terms of environmental compatibility. The implementation of sustainability measures provides additional valuable information that might help in constructing and optimising integrated bioenergy systems. For a set of reference processes, among them fast pyrolysis, atmospheric gasification, integrated gasification combined cycle (IGCC), combustion and steam cycle (CS) and conventional hydrolysis, a detailed impact assessment is shown. Sensitivity analyses of the most important ecological parameters are calculated, giving an overview of the impacts of various stages in the total life cycle and showing 'what really matters'. Much of the ecological impact of integrated bioenergy systems is induced by feedstock production. It is mainly the use of fossil fuels in cultivation, harvesting and transportation as well as the use of fertilisers in short-rotation coppice production that impose considerable ecological pressure. Concerning electricity generation the most problematic pressures are due to gaseous emissions, most notably the release of NO x . Moreover, a rather complicated process (high amount of grey energy) and the use of fossil pilot fuel (co-combustion) leads to a rather weak ecological performance in contrast to other 100% biomass-based systems. (author)

  13. Cover crops support ecological intensification of arable cropping systems

    Science.gov (United States)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  14. Cyrogenic Life Support Technology Development Project

    Science.gov (United States)

    Bush, David R.

    2015-01-01

    KSC has used cryogenic life support (liquid air based) technology successfully for many years to support spaceflight operations. This technology has many benefits unique to cryogenics when compared to traditional compressed gas systems: passive cooling, lighter, longer duration, and lower operating pressure. However, there are also several limiting factors that have prevented the technology from being commercialized. The National Institute of Occupational Safety and Health, Office of Mine Safety and Health Research (NIOSH-OMSHR) has partnered with NASA to develop a complete liquid air based life support solution for emergency mine escape and rescue. The project will develop and demonstrate various prototype devices and incorporate new technological innovations that have to date prevented commercialization.

  15. Functional Interface Considerations within an Exploration Life Support System Architecture

    Science.gov (United States)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    As notional life support system (LSS) architectures are developed and evaluated, myriad options must be considered pertaining to process technologies, components, and equipment assemblies. Each option must be evaluated relative to its impact on key functional interfaces within the LSS architecture. A leading notional architecture has been developed to guide the path toward realizing future crewed space exploration goals. This architecture includes atmosphere revitalization, water recovery and management, and environmental monitoring subsystems. Guiding requirements for developing this architecture are summarized and important interfaces within the architecture are discussed. The role of environmental monitoring within the architecture is described.

  16. Chasing Ecological Interactions.

    Science.gov (United States)

    Jordano, Pedro

    2016-09-01

    Basic research on biodiversity has concentrated on individual species-naming new species, studying distribution patterns, and analyzing their evolutionary relationships. Yet biodiversity is more than a collection of individual species; it is the combination of biological entities and processes that support life on Earth. To understand biodiversity we must catalog it, but we must also assess the ways species interact with other species to provide functional support for the Tree of Life. Ecological interactions may be lost well before the species involved in those interactions go extinct; their ecological functions disappear even though they remain. Here, I address the challenges in studying the functional aspects of species interactions and how basic research is helping us address the fast-paced extinction of species due to human activities.

  17. Applying Movement Ecology to Marine Animals with Complex Life Cycles

    Science.gov (United States)

    Allen, Richard M.; Metaxas, Anna; Snelgrove, Paul V. R.

    2018-01-01

    Marine animals with complex life cycles may move passively or actively for fertilization, dispersal, predator avoidance, resource acquisition, and migration, and over scales from micrometers to thousands of kilometers. This diversity has catalyzed idiosyncratic and unfocused research, creating unsound paradigms regarding the role of movement in ecology and evolution. The emerging movement ecology paradigm offers a framework to consolidate movement research independent of taxon, life-history stage, scale, or discipline. This review applies the framework to movement among life-history stages in marine animals with complex life cycles to consolidate marine movement research and offer insights for scientists working in aquatic and terrestrial realms. Irrespective of data collection or simulation strategy, breaking each life-history stage down into the fundamental units of movement allows each unit to be studied independently or interactively with other units. Understanding these underlying mechanisms of movement within each life-history stage can then be used to construct lifetime movement paths. These paths can allow further investigation of the relative contributions and interdependencies of steps and phases across a lifetime and how these paths influence larger research topics, such as population-level movements.

  18. Herbivore-mediated ecological costs of reproduction shape the life history of an iteroparous plant.

    Science.gov (United States)

    Miller, Tom E X; Tenhumberg, Brigitte; Louda, Svata M

    2008-02-01

    Plant reproduction yields immediate fitness benefits but can be costly in terms of survival, growth, and future fecundity. Life-history theory posits that reproductive strategies are shaped by trade-offs between current and future fitness that result from these direct costs of reproduction. Plant reproduction may also incur indirect ecological costs if it increases susceptibility to herbivores. Yet ecological costs of reproduction have received little empirical attention and remain poorly integrated into life-history theory. Here, we provide evidence for herbivore-mediated ecological costs of reproduction, and we develop theory to examine how these costs influence plant life-history strategies. Field experiments with an iteroparous cactus (Opuntia imbricata) indicated that greater reproductive effort (proportion of meristems allocated to reproduction) led to greater attack by a cactus-feeding insect (Narnia pallidicornis) and that damage by this herbivore reduced reproductive success. A dynamic programming model predicted strongly divergent optimal reproductive strategies when ecological costs were included, compared with when these costs were ignored. Meristem allocation by cacti in the field matched the optimal strategy expected under ecological costs of reproduction. The results indicate that plant reproductive allocation can strongly influence the intensity of interactions with herbivores and that associated ecological costs can play an important selective role in the evolution of plant life histories.

  19. The legacy of Biosphere 2 for the study of biospherics and closed ecological systems.

    Science.gov (United States)

    Allen, J P; Nelson, M; Alling, A

    2003-01-01

    planetary/lunar settlements. The improved health resulting from the calorie-restricted but nutrient dense Biosphere 2 diet was the first such scientifically controlled experiment with humans. The success of Biosphere 2 in creating a diversity of terrestrial and marine environments, from rainforest to coral reef, allowed detailed studies with comprehensive measurements such that the dynamics of these complex biomic systems are now better understood. The coral reef ecosystem, the largest artificial reef ever built, catalyzed methods of study now being applied to planetary coral reef systems. Restoration ecology advanced through the creation and study of the dynamics of adaptation and self-organization of the biomes in Biosphere 2. The international interest that Biosphere 2 generated has given new impetus to the public recognition of the sciences of biospheres (biospherics), biomes and closed ecological life systems. The facility, although no longer a materially-closed ecological system, is being used as an educational facility by Columbia University as an introduction to the study of the biosphere and complex system ecology and for carbon dioxide impacts utilizing the complex ecosystems created in Biosphere '. The many lessons learned from Biosphere 2 are being used by its key team of creators in their design and operation of a laboratory-sized closed ecological system, the Laboratory Biosphere, in operation as of March 2002, and for the design of a Mars on Earth(TM) prototype life support system for manned missions to Mars and Mars surface habitats. Biosphere 2 is an important foundation for future advances in biospherics and closed ecological system research. c2003 Published by Elsevier Science Ltd on behalf of COSPAR.

  20. The legacy of biosphere 2 for the study of biospherics and closed ecological systems

    Science.gov (United States)

    Allen, J. P.; Nelson, M.; Alling, A.

    planetary/lunar settlements. The improved health resulting from the calorie-restricted but nutrient dense Biosphere 2 diet was the first such scientifically controlled experiment with humans. The success of Biosphere 2 in creating a diversity of terrestrial and marine environments, from rainforest to coral reef, allowed detailed studies with comprehensive measurements such that the dynamics of these complex biomic systems are now better understood. The coral reef ecosystem, the largest artificial reef ever built, catalyzed methods of study now being applied to planetary coral reef systems. Restoration ecology advanced through the creation and study of the dynamics of adaptation and self-organization of the biomes in Biosphere 2. The international interest that Biosphere 2 generated has given new impetus to the public recognition of the sciences of biospheres (biospherics), biomes and closed ecological life systems. The facility, although no longer a materially-closed ecological system, is being used as an educational facility by Columbia University as an introduction to the study of the biosphere and complex system ecology and for carbon dioxide impacts utilizing the complex ecosystems created in Biosphere '.The many lessons learned from Biosphere 2 are being used by its key team of creators in their design and operation of a laboratory-sized closed ecological system, the Laboratory Biosphere, in operation as of March 2002, and for the design of a Mars on Earth ™ prototype life support system for manned missions to Mars and Mars surface habitats. Biosphere 2 is an important foundation for future advances in biospherics and closed ecological system research.

  1. Patterns of Early-Life Gut Microbial Colonization during Human Immune Development: An Ecological Perspective

    Directory of Open Access Journals (Sweden)

    Isabelle Laforest-Lapointe

    2017-07-01

    Full Text Available Alterations in gut microbial colonization during early life have been reported in infants that later developed asthma, allergies, type 1 diabetes, as well as in inflammatory bowel disease patients, previous to disease flares. Mechanistic studies in animal models have established that microbial alterations influence disease pathogenesis via changes in immune system maturation. Strong evidence points to the presence of a window of opportunity in early life, during which changes in gut microbial colonization can result in immune dysregulation that predisposes susceptible hosts to disease. Although the ecological patterns of microbial succession in the first year of life have been partly defined in specific human cohorts, the taxonomic and functional features, and diversity thresholds that characterize these microbial alterations are, for the most part, unknown. In this review, we summarize the most important links between the temporal mosaics of gut microbial colonization and the age-dependent immune functions that rely on them. We also highlight the importance of applying ecology theory to design studies that explore the interactions between this complex ecosystem and the host immune system. Focusing research efforts on understanding the importance of temporally structured patterns of diversity, keystone groups, and inter-kingdom microbial interactions for ecosystem functions has great potential to enable the development of biologically sound interventions aimed at maintaining and/or improving immune system development and preventing disease.

  2. Development of an ecological decision support system

    NARCIS (Netherlands)

    van Beusekom, Frits; Brazier, Frances; Schipper, Piet; Treur, Jan; del Pobil, A.P.

    1998-01-01

    In this paper a knowledge-based decision support system is described that determines the abiotic (chemical and physical) characteristics of a site on the basis of in-homogeneous samples of plant species. Techniques from the area of non-monotonic reasoning are applied to model multi-interpretable

  3. Using Ecological Indicators and a Decision Support System for Integrated Ecological Assessment at Two National Park Units in the Mid-Atlantic Region, USA

    Science.gov (United States)

    Mahan, Carolyn G.; Young, John A.; Miller, Bruce J.; Saunders, Michael C.

    2015-02-01

    We implemented an integrated ecological assessment using a GIS-based decision support system model for Upper Delaware Scenic and Recreational River (UPDE) and Delaware Water Gap National Recreation Area (DEWA)—national park units with the mid-Atlantic region of the United States. Our assessment examined a variety of aquatic and terrestrial indicators of ecosystem components that reflect the parks' conservation purpose and reference condition. Our assessment compared these indicators to ecological thresholds to determine the condition of park watersheds. Selected indicators included chemical and physical measures of water quality, biologic indicators of water quality, and landscape condition measures. For the chemical and physical measures of water quality, we used a water quality index and each of its nine components to assess the condition of water quality in each watershed. For biologic measures of water quality, we used the Ephemeroptera, Plecoptera, Trichoptera aquatic macroinvertebrate index and, secondarily, the Hilsenhoff aquatic macroinvertebrate index. Finally, for the landscape condition measures of our model, we used percent forest and percent impervious surface. Based on our overall assessment, UPDE and DEWA watersheds had an ecological assessment score of 0.433 on a -1 to 1 fuzzy logic scale. This score indicates that, in general, the natural resource condition within watersheds at these parks is healthy or ecologically unimpaired; however, we had only partial data for many of our indicators. Our model is iterative and new data may be incorporated as they become available. These natural parks are located within a rapidly urbanizing landscape—we recommend that natural resource managers remain vigilant to surrounding land uses that may adversely affect natural resources within the parks.

  4. Rapid Deterioration of Basic Life Support Skills in Dentists With Basic Life Support Healthcare Provider.

    Science.gov (United States)

    Nogami, Kentaro; Taniguchi, Shogo; Ichiyama, Tomoko

    2016-01-01

    The aim of this study was to investigate the correlation between basic life support skills in dentists who had completed the American Heart Association's Basic Life Support (BLS) Healthcare Provider qualification and time since course completion. Thirty-six dentists who had completed the 2005 BLS Healthcare Provider course participated in the study. We asked participants to perform 2 cycles of cardiopulmonary resuscitation on a mannequin and evaluated basic life support skills. Dentists who had previously completed the BLS Healthcare Provider course displayed both prolonged reaction times, and the quality of their basic life support skills deteriorated rapidly. There were no correlations between basic life support skills and time since course completion. Our results suggest that basic life support skills deteriorate rapidly for dentists who have completed the BLS Healthcare Provider. Newer guidelines stressing chest compressions over ventilation may help improve performance over time, allowing better cardiopulmonary resuscitation in dental office emergencies. Moreover, it may be effective to provide a more specialized version of the life support course to train the dentists, stressing issues that may be more likely to occur in the dental office.

  5. Life support and internal thermal control system design for the Space Station Freedom

    Science.gov (United States)

    Humphries, R.; Mitchell, K.; Reuter, J.; Carrasquillo, R.; Beverly, B.

    1991-01-01

    A Review of the Space Station Freedom Environmental Control and Life Support System (ECLSS) as well as the Internal Thermal Control System (ITCS) design, including recent changes resulting from an activity to restructure the program, is provided. The development state of the original Space Station Freedom ECLSS through the restructured configuration is considered and the selection of regenerative subsystems for oxygen and water reclamation is addressed. A survey of the present ground development and verification program is given.

  6. A home away from home. [life support system design for Space Station

    Science.gov (United States)

    Powell, L. E.; Hager, R. W.; Mccown, J. W.

    1985-01-01

    The role of the NASA-Marshall center in the development of the Space Station is discussed. The tasks of the center include the development of the life-support system; the design of the common module, which will form the basis for all pressurized Space Station modules; the design and outfit of a common module for the Material and Technology Laboratory (MTL) and logistics use; accommodations for operations of the Orbit Maneuvering Vehicle (OMV) and the Orbit Transfer Vehicle (OTV); and the Space Station propulsion system. A description of functions and design is given for each system, with particular emphasis on the goals of safety, efficiency, automation, and cost effectiveness.

  7. Technical assessment of Mir-1 life support hardware for the international space station

    Science.gov (United States)

    Mitchell, K. L.; Bagdigian, R. M.; Carrasquillo, R. L.; Carter, D. L.; Franks, G. D.; Holder, D. W., Jr.; Hutchens, C. F.; Ogle, K. Y.; Perry, J. L.; Ray, C. D.

    1994-01-01

    NASA has been progressively learning the design and performance of the Russian life support systems utilized in their Mir space station. In 1992, a plan was implemented to assess the benefits of the Mir-1 life support systems to the Freedom program. Three primary tasks focused on: evaluating the operational Mir-1 support technologies and understanding if specific Russian systems could be directly utilized on the American space station and if Russian technology design information could prove useful in improving the current design of the planned American life support equipment; evaluating the ongoing Russian life support technology development activities to determine areas of potential long-term application to the U.S. space station; and utilizing the expertise of their space station life support systems to evaluate the benefits to the current U.S. space station program which included the integration of the Russian Mir-1 designs with the U.S. designs to support a crew of six.

  8. Evaluation of engineered foods for Closed Ecological Life Support System (CELSS)

    Science.gov (United States)

    Karel, M.

    1981-01-01

    A system of conversion of locally regenerated raw materials and of resupplied freeze-dried foods and ingredients into acceptable, safe and nutritious engineered foods is proposed. The first phase of the proposed research has the following objectives: (1) evaluation of feasibility of developing acceptable and reliable engineered foods from a limited selection of plants, supplemented by microbially produced nutrients and a minimum of dehydrated nutrient sources (especially those of animal origin); (2) evaluation of research tasks and specifications of research projects to adapt present technology and food science to expected space conditions (in particular, problems arising from unusual gravity conditions, problems of limited size and the isolation of the food production system, and the opportunities of space conditions are considered); (3) development of scenarios of agricultural production of plant and microbial systems, including the specifications of processing wastes to be recycled.

  9. A New Miniaturized Inkjet Printed Solid State Electrolyte Sensor for Applications in Life Support Systems - First Results

    Science.gov (United States)

    Hill, Christine; Stefanos Fasoulas, -; Eberhart, Martin; Berndt, Felix

    , economically and ecologically. Based on the knowledge of the screen printing sensor production a complete solid state electrolyte oxygen sensor could be produced using Inkjet technology. First measurements in oxygen environment already show promising results. A defined oxygen concentration could be seen during exposition of the Inkjet sensors in an oxygen environment. The obtained results demonstrate the potential to use the technology development in other applications such as in situ respiratory gas analysis systems for human spaceflight. Further approaches at the Institute of Space Systems include the implementation of Inkjet printed solid state electrolyte sensors for the use as redundant safety sensors for the Institute's hybrid life support test beds including fuel cells and algal photo bioreactor elements.

  10. Disturbance Regimes Predictably Alter Diversity in an Ecologically Complex Bacterial System

    Directory of Open Access Journals (Sweden)

    Sean M. Gibbons

    2016-12-01

    Full Text Available Diversity is often associated with the functional stability of ecological communities from microbes to macroorganisms. Understanding how diversity responds to environmental perturbations and the consequences of this relationship for ecosystem function are thus central challenges in microbial ecology. Unimodal diversity-disturbance relationships, in which maximum diversity occurs at intermediate levels of disturbance, have been predicted for ecosystems where life history tradeoffs separate organisms along a disturbance gradient. However, empirical support for such peaked relationships in macrosystems is mixed, and few studies have explored these relationships in microbial systems. Here we use complex microbial microcosm communities to systematically determine diversity-disturbance relationships over a range of disturbance regimes. We observed a reproducible switch between community states, which gave rise to transient diversity maxima when community states were forced to mix. Communities showed reduced compositional stability when diversity was highest. To further explore these dynamics, we formulated a simple model that reveals specific regimes under which diversity maxima are stable. Together, our results show how both unimodal and non-unimodal diversity-disturbance relationships can be observed as a system switches between two distinct microbial community states; this process likely occurs across a wide range of spatially and temporally heterogeneous microbial ecosystems.

  11. Human and ecological life cycle tools for the integrated assessment of systems (HELIAS)

    NARCIS (Netherlands)

    Guinée, Jeroen B.; Heijungs, Reinout; Kleijn, René; Van Der Voet, Ester; De Koning, Arjan; Van Oers, Lauran; Elshkaki, Ayman; Huele, Ruben; Huppes, Gjalt; Suh, Sangwon; Sleeswijk, Anneke Wegener

    Goal, Scope and Background. CML has contributed to the development of life cycle decision support tools, particularly Substance/Material Flow Analysis (SFA respectively MFA) and Life Cycle Assessment (LCA). Ever since these tools emerged there have been discussions on how these tools relate to each

  12. Contribution of Enterprise Asset Management (EAM) systems and CAP programs to support NPP life extension program

    International Nuclear Information System (INIS)

    Luanco, E.

    2007-01-01

    There is no specific IS (Information System) which supports the entire scope of a plant life extension, but there are a number of existing solutions that contributes to support it. Globally there are 2 categories of IS solution in the market: those supporting the Plant Life Improvement (PLIM) side of the life extension program and the others supporting the Plant Life Extension (PLEX) process side of it. The first category involves a large number of applications that span from ageing evaluation criteria programs, to monitoring solution for the critical components and to analysis and decision tools. The second category comprises solutions which support partially or globally the overall business process under a regulatory controlled manner. Both categories require 3 conditions to be satisfied: -) a comprehensive set of data (these data are often produced by various applications and the ability to correlate all the data together with a high degree of integrity is an important success factor); -) a feedback mechanism whose dual aspect is the monitoring of the ageing phenomena and the management of all the actions to be coordinated to ensure that preset objectives will be achieved in due time; and -) good people management to ensure particularly that staff will be well acquainted with new equipment or with new operating processes

  13. Integrating research tools to support the management of social-ecological systems under climate change

    Science.gov (United States)

    Miller, Brian W.; Morisette, Jeffrey T.

    2014-01-01

    Developing resource management strategies in the face of climate change is complicated by the considerable uncertainty associated with projections of climate and its impacts and by the complex interactions between social and ecological variables. The broad, interconnected nature of this challenge has resulted in calls for analytical frameworks that integrate research tools and can support natural resource management decision making in the face of uncertainty and complex interactions. We respond to this call by first reviewing three methods that have proven useful for climate change research, but whose application and development have been largely isolated: species distribution modeling, scenario planning, and simulation modeling. Species distribution models provide data-driven estimates of the future distributions of species of interest, but they face several limitations and their output alone is not sufficient to guide complex decisions for how best to manage resources given social and economic considerations along with dynamic and uncertain future conditions. Researchers and managers are increasingly exploring potential futures of social-ecological systems through scenario planning, but this process often lacks quantitative response modeling and validation procedures. Simulation models are well placed to provide added rigor to scenario planning because of their ability to reproduce complex system dynamics, but the scenarios and management options explored in simulations are often not developed by stakeholders, and there is not a clear consensus on how to include climate model outputs. We see these strengths and weaknesses as complementarities and offer an analytical framework for integrating these three tools. We then describe the ways in which this framework can help shift climate change research from useful to usable.

  14. Determining the object structure of ecological and economic research and knowledge base for decision support

    International Nuclear Information System (INIS)

    Kozulia, T.V.; Kozulia, M.M.

    2017-01-01

    The mathematical model of natural-technogenic objects is substantiated in the article. Natural-technogenic object of research is defined in form of a system model, which includes the economic, ecological and social components and processes system occurring in the selected systems and in their interaction. Basis for introduction systematic analysis methods for consistent problematic environmental safety tasks solution under conditions of uncertainty has been formed. The complex methods system includes entropy theory provisions on the objects state evaluation, the comparator identification method, substantively substantiated for solving complex environment quality assessment problems. An example of ecological state technogenically loaded landscape-geochemical complexes on the proposed methodological support studied in the work.

  15. Supporting the Support System: How Assessment and Communication Can Help Patients and Their Support Systems.

    Science.gov (United States)

    Harkey, Jane; Young, Jared; Carter, Jolynne Jo; Demoratz, Michael

    The benefits of having a support system, such as social relationships with close friends and family, have been well documented for patients with serious health issues. As scientific evidence has shown, individuals who have the lowest level of involvement in social relationships face a greater mortality risk. Support systems, however, are not infallible. Relationship stress can have a negative impact on people-patient and caregiver alike-behaviorally, psychosocially, and physiologically. The purpose of this article is to encourage case managers who take a patient-centered approach to also consider the existence and extent of the support system, as well as any stresses or tensions that are observable within the support system. Although the case manager is ethically obliged to advocate for the individual receiving case management services, that advocacy can be extended to the support system for the good of all. This discussion applies to numerous case management practices and work settings including (but not limited to) hospital-based case management, home health, geriatrics, catastrophic case management, mental health, palliative care, and end of life/hospice. As part of the assessment phase of the case management process, case managers determine the extent of the patient's support system or social support network such as family and close friends. Although their advocacy is primarily for the patient receiving case management services, case managers also become aware of the needs of the support system members as they face their loved one's serious illness, severe injury, geriatric care demands, or end of life. Case managers can use their communication skills, especially motivational interviewing, with patients and their support systems to identify stresses and issues that can impact the pursuit of health goals. In addition, case managers ensure that individuals and their support systems are kept informed such as about the health condition, stage of disease, plan of

  16. Essential Annotation Schema for Ecology (EASE)-A framework supporting the efficient data annotation and faceted navigation in ecology.

    Science.gov (United States)

    Pfaff, Claas-Thido; Eichenberg, David; Liebergesell, Mario; König-Ries, Birgitta; Wirth, Christian

    2017-01-01

    Ecology has become a data intensive science over the last decades which often relies on the reuse of data in cross-experimental analyses. However, finding data which qualifies for the reuse in a specific context can be challenging. It requires good quality metadata and annotations as well as efficient search strategies. To date, full text search (often on the metadata only) is the most widely used search strategy although it is known to be inaccurate. Faceted navigation is providing a filter mechanism which is based on fine granular metadata, categorizing search objects along numeric and categorical parameters relevant for their discovery. Selecting from these parameters during a full text search creates a system of filters which allows to refine and improve the results towards more relevance. We developed a framework for the efficient annotation and faceted navigation in ecology. It consists of an XML schema for storing the annotation of search objects and is accompanied by a vocabulary focused on ecology to support the annotation process. The framework consolidates ideas which originate from widely accepted metadata standards, textbooks, scientific literature, and vocabularies as well as from expert knowledge contributed by researchers from ecology and adjacent disciplines.

  17. Essential Annotation Schema for Ecology (EASE-A framework supporting the efficient data annotation and faceted navigation in ecology.

    Directory of Open Access Journals (Sweden)

    Claas-Thido Pfaff

    Full Text Available Ecology has become a data intensive science over the last decades which often relies on the reuse of data in cross-experimental analyses. However, finding data which qualifies for the reuse in a specific context can be challenging. It requires good quality metadata and annotations as well as efficient search strategies. To date, full text search (often on the metadata only is the most widely used search strategy although it is known to be inaccurate. Faceted navigation is providing a filter mechanism which is based on fine granular metadata, categorizing search objects along numeric and categorical parameters relevant for their discovery. Selecting from these parameters during a full text search creates a system of filters which allows to refine and improve the results towards more relevance. We developed a framework for the efficient annotation and faceted navigation in ecology. It consists of an XML schema for storing the annotation of search objects and is accompanied by a vocabulary focused on ecology to support the annotation process. The framework consolidates ideas which originate from widely accepted metadata standards, textbooks, scientific literature, and vocabularies as well as from expert knowledge contributed by researchers from ecology and adjacent disciplines.

  18. Biosphere II: engineering of manned, closed ecological systems.

    Science.gov (United States)

    Dempster, W F

    1991-01-01

    Space Biospheres and Ventures, a private, for-profit firm, has undertaken a major research and development project in the study of biospheres, with the objective of creating and producing biospheres. Biosphere II-scheduled for completion in March 1991-will be essentially isolated from the existing biosphere by a closed structure, composed of components derived from the existing biosphere. Like the biosphere of the Earth, Biosphere II will be essentially closed to exchanges of material or living organisms with the surrounding environment and open to energy and information exchanges. Also, like the biosphere of the Earth, Biosphere II will contain five kingdoms of life, a variety of ecosystems, plus humankind, culture, and technics. The system is designed to be complex, stable and evolving throughout its intended 100-year lifespan, rather than static. Biosphere II will cover approximately 1.3 hectare and contain 200,000 m3 in volume, with seven major biomes: tropical rainforest, tropical savannah, marsh, marine, desert, intensive agriculture, and human habitat. An interdisciplinary team of leading scientific, ecological, management, architectural, and engineering consultants have been contracted by Space Biospheres Ventures for the project. Potential applications for biospheric systems include scientific and ecological management research, refuges for endangered species, and life habitats for manned stations on spacecraft or other planets.

  19. Next Generation Life Support Project Status

    Science.gov (United States)

    Barta, Daniel J.; Chullen, Cinda; Vega, Leticia; Cox, Marlon R.; Aitchison, Lindsay T.; Lange, Kevin E.; Pensinger, Stuart J.; Meyer, Caitlin E.; Flynn, Michael; Jackson, W. Andrew; hide

    2014-01-01

    Next Generation Life Support (NGLS) is one of over twenty technology development projects sponsored by NASA's Game Changing Development Program. The NGLS Project develops selected life support technologies needed for humans to live and work productively in space, with focus on technologies for future use in spacecraft cabin and space suit applications. Over the last three years, NGLS had five main project elements: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, High Performance (HP) Extravehicular Activity (EVA) Glove, Alternative Water Processor (AWP) and Series-Bosch Carbon Dioxide Reduction. The RCA swing bed, VOR and HP EVA Glove tasks are directed at key technology needs for the Portable Life Support System (PLSS) and pressure garment for an Advanced Extravehicular Mobility Unit (EMU). Focus is on prototyping and integrated testing in cooperation with the Advanced Exploration Systems (AES) Advanced EVA Project. The HP EVA Glove Element, new this fiscal year, includes the generation of requirements and standards to guide development and evaluation of new glove designs. The AWP and Bosch efforts focus on regenerative technologies to further close spacecraft cabin atmosphere revitalization and water recovery loops and to meet technology maturation milestones defined in NASA's Space Technology Roadmaps. These activities are aimed at increasing affordability, reliability, and vehicle self-sufficiency while decreasing mass and mission cost, supporting a capability-driven architecture for extending human presence beyond low-Earth orbit, along a human path toward Mars. This paper provides a status of current technology development activities with a brief overview of future plans.

  20. The search for life in our Solar System and the implications for science and society.

    Science.gov (United States)

    McKay, Christopher P

    2011-02-13

    The search for another type of life in the Solar System addresses the fundamental question of life in the Universe. To determine if life forms we discover represent a second genesis, we must find biological material that would allow us to compare that life to the Earth's phylogenetic tree of life. An organism would be alien if, and only if, it did not link to our tree of life. In our Solar System, the worlds of interest for a search for life are Mars, Europa, Enceladus and, for biochemistry based on a liquid other than water, Titan. If we find evidence for a second genesis of life, we will certainly learn from the comparative study of the biochemistry, organismal biology and ecology of the alien life. The discovery of alien life, if alive or revivable, will pose fundamentally new questions in environmental ethics. We should plan our exploration strategy such that we conduct biologically reversible exploration. In the long term we would do well, ethically and scientifically, to strive to support any alien life discovered as part of an overall commitment to enhancing the richness and diversity of life in the Universe.

  1. Happier countries, longer lives: an ecological study on the relationship between subjective sense of well-being and life expectancy.

    Science.gov (United States)

    Evans, Grahame F; Soliman, Elsayed Z

    2017-08-01

    The relationship between sense of well-being and longevity is not well-established across populations of varying levels of socioeconomic status. We sought to examine the relationship between happiness, or subjective sense of well-being and life expectancy using data from 151 countries. This analysis is based on the 2012 Happy Planet Index project conducted by the Center of Well-Being of the New Economics Foundation, based in the United Kingdom. Well-being data for each country were taken from responses to the 'Ladder of Life' question in the 2012 Gallup World Poll in which participants were asked to rate their quality of life on a scale from 1 (worst possible life) to 10 (best possible life). Life expectancy and gross domestic product data were taken from the 2011 United Nations records. Ecological footprint data were taken from Global Footprint Network records. Subjective sense of well-being was highly correlated with life expectancy (Pearson correlation r = 0.71, p ecological footprint, and population, each 1 unit of the well-being scale was associated with an increase in life expectancy of 4.0 years (95% confidence interval = 2.7-5.3). In conclusion, better sense of well-being has a strong relationship with life expectancy regardless of economic status or population size, suggesting that governments should foster happiness in order to support long-living populations.

  2. Integration of lessons from recent research for “Earth to Mars” life support systems

    Science.gov (United States)

    Nelson, M.; Dempster, W. F.; Allen, J. P.

    Development of reliable and robust strategies for long-term life support for planetary exploration must be built from real-time experimentation to verify and improve system components. Also critical is incorporating a range of viable options to handle potential short-term life system imbalances. This paper revisits some of the conceptual framework for a Mars base prototype which has been developed by the authors along with others previously advanced ("Mars on Earth ®") in the light of three years of experimentation in the Laboratory Biosphere, further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches. Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls. For example, crops of sweet potatoes exceeded original Mars base prototype projections by an average of 46% (53% for best crop) ultradwarf (Apogee) wheat by 9% (23% for best crop), pinto bean by 13% (31% for best crop). These production levels, although they may be increased with further optimization of lighting regimes, environmental parameters, crop density etc. offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research. But soil also offers distinct advantages: the capability to be created on the Moon or Mars using in situ space resources, reduces long-term reliance on consumables and imported resources, and more readily recycling and incorporating crew and crop waste products. In addition, a living soil contains a complex microbial ecosystem which helps prevent the buildup of trace gases or compounds, and thus assist with air and water purification. The atmospheric dynamics of these crops were studied in the Laboratory Biosphere adding to the database necessary for managing the mixed stands of crops essential for supplying a nutritionally

  3. Precursor life science experiments and closed life support systems on the Moon

    Science.gov (United States)

    Rodriguez, A.; Paille, C.; Rebeyre, P.; Lamaze, B.; Lobo, M.; Lasseur, C.

    Nowadays the Moon is not only a scientific exploration target but also potentially also a launch pad for deeper space exploration. Establishing an extended human presence on the Moon could reduce the cost of further space exploration, and gather the technical and scientific experience that would make possible the next steps of space exploration, namely manned-missions to Mars. To enable the establishment of such a Moon base, a reliable and regenerative life support system (LSS) is required: without any recycling of metabolic consumables (oxygen, water and food), a 6-person crew during the course of one year would require a supply of 12t from Earth (not including water for hygiene purposes), with a prohibitive associated cost! The recycling of consumables is therefore mandatory for a combination of economic, logistical and also safety reasons. Currently the main regenerative technologies used, namely water recycling in the ISS, are physical-chemical but they do not solve the issue of food production. In the European Space Agency, for the last 15 years, studies are being performed on several life support topics, namely in air revitalisation, food, water and waste management, contaminants, monitoring and control. Ground demonstration, namely the MELiSSA Pilot Plant and Concordia Station, and simulation studies demonstrated the studies feasibility and the recycling levels are promising. To be able to build LSS in a Moon base, the temperature amplitude, the dust and its 14-day night, which limits solar power supply, should be regarded. To reduce these technical difficulties, a landing site should be carefully chosen. Considering the requirements of a mission to the Moon and within the Aurora programme phase I, a preliminary configuration for a regenerative LSS can be proposed as an experiment for a precursor mission to the Moon. An overview of the necessary LSS to a Moon base will be presented, identifying Moon?s specific requirements and showing preliminary

  4. Preliminary results of Physiological plant growth modelling for human life support in space

    Science.gov (United States)

    Sasidharan L, Swathy; Dussap, Claude-Gilles; Hezard, Pauline

    2012-07-01

    Human life support is fundamental and crucial in any kind of space explorations. MELiSSA project of European Space Agency aims at developing a closed, artificial ecological life support system involving human, plants and micro organisms. Consuming carbon dioxide and water from the life support system, plants grow in one of the chambers and convert it into food and oxygen along with potable water. The environmental conditions, nutrient availability and its consumption of plants should be studied and necessarily modeled to predict the amount of food, oxygen and water with respect to the environmental changes and limitations. The reliability of a completely closed system mainly depends on the control laws and strategies used. An efficient control can occur, only if the system to control is itself well known, described and ideally if the responses of the system to environmental changes are predictable. In this aspect, the general structure of plant growth model has been designed together with physiological modelling.The physiological model consists of metabolic models of leaves, stem and roots, of which concern specific metabolisms of the associated plant parts. On the basis of the carbon source transport (eg. sucrose) through stem, the metabolic models (leaf and root) can be interconnected to each other and finally coupled to obtain the entire plant model. For the first step, leaf metabolic model network was built using stoichiometric, mass and energy balanced metabolic equations under steady state approach considering all necessary plant pathways for growth and maintenance of leaves. As the experimental data for lettuce plants grown in closed and controlled environmental chambers were available, the leaf metabolic model has been established for lettuce leaves. The constructed metabolic network is analyzed using known stoichiometric metabolic technique called metabolic flux analysis (MFA). Though, the leaf metabolic model alone is not sufficient to achieve the

  5. Altair Lander Life Support: Design Analysis Cycles 4 and 5

    Science.gov (United States)

    Anderson, Molly; Curley, Su; Rotter, Henry; Stambaugh, Imelda; Yagoda, Evan

    2011-01-01

    Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander team is pursuing efficient solutions to the technical challenges of human spaceflight. Life support design efforts up through Design Analysis Cycle (DAC) 4 focused on finding lightweight and reliable solutions for the Sortie and Outpost missions within the Constellation Program. In DAC-4 and later follow on work, changes were made to add functionality for new requirements accepted by the Altair project, and to update the design as knowledge about certain issues or hardware matured. In DAC-5, the Altair project began to consider mission architectures outside the Constellation baseline. Selecting the optimal life support system design is very sensitive to mission duration. When the mission goals and architecture change several trade studies must be conducted to determine the appropriate design. Finally, several areas of work developed through the Altair project may be applicable to other vehicle concepts for microgravity missions. Maturing the Altair life support system related analysis, design, and requirements can provide important information for developers of a wide range of other human vehicles.

  6. Analytic webs support the synthesis of ecological data sets.

    Science.gov (United States)

    Ellison, Aaron M; Osterweil, Leon J; Clarke, Lori; Hadley, Julian L; Wise, Alexander; Boose, Emery; Foster, David R; Hanson, Allen; Jensen, David; Kuzeja, Paul; Riseman, Edward; Schultz, Howard

    2006-06-01

    A wide variety of data sets produced by individual investigators are now synthesized to address ecological questions that span a range of spatial and temporal scales. It is important to facilitate such syntheses so that "consumers" of data sets can be confident that both input data sets and synthetic products are reliable. Necessary documentation to ensure the reliability and validation of data sets includes both familiar descriptive metadata and formal documentation of the scientific processes used (i.e., process metadata) to produce usable data sets from collections of raw data. Such documentation is complex and difficult to construct, so it is important to help "producers" create reliable data sets and to facilitate their creation of required metadata. We describe a formal representation, an "analytic web," that aids both producers and consumers of data sets by providing complete and precise definitions of scientific processes used to process raw and derived data sets. The formalisms used to define analytic webs are adaptations of those used in software engineering, and they provide a novel and effective support system for both the synthesis and the validation of ecological data sets. We illustrate the utility of an analytic web as an aid to producing synthetic data sets through a worked example: the synthesis of long-term measurements of whole-ecosystem carbon exchange. Analytic webs are also useful validation aids for consumers because they support the concurrent construction of a complete, Internet-accessible audit trail of the analytic processes used in the synthesis of the data sets. Finally we describe our early efforts to evaluate these ideas through the use of a prototype software tool, SciWalker. We indicate how this tool has been used to create analytic webs tailored to specific data-set synthesis and validation activities, and suggest extensions to it that will support additional forms of validation. The process metadata created by SciWalker is

  7. Psychiatry: life events and social support in late life depression

    Directory of Open Access Journals (Sweden)

    Clóvis Alexandrino-Silva

    2011-01-01

    Full Text Available OBJECTIVES: To examine the association of life events and social support in the broadly defined category of depression in late life. INTRODUCTION: Negative life events and lack of social support are associated with depression in the elderly. Currently, there are limited studies examining the association between life events, social support and late-life depression in Brazil. METHODS: We estimated the frequency of late-life depression within a household community sample of 367 subjects aged 60 years or greater with associated factors. ''Old age symptomatic depression'' was defined using the Composite International Diagnostic Interview 1.1 tool. This diagnostic category included only late-life symptoms and consisted of the diagnoses of depression and dysthymia as well as a subsyndromal definition of depression, termed ''late subthreshold depression''. Social support and life events were assessed using the Comprehensive Assessment and Referral Evaluation (SHORT-CARE inventory. RESULTS: ''Old age symptomatic depression'' occurred in 18.8% of the patients in the tested sample. In univariate analyses, this condition was associated with female gender, lifetime anxiety disorder and living alone. In multivariate models, ''old age symptomatic depression'' was associated with a perceived lack of social support in men and life events in women. DISCUSSION: Social support and life events were determined to be associated with late-life depression, but it is important to keep in mind the differences between genders. Also, further exploration of the role of lifetime anxiety disorder in late-life depression may be of future importance. CONCLUSIONS: We believe that this study helps to provide insight into the role of psychosocial factors in late-life depression.

  8. Social-ecological resilience and geomorphic systems

    Science.gov (United States)

    Chaffin, Brian C.; Scown, Murray

    2018-03-01

    Governance of coupled social-ecological systems (SESs) and the underlying geomorphic processes that structure and alter Earth's surface is a key challenge for global sustainability amid the increasing uncertainty and change that defines the Anthropocene. Social-ecological resilience as a concept of scientific inquiry has contributed to new understandings of the dynamics of change in SESs, increasing our ability to contextualize and implement governance in these systems. Often, however, the importance of geomorphic change and geomorphological knowledge is somewhat missing from processes employed to inform SES governance. In this contribution, we argue that geomorphology and social-ecological resilience research should be integrated to improve governance toward sustainability. We first provide definitions of engineering, ecological, community, and social-ecological resilience and then explore the use of these concepts within and alongside geomorphology in the literature. While ecological studies often consider geomorphology as an important factor influencing the resilience of ecosystems and geomorphological studies often consider the engineering resilience of geomorphic systems of interest, very few studies define and employ a social-ecological resilience framing and explicitly link the concept to geomorphic systems. We present five key concepts-scale, feedbacks, state or regime, thresholds and regime shifts, and humans as part of the system-which we believe can help explicitly link important aspects of social-ecological resilience inquiry and geomorphological inquiry in order to strengthen the impact of both lines of research. Finally, we discuss how these five concepts might be used to integrate social-ecological resilience and geomorphology to better understand change in, and inform governance of, SESs. To compound these dynamics of resilience, complex systems are nested and cross-scale interactions from smaller and larger scales relative to the system of interest

  9. Natural Length Scales of Ecological Systems: Applications at Community and Ecosystem Levels

    Directory of Open Access Journals (Sweden)

    Craig R. Johnson

    2009-06-01

    Full Text Available The characteristic, or natural, length scales of a spatially dynamic ecological landscape are the spatial scales at which the deterministic trends in the dynamic are most sharply in focus. Given recent development of techniques to determine the characteristic length scales (CLSs of real ecological systems, I explore the potential for using CLSs to address three important and vexing issues in applied ecology, viz. (i determining the optimum scales to monitor ecological systems, (ii interpreting change in ecological communities, and (iii ascertaining connectivity between species in complex ecologies. In summarizing the concept of characteristic length scales as system-level scaling thresholds, I emphasize that the primary CLS is, by definition, the optimum scale at which to monitor a system if the objective is to observe its deterministic dynamics at a system level. Using several different spatially explicit individual-based models, I then explore predictions of the underlying theory of CLSs in the context of interpreting change and ascertaining connectivity among species in ecological systems. Analysis of these models support predictions that systems with strongly fluctuating community structure, but an otherwise stable long-term dynamic defined by a stationary attractor, indicate an invariant length scale irrespective of community structure at the time of analysis, and irrespective of the species analyzed. In contrast, if changes in the underlying dynamic are forcibly induced, the shift in dynamics is reflected by a change in the primary length scale. Thus, consideration of the magnitude of the CLS through time enables distinguishing between circumstances where there are temporal changes in community structure but not in the long-term dynamic, from that where changes in community structure reflect some kind of fundamental shift in dynamics. In this context, CLSs emerge as a diagnostic tool to identify phase shifts to alternative stable states

  10. Using ecological indicators and a decision support system for integrated ecological assessment at two national park units in the Mid-Atlantic region, U.S.A.

    Science.gov (United States)

    Mahan, Carolyn G.; Young, John A.; Miller, Bruce; Saunders, Michael C.

    2014-01-01

    We implemented an integrated ecological assessment using a GIS-based decision support system model for Upper Delaware Scenic and Recreational River (UPDE) and Delaware Water Gap National Recreation Area (DEWA)—national park units with the mid-Atlantic region of the United States. Our assessment examined a variety of aquatic and terrestrial indicators of ecosystem components that reflect the parks’ conservation purpose and reference condition. Our assessment compared these indicators to ecological thresholds to determine the condition of park watersheds. Selected indicators included chemical and physical measures of water quality, biologic indicators of water quality, and landscape condition measures. For the chemical and physical measures of water quality, we used a water quality index and each of its nine components to assess the condition of water quality in each watershed. For biologic measures of water quality, we used the Ephemeroptera, Plecoptera, Trichoptera aquatic macroinvertebrate index and, secondarily, the Hilsenhoff aquatic macroinvertebrate index. Finally, for the landscape condition measures of our model, we used percent forest and percent impervious surface. Based on our overall assessment, UPDE and DEWA watersheds had an ecological assessment score of 0.433 on a −1 to 1 fuzzy logic scale. This score indicates that, in general, the natural resource condition within watersheds at these parks is healthy or ecologically unimpaired; however, we had only partial data for many of our indicators. Our model is iterative and new data may be incorporated as they become available. These natural parks are located within a rapidly urbanizing landscape—we recommend that natural resource managers remain vigilant to surrounding land uses that may adversely affect natural resources within the parks.

  11. Essential Annotation Schema for Ecology (EASE)—A framework supporting the efficient data annotation and faceted navigation in ecology

    Science.gov (United States)

    Eichenberg, David; Liebergesell, Mario; König-Ries, Birgitta; Wirth, Christian

    2017-01-01

    Ecology has become a data intensive science over the last decades which often relies on the reuse of data in cross-experimental analyses. However, finding data which qualifies for the reuse in a specific context can be challenging. It requires good quality metadata and annotations as well as efficient search strategies. To date, full text search (often on the metadata only) is the most widely used search strategy although it is known to be inaccurate. Faceted navigation is providing a filter mechanism which is based on fine granular metadata, categorizing search objects along numeric and categorical parameters relevant for their discovery. Selecting from these parameters during a full text search creates a system of filters which allows to refine and improve the results towards more relevance. We developed a framework for the efficient annotation and faceted navigation in ecology. It consists of an XML schema for storing the annotation of search objects and is accompanied by a vocabulary focused on ecology to support the annotation process. The framework consolidates ideas which originate from widely accepted metadata standards, textbooks, scientific literature, and vocabularies as well as from expert knowledge contributed by researchers from ecology and adjacent disciplines. PMID:29023519

  12. The multiple decrement life table: a unifying framework for cause-of-death analysis in ecology.

    Science.gov (United States)

    Carey, James R

    1989-01-01

    The multiple decrement life table is used widely in the human actuarial literature and provides statistical expressions for mortality in three different forms: i) the life table from all causes-of-death combined; ii) the life table disaggregated into selected cause-of-death categories; and iii) the life table with particular causes and combinations of causes eliminated. The purpose of this paper is to introduce the multiple decrement life table to the ecological literature by applying the methods to published death-by-cause information on Rhagoletis pomonella. Interrelations between the current approach and conventional tools used in basic and applied ecology are discussed including the conventional life table, Key Factor Analysis and Abbott's Correction used in toxicological bioassay.

  13. Methodological Challenges in Studies Comparing Prehospital Advanced Life Support with Basic Life Support.

    Science.gov (United States)

    Li, Timmy; Jones, Courtney M C; Shah, Manish N; Cushman, Jeremy T; Jusko, Todd A

    2017-08-01

    Determining the most appropriate level of care for patients in the prehospital setting during medical emergencies is essential. A large body of literature suggests that, compared with Basic Life Support (BLS) care, Advanced Life Support (ALS) care is not associated with increased patient survival or decreased mortality. The purpose of this special report is to synthesize the literature to identify common study design and analytic challenges in research studies that examine the effect of ALS, compared to BLS, on patient outcomes. The challenges discussed in this report include: (1) choice of outcome measure; (2) logistic regression modeling of common outcomes; (3) baseline differences between study groups (confounding); (4) inappropriate statistical adjustment; and (5) inclusion of patients who are no longer at risk for the outcome. These challenges may affect the results of studies, and thus, conclusions of studies regarding the effect of level of prehospital care on patient outcomes should require cautious interpretation. Specific alternatives for avoiding these challenges are presented. Li T , Jones CMC , Shah MN , Cushman JT , Jusko TA . Methodological challenges in studies comparing prehospital Advanced Life Support with Basic Life Support. Prehosp Disaster Med. 2017;32(4):444-450.

  14. Biospheric Life Support - integrating biological regeneration into protection of humans in space.

    Science.gov (United States)

    Rocha, Mauricio; Iha, Koshun

    2016-07-01

    A biosphere stands for a set of biomes (regional biological communities) interacting in a materially closed (though energetically open) ecological system (CES). Earth's biosphere, the thin layer of life on the planet's surface, can be seen as a natural CES- where life "consumables" are regenerated/restored via biological, geological and chemical processes. In Life Sciences, artificial CESs- local ecosystems extracts with varying scales and degrees of closure, are considered convenient/representatives objects of study. For outer space, these concepts have been applied to the issue of life support- a significant consideration as long as distance from Earth increases. In the nineties, growing on the Russian expertise on biological life support, backed by a multidisciplinary science team, the famous Biosphere 2 appeared. That private project innovated, by assembling a set of Earth biomes samples- plus an organic ag one, inside a closed Mars base-like structure, next to 1.5 ha under glass, in Arizona, US. The crew of 8 inside completed their two years contract, though facing setbacks- the system failed, e.g., to produce enough food/air supplies. But their "failures"- if this word can be fairly applied to science endeavors, were as meaningful as their achievements for the future of life support systems (LSS) research. By this period, the Russians had accumulated experience in extended orbital stays, achieving biological outcomes inside their stations- e.g. complete wheat cycles. After reaching the Moon, the US administration decided to change national priorities, putting the space program as part of a "détente" policy, to relieve international tensions. Alongside the US space shuttle program, the Russians were invited to join the new International Space Station (ISS), bringing to that pragmatic project, also their physical/chemical LSS- top air/water regenerative technology at the time. Present US policy keeps the ISS operational, extending its service past its planned

  15. Implementation Of Conservation Policy Through The Protection Of Life Support System In The Karimunjawa National Park

    Science.gov (United States)

    Ariyani, Nur Anisa Eka; Kismartini

    2018-02-01

    The Karimunjawa National Park as the only one marine protected area in Central Java, managed by zonation system has decreased natural resources in the form of decreasing mangrove forest area, coral cover, sea biota population such as clams and sea cucumbers. Conservation has been done by Karimunjawa National Park Authority through protection of life support system activities in order to protect the area from degradation. The objective of the research is to know the implementation of protection and security activities of Karimunjawa National Park Authority for the period of 2012 - 2016. The research was conducted by qualitative method, processing secondary data from Karimunjawa National Park Authority and interview with key informants. The results showed that protection and security activities in The Karimunjawa National Park were held with three activities: pre-emptive activities, preventive activities and repressive activities. Implementation of conservation policy through protection of life support system is influenced by factors of policy characteristic, resource factor and environmental policy factor. Implementation of conservation policy need support from various parties, not only Karimunjawa National Park Authority as the manager of the area, but also need participation of Jepara Regency, Central Java Provinces, communities, NGOs, researchers, developers and tourism actors to maintain and preserve existing biodiversity. Improving the quality of implementors through education and training activities, the availability of the state budget annually and the support of stakeholders is essential for conservation.

  16. Ecological Networks and Community Attachment and Support Among Recently Resettled Refugees.

    Science.gov (United States)

    Soller, Brian; Goodkind, Jessica R; Greene, R Neil; Browning, Christopher R; Shantzek, Cece

    2018-03-25

    Interventions aimed at enhancing mental health are increasingly centered around promoting community attachment and support. However, few have examined and tested the specific ecological factors that give rise to these key community processes. Drawing from insights from the ecological network perspective, we tested whether spatial and social overlap in routine activity settings (e.g., work, school, childcare) with fellow ethnic community members is associated with individuals' attachment to their ethnic communities and access to social resources embedded in their communities. Data on routine activity locations drawn from the Refugee Well-Being Project (based in a city in the Southwestern United States) were used to reconstruct the ecological networks of recently resettled refugee communities, which were two-mode networks that comprise individuals and their routine activity locations. Results indicated that respondents' community attachment and support increased with their ecological network extensity-which taps the extent to which respondents share routine activity locations with other community members. Our study highlights a key ecological process that potentially enhances individuals' ethnic community attachment that extends beyond residential neighborhoods. © Society for Community Research and Action 2018.

  17. Examining the work-home interface: an ecological systems perspective

    OpenAIRE

    MacKinnon, Richard A,

    2012-01-01

    This dissertation outlines a mixed-methods investigation of work-life balance, examining the construct from an ecological systems theory perspective. This necessitated research at the individual, group, organisational and wider societal levels and included three studies: two using quantitative methodology and one using qualitative.\\ud The quantitative phase included two studies that examined the experience of the home-work interface from the perspective of the employee, examining the impact o...

  18. Savannah River Ecology Laboratory. Annual technical progress report of ecological research, period ending July 31, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University's Institute of Ecology. The laboratory's overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M ampersand O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the following areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give

  19. Savannah River Ecology Laboratory. Annual technical progress report of ecological research, period ending July 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University`s Institute of Ecology. The laboratory`s overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M&O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the following areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give.

  20. International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events: 2010-2014

    Science.gov (United States)

    Gentry, Gregory J.; Cover, John

    2015-01-01

    Nov 2, 2014 marked the completion of the 14th year of continuous human presence in space on board the International Space Station (ISS). After 42 expedition crews, over 115 assembly & utilization flights, over 180 combined Shuttle/Station, US & Russian Extravehicular Activities (EVAs), the post-Assembly-Complete ISS continues to fly and the engineering teams continue to learn from operating its systems, particularly the life support equipment. Problems with initial launch, assembly and activation of ISS elements have given way to more long term system operating trends. New issues have emerged, some with gestation periods measured in years. Major events and challenges for each U.S. Environmental Control and Life Support (ECLS) subsystem occurring during calendar years 2010 through 2014 are summarily discussed in this paper, along with look-aheads for what might be coming in the future for each U.S. ECLS subsystem.

  1. The culture of Chlorella vulgaris with human urine in multibiological life support system experiments

    Science.gov (United States)

    Li, Ming; Liu, Hong; Tong, Ling; Fu, Yuming; He, Wenting; Hu, Enzhu; Hu, Dawei

    The Integrative Experimental System (IES) was established as a tool to evaluate the rela-tionship of the subsystems in Bioregenerative Life Support System, and Multibiological Life Support System Experiments (MLSSE) have been conducted in the IES. The IES consists of a higher plant chamber, an animal chamber and a plate photo bioreactor (PPB) which cultivated lettuce (Lactuca sativa L.), silkworm (Bombyx Mori L.) and microalgae (Chlorella vulgaris), respectively. In MLSSE, four volunteers took turns breathing the system air through a tube connected with the animal chamber periodically. According to the CO2 concentration in the IES, the automotive control system of the PPB changed the light intensity regulating the photosynthesis of Chlorella vulgaris to make CO2 /O2 in the system maintain at stable levels. Chlorella vulgaris grew with human urine by carrying certain amount of alga liquid out of the bioreactor every day with synthetic urine replenished into the system, and O2 was regenerated, at the same time human urine was purified. Results showed that this IES worked stably and Chlorella vulgaris grew well; The culture of Chlorella vulgaris could be used to keep the balance of CO2 and O2 , and the change of light intensity could control the gas composition in the IES; Microalgae culture could be used in emergency in the system, the culture of Chlorella vulgaris could recover to original state in 5 days; 15.6 ml of condensation water was obtained every day by the culture of Chlorella vulgaris; The removal efficiencies of N, P in human urine could reach to 98.2% and 99.5%.

  2. The ecology of life history evolution : genes, individuals and populations

    NARCIS (Netherlands)

    Visser, M.E.

    2013-01-01

    Natural selection shapes the life histories of organisms. The ecological interactions of these organisms with their biotic and abiotic environment shape the selection pressure on their phenotypes while their genetics determine how fast this selection leads to adaptation to their environment. The

  3. Decision Support Systems for Research and Management in Advanced Life Support

    Science.gov (United States)

    Rodriquez, Luis F.

    2004-01-01

    Decision support systems have been implemented in many applications including strategic planning for battlefield scenarios, corporate decision making for business planning, production planning and control systems, and recommendation generators like those on Amazon.com(Registered TradeMark). Such tools are reviewed for developing a similar tool for NASA's ALS Program. DSS are considered concurrently with the development of the OPIS system, a database designed for chronicling of research and development in ALS. By utilizing the OPIS database, it is anticipated that decision support can be provided to increase the quality of decisions by ALS managers and researchers.

  4. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    Science.gov (United States)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  5. Much Lower Launch Costs Make Resupply Cheaper than Recycling for Space Life Support

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    The development of commercial launch vehicles by SpaceX has greatly reduced the cost of launching mass to Low Earth Orbit (LEO). Reusable launch vehicles may further reduce the launch cost per kilogram. The new low launch cost makes open loop life support much cheaper than before. Open loop systems resupply water and oxygen in tanks for crew use and provide disposable lithium hydroxide (LiOH) in canisters to remove carbon dioxide. Short human space missions such as Apollo and shuttle have used open loop life support, but the long duration International Space Station (ISS) recycles water and oxygen and removes carbon dioxide with a regenerative molecular sieve. These ISS regenerative and recycling life support systems have significantly reduced the total launch mass needed for life support. But, since the development cost of recycling systems is much higher than the cost of tanks and canisters, the relative cost savings have been much less than the launch mass savings. The Life Cycle Cost (LCC) includes development, launch, and operations. If another space station was built in LEO, resupply life support would be much cheaper than the current recycling systems. The mission most favorable to recycling would be a long term lunar base, since the resupply mass would be large, the proximity to Earth would reduce the need for recycling reliability and spares, and the launch cost would be much higher than for LEO due to the need for lunar transit and descent propulsion systems. For a ten-year lunar base, the new low launch costs make resupply cheaper than recycling systems similar to ISS life support.

  6. Life-sustaining support: ethical, cultural, and spiritual conflicts part I: Family support--a neonatal case study.

    Science.gov (United States)

    Stutts, Amy; Schloemann, Johanna

    2002-04-01

    As medical knowledge and technology continue to increase, so will types of life-sustaining support as well as the public's expectations for use of this support with positive outcomes. Health care professionals will continue to be challenged by the issues surrounding the appropriate use of life-sustaining support and the issues it raises. This is especially apparent in the NICU. When parents' belief systems challenge the health care team's ethical commitment to beneficence and nonmaleficence, a shared decision-making model based on mutual understanding of and respect for different viewpoints can redirect the focus onto the baby's best interest. This article addresses three questions: 1. How do nonmaleficence, beneficence, and concern about quality of life guide the use of life-sustaining support? 2. To what extent should parental autonomy and spirituality influence treatment decisions? 3. What efforts can the health care team make to support the family?

  7. Interactions between Genetic and Ecological Effects on the Evolution of Life Cycles.

    Science.gov (United States)

    Rescan, Marie; Lenormand, Thomas; Roze, Denis

    2016-01-01

    Sexual reproduction leads to an alternation between haploid and diploid phases, whose relative length varies widely across taxa. Previous genetical models showed that diploid or haploid life cycles may be favored, depending on dominance interactions and on effective recombination rates. By contrast, niche differentiation between haploids and diploids may favor biphasic life cycles, in which development occurs in both phases. In this article, we explore the interplay between genetical and ecological factors, assuming that deleterious mutations affect the competitivity of individuals within their ecological niche and allowing different effects of mutations in haploids and diploids (including antagonistic selection). We show that selection on a modifier gene affecting the relative length of both phases can be decomposed into a direct selection term favoring the phase with the highest mean fitness (due to either ecological differences or differential effects of mutations) and an indirect selection term favoring the phase in which selection is more efficient. When deleterious alleles occur at many loci and in the presence of ecological differentiation between haploids and diploids, evolutionary branching often occurs and leads to the stable coexistence of alleles coding for haploid and diploid cycles, while temporal variations in niche sizes may stabilize biphasic cycles.

  8. Life as a sober citizen: Aldo Leopold's Wildlife Ecology 118

    Science.gov (United States)

    Theiss, Nancy Stearns

    This historic case study addressed the issue of the lack of citizen action toward environmentally responsible behavior. Although there have been studies regarding components of environmental responsible behavior [ERB], there has been little focus on historic models of exemplary figures of ERB. This study examined one of the first conservation courses in the United States, Wildlife Ecology 118, taught by Aldo Leopold (1887--1948) for 13 years at the University of Wisconsin. Today, Aldo Leopold is recognized as an exemplary conservationist whose land ethic is cited as providing the ecological approach needed for understanding the complex issues of modern society. The researcher conjectured that examination of one of the first environmental education courses could support and strengthen environmental education practices by providing a heuristic perspective. The researcher used two different strategies for analysis of the case. For Research Question One---"What were Leopold's teaching strategies in Wildlife Ecology 118?"---the researcher used methods of comparative historical analysis. The researcher examined the learning outcomes that Leopold used in Wildlife Ecology 118 and compared them against a rubric of the Four Strands for Environmental Education (North American Association for Environmental Education [NAAEE], 1999). The Four Strands for Environmental Education are the current teaching strategies used by educators. The results indicated that Wildlife Ecology 118 scored high in Knowledge of Processes and Systems and Environmental Problem Solving strands. Leopold relied on historic case examples and animal biographies to build stories that engaged students. Field trips gave students practical experience for environmental knowledge with special emphasis on phenology. For Research Question Two---"What was the context of the lessons in Wildlife Ecology 118?"---the researcher used environmental history methods for analysis. Context provided the knowledge and

  9. Justification of system of assessment of ecological safety degree of housing construction objects

    Science.gov (United States)

    Kankhva, Vadim

    2017-10-01

    In article characteristics and properties of competitiveness of housing construction objects are investigated, criteria and points of national systems of ecological building’s standardization are structured, the compliance assessment form on stages of life cycle of a capital construction project is developed. The main indicators of level of ecological safety considering requirements of the international ISO standards 9000 and ISO 14000 and which are based on the basic principles of general quality management (TQM) are presented.

  10. Environmental Control and Life Support Systems technology options for Space Station application

    Science.gov (United States)

    Hall, J. B., Jr.; Ferebee, M. J., Jr.; Sage, K. H.

    1985-01-01

    Continuous assessments regarding the suitability of candidate technologies for manned Space Stations will be needed over the next several years to obtain a basis for recommending the optimum system for an Initial Operating Capability (IOC) Space Station which is to be launched in the early 1990's. This paper has the objective to present analysis programs, the candidate recommendations, and the recommended approach for integration these candidates into the NASA Space Station reference configuration. Attention is given to ECLSS (Environmental Control and Life Support System) technology assessment program, an analysis approach for candidate technology recommendations, mission model variables, a candidate integration program, metabolic oxygen recovery, urine/flush water and all waste water recovery, wash water and condensate water recovery, and an integration analysis.

  11. Analysis of edible oil processing options for the BIO-Plex advanced life support system

    Science.gov (United States)

    Greenwalt, C. J.; Hunter, J.

    2000-01-01

    Edible oil is a critical component of the proposed plant-based Advanced Life Support (ALS) diet. Soybean, peanut, and single-cell oil are the oil source options to date. In terrestrial manufacture, oil is ordinarily extracted with hexane, an organic solvent. However, exposed solvents are not permitted in the spacecraft environment or in enclosed human tests by National Aeronautics and Space Administration due to their potential danger and handling difficulty. As a result, alternative oil-processing methods will need to be utilized. Preparation and recovery options include traditional dehulling, crushing, conditioning, and flaking, extrusion, pressing, water extraction, and supercritical extraction. These processing options were evaluated on criteria appropriate to the Advanced Life Support System and BIO-Plex application including: product quality, product stability, waste production, risk, energy needs, labor requirements, utilization of nonrenewable resources, usefulness of by-products, and versatility and mass of equipment to determine the most appropriate ALS edible oil-processing operation.

  12. Prospective technologies and equipment for sanitary hygienic measures for life support systems

    Science.gov (United States)

    Shumilina, I. V.

    Creation of optimal sanitary hygienic conditions is a prerequisite for good health and performance of crews on extended space missions. There is a rich assortment of associated means, methods and equipment developed and experimentally tested in orbital flights. However, over a one-year period a crew of three uses up about 800 kg of ground-supplied wet wipes and towels for personal needs. The degree of closure of life support systems for long-duration orbital flights should be maximized, particularly for interplanetary missions, which exclude any possibility of re-supply. Washing with regenerated water is the ultimate sanitary hygienic goal. That is why it is so important to design devices for crew bathing during long-term space missions. Investigations showed that regeneration of wash water (WW) using membrane processes (reverse osmosis, nanofiltration etc.), unlike sorption, would not require much additional expendables. A two-stage membrane recovery unit eliminated >85% of permeate from real WW with organic and inorganic selectivity of 82 95%. The two-stage WW recovery unit was tested with artificial and real WW containing detergents available for space crews. Investigations into the ways of doing laundry and drying along with which detergents will be the best fit for space flight are also planned. Testing of a technology for water extraction from used textiles using a conventional period of contact of 1 s or more, showed that the humidity of the outgoing air flow neared 100%. Issues related to designing the next generation of space life support systems should consider the benefits of integrating new sanitary hygienic technologies, equipment, and methods.

  13. Protected areas as social-ecological systems: perspectives from resilience and social-ecological systems theory.

    Science.gov (United States)

    Cumming, Graeme S; Allen, Craig R

    2017-09-01

    Conservation biology and applied ecology increasingly recognize that natural resource management is both an outcome and a driver of social, economic, and ecological dynamics. Protected areas offer a fundamental approach to conserving ecosystems, but they are also social-ecological systems whose ecological management and sustainability are heavily influenced by people. This editorial, and the papers in the invited feature that it introduces, discuss three emerging themes in social-ecological systems approaches to understanding protected areas: (1) the resilience and sustainability of protected areas, including analyses of their internal dynamics, their effectiveness, and the resilience of the landscapes within which they occur; (2) the relevance of spatial context and scale for protected areas, including such factors as geographic connectivity, context, exchanges between protected areas and their surrounding landscapes, and scale dependency in the provision of ecosystem services; and (3) efforts to reframe what protected areas are and how they both define and are defined by the relationships of people and nature. These emerging themes have the potential to transform management and policy approaches for protected areas and have important implications for conservation, in both theory and practice. © 2017 by the Ecological Society of America.

  14. A hard-knock life: the foraging ecology of Cape cormorants amidst ...

    African Journals Online (AJOL)

    A hard-knock life: the foraging ecology of Cape cormorants amidst shifting prey resources and industrial fishing pressure. MH Hamann, D Grémillet, PG Ryan, F Bonadonna, CD van der Lingen, L Pichegru ...

  15. Mating system, feeding type and ex situ conservation effort determine life expectancy in captive ruminants.

    Science.gov (United States)

    Müller, Dennis W H; Lackey, Laurie Bingaman; Streich, W Jürgen; Fickel, Jörns; Hatt, Jean-Michel; Clauss, Marcus

    2011-07-07

    Zoo animal husbandry aims at constantly improving husbandry, reproductive success and ultimately animal welfare. Nevertheless, analyses to determine factors influencing husbandry of different species are rare. The relative life expectancy (rLE; life expectancy (LE) as proportion of longevity) describes husbandry success of captive populations. Correlating rLE with biological characteristics of different species, reasons for variation in rLE can be detected. We analysed data of 166 901 animals representing 78 ruminant species kept in 850 facilities. The rLE of females correlated with the percentage of grass in a species' natural diet, suggesting that needs of species adapted to grass can be more easily accommodated than the needs of those adapted to browse. Males of monogamous species demonstrate higher rLE than polygamous males, which matches observed differences of sexual bias in LE in free-living populations and thus supports the ecological theory that the mating system influences LE. The third interesting finding was that rLE was higher in species managed by international studbooks when compared with species not managed in this way. Our method facilitates the identification of biological characteristics of species that are relevant for their husbandry success, and they also support ecological theory. Translating these findings into feeding recommendations, our approach can help to improve animal husbandry.

  16. NASA Johnson Space Center Life Sciences Data System

    Science.gov (United States)

    Rahman, Hasan; Cardenas, Jeffery

    1994-01-01

    The Life Sciences Project Division (LSPD) at JSC, which manages human life sciences flight experiments for the NASA Life Sciences Division, augmented its Life Sciences Data System (LSDS) in support of the Spacelab Life Sciences-2 (SLS-2) mission, October 1993. The LSDS is a portable ground system supporting Shuttle, Spacelab, and Mir based life sciences experiments. The LSDS supports acquisition, processing, display, and storage of real-time experiment telemetry in a workstation environment. The system may acquire digital or analog data, storing the data in experiment packet format. Data packets from any acquisition source are archived and meta-parameters are derived through the application of mathematical and logical operators. Parameters may be displayed in text and/or graphical form, or output to analog devices. Experiment data packets may be retransmitted through the network interface and database applications may be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control and the LSDS system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability, and ease of use make the LSDS a cost-effective solution to many experiment data processing requirements. The same system is used for experiment systems functional and integration tests, flight crew training sessions and mission simulations. In addition, the system has provided the infrastructure for the development of the JSC Life Sciences Data Archive System scheduled for completion in December 1994.

  17. Developing interprofessional education online: An ecological systems theory analysis.

    Science.gov (United States)

    Bluteau, Patricia; Clouder, Lynn; Cureton, Debra

    2017-07-01

    This article relates the findings of a discourse analysis of an online asynchronous interprofessional learning initiative involving two UK universities. The impact of the initiative is traced over three intensive periods of online interaction, each of several-weeks duration occurring over a three-year period, through an analysis of a random sample of discussion forum threads. The corpus of rich data drawn from the forums is interpreted using ecological systems theory, which highlights the complexity of interaction of individual, social and cultural elements. Ecological systems theory adopts a life course approach to understand how development occurs through processes of progressively more complex reciprocal interaction between people and their environment. This lens provides a novel approach for analysis and interpretation of findings with respect to the impact of pre-registration interprofessional education and the interaction between the individual and their social and cultural contexts as they progress through 3/4 years of their programmes. Development is mapped over time (the chronosystem) to highlight the complexity of interaction across microsystems (individual), mesosystems (curriculum and institutional/care settings), exosystems (community/wider local context), and macrosystems (national context and culture). This article illustrates the intricacies of students' interprofessional development over time and the interactive effects of social ecological components in terms of professional knowledge and understanding, wider appreciation of health and social care culture and identity work. The implications for contemporary pre-registration interprofessional education and the usefulness and applicability of ecological systems theory for future research and development are considered.

  18. A new microcomputer-based safety and life support system for solitary-living elderly people.

    Science.gov (United States)

    Miyauchi, Kosuke; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Hahn, Allen W; Caldwell, W Morton

    2003-01-01

    A new safety and life support system has been developed to detect emergency situations of solitary-living elderly persons. The system employs a dual axis accelerometer, two low-power active filters, a low-power 8-bit single chip microcomputer and a personal handy phone. Body movements due to walking, running and posture changes are detected by the dual axis accelerometer and sent to the microcomputer. If the patient is in an inactive state for 5 minutes after falling, or for 64 minutes without previously falling, then the system automatically alarms the emergency situation, via the personal handy phone, to the patient's family, the fire station or the hospital.

  19. Systems engineering aspects of a preliminary conceptual design of the space station environmental control and life support system

    Science.gov (United States)

    Lin, C. H.; Meyer, M. S.

    1983-01-01

    The systems engineering aspects of developing a conceptual design of the Space Station Environmental Control and Life Support System (ECLSS) are discussed. Topics covered include defining system requirements and groundrules for approach, formulating possible cycle closure options, and establishing a system-level mass balance on the essential materials processed in oxygen and water cycles. Consideration is also given to the performance of a system trade-off study to determine the best degree of cycle closure for the ECLSS, and the construction of a conceptual design of the ECLSS with subsystem performance specifications and candidate concepts. For the optimum balance between development costs, technological risks, and resupply penalties, a partially closed cycle ECLSS option is suggested.

  20. Complex adaptive systems ecology

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2003-01-01

    In the following, I will analyze two articles called Complex Adaptive Systems EcologyI & II (Molin & Molin, 1997 & 2000). The CASE-articles are some of the more quirkyarticles that have come out of the Molecular Microbial Ecology Group - a groupwhere I am currently making observational studies....... They are the result of acooperation between Søren Molin, professor in the group, and his brother, JanMolin, professor at Department of Organization and Industrial Sociology atCopenhagen Business School. The cooperation arises from the recognition that bothmicrobial ecology and sociology/organization theory works...

  1. Ecosystem services classification: A systems ecology perspective of the cascade framework

    CSIR Research Space (South Africa)

    La Notte, A

    2017-03-01

    Full Text Available and the environment. We present a refreshed conceptualization of ecosystem services which can support ecosystem service assessment techniques and measurement. We combine the notions of biomass, information and interaction from system ecology, with the ecosystem...

  2. The Life Cycle Cost (LCC) of Life Support Recycling and Resupply

    Science.gov (United States)

    Jones, Harry W.

    2015-01-01

    Brief human space missions supply all the crew's water and oxygen from Earth. The multiyear International Space Station (ISS) program instead uses physicochemical life support systems to recycle water and oxygen. This paper compares the Life Cycle Cost (LCC) of recycling to the LCC of resupply for potential future long duration human space missions. Recycling systems have high initial development costs but relatively low durationdependent support costs. This means that recycling is more cost effective for longer missions. Resupplying all the water and oxygen requires little initial development cost but has a much higher launch mass and launch cost. The cost of resupply increases as the mission duration increases. Resupply is therefore more cost effective than recycling for shorter missions. A recycling system pays for itself when the resupply LCC grows greater over time than the recycling LCC. The time when this occurs is called the recycling breakeven date. Recycling will cost very much less than resupply for long duration missions within the Earth-Moon system, such as a future space station or Moon base. But recycling would cost about the same as resupply for long duration deep space missions, such as a Mars trip. Because it is not possible to provide emergency supplies or quick return options on the way to Mars, more expensive redundant recycling systems will be needed.

  3. Environmental Impacts of Solar Thermal Systems with Life Cycle Assessment

    OpenAIRE

    De Laborderie , Alexis; Puech , Clément; Adra , Nadine; Blanc , Isabelle; Beloin-Saint-Pierre , Didier; Padey , Pierryves; Payet , Jérôme; Sie , Marion; Jacquin , Philippe

    2011-01-01

    Available on: http://www.ep.liu.se/ecp/057/vol14/002/ecp57vol14_002.pdf; International audience; Solar thermal systems are an ecological way of providing domestic hot water. They are experiencing a rapid growth since the beginning of the last decade. This study characterizes the environmental performances of such installations with a life-cycle approach. The methodology is based on the application of the international standards of Life Cycle Assessment. Two types of systems are presented. Fir...

  4. Effectiveness of beneficial plant-microbe interactions under hypobaric and hypoxic conditions in an advanced life support system

    Science.gov (United States)

    MacIntyre, Olathe; Stasiak, Michael; Cottenie, Karl; Trevors, Jack; Dixon, Mike

    An assembled microbial community in the hydroponics solution of an advanced life support system may improve plant performance and productivity in three ways: (1) exclusion of plant pathogens from the initial community, (2) resistance to infection, and (3) plant-growth promotion. However, the plant production area is likely to have a hypobaric (low pressure) and hypoxic (low oxygen) atmosphere to reduce structural mass and atmosphere leakage, and these conditions may alter plant-microbe interactions. Plant performance and productivity of radish (Raphanus sativus L. cv. Cherry Bomb II) grown under hypobaric and hypoxic conditions were investigated at the University of Guelph's Controlled Environment Systems Research Facility. Changes in the microbial communities that routinely colonized the re-circulated nutrient solution, roots, and leaves of radishes in these experiments were quantified in terms of similarity in community composition, abundance of bacteria, and community diversity before and after exposure to hypobaric and hypoxic conditions relative to communities maintained at ambient growth conditions. The microbial succession was affected by extreme hypoxia (2 kPa oxygen partial pressure) while hypobaria as low as 10 kPa total pressure had little effect on microbial ecology. There were no correlations found between the physiological profile of these unintentional microbial communities and radish growth. The effects of hypobaric and hypoxic conditions on specific plant-microbe interactions need to be determined before beneficial gnotobiotic communities can be developed for use in space. The bacterial strains Tal 629 of Bradyrhizobium japonicum and WCS417 of Pseudomonas fluorescens, and the plant pathogen Fusarium oxysporum f. sp. raphani will be used in future experiments. B. japonicum Tal 629 promotes radish growth in hydroponics systems and P. fluorescens WCS417 induces systemic resistance to fusarium wilt (F. oxysporum f. sp. raphani) in radish under ambient

  5. Development Approach of the Advanced Life Support On-line Project Information System

    Science.gov (United States)

    Levri, Julie A.; Hogan, John A.; Morrow, Rich; Ho, Michael C.; Kaehms, Bob; Cavazzoni, Jim; Brodbeck, Christina A.; Whitaker, Dawn R.

    2005-01-01

    The Advanced Life Support (ALS) Program has recently accelerated an effort to develop an On-line Project Information System (OPIS) for research project and technology development data centralization and sharing. There has been significant advancement in the On-line Project Information System (OPIS) over the past year (Hogan et al, 2004). This paper presents the resultant OPIS development approach. OPIS is being built as an application framework consisting of an uderlying Linux/Apache/MySQL/PHP (LAMP) stack, and supporting class libraries that provides database abstraction and automatic code generation, simplifying the ongoing development and maintenance process. Such a development approach allows for quick adaptation to serve multiple Programs, although initial deployment is for an ALS module. OPIS core functionality will involve a Web-based annual solicitation of project and technology data directly from ALS Principal Investigators (PIs) through customized data collection forms. Data provided by PIs will be reviewed by a Technical Task Monitor (TTM) before posting the information to OPIS for ALS Community viewing via the Web. Such Annual Reports will be permanent, citable references within OPIS. OPlS core functionality will also include Project Home Sites, which will allow PIS to provide updated technology information to the Community in between Annual Report updates. All data will be stored in an object-oriented relational database, created in MySQL(Reistered Trademark) and located on a secure server at NASA Ames Research Center (ARC). Upon launch, OPlS can be utilized by Managers to identify research and technology development (R&TD) gaps and to assess task performance. Analysts can employ OPlS to obtain the current, comprehensive, accurate information about advanced technologies that is required to perform trade studies of various life support system options. ALS researchers and technology developers can use OPlS to achieve an improved understanding of the NASA

  6. The Environmental Control and Life Support System (ECLSS) advanced automation project

    Science.gov (United States)

    Dewberry, Brandon S.; Carnes, Ray

    1990-01-01

    The objective of the environmental control and life support system (ECLSS) Advanced Automation Project is to influence the design of the initial and evolutionary Space Station Freedom Program (SSFP) ECLSS toward a man-made closed environment in which minimal flight and ground manpower is needed. Another objective includes capturing ECLSS design and development knowledge future missions. Our approach has been to (1) analyze the SSFP ECLSS, (2) envision as our goal a fully automated evolutionary environmental control system - an augmentation of the baseline, and (3) document the advanced software systems, hooks, and scars which will be necessary to achieve this goal. From this analysis, prototype software is being developed, and will be tested using air and water recovery simulations and hardware subsystems. In addition, the advanced software is being designed, developed, and tested using automation software management plan and lifecycle tools. Automated knowledge acquisition, engineering, verification and testing tools are being used to develop the software. In this way, we can capture ECLSS development knowledge for future use develop more robust and complex software, provide feedback to the knowledge based system tool community, and ensure proper visibility of our efforts.

  7. Marine reserves: fish life history and ecological traits matter.

    Science.gov (United States)

    Claudet, J; Osenberg, C W; Domenici, P; Badalamenti, F; Milazzo, M; Falcón, J M; Bertocci, I; Benedetti-Cecchi, L; García-Charton, J A; Goñi, R; Borg, J A; Forcada, A; De Lucia, G A; Perez-Ruzafa, A; Afonso, P; Brito, A; Guala, I; Le Diréach, L; Sanchez-Jerez, P; Somerfield, P J; Planes, S

    2010-04-01

    Marine reserves are assumed to protect a wide range of species from deleterious effects stemming from exploitation. However, some species, due to their ecological characteristics, may not respond positively to protection. Very little is known about the effects of life history and ecological traits (e.g., mobility, growth, and habitat) on responses of fish species to marine reserves. Using 40 data sets from 12 European marine reserves, we show that there is significant variation in the response of different species of fish to protection and that this heterogeneity can be explained, in part, by differences in their traits. Densities of targeted size-classes of commercial species were greater in protected than unprotected areas. This effect of protection increased as the maximum body size of the targeted species increased, and it was greater for species that were not obligate schoolers. However, contrary to previous theoretical findings, even mobile species with wide home ranges benefited from protection: the effect of protection was at least as strong for mobile species as it was for sedentary ones. Noncommercial bycatch and unexploited species rarely responded to protection, and when they did (in the case of unexploited bentho-pelagic species), they exhibited the opposite response: their densities were lower inside reserves. The use of marine reserves for marine conservation and fisheries management implies that they should ensure protection for a wide range of species with different life-history and ecological traits. Our results suggest this is not the case, and instead that effects vary with economic value, body size, habitat, depth range, and schooling behavior.

  8. Cognitive System Engineering Approach to Design of Work Support Systems

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1995-01-01

    The problem of designing work support systems for flexible, dynamic work environments is discussed and a framework for analysis of work in terms of behavior shaping constraints is described. The application of 'ecological interfaces' presenting to the user a map of the relational structure...... of the work space is advocated from the thesis that a map is a better guidance of discretionary tasks than is a route instruction. For the same reason, support of system design is proposed in terms of maps of the design territory, rather than in terms of guidelines....

  9. Water Walls: Highly Reliable and Massively Redundant Life Support Architecture

    Data.gov (United States)

    National Aeronautics and Space Administration — WATER WALLS (WW) takes an approach to providing a life support system, Forward Osmosis (FO), that is biologically and chemically passive, using mechanical systems...

  10. Analysis of silkworm gut microflora in the Bioregenerative Life Support System

    Science.gov (United States)

    Liang, Xue; Liu, lh64. Hong

    2012-07-01

    Silkworm (Bombyx mori L) has advantages in the nutritional composition, growth characteristics and other factors, it is regarded as animal protein source for astronauts in the Bioregenerative Life Support System (BLSS).Due to the features of BLSS, silkworm breeding way is different from the conventional one (mulberry leaves throughout five instars): they were fed with mulberry and lettuce leaves during the 1st-3rd instars and 4th -5th instars, respectively. As the lettuce stem can be eaten by astronauts, the leaves not favored by humans can be insect's foodstuff. Therefore, it is necessary to investigate the gut microbial composition, the type of dominant bacteria of silkworm raised with this way and the differences from the conventional breeding method, so as to reduce the mortality rate caused by the foodstuff change and to provide more animal protein for astronauts. In this study, 16srDNA sequencing, phylogenetic analysis and denaturing gradient gel electrophoresis method were used to analyze the silkworm gut microbial flora under two breeding manners. The results show that conventional and BLSS breeding way have six dominant bacteria in common: Clostridium, Enterococcus, Bacteroides, Chryseobacterium, Parabacteroides, Paenibacillus. We also found Escherichia, Janthinobacterium, Sedimentibacter, Streptococcus, Bacillus, Arcobacter, Rothia, Polaribacter and Acinetobacter, Anaerofilum, Rummeliibacillus, Anaeroplasma, Serratia in the ground conventional and BLSS special breeding way, respectively. Changing the foodstuff of silkworm leads to the dynamic alteration of gut microbial. Dominant bacteria of the two breeding ways have diversities from each other. The ground conventional breeding way has more abundant bacteria than the BLSS one. Due to the lettuce leaves have replaced mulberry leaves at the beginning of the silkworm 4th instar, some silkworms can not survive without the bacteria that digest and absorb lettuce leaves. We suggest those dominant bacteria

  11. Can basic life support personnel safely determine that advanced life support is not needed?

    Science.gov (United States)

    Cone, D C; Wydro, G C

    2001-01-01

    To determine whether firefighter/emergency medical technicians-basic (FF/EMT-Bs) staffing basic life support (BLS) ambulances in a two-tiered emergency medical services (EMS) system can safely determine when advanced life support (ALS) is not needed. This was a prospective, observational study conducted in two academic emergency departments (EDs) receiving patients from a large urban fire-based EMS system. Runs were studied to which ALS and BLS ambulances were simultaneously dispatched, with the patient transported by the BLS unit. Prospectively established criteria for potential need for ALS were used to determine whether the FF/EMT-B's decision to cancel the ALS unit was safe, and simple outcomes (admission rate, length of stay, mortality) were examined. In the system studied, BLS crews may cancel responding ALS units at their discretion; there are no protocols or medical criteria for cancellation. A convenience sample of 69 cases was collected. In 52 cases (75%), the BLS providers indicated that they cancelled the responding ALS unit because they did not feel ALS was needed. Of these, 40 (77%) met study criteria for ALS: 39 had potentially serious chief complaints, nine had abnormal vital signs, and ten had physical exam findings that warranted ALS. Forty-five (87%) received an intervention immediately upon ED arrival that could have been provided in the field by an ALS unit, and 16 (31%) were admitted, with a median length of stay of 3.3 days (range 1.1-73.4 days). One patient died. Firefighter/EMT-Bs, working without protocols or medical criteria, cannot always safely determine which patients may require ALS intervention.

  12. Protected areas as social-ecological systems: perspectives from resilience and social-ecological systems theory

    Science.gov (United States)

    Cumming, Graeme S.; Allen, Craig R.

    2017-01-01

    Conservation biology and applied ecology increasingly recognize that natural resource management is both an outcome and a driver of social, economic, and ecological dynamics. Protected areas offer a fundamental approach to conserving ecosystems, but they are also social-ecological systems whose ecological management and sustainability are heavily influenced by people. This editorial, and the papers in the invited feature that it introduces, discuss three emerging themes in social-ecological systems approaches to understanding protected areas: (1) the resilience and sustainability of protected areas, including analyses of their internal dynamics, their effectiveness, and the resilience of the landscapes within which they occur; (2) the relevance of spatial context and scale for protected areas, including such factors as geographic connectivity, context, exchanges between protected areas and their surrounding landscapes, and scale dependency in the provision of ecosystem services; and (3) efforts to reframe what protected areas are and how they both define and are defined by the relationships of people and nature. These emerging themes have the potential to transform management and policy approaches for protected areas and have important implications for conservation, in both theory and practice.

  13. Ecology

    International Nuclear Information System (INIS)

    Kalusche, D.

    1978-01-01

    The book turns to the freshment, the teacher, for preparation of ecological topics for lessons, but also to pupils of the secondary stage II, and the main course ecology. The book was knowingly held simple with the restriction to: the ecosystem and its abiotic basic functions, simple articles on population biology, bioceonotic balance ith the questions of niche formation and the life form types coherent with it, of the substance and energy household, the production biology and space-wise and time-wise differentations within an ecological system form the main points. A central role in the volume is given to the illustrations. Their variety is to show and deepen the coherences shown. (orig./HP) [de

  14. Cyanobacteria to Link Closed Ecological Systems and In-Situ Resources Utilization Processes

    Science.gov (United States)

    Brown, Igor

    Introduction: A major goal for the Vision of Space Exploration is to extend human presence across the solar sys-tem. With current technology, however, all required consumables for these missions (propellant, air, food, water) as well as habitable volume and shielding to support human explorers will need to be brought from Earth. In-situ pro-duction of consumables (In-Situ Resource Utilization-ISRU) will significantly facilitate current plans for human ex-ploration and colonization of the solar system, especially by reducing the logistical overhead such as recurring launch mass. The production of oxygen from lunar materials is generally recognized as the highest priority process for lunar ISRU, for both human metabolic and fuel oxidation needs. The most challenging technology developments for future lunar settlements may lie in the extraction of elements (O, Fe, Mn, Ti, Si, etc) from local rocks and soils for life support, industrial feedstock and the production of propellants. With few exceptions (e.g., Johannson, 1992), nearly all technology development to date has employed an ap-proach based on inorganic chemistry (e.g. Allen et al., 1996). None of these technologies include concepts for inte-grating the ISRU system with a bioregenerative life support system and a food production systems. Bioregenerative life support efforts have recently been added to the Constellation ISRU development program (Sanders et al, 2007). Methods and Concerns: The European Micro-Ecological Life Support System Alternative (MELiSSA) is an ad-vanced concept for organizing a bioregenerative system for long term space flights and extraterrestrial settlements (Hendrickx, De Wever et al., 2005). However the MELiSSA system is a net consumer of ISRU products without a net return to in-situ technologies, e.g.. to extract elements as a result of complete closure of MELiSSA. On the other hand, the physical-chemical processes for ISRU are typically massive (relative to the rate of oxygen

  15. The conceptual design of a hybrid life support system based on the evaluation and comparison of terrestrial testbeds

    Science.gov (United States)

    Czupalla, M.; Horneck, G.; Blome, H. J.

    This report summarizes a trade study of different options of a bioregenerative Life Support System (LSS) and a subsequent conceptual design of a hybrid LSS. The evaluation was based mainly on the terrestrial testbed projects MELISSA (ESA) and BIOS (Russia). In addition, some methods suggested by the Advanced Life Support Project (NASA) were considered. Computer models, including mass flows were established for each of the systems with the goal of closing system loops to the extent possible. In order to cope with the differences in the supported crew size and provided nutrition, all systems were scaled for supporting a crew of six for a 780 day Mars mission (180 days transport to Mars; 600 days surface period) as given in the NASA Design Reference Mission Scenario [Hoffman, S.J., Kaplan, D.L. Human exploration of Mars: the Reference Mission of the NASA Mars Exploratory Study, 1997]. All models were scaled to provide the same daily allowances, as of calories, to the crew. Equivalent System Mass (ESM) analysis was used to compare the investigated system models against each other. Following the comparison of the terrestrial systems, the system specific subsystem options for Food Supply, Solid Waste Processing, Water Management and Atmosphere Revitalization were evaluated in a separate trade study. The best subsystem technologies from the trade study were integrated into an overall design solution based on mass flow relationships. The optimized LSS is mainly a bioregenerative system, complemented by a few physico-chemical elements, with a total ESM of 18,088 kg, which is about 4 times higher than that of a pure physico-chemical LSS, as designed in an earlier study.

  16. A Conceptual Model for Teaching the Relationship of Daily Life and Human Environmental Impact to Ecological Function

    Science.gov (United States)

    Wyner, Yael

    2013-01-01

    In the general activity of daily life, it is easy to miss our dependency on the Earth's ecology. At the same time that people are living apparently separate from the environment, our impact on the Earth is increasing. This study seeks to understand how teachers can bridge this persistent disconnect of daily life from ecology and human impact.…

  17. Compact Water Vapor Exchanger for Regenerative Life Support Systems

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Anderson, Molly; Hodgson, Edward

    2012-01-01

    Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Regenerative CO2 removal systems are attractive for these missions because they do not use consumable CO2 absorbers. However, these systems also absorb and vent water to space along with carbon dioxide. This paper describes an innovative device designed to minimize water lost from regenerative CO2 control systems. Design studies and proof-of-concept testing have shown the feasibility of a compact, efficient membrane water vapor exchanger (WVX) that will conserve water while meeting challenging requirements for operation on future spacecraft. Compared to conventional WVX designs, the innovative membrane WVX described here has the potential for high water recovery efficiency, compact size, and very low pressure losses. The key innovation is a method for maintaining highly uniform flow channels in a WVX core built from water-permeable membranes. The proof-of-concept WVX incorporates all the key design features of a prototypical unit, except that it is relatively small scale (1/23 relative to a unit sized for a crew of six) and some components were fabricated using non-prototypical methods. The proof-of-concept WVX achieved over 90% water recovery efficiency in a compact core in good agreement with analysis models. Furthermore the overall pressure drop is very small (less than 0.5 in. H2O, total for both flow streams) and meets requirements for service in environmental control and life support systems on future spacecraft. These results show that the WVX provides very uniform flow through flow channels for both the humid and dry streams. Measurements also show that CO2 diffusion through the water-permeable membranes will have negligible effect on the CO2 partial pressure in the spacecraft atmosphere.

  18. Double coupling: modeling subjectivity and asymmetric organization in social-ecological systems

    Directory of Open Access Journals (Sweden)

    David Manuel-Navarrete

    2015-09-01

    Full Text Available Social-ecological organization is a multidimensional phenomenon that combines material and symbolic processes. However, the coupling between social and ecological subsystem is often conceptualized as purely material, thus reducing the symbolic dimension to its behavioral and actionable expressions. In this paper I conceptualize social-ecological systems as doubly coupled. On the one hand, material expressions of socio-cultural processes affect and are affected by ecological dynamics. On the other hand, coupled social-ecological material dynamics are concurrently coupled with subjective dynamics via coding, decoding, personal experience, and human agency. This second coupling operates across two organizationally heterogeneous dimensions: material and symbolic. Although resilience thinking builds on the recognition of organizational asymmetry between living and nonliving systems, it has overlooked the equivalent asymmetry between ecological and socio-cultural subsystems. Three guiding concepts are proposed to formalize double coupling. The first one, social-ecological asymmetry, expands on past seminal work on ecological self-organization to incorporate reflexivity and subjectivity in social-ecological modeling. Organizational asymmetry is based in the distinction between social rules, which are symbolically produced and changed through human agents' reflexivity and purpose, and biophysical rules, which are determined by functional relations between ecological components. The second guiding concept, conscious power, brings to the fore human agents' distinctive capacity to produce our own subjective identity and the consequences of this capacity for social-ecological organization. The third concept, congruence between subjective and objective dynamics, redefines sustainability as contingent on congruent relations between material and symbolic processes. Social-ecological theories and analyses based on these three guiding concepts would support the

  19. The possibility of aromorphosis in further development of closed human life support systems using genetically modified organisms

    Science.gov (United States)

    Gitelson, Josef

    Creation of closed systems that would be able to support human life outside the biosphere for extended periods of time (CES) was started after humans went into outer space. The last fifty years have seen the construction of experimental variants of the CES in Russia, USA, and Japan. The "MELISSA" project of the European Space Agency is being prepared to be launched. Much success has been achieved in closing material loops in the CES. An obstacle to constructing a fully closed ecosystem is significant imbalance in material exchange between the producing components and the decomposing ones in the CES. The spectrum of metabolites released by humans does not fully correspond to the requirements of the main producer of the CES -plants. However, this imbalance can be corrected by rather simple physicochemical processes that can be used in the CES without unclosing the system. The major disagreement that prevents further improvement of human life support systems (LSS) is that the spectrum of products of photosynthesis in the CES does not correspond to human food requirements qual-itatively, quantitatively, or in terms of diversity. In the normal, physiologically sound, human diet, this discrepancy is resolved by adding animal products. However, there are technical, technological, and hygienic obstacles to including animals in the closed human life support systems, and if higher animals are considered, there are also ethical arguments. If between the photoautotrophic link, plants, and the heterotrophic link, the human, there were one more heterotrophic link, farm animals, the energy requirements of the system would be increased by nearly an order of magnitude, decreasing its efficiency and making it heavier and bulkier. Is there another way to close loops in human life support systems? In biology, such "findings" of evolution, which open up new perspectives and offer ample opportunities for possible adapta-tions, are termed aromorphoses (Schmalhausen, 1948). In further

  20. Psychological Trait Resilience Within Ecological Systems Theory: The Resilient Systems Scales.

    Science.gov (United States)

    Maltby, John; Day, Liz; Flowe, Heather D; Vostanis, Panos; Chivers, Sally

    2017-07-14

    This project describes the development of the Resilient Systems Scales, created to address conceptual and methodological ambiguities in assessing the ecological systems model of resilience. Across a number of samples (total N = 986), our findings suggest that the Resilient Systems Scales show equivalence to a previously reported assessment (Maltby, Day, & Hall, 2015 ) in demonstrating the same factor structure, adequate intercorrelation between the 2 measures of resilience, and equivalent associations with personality and well-being. The findings also suggest that the Resilient Systems Scales demonstrate adequate test-retest reliability, compare well with other extant measures of resilience in predicting well-being, and map, to varying degrees, onto positive expression of several cognitive, social, and emotional traits. The findings suggest that the new measure can be used alongside existing measures of resilience, or singly, to assess positive life outcomes within psychology research.

  1. The Physical/Chemical Closed-Loop Life Support Research Project

    Science.gov (United States)

    Bilardo, Vincent J., Jr.

    1990-01-01

    The various elements of the Physical/Chemical Closed-Loop Life Support Research Project (P/C CLLS) are described including both those currently funded and those planned for implementation at ARC and other participating NASA field centers. The plan addresses the entire range of regenerative life support for Space Exploration Initiative mission needs, and focuses initially on achieving technology readiness for the Initial Lunar Outpost by 1995-97. Project elements include water reclamation, air revitalization, solid waste management, thermal and systems control, and systems integration. Current analysis estimates that each occupant of a space habitat will require a total of 32 kg/day of supplies to live and operate comfortably, while an ideal P/C CLLS system capable of 100 percent reclamation of air and water, but excluding recycling of solid wastes or foods, will reduce this requirement to 3.4 kg/day.

  2. Landscape Planning and Ecological Networks. Part A. A Rural System in Nuoro, Sardinia

    Directory of Open Access Journals (Sweden)

    Andrea De Montis

    2014-05-01

    Full Text Available Urban-rural landscape planning research is nowadays focusing on strategies and tools that support practitioners in designing integrated spaces starting from the analysis of local areas, where human and natural pressures interfere. A prominent framework is provided by the ecological networks, whose design regards the combination of a set of green areas or patches (the nodes interconnected through environmental corridors (the edges. Ecological networks are useful for biodiversity protection and enhancement, as they are able to counteract fragmentation, and to create or strengthen relations and exchanges among otherwise isolated elements. Biodiversity evolution, indeed, depends on the quantity and quality of spatial cohesion of natural areas.  In this paper, we aim at designing an ecological network for the periurban area on the town of Nuoro in central Sardinia. The narrative unfolds in two parts. Part A is presented in this paper and includes its methodological premises, i.e. biodiversity conservation and ecological network analysis and design, and the introductory elements of a spatial analysis on a pilot ecological network of one hundred patches. We locate patches by focusing on the ecosystems supported by the target vegetal species holm oak (Quercus ilex and cultivated or wild olive (Olea europaea var. sativa, O. europaea var. sylverstis. These are very common plants species in the municipality and some animal species are active as seed dispersal. The reminder, i.e. Part B, of the essay is presented in an homonymous paper that focuses on the illustration of the network analysis conceived as a monitoring system and, in future perspective, as a planning support system.

  3. Automated subsystems control development. [for life support systems of space station

    Science.gov (United States)

    Block, R. F.; Heppner, D. B.; Samonski, F. H., Jr.; Lance, N., Jr.

    1985-01-01

    NASA has the objective to launch a Space Station in the 1990s. It has been found that the success of the Space Station engineering development, the achievement of initial operational capability (IOC), and the operation of a productive Space Station will depend heavily on the implementation of an effective automation and control approach. For the development of technology needed to implement the required automation and control function, a contract entitled 'Automated Subsystems Control for Life Support Systems' (ASCLSS) was awarded to two American companies. The present paper provides a description of the ASCLSS program. Attention is given to an automation and control architecture study, a generic automation and control approach for hardware demonstration, a standard software approach, application of Air Revitalization Group (ARG) process simulators, and a generic man-machine interface.

  4. Review of Capitalism in the Web of Life. Ecology and Accumulation of Capital (Moore, 2015

    Directory of Open Access Journals (Sweden)

    Germán Palacio

    2017-01-01

    Full Text Available Jason Moore. 2015. Capitalism in the Web of Life. Ecology and Accumulation of Capital [Capitalismo en la red de la vida. Ecología y acumulación de capital]. London – New York: Verso Books. 336 pp. ISBN 978-1781689028.

  5. Life Course Stage and Social Support Mobilization for End-of-Life Caregivers.

    Science.gov (United States)

    LaValley, Susan A; Gage-Bouchard, Elizabeth A

    2018-04-01

    Caregivers of terminally ill patients are at risk for anxiety, depression, and social isolation. Social support from friends, family members, neighbors, and health care professionals can potentially prevent or mitigate caregiver strain. While previous research documents the importance of social support in helping end-of-life caregivers cope with caregiving demands, little is known about differences in social support experiences among caregivers at different life course stages. Using life course theory, this study analyzes data from in-depth interviews with 50 caregivers of patients enrolled in hospice services to compare barriers to mobilizing social support among caregivers at two life course stages: midlife caregivers caring for parents and older adult caregivers caring for spouses/partners. Older adult caregivers reported different barriers to mobilizing social support compared with midlife caregivers. Findings enhance the understanding of how caregivers' life course stage affects their barriers to mobilization of social support resources.

  6. Seagrass meadows globally as a coupled social-ecological system: implications for human wellbeing.

    Science.gov (United States)

    Cullen-Unsworth, Leanne C; Nordlund, Lina Mtwana; Paddock, Jessica; Baker, Susan; McKenzie, Len J; Unsworth, Richard K F

    2014-06-30

    Seagrass ecosystems are diminishing worldwide and repeated studies confirm a lack of appreciation for the value of these systems. In order to highlight their value we provide the first discussion of seagrass meadows as a coupled social-ecological system on a global scale. We consider the impact of a declining resource on people, including those for whom seagrass meadows are utilised for income generation and a source of food security through fisheries support. Case studies from across the globe are used to demonstrate the intricate relationship between seagrass meadows and people that highlight the multi-functional role of seagrasses in human wellbeing. While each case underscores unique issues, these examples simultaneously reveal social-ecological coupling that transcends cultural and geographical boundaries. We conclude that understanding seagrass meadows as a coupled social-ecological system is crucial in carving pathways for social and ecological resilience in light of current patterns of local to global environmental change. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Portable Life Support System 2.5 Fan Design and Development

    Science.gov (United States)

    Quinn, Gregory; Carra, Michael; Converse, David; Chullen, Cinda

    2016-01-01

    NASA is building a high-fidelity prototype of an advanced Portable Life Support System (PLSS) as part of the Advanced Exploration Systems Program. This new PLSS, designated as PLSS 2.5, will advance component technologies and systems knowledge to inform a future flight program. The oxygen ventilation loop of its predecessor, PLSS 2.0, was driven by a centrifugal fan developed using specifications from the Constellation Program. PLSS technology and system parameters have matured to the point where the existing fan will not perform adequately for the new prototype. In addition, areas of potential improvement were identified with the PLSS 2.0 fan that could be addressed in a new design. As a result, a new fan was designed and tested for the PLSS 2.5. The PLSS 2.5 fan is a derivative of the one used in PLSS 2.0, and it uses the same nonmetallic, canned motor, with a larger volute and impeller to meet the higher pressure drop requirements of the PLSS 2.5 ventilation loop. The larger impeller allows it to operate at rotational speeds that are matched to rolling element bearings, and which create reasonably low impeller tip speeds consistent with prior, oxygen-rated fans. Development of the fan also considered a shrouded impeller design that could allow larger clearances for greater oxygen safety, assembly tolerances and particle ingestion. This paper discusses the design, manufacturing and performance testing of the new fans.

  8. IT logistics support life cycle of products in air engine

    Directory of Open Access Journals (Sweden)

    М.С. Кулик

    2009-02-01

    Full Text Available  Questions of increase of efficiency of a supply with information of creation and support in operation of modern aviation engines are considered. The revealed most perspective directions of development of complex systems of support of life cycle aviation technics.

  9. Power system for production, construction, life support and operations in space

    International Nuclear Information System (INIS)

    Sovie, R.J.

    1988-01-01

    As one looks to man's future in space it becomes obvious that unprecedented amounts of power are required for the exploration, colonization, and exploitation of space. Activities envisioned include interplanetary travel and LEO to GEO transport using electric propulsion, Earth and lunar observatories, advance space stations, free-flying manufacturing platforms, communications platforms, and eventually evolutionary lunar and Mars bases. These latter bases would start as camps with modest power requirements (kWes) and evolve to large bases as manufacturing, food production, and life support materials are developed from lunar raw materials. These latter activities require very robust power supplies (MWes). The advanced power system technologies being pursued by NASA to fulfill these future needs are described. Technologies discussed will include nuclear, photovoltaic, and solar dynamic space power systems, including energy storage, power conditioning, power transmission, and thermal management. The state-of-the-art and gains to be made by technology advancements will be discussed. Mission requirements for a variety of applications (LEO, GEO, lunar, and Martian) will be treated, and data for power systems ranging from a few kilowatts to megawatt power systems will be represented. In addition the space power technologies being initiated under NASA's new Civilian Space Technology Initiative (CSTI) and Space Leadership Planning Group Activities will be discussed

  10. Reverse Ecology: from systems to environments and back.

    Science.gov (United States)

    Levy, Roie; Borenstein, Elhanan

    2012-01-01

    The structure of complex biological systems reflects not only their function but also the environments in which they evolved and are adapted to. Reverse Ecology-an emerging new frontier in Evolutionary Systems Biology-aims to extract this information and to obtain novel insights into an organism's ecology. The Reverse Ecology framework facilitates the translation of high-throughput genomic data into large-scale ecological data, and has the potential to transform ecology into a high-throughput field. In this chapter, we describe some of the pioneering work in Reverse Ecology, demonstrating how system-level analysis of complex biological networks can be used to predict the natural habitats of poorly characterized microbial species, their interactions with other species, and universal patterns governing the adaptation of organisms to their environments. We further present several studies that applied Reverse Ecology to elucidate various aspects of microbial ecology, and lay out exciting future directions and potential future applications in biotechnology, biomedicine, and ecological engineering.

  11. Development of the electrochemically regenerable carbon dioxide absorber for portable life support system application

    Science.gov (United States)

    Woods, R. R.; Heppner, D. B.; Marshall, R. D.; Quattrone, P. D.

    1979-01-01

    As the length of manned space missions increase, more ambitious extravehicular activities (EVAs) are required. For the projected longer mission the use of expendables in the portable life support system (PLSS) will become prohibited due to high launch weight and volume requirements. Therefore, the development of a regenerable CO2 absorber for the PLSS application is highly desirable. The paper discusses the concept, regeneration mechanism, performance, system design, and absorption/regeneration cycle testing of a most promising concept known as ERCA (Electrochemically Regenerable CO2 Absorber). This concept is based on absorbing CO2 into an alkaline absorbent similar to LiOH. The absorbent is an aqueous solution supported in a porous matrix which can be electrochemically regenerated on board the primary space vehicle. With the metabolic CO2 recovery the ERCA concept results in a totally regenerable CO2 scrubber. The ERCA test hardware has passed 200 absorption/regeneration cycles without performance degradation.

  12. [Knowledge about basic life support in European students].

    Science.gov (United States)

    Marton, József; Pandúr, Attila; Pék, Emese; Deutsch, Krisztina; Bánfai, Bálint; Radnai, Balázs; Betlehem, József

    2014-05-25

    Better knowledge and skills of basic life support can save millions of lives each year in Europe. The aim of this study was to measure the knowledge about basic life support in European students. From 13 European countries 1527 volunteer participated in the survey. The questionnaire consisted of socio-demographic questions and knowledge regarding basic life support. The maximum possible score was 18. Those participants who had basic life support training earned 11.91 points, while those who had not participated in lifesaving education had 9.6 points (pbasic life support between students from different European countries. Western European youth, and those who were trained had better performance.

  13. Positive and problematic support, stress and quality of life in patients with systemic lupus erythematosus.

    Science.gov (United States)

    Mazzoni, Davide; Cicognani, Elvira

    2016-09-01

    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Previous studies showed that perceived social support has an important role in enhancing patient's quality of life (QOL). However, the precise mechanisms through which social support exerts such an effect are not completely understood. The aim of this paper is to test two alternative models explaining the relationship between social support (positive and problematic) and two dimensions of QOL: Health-Related (HR-QOL) and Non-Health-Related (NHR-QOL). Model A (mediation) hypothesized that positive support would reduce stress while problematic support would increase stress), and that this in turn would reduce QOL. Model B (moderation) hypothesized that the effect of support on QOL would be moderated by the experience of stress in that more stressed individuals would show stronger effects. Three hundred and forty-four Italian patients with SLE completed an online questionnaire. Stress partially mediated the relationship between support and QOL dimensions (either HR-QOL and NHR-QOL) thus supporting Model B. As hypothesized, positive support reduced stress, while problematic support increased stress. These findings help to explain the complex relationship between social support, stress and QOL in patients with SLE.

  14. Reliability Growth in Space Life Support Systems

    Science.gov (United States)

    Jones, Harry W.

    2014-01-01

    A hardware system's failure rate often increases over time due to wear and aging, but not always. Some systems instead show reliability growth, a decreasing failure rate with time, due to effective failure analysis and remedial hardware upgrades. Reliability grows when failure causes are removed by improved design. A mathematical reliability growth model allows the reliability growth rate to be computed from the failure data. The space shuttle was extensively maintained, refurbished, and upgraded after each flight and it experienced significant reliability growth during its operational life. In contrast, the International Space Station (ISS) is much more difficult to maintain and upgrade and its failure rate has been constant over time. The ISS Carbon Dioxide Removal Assembly (CDRA) reliability has slightly decreased. Failures on ISS and with the ISS CDRA continue to be a challenge.

  15. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    Science.gov (United States)

    Paul, Heather L.; Sompayrac, Robert; Conger, Bruce; Chamberlain, Mateo

    2009-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  16. Characterization of commercial off-the shelf regenerable sorbent to scrub carbon dioxide in a portable life support system

    Science.gov (United States)

    Arai, Tatsuya; Fricker, John

    2018-06-01

    A resin bead Mitsubishi DIAION™ CR20 was identified and characterized as a first commercial off-the shelf regenerable carbon dioxide (CO2) sorbent candidate for space life support system applications at room temperature. The CO2 adsorption rates and capacities of CR20 at varying CO2 partial pressures were obtained. The data were used to numerically simulate CO2 adsorption by a swingbed, a pair of two sorbent beds that alternately adsorb and desorb CO2 in a space suit portable life support system (PLSS). The result demonstrated that a reasonable volume of CR20 would be able to continuously adsorb CO2 with bed-swing interval of 4 min at 300-W metabolic rate, and that commercial off-the shelf CR20 would have similar performance of CO2 adsorption to the proprietary swingbed sorbent SA9T for PLSS applications.

  17. Life Support and Habitation and Planetary Protection Workshop

    Science.gov (United States)

    Hogan, John A. (Editor); Race, Margaret S. (Editor); Fisher, John W. (Editor); Joshi, Jitendra A. (Editor); Rummel, John D. (Editor)

    2006-01-01

    A workshop entitled "Life Support and Habitation and Planetary Protection Workshop" was held in Houston, Texas on April 27-29, 2005 to facilitate the development of planetary protection guidelines for future human Mars exploration missions and to identify the potential effects of these guidelines on the design and selection of related human life support, extravehicular activity and monitoring and control systems. This report provides a summary of the workshop organization, starting assumptions, working group results and recommendations. Specific result topics include the identification of research and technology development gaps, potential forward and back contaminants and pathways, mitigation alternatives, and planetary protection requirements definition needs. Participants concluded that planetary protection and science-based requirements potentially affect system design, technology trade options, development costs and mission architecture. Therefore early and regular coordination between the planetary protection, scientific, planning, engineering, operations and medical communities is needed to develop workable and effective designs for human exploration of Mars.

  18. Home care for life-supported persons: the French system of quality control, technology assessment, and cost containment.

    OpenAIRE

    Goldberg, A I

    1989-01-01

    Home care for persons who require the prolonged use of life-supportive medical technology is a reality in several nations. France has had more than a quarter of a century of experience with providing home care for patients with chronic respiratory insufficiency and with a system to evaluate the patients' outcomes. The French approach features decentralized regional organizations which offer grassroots involvement by the beneficiaries who participate directly in the system. Since June 1981, a ...

  19. Human life support during interplanetary travel and domicile. III - Mars expedition system trade study

    Science.gov (United States)

    Seshan, P. K.; Ferrall, Joseph F.; Rohatgi, Naresh K.

    1991-01-01

    Several alternative configurations of life-support systems (LSSs) for a Mars missions are compared analytically on a quantitative basis in terms of weight, volume, and power. A baseline technology set is utilized for the illustrations of systems including totally open loop, carbon dioxide removal only, partially closed loop, and totally closed loop. The analytical model takes advantage of a modular, top-down hierarchical breakdown of LSS subsystems into functional elements that represent individual processing technologies. The open-loop systems are not competitive in terms of weight for both long-duration orbiters and short-duration lander vehicles, and power demands are lowest with the open loop and highest with the closed loop. The closed-loop system can reduce vehicle weight by over 70,000 lbs and thereby overcome the power penalty of 1600 W; the closed-loop variety is championed as the preferred system for a Mars expedition.

  20. Developing conservation targets in social-ecological systems

    Directory of Open Access Journals (Sweden)

    Phillip S. Levin

    2015-12-01

    Full Text Available The development of targets is foundational in conservation. Although progress has been made in setting targets, the diverse linkages among ecological and social components make target setting for coupled social-ecological systems extremely challenging. Developing integrated social-ecological targets is difficult because it forces policy makers to consider how management actions propagate throughout social-ecological systems, and because ultimately it is society, not scientists, that defines targets. We developed an interdisciplinary approach for identifying management targets and illustrate this approach using an example motivated by Puget Sound, USA. Our approach blends ecological modeling with empirical social science to articulate trade-offs and reveal societal preferences for different social-ecological states. The framework aims to place information in the hands of decision makers and promote discussion in the appropriate forums. Our ultimate objective is to encourage the informed participation of citizens in the development of social-ecological targets that reflect their values while also protecting key ecosystem attributes.

  1. Family ecology of young children with cerebral palsy.

    Science.gov (United States)

    LaForme Fiss, A; Chiarello, L A; Bartlett, D; Palisano, R J; Jeffries, L; Almasri, N; Chang, H-J

    2014-07-01

    Family ecology in early childhood may influence children's activity and participation in daily life. The aim of this study was to describe family functioning, family expectations of their children, family support to their children, and supports for families of young children with cerebral palsy (CP) based on children's gross motor function level. Participants were 398 children with CP (mean age = 44.9 months) and their parents residing in the USA and Canada. Parents completed four measures of family ecology, the Family Environment Scale (FES), Family Expectations of Child (FEC), Family Support to Child (FSC) and Family Support Scale (FSS). The median scores on the FES indicated average to high family functioning and the median score on the FSS indicated that families had helpful family supports. On average, parents reported high expectations of their children on the FEC and strong support to their children on the FSC. On the FES, higher levels of achievement orientation were reported by parents of children in Gross Motor Function Classification System (GMFCS) level II than parents of children in level I, and higher levels of control were reported by parents of children in level I than parents of children in level IV. On the FEC, parents of children with limited gross motor function (level V) reported lower expectations than parents of children at all other levels. Family ecology, including family strengths, expectations, interests, supports and resources, should be discussed when providing interventions and supports for young children with CP and their families. © 2013 John Wiley & Sons Ltd.

  2. Ecological impacts of Synthetic Natural Gas from wood (SNG) used in current heating and car systems

    Energy Technology Data Exchange (ETDEWEB)

    Felder, R.; Dones, R.

    2007-07-01

    This illustrated poster illustrates how synthetic natural gas (SNG) from wood is a promising option to partially substitute fossil energy carriers. The comprehensive life cycle-based ecological impact of SNG is compared with that of natural gas, fuel oil, petrol/diesel, and wood chips that deliver the same services. The methods used for comparison, including Eco-indicator '99 perspectives, Eco-scarcity '97 (UBP), IPCC (2001), and external costs are discussed. The results indicate best ecological performance of the SNG system if consumption of fossil resources is strongly weighted. The performance of natural gas and wood-based systems are also discussed. The main negative aspects of the SNG system are discussed, as is the better ecological score of wood when highly-efficient particulate matter filters are installed. SNG is quoted as performing better than oil derivatives. External costs for SNG are examined. The authors recommend that SNG should preferably be used in cars, since the reduction of overall ecological impact and external costs when substituting oil-based fuels is higher for cars than for heating systems.

  3. Life sciences on the moon

    Science.gov (United States)

    Horneck, G.

    Despite of the fact that the lunar environment lacks essential prerequisites for supporting life, lunar missions offer new and promising opportunities to the life sciences community. Among the disciplines of interest are exobiology, radiation biology, ecology and human physiology. In exobiology, the Moon offers an ideal platform for studies related to the understanding of the principles, leading to the origin, evolution and distribution of life. These include the analysis of lunar samples and meteorites in relatively pristine conditions, radioastronomical search for other planetary systems or Search for Extra-Terrestrial Intelligence (SETI), and studies on the role of radiation in evolutionary processes and on the environmental limits for life. For radiation biology, the Moon provides an unique laboratory with built-in sources for optical as well as ionising radiation to investigate the biological importance of the various components of cosmic and solar radiation. Before establishing a lunar base, precursor missions will provide a characterisation of the radiation field, determination of depth dose distributions in different absorbers, the installation of a solar flare alert system, and a qualification of the biological efficiency of the mixed radiation environment. One of the most challenging projects falls into the domain of ecology with the establishment for the first time of an artificial ecosystem on a celestial body beyond the Earth. From this venture, a better understanding of the dynamics regulating our terrestrial biosphere is expected. It will also serve as a precursor of bioregenerative life support systems for a lunar base. The establishment of a lunar base with eventually long-term human presence will raise various problems in the fields of human physiology and health care, psychology and sociology. Protection guidelines for living in this hostile environment have to be established.

  4. Regenerable Sorbent for Combined CO2, Water, and Trace-Contaminant Capture in the Primary Life Support System (PLSS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA objective of expanding the human experience into the far reaches of space requires the development of regenerable life support systems. This proposal...

  5. Regenerable Sorbent for Combined CO2, Water, and Trace-Contaminant Capture in the Primary Life Support System (PLSS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA objective of expanding the human experience into the far reaches of space requires the development of regenerable life support systems. This proposal...

  6. Operationalising a social-ecological system perspective on the Arctic Ocean.

    Science.gov (United States)

    Crépin, Anne-Sophie; Gren, Åsa; Engström, Gustav; Ospina, Daniel

    2017-12-01

    We propose a framework to support management that builds on a social-ecological system perspective on the Arctic Ocean. We illustrate the framework's application for two policy-relevant scenarios of climate-driven change, picturing a shift in zooplankton composition and alternatively a crab invasion. We analyse archetypical system dynamics between the socio-economic, the natural, and the governance systems in these scenarios. Our holistic approach can help managers identify looming problems arising from complex system interactions and prioritise among problems and solutions, even when available data are limited.

  7. Evolutionary ecology of endocrine-mediated life-history variation in the garter snake Thamnophis elegans.

    Science.gov (United States)

    Sparkman, Amanda M; Vleck, Carol M; Bronikowski, Anne M

    2009-03-01

    The endocrine system plays an integral role in the regulation of key life-history traits. Insulin-like growth factor-1 (IGF-1) is a hormone that promotes growth and reproduction, and it has been implicated in the reduction of lifespan. IGF-1 is also capable of responding plastically to environmental stimuli such as resource availability and temperature. Thus pleiotropic control of life-history traits by IGF-1 could provide a mechanism for the evolution of correlated life-history traits in a new or changing environment. An ideal system in which to investigate the role of IGF-1 in life-history evolution exists in two ecotypes of the garter snake Thamnophis elegans, which derive from a single recent ancestral source but have evolved genetically divergent life-history characteristics. Snakes from meadow populations near Eagle Lake, California (USA) exhibit slower growth rates, lower annual reproductive output, and longer median adult lifespans relative to populations along the lakeshore. We hypothesized that the IGF-1 system has differentiated between these ecotypes and can account for increased growth and reproduction and reduced survival in lakeshore vs. meadow snakes. We tested for a difference in plasma IGF-1 levels in free-ranging snakes from replicate populations of each ecotype over three years. IGF-1 levels were significantly associated with adult body size, reproductive output, and season in a manner that reflects established differences in prey ecology and age/size-specific reproduction between the ecotypes. These findings are discussed in the context of theoretical expectations for a tradeoff between reproduction and lifespan that is mediated by pleiotropic endocrine mechanisms.

  8. Accounting for ecosystem services in Life Cycle Assessment, Part II: toward an ecologically based LCA.

    Science.gov (United States)

    Zhang, Yi; Baral, Anil; Bakshi, Bhavik R

    2010-04-01

    Despite the essential role of ecosystem goods and services in sustaining all human activities, they are often ignored in engineering decision making, even in methods that are meant to encourage sustainability. For example, conventional Life Cycle Assessment focuses on the impact of emissions and consumption of some resources. While aggregation and interpretation methods are quite advanced for emissions, similar methods for resources have been lagging, and most ignore the role of nature. Such oversight may even result in perverse decisions that encourage reliance on deteriorating ecosystem services. This article presents a step toward including the direct and indirect role of ecosystems in LCA, and a hierarchical scheme to interpret their contribution. The resulting Ecologically Based LCA (Eco-LCA) includes a large number of provisioning, regulating, and supporting ecosystem services as inputs to a life cycle model at the process or economy scale. These resources are represented in diverse physical units and may be compared via their mass, fuel value, industrial cumulative exergy consumption, or ecological cumulative exergy consumption or by normalization with total consumption of each resource or their availability. Such results at a fine scale provide insight about relative resource use and the risk and vulnerability to the loss of specific resources. Aggregate indicators are also defined to obtain indices such as renewability, efficiency, and return on investment. An Eco-LCA model of the 1997 economy is developed and made available via the web (www.resilience.osu.edu/ecolca). An illustrative example comparing paper and plastic cups provides insight into the features of the proposed approach. The need for further work in bridging the gap between knowledge about ecosystem services and their direct and indirect role in supporting human activities is discussed as an important area for future work.

  9. Life-history and ecological correlates of population change in Dutch breeding birds.

    NARCIS (Netherlands)

    Turnhout, van C.A.M.; Foppen, R.P.B.; Leuven, R.S.E.W.; Strien, van A.J.; Siepel, H.

    2010-01-01

    Predicting relative extinction risks of animals has become a major challenge in conservation biology. Identifying life-history and ecological traits related to the decline of species helps understand what causes population decreases and sets priorities for conservation action. Here, we use Dutch

  10. Exploring the living universe: A strategy for space life sciences

    Science.gov (United States)

    1988-01-01

    The status and goals of NASA's life sciences programs are examined. Ways and mean for attaining these goals are suggested. The report emphasizes that a stronger life sciences program is imperative if the U.S. space policy is to construct a permanently manned space station and achieve its stated goal of expanding the human presence beyond earth orbit into the solar system. The same considerations apply in regard to the other major goal of life sciences: to study the biological processes and life in the universe. A principal recommendation of the report is for NASA to expand its program of ground- and space-based research contributing to resolving questions about physiological deconditioning, radiation exposure, potential psychological difficulties, and life support requirements that may limit stay times for personnel on the Space Station and complicate missions of more extended duration. Other key recommendations call for strengthening programs of biological systems research in: controlled ecological life support systems for humans in space, earth systems central to understanding the effects on the earth's environment of both natural and human activities, and exobiology.

  11. Do the Principles of Ecological Restoration Cover EU LIFE Nature Cofunded Projects in Denmark?

    Directory of Open Access Journals (Sweden)

    Jonas Morsing

    2013-12-01

    Full Text Available Ecological restoration is becoming a main component in nature management; hence, its definitions and interpretations of the underlying principles are widely discussed. In Denmark, restoration has been implemented for decades, and the LIFE Nature program has contributed to several large-scale projects. Our aim was to indicate tendencies in Danish nature policy by analyzing a representative sample of nature management projects. Using qualitative document analyses of official reports, we investigated how well 13 LIFE Nature cofinanced projects undertaken in Denmark fit with the principles of ecological restoration, as formulated in the nine attributes of the Society for Ecological Restoration's Primer on Ecological Restoration, and based on the five myths of ecological restoration. Objectives of the analyzed projects were divided into three categories: conservation of a single or a group of species; restoration of set-aside areas, mainly on abandoned agricultural land; and habitat management of Natura 2000 areas. Despite this grouping, improvement in living conditions for certain species associated with specific nature types was in focus in all projects. No projects considered or fulfilled all nine attributes. It seems that attributes associated with fundamental requirements for the existence of target species or habitats were more often fulfilled than attributes associated with continuity of the ecosystem as a whole, which indicated a focus on ecosystem structures rather than on processes. We found that the two assumptions of a predictable single endpoint (the myth of the Carbon Copy and that nature is controllable (the myth of Command and Control were notably frequent in the Danish projects. Often, the target ecosystem was associated with a semicultural landscape, and management focused on keeping the vegetation low and preventing overgrowth of colonizing trees. The results indicated that nature policy in Denmark and the LIFE Nature program are

  12. Developing Ultra Reliable Life Support for the Moon and Mars

    Science.gov (United States)

    Jones, Harry W.

    2009-01-01

    Recycling life support systems can achieve ultra reliability by using spares to replace failed components. The added mass for spares is approximately equal to the original system mass, provided the original system reliability is not very low. Acceptable reliability can be achieved for the space shuttle and space station by preventive maintenance and by replacing failed units, However, this maintenance and repair depends on a logistics supply chain that provides the needed spares. The Mars mission must take all the needed spares at launch. The Mars mission also must achieve ultra reliability, a very low failure rate per hour, since it requires years rather than weeks and cannot be cut short if a failure occurs. Also, the Mars mission has a much higher mass launch cost per kilogram than shuttle or station. Achieving ultra reliable space life support with acceptable mass will require a well-planned and extensive development effort. Analysis must define the reliability requirement and allocate it to subsystems and components. Technologies, components, and materials must be designed and selected for high reliability. Extensive testing is needed to ascertain very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The systems must be designed, produced, integrated, and tested without impairing system reliability. Maintenance and failed unit replacement should not introduce any additional probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass must start soon if it is to produce timely results for the moon and Mars.

  13. A non-extensive thermodynamic theory of ecological systems

    Science.gov (United States)

    Van Xuan, Le; Khac Ngoc, Nguyen; Lan, Nguyen Tri; Viet, Nguyen Ai

    2017-06-01

    After almost 30 years of development, it is not controversial issue that the so-called Tsallis entropy provides a useful approach to studying the complexity where the non-additivity of the systems under consideration is frequently met. Also, in the ecological research, Tsallis entropy, or in other words, q-entropy has been found itself as a generalized approach to define a range of diversity indices including Shannon-Wiener and Simpson indices. As a further stage of development in theoretical research, a thermodynamic theory based on Tsallis entropy or diversity indices in ecology has to be constructed for ecological systems to provide knowledge of ecological macroscopic behaviors. The standard method of theoretical physics is used in the manipulation and the equivalence between phenomenological thermodynamics and ecological aspects is the purpose of the ongoing research. The present work is in the line of the authors research to implement Tsallis non-extensivity approach to obtain the most important thermodynamic quantities of ecological systems such as internal energy Uq and temperature Tq based on a given modeled truncated Boltzmann distribution of the Whittaker plot for a dataset. These quantities have their own ecological meaning, especially the temperature Tq provides the insight of equilibrium condition among ecological systems as it is well-known in 0th law of thermodynamics.

  14. Recycling of Na in advanced life support: strategies based on crop production systems.

    Science.gov (United States)

    Guntur, S V; Mackowiak, C; Wheeler, R M

    1999-01-01

    Sodium is an essential dietary requirement in human nutrition, but seldom holds much importance as a nutritional element for crop plants. In Advanced Life Support (ALS) systems, recycling of gases, nutrients, and water loops is required to improve system closure. If plants are to play a significant role in recycling of human wastes, Na will need to accumulate in edible tissues for return to the crew diet. If crops fail to accumulate the incoming Na into edible tissues, Na could become a threat to the hydroponic food production system by increasing the nutrient solution salinity. Vegetable crops of Chenopodiaceae such as spinach, table beet, and chard may have a high potential to supply Na to the human diet, as Na can substitute for K to a large extent in metabolic processes of these crops. Various strategies are outlined that include both genetic and environmental management aspects to optimize the Na recovery from waste streams and their resupply through the human diet in ALS.

  15. Using Pyrolysis and its Bioproducts to Help Close the Loop in Sustainable Life Support Systems

    Science.gov (United States)

    McCoy, LaShelle E.

    2012-01-01

    The next step in human exploration of space is beyond low Earth orbit and possibly to sites such as the Moon and Mars. Resupply of critical life support components for missions such as these are difficult or impossible. Life support processes for closing the loop of water, oxygen and carbon have to be identified .. Currently, there are many technologies proposed for terrestrial missions for waste, water, air processing and the creation of consumables. There are a variety of different approaches, but few address all of these issues simultaneously. One candidate is pyrolysis; a method where waste streams can be heated in the absence of oxygen to undergo a thermochemical conversion producing a series of bioproducts. Bioproducts like biochar made from non-edible biomass and human solid waste can possibly provide valuable benefits such as waste reduction, regolith fertilization for increased food production, and become a consumable for water processing and air revitalization systems. Syngas containing hydrogen, carbon monoxide and cbon dioxide, can be converted to methane and dimethyl ether to create propellants. Bio-oils can be utilized as a heating fuel or fed to bioreactors that utilize oil-eating microbes. Issues such as carbon sequestration and subsequent carbon balance of the closed system and identifying ideal process methods to achieve the highest quality products, whilst being energy friendly, will also be addressed.

  16. Development of a Mars Environmental Control and Life Support System (ECLSS).

    Science.gov (United States)

    Henninger, Donald L.

    2016-01-01

    ECLS systems for very long-duration human missions to Mars will be designed to operate reliably for many years and will never be returned to Earth. The need for high reliability is driven by unsympathetic abort scenarios. Abort from a Mars mission could be as long as 450 days to return to Earth. Simply put, the goal of an ECLSS is to duplicate the functions the Earth provides in terms of human living and working on our home planet but without the benefit of the Earth's large buffers - the atmospheres, the oceans and land masses. With small buffers a space-based ECLSS must operate as a true dynamic system rather than independent processors taking things from tanks, processing them, and then returning them to product tanks. Key is a development process that allows for a logical sequence of validating successful development (maturation) in a stepwise manner with key performance parameters (KPPs) at each step; especially KPPs for technologies evaluated in a full systems context with human crews on Earth and on space platforms such as the ISS. This paper will explore the implications of such an approach to ECLSS development and the roles of ground and space-based testing necessary to develop a highly reliable life support system for long duration human exploration missions. Historical development and testing of ECLS systems from Mercury to the International Space Station (ISS) will be reviewed. Current work as well as recommendations for future work will be described.

  17. Cognitive Comparisons of Students' Systems Modeling in Ecology

    Science.gov (United States)

    Hogan, Kathleen; Thomas, David

    2001-12-01

    This study examined the cognition of five pairs of high school students over time as they built quantitative ecological models using STELLA software. One pair of students emerged as being particularly proficient at learning to model, and was able to use models productively to explore and explain ecological system behaviors. We present detailed contrasts between this and the other pairs of students' cognitive behaviors while modeling, in three areas that were crucial to their modeling productivity: (a) focusing on model output and net interactions versus on model input and individual relationships when building and revising models, (b) exploring the nature and implications of dependencies and feedbacks versus just creating these as properties of complex systems, and (c) using variables versus constants to represent continuous and periodic functions. We then apply theories of the multifaceted nature of cognition to describe object-level, metalevel, and emotional dimensions of cognitive performance that help to explain the observed differences among students' approaches to STELLA modeling. Finally, we suggest pedagogical strategies for supporting all types of students in learning the central scientific practice of model-based quantitative thinking.

  18. NASA Engineering Design Challenges: Environmental Control and Life Support Systems. Water Filtration Challenge. EG-2008-09-134-MSFC

    Science.gov (United States)

    Schneider, Twila, Ed.

    2010-01-01

    This educator guide is organized into seven chapters: (1) Overview; (2) The Design Challenge; (3) Connections to National Curriculum Standards; (4) Preparing to Teach; (5) Classroom Sessions; (6) Opportunities for Extension; and (7) Teacher Resources. Chapter 1 provides information about Environmental Control and Life Support Systems used on NASA…

  19. Application of NASA's Advanced Life Support Technologies in Polar Regions

    Science.gov (United States)

    Bubenheim, David L.

    1997-01-01

    The problems of obtaining adequate pure drinking water and disposing of liquid and solid waste in the U.S Arctic, a region where virtually all water is frozen solid for much of the year, has led to unsanitary solutions. Sanitation and a safe water supply are particularly problems in rural villages. These villages are without running water and use plastic buckets for toilets. The outbreak of diseases is believed to be partially attributable to exposure to human waste and lack of sanitation. Villages with the most frequent outbreaks of disease are those in which running water is difficult to obtain. Waste is emptied into open lagoons, rivers, or onto the sea coast. It does not degrade rapidly and in addition to affecting human health, can be harmful to the fragile ecology of the Arctic and the indigenous wildlife and fish populations. Current practices for waste management and sanitation pose serious human hazards as well as threaten the environment. NASA's unique knowledge of water/wastewater treatment systems for extreme environments, identified in the Congressional Office of Technology Assessment report entitled An Alaskan Challenge: Native Villagt Sanitation, may offer practical solutions addressing the issues of safe drinking water and effective sanitation practices in rural villages. NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving the NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, Ilisagvik College in Barrow and the National Science Foundation (NSF). The focus is a major issue in the State of Alaska and other areas of the Circumpolar North; the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the

  20. Revisiting life strategy concepts in environmental microbial ecology.

    Science.gov (United States)

    Ho, Adrian; Di Lonardo, D Paolo; Bodelier, Paul L E

    2017-03-01

    Microorganisms are physiologically diverse, possessing disparate genomic features and mechanisms for adaptation (functional traits), which reflect on their associated life strategies and determine at least to some extent their prevalence and distribution in the environment. Unlike animals and plants, there is an unprecedented diversity and intractable metabolic versatility among bacteria, making classification or grouping these microorganisms based on their functional traits as has been done in animal and plant ecology challenging. Nevertheless, based on representative pure cultures, microbial traits distinguishing different life strategies had been proposed, and had been the focus of previous reviews. In the environment, however, the vast majority of naturally occurring microorganisms have yet to be isolated, restricting the association of life strategies to broad phylogenetic groups and/or physiological characteristics. Here, we reviewed the literature to determine how microbial life strategy concepts (i.e. copio- and oligotrophic strategists, and competitor-stress tolerator-ruderals framework) are applied in complex microbial communities. Because of the scarcity of direct empirical evidence elucidating the associated life strategies in complex communities, we rely heavily on observational studies determining the response of microorganisms to (a)biotic cues (e.g. resource availability) to infer microbial life strategies. Although our focus is on the life strategies of bacteria, parallels were drawn from the fungal community. Our literature search showed inconsistency in the community response of proposed copiotrophic- and oligotrophic-associated microorganisms (phyla level) to changing environmental conditions. This suggests that tracking microorganisms at finer phylogenetic and taxonomic resolution (e.g. family level or lower) may be more effective to capture changes in community response and/or that edaphic factors exert a stronger effect in community response

  1. A Cooperative Communication System for the Advancement of Safe, Effective, and Efficient Patient Care

    Science.gov (United States)

    2017-02-01

    the Cooperative Communication System (CCS) as an ecologically valid decision and communications support information technology (IT) prototype with...patients or by physician-patient dyads, or on end of life decisions and ethics . Ahmed et al. (2011) contend that the configuration of the standard ICU user...Abstract BACKGROUND: The Cooperative Communication System (CCS) project has developed an ecologically valid decision and communications support

  2. Ecological Perspectives in HCI

    DEFF Research Database (Denmark)

    Blevis, Eli; Bødker, Susanne; Flach, John

    The aim of the workshop is to provide a forum for researchers and practitioners to discuss the present and future of ecological perspectives in HCI. The participants will reflect on the current uses and interpretations of “ecology” and related concepts in the field. The workshop will assess the p...... the potential of ecological perspectives in HCI for supporting rich and meaningful analysis, as well as innovative design, of interactive technologies in real-life contexts......The aim of the workshop is to provide a forum for researchers and practitioners to discuss the present and future of ecological perspectives in HCI. The participants will reflect on the current uses and interpretations of “ecology” and related concepts in the field. The workshop will assess...

  3. Introduction. Antarctic ecology: from genes to ecosystems. Part 2. Evolution, diversity and functional ecology.

    Science.gov (United States)

    Rogers, Alex D; Murphy, Eugene J; Johnston, Nadine M; Clarke, Andrew

    2007-12-29

    The Antarctic biota has evolved over the last 100 million years in increasingly isolated and cold conditions. As a result, Antarctic species, from micro-organisms to vertebrates, have adapted to life at extremely low temperatures, including changes in the genome, physiology and ecological traits such as life history. Coupled with cycles of glaciation that have promoted speciation in the Antarctic, this has led to a unique biota in terms of biogeography, patterns of species distribution and endemism. Specialization in the Antarctic biota has led to trade-offs in many ecologically important functions and Antarctic species may have a limited capacity to adapt to present climate change. These include the direct effects of changes in environmental parameters and indirect effects of increased competition and predation resulting from altered life histories of Antarctic species and the impacts of invasive species. Ultimately, climate change may alter the responses of Antarctic ecosystems to harvesting from humans. The unique adaptations of Antarctic species mean that they provide unique models of molecular evolution in natural populations. The simplicity of Antarctic communities, especially from terrestrial systems, makes them ideal to investigate the ecological implications of climate change, which are difficult to identify in more complex systems.

  4. Evaluation of ecological impacts of synthetic natural gas from wood used in current heating and car systems

    Energy Technology Data Exchange (ETDEWEB)

    Felder, Remo; Dones, Roberto [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2007-06-15

    A promising option to substitute fossil energy carriers by renewables is the production of synthetic natural gas (SNG) from wood, as this results in a flexible energy carrier usable via existing infrastructure in gas boilers or passenger cars. The comprehensive life cycle-based ecological impact of SNG is investigated and compared with standard fuels delivering the same service (natural gas, fuel oil, petrol/diesel, and wood chips). Life cycle impact assessment methodologies and external costs from airborne emissions provide measures of overall damage. The results indicate that the SNG system has the best ecological performance if the consumption of fossil resources is strongly weighted. Otherwise natural gas performs best, as its supply chain is energy-efficient and its use produces relatively low emissions. Wood systems are by far the best in terms of greenhouse gas emissions (GHG), where SNG emits about twice as much as the wood chips system. The main negative aspects of the SNG system are NO{sub x} and particulate emissions and the relatively low total energy conversion efficiency resulting from the additional processing to transform wood to gas. Direct wood combustion has a better ecological score when highly efficient particulate filters are installed. SNG performs better than oil derivatives with all the evaluation methods used. External costs for SNG are the lowest as long as GHG are valued high. SNG should preferably be used in cars, as the reduction of overall ecological impacts and external costs when substituting oil-based fuels is larger for current cars than for heating systems. (author)

  5. Ultra Reliable Closed Loop Life Support for Long Space Missions

    Science.gov (United States)

    Jones, Harry W.; Ewert, Michael K.

    2010-01-01

    Spacecraft human life support systems can achieve ultra reliability by providing sufficient spares to replace all failed components. The additional mass of spares for ultra reliability is approximately equal to the original system mass, provided that the original system reliability is not too low. Acceptable reliability can be achieved for the Space Shuttle and Space Station by preventive maintenance and by replacing failed units. However, on-demand maintenance and repair requires a logistics supply chain in place to provide the needed spares. In contrast, a Mars or other long space mission must take along all the needed spares, since resupply is not possible. Long missions must achieve ultra reliability, a very low failure rate per hour, since they will take years rather than weeks and cannot be cut short if a failure occurs. Also, distant missions have a much higher mass launch cost per kilogram than near-Earth missions. Achieving ultra reliable spacecraft life support systems with acceptable mass will require a well-planned and extensive development effort. Analysis must determine the reliability requirement and allocate it to subsystems and components. Ultra reliability requires reducing the intrinsic failure causes, providing spares to replace failed components and having "graceful" failure modes. Technologies, components, and materials must be selected and designed for high reliability. Long duration testing is needed to confirm very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The system must be designed, developed, integrated, and tested with system reliability in mind. Maintenance and reparability of failed units must not add to the probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass should start soon since it must be a long term effort.

  6. Hospital Costs Of Extracorporeal Life Support Therapy

    NARCIS (Netherlands)

    Oude Lansink-Hartgring, Annemieke; van den Hengel, Berber; van der Bij, Wim; Erasmus, Michiel E.; Mariani, Massimo A.; Rienstra, Michiel; Cernak, Vladimir; Vermeulen, Karin M.; van den Bergh, Walter M.

    Objectives: To conduct an exploration of the hospital costs of extracorporeal life support therapy. Extracorporeal life support seems an efficient therapy for acute, potentially reversible cardiac or respiratory failure, when conventional therapy has been inadequate, or as bridge to transplant, but

  7. Volcano ecology: Disturbance characteristics and assembly of biological communities

    Science.gov (United States)

    Volcanic eruptions are powerful expressions of Earth’s geophysical forces which have shaped and influenced ecological systems since the earliest days of life. The study of the interactions of volcanoes and ecosystems, termed volcano ecology, focuses on the ecological responses of organisms and biolo...

  8. A non–extensive thermodynamic theory of ecological systems

    International Nuclear Information System (INIS)

    Xuan, Le Van; Ngoc, Nguyen Khac; Lan, Nguyen Tri; Viet, Nguyen Ai

    2017-01-01

    After almost 30 years of development, it is not controversial issue that the so–called Tsallis entropy provides a useful approach to studying the complexity where the non–additivity of the systems under consideration is frequently met. Also, in the ecological research, Tsallis entropy, or in other words, q –entropy has been found itself as a generalized approach to define a range of diversity indices including Shannon–Wiener and Simpson indices. As a further stage of development in theoretical research, a thermodynamic theory based on Tsallis entropy or diversity indices in ecology has to be constructed for ecological systems to provide knowledge of ecological macroscopic behaviors. The standard method of theoretical physics is used in the manipulation and the equivalence between phenomenological thermodynamics and ecological aspects is the purpose of the ongoing research. The present work is in the line of the authors research to implement Tsallis non–extensivity approach to obtain the most important thermodynamic quantities of ecological systems such as internal energy U q and temperature T q based on a given modeled truncated Boltzmann distribution of the Whittaker plot for a dataset. These quantities have their own ecological meaning, especially the temperature T q provides the insight of equilibrium condition among ecological systems as it is well–known in 0th law of thermodynamics. (paper)

  9. International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Temperature and Humidity Control Subsystem

    Science.gov (United States)

    Williams, David E.

    2011-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.

  10. Advanced Life Support Research and Technology Transfer at the University of Guelph

    Directory of Open Access Journals (Sweden)

    Dixon M.

    2017-02-01

    Full Text Available Research and technology developments surrounding Advanced Life-Support (ALS began at the University of Guelph in 1992 as the Space and Advanced Life Support Agriculture (SALSA program, which now represents Canada’s primary contribution to ALS research. The early focus was on recycling hydroponic nutrient solutions, atmospheric gas analysis and carbon balance, sensor research and development, inner/intra-canopy lighting and biological filtration of air in closed systems. With funding from federal, provincial and industry partners, a new generation of technology emerged to address the challenges of deploying biological systems as fundamental components of life-support infrastructure for long-duration human space exploration. Accompanying these advances were a wide range of technology transfer opportunities in the agri-food and health sectors, including air and water remediation, plant and environment sensors, disinfection technologies, recyclable growth substrates and advanced light emitting diode (LED lighting systems. This report traces the evolution of the SALSA program and catalogues the benefits of ALS research for terrestrial and non-terrestrial applications.

  11. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    Science.gov (United States)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2006-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30, 60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized

  12. Trophic Ecology of Benthic Marine Invertebrates with Bi-Phasic Life Cycles: What Are We Still Missing?

    Science.gov (United States)

    Calado, Ricardo; Leal, Miguel Costa

    2015-01-01

    The study of trophic ecology of benthic marine invertebrates with bi-phasic life cycles is critical to understand the mechanisms shaping population dynamics. Moreover, global climate change is impacting the marine environment at an unprecedented level, which promotes trophic mismatches that affect the phenology of these species and, ultimately, act as drivers of ecological and evolutionary change. Assessing the trophic ecology of marine invertebrates is critical to understanding maternal investment, larval survival to metamorphosis, post-metamorphic performance, resource partitioning and trophic cascades. Tools already available to assess the trophic ecology of marine invertebrates, including visual observation, gut content analysis, food concentration, trophic markers, stable isotopes and molecular genetics, are reviewed and their main advantages and disadvantages for qualitative and quantitative approaches are discussed. The challenges to perform the partitioning of ingestion, digestion and assimilation are discussed together with different approaches to address each of these processes for short- and long-term fingerprinting. Future directions for research on the trophic ecology of benthic marine invertebrates with bi-phasic life cycles are discussed with emphasis on five guidelines that will allow for systematic study and comparative meta-analysis to address important unresolved questions. © 2015 Elsevier Ltd. All rights reserved.

  13. Evaluation of Aquaponics Techniques for Enhancing Productivity and Degree of Closure of Bioregenerative Life Support Systems (BLSS)

    Science.gov (United States)

    Nelson, Mark; Dempster, William; Highfield, Eric

    A number of researchers in space bioregenerative life support systems (BLSS) have advocated the inclusion of fish-rearing. Fish have relatively high feed to production ratios and can utilize some waste products from other system components. In recent years, there has been much advance in an approach to combining fish-culture with hydroponically-grown crops called “aquaponics”. Aquaponics systems vary but generally include: fish-rearing unit, settling basin, biofilter, hydroponic plant unit and sump where water is pumped back and the cycle continues. Aquaponics research and application has grown since these systems have the potential to increase overall productivity of both crops and fish. Since the fish waste is used as the growth medium of the food plants, there are environmental benefits in reduced discharge of nutrient-rich wastewater which has been one of the drawbacks of conventional aquaculture. In addition, since water use is reduced 95+% over field agriculture, since water from the hydroponic tanks is fed back to the fish tanks and water is recycled apart from evapotranspiration losses, conservation of water resources and applications in water-limited arid regions are other benefits fueling the spread of aquaponics around the world. These considerations also make utilization of aquaponic approaches desirable in BLSS for space application. This paper will examine some recent research results with aquaponics and explore how it might be utilized for food production and reduction of consumables in space life support. In addition, a review and comparison with other fish-culture options previously advanced will evaluate whether aquaponics can improve production efficiency, reduce inputs and better recycle critical resources. Finally, we will explore whether for the space environment, even more advanced aquaponics systems are possible where consumables such as fish-food can be partially or completely supplied from other subsystems of the BLSS and ET water

  14. Novel aquatic modules for bioregenerative life-support systems based on the closed equilibrated biological aquatic system (c.e.b.a.s.)

    Science.gov (United States)

    Bluem, Volker; Paris, Frank

    2002-06-01

    The closed equilibrated biological aquatic system (C.E.B.A.S) is a man-made aquatic ecosystem which consists of four subcomponents: an aquatic animal habitat, an aquatic plant bioreactor, an ammonia oxidizing bacteria filter and a data acquisition/control unit. It is a precursor for different types of fish and aquatic plant production sites which are disposed for the integration into bioregenerative life-support systems. The results of two successful spaceflights of a miniaturized C.E.B.A.S version (the C.E.B.A.S. MINI MODULE) allow the optimization of aquatic food production systems which are already developed in the ground laboratory and open new aspects for their utilization as aquatic modules in space bioregenerative life support systems. The total disposition offers different stages of complexity of such aquatic modules starting with simple but efficient aquatic plant cultivators which can be implemented into water recycling systems and ending up in combined plant/fish aquaculture in connection with reproduction modules and hydroponics applications for higher land plants. In principle, aquaculture of fishes and/or other aquatic animals edible for humans offers optimal animal protein production under lowered gravity conditions without the tremendous waste management problems connected with tetrapod breeding and maintenance. The paper presents details of conducted experimental work and of future dispositions which demonstrate clearly that aquaculture is an additional possibility to combine efficient and simple food production in space with water recycling utilizing safe and performable biotechnologies. Moreover, it explains how these systems may contribute to more variable diets to fulfill the needs of multicultural crews.

  15. Religiousness and Spiritual Support Among Advanced Cancer Patients and Associations With End-of-Life Treatment Preferences and Quality of Life

    Science.gov (United States)

    Balboni, Tracy A.; Vanderwerker, Lauren C.; Block, Susan D.; Paulk, M. Elizabeth; Lathan, Christopher S.; Peteet, John R.; Prigerson, Holly G.

    2008-01-01

    Purpose Religion and spirituality play a role in coping with illness for many cancer patients. This study examined religiousness and spiritual support in advanced cancer patients of diverse racial/ethnic backgrounds and associations with quality of life (QOL), treatment preferences, and advance care planning. Methods The Coping With Cancer study is a federally funded, multi-institutional investigation examining factors associated with advanced cancer patient and caregiver well-being. Patients with an advanced cancer diagnosis and failure of first-line chemotherapy were interviewed at baseline regarding religiousness, spiritual support, QOL, treatment preferences, and advance care planning. Results Most (88%) of the study population (N = 230) considered religion to be at least somewhat important. Nearly half (47%) reported that their spiritual needs were minimally or not at all supported by a religious community, and 72% reported that their spiritual needs were supported minimally or not at all by the medical system. Spiritual support by religious communities or the medical system was significantly associated with patient QOL (P = .0003). Religiousness was significantly associated with wanting all measures to extend life (odds ratio, 1.96; 95% CI, 1.08 to 3.57). Conclusion Many advanced cancer patients' spiritual needs are not supported by religious communities or the medical system, and spiritual support is associated with better QOL. Religious individuals more frequently want aggressive measures to extend life. PMID:17290065

  16. Homeward Bound: Ecological Design of Domestic Information Systems

    Science.gov (United States)

    Wastell, David G.; Sauer, Juergen S.; Schmeink, Claudia

    Information technology artefacts are steadily permeating everyday life, just as they have colonized the business domain. Although research in our field has largely addressed the workplace, researchers are beginning to take an interest in the home environment too. Here, we address the domestic realm, focusing on the design of complex, interactive information systems. As such, our work sits in the design science version rather than behavioral science paradigm of IS research. We argue that the home is in many ways a more challenging environment for the designer than the workplace, making good design of critical importance. Regrettably, the opposite would appear to be the norm. Two experiments are reported, both concerned with the design of the user interface for domestic heating systems. Of note is our use of a medium-fidelity laboratory simulation or "microworld" in this work. Two main substantive findings resulted. First, that ecologically designed feedback, embodying a strong mapping between task goals and system status, produced superior task performance. Second, that predictive decision aids provided clear benefits over other forms of user support, such as advisory systems. General implications for the design of domestic information systems are discussed, followed by reflections on the nature of design work in IS, and on the design science project itself. It is concluded that the microworld approach has considerable potential for developing IS design theory. The methodological challenges of design research are highlighted, especially the presence of additional validity threats posed by the need to construct artefacts in order to evaluate theory. It is argued that design theory is necessarily complex, modal, and uncertain, and that design science (like design itself) should be prosecuted in an open, heuristic spirit, drawing more on the proven methods of "good design" (e.g.,prototyping, user participation) in terms of its own praxis.

  17. Evolution of the Pediatric Advanced Life Support course: enhanced learning with a new debriefing tool and Web-based module for Pediatric Advanced Life Support instructors.

    Science.gov (United States)

    Cheng, Adam; Rodgers, David L; van der Jagt, Élise; Eppich, Walter; O'Donnell, John

    2012-09-01

    To describe the history of the Pediatric Advanced Life Support course and outline the new developments in instructor training that will impact the way debriefing is conducted during Pediatric Advanced Life Support courses. The Pediatric Advanced Life Support course, first released by the American Heart Association in 1988, has seen substantial growth and change over the past few decades. Over that time, Pediatric Advanced Life Support has become the standard for resuscitation training for pediatric healthcare providers in North America. The incorporation of high-fidelity simulation-based learning into the most recent version of Pediatric Advanced Life Support has helped to enhance the realism of scenarios and cases, but has also placed more emphasis on the importance of post scenario debriefing. We developed two new resources: an online debriefing module designed to introduce a new model of debriefing and a debriefing tool for real-time use during Pediatric Advanced Life Support courses, to enhance and standardize the quality of debriefing by Pediatric Advanced Life Support instructors. In this article, we review the history of Pediatric Advanced Life Support and Pediatric Advanced Life Support instructor training and discuss the development and implementation of the new debriefing module and debriefing tool for Pediatric Advanced Life Support instructors. The incorporation of the debriefing module and debriefing tool into the 2011 Pediatric Advanced Life Support instructor materials will help both new and existing Pediatric Advanced Life Support instructors develop and enhance their debriefing skills with the intention of improving the acquisition of knowledge and skills for Pediatric Advanced Life Support students.

  18. Ecological user interface for emergency management decision support systems

    DEFF Research Database (Denmark)

    Andersen, V.

    2003-01-01

    The user interface for decision support systems is normally structured for presenting relevant data for the skilled user in order to allow fast assessment and action of the hazardous situation, or for more complex situations to present the relevant rules and procedures to be followed in order to ...... of this paper is to discuss the possibility of using the same principles for emergency management with the aim of improved performance in complex and unanticipated situations....

  19. Social-ecological predictors of global invasions and extinctions

    Science.gov (United States)

    Lotz, Aaron; Allen, Craig R.

    2013-01-01

    Most assessments of resilience have been focused on local conditions. Studies focused on the relationship between humanity and environmental degradation are rare, and are rarely comprehensive. We investigated multiple social-ecological factors for 100 countries around the globe in relation to the percentage of invasions and extinctions within each country. These 100 countries contain approximately 87% of the world’s population, produce 43% of the world’s per capita gross domestic product (GDP), and take up 74% of the earth’s total land area. We used an information theoretic approach to determine which models were most supported by our data, utilizing an a priori set of plausible models that included a combination of 15 social-ecological variables, each social-ecological factor by itself, and selected social-ecological factors grouped into three broad classes. These variables were per capita GDP, export-import ratio, tourism, undernourishment, energy efficiency, agricultural intensity, rainfall, water stress, wilderness protection, total biodiversity, life expectancy, adult literacy, pesticide regulation, political stability, and female participation in government. Our results indicate that as total biodiversity and total land area increase, the percentage of endangered birds also increases. As the independent variables (agricultural intensity, rainfall, water stress, and total biodiversity) in the ecological class model increase, the percentage of endangered mammals in a country increases. The percentage of invasive birds and mammals in a country increases as per capita GDP increases. As life expectancy increases, the percentage of invasive and endangered birds and mammals increases. Although our analysis does not determine mechanisms, the patterns observed in this study provide insight into the dynamics of a complex, global, social-ecological system.

  20. Social-Ecological Predictors of Global Invasions and Extinctions

    Directory of Open Access Journals (Sweden)

    Aaron Lotz

    2013-09-01

    Full Text Available Most assessments of resilience have been focused on local conditions. Studies focused on the relationship between humanity and environmental degradation are rare, and are rarely comprehensive. We investigated multiple social-ecological factors for 100 countries around the globe in relation to the percentage of invasions and extinctions within each country. These 100 countries contain approximately 87% of the world's population, produce 43% of the world's per capita gross domestic product (GDP, and take up 74% of the earth's total land area. We used an information theoretic approach to determine which models were most supported by our data, utilizing an a priori set of plausible models that included a combination of 15 social-ecological variables, each social-ecological factor by itself, and selected social-ecological factors grouped into three broad classes. These variables were per capita GDP, export-import ratio, tourism, undernourishment, energy efficiency, agricultural intensity, rainfall, water stress, wilderness protection, total biodiversity, life expectancy, adult literacy, pesticide regulation, political stability, and female participation in government. Our results indicate that as total biodiversity and total land area increase, the percentage of endangered birds also increases. As the independent variables (agricultural intensity, rainfall, water stress, and total biodiversity in the ecological class model increase, the percentage of endangered mammals in a country increases. The percentage of invasive birds and mammals in a country increases as per capita GDP increases. As life expectancy increases, the percentage of invasive and endangered birds and mammals increases. Although our analysis does not determine mechanisms, the patterns observed in this study provide insight into the dynamics of a complex, global, social-ecological system.

  1. International Space Station Sustaining Engineering: A Ground-Based Test Bed for Evaluating Integrated Environmental Control and Life Support System and Internal Thermal Control System Flight Performance

    Science.gov (United States)

    Ray, Charles D.; Perry, Jay L.; Callahan, David M.

    2000-01-01

    As the International Space Station's (ISS) various habitable modules are placed in service on orbit, the need to provide for sustaining engineering becomes increasingly important to ensure the proper function of critical onboard systems. Chief among these are the Environmental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). Without either, life onboard the ISS would prove difficult or nearly impossible. For this reason, a ground-based ECLSS/ITCS hardware performance simulation capability has been developed at NASA's Marshall Space Flight Center. The ECLSS/ITCS Sustaining Engineering Test Bed will be used to assist the ISS Program in resolving hardware anomalies and performing periodic performance assessments. The ISS flight configuration being simulated by the test bed is described as well as ongoing activities related to its preparation for supporting ISS Mission 5A. Growth options for the test facility are presented whereby the current facility may be upgraded to enhance its capability for supporting future station operation well beyond Mission 5A. Test bed capabilities for demonstrating technology improvements of ECLSS hardware are also described.

  2. Pediatric advanced life support and sedation of pediatric dental patients

    OpenAIRE

    Kim, Jongbin

    2016-01-01

    Programs provided by the Korea Association of Cardiopulmonary Resuscitation include Basic Life Support (BLS), Advanced Cardiac Life Support (ACLS), Pediatric Advanced Life Support (PALS), and Korean Advanced Life Support (KALS). However, programs pertinent to dental care are lacking. Since 2015, related organizations have been attempting to develop a Dental Advanced Life Support (DALS) program, which can meet the needs of the dental environment. Generally, for initial management of emergency ...

  3. Complementary system perspectives in ecological macroeconomics

    DEFF Research Database (Denmark)

    Røpke, Inge

    2016-01-01

    Globally, societies are facing a number of interrelated environmental, economic and social crises. This paper is intended to contribute to the development of an ecological macroeconomics that addresses these multiple crises in combination. Insights from different research communities will be incl......Globally, societies are facing a number of interrelated environmental, economic and social crises. This paper is intended to contribute to the development of an ecological macroeconomics that addresses these multiple crises in combination. Insights from different research communities...... will be included in this effort. Taking an ecological economic understanding of sustainability as the point of departure, and inspired by systems thinking, it is discussed which economic sub-systems should be in focus for sustainability transitions, and whether relevant guides for sustainability can be formulated...... for these systems. In particular, the focus is on systems that are decisive for resource consumption and pollution although their influence on these is indirect. A simple typology of sub-systems is suggested and applied in relation to an example that highlights the importance of the interplay between macroeconomic...

  4. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    Science.gov (United States)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  5. Reversible Ammonia Sorption for the Primary Life Support System (PLSS)

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Jennings, Mallory A.

    2012-01-01

    Results are presented on the development of regenerable trace-contaminant (TC) sorbent for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). Since ammonia is the most important TC to be captured, data presented in this paper are limited to ammonia sorption, with results relevant to other TCs to be reported at a later time. The currently available TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal. The sorbent is non-regenerable, and its use is associated with appreciable pressure drop, i.e. power consumption. The objective of this work is to demonstrate the feasibility of using vacuum-regenerable sorbents for PLSS application. In this study, several carbon sorbent monoliths were fabricated and tested. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, as well as carbon surface conditioning that enhances ammonia sorption without impairing sorbent regeneration. Depending on sorbent monolith geometry, the reduction in pressure drop with respect to granular sorbent was found to be between 50% and two orders of magnitude. Resistive heating of the carbon sorbent monolith was demonstrated by applying voltage to the opposite ends of the monolith.

  6. Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development

    Science.gov (United States)

    O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.

    1998-01-01

    A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.

  7. Project Orion, Environmental Control and Life Support System Integrated Studies

    Science.gov (United States)

    Russell, James F.; Lewis, John F.

    2008-01-01

    Orion is the next vehicle for human space travel. Humans will be sustained in space by the Orion subystem, environmental control and life support (ECLS). The ECLS concept at the subsystem level is outlined by function and technology. In the past two years, the interface definition with other subsystems has increased through different integrated studies. The paper presents the key requirements and discusses three recent studies (e.g., unpressurized cargo) along with the respective impacts on the ECLS design moving forward.

  8. Social support systems as determinants of self-management and quality of life of people with diabetes across Europe: study protocol for an observational study.

    Science.gov (United States)

    Koetsenruijter, Jan; van Lieshout, Jan; Vassilev, Ivaylo; Portillo, Mari Carmen; Serrano, Manuel; Knutsen, Ingrid; Roukova, Poli; Lionis, Christos; Todorova, Elka; Foss, Christina; Rogers, Anne; Wensing, Michel

    2014-03-04

    Long-term conditions pose major challenges for healthcare systems. Optimizing self-management of people with long-term conditions is an important strategy to improve quality of life, health outcomes, patient experiences in healthcare, and the sustainability of healthcare systems. Much research on self-management focuses on individual competencies, while the social systems of support that facilitate self-management are underexplored. The presented study aims to explore the role of social systems of support for self-management and quality of life, focusing on the social networks of people with diabetes and community organisations that serve them. The protocol concerns a cross-sectional study in 18 geographic areas in six European countries, involving a total of 1800 individuals with diabetes and 900 representatives of community organisations. In each country, we include a deprived rural area, a deprived urban area, and an affluent urban area. Individuals are recruited through healthcare practices in the targeted areas. A patient questionnaire comprises measures for quality of life, self-management behaviours, social network and social support, as well as individual characteristics. A community organisations' survey maps out interconnections between community and voluntary organisations that support patients with chronic illness and documents the scope of work of the different types of organisations. We first explore the structure of social networks of individuals and of community organisations. Then linkages between these social networks, self-management and quality of life will be examined, taking deprivation and other factors into account. This study will provide insight into determinants of self-management and quality of life in individuals with diabetes, focusing on the role of social networks and community organisations.

  9. Visionmaker.NYC: An Online Landscape Ecology Tool to Support Social-Ecological System Visioning and Planning

    Science.gov (United States)

    DuBois, Bryce; Allred, Shorna; Bunting-Howarth, Katherine; Sanderson, Eric W.; Giampieri, Mario

    2017-01-01

    The Welikeia project and the corresponding free online tool Visionmaker. NYC focus on the historical landscape ecologies of New York City. This article provides a brief introduction to online participatory tools, describes the Visionmaker tool in detail, and offers suggested ways to use the tool for Extension professionals based in and outside New…

  10. COSMO: a decision-support system for the central open space, the Netherlands

    NARCIS (Netherlands)

    Harms, W.B.; Knaapen, J.P.; Roos-Klein-Lankhorst sic, J.

    1995-01-01

    To evaluate scenarios for nature restoration, a landscape ecological decision-support system has been developed, a knowledge-based system integrated in a geographical information system. The grid-based application in the Central Open Space of the Netherlands (the COSMO model) is presented here. Four

  11. Closing global knowledge gaps : Producing generalized knowledge from case studies of social-ecological systems

    NARCIS (Netherlands)

    Magliocca, Nicholas R.; Ellis, Erle C.; Allington, Ginger R.H.; de Bremond, Ariane; Dell'Angelo, Jampel; Mertz, Ole; Messerli, Peter; Meyfroidt, Patrick; Seppelt, Ralf; Verburg, Peter H.

    2018-01-01

    Concerns over rapid widespread changes in social-ecological systems and their consequences for biodiversity, ecosystem functioning, food security, and human livelihoods are driving demands for globally comprehensive knowledge to support decision-making and policy development. Claims of regional or

  12. Exergy Based Analysis for the Environmental Control and Life Support Systems of the International Space Station

    Science.gov (United States)

    Clem, Kirk A.; Nelson, George J.; Mesmer, Bryan L.; Watson, Michael D.; Perry, Jay L.

    2016-01-01

    When optimizing the performance of complex systems, a logical area for concern is improving the efficiency of useful energy. The energy available for a system to perform work is defined as a system's energy content. Interactions between a system's subsystems and the surrounding environment can be accounted for by understanding various subsystem energy efficiencies. Energy balance of reactants and products, and enthalpies and entropies, can be used to represent a chemical process. Heat transfer energy represents heat loads, and flow energy represents system flows and filters. These elements allow for a system level energy balance. The energy balance equations are developed for the subsystems of the Environmental Control and Life Support (ECLS) system aboard the International Space Station (ISS). The use of these equations with system information would allow for the calculation of the energy efficiency of the system, enabling comparisons of the ISS ECLS system to other systems as well as allows for an integrated systems analysis for system optimization.

  13. Lessons Learned from the Crew Health Care System (CHeCS) Rack 1 Environmental Control and Life Support (ECLS) Design

    Science.gov (United States)

    Williams, David E.

    2006-01-01

    This paper will provide an overview of the International Space Station (ISS) Environmental Control and Life Support (ECLS) design of the Crew Health Care System (CHeCS) Rack 1 and it will document some of the lessons that have been learned to date for the ECLS equipment in this rack.

  14. Advanced Cardiac Life Support.

    Science.gov (United States)

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document contains materials for an advanced college course in cardiac life support developed for the State of Iowa. The course syllabus lists the course title, hours, number, description, prerequisites, learning activities, instructional units, required text, six references, evaluation criteria, course objectives by units, course…

  15. System dynamic modelling to assess economic viability and risk trade-offs for ecological restoration in South Africa.

    Science.gov (United States)

    Crookes, D J; Blignaut, J N; de Wit, M P; Esler, K J; Le Maitre, D C; Milton, S J; Mitchell, S A; Cloete, J; de Abreu, P; Fourie nee Vlok, H; Gull, K; Marx, D; Mugido, W; Ndhlovu, T; Nowell, M; Pauw, M; Rebelo, A

    2013-05-15

    Can markets assist by providing support for ecological restoration, and if so, under what conditions? The first step in addressing this question is to develop a consistent methodology for economic evaluation of ecological restoration projects. A risk analysis process was followed in which a system dynamics model was constructed for eight diverse case study sites where ecological restoration is currently being pursued. Restoration costs vary across each of these sites, as do the benefits associated with restored ecosystem functioning. The system dynamics model simulates the ecological, hydrological and economic benefits of ecological restoration and informs a portfolio mapping exercise where payoffs are matched against the likelihood of success of a project, as well as a number of other factors (such as project costs and risk measures). This is the first known application that couples ecological restoration with system dynamics and portfolio mapping. The results suggest an approach that is able to move beyond traditional indicators of project success, since the effect of discounting is virtually eliminated. We conclude that systems dynamic modelling with portfolio mapping can guide decisions on when markets for restoration activities may be feasible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. LANDFIRE 2010 - updated data to support wildfire and ecological management

    Science.gov (United States)

    Nelson, Kurtis J.; Connot, Joel A.; Peterson, Birgit E.; Picotte, Joshua J.

    2013-01-01

    Wildfire is a global phenomenon that affects human populations and ecosystems. Wildfire effects occur at local to global scales impacting many people in different ways (Figure 1). Ecological concerns due to land use, fragmentation, and climate change impact natural resource use, allocation, and conservation. Access to consistent and current environmental data is a constant challenge, yet necessary for understanding the complexities of wildfire and ecological management. Data products and tools from the LANDFIRE Program help decision-makers to clarify problems and identify possible solutions when managing fires and natural resources. LANDFIRE supports the reduction of risk from wildfire to human lives and property, monitoring of fire danger, prediction of fire behavior on active incidents, and assessment of fire severity and impacts on natural systems [1] [2] [3]. LANDFIRE products are unique in that they are nationally consistent and provide the only complete geospatial dataset describing vegetation and wildland fuel information for the entire U.S. As such, LANDFIRE data are useful for many ecological applications [3]. For example, LANDFIRE data were recently integrated into a decision-support system for resource management and conservation decision-making along the Appalachian Trail. LANDFIRE is a joint effort between the U.S. Department of the Interior Office of Wildland Fire, U.S. Department of Agriculture Forest Service Fire & Aviation Management, and The Nature Conservancy. To date, seven versions of LANDFIRE data have been released, with each successive version improving the quality of the data, adding additional features, and/or updating the time period represented by the data. The latest version, LANDFIRE 2010 (LF 2010), released mid-2013, represents circa 2010 landscape conditions and succeeds LANDFIRE 2008 (LF 2008), which represented circa 2008 landscape conditions. LF 2010 used many of the same processes developed for the LF 2008 effort [3]. Ongoing

  17. Nevada Applied Ecology Information Center: a review of technical information support provided to the Nevada Applied Ecology Group

    International Nuclear Information System (INIS)

    Fore, C.S.; Pfuderer, H.A.

    1983-01-01

    The Nevada Applied Ecology Information Center (NAEIC) was established in January 1972 to serve the needs of the Nevada Applied Ecology Group (NAEG) by identifying, collecting, analyzing, and disseminating technical information relevant to NAEG programs. Since its inception, the NAEIC has been active in providing specialized information support to NAEG staff in the following research areas: (1) environmental aspects of the transuranics; (2) historic literature (pre-1962) on plutonium and uranium; (3) cleanup and treatment of radioactively contaminated land; (4) bioenvironmental aspects of europium and rhodium; (5) NAEG contractor reports; and (6) uptake of radioactivity by food crops

  18. Interactions among Ecological Factors That Explain the Psychosocial Quality of Life of Children with Complex Needs

    Directory of Open Access Journals (Sweden)

    Sandy Thurston

    2010-01-01

    Full Text Available Purpose. To explore the associations and interactions among ecological factors and explain the psychosocial quality of life of children with complex needs. Methods. In this cross-sectional survey consenting parents were identified by the Children's Treatment Network. Families were eligible if the child from 0 to 19 years, resided in Simcoe/York, and there were multiple family needs. Regression analysis was used to explore associations and interactions. n=429. Results. Younger children, without conduct disorder, without hostile and punitive parenting and with low adverse family impact demonstrated the highest levels of psychosocial quality of life. Statistically significant interactions between processes of care and parent variables highlight the complexity of real life situations. Conclusions. It is not possible to fully understand the child's psychosocial quality of life in complex needs families by considering only simple associations between ecological factors. A multitude of factors and interactions between these factors are simultaneously present and the care of these families requires a holistic approach.

  19. Life Support and Environmental Monitoring International System Maturation Team Considerations

    Science.gov (United States)

    Anderson, Molly; Gatens, Robyn; Ikeda, Toshitami; Ito, Tsuyoshi; Hovland, Scott; Witt, Johannes

    2016-01-01

    Human exploration of the solar system is an ambitious goal. Future human missions to Mars or other planets will require the cooperation of many nations to be feasible. Exploration goals and concepts have been gathered by the International Space Exploration Coordination Group (ISECG) at a very high level, representing the overall goals and strategies of each participating space agency. The Global Exploration Roadmap published by ISECG states that international partnerships are part of what drives the mission scenarios. It states "Collaborations will be established at all levels (missions, capabilities, technologies), with various levels of interdependency among the partners." To make missions with interdependency successful, technologists and system experts need to share information early, before agencies have made concrete plans and binding agreements. This paper provides an overview of possible ways of integrating NASA, ESA, and JAXA work into a conceptual roadmap of life support and environmental monitoring capabilities for future exploration missions. Agencies may have immediate plans as well as long term goals or new ideas that are not part of official policy. But relationships between plans and capabilities may influence the strategies for the best ways to achieve partner goals. Without commitments and an organized program like the International Space Station, requirements for future missions are unclear. Experience from ISS has shown that standards and an early understanding of requirements are an important part of international partnerships. Attempting to integrate systems that were not designed together can create many problems. Several areas have been identified that could be important to discuss and understand early: units of measure, cabin CO2 levels, and the definition and description of fluids like high purity oxygen, potable water and residual biocide, and crew urine and urine pretreat. Each of the partners is exploring different kinds of technologies

  20. Application of a micro-credit scheme to some ecological activities

    Science.gov (United States)

    Hakoyama, F.

    2017-03-01

    Micro-credit schemes are expanding very rapidly worldwide in ecological activities. Providing gas-cooking equipments in Burkina Faso is a successful example in which the micro-credit system contributes to improve not only poor women’s life but also ecological environment. In Bangladesh, a solar PV system program through micro-credit has been implemented widely and successfully: big NGOs act as equipment dealers and provide micro-credit loans to individual poor households. In contrast, there are very few cases which showed positive results in sanitation projects. Micro-credit schemes are, in principle, based on the income generated through the fund. But in usual cases, sanitation activities do not yield any income. High cost of latrine construction is another barrier. In this paper, we reviewed why we could not apply a micro-credit scheme to our “Améli-eaur project” in Burkina Faso. Common features for the success in ecological activities are 1) enough income yielded from the activity itself, 2) the strong needs from population side, and 3) established system support, both technically and administratively. If we find a way to fulfill these elements in a sanitation project, it can be a long, sustainable project.

  1. The Construction of Higher Education Entrepreneur Services Network System a Research Based on Ecological Systems Theory

    Science.gov (United States)

    Xue, Jingxin

    The article aims to completely, systematically and objectively analyze the current situation of Entrepreneurship Education in China with Ecological Systems Theory. From this perspective, the author discusses the structure, function and its basic features of higher education entrepreneur services network system, and puts forward the opinion that every entrepreneurship organization in higher education institution does not limited to only one platform. Different functional supporting platforms should be combined closed through composite functional organization to form an integrated network system, in which each unit would impels others' development.

  2. NASA's Interests in Bioregenerative Life Support

    Science.gov (United States)

    Wheeler, Raymond M.

    2018-01-01

    NASA and other space agencies and around the world have had long-standing interest in using plants and biological approaches for regenerative life support. In particular, NASA's Kennedy Space Center, has conducted research in this area for over 30 years. One unique aspect to this testing was NASA's Biomass Production Chamber, which had four vertically stacked growing shelves inside a large, 113 cubic meter chamber. This was perhaps one of the first working examples of a vertical agriculture system in the world. A review of some of this research along with some of the more salient findings will be presented.

  3. Ecological aspects influencing the implementation of inclusive ...

    African Journals Online (AJOL)

    Keywords: Assessment and Support Strategy, barriers to learning, ecological model, identification, inclusive ..... impedes the management of these learners in the mainstream schools. ..... An ecological systems theory perspective on youth.

  4. Guide to the ecological systems of Puerto Rico

    Science.gov (United States)

    G. Miller; A.E. Lugo

    2009-01-01

    This guide is an introduction to the ecological systems of Puerto Rico. It covers the diversity of ecological systems in the island, their most common plant and animal species, and salient aspects of their structure and functioning. Terrestrial, wetland, coastal, and marine ecosystems are included, as well as agroforest and urban systems. The discussion of the...

  5. A National Disturbance Modeling System to Support Ecological Carbon Sequestration Assessments

    Science.gov (United States)

    Hawbaker, T. J.; Rollins, M. G.; Volegmann, J. E.; Shi, H.; Sohl, T. L.

    2009-12-01

    The U.S. Geological Survey (USGS) is prototyping a methodology to fulfill requirements of Section 712 of the Energy Independence and Security Act (EISA) of 2007. At the core of the EISA requirements is the development of a methodology to complete a two-year assessment of current carbon stocks and other greenhouse gas (GHG) fluxes, and potential increases for ecological carbon sequestration under a range of future climate changes, land-use / land-cover configurations, and policy, economic and management scenarios. Disturbances, especially fire, affect vegetation dynamics and ecosystem processes, and can also introduce substantial uncertainty and risk to the efficacy of long-term carbon sequestration strategies. Thus, the potential impacts of disturbances need to be considered under different scenarios. As part of USGS efforts to meet EISA requirements, we developed the National Disturbance Modeling System (NDMS) using a series of statistical and process-based simulation models. NDMS produces spatially-explicit forecasts of future disturbance locations and severity, and the resulting effects on vegetation dynamics. NDMS is embedded within the Forecasting Scenarios of Future Land Cover (FORE-SCE) model and informs the General Ensemble Biogeochemical Modeling System (GEMS) for quantifying carbon stocks and GHG fluxes. For fires, NDMS relies on existing disturbance histories, such as the Landsat derived Monitoring Trends in Burn Severity (MTBS) and Vegetation Change Tracker (VCT) data being used to update LANDFIRE fuels data. The MTBS and VCT data are used to parameterize models predicting the number and size of fires in relation to climate, land-use/land-cover change, and socioeconomic variables. The locations of individual fire ignitions are determined by an ignition probability surface and then FARSITE is used to simulate fire spread in response to weather, fuels, and topography. Following the fire spread simulations, a burn severity model is used to determine annual

  6. Social dynamics in the classroom : Teacher support and conflict and the peer ecology

    NARCIS (Netherlands)

    Hendrickx, Marloes M H G; Mainhard, M. Tim; Boor-Klip, Henrike J.; Cillessen, Antonius H M; Brekelmans, Mieke

    2016-01-01

    By showing support and conflict, teachers may function as a model for students regarding how to interact and how to evaluate each other, thereby shaping the classroom peer ecology. Associations of general and student-specific levels and differential provision of teacher support and conflict with the

  7. Low Earth orbit journey and ground simulations studies point out metabolic changes in the ESA life support organism Rhodospirillum rubrum

    Science.gov (United States)

    Mastroleo, Felice; Leys, Natalie; Benotmane, Rafi; Vanhavere, Filip; Janssen, Ann; Hendrickx, Larissa; Wattiez, Ruddy; Mergeay, Max

    MELiSSA (Micro-Ecological Life Support System Alternative) is a project of closed regenerative life support system for future space flights developed by the European Space Agency. It consists of interconnected processes (i.e. bioreactors, higher plant compartments, filtration units,..) targeting the total recycling of organic waste into oxygen, water and food. Within the MELiSSA loop, the purple non-sulfur alpha-proteobacterium R. rubrum ATCC25903 is used to convert fatty acids released from the upstream raw waste digesting reactor to CO2 and biomass, and to complete the mineralization of aminoacids into NH4+ that will be forwarded to the nitrifying compartment. Among the numerous challenges of the project, the functional stability of the bioreactors in long term and under space flight conditions is of paramount importance for the efficiency of the life support system and consequently the crew safety. Therefore, the physiological and metabolic changes induced by space flight were investigated for R. rubrum. The bacterium grown on solid medium during 2 different 10-day space flights to the ISS (MES- SAGE2, BASE-A experiments) were compared to cells grown on Earth 1 g gravity or modeled microgravity and normal Earth radiation or simulated space flight radiation conditions in order to relate each single stress to its respective cellular response. For simulating the radiation environment, pure gamma and neutron sources were combined, while simulation of changes in gravity where performed using the Random Positioning Machine technology. Transcriptome analysis using R. rubrum total genome DNA-chip showed up-regulation of genes involved in oxidative stress response after a 10-day mission inside the ISS, without loss of viability. As an example, alkyl hydroperoxide reductase, thioredoxin reductase and bacterioferritin genes are least 2 fold induced although the radiation dose experienced by the bacterium (4 mSv) is very low compared to its radiotolerance (D10 = 100 Sv

  8. Niche construction through phenological plasticity: life history dynamics and ecological consequences.

    Science.gov (United States)

    Donohue, Kathleen

    2005-04-01

    The ability of an organism to alter the environment that it experiences has been termed 'niche construction'. Plants have several ways whereby they can determine the environment to which they are exposed at different life stages. This paper discusses three of these: plasticity in dispersal, flowering timing and germination timing. It reviews pathways through which niche construction alters evolutionary and ecological trajectories by altering the selective environment to which organisms are exposed, the phenotypic expression of plastic characters, and the expression of genetic variation. It provides examples whereby niche construction creates positive or negative feedbacks between phenotypes and environments, which in turn cause novel evolutionary constraints and novel life-history expression. Copyright New Phytologist (2005).

  9. Nutrient composition and respiration characteristics of silkworms in the Bioregenerative Life Support System

    Science.gov (United States)

    Tong, Ling; Yu, Xiaohui; Liu, Hong

    As the appropriate space animal candidate, silkworm(Bombyx Mori L.) can supply animal food for taikonauts and consume inedible parts of plants in Bioregenerative Life Support Sys-tem(BLSS). Due to the features of BLSS, the silkworm breeding method in the system differ-ent from the conventional one is feeding the silkworm in the first three developing stages with mulberry leaves and with lettuce leaves in the latter two developing stages. Therefore, it is nec-essary to investigate the biochemical components and respiration characteristics of silkworms raised with this method to supply data bases for the inclusion of silkworms in the system to conduct system experiments. The nutrient compositions of silkworm powder (SP) which are the grinded and freeze-dried silkworm on the 3rd day in the fifth developing stage containing protein, fat, vitamins, minerals and fatty acids were determined with international standard analyzing methods in this study. The results showed that SP was rich in protein and amino acids. There were twelve kinds of essential vitamins, nine kinds of minerals and twelve kinds of fatty acids in SP. In contrast, SP had much better nutrient components than snail, fish, chicken, beef and pork as animal food for crew members. Moreover, 359 kCal can be generated per 100g of SP (dry weight). The respirations of silkworm during its whole growing process under two main physiological statuses which were eating and non-eating leaves were studied. According to the results measured by the animal respiration measuring system, there were much difference among the respirations of silkworms under the two main physiological statuses. The amounts of O2 inhaled and CO2 exhaled by the silkworms when they were eating leaves were more than those under the non-eating status. Even under the same status, the respiration characteristics of silkworms in five different developing stages were also different from one an-other. The respiratory quotients of silkworms under two

  10. Advanced Life Support Project: Crop Experiments at Kennedy Space Center

    Science.gov (United States)

    Sager, John C.; Stutte, Gary W.; Wheeler, Raymond M.; Yorio, Neil

    2004-01-01

    Crop production systems provide bioregenerative technologies to complement human crew life support requirements on long duration space missions. Kennedy Space Center has lead NASA's research on crop production systems that produce high value fresh foods, provide atmospheric regeneration, and perform water processing. As the emphasis on early missions to Mars has developed, our research focused on modular, scalable systems for transit missions, which can be developed into larger autonomous, bioregenerative systems for subsequent surface missions. Components of these scalable systems will include development of efficient light generating or collecting technologies, low mass plant growth chambers, and capability to operate in the high energy background radiation and reduced atmospheric pressures of space. These systems will be integrated with air, water, and thermal subsystems in an operational system. Extensive crop testing has been done for both staple and salad crops, but limited data is available on specific cultivar selection and breadboard testing to meet nominal Mars mission profiles of a 500-600 day surface mission. The recent research emphasis at Kennedy Space Center has shifted from staple crops, such as wheat, soybean and rice, toward short cycle salad crops such as lettuce, onion, radish, tomato, pepper, and strawberry. This paper will review the results of crop experiments to support the Exploration Initiative and the ongoing development of supporting technologies, and give an overview of capabilities of the newly opened Space Life Science (SLS) Lab at Kennedy Space Center. The 9662 square m (104,000 square ft) SLS Lab was built by the State of Florida and supports all NASA research that had been performed in Hanger-L. In addition to NASA research, the SLS Lab houses the Florida Space Research Institute (FSRI), responsible for co-managing the facility, and the University of Florida (UF) has established the Space Agriculture and Biotechnology Research and

  11. [Coupling coordinated development of ecological-economic system in Loess Plateau].

    Science.gov (United States)

    Zhang, Qing-Feng; Wu, Fa-Qi; Wang, Li; Wang, Jian

    2011-06-01

    Based on system theory, a coupling coordinated development model of ecological-economic system in Loess Plateau was established, and the evaluation criteria and basic types of the coordinated development of the ecological-economic system were proposed. The county-level coupling coordinated development of the ecological-economic system was also discussed, based on the local characteristics. The interactions between the ecological and economic systems in Loess Plateau could be divided into four stages, i.e., seriously disordered development stage, mild-disordered development stage, low-level coordinated development stage, and high level well-coordinated development stage. At each stage, there existed a cyclic process of profit and loss-antagonist-running-dominant-synchronous development. The coupling development degree of the ecological-economic system in Loess Plateau was overall at a lower level, being about 62.7% of the counties at serious disorder, 30.1% of the counties at mild disorder, and 7.1% of the counties at low but coordinated level. The coupling development degree based on the model established in this study could better reflect the current social-economic and ecological environment situations, especially the status of coordination. To fully understand the coupling of ecological-economic system and to adopt appropriate development mode would be of significance to promote the county-level coordinated development in Loess Plateau.

  12. Biocybrid systems and the re-engineering of life

    Science.gov (United States)

    Domingues, Diana; Ferreira da Rocha, Adson; Hamdan, Camila; Augusto, Leci; Miosso, Cristiano Jacques

    2011-03-01

    The reengineering of life expanded by perceptual experiences in the sense of presence in Virtual Reality and Augmented Reality is the theme of our investigation in collaborative practices confirming the artistś creativity close to the inventivity of scientists and mutual capacity for the generation of biocybrid systems. We consider the enactive bodily interfaces for human existence being co-located in the continuum and symbiotic zone between body and flesh - cyberspace and data - and the hybrid properties of physical world. That continuum generates a biocybrid zone (Bio+cyber+hybrid) and the life is reinvented. Results reaffirm the creative reality of coupled body and mutual influences with environment information, enhancing James Gibson's ecological perception theory. The ecosystem life in its dynamical relations between human, animal, plants, landscapes, urban life and objects, bring questions and challenges for artworks and the reengineering of life discussed in our artworks in technoscience. Finally, we describe an implementation in which the immersion experience is enhanced by the datavisualization of biological audio signals and by using wearable miniaturized devices for biofeedback.

  13. Applied systems ecology: models, data, and statistical methods

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, L L

    1976-01-01

    In this report, systems ecology is largely equated to mathematical or computer simulation modelling. The need for models in ecology stems from the necessity to have an integrative device for the diversity of ecological data, much of which is observational, rather than experimental, as well as from the present lack of a theoretical structure for ecology. Different objectives in applied studies require specialized methods. The best predictive devices may be regression equations, often non-linear in form, extracted from much more detailed models. A variety of statistical aspects of modelling, including sampling, are discussed. Several aspects of population dynamics and food-chain kinetics are described, and it is suggested that the two presently separated approaches should be combined into a single theoretical framework. It is concluded that future efforts in systems ecology should emphasize actual data and statistical methods, as well as modelling.

  14. Maintenance, reliability and policies for orbital space station life support systems

    International Nuclear Information System (INIS)

    Russell, James F.; Klaus, David M.

    2007-01-01

    The performance of productive work on space missions is critical to sustaining a human presence on orbital space stations (OSS), the Moon, or Mars. Available time for productive work has potentially been impacted on past OSS missions by underestimating the crew time needed to maintain systems, such as the Environmental Control and Life Support System (ECLSS). To determine the cause of this apparent disconnect between the design and operation of an OSS, documented crew time for maintenance was collected from the three Skylab missions and Increments 4-8 on the International Space Station (ISS), and the data was contrasted to terrestrial facility maintenance norms. The results of the ISS analysis showed that for four operational and seven functional categories, the largest deviation of 60.4% over the design time was caused by three of the four operational categories not being quantitatively included in the design documents. In a cross category analysis, 35.3% of the crew time was found to have been used to repair air and waste handling systems. The air system required additional crew time for maintenance due to a greater than expected failure rate and resultant increased time needed for repairs. Therefore, it appears that the disconnect between the design time and actual operations for ECLSS maintenance on ISS was caused by excluding non-repair activities from the estimates and experiencing greater than expected technology maintenance requirements. Based on these ISS and Skylab analyses, future OSS designs (and possibly lunar and Martian missions as well) should consider 3.0-3.3 h/day for crews of 2 to 3 as a baseline of crew time needed for ECLSS maintenance

  15. Meaning Emergence in the Ecology of Dialogical Systems

    DEFF Research Database (Denmark)

    Trasmundi, S. B.; Steffensen, S. V.

    2016-01-01

    This article is an empirically based theoretical contribution to the investigation of meaningmaking in the ecology of human interaction and interactivity. It presents an ecological perspective on meaning-making that pivots on how agents pick up information directly in their organism...... Analysis to investigate how the agents oscillate between being a multi-agent-system with shared, tightly coordinated agency and a loosely coupled dialogical system where the individuals bring forth an understanding based on their professional backgrounds and expertise. On this view, an ecological approach...

  16. Coupling sensing to crop models for closed-loop plant production in advanced life support systems

    Science.gov (United States)

    Cavazzoni, James; Ling, Peter P.

    1999-01-01

    We present a conceptual framework for coupling sensing to crop models for closed-loop analysis of plant production for NASA's program in advanced life support. Crop status may be monitored through non-destructive observations, while models may be independently applied to crop production planning and decision support. To achieve coupling, environmental variables and observations are linked to mode inputs and outputs, and monitoring results compared with model predictions of plant growth and development. The information thus provided may be useful in diagnosing problems with the plant growth system, or as a feedback to the model for evaluation of plant scheduling and potential yield. In this paper, we demonstrate this coupling using machine vision sensing of canopy height and top projected canopy area, and the CROPGRO crop growth model. Model simulations and scenarios are used for illustration. We also compare model predictions of the machine vision variables with data from soybean experiments conducted at New Jersey Agriculture Experiment Station Horticulture Greenhouse Facility, Rutgers University. Model simulations produce reasonable agreement with the available data, supporting our illustration.

  17. Enviromnental Control and Life Support Systems for Mars Missions - Issues and Concerns for Planetary Protection

    Science.gov (United States)

    Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin

    2015-01-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future human planetary exploration missions. Ultimately, there will be an effect on mission costs, including the mission trade space when planetary protection requirements begin to drive vehicle deisgn in a concrete way. Planetary protection requirements need to be considered early in technology development and mission programs in order to estimate these impacts and push back on requirements or find efficient ways to perform necessary functions. It is expected that planetary protection will be a significant factor during technology selection and system architecture design for future missions.

  18. Ecological Interventionist Causal Models in Psychosis: Targeting Psychological Mechanisms in Daily Life

    Science.gov (United States)

    Reininghaus, Ulrich; Depp, Colin A.; Myin-Germeys, Inez

    2016-01-01

    Integrated models of psychotic disorders have posited a number of putative psychological mechanisms that may contribute to the development of psychotic symptoms, but it is only recently that a modest amount of experience sampling research has provided evidence on their role in daily life, outside the research laboratory. A number of methodological challenges remain in evaluating specificity of potential causal links between a given psychological mechanism and psychosis outcomes in a systematic fashion, capitalizing on longitudinal data to investigate temporal ordering. In this article, we argue for testing ecological interventionist causal models that draw on real world and real-time delivered, ecological momentary interventions for generating evidence on several causal criteria (association, time order, and direction/sole plausibility) under real-world conditions, while maximizing generalizability to social contexts and experiences in heterogeneous populations. Specifically, this approach tests whether ecological momentary interventions can (1) modify a putative mechanism and (2) produce changes in the mechanism that lead to sustainable changes in intended psychosis outcomes in individuals’ daily lives. Future research using this approach will provide translational evidence on the active ingredients of mobile health and in-person interventions that promote sustained effectiveness of ecological momentary interventions and, thereby, contribute to ongoing efforts that seek to enhance effectiveness of psychological interventions under real-world conditions. PMID:26707864

  19. A Multi-criterial Decision Support System for Forest Management

    Science.gov (United States)

    Donald Nute; Geneho Kim; Walter D. Potter; Mark J. Twery; H. Michael Rauscher; Scott Thomasma; Deborah Bennett; Peter Kollasch

    1999-01-01

    We describe a research project that has as its goal development of a full-featured decision support system for managing forested land to satisfy multiple criteria represented as timber, wildlife, water, ecological, and wildlife objectives. The decision process proposed for what was originally conceived of as a Northeast Decision Model (NED) includes data acquisition,...

  20. Control mechanisms for ecological-economic systems

    CERN Document Server

    Burkov, Vladimir N; Shchepkin, Alexander V

    2015-01-01

    This monograph presents and analyzes the optimization, game-theoretic and simulation models of control mechanisms for ecological-economic systems. It is devoted to integrated assessment mechanisms for total risks and losses, penalty mechanisms, risk payment mechanisms, financing and costs compensation mechanisms for risk level reduction, sales mechanisms for risk level quotas, audit mechanisms, mechanisms for expected losses reduction, economic motivation mechanisms, optimization mechanisms for regional environmental (risk level reduction) programs, and mechanisms for authorities' interests coordination. The book is aiming at undergraduate and postgraduate students, as well as at experts in mathematical modeling and control of ecological economic, socioeconomic and organizational systems.

  1. Social support moderates caregiver life satisfaction following traumatic brain injury.

    Science.gov (United States)

    Ergh, Tanya C; Hanks, Robin A; Rapport, Lisa J; Coleman, Renee D

    2003-12-01

    Social support is an important determinant of adjustment following traumatic brain injury (TBI) sustained by a family member. The present study examined the extent to which social support moderates the influence of characteristics of the person with injury on caregiver subjective well-being. Sixty pairs of individuals who had sustained a moderate to severe TBI and their caregivers (N=120) participated. Years postinjury ranged from 0.3 to 9.9 ( M=4.8, SD=2.6). Cognitive, functional, and neurobehavioral functioning of participants with TBI were assessed using neuropsychological tests and rating scales. Caregiver life satisfaction and perceived social support were assessed using self-report questionnaires. Results indicated that time since injury was unrelated to life satisfaction. Neurobehavioral disturbances showed an inverse relation with life satisfaction. Social support emerged as an important moderator of life satisfaction. Only among caregivers with low social support was cognitive dysfunction adversely related to life satisfaction. Similarly, a trend suggested that patient unawareness of deficit was associated with caregiver life dissatisfaction only among caregivers with low social support. In contrast, these characteristics were unrelated to life satisfaction among caregivers with adequate social support.

  2. Supporting the full BPM life-cycle using process mining and intelligent redesign

    NARCIS (Netherlands)

    Netjes, M.; Reijers, H.A.; Aalst, van der W.M.P.; Siau, K.

    2007-01-01

    Abstract. Business Process Management (BPM) systems provide a broad range of facilities to enact and manage operational business processes. Ideally, these systems should provide support for the complete BPM life-cycle: (re)design, configuration, execution, control, and diagnosis by the FileNet P8

  3. Ecological Aspects of the Assessment of Quality of Life

    Directory of Open Access Journals (Sweden)

    Yelena Viktorovna Ryumina

    2016-12-01

    Full Text Available The article is devoted to the search of indicators, which reflect the ecological conditions and environmental behaviour and can be used for economic analysis. This environmental and economic issue still remains unsolved. The indicators of the emissions of harmful substances into the atmosphere and water objects, which are used in many economic works, characterize the future impact on the environment and cannot adequately reflect its state. From the ecologists’ point of view, the result of the environmental monitoring are, in particular, the indicators of the tests of air and water exceeding MPC (maximum permissible concentration in a total number of the studied tests as a percentage. They have been already included in a number of official statistical bulletins. The paper shows their advantages for a concise accounting of a state of the environment in economic. The regional values of the chosen indicators are studied and various hypotheses of their strong differentiation are analyzed. The introduction of the ecological component to the indicators of quality of life as well as to the human development index is especially important at present time. The authors propose to use the indicator of a share of the negative tests of water and air as an additional fourth component in the human development index. The results of the calculation of the ecologically corrected index of human development for all entities of the Russian Federation are presented. It differs significantly for a number of regions from the traditional index of human development

  4. System, economy and ecology viewpoints of the Krsko NPP lifetime extension

    International Nuclear Information System (INIS)

    Novsak, M.; Spiler, J.; Zagar, T.; Pirs, B.; Bole, A.; Bregar, Z.; Cuhalev, I.; Derganc, B.; Ivanjko, S.; Matvoz, D.; Sustersic, A.; Valencic, L.; Zabric, I.; Zlatarev, G.; Babuder, M.

    2007-01-01

    Krsko NPP plant life extension was analysed and evaluated with respect to system, economy and ecology viewpoints. From the system perspective it was established that also in the extended lifetime the plant will remain in operation as a base load electricity supplier. The systematic review was performed to determine its overall competitiveness against advanced coal, gas and new nuclear units. The analysis considered also hydro and renewable sources. Analysis and evaluations resulted in the conclusion that the Krsko NPP lifetime extension is the most effective alternative for base load production due to small additional capital investments, low fuel costs, no new siting requirements, lowest climate and environmental impact, and reliable and safe operation. (author)

  5. Environmental control and life support system requirements and technology needs for advanced manned space missions

    Science.gov (United States)

    Powell, Ferolyn T.; Sedej, Melaine; Lin, Chin

    1987-01-01

    NASA has completed an environmental control and life support system (ECLSS) technology R&D plan for advanced missions which gave attention to the drivers (crew size, mission duration, etc.) of a range of manned missions under consideration. Key planning guidelines encompassed a time horizon greater than 50 years, funding resource requirements, an evolutionary approach to goal definition, and the funding of more than one approach to satisfy a given perceived requirement. Attention was given to the ECLSS requirements of transportation and service vehicles, platforms, bases and settlements, ECLSS functions and average load requirements, unique drivers for various missions, and potentially exploitable commonalities among vehicles and habitats.

  6. USSR Space Life Sciences Digest, issue 11

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor)

    1987-01-01

    This is the eleventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of four new Soviet monographs. Selected abstracts are illustrated. Additional features include the translation of a paper presented in Russian to the United Nations, a review of a book on space ecology, and report of a conference on evaluating human functional capacities and predicting health. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 30 areas of aerospace medicine and space biology. These areas are: adaptation, aviation physiology, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, group dynamics, genetics, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, and radiobiology.

  7. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    Science.gov (United States)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  8. Life and death of Picea abies after bark-beetle outbreak: ecological processes driving seedling recruitment

    Czech Academy of Sciences Publication Activity Database

    Macek, Martin; Wild, Jan; Kopecký, Martin; Červenka, J.; Svoboda, M.; Zenáhlíková, J.; Brůna, Josef; Mosandl, R.; Fischer, A.

    2017-01-01

    Roč. 27, č. 1 (2017), s. 156-167 ISSN 1051-0761 R&D Projects: GA ČR GAP504/10/0843 Institutional support: RVO:67985939 Keywords : advance regeneration * growth function * Ips typographus * mortality * norway spruce Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 4.314, year: 2016

  9. Proposed minimum requirements for the operational characteristics and testing of closed circuit life support system control electronics.

    Science.gov (United States)

    Kirk, J C

    1998-01-01

    The popularization and transformation of scuba diving into a broadly practiced sport has served to ignite the interest of technically oriented divers into ever more demanding areas. This, along with the gradual release of military data, equipment, and techniques of closed circuit underwater breathing apparatus, has resulted in a virtual explosion of semiclosed and closed circuit systems for divers. Although many of these systems have been carefully thought out by capable designers, the impulse to rush to market with equipment that has not been fully developed and carefully tested is irresistible to marketers. In addition, the presence of systems developed by well-intentioned and otherwise competent designers who are, nonetheless, inexperienced in the field of life support can result in the sale of failure-prone equipment to divers who lack the knowledge and skills to identify deficiencies before disaster occurs. For this reason, a set of industry standards establishing minimum requirements and testing is needed to guide the designers of this equipment, and to protect the user community from incomplete or inadequate design. Many different technologies go into the development of closed circuit scuba. One key area is the design of electronics to monitor and maintain the critical gas mixtures of the closed circuit loop. Much of the system reliability and inherent danger is resident in the design of the circuitry and the software (if any) that runs it. This article will present a set of proposed minimum requirements, with the goal of establishing a dialog for the creation of guidelines for the classification, rating, design, and testing of embedded electronics for life support systems used in closed circuit applications. These guidelines will serve as the foundation for the later creation of a set of industry specifications.

  10. Lack of Ecological and Life History Context Can Create the Illusion of Social Interactions in Dictyostelium discoideum.

    Science.gov (United States)

    Martínez-García, Ricardo; Tarnita, Corina E

    2016-12-01

    Studies of social microbes often focus on one fitness component (reproductive success within the social complex), with little information about or attention to other stages of the life cycle or the ecological context. This can lead to paradoxical results. The life cycle of the social amoeba Dictyostelium discoideum includes a multicellular stage in which not necessarily clonal amoebae aggregate upon starvation to form a possibly chimeric (genetically heterogeneous) fruiting body made of dead stalk cells and spores. The lab-measured reproductive skew in the spores of chimeras indicates strong social antagonism that should result in low genotypic diversity, which is inconsistent with observations from nature. Two studies have suggested that this inconsistency stems from the one-dimensional assessment of fitness (spore production) and that the solution lies in tradeoffs between multiple life-history traits, e.g.: spore size versus viability; and spore-formation (via aggregation) versus staying vegetative (as non-aggregated cells). We develop an ecologically-grounded, socially-neutral model (i.e. no social interactions between genotypes) for the life cycle of social amoebae in which we theoretically explore multiple non-social life-history traits, tradeoffs and tradeoff-implementing mechanisms. We find that spore production comes at the expense of time to complete aggregation, and, depending on the experimental setup, spore size and viability. Furthermore, experimental results regarding apparent social interactions within chimeric mixes can be qualitatively recapitulated under this neutral hypothesis, without needing to invoke social interactions. This allows for simple potential resolutions to the previously paradoxical results. We conclude that the complexities of life histories, including social behavior and multicellularity, can only be understood in the appropriate multidimensional ecological context, when considering all stages of the life cycle.

  11. Development of a support system to make economic and technical assessments for the issues relating to plant life extension

    International Nuclear Information System (INIS)

    Takao, T.; Soneda, N.; Sakai, T.

    1994-01-01

    To realize the life extension of nuclear power plants, overall evaluation for the plant is required, which covers technology, economy such as cost of repair or/and replacement of components, and regal regulations for licensing. A prototype of integrated assessment support system for life extension ''INPLEX'' have developed in order to evaluate the technical and economic issues relating to the plant life extension and to make a life extension scenario. Analysis procedure of INPLEX is as follows. A comparison of the cost between the life extension and the reconstruction is made to see whether the life extension is cost effective or not. Next, components required detailed assessments are selected, and the residual life assessment of these components are made. After those procedures life extension measures are selected and the implementation time schedule is set on the basis of the formulas for predicting the degradation of the components and the component reliability data. Finally the implementation time schedule is optimized from the viewpoint of economy, and the life extension scenario is proposed. INPLEX also has the data base ''PRINS'', in which information and data related to life extension are registered, such as component degradation experiences, degradation management methodologies, degradation mitigation measures, and so on. PRINS can be referred at any time during the operation of INPLEX

  12. International cooperation on technical support for regulation of safety-related activities on the transformation of the destroyed Chernobyl Nuclear Power Plant Power Unit into an ecologically safe system

    International Nuclear Information System (INIS)

    Groniov, G.; Kondratiev, S.; Kutina, L.; Bachner, D.; Kuechler, L.; Denver, D.

    2010-01-01

    The world's most severe nuclear accident destroyed the fourth unit at the Chernobyl nuclear power plant in 1986. In the six months following the accident, a localizing building was erected over the unit to contain the nuclear materials and provide support services for managing the destroyed reactor. Since 1997, an international project which includes both urgent measures for stabilization and safety upgrading as well as long-term measures for transforming the facility into an ecologically safe system has been under way. This paper discusses an important aspect of this project which has been the cooperation amongst the technical support organizations of the Ukrainian regulatory authorities and the technical support from international organizations. (author)

  13. Epidemiology of Pediatric Prehospital Basic Life Support Care in the United States.

    Science.gov (United States)

    Diggs, Leigh Ann; Sheth-Chandra, Manasi; De Leo, Gianluca

    2016-01-01

    Children have unique medical needs compared to adults. Emergency medical services personnel need proper equipment and training to care for children. The purpose of this study is to characterize emergency medical services pediatric basic life support to help better understand the needs of children transported by ambulance. Pediatric basic life support patients were identified in this retrospective descriptive study. Descriptive statistics were used to examine incident location, possible injury, cardiac arrest, resuscitation attempted, chief complaint, primary symptom, provider's primary impression, cause of injury, and procedures performed during pediatric basic life support calls using the largest aggregate of emergency medical services data available, the 2013 National Emergency Medical Services Information System (NEMSIS) Public Release Research Data Set. Pediatric calls represented 7.4% of emergency medical services activations. Most pediatric patients were male (49.8%), White (40.0%), and of non-Hispanic origin (56.5%). Most incidents occurred in the home. Injury, cardiac arrest, and resuscitation attempts were highest in the 15 to 19 year old age group. Global complaints (37.1%) predominated by anatomic location and musculoskeletal complaints (26.9%) by organ system. The most common primary symptom was pain (30.3%) followed by mental/psychiatric (13.4%). Provider's top primary impression was traumatic injury (35.7%). The most common cause of injury was motor vehicle accident (32.3%). The most common procedure performed was patient assessment (27.4%). Median EMS system response time was 7 minutes (IQR: 5-12). Median EMS scene time was 12 minutes (IQR: 8-19). Median transport time was 14 minutes (IQR: 8-24). Median EMS total call time was 51 minutes (IQR: 33-77). The epidemiology of pediatric basic life support can help to guide efforts in both emergency medical services operations and training.

  14. An estimate of the second law thermodynamic efficiency of the various units comprising an Environmental Control and Life Support System (ECLSS)

    Science.gov (United States)

    Chatterjee, Sharmista; Seagrave, Richard C.

    1993-01-01

    The objective of this paper is to present an estimate of the second law thermodynamic efficiency of the various units comprising an Environmental Control and Life Support System (ECLSS). The technique adopted here is based on an evaluation of the 'lost work' within each functional unit of the subsystem. Pertinent information for our analysis is obtained from a user interactive integrated model of an ECLSS. The model was developed using ASPEN. A potential benefit of this analysis is the identification of subsystems with high entropy generation as the most likely candidates for engineering improvements. This work has been motivated by the fact that the design objective for a long term mission should be the evaluation of existing ECLSS technologies not only the basis of the quantity of work needed for or obtained from each subsystem but also on the quality of work. In a previous study Brandhorst showed that the power consumption for partially closed and completely closed regenerable life support systems was estimated as 3.5 kw/individual and 10-12 kw/individual respectively. With the increasing cost and scarcity of energy resources, our attention is drawn to evaluate the existing ECLSS technologies on the basis of their energy efficiency. In general the first law efficiency of a system is usually greater than 50 percent. From literature, the second law efficiency is usually about 10 percent. The estimation of second law efficiency of the system indicates the percentage of energy degraded as irreversibilities within the process. This estimate offers more room for improvement in the design of equipment. From another perspective, our objective is to keep the total entropy production of a life support system as low as possible and still ensure a positive entropy gradient between the system and the surroundings. The reason for doing so is as the entropy production of the system increases, the entropy gradient between the system and the surroundings decreases, and the

  15. Some ways of plants wastes utilization in bioregenerative life support systems

    Science.gov (United States)

    Kovaleva, N. P.; Tikhomirov, A. A.; Tirranen, L. S.; Ushakova, S. A.; Zolotukhin, I. G.; Anischenko, O. V.

    In works on experimental modeling of bioregenerative life support systems BLSS carried out at Institute of Biophysics Russian Academy of Science Siberian Branch SB RAS the possibility of increase of a system closure degree under the condition of inedible plant biomass return into the organic matter turnover was demonstrated At the same time when radish inedible biomass was subjected to biological oxidation in soil-like substrate SLS after its drying then wheat straw was subjected to stepwise processing including mushrooms growing stage Mushrooms cultivation facilitated to lignin destruction and quicker straw decomposition On the other hand mushrooms growing required additional technological procedures leading to complication of a technological chain of straw processing The purpose of this work is to study the possibility of exclusion of mushrooms growing stage under straw pretreatment for its further use as an equivalent of radish edible biomass grown on SLS To solve the problem put by the radish cenosis in a conveyer regime was grown The conveyer included radish four ages with the conveyer step equal to 7 days The experiment consisted of two successive stages On the first stage radish was grown without straw addition into SLS control To return mineral elements into SLS the biomass grown was restored in SLS On the second stage inedible radish biomass and wheat straw were returned into SLS in the quantity equivalent to edible biomass The possibility of the method described was estimated according to plant productivity microbiological

  16. Biological life support systems for martian missions: some problems and prospects

    Science.gov (United States)

    Tikhomirov, A. A.; Ushakova, S. A.; Kovaleva, N. P.; Lasseur, C.

    Taking into account the experience of scientific researches obtained during experiments in the BIOS - 3 of the Institute of Biophysics of Siberian Branch of Russian Academy of Science (IBP SB RAS) and the MELISSA program (ESA), approaches in creation biological life support systems for a flight period and a fixed-site base of Martian mission are considered. Various alternate variants of designing of elements of BLSS based on use of Chlorella and/or Spirulina, and also greenhouses with higher plants for the flight period of Martian mission are analyzed. For this purpose construction of BLSS ensuring full closure of matter turnover according to gas exchange and water and partial closure on the human's exometabolites is supposed. For the fixed site Martian station BLSS based on use of higher plants with a various degree of closure of internal mass exchange are suggested. Various versions of BLSS configuration and degree of closure of mass exchange depending on duration of Martian mission, the diet type of a crew and some other conditions are considered. Special attention is given to problems of reliability and tolerance of matter turnover processes in BLSS which maintenance is connected, in particular, with additional oxygen reproduction inside a system. Technologies for realization of BLSS of various configurations are offered and justified. The auxiliary role of the physicochemical methods in BLSS functioning both for the flight period and for the crew stay on Mars is justified.

  17. Ecology-driven stereotypes override race stereotypes

    Science.gov (United States)

    Williams, Keelah E. G.; Sng, Oliver; Neuberg, Steven L.

    2016-01-01

    Why do race stereotypes take the forms they do? Life history theory posits that features of the ecology shape individuals’ behavior. Harsh and unpredictable (“desperate”) ecologies induce fast strategy behaviors such as impulsivity, whereas resource-sufficient and predictable (“hopeful”) ecologies induce slow strategy behaviors such as future focus. We suggest that individuals possess a lay understanding of ecology’s influence on behavior, resulting in ecology-driven stereotypes. Importantly, because race is confounded with ecology in the United States, we propose that Americans’ stereotypes about racial groups actually reflect stereotypes about these groups’ presumed home ecologies. Study 1 demonstrates that individuals hold ecology stereotypes, stereotyping people from desperate ecologies as possessing faster life history strategies than people from hopeful ecologies. Studies 2–4 rule out alternative explanations for those findings. Study 5, which independently manipulates race and ecology information, demonstrates that when provided with information about a person’s race (but not ecology), individuals’ inferences about blacks track stereotypes of people from desperate ecologies, and individuals’ inferences about whites track stereotypes of people from hopeful ecologies. However, when provided with information about both the race and ecology of others, individuals’ inferences reflect the targets’ ecology rather than their race: black and white targets from desperate ecologies are stereotyped as equally fast life history strategists, whereas black and white targets from hopeful ecologies are stereotyped as equally slow life history strategists. These findings suggest that the content of several predominant race stereotypes may not reflect race, per se, but rather inferences about how one’s ecology influences behavior. PMID:26712013

  18. Industrial ecology Prosperity Game{trademark}

    Energy Technology Data Exchange (ETDEWEB)

    Beck, D.; Boyack, K.; Berman, M.

    1998-03-01

    Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

  19. Perceived social support and life satisfaction in persons with somatization disorder

    Directory of Open Access Journals (Sweden)

    Arif Ali

    2010-01-01

    Full Text Available Background: Life satisfaction and perceived social support been shown to improve the well-being of a person and also affect the outcome of treatment in somatization disorder. The phenomenon of somatization was explored in relation to the perceived social support and life satisfaction. Aim: This study aimed at investigating perceived social support and life satisfaction in people with somatization disorder. Materials and Methods: The study was conducted on persons having somatization disorder attending the outpatient unit of LGB Regional Institute of Mental Health, Tezpur, Assam. Satisfaction with life scale and multidimensional scale of perceived social support were used to assess life satisfaction and perceived social support respectively. Results: Women reported more somatic symptoms than men. Family perceived social support was high in the patient in comparison to significant others′ perceived social support and friends′ perceived social support. Perceived social support showed that a significant positive correlation was found with life satisfaction. Conclusion: Poor social support and low life satisfaction might be a stress response with regard to increased distress severity and psychosocial stressors rather than a cultural response to express psychological problems in somatic terms.

  20. Harnessing the plurality of actor frames in social-ecological systems : Ecological sanitation in Bolivia

    NARCIS (Netherlands)

    Eelderink, M.; Vervoort, J.; Snel, D.; de Castro, F.

    2017-01-01

    This article uses a case study on ecological sanitation as a basis for lessons on identifying and harnessing the plurality of actor frames in social-ecological systems, thereby moving beyond the advocacy positions often taken by implementing NGOs. The study aimed to explore how perspectives between

  1. Biological life support systems for a Mars mission planetary base: Problems and prospects

    Science.gov (United States)

    Tikhomirov, A. A.; Ushakova, S. A.; Kovaleva, N. P.; Lamaze, B.; Lobo, M.; Lasseur, Ch.

    The study develops approaches to designing biological life support systems for the Mars mission - for the flight conditions and for a planetary base - using experience of the Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences (IBP SB RAS) with the Bios-3 system and ESA's experience with the MELISSA program. Variants of a BLSS based on using Chlorella and/or Spirulina and higher plants for the flight period of the Mars mission are analyzed. It is proposed constructing a BLSS with a closed-loop material cycle for gas and water and for part of human waste. A higher-plant-based BLSS with the mass exchange loop closed to various degrees is proposed for a Mars planetary base. Various versions of BLSS configuration and degree of closure of mass exchange are considered, depending on the duration of the Mars mission, the diet of the crew, and some other conditions. Special consideration is given to problems of reliability and sustainability of material cycling in BLSS, which are related to production of additional oxygen inside the system. Technologies of constructing BLSS of various configurations are proposed and substantiated. Reasons are given for using physicochemical methods in BLSS as secondary tools both during the flight and the stay on Mars.

  2. Aquatic food production modules in bioregenerative life support systems based on higher plants

    Science.gov (United States)

    Bluem, V.; Paris, F.

    Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity.

  3. Krsko NPP ecological information system

    International Nuclear Information System (INIS)

    Kovac, A.; Breznik, B.

    1996-01-01

    The Ecological Information System was developed and is used for continuous data collecting from different measuring points as well as for dose calculation in case of emergency. The system collects all the data which are continuously measured in the environment or might have influence to the environment or are necessary for evaluation of impact to the environment. (author)

  4. Pediatric advanced life support and sedation of pediatric dental patients.

    Science.gov (United States)

    Kim, Jongbin

    2016-03-01

    Programs provided by the Korea Association of Cardiopulmonary Resuscitation include Basic Life Support (BLS), Advanced Cardiac Life Support (ACLS), Pediatric Advanced Life Support (PALS), and Korean Advanced Life Support (KALS). However, programs pertinent to dental care are lacking. Since 2015, related organizations have been attempting to develop a Dental Advanced Life Support (DALS) program, which can meet the needs of the dental environment. Generally, for initial management of emergency situations, basic life support is most important. However, emergencies in young children mostly involve breathing. Therefore, physicians who treat pediatric dental patients should learn PALS. It is necessary for the physician to regularly renew training every two years to be able to immediately implement professional skills in emergency situations. In order to manage emergency situations in the pediatric dental clinic, respiratory support is most important. Therefore, mastering professional PALS, which includes respiratory care and core cases, particularly upper airway obstruction and respiratory depression caused by a respiratory control problem, would be highly desirable for a physician who treats pediatric dental patients. Regular training and renewal training every two years is absolutely necessary to be able to immediately implement professional skills in emergency situations.

  5. Improving basic life support training for medical students

    OpenAIRE

    Lami, Mariam; Nair, Pooja; Gadhvi, Karishma

    2016-01-01

    Mariam Lami, Pooja Nair, Karishma GadhviFaculty of Medicine, Imperial College, London, London, UKAbstract: Questions have been raised about basic life support (BLS) training in medical education. This article addresses the research evidence behind why BLS training is inadequate and suggests recommendations for improving BLS training for medical students.Keywords: medical education, basic life support

  6. Multiparameter Stochastic Dynamics of Ecological Tourism System with Continuous Visitor Education Interventions

    Directory of Open Access Journals (Sweden)

    Dongping Wei

    2015-01-01

    Full Text Available Management of ecological tourism in protected areas faces many challenges, with visitation-related resource degradations and cultural impacts being two of them. To address those issues, several strategies including regulations, site managements, and visitor education programs have been commonly used in China and other countries. This paper presents a multiparameter stochastic differential equation model of an Ecological Tourism System to study how the populations of stakeholders vary in a finite time. The solution of Ordinary Differential Equation of Ecological Tourism System reveals that the system collapses when there is a lack of visitor educational intervention. Hence, the Stochastic Dynamic of Ecological Tourism System is introduced to suppress the explosion of the system. But the simulation results of the Stochastic Dynamic of Ecological Tourism System show that the system is still unstable and chaos in some small time interval. The Multiparameters Stochastic Dynamics of Ecological Tourism System is proposed to improve the performance in this paper. The Multiparameters Stochastic Dynamics of Ecological Tourism System not only suppresses the explosion of the system in a finite time, but also keeps the populations of stakeholders in an acceptable level. In conclusion, the Ecological Tourism System develops steadily and sustainably when land managers employ effective visitor education intervention programs to deal with recreation impacts.

  7. The transition to siblinghood: a developmental ecological systems perspective and directions for future research.

    Science.gov (United States)

    Volling, Brenda L

    2005-12-01

    The birth of a baby sibling is a normative life event for many children. Few studies address this important transition period and changes in the older sibling's adjustment and family relationships following the sibling's birth. The present article presents a developmental ecological systems model for studying changes in family life and the older child's adjustment following the birth of a baby sibling. Simultaneous changes occurring in the family and how these changes are interrelated over time to predict patterns of adaptation after the transition to siblinghood are underscored. Recommendations for designing longitudinal studies that take advantage of recent developments in multilevel modeling are also discussed. Copyright 2006 APA, all rights reserved).

  8. Daily life support for older adults evaluated by commissioned welfare volunteers

    OpenAIRE

    Onishi, Joji

    2016-01-01

    Japan has a unique system of commissioned welfare volunteers who are familiar with neighborhoods and can identify the households requiring assistance and connect them to public support. In the present study, an anonymous self-rated questionnaire was delivered to commissioned welfare volunteers to clarify the daily life supports provided for elderly households requiring assistance, and 2270 data were collected. The questionnaires included information about elderly households requiring assistan...

  9. A Review: Using Pyrolysis and its Bioproducts to Help Close the Loop in Sustainable Life Support Systems

    Science.gov (United States)

    McCoy, LaShelle E.

    2013-01-01

    The next step in human exploration of space is beyond low Earth orbit and possibly to sites such as the Moon and Mars. Resupply of critical life support components for missions such as these are difficult or impossible. Life support processes for closing the loop of water, oxygen and carbon have to be identified. Currently, there are many technologies proposed for terrestrial missions for waste, water, air processing. and the creation of consumables. There are a variety of different approaches, but few address all of these issues simultaneously. One candidate is pyrolysis; a method where waste streams can be heated in the absence of oxygen to undergo a thermochemical conversion producing a series of bioproducts. Bioproducts like biochar made from non-edible biomass and human solid waste can possibly provide valuable benefits such as waste reduction, regolith fertilization for increased food production, and become a consumable for water processing and air revitalization systems. Syngas containing hydrogen, carbon monoxide and carbon dioxide, can be converted to methane and dimethyl ether to create propellants. Bio-oils can be utilized as a heating fuel or fed to bioreactors that utilize oil-eating microbes.

  10. Insight into the radiotolerance of the life support bacterium Rhodospirillum rubrum S1H by means of phenotypic and transcriptomic methods

    Science.gov (United States)

    Mastroleo, Felice; Monsieurs, Pieter; Leys, Natalie

    this particular aspect of R. rubrum S1H metabolism should be carefully monitored and possibly countermeasure could be taken in order to avoid potential malfunctioning of the continuous culture bioreactor. Hendrickx L., De Wever H., Hermans V., Mastroleo F., Morin N., Wilmotte A., Janssen P. and Mergeay M. Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Sup-port System Alternative): reinventing and compartmentalizing the Earth's food and oxygen regenera-tion system for long-haul space exploration missions. Res Microbiol 2006;157:77-86. Mergeay M., Verstraete W., Dubertret G., Lefort-Tran M., Chipaux C., Binot R.A. `MELiSSA'—A micro-organisms-based model for `CELSS' development. Proceedings at the 3rd European Symposium on Space Thermal Control Life Support Systems Noordwijk, The Netherlands (1988) pp 65-68. The presented work was financially supported by the European Space Agency (ESA-PRODEX), the Belgian Science Policy (Belspo) (PRODEX agreements No C90247 No 90094) and the SCK•CEN PhD AWM grant of F. Mastroleo. We are grateful to C. Lasseur and C. Paillé, both from ESTEC/ESA, for their constant support and advice.

  11. Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System

    Science.gov (United States)

    Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin

    2016-01-01

    The infrared gas transducer used during extravehicular activity (EVA) in the extravehicular mobility unit (EMU) measures and reports the concentration of carbon dioxide (CO2) in the ventilation loop. It is nearing its end of life and there are a limited number remaining. Meanwhile, the next generation advanced portable life support system (PLSS) now being developed requires CO2 sensing technology with performance beyond that presently in use. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed to address both applications by Vista Photonics, Inc. Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. Version 1.0 devices were delivered to NASA Johnson Space Center (JSC) in 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Version 2.0 devices with improved electronics and significantly reduced wetted volumes were delivered to JSC in 2012. A version 2.5 upgrade recently implemented wavelength stabilized operation, better humidity measurement, and much faster data analysis/reporting. A wholly reconfigured version 3.0 will maintain the demonstrated performance of earlier versions while being backwards compatible with the EMU and offering a radiation tolerant architecture.

  12. An ecological process model of systems change.

    Science.gov (United States)

    Peirson, Leslea J; Boydell, Katherine M; Ferguson, H Bruce; Ferris, Lorraine E

    2011-06-01

    In June 2007 the American Journal of Community Psychology published a special issue focused on theories, methods and interventions for systems change which included calls from the editors and authors for theoretical advancement in this field. We propose a conceptual model of systems change that integrates familiar and fundamental community psychology principles (succession, interdependence, cycling of resources, adaptation) and accentuates a process orientation. To situate our framework we offer a definition of systems change and a brief review of the ecological perspective and principles. The Ecological Process Model of Systems Change is depicted, described and applied to a case example of policy driven systems level change in publicly funded social programs. We conclude by identifying salient implications for thinking and action which flow from the Model.

  13. Individuals' quality of life linked to major life events, perceived social support, and personality traits.

    Science.gov (United States)

    Pocnet, Cornelia; Antonietti, Jean-Philippe; Strippoli, Marie-Pierre F; Glaus, Jennifer; Preisig, Martin; Rossier, Jérôme

    2016-11-01

    The aim of this study was to investigate the relationship between major recent life events that occurred during the last 5 years, social and personal resources, and subjective quality of life (QoL). A total of 1801 participants from the general population (CoLaus/PsyCoLaus study) completed the Life Events Questionnaire, the Social Support Questionnaire, the NEO Five-Factor Inventory Revised, and the Manchester Short Assessment of Quality of Life. Major life events were modestly associated with the QoL (about 5 % of the explained variance). However, QoL was significantly related to perceived social support and personality traits (about 37 % of the explained variance). Particularly, perceived social support, extraversion and conscientiousness personality dimensions were positively linked to life satisfaction, whereas a high level of neuroticism was negatively associated with QoL. This study highlights the negative but temporary association between critical events and QoL. However, a combination of high conscientiousness and extraversion, and positive social support may explain better variances for a high-perceived QoL.

  14. Potential applications of the white rot fungus Pleurotus in bioregenerative life support systems

    Science.gov (United States)

    Manukovsky, N. S.; Kovalev, V. S.; Yu, Ch.; Gurevich, Yu. L.; Liu, H.

    Earlier we demonstrated the possibility of using soil-like substrate SLS for plant cultivation in bioregenerative life support systems BLSS We suggest dividing the process of SLS bioregeneration at BLSS conditions into two stages At the first stage plant residues should be used for growing of white rot fungus Pleurotus ostreatus Pleurotus florida etc The fruit bodies could be used as food Spent mushroom compost is carried in SLS and treated by microorganisms and worms at the second stage The possibility of extension of human food ration is only one of the reasons for realization of the suggested two-stage SLS regeneration scheme people s daily consumption of mushrooms is limited to 200 -250 g of wet weight or 20 -25 g of dry weight Multiple tests showed what is more important is that inclusion of mushrooms into the system cycle scheme contributes through various mechanisms to the more stable functioning of vegetative cenosis in general Taking into account the given experimental data we determined the scheme of mushroom module material balance The technological peculiarities of mushroom cultivation at BLSS conditions are being discussed

  15. Plant diversity to support humans in a CELSS ground based demonstrator

    Science.gov (United States)

    Howe, J. M.; Hoff, J. E.

    1981-01-01

    A controlled ecological life support system (CELSS) for human habitation in preparation for future long duration space flights is considered. The success of such a system depends upon the feasibility of revitalization of food resources and the human nutritional needs which are to be met by these food resources. Edible higher plants are prime candidates for the photoautotrophic components of this system if nutritionally adequate diets can be derived from these plant sources to support humans. Human nutritional requirements information based on current knowledge are developed for inhabitants envisioned in the CELSS ground based demonstrator. Groups of plant products that can provide the nutrients are identified.

  16. Parasites, ecosystems and sustainability: an ecological and complex systems perspective.

    Science.gov (United States)

    Horwitz, Pierre; Wilcox, Bruce A

    2005-06-01

    Host-parasite relationships can be conceptualised either narrowly, where the parasite is metabolically dependent on the host, or more broadly, as suggested by an ecological-evolutionary and complex systems perspective. In this view Host-parasite relationships are part of a larger set of ecological and co-evolutionary interdependencies and a complex adaptive system. These interdependencies affect not just the hosts, vectors, parasites, the immediate agents, but also those indirectly or consequentially affected by the relationship. Host-parasite relationships also can be viewed as systems embedded within larger systems represented by ecological communities and ecosystems. So defined, it can be argued that Host-parasite relationships may often benefit their hosts and contribute significantly to the structuring of ecological communities. The broader, complex adaptive system view also contributes to understanding the phenomenon of disease emergence, the ecological and evolutionary mechanisms involved, and the role of parasitology in research and management of ecosystems in light of the apparently growing problem of emerging infectious diseases in wildlife and humans. An expanded set of principles for integrated parasite management is suggested by this perspective.

  17. Defining the Ecological Coefficient of Performance for an Aircraft Propulsion System

    Science.gov (United States)

    Şöhret, Yasin

    2018-05-01

    The aircraft industry, along with other industries, is considered responsible these days regarding environmental issues. Therefore, the performance evaluation of aircraft propulsion systems should be conducted with respect to environmental and ecological considerations. The current paper aims to present the ecological coefficient of performance calculation methodology for aircraft propulsion systems. The ecological coefficient performance is a widely-preferred performance indicator of numerous energy conversion systems. On the basis of thermodynamic laws, the methodology used to determine the ecological coefficient of performance for an aircraft propulsion system is parametrically explained and illustrated in this paper for the first time. For a better understanding, to begin with, the exergy analysis of a turbojet engine is described in detail. Following this, the outputs of the analysis are employed to define the ecological coefficient of performance for a turbojet engine. At the end of the study, the ecological coefficient of performance is evaluated parametrically and discussed depending on selected engine design parameters and performance measures. The author asserts the ecological coefficient of performance to be a beneficial indicator for researchers interested in aircraft propulsion system design and related topics.

  18. Of Models and Meanings: Cultural Resilience in Social-Ecological Systems

    Directory of Open Access Journals (Sweden)

    Todd A. Crane

    2010-12-01

    Full Text Available Modeling has emerged as a key technology in analysis of social-ecological systems. However, the tendency for modeling to focus on the mechanistic materiality of biophysical systems obscures the diversity of performative social behaviors and normative cultural positions of actors within the modeled system. The fact that changes in the biophysical system can be culturally constructed in different ways means that the perception and pursuit of adaptive pathways can be highly variable. Furthermore, the adoption of biophysically resilient livelihoods can occur under conditions that are subjectively experienced as the radical transformation of cultural systems. The objectives of this work are to: (1 highlight the importance of understanding the place of culture within social-ecological systems, (2 explore the tensions between empirical and normative positions in the analysis of social-ecological resilience, and (3 suggest how empirical modeling of social-ecological systems can synergistically interact with normative aspects of livelihoods and lifeways.

  19. International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Atmosphere Control and Supply Subsystem

    Science.gov (United States)

    Williams, David E.

    2009-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the Node 1 ECLS ACS subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for that subsystem.

  20. Breastfeeding Support in the Workplace: The Relationships Among Breastfeeding Support, Work-Life Balance, and Job Satisfaction.

    Science.gov (United States)

    Jantzer, Amanda M; Anderson, Jenn; Kuehl, Rebecca A

    2018-05-01

    Women are increasingly faced with decisions about how to combine breastfeeding with work, but few researchers have directly measured how breastfeeding relates to the work-life interface. Research aim: The authors examined how perceptions of work enhancement of personal life and work interference with personal life were influenced by workplace breastfeeding support, including organizational, manager, and coworker support, as well as adequate time to express human milk. Then, we examined how workplace breastfeeding support predicted work-life variables and job satisfaction. Using a self-report, survey design, the authors analyzed online surveys from 87 women in a rural, community sample who indicated that they had pumped at work or anticipated needing to pump in the future. According to regression results, provision of workplace breastfeeding support, particularly providing adequate time for human milk expression, predicted work enhancement of personal life. Conversely, we found that as workplace support diminished, employees perceived greater work interference with personal life. Results of path analysis further suggested that providing time for expressing milk improved job satisfaction via a partially mediated relationship where work enhancement of personal life acted as a mediator. These results suggest that employers can enhance the lives of their breastfeeding employees both at work and at home by providing workplace breastfeeding support, especially through providing time for expressing human milk in the workplace.

  1. Life-sustaining support: ethical, cultural, and spiritual conflicts. Part II: Staff support--a neonatal case study.

    Science.gov (United States)

    Stutts, Amy; Schloemann, Johanna

    2002-06-01

    As medical knowledge and technology continue to increase, so will the ability to provide life-sustaining support to patients who otherwise would not survive. Along with these advances comes the responsibility of not only meeting the clinical needs of our patients, but also of understanding how the family's culture and spirituality will affect their perception of the situation and their decision-making process. As the U.S. continues to become a more culturally diverse society, health care professionals will need to make changes in their practice to meet the psychosocial needs of their patients and respect their treatment decisions. Part I of this series (April 2002) discussed how the cultural and spiritual belief systems of Baby S's family affected their decision-making processes and also their ability to cope with the impending death of their infant. The development of a culturally competent health care team can help bridge the gap between culturally diverse individuals. This article addresses the following questions: 1. What legal alternatives are available to the staff to protect the patient from suffering associated with the continuation of futile life-sustaining support? 2. What conflicts might the staff experience as a result of the continuation of futile life-sustaining support? 3. What efforts can be made to support members of the staff? 4. What can be done to prepare others in the health care professions to deal more effectively with ethical/cultural issues?

  2. LOGIC SIMULATION OF LIFE SUPPORT SYSTEM COMPONENT IN REAL TIME

    Directory of Open Access Journals (Sweden)

    A. S. Marchenko

    2016-01-01

    Full Text Available Abstract. The article proposed the use of simulation methods for evaluating the effectiveness of a stepped fan engine speed control while maintaining the air flow volume in the set boundaries of the «fan-filter» system. A detailed algorithm of the program made on the basis of an Any Logic software package. Is analyzed the possibility of using the proposed method in the design of ventilation systems.The proposed method allows at the design stage to determine the maximum replacement intervals of the systems filter elements, as well as to predict the time to switch the fan motor speeds. Using of the technique allows to refuse the complex air flow systems and maximize the life of the filter elements set.Methods of logical processes modeling allows to reduce construction costs and improve energy efficiency of buildings. 

  3. [Organization of anesthesia management and advanced life support at military medical evacuation levels].

    Science.gov (United States)

    Shchegolev, A V; Petrakov, V A; Savchenko, I F

    2014-07-01

    Anesthesia management and advanced life support for the severely wounded personnel at military medical evacuation levels in armed conflict (local war) is time-consuming and resource-requiring task. One of the mathematical modeling methods was used to evaluate capabilities of anesthesia and intensive care units at tactical level. Obtained result allows us to tell that there is a need to make several system changes of the existing system of anesthesia management and advanced life support for the severely wounded personnel at military medical evacuation levels. In addition to increasing number of staff of anesthesiology-critical care during the given period of time another solution should be the creation of an early evacuation to a specialized medical care level by special means while conducting intensive monitoring and treatment.

  4. Implementation of a socio-ecological system navigation approach to human development in Sub-Saharan African communities

    Directory of Open Access Journals (Sweden)

    Gianni Gilioli

    2014-04-01

    Full Text Available This paper presents a framework for the development of socio-eco- logical systems towards enhanced sustainability. Emphasis is given to the dynamic properties of complex, adaptive social-ecological systems, their structure and to the fundamental role of agriculture. The tangible components that meet the needs of specific projects executed in Kenya and Ethiopia encompass project objectives, innovation, facilitation, continuous recording and analyses of monitoring data, that allow adaptive management and system navigation. Two case studies deal with system navigation through the mitigation of key constraints; they aim to improve human health thanks to anopheline malaria vectors control in Nyabondo (Kenya, and to improve cattle health through tsetse control and antitrypanosomal drug administration to cattle in Luke (Ethiopia. The second case deals with a socio-ecological navigation system to enhance sustainability, establishing a periurban diversified enterprise in Addis Ababa (Ethiopia and developing a rural sustainable social-ecological system in Luke (Ethiopia. The project procedures are briefly described here and their outcomes are analysed in relation to the stated objectives. The methodology for human and cattle disease vector control were easier to implement than the navigation of social-ecological systems towards sustainability enhancement. The achievements considerably differed between key constraints removal and sustainability enhancement projects. Some recommendations are made to rationalise human and cattle health improvement efforts and to smoothen the road towards enhanced sustainability: i technology system implementation should be carried out through an innovation system; ii transparent monitoring information should be continuously acquired and evaluated for assessing the state of the system in relation to stated objectives for (a improving the insight into the systems behaviour and (b rationalizing decision support; iii the

  5. Resilience Through Ecological Network

    Directory of Open Access Journals (Sweden)

    Grazia Brunetta

    2014-05-01

    Full Text Available The paper explores the strategic role that urban biodiversity and ecosystem services management, natural infrastructure and adaptive governance approaches can play in making our economies and societies more resilient and in linking human societies and the natural environment. Resilience – a concept that entered the debate on urban governance – means the ability of urban systems, considered as linear-systems, to react to external disturbances by returning to some socio-ecological equilibrium steady-state by overcoming a crisis period (Gunderson & al. 2010, Newman & al. 2009. In this view, green infrastructures can assume a strategic role in restoring and enhancing the ecological and environmental livability in urban areas. Starting from the International and European context, the paper discusses innovative programs and interdisciplinary projects and practices (some cases in Turin Metropolitan Area to demonstrate how green infrastructures can increase the adaptive capacity of urban systems in term of resilience. They can contribute to increase the ability of European cities to adapt to climate change and to reduce their ecological footprints, to enhance security and life quality.

  6. On the use of Space Station Freedom in support of the SEI - Life science research

    Science.gov (United States)

    Leath, K.; Volosin, J.; Cookson, S.

    1992-01-01

    The use of the Space Station Freedom (SSF) for life sciences research is evaluated from the standpoint of requirements for the Space Exploration Initiative (SEI). SEI life sciences research encompasses: (1) biological growth and development in space; (2) life support and environmental health; (3) physiological/psychological factors of extended space travel; and (4) space environmental factors. The platforms required to support useful study in these areas are listed and include ground-based facilities, permanently manned spacecraft, and the Space Shuttle. The SSF is shown to be particularly applicable to the areas of research because its facilities can permit the study of gravitational biology, life-support systems, and crew health. The SSF can serve as an experimental vehicle to derive the required knowledge needed to establish a commitment to manned Mars missions and colonization plans.

  7. Material balance and diet in bioregenerative life support systems: Connection with coefficient of closure

    Science.gov (United States)

    Manukovsky, N. S.; Kovalev, V. S.; Somova, L. A.; Gurevich, Yu. L.; Sadovsky, M. G.

    Bioregenerative life support systems (BLSS) with different coefficients of closure are considered. The 66.2% coefficient of closure achieved in "BIOS-3" facility experiments has been taken as a base value. The increase in coefficient of closure up to 72.6-93.0% is planned due to use of soil-like substrate (SLS) and concentrating of urine. Food values were estimated both in a base variant ("BIOS-3"), and with increases in the coefficient of closure. It is shown that food requirements will be more fully satisfied by internal crop production with an increase in the coefficient of closure of the BLSS. Changes of massflow rates on an 'input-output' and inside BLSS are considered. Equations of synthesis and degradation of organic substances in BLSS were examined using a stoichiometric model. The paper shows that at incomplete closure of BLSS containing SLS there is a problem of nitrogen balancing. To compensate for the removal of nitrogen from the system in urine and feces, it is necessary to introduce food and a nitrogen-containing additive.

  8. US EPA's Ecological Risk Assessment Support Center ...

    Science.gov (United States)

    BackgroundThe ERASC provides technical information and addresses scientific questions of concern or interest on topics relevant to ecological risk assessment at hazardous waste sites for EPA's Office of Solid Waste and Emergency Response (OSWER) personnel and the Office of Resource Conservation and Recovery (ORCR) staff. Requests are channeled to ERASC through the Ecological Risk Assessment Forum (ERAF). To assess emerging and complex scientific issues that require expert judgment, the ERASC relies on the expertise of scientists and engineers located throughout EPA's Office of Research and Development (ORD) labs and centers.ResponseERASC develops responses that reflect the state of the science for ecological risk assessment and also provides a communication point for the distribution of the responses to other interested parties. For further information, contact Ecology_ERASC@epa.gov or call 513-569-7940.

  9. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    Science.gov (United States)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  10. Research Needs and Challenges from Science to Decision Support. Lesson Learnt from the Development of the International Reference Life Cycle Data System (ILCD) Recommendations for Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Sala, Serenella; Pant, Rana; Hauschild, Michael Zwicky

    2012-01-01

    Environmental implications of the whole supply-chain of products, both goods and services, their use, and waste management, i.e., their entire life cycle from "cradle to grave" have to be considered to achieve more sustainable production and consumption patterns. Progress toward environmental...... sustainability requires enhancing the methodologies for quantitative, integrated environmental assessment and promoting the use of these methodologies in different domains. In the context of Life Cycle Assessment (LCA) of products, in recent years, several methodologies have been developed for Life Cycle Impact...... Assessment (LCIA). The Joint Research Center of the European Commission (EC-JRC) led a "science to decision support" process which resulted in the International Reference Life Cycle Data System (ILCD) Handbook, providing guidelines to the decision and application of methods for LCIA. The Handbook...

  11. Life support approaches for Mars missions

    Science.gov (United States)

    Drysdale, A. E.; Ewert, M. K.; Hanford, A. J.

    Life support approaches for Mars missions are evaluated using an equivalent system mass (ESM) approach, in which all significant costs are converted into mass units. The best approach, as defined by the lowest mission ESM, depends on several mission parameters, notably duration, environment and consequent infrastructure costs, and crew size, as well as the characteristics of the technologies which are available. Generally, for the missions under consideration, physicochemical regeneration is most cost effective. However, bioregeneration is likely to be of use for producing salad crops for any mission, for producing staple crops for medium duration missions, and for most food, air and water regeneration for long missions (durations of a decade). Potential applications of in situ resource utilization need to be considered further.

  12. Adaptability and Life Satisfaction: The Moderating Role of Social Support.

    Science.gov (United States)

    Zhou, Mi; Lin, Weipeng

    2016-01-01

    The purpose of this study was to investigate the moderating role of social support in the relationship between adaptability and life satisfaction. Data were collected from 99 undergraduate freshmen in a Chinese university using a lagged design with a 1-month interval. Results demonstrated that social support moderated the relation between adaptability and life satisfaction, such that the positive relation between adaptability and life satisfaction was stronger for individuals with higher levels of social support than for individuals with lower levels of social support. The theoretical and practical implications of this result are discussed.

  13. USSR Space Life Sciences Digest, issue 19

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 19th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 47 papers published in Russian language periodicals or presented at conferences and of 5 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Reports on two conferences, one on adaptation to high altitudes, and one on space and ecology are presented. A book review of a recent work on high altitude physiology is also included. The abstracts in this issue have been identified as relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  14. Ecological Interventionist Causal Models in Psychosis: Targeting Psychological Mechanisms in Daily Life.

    Science.gov (United States)

    Reininghaus, Ulrich; Depp, Colin A; Myin-Germeys, Inez

    2016-03-01

    Integrated models of psychotic disorders have posited a number of putative psychological mechanisms that may contribute to the development of psychotic symptoms, but it is only recently that a modest amount of experience sampling research has provided evidence on their role in daily life, outside the research laboratory. A number of methodological challenges remain in evaluating specificity of potential causal links between a given psychological mechanism and psychosis outcomes in a systematic fashion, capitalizing on longitudinal data to investigate temporal ordering. In this article, we argue for testing ecological interventionist causal models that draw on real world and real-time delivered, ecological momentary interventions for generating evidence on several causal criteria (association, time order, and direction/sole plausibility) under real-world conditions, while maximizing generalizability to social contexts and experiences in heterogeneous populations. Specifically, this approach tests whether ecological momentary interventions can (1) modify a putative mechanism and (2) produce changes in the mechanism that lead to sustainable changes in intended psychosis outcomes in individuals' daily lives. Future research using this approach will provide translational evidence on the active ingredients of mobile health and in-person interventions that promote sustained effectiveness of ecological momentary interventions and, thereby, contribute to ongoing efforts that seek to enhance effectiveness of psychological interventions under real-world conditions. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Location Based Services for Outdoor Ecological Learning System: Design and Implementation

    Science.gov (United States)

    Hsiao, Hsien-Sheng; Lin, Chih-Cheng; Feng, Ruei-Ting; Li, Kun Jing

    2010-01-01

    This paper aimed to demonstrate how location-based services were implemented in ubiquitous outdoor ecological learning system. In an elementary school in northern Taiwan, two fifth grade classes on an ecology project were randomly selected: The experimental group could access the ecological learning system on hand-held devices while the control…

  16. The genus Attalea (Arecaceae of Bolivia: regional ecologic system affinities

    Directory of Open Access Journals (Sweden)

    Mónica Moraes R.

    2017-10-01

    Full Text Available The documentation of the Neotropical species of the Arecaceae family, based on the recent contributions to its taxonomy and its relationship with natural landscapes, updates the spatial patterns to which they adapt in their range of distribution. In this case 121 records of specimens of the 11 species of the genus Attalea of Bolivia and their relationship with 30 ecological systems that approximate their scope of distribution at regional level are released. To this end, the geographical coordinates were systematized, verified and corrected. Localities of all the specimens collected from the genus Attalea in order to compare them with ecological systems, using the ArgGis tools. We then elaborate a dendrogram (species vs. ecological systems using the minimum distance method in the R program. The analysis of the relation of the species with the ecological systems highlights a species that does not compose to the southwest amazon: A. eichleri and that is native to ecological systems of the Cerrado. Among the SW Amazonian Attalea species, A. blepharopus (endemic to Bolivia is isolated from the others and the rest subgroup species according to their presence in forests and savannas, in addition to the subandean and alluvial, as it is for A. princeps, which is found in 17 systems (57%. Eight species of Attalea are common with Peru and 10 with Brazil. It is important to relate the hierarchical grouping of the Attalea species with ecological systems in function of landscape dynamics to document their space patterns and also for their conservation.

  17. Light, plants, and power for life support on Mars

    Science.gov (United States)

    Salisbury, F. B.; Dempster, W. F.; Allen, J. P.; Alling, A.; Bubenheim, D.; Nelson, M.; Silverstone, S.

    2002-01-01

    Regardless of how well other growing conditions are optimized, crop yields will be limited by the available light up to saturation irradiances. Considering the various factors of clouds on Earth, dust storms on Mars, thickness of atmosphere, and relative orbits, there is roughly 2/3 as much light averaged annually on Mars as on Earth. On Mars, however, crops must be grown under controlled conditions (greenhouse or growth rooms). Because there presently exists no material that can safely be pressurized, insulated, and resist hazards of puncture and deterioration to create life support systems on Mars while allowing for sufficient natural light penetration as well, artificial light will have to be supplied. If high irradiance is provided for long daily photoperiods, the growing area can be reduced by a factor of 3-4 relative to the most efficient irradiance for cereal crops such as wheat and rice, and perhaps for some other crops. Only a small penalty in required energy will be incurred by such optimization. To obtain maximum yields, crops must be chosen that can utilize high irradiances. Factors that increase ability to convert high light into increased productivity include canopy architecture, high-yield index (harvest index), and long-day or day-neutral flowering and tuberization responses. Prototype life support systems such as Bios-3 in Siberia or the Mars on Earth Project need to be undertaken to test and further refine systems and parameters.

  18. Specifics of system of external influences on the life cycle of a construction object

    Directory of Open Access Journals (Sweden)

    Aleksanin Aleksander

    2016-01-01

    Full Text Available There is a very important issue today which includes the harmonious and effective development of the system ‘man –environment’. Construction is a branch of material production, which has a significant negative impact on the world around us. It is necessary to plan and operate processes of construction at all stages of the life cycle of a building without exception, to prevent of ecological threats. The article describes the concept of ‘life cycle’ as applied to various fields of knowledge, analyzes existing in the scientific literature division of the life cycle of buildings in the periods, proposes own approach to the division of periods of the life cycle on the basis of resource-saving. The article proposes the creation of a unified organizational system for the effective management of all periods with the constituent phases and formulates the main external influences on the building life cycle.

  19. Specifics of system of external influences on the life cycle of a construction object

    Directory of Open Access Journals (Sweden)

    Aleksanin Aleksander

    2016-01-01

    Full Text Available There is a very important issue today which includes the harmonious and effective development of the system ‘man–environment’. Construction is a branch of material production, which has a significant negative impact on the world around us. It is necessary to plan and operate processes of construction at all stages of the life cycle of a building without exception, to prevent of ecological threats. The article describes the concept of ‘life cycle’ as applied to various fields of knowledge, analyzes existing in the scientific literature division of the life cycle of buildings in the periods, proposes own approach to the division of periods of the life cycle on the basis of resource-saving. The article proposes the creation of a unified organizational system for the effective management of all periods with the constituent phases and formulates the main external influences on the building life cycle.

  20. A Tale of Two Chambers: Iterative Approaches and Lessons Learned from Life Support Systems Testing in Altitude Chambers

    Science.gov (United States)

    Callini, Gianluca

    2016-01-01

    With a brand new fire set ablaze by a serendipitous convergence of events ranging from a science fiction novel and movie ("The Martian"), to ground-breaking recent discoveries of flowing water on its surface, the drive for the journey to Mars seems to be in a higher gear than ever before. We are developing new spacecraft and support systems to take humans to the Red Planet, while scientists on Earth continue using the International Space Station as a laboratory to evaluate the effects of long duration space flight on the human body. Written from the perspective of a facility test director rather than a researcher, and using past and current life support systems tests as examples, this paper seeks to provide an overview on how facility teams approach testing, the kind of information they need to ensure efficient collaborations and successful tests, and how, together with researchers and principal investigators, we can collectively apply what we learn to execute future tests.

  1. Adaptability and Life Satisfaction: The Moderating Role of Social Support

    Science.gov (United States)

    Zhou, Mi; Lin, Weipeng

    2016-01-01

    The purpose of this study was to investigate the moderating role of social support in the relationship between adaptability and life satisfaction. Data were collected from 99 undergraduate freshmen in a Chinese university using a lagged design with a 1-month interval. Results demonstrated that social support moderated the relation between adaptability and life satisfaction, such that the positive relation between adaptability and life satisfaction was stronger for individuals with higher levels of social support than for individuals with lower levels of social support. The theoretical and practical implications of this result are discussed. PMID:27516753

  2. How can Smartphone-Based Internet Data Support Animal Ecology Fieldtrip?

    Science.gov (United States)

    Kurniawan, I. S.; Tapilow, F. S.; Hidayat, T.

    2017-09-01

    Identification and classification skills must be owned by the students. In animal ecology course, the identification and classification skills are necessary to study animals. This experimental study aims to describe the identification and classification skills of students on animal ecology field trip to studying various bird species using smartphone-based internet data. Using Involving 63 students divided into 7 groups for each observation station. Data of birds were sampled using line transect method (5000 meters/station). The results showed the identification and classification skills of students are in sufficient categories. Most students have difficulties because of the limitations of data on the internet about birds. In general, students support the use of smartphones in field trip activities. The results of this study can be used as a reference for the development of learning using smartphones in the future by developing application about birds. The outline, smartphones can be used as a method of alternative learning but needs to be developed for some special purposes.

  3. Carbon balance in bioregenerative life support systems: Some effects of system closure, waste management, and crop harvest index

    Science.gov (United States)

    Wheeler, Raymond M.

    In Advanced Life Support (ALS) systems with bioregenerative components, plant photosynthesis would be used to produce O2 and food, while removing CO2. Much of the plant biomass would be inedible and hence must be considered in waste management. This waste could be oxidized (e.g., incinerated or aerobically digested) to resupply CO2 to the plants, but this would not be needed unless the system were highly closed with regard to food. For example, in a partially closed system where some of the food is grown and some is imported, CO2 from oxidized waste when combined with crew and microbial respiration could exceed the CO2 removal capability of the plants. Moreover, it would consume some O2 produced from photosynthesis that could have been used by the crew. For partially closed systems it would be more appropriate to store or find other uses for the inedible biomass and excess carbon, such as generating soils or growing woody plants (e.g., dwarf fruit trees). Regardless of system closure, high harvest crops (i.e., crops with a high edible to total biomass ratio) would increase food production per unit area and O2 yields for systems where waste biomass is oxidized to recycle CO2. Such interlinking effects between the plants and waste treatment strategies point out the importance of oxidizing only that amount of waste needed to optimize system performance.

  4. [Redesign of the Spacesuit Long Life Battery and the Personal Life Support System Battery

    Science.gov (United States)

    Scharf, Stephanie

    2015-01-01

    This fall I was working on two different projects that culminated into a redesign of the spacesuit LLB (long life battery). I also did some work on the PLSS (personal life support system) battery with EC. My first project was redlining the work instruction for completing DPAs (destructive physical analysis) on battery cells in the department. The purpose of this document is to create a standard process and ensure that the data in the same way no matter who carries out the analysis. I observed three DPAs, conducted one with help, and conducted two on my own all while taking notes on the procedure. These notes were used to write the final work instruction that will become is the department standard. My second project continued the work of the summer co-op before me. I was testing aluminum heat sinks for their ability to provide good thermal conduction and structural support during a thermal runaway event. The heat sinks were designed by the summer intern but there was not much time for testing before he left. We ran tests with a heater on the bottom of a trigger cell to try to drive thermal runaway and ensure that it will not propagate to adjacent cells. We also ran heat-to-vent tests in an oven to see if the assembly provided structural support and prevented sidewall rupture during thermal runaway. These tests were carried out at ESTA (energy systems test area) and are providing very promising results that safe, high performing (greater than 180 Wh/kg) designs are possible. My main project was a redesign of the LLB battery. Another summer intern did some testing and concluded that there was no simple fix to mitigate thermal runaway propagation hazards in the current design. The only option was a clean sheet redesign of the battery. I was given a volume and ideal energy density and the rest of the design was up to me. First, I created new heat sink banks in Creo using the information gathered in the metal heat sink tests from the summer intern. After this, I made

  5. Supporting Upper-Level Undergraduate Students in Building a Systems Perspective in a Botany Course

    Science.gov (United States)

    Zangori, Laura; Koontz, Jason A.

    2017-01-01

    Undergraduate biology majors require biological literacy about the critical and dynamic relationships between plants and ecosystems and the effect human-made processes have on these systems. To support students in understanding systems relationships, we redesigned an undergraduate botany course using an ecological framework and embedded systems…

  6. An ecological interface for supporting situation awareness during malfunction and process and automation

    International Nuclear Information System (INIS)

    Ohtsu, Masataka; Furukawa, Hiroshi; Inagaki, Toshiyuki; Monta, Kazuo

    2000-01-01

    This paper describes the outline of an experiment to investigate the effect of an ecological interface for supporting situation awareness during malfunction of process. We developed an ecological interface and an conventional interface for the simulator SCARLETT of a virtual plant that have two process control modes (automatic process control mode and manual process control mode). The purpose of this experiment is to investigate how interface and process control mode have any effects on situation awareness of human operator during malfunction of process, whether there are any interaction between interface and process control mode. We have been conducted this experiment now. (author)

  7. NPP life management (abstracts)

    International Nuclear Information System (INIS)

    Litvinskij, L.L.; Barbashev, S.V.

    2002-01-01

    Abstracts of the papers presented at the International conference of the Ukrainian Nuclear Society 'NPP Life Management'. The following problems are considered: modernization of the NPP; NPP life management; waste and spent nuclear fuel management; decommissioning issues; control systems (including radiation and ecological control systems); information and control systems; legal and regulatory framework. State nuclear regulatory control; PR in nuclear power; training of personnel; economics of nuclear power engineering

  8. A shifting paradigm: Teachers' beliefs and methods for fostering ecological literacy in two public charter schools

    Science.gov (United States)

    Sterling, Evan P.

    Ecological literacy is measured by a person's ability to understand the natural systems that make life on earth possible and how to live in accordance with those systems. The emergence of the pedagogies of place- and community-based education during the past two decades provides a possible avenue for fostering ecological literacy in schools. This thesis explores the following research questions: 1) How is ecological literacy fostered in two Alaskan public charter schools? 2) What are teachers' beliefs in these two schools about the way children and youth develop ecological literacy? 3) What are effective teaching methods and what are the challenges in engaging students in ecological literacy? Semi-structured interviews were conducted with six K--12 teachers in two public charter schools in Alaska in order to investigate these questions, and relevant examples of student work were collected for study as well. Qualitative data analysis revealed several emergent themes: the need for real-world connections to curriculum; the necessity of time spent outdoors at a young age; the long-term and holistic nature of ecological literacy development; and the importance of family and community role models in developing connections with the natural world. Based upon the research findings, several recommendations are made to support the efforts of teachers in these schools and elsewhere for fostering ecological literacy in children and youth.

  9. A Theory of Transformative Agency in Linked Social-Ecological Systems

    Directory of Open Access Journals (Sweden)

    Frances R. Westley

    2013-09-01

    Full Text Available We reviewed the literature on leadership in linked social-ecological systems and combined it with the literature on institutional entrepreneurship in complex adaptive systems to develop a new theory of transformative agency in linked social-ecological systems. Although there is evidence of the importance of strategic agency in introducing innovation and transforming approaches to management and governance of such systems, there is no coherent theory to explain the wide diversity of strategies identified. Using Holling's adaptive cycle as a model of phases present in innovation and transformation of resilient social-ecological systems, overlaid by Dorado's model of opportunity context (opaque, hazy, transparent in complex adaptive systems, we propose a more coherent theory of strategic agency, which links particular strategies, on the part of transformative agents, to phases of system change.

  10. Integrated Bio-ISRU and Life Support Systems at the Lunar Outpost: Concept and Preliminary Results

    Science.gov (United States)

    Brown, I. I.; Garrison, D. H.; Allen, C. C.; Pickering, K.; Sarkisova, S. A.; Galindo, C., Jr.; Pan, D.; Foraker, E.; Mckay, D. S.

    2009-01-01

    We continue the development of our concept of a biotechnological loop for in-situ resource extraction along with propellant and food production at a future lunar outpost, based on the cultivation of litholytic cyanobacteria (LCB) with lunar regolith (LR) in a geobioreactor energized by sunlight. Our preliminary studies have shown that phototropic cultivation of LCB with simulants of LR in a low-mineralized medium supplemented with CO2 leads to rock dissolution (bioweathering) with the resulting accumulation of Fe, Mg and Al in cyanobacterial cells and in the medium. LCB cultivated with LR simulants produces more O2 than the same organisms cultivated in a high-mineralized medium. The loss of rock mass after bioweathering with LCB suggests the release of O from regolith. Further studies of chemical pathways of released O are required. The bioweathering process is limited by the availability of CO2, N, and P. Since lunar regolith is mainly composed of O, Si, Ca, Al and Mg, we propose to use organic waste to supply a geobioreactor with C, N and P. The recycling of organic waste, including urine, through a geobioreactor will allow for efficient element extraction as well as oxygen and biomass production. The most critical conclusion is that a biological life support system tied to a geobioreactor might be more efficient for supporting an extraterrestrial outpost than a closed environmental system.

  11. Towards a unified theory of cooperative breeding : The role of ecology and life history re-examined

    NARCIS (Netherlands)

    Pen, I.; Weissing, F.J.

    2000-01-01

    We present quantitative models that unify several adaptive hypotheses for the evolution of cooperative breeding in a single framework: the ecological constraints hypothesis, the life-history hypothesis and the benefits-of-philopatry hypothesis. Our goal is to explain interspecific variation in the

  12. 2011 Archaea: Ecology, Metabolism, & Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Keneth Stedman

    2011-08-05

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  13. IT for advanced Life Support in English

    DEFF Research Database (Denmark)

    Sejerø Pedersen, Birgitte; Jeberg, Kirsten Ann; Koerner, Christian

    2009-01-01

    In this study we analyzed how IT support can be established for the treatment and documentation of advanced life support (ALS) in a hospital. In close collaboration with clinical researchers, a running prototype of an IT solution to support the clinical decisions in ALS was developed and tried out...... in a full scale simulation environment. We have named this IT solution the CardioData Prototype....

  14. Enterprise and system of systems capability development life-cycle processes.

    Energy Technology Data Exchange (ETDEWEB)

    Beck, David Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    This report and set of appendices are a collection of memoranda originally drafted circa 2007-2009 for the purpose of describing and detailing a models-based systems engineering approach for satisfying enterprise and system-of-systems life cycle process requirements. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. The main thrust of the material presents a rational exposâe of a structured enterprise development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of standard systems engineering processes. While the approach described invokes application of the Department of Defense Architectural Framework (DoDAF), it is suitable for use with other architectural description frameworks.

  15. Social-ecological influences on interpersonal support in people with physical disability.

    Science.gov (United States)

    Devereux, Paul G; Bullock, Charles C; Gibb, Zebbedia G; Himler, Heidi

    2015-10-01

    People with physical disability report lower amounts of emotional and informational social support compared with other populations but it is unclear how influences at the broader societal level impact support in this population. To address this question, Berkman and Glass's social-ecological model was used to examine the influence of upstream factors on interpersonal support in people with physical disability. It was predicted that these factors would influence support even after controlling for the traditional measures linked to social support. 331 adult participants with physical disability (43% female; mean age = 42.7; 88% White) completed an online cross-sectional survey measuring types and sources of social support, social integration, disability impact in social domains, environmental barriers, and relevant psychosocial variables such as depression. A hierarchical linear regression analysis showed that level of disability, perceived tangible support, social integration, depressive symptoms, environmental barriers, occupational independence, and having family or friends as primary support sources were significantly associated with perceived support at the final step (R(2) = .60, F(22, 255) = 17.68, p disability than typical measures studied in the literature. Improving environmental factors will help improve social support. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Rivers are social–ecological systems: Time to integrate human dimensions into riverscape ecology and management

    Science.gov (United States)

    Dunham, Jason B.; Angermeier, Paul L.; Crausbay, Shelley D.; Cravens, Amanda; Gosnell, Hannah; McEvoy, Jamie; Moritz, Max A.; Raheem, Nejem; Sanford, Todd

    2018-01-01

    Incorporation of concepts from landscape ecology into understanding and managing riverine ecosystems has become widely known as riverscape ecology. Riverscape ecology emphasizes interactions among processes at different scales and their consequences for valued ecosystem components, such as riverine fishes. Past studies have focused strongly on understanding the ecological processes in riverscapes and how human actions modify those processes. It is increasingly clear, however, that an understanding of the drivers behind actions that lead to human modification also merit consideration, especially regarding how those drivers influence management efficacy. These indirect drivers of riverscape outcomes can be understood in the context of a diverse array of social processes, which we collectively refer to as human dimensions. Like ecological phenomena, social processes also exhibit complex interactions across spatiotemporal scales. Greater emphasis on feedbacks between social and ecological processes will lead scientists and managers to more completely understand riverscapes as complex, dynamic, interacting social–ecological systems. Emerging applications in riverscapes, as well as studies of other ecosystems, provide examples that can lead to stronger integration of social and ecological science. We argue that conservation successes within riverscapes may not come from better ecological science, improved ecosystem service analyses, or even economic incentives if the fundamental drivers of human behaviors are not understood and addressed in conservation planning and implementation.

  17. What influences parents' decisions to limit or withdraw life support?

    Science.gov (United States)

    Sharman, Mahesh; Meert, Kathleen L; Sarnaik, Ashok P

    2005-09-01

    Decisions to forgo life support from critically ill children are commonly faced by parents and physicians. Previous research regarding parents' perspectives on the decision-making process has been limited by retrospective methods and the use of closed-ended questionnaires. We prospectively identified and described parents' self-reported influences on decisions to forgo life support from their children. Deeper understanding of parents' views will allow physicians to focus end-of-life discussions on factors important to parents and help resolve conflicts. Prospective, qualitative pilot study. Pediatric intensive care unit of a university-affiliated children's hospital. A total of 14 parents of ten children whose pediatric intensive care unit physician had made a recommendation to limit or withdraw life support. : In-depth, semistructured interviews were conducted with parents during their decision-making process. Factors influencing the parents in this study in their decision to forgo life support included their previous experience with death and end-of-life decision making for others, their personal observations of their child's suffering, their perceptions of their child's will to survive, their need to protect and advocate for their child, and the family's financial resources and concerns regarding life-long care. Parents in this study expressed the desire to do what is best for their child but struggled with feelings of selfishness, guilt, and the need to avoid agony and sorrow. Physician recommendations, review of options, and joint formulation of a plan helped parents gain a sense of control over their situation. Parents of eight children agreed to forgo life support and parents of two did not. Prospective interviews with open-ended questions identified factors influencing parents' decision making not previously described in the critical care literature such as parents' past experiences with end-of-life decisions and their anticipated emotional adjustments and

  18. Space Station Freedom environmental control and life support system phase 3 simplified integrated test detailed report

    Science.gov (United States)

    Roberts, B. C.; Carrasquillo, R. L.; Dubiel, M. Y.; Ogle, K. Y.; Perry, J. L.; Whitley, K. M.

    1990-01-01

    A description of the phase 3 simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989 is presented. This was the first test in the phase 3 series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included is a full description of the preprototype ECLSS hardware used in the test.

  19. An intelligent human-machine system based on an ecological interface design concept

    International Nuclear Information System (INIS)

    Naito, N.

    1995-01-01

    It seems both necessary and promising to develop an intelligent human-machine system, considering the objective of the human-machine system and the recent advance in cognitive engineering and artificial intelligence together with the ever-increasing importance of human factor issues in nuclear power plant operation and maintenance. It should support human operators in their knowledge-based behaviour and allow them to cope with unanticipated abnormal events, including recovery from erroneous human actions. A top-down design approach has been adopted based on cognitive work analysis, and (1) an ecological interface, (2) a cognitive model-based advisor and (3) a robust automatic sequence controller have been established. These functions have been integrated into an experimental control room. A validation test was carried out by the participation of experienced operators and engineers. The results showed the usefulness of this system in supporting the operator's supervisory plant control tasks. ((orig.))

  20. Building doctoral ecologies

    DEFF Research Database (Denmark)

    Bengtsen, Søren Smedegaard

    2018-01-01

    heavily from the support from informal and extra-curricular researcher communities and non-formal support systems even beyond the institution in the private and societal lifeworlds. The chapter describes and analyses such forms of organizational and existential darkness within doctoral education...... and professionalization of doctoral education, with Graduate schools increasing in size and organizational complexity. Paradoxically, we see in contemporary research into doctoral students’ learning experiences that the students do not favour the formalized support systems and supervision, but on the contrary draw most......, and discusses how institutions and doctoral programmes could use such sprawling spaces for learning to build doctoral ecologies and to strengthening existentially based pedagogies within doctoral education....

  1. Monitoring and life-support devices

    International Nuclear Information System (INIS)

    Noback, C.R.; Murphy, C.H.

    1987-01-01

    The radiographic and physical principles involved in interpreting films, and some of the altered anatomy and pathology that may be seen on such films, are discussed. This chapter considers the radiographic appearances of monitoring and life-support devices. Appropriate positioning and function are shown, as are some of the complications associated with their placement and/or function

  2. Consideration in selecting crops for the human-rated life support system: a Linear Programming model

    Science.gov (United States)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  3. The portrayal of natural environment in the evolution of the ecological public health paradigm.

    Science.gov (United States)

    Coutts, Christopher; Forkink, Annet; Weiner, Jocelyn

    2014-01-10

    This paper explores the conceptualization of the natural environment in an evolving ecological public health paradigm. The natural environment has long been recognized as essential to supporting life, health, and wellbeing. Our understanding of the relationship between the natural environment and health has steadily evolved from one of an undynamic environment to a more sophisticated understanding of ecological interactions.  This evolution is reflected in a number of ecological public health models which demonstrate the many external and overlapping determinants of human health. Six models are presented here to demonstrate this evolution, each model reflecting an increasingly ecological appreciation for the fundamental role of the natural environment in supporting human health. We conclude that after decades of public health's acceptance of the ecological paradigm, we are only now beginning to assemble knowledge of sophisticated ecological interdependencies and apply this knowledge to the conceptualization and study of the relationship between the natural environment and the determinants of human health.

  4. Environmental Planning and Ecology Program Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2008-01-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Environmental Planning and Ecology Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The program report describes the activities undertaken during the past year, and activities planned in future years to implement the Planning and Ecology Program, one of six programs that supports environmental management at SNL/CA.

  5. A Compact, Efficient Pyrolysis/Oxidation System for Solid Waste Resource Recovery in Space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Both pyrolysis and oxidation steps have been considered as the key solid waste processing step for a Controlled Ecological Life Support System (CELSS). Pyrolysis is...

  6. Towards the use of Structural Loop Analysis to Study System Behaviour of Socio-Ecological Systems.

    Science.gov (United States)

    Abram, Joseph; Dyke, James

    2016-04-01

    Maintaining socio-ecological systems in desirable states is key to developing a growing economy, alleviating poverty and achieving a sustainable future. While the driving forces of an environmental system are often well known, the dynamics impacting these drivers can be hidden within a tangled structure of causal chains and feedback loops. A lack of understanding of a system's dynamic structure and its influence on a system's behaviour can cause unforeseen side-effects during model scenario testing and policy implementation. Structural Loop analysis of socio-ecological system models identifies dominant feedback structures during times of behavioural shift, allowing the user to monitor key influential drivers during model simulation. This work carries out Loop Eigenvalue Elasticity Analysis (LEEA) on three system dynamic models, exploring tipping points in lake systems undergoing eutrophication. The purpose is to explore the potential benefits and limitations of the technique in the field of socio-ecology. The LEEA technique shows promise for socio-ecological systems which undergo regime shifts or express oscillatory trends, but shows limited usefulness with large models. The results of this work highlight changes in feedback loop dominance, years prior to eutrophic tipping events in lake systems. LEEA could be used as an early warning signal to impending system changes, complementary to other known early warning signals. This approach could improve our understanding during critical times of a system's behaviour, changing how we approach model analysis and the way scenario testing and policy implementation are addressed in socio-ecological system models.

  7. Introducing a Method for Social-ecological Assessment of Small Urban Parks

    Directory of Open Access Journals (Sweden)

    Zanariah Jasman

    2016-06-01

    Full Text Available Small parks in cities are important to support overall urban biodiversity and ecological network. The aim of this paper is to introduce a method of identifying and assessing the ecological characteristics and anthropogenic factors of small urban parks. We developed a framework that combined structured observation and field measurement. The method suggests an integrative assessment that is practical and understandable to the park planners and managers to enhance small parks to support overall urban biodiversity and ecosystem services. High biodiversity can provide opportunities for humans to experience nature and wildlife in cities, thus contributing to the quality of life of urban dwellers.

  8. First-Generation Undergraduate Students' Social Support, Depression, and Life Satisfaction

    Science.gov (United States)

    Jenkins, Sharon Rae; Belanger, Aimee; Connally, Melissa Londono; Boals, Adriel; Duron, Kelly M.

    2013-01-01

    First-generation undergraduate students face challenging cross-socioeconomic cultural transitions into college life. The authors compared first- and non-first-generation undergraduate students' social support, posttraumatic stress, depression symptoms, and life satisfaction. First-generation participants reported less social support from family…

  9. The Effect of Providing Life Support on Nurses' Decision Making Regarding Life Support for Themselves and Family Members in Japan.

    Science.gov (United States)

    Shaku, Fumio; Tsutsumi, Madoka

    2016-12-01

    Decision making in terminal illness has recently received increased attention. In Japan, patients and their families typically make decisions without understanding either the severity of illness or the efficacy of life-supporting treatments at the end of life. Japanese culture traditionally directs the family to make decisions for the patient. This descriptive study examined the influence of the experiences of 391 Japanese nurses caring for dying patients and family members and how that experience changed their decision making for themselves and their family members. The results were mixed but generally supported the idea that the more experience nurses have in caring for the dying, the less likely they would choose to institute lifesupport measures for themselves and family members. The results have implications for discussions on end-of-life care. © The Author(s) 2016.

  10. Determination of the ecological connectivity between landscape patches obtained using the knowledge engineer (expert) classification technique

    Science.gov (United States)

    Selim, Serdar; Sonmez, Namik Kemal; Onur, Isin; Coslu, Mesut

    2017-10-01

    Connection of similar landscape patches with ecological corridors supports habitat quality of these patches, increases urban ecological quality, and constitutes an important living and expansion area for wild life. Furthermore, habitat connectivity provided by urban green areas is supporting biodiversity in urban areas. In this study, possible ecological connections between landscape patches, which were achieved by using Expert classification technique and modeled with probabilistic connection index. Firstly, the reflection responses of plants to various bands are used as data in hypotheses. One of the important features of this method is being able to use more than one image at the same time in the formation of the hypothesis. For this reason, before starting the application of the Expert classification, the base images are prepared. In addition to the main image, the hypothesis conditions were also created for each class with the NDVI image which is commonly used in the vegetation researches. Besides, the results of the previously conducted supervised classification were taken into account. We applied this classification method by using the raster imagery with user-defined variables. Hereupon, to provide ecological connections of the tree cover which was achieved from the classification, we used Probabilistic Connection (PC) index. The probabilistic connection model which is used for landscape planning and conservation studies via detecting and prioritization critical areas for ecological connection characterizes the possibility of direct connection between habitats. As a result we obtained over % 90 total accuracy in accuracy assessment analysis. We provided ecological connections with PC index and we created inter-connected green spaces system. Thus, we offered and implicated green infrastructure system model takes place in the agenda of recent years.

  11. Mission simulation as an approach to develop requirements for automation in Advanced Life Support Systems

    Science.gov (United States)

    Erickson, J. D.; Eckelkamp, R. E.; Barta, D. J.; Dragg, J.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    This paper examines mission simulation as an approach to develop requirements for automation and robotics for Advanced Life Support Systems (ALSS). The focus is on requirements and applications for command and control, control and monitoring, situation assessment and response, diagnosis and recovery, adaptive planning and scheduling, and other automation applications in addition to mechanized equipment and robotics applications to reduce the excessive human labor requirements to operate and maintain an ALSS. Based on principles of systems engineering, an approach is proposed to assess requirements for automation and robotics using mission simulation tools. First, the story of a simulated mission is defined in terms of processes with attendant types of resources needed, including options for use of automation and robotic systems. Next, systems dynamics models are used in simulation to reveal the implications for selected resource allocation schemes in terms of resources required to complete operational tasks. The simulations not only help establish ALSS design criteria, but also may offer guidance to ALSS research efforts by identifying gaps in knowledge about procedures and/or biophysical processes. Simulations of a planned one-year mission with 4 crewmembers in a Human Rated Test Facility are presented as an approach to evaluation of mission feasibility and definition of automation and robotics requirements.

  12. Ecosystem Services are Social-ecological Services in a Traditional Pastoral System: the Case of California's Mediterranean Rangelands

    Directory of Open Access Journals (Sweden)

    Lynn Huntsinger

    2014-03-01

    Full Text Available When attempting to value ecosystem services and support their production, two critical aspects may be neglected. The term "ecosystem services" implies that they are a function of natural processes; yet, human interaction with the environment may be key to the production of many. This can contribute to a misconception that ecosystem service production depends on, or is enhanced by, the coercion or removal of human industry. Second, in programs designed to encourage ecosystem service production and maintenance, too often the inter-relationship of such services with social and ecological processes and drivers at multiple scales is ignored. Thinking of such services as "social-ecological services" can reinforce the importance of human culture, perspectives, and economies to the production of ecosystem services. Using a social-ecological systems perspective, we explore the integral role of human activity and decisions at pasture, ranch, and landscape scales. Just as it does for understanding ecosystems, a hierarchical, multiscaled framework facilitates exploring the complexity of social-ecological systems as producers of ecosystem services, to develop approaches for the conservation of such services. Using California's Mediterranean rangelands as a study area, we suggest that using a multiscaled approach that considers the importance of the differing drivers and processes at each scale and the interactions among scales, and that incorporates social-ecological systems concepts, may help avoid mistakes caused by narrow assumptions about "natural" systems, and a lack of understanding of the need for integrated, multiscaled conservation programs.

  13. How Do Lessons Learned on the International Space Station (ISS) Help Plan Life Support for Mars?

    Science.gov (United States)

    Jones, Harry W.; Hodgson, Edward W.; Gentry, Gregory J.; Kliss, Mark H.

    2016-01-01

    How can our experience in developing and operating the International Space Station (ISS) guide the design, development, and operation of life support for the journey to Mars? The Mars deep space Environmental Control and Life Support System (ECLSS) must incorporate the knowledge and experience gained in developing ECLSS for low Earth orbit, but it must also meet the challenging new requirements of operation in deep space where there is no possibility of emergency resupply or quick crew return. The understanding gained by developing ISS flight hardware and successfully supporting a crew in orbit for many years is uniquely instructive. Different requirements for Mars life support suggest that different decisions may be made in design, testing, and operations planning, but the lessons learned developing the ECLSS for ISS provide valuable guidance.

  14. Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1998

    International Nuclear Information System (INIS)

    Wein, G.; Rosier, B.

    1998-01-01

    This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs

  15. Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Wein, G.; Rosier, B.

    1998-12-31

    This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.

  16. Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1997

    International Nuclear Information System (INIS)

    Wein, G.; Rosier, B.

    1997-01-01

    This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs

  17. Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Wein, G.; Rosier, B.

    1997-12-31

    This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.

  18. On the general procedure for modelling complex ecological systems

    International Nuclear Information System (INIS)

    He Shanyu.

    1987-12-01

    In this paper, the principle of a general procedure for modelling complex ecological systems, i.e. the Adaptive Superposition Procedure (ASP) is shortly stated. The result of application of ASP in a national project for ecological regionalization is also described. (author). 3 refs

  19. Ecoinformatics: supporting ecology as a data-intensive science

    OpenAIRE

    Michener, William H.; Jones, Matthew B.

    2012-01-01

    Ecology is evolving rapidly and increasingly changing into a more open, accountable, interdisciplinary, collaborative and data-intensive science. Discovering, integrating and analyzing massive amounts of heterogeneous data are central to ecology as researchers address complex ques- tions at scales from the gene to the biosphere. Ecoinfor- matics offers tools and approaches for managing ecological data and transforming the data into informa- tion and knowledge. Here, we review the state-of-the...

  20. Investigation of bio-regenerative life support and Trash-to-gas experiment on a 4 month mars simulation mission

    OpenAIRE

    Caraccio, A.; Poulet, Lucie; Hintze, P.; Miles, J.D.

    2014-01-01

    Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will stowing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on ...

  1. Medical and technology requirements for human solar system exploration missions

    Science.gov (United States)

    Nicogossian, Arnauld; Harris, Leonard; Couch, Lana; Sulzman, Frank; Gaiser, Karen

    1989-01-01

    Measures that need to be taken to cope with the health problems posed by zero gravity and radiation in manned solar system exploration missions are discussed. The particular systems that will be used aboard Space Station Freedom are addressed, and relevant human factors problems are examined. The development of a controlled ecological life support system is addressed.

  2. Hydroponics Database and Handbook for the Advanced Life Support Test Bed

    Science.gov (United States)

    Nash, Allen J.

    1999-01-01

    During the summer 1998, I did student assistance to Dr. Daniel J. Barta, chief plant growth expert at Johnson Space Center - NASA. We established the preliminary stages of a hydroponic crop growth database for the Advanced Life Support Systems Integration Test Bed, otherwise referred to as BIO-Plex (Biological Planetary Life Support Systems Test Complex). The database summarizes information from published technical papers by plant growth experts, and it includes bibliographical, environmental and harvest information based on plant growth under varying environmental conditions. I collected 84 lettuce entries, 14 soybean, 49 sweet potato, 16 wheat, 237 white potato, and 26 mix crop entries. The list will grow with the publication of new research. This database will be integrated with a search and systems analysis computer program that will cross-reference multiple parameters to determine optimum edible yield under varying parameters. Also, we have made preliminary effort to put together a crop handbook for BIO-Plex plant growth management. It will be a collection of information obtained from experts who provided recommendations on a particular crop's growing conditions. It includes bibliographic, environmental, nutrient solution, potential yield, harvest nutritional, and propagation procedure information. This handbook will stand as the baseline growth conditions for the first set of experiments in the BIO-Plex facility.

  3. MELA: Modelling in Ecology with Location Attributes

    Directory of Open Access Journals (Sweden)

    Ludovica Luisa Vissat

    2016-10-01

    Full Text Available Ecology studies the interactions between individuals, species and the environment. The ability to predict the dynamics of ecological systems would support the design and monitoring of control strategies and would help to address pressing global environmental issues. It is also important to plan for efficient use of natural resources and maintenance of critical ecosystem services. The mathematical modelling of ecological systems often includes nontrivial specifications of processes that influence the birth, death, development and movement of individuals in the environment, that take into account both biotic and abiotic interactions. To assist in the specification of such models, we introduce MELA, a process algebra for Modelling in Ecology with Location Attributes. Process algebras allow the modeller to describe concurrent systems in a high-level language. A key feature of concurrent systems is that they are composed of agents that can progress simultaneously but also interact - a good match to ecological systems. MELA aims to provide ecologists with a straightforward yet flexible tool for modelling ecological systems, with particular emphasis on the description of space and the environment. Here we present four example MELA models, illustrating the different spatial arrangements which can be accommodated and demonstrating the use of MELA in epidemiological and predator-prey scenarios.

  4. Fit in the Body: Matching Embodied Cognition with Social-Ecological Systems

    Directory of Open Access Journals (Sweden)

    Janne I. Hukkinen

    2012-12-01

    Full Text Available Analysis of fit has focused on the macrolevel fit between social institutions and ecosystems, and bypassed the microlevel fit between individual cognition and its socio-material environment. I argue that the conceptualizations we develop about social-ecological systems and our position in them should be understood as ways for a fundamentally cognitive organism to adapt to particular social and ecological situations. Since at issue is our survival as a species, we need to better understand the structure and dynamics of fit between human cognition and its social-ecological environment. I suggest that the embodied cognition perspective opens up possibilities for "nudging" evolution through the conceptual integration of the cognitively attractive but ecologically unrealistic neoclassical economics, and the cognitively less attractive but ecologically more realistic adaptive cycle theory (panarchy. The result is a conceptually integrated model, the Roller Coaster Blend, which expresses in metaphorical terms why competitive individuals are better off cooperating than competing with each other in the face of absolute resource limits. The blend enables the reframing of messages about the limits of the social-ecological system in terms of growth rather than degrowth. This is cognitively appealing, as upward growth fires in our minds the neural connections of "more," "control", and "happy." The blend's potential for nudging behavior arises from its autopoietic characteristic: it can be both an account of the social-ecological system as an emergent structure that is capable of renewing itself, and a cognitive attractor of individuals whose recruitment reinforces the integrity of the social-ecological system.

  5. Use of Human Modeling Simulation Software in the Task Analysis of the Environmental Control and Life Support System Component Installation Procedures

    Science.gov (United States)

    Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Virtual reality and simulation applications are becoming widespread in human task analysis. These programs have many benefits for the Human Factors Engineering field. Not only do creating and using virtual environments for human engineering analyses save money and time, this approach also promotes user experimentation and provides increased quality of analyses. This paper explains the human engineering task analysis performed on the Environmental Control and Life Support System (ECLSS) space station rack and its Distillation Assembly (DA) subsystem using EAI's human modeling simulation software, Jack. When installed on the International Space Station (ISS), ECLSS will provide the life and environment support needed to adequately sustain crew life. The DA is an Orbital Replaceable Unit (ORU) that provides means of wastewater (primarily urine from flight crew and experimental animals) reclamation. Jack was used to create a model of the weightless environment of the ISS Node 3, where the ECLSS is housed. Computer aided drawings of the ECLSS rack and DA system were also brought into the environment. Anthropometric models of a 95th percentile male and 5th percentile female were used to examine the human interfaces encountered during various ECLSS and DA tasks. The results of the task analyses were used in suggesting modifications to hardware and crew task procedures to improve accessibility, conserve crew time, and add convenience for the crew. This paper will address some of those suggested modifications and the method of presenting final analyses for requirements verification.

  6. Human Dimensions of Coral Reef Social-Ecological Systems

    Directory of Open Access Journals (Sweden)

    John N. Kittinger

    2012-12-01

    Full Text Available Coral reefs are among the most diverse ecosystems on the planet but are declining because of human activities. Despite general recognition of the human role in the plight of coral reefs, the vast majority of research focuses on the ecological rather than the human dimensions of reef ecosystems, limiting our understanding of social relationships with these environments as well as potential solutions for reef recovery. General frameworks for social-ecological systems (SESs have been advanced, but system-specific approaches are needed to develop a more nuanced view of human-environmental interactions for specific contexts and resource systems, and at specific scales. We synthesize existing concepts related to SESs and present a human dimensions framework that explores the linkages between social system structural traits, human activities, ecosystem services, and human well-being in coral reef SESs. Key features of the framework include social-ecological reciprocity, proximate and underlying dimensions, and the directionality of key relationships and feedback loops. Such frameworks are needed if human dimensions research is to be more fully integrated into studies of ecosystem change and the sustainability of linked SESs.

  7. Consumer Preferences Determine Resilience of Ecological-Economic Systems

    Directory of Open Access Journals (Sweden)

    Stefan Baumgärtner

    2011-12-01

    Full Text Available We perform a model analysis to study the origins of limited resilience in coupled ecological-economic systems. We demonstrate that under open access to ecosystems for profit-maximizing harvesting forms, the resilience properties of the system are essentially determined by consumer preferences for ecosystem services. In particular, we show that complementarity and relative importance of ecosystem services in consumption may significantly decrease the resilience of (almost any given state of the system. We conclude that the role of consumer preferences and management institutions is not just to facilitate adaptation to, or transformation of, some natural dynamics of ecosystems. Rather, consumer preferences and management institutions are themselves important determinants of the fundamental dynamic characteristics of coupled ecological-economic systems, such as limited resilience.

  8. Ecotoxicogenomics to Support Ecological Risk Assessment: A Case Study with Bisphenol A in Fish

    Science.gov (United States)

    Toxicogenomic approaches are being increasingly applied in the field of ecotoxicology. Given the growing availability of ecotoxicogenomic data, the Agency and the broader scientific community are actively engaged in considering how best to use those data to support ecological ris...

  9. Application of duckweed for human urine treatment in Bioregenerative Life Support System

    Science.gov (United States)

    Manukovsky, Nickolay; Kovalev, Vladimir

    The object of the study was the common duckweed Lemna minor L. Thanks to the ability to assimilate mineral and organic substances, duckweed is used to purify water in sewage lagoons. In addition, duckweed biomass is known to be a potential high-protein feed resource for domestic animals and fish. The aim of the study was to estimate an application of duckweed in a two-stage treatment of human urine in Bioregenerative Life Support System (BLSS). At the first stage, the urine’s organic matter is oxidized by hydrogen peroxide. Diluted solution of oxidized urine is used for cultivation of duckweed. The appointment of duckweed is the assimilation of mineralized substances of urine. Part of the duckweed biomass yield directly or after composting could be embedded in the soil-like substrate as organic fertilizer to compensate the carry-over in consequence of plant growing. The rest duckweed biomass could be used as a feed for animals in BLSS. Then, the residual culture liquid is concentrated and used as a source of dietary salt. It takes 10-15 m2 of duckweed culture per crewmember to treat oxidized urine. The BLSS configuration including two-component subsystem of urine treatment is presented.

  10. Reconnecting Social and Ecological Resilience in Salmon Ecosystems

    Directory of Open Access Journals (Sweden)

    Daniel L. Bottom

    2009-06-01

    Full Text Available Fishery management programs designed to control Pacific salmon (Oncorhynchus spp. for optimum production have failed to prevent widespread fish population decline and have caused greater uncertainty for salmon, their ecosystems, and the people who depend upon them. In this special feature introduction, we explore several key attributes of ecosystem resilience that have been overlooked by traditional salmon management approaches. The dynamics of salmon ecosystems involve social-ecological interactions across multiple scales that create difficult mismatches with the many jurisdictions that manage fisheries and other natural resources. Of particular importance to ecosystem resilience are large-scale shifts in oceanic and climatic regimes or in global economic conditions that unpredictably alter social and ecological systems. Past management actions that did not account for such changes have undermined salmon population resilience and increased the risk of irreversible regime shifts in salmon ecosystems. Because salmon convey important provisioning, cultural, and supporting services to their local watersheds, widespread population decline has undermined both human well-being and ecosystem resilience. Strengthening resilience will require expanding habitat opportunities for salmon populations to express their maximum life-history variation. Such actions also may benefit the "response diversity" of local communities by expanding the opportunities for people to express diverse social and economic values. Reestablishing social-ecological connections in salmon ecosystems will provide important ecosystem services, including those that depend on clean water, ample stream flows, functional wetlands and floodplains, intact riparian systems, and abundant fish populations.

  11. STUDENT ACADEMIC SUPPORT AS A PREDICTOR OF LIFE SATISFACTION IN UNIVERSITY STUDENTS

    OpenAIRE

    Ahmet Akýn; Serhat Arslan; Eyüp Çelik; Çýnar Kaya; Nihan Arslan

    2015-01-01

    The purpose of this study is to examine the relationship between Academic Support and Life Satisfaction. Participants were 458 university students who voluntarily filled out a package of self-report instruments. Student Academic Support Scale and Satisfaction with Life Scale were used as measures. The relationships between student academic support and life satisfaction were examined using correlation analysis and stepwise regression analysis. Life satisfaction was predicted positively by info...

  12. Integrated approaches to long-term studies of urban ecological systems

    Science.gov (United States)

    Nancy B. Grimm; J. Morgan Grove; Steward T.A. Pickett; Charles L. Redman

    2000-01-01

    Urban ecological systems present multiple challenges to ecologists—pervasive human impact and extreme heterogeneity of cities, and the need to integrate social and ecological approaches, concepts, and theory.

  13. Scale Mismatches in Social-Ecological Systems: Causes, Consequences, and Solutions

    Directory of Open Access Journals (Sweden)

    Graeme S. Cumming

    2006-06-01

    Full Text Available Scale is a concept that transcends disciplinary boundaries. In ecology and geography, scale is usually defined in terms of spatial and temporal dimensions. Sociological scale also incorporates space and time, but adds ideas about representation and organization. Although spatial and temporal location determine the context for social and ecological dynamics, social-ecological interactions can create dynamic feedback loops in which humans both influence and are influenced by ecosystem processes. We hypothesize that many of the problems encountered by societies in managing natural resources arise because of a mismatch between the scale of management and the scale(s of the ecological processes being managed. We use examples from southern Africa and the southern United States to address four main questions: (1 What is a "scale mismatch?" (2 How are scale mismatches generated? (3 What are the consequences of scale mismatches? (4 How can scale mismatches be resolved? Scale mismatches occur when the scale of environmental variation and the scale of social organization in which the responsibility for management resides are aligned in such a way that one or more functions of the social-ecological system are disrupted, inefficiencies occur, and/or important components of the system are lost. They are generated by a wide range of social, ecological, and linked social-ecological processes. Mismatches between the scales of ecological processes and the institutions that are responsible for managing them can contribute to a decrease in social-ecological resilience, including the mismanagement of natural resources and a decrease in human well-being. Solutions to scale mismatches usually require institutional changes at more than one hierarchical level. Long-term solutions to scale mismatch problems will depend on social learning and the development of flexible institutions that can adjust and reorganize in response to changes in ecosystems. Further research is

  14. Toward a Network Perspective of the Study of Resilience in Social-Ecological Systems

    Directory of Open Access Journals (Sweden)

    Marco A. Janssen

    2006-06-01

    Full Text Available Formal models used to study the resilience of social-ecological systems have not explicitly included important structural characteristics of this type of system. In this paper, we propose a network perspective for social-ecological systems that enables us to better focus on the structure of interactions between identifiable components of the system. This network perspective might be useful for developing formal models and comparing case studies of social-ecological systems. Based on an analysis of the case studies in this special issue, we identify three types of social-ecological networks: (1 ecosystems that are connected by people through flows of information or materials, (2 ecosystem networks that are disconnected and fragmented by the actions of people, and (3 artificial ecological networks created by people, such as irrigation systems. Each of these three archytypal social-ecological networks faces different problems that influence its resilience as it responds to the addition or removal of connections that affect its coordination or the diffusion of system attributes such as information or disease.

  15. Animal protein production modules in biological life support systems: Novel combined aquaculture techniques based on the closed equilibrated biological aquatic system (C.E.B.A.S.)

    Science.gov (United States)

    Blüm, V.; Andriske, M.; Kreuzberg, K.; Schreibman, M. P.

    Based on the experiences made with the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) which was primarily deveoloped for long-term and multi-generation experiments with aquatic animals and plants in a space station highly effective fresh water recycling modules were elaborated utilizing a combination of ammonia oxidizing bacteria filters and higher plants. These exhibit a high effectivity to eliminate phosphate and anorganic nitrogen compounds and arc. in addidition. able to contribute to the oxygen supply of the aquatic animals. The C.E.B.A.S. filter system is able to keep a closed artificial aquatic ecosystem containing teleost fishes and water snails biologically stable for several month and to eliminate waste products deriving from degraded dead fishes without a decrease of the oxygen concentration down to less than 3.5 mg/l at 25 °C. More advanced C.E.B.A.S. filter systems, the BIOCURE filters, were also developed for utilization in semiintensive and intensive aquaculture systems for fishes. In fact such combined animal-plant aquaculture systems represent highly effective productions sites for human food if proper plant and fish species are selected The present papers elucidates ways to novel aquaculture systems in which herbivorous fishes are raised by feeding them with plant biomass produced in the BIOCURE filters and presents the scheme of a modification which utilizes a plant species suitable also for human nutrition. Special attention is paid to the benefits of closed aquaculture system modules which may be integrated into bioregenerative life support systems of a higher complexity for, e. g.. lunar or planetary bases including some psychologiccal aspects of the introduction of animal protein production into plant-based life support systems. Moreover, the basic reproductive biological problems of aquatic animal breeding under reduced gravity are explained leading to a disposition of essential research programs in this context.

  16. Biological and ecological aspects of hard ticks

    Directory of Open Access Journals (Sweden)

    Diana Nayibe Polanco Echeverry

    2016-01-01

    Full Text Available Hard ticks are blood-sucking ectoparasites of Ixodidae family. These mites have been always considered disrupting agents of livestock systems, where they are recognized as the cause of economic and production losses. However, their ecological role is important for the dynamic equilibrium of the production systems bovine meat or milk. Knowing their biolog y and ecolog y can shed light on the sanitary decisions made in relation to these organisms. This review article presents issues related to classification, characteristics, and life cycle of hard ticks and relations vector-parasite-host. In addition, it addresses the control of ectoparasites on conventional livestock systems and the implica-tions that these models of intervention might have on agro-ecosystem.

  17. Emergence of scale-free characteristics in socio-ecological systems with bounded rationality.

    Science.gov (United States)

    Kasthurirathna, Dharshana; Piraveenan, Mahendra

    2015-06-11

    Socio-ecological systems are increasingly modelled by games played on complex networks. While the concept of Nash equilibrium assumes perfect rationality, in reality players display heterogeneous bounded rationality. Here we present a topological model of bounded rationality in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. We argue that system rationality could be measured by the average Kullback--Leibler divergence between Nash and Quantal Response Equilibria, and that the convergence towards Nash equilibria on average corresponds to increased system rationality. Using this model, we show that when a randomly connected socio-ecological system is topologically optimised to converge towards Nash equilibria, scale-free and small world features emerge. Therefore, optimising system rationality is an evolutionary reason for the emergence of scale-free and small-world features in socio-ecological systems. Further, we show that in games where multiple equilibria are possible, the correlation between the scale-freeness of the system and the fraction of links with multiple equilibria goes through a rapid transition when the average system rationality increases. Our results explain the influence of the topological structure of socio-ecological systems in shaping their collective cognitive behaviour, and provide an explanation for the prevalence of scale-free and small-world characteristics in such systems.

  18. Termination of life support after major trauma.

    Science.gov (United States)

    Sullivan, D J; Hansen-Flaschen, J

    2000-06-01

    As the population continues to age, greater numbers and more severely injured elderly patients require care in ICUs. With the attendant increase in the medical complexity of such patients, investigators anticipate that trauma and critical care resources will become increasingly stretched. Because of economic and societal forces, it will become increasingly important for trauma surgeons to appropriately counsel patients and their families regarding the outcome from their injuries and to become comfortable approaching families about withdrawal of support when medical futility is recognized. The authors propose the following guidelines for discussing limitation or termination of life support with patients and their families. Physicians should (1) discuss the patient's wishes regarding life support on admission or early in the hospital course; (2) at the initial discussion, establish who the decision maker will be if the patient is or becomes incapacitated; (3) maintain regular communication and continuity of care; and (4) inevitably, when conflict occurs, involve consultants and a hospital ethics committee for assistance in its resolution.

  19. A practical procedure for assessing resilience of social-ecological system using the System Dynamics Approach

    Directory of Open Access Journals (Sweden)

    Newton Paulo Bueno

    2009-12-01

    Full Text Available While growing attention has been paid to the idea of resilience of social-ecological systems, it seems that there still are a number of gaps to bridge before we could really use this concept for practical purposes. The main problem is that the most of the works in the field are unclear on how to unequivocally measure the degree of resilience of particular social-ecological systems. In this paper, we suggest to be possible identifying the loss of resilience of social-ecological systems as a process of loop dominance shift. In order to illustrate the argument, we use a very stylized system dynamics model for irrigation systems developed by scholars associated to the Workshop in Political Theory and Policy Analysis at Indiana University.

  20. 2009 Archaea: Ecology, Metabolism & Molecular Biology GRC

    Energy Technology Data Exchange (ETDEWEB)

    Furlow, Julie Maupin- [Univ. of Florida, Gainesville, FL (United States)

    2009-07-26

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses; and industrial applications. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  1. Life forms of endemic carabid beetles (Coleoptera, Carabidae in the forest eco-systems of gorgany mountains

    Directory of Open Access Journals (Sweden)

    V. S. Pushkar

    2010-09-01

    Full Text Available In the forest ecosystems of Gorgany Mountains 11 endemic carabids are found. It is about 12.2 % of all ground-beetles fauna of the investigated region. As a result of the morphometric analysis the life forms of endemic carabids are determined. The system of ground beetles’ life forms developed by I. Sharova (1981 is supplemented. All endemics we have rated among 1 class (Zoophages, 2 subclasses (Epigeobionts, Stratobionts and 5 life forms. The analysis of the carabid beetles’ life form spectrum in the forest ecosystems of Gorgany mountains attests to their broad settlement of ecological niches in the investigated region.

  2. Vulnerability of ecological systems for nuclear war climatic consequences

    International Nuclear Information System (INIS)

    Kharuehll, M.; Khatchinson, T.; Kropper, U.; Kharuehll, K.

    1988-01-01

    Vulnerability of ecological systems of Northern hemisphere (terrestrial, aquatic and tropical) as well as Southern one in relation to climatic changes following large nuclear war is considered. When analyzing potential sensitivity of ecological systems to climatic changes, possible consequences are considered for different stress categories under various war scenarios. The above-mentioned stresses correspond to those adopted in published work by Pittok and others. To estimate the less important climatic disturbances a few additional computer-simulated models are developed

  3. Ecological data in support of an analysis of Guinea-Bissau׳s medicinal flora

    Directory of Open Access Journals (Sweden)

    Luís Catarino

    2016-06-01

    Full Text Available This dataset presents an annotated list of medicinal plants used by local communities in Guinea-Bissau (West Africa, in a total of 218 species. Data was gathered by means of herbarium and bibliographic research, as well as fieldwork. Biological and ecological information is provided for each species, including in-country distribution, geographical range, growth form and main vegetation types. The dataset was used to prepare a paper on the medicinal plants of Guinea-Bissau “Medicinal plants of Guinea-Bissau: therapeutic applications, ethnic diversity and knowledge transfer” (Catarino et al., 2016 [1]. The table and figures provide a unique database for Guinea-Bissau in support of ethno-medical and ethno-pharmacological research, and their ecological dimensions.

  4. Integrating Social Science into the Long-Term Ecological Research (LTER) Network: Social Dimensions of Ecological Change and Ecological Dimensions of Social Change

    Science.gov (United States)

    Charles L. Redman; J. Morgan Grove; Lauren H. Kuby; Lauren H. Kuby

    2004-01-01

    The integration of the social sciences into long-term ecological research is an urgent priority. To address this need, a group of social, earth, and life scientists associated with the National Science Foundation's (NSF) Long-Term Ecological Research (LTER) Network have articulated a conceptual framework for understanding the human dimensions of ecological change...

  5. Ecological stability of landscape - ecological infrastructure - ecological management

    International Nuclear Information System (INIS)

    1992-01-01

    The Field Workshop 'Ecological Stability of Landscape - Ecological Infrastructure - Ecological Management' was held within a State Environmental Programme financed by the Federal Committee for the Environment. The objectives of the workshop were to present Czech and Slovak approaches to the ecological stability of the landscape by means of examples of some case studies in the field, and to exchange ideas, theoretical knowledge and practical experience on implementing the concept of ecological infrastructure in landscape management. Out of 19 papers contained in the proceedings, 3 items were inputted to the INIS system. (Z.S.)

  6. Training and certification program of the operating staff for a 90-day test of a regenerative life support system

    Science.gov (United States)

    1972-01-01

    Prior to beginning a 90-day test of a regenerative life support system, a need was identified for a training and certification program to qualify an operating staff for conducting the test. The staff was responsible for operating and maintaining the test facility, monitoring and ensuring crew safety, and implementing procedures to ensure effective mission performance with good data collection and analysis. The training program was designed to ensure that each operating staff member was capable of performing his assigned function and was sufficiently cross-trained to serve at certain other positions on a contingency basis. Complicating the training program were budget and schedule limitations, and the high level of sophistication of test systems.

  7. Overview of Microbiological Tests Performed During the Design of the International Space Station Environmental Control and Life Support Systems

    Science.gov (United States)

    Roman, Monsi C.; Mittelman, Marc W.

    2010-01-01

    The design and manufacturing of the main Environmental Control and Life Support Systems (ECLSS) for the United States segments of the International Space Station (ISS) was an involved process that started in the late 1980's, with the assessment and testing of competing technologies that could be used to clean the air and recycle water. It culminated in 2009 with the delivery and successful activation of the Water Recovery System (WRS) water processor (WP). The ECLSS required the work of a team of engineers and scientist working together to develop systems that could clean and/or recycle human metabolic loads to maintain a clean atmosphere and provide the crew clean water. One of the main goals of the ECLSS is to minimize the time spent by the crew worrying about vital resources not available in the vacuum of space, which allows them to spend most of their time learning to live in a microgravity environment many miles from the comforts of Earth and working on science experiments. Microorganisms are a significant part of the human body as well as part of the environment that we live in. Therefore, the ISS ECLSS design had to take into account the effect microorganisms have on the quality of stored water and wastewater, as well as that of the air systems. Hardware performance issues impacted by the accumulation of biofilm and/or microbiologically influenced corrosion were also studied during the ECLSS development stages. Many of the tests that were performed had to take into account the unique aspects of a microgravity environment as well as the challenge of understanding how to design systems that could not be sterilized or maintained in a sterile state. This paper will summarize the work of several studies that were performed to assess the impacts and/or to minimize the effects of microorganisms in the design of a closed loop life support system.

  8. Techno-ecological synergy: a framework for sustainable engineering.

    Science.gov (United States)

    Bakshi, Bhavik R; Ziv, Guy; Lepech, Michael D

    2015-02-03

    Even though the importance of ecosystems in sustaining all human activities is well-known, methods for sustainable engineering fail to fully account for this role of nature. Most methods account for the demand for ecosystem services, but almost none account for the supply. Incomplete accounting of the very foundation of human well-being can result in perverse outcomes from decisions meant to enhance sustainability and lost opportunities for benefiting from the ability of nature to satisfy human needs in an economically and environmentally superior manner. This paper develops a framework for understanding and designing synergies between technological and ecological systems to encourage greater harmony between human activities and nature. This framework considers technological systems ranging from individual processes to supply chains and life cycles, along with corresponding ecological systems at multiple spatial scales ranging from local to global. The demand for specific ecosystem services is determined from information about emissions and resource use, while the supply is obtained from information about the capacity of relevant ecosystems. Metrics calculate the sustainability of individual ecosystem services at multiple spatial scales and help define necessary but not sufficient conditions for local and global sustainability. Efforts to reduce ecological overshoot encourage enhancement of life cycle efficiency, development of industrial symbiosis, innovative designs and policies, and ecological restoration, thus combining the best features of many existing methods. Opportunities for theoretical and applied research to make this framework practical are also discussed.

  9. Perceived psychosocial needs, social support and quality of life in ...

    African Journals Online (AJOL)

    Subjects with late-stage HIV infection reported a lower social adjustment to the disease, a lower quality of life and more severe lifestyle changes. Satisfaction with social support correlated significantly with quality of life and social adjustment. It is therefore concluded that the higher the level of satisfaction with social support, ...

  10. Descriptive Modeling of the Dynamical Systems and Determination of Feedback Homeostasis at Different Levels of Life Organization.

    Science.gov (United States)

    Zholtkevych, G N; Nosov, K V; Bespalov, Yu G; Rak, L I; Abhishek, M; Vysotskaya, E V

    2018-05-24

    The state-of-art research in the field of life's organization confronts the need to investigate a number of interacting components, their properties and conditions of sustainable behaviour within a natural system. In biology, ecology and life sciences, the performance of such stable system is usually related to homeostasis, a property of the system to actively regulate its state within a certain allowable limits. In our previous work, we proposed a deterministic model for systems' homeostasis. The model was based on dynamical system's theory and pairwise relationships of competition, amensalism and antagonism taken from theoretical biology and ecology. However, the present paper proposes a different dimension to our previous results based on the same model. In this paper, we introduce the influence of inter-component relationships in a system, wherein the impact is characterized by direction (neutral, positive, or negative) as well as its (absolute) value, or strength. This makes the model stochastic which, in our opinion, is more consistent with real-world elements affected by various random factors. The case study includes two examples from areas of hydrobiology and medicine. The models acquired for these cases enabled us to propose a convincing explanation for corresponding phenomena identified by different types of natural systems.

  11. Quality of life and depression following childbirth: impact of social support.

    Science.gov (United States)

    Webster, Joan; Nicholas, Catherine; Velacott, Catherine; Cridland, Noelle; Fawcett, Lisa

    2011-10-01

    to evaluate the impact of social support on postnatal depression and health-related quality of life. prospective cohort study. Data were collected at baseline and at six weeks post discharge using a postal survey. between August and December 2008, 320 women from a large tertiary hospital were recruited following the birth of their infant. Edinburgh Postnatal Depression Scale (EPDS), Maternity Social Support Scale and World Health Organization Quality of Life assessment questionnaire. of the 320 women recruited, 222 (69.4%) returned their six-week questionnaire. Women with low social support had significantly higher scores on the EPDS than women who reported adequate support (p = 0.007). There was also a significant effect of social support on health-related quality of life. Women with low family or partner support scored lower in all domains, with the greatest mean difference in the social health domain (p = 0.000). Of those scoring >10 on the EPDS, 75.5% had sought professional help. women with low social support are more likely to report postnatal depression and lower quality of life than well-supported women. Careful assessment of a woman's level of support following the birth, particularly from her partner and family, may provide useful information for possible interventions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. The Ecology of Stress: linking life-history traits with physiological control mechanisms in free-living guanacos.

    Science.gov (United States)

    Ovejero Aguilar, Ramiro J A; Jahn, Graciela A; Soto-Gamboa, Mauricio; Novaro, Andrés J; Carmanchahi, Pablo

    2016-01-01

    Providing the context for the evolution of life-history traits, habitat features constrain successful ecological and physiological strategies. In vertebrates, a key response to life's challenges is the activation of the Stress (HPA) and Gonadal (HPG) axes. Much of the interest in stress ecology is motivated by the desire to understand the physiological mechanisms in which the environment affects fitness. As reported in the literature, several intrinsic and extrinsic factors affect variability in hormone levels. In both social and non-social animals, the frequency and type of interaction with conspecifics, as well as the status in social species, can affect HPA axis activity, resulting in changes in the reproductive success of animals. We predicted that a social environment can affect both guanaco axes by increasing the secretion of testosterone (T) and Glucocorticoid (GCs) in response to individual social interactions and the energetic demands of breeding. Assuming that prolonged elevated levels of GCs over time can be harmful to individuals, it is predicted that the HPA axis suppresses the HPG axis and causes T levels to decrease, as GCs increase. All of the data for individuals were collected by non-invasive methods (fecal samples) to address hormonal activities. This is a novel approach in physiological ecology because feces are easily obtained through non-invasive sampling in animal populations. As expected, there was a marked adrenal ( p -value = .3.4e-12) and gonadal ( p -value = 0.002656) response due to seasonal variation in Lama guanicoe . No significant differences were found in fecal GCs metabolites between males/females*season for the entire study period ( p -value = 0.2839). Despite the seasonal activity variation in the hormonal profiles, our results show a positive correlation ( p -value = 1.952e-11, COR = 0.50) between the adrenal and gonadal system. The marked endocrine ( r 2  = 0.806) and gonad ( r 2  = 0.7231) response due to seasonal

  13. Environmental and ecological life cycle inventories of present and future PV systems in Europe for sustainability policies

    International Nuclear Information System (INIS)

    Frankl, P.; Lombardelli, S.; Corrado, A.

    2004-01-01

    The current use of Life Cycle Inventories (LCI) for the calculation of external costs and energy system modelling and planning is limited by two main factors: 1) lack of harmonization and transparency in the methodology used in LCA studies. 2) lack of transparent and updated and database on recent and emerging PV technologies (and other renewable and distributed generation technologies). These issues have been addressed and overcome by the recent EU research project ECLIPSE. With respect to photovoltaic (PV) systems, four main PV technologies (mc-Si, sc-Si, thin film a-Si, CIS) with different applications (ground-mounted power plants, retrofit and integrated building integrated systems) and derived configurations were analyzed, for a total of 47 system configurations. Each main technology is described in a report, which presents results in detailed and transparent manner, highlighting the crucial parameters which influence LCI results. The latter confirm the low life cycle emissions level and the very high value of PV systems towards sustainable energy systems for the future. (authors)

  14. Future directions for resuscitation research. V. Ultra-advanced life support.

    Science.gov (United States)

    Tisherman, S A; Vandevelde, K; Safar, P; Morioka, T; Obrist, W; Corne, L; Buckman, R F; Rubertsson, S; Stephenson, H E; Grenvik, A; White, R J

    1997-06-01

    Standard external cardiopulmonary resuscitation (SECPR) frequently produces very low perfusion pressures, which are inadequate to achieve restoration of spontaneous circulation (ROSC) and intact survival, particularly when the heart is diseased. Ultra-advanced life support (UALS) techniques may allow support of vital organ systems until either the heart recovers or cardiac repair or replacement is performed. Closed-chest emergency cardiopulmonary bypass (CPB) provides control of blood flow, pressure, composition and temperature, but has so far been applied relatively late. This additional low-flow time may preclude conscious survival. An easy, quick method for vessel access and a small preprimed system that could be taken into the field are needed. Open-chest CPR (OCCPR) is physiologically superior to SECPR, but has also been initiated too late in prior studies. Its application in the field has recently proven feasible. Variations of OCCPR, which deserve clinical trials inside and outside hospitals, include 'minimally invasive direct cardiac massage' (MIDCM), using a pocket-size plunger-like device inserted via a small incision and 'direct mechanical ventricular actuation' (DMVA), using a machine that pneumatically drives a cup placed around the heart. Other novel UALS approaches for further research include the use of an aortic balloon catheter to improve coronary and cerebral blood flow during SECPR, aortic flush techniques and a double-balloon aortic catheter that could allow separate perfusion (and cooling) of the heart, brain and viscera for optimal resuscitation of each. Decision-making, initiation of UALS methods and diagnostic evaluations must be rapid to maximize the potential for ROSC and facilitate decision-making regarding long-term circulatory support versus withdrawal of life support for hopeless cases. Research and development of UALS techniques needs to be coordinated with cerebral resuscitation research.

  15. Diagnosing Disaster Resilience of Communities as Multi-scale Complex Socio-ecological Systems

    Science.gov (United States)

    Liu, Wei; Mochizuki, Junko; Keating, Adriana; Mechler, Reinhard; Williges, Keith; Hochrainer, Stefan

    2014-05-01

    Global environmental change, growing anthropogenic influence, and increasing globalisation of society have made it clear that disaster vulnerability and resilience of communities cannot be understood without knowledge on the broader social-ecological system in which they are embedded. We propose a framework for diagnosing community resilience to disasters, as a form of disturbance to social-ecological systems, with feedbacks from the local to the global scale. Inspired by iterative multi-scale analysis employed by Resilience Alliance, the related socio-ecological systems framework of Ostrom, and the sustainable livelihood framework, we developed a multi-tier framework for thinking of communities as multi-scale social-ecological systems and analyzing communities' disaster resilience and also general resilience. We highlight the cross-scale influences and feedbacks on communities that exist from lower (e.g., household) to higher (e.g., regional, national) scales. The conceptual framework is then applied to a real-world resilience assessment situation, to illustrate how key components of socio-ecological systems, including natural hazards, natural and man-made environment, and community capacities can be delineated and analyzed.

  16. Life cycle assessment and economic analysis of a low concentrating photovoltaic system.

    Science.gov (United States)

    De Feo, G; Forni, M; Petito, F; Renno, C

    2016-10-01

    Many new photovoltaic (PV) applications, such as the concentrating PV (CPV) systems, are appearing on the market. The main characteristic of CPV systems is to concentrate sunlight on a receiver by means of optical devices and to decrease the solar cells area required. A low CPV (LCPV) system allows optimizing the PV effect with high increase of generated electric power as well as decrease of active surface area. In this paper, an economic analysis and a life cycle assessment (LCA) study of a particular LCPV scheme is presented and its environmental impacts are compared with those of a PV traditional system. The LCA study was performed with the software tool SimaPro 8.0.2, using the Econinvent 3.1 database. A functional unit of 1 kWh of electricity produced was chosen. Carbon Footprint, Ecological Footprint and ReCiPe 2008 were the methods used to assess the environmental impacts of the LCPV plant compared with a corresponding traditional system. All the methods demonstrated the environmental convenience of the LCPV system. The innovative system allowed saving 16.9% of CO2 equivalent in comparison with the traditional PV plant. The environmental impacts saving was 17% in terms of Ecological Footprint, and, finally, 15.8% with the ReCiPe method.

  17. Selection of candidate salad vegetables for controlled ecological life support system

    Science.gov (United States)

    Qin, L.; Guo, S.; Ai, W.; Tang, Y.

    Higher plants, as one of the essential biological components of CELSS, can supply food, oxygen and water for human crews during future long-duration space missions and Lunar/Mars habitats. In order to select suitable leaf vegetable varieties for our CELSS Experimental Facility (CEF), five varieties of lettuce (“Nenlvnaiyou”, “Dasusheng”, “Naichoutai”, “Dongfangkaixuan” and “Siji”), two of spinach (“Daye” and “Quanneng”), one of rape (“Jingyou No. 1”) and one of common sowthistle were grown and compared on the basis of edible biomass, and nutrient content. In addition, two series of experiments were conducted to study single leaf photosynthetic rates and transpiration rates at 30 days after planting, one which used various concentrations of CO2 (500, 1000, 1500 and 2000 μmol mol-1) and another which used various light intensities (100, 300, 500 and 700 μmol m-2 s-1). Results showed that lettuce cvs. “Nenlvnaiyou”, “Siji” and “Dasusheng” produced higher yields of edible biomass; common sowthisle would be a good source of β-carotene for the diet. Based on the collective findings, we selected three varieties of lettuce (“Nenlvnaiyou”, “Dasusheng” and “Siji”) and one of common sowthistle as the candidate crops for further research in our CEF. In addition, elevated CO2 concentration increased the rates of photosynthesis and transpiration, and elevated light intensity increased the rate of photosynthesis for these varieties. These results can be useful for determining optimal conditions for controlling CO2 and water fluxes between the crops and the overall CELSS.

  18. Environmental and ecological water requirement of river system: a case study of Haihe-Luanhe river system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to reduce the environmental and ecological problems induced by water resources development and utilization, this paper proposes a concept of environmental and ecological water requirement. It is defined as the minimum water amount to be consumed by the natural water bodies to conserve its environmental and ecological functions. Based on the definition, the methods on calculating the amount of environmental and ecological water requirement are determined. In the case study on Haihe-Luanhe river system, the water requirement is divided into three parts, i.e., the basic in-stream flow, water requirement for sediment transfer and water consumption by evaporation of the lakes or everglades. The results of the calculation show that the environmental and ecological water requirement in the river system is about 124×108 m3, including 57×108 m3 for basic in-stream flow, 63×108m3 for sediment transfer and 4×l08m3 for net evaporation loss of lakes. The total amount of environmental and ecological water requirement accounts for 54% of the amount of runoff (228×108 m3). However, it should be realized that the amount of environmental and ecological water requirement must be more than that we have calculated. According to this result, we consider that the rational utilization rate of the runoff in the river systems must not be more than 40%. Since the current utilization rate of the river system, which is over 80%, has been far beyond the limitation, the problems of environment and ecology are quite serious. It is imperative to control and adjust water development and utilization to eliminate the existing problems and to avoid the potential ecological or environmental crisis.

  19. REECo activities and sample logistics in support of the Nevada Applied Ecology Group

    International Nuclear Information System (INIS)

    Wireman, D.L.; Rosenberry, C.E. Jr.

    1975-01-01

    Activities and sample logistics of Reynolds Electrical and Engineering Co., Inc. (REECo), in support of the Nevada Applied Ecology Group (NAEG), are discussed in this summary report. Activities include the collection, preparation, and shipment of samples of soils, vegetation, and small animals collected at Pu-contaminated areas of the Nevada Test Site and Tonopah Test Range. (CH)

  20. The role of empowerment in youth development: a study of sociopolitical control as mediator of ecological systems' influence on developmental outcomes.

    Science.gov (United States)

    Christens, Brian D; Peterson, N Andrew

    2012-05-01

    Empowerment has become an influential concept and theoretical framework for social policy and practice. Still, relatively little is known about the roles that empowerment plays in the ecology of human development, particularly among young people. This article reports results of a study of psychological empowerment among young people, using data from 629 high school students (65.8% female; 96.5% non-white). Using a path analysis, we examined the role of perceived sociopolitical control--an indicator of the intrapersonal component of psychological empowerment--as a mediator between ecological support systems and developmental outcomes. Findings confirmed that social support in family, peer, and school settings, and family cohesion positively predict self-esteem and perceived school importance, which, in turn, have protective effects on psychological symptoms, violent behaviors and substance use. Sociopolitical control was found to mediate the relationships between ecological supports and risk factors and developmental outcomes, leading to the conclusion that perceived efficacy in the sociopolitical domain, and youth empowerment, more generally, should be considered as core elements of the ecology of human development. Policy and practice aimed at promoting positive developmental outcomes and preventing risk behaviors should take their relationship to sociopolitical control into account.