WorldWideScience

Sample records for eclipsing accretion-powered millisecond

  1. Discovery of an Accreting Millisecond Pulsar in the Eclipsing Binary System SWIFT J1749.4-2807

    NARCIS (Netherlands)

    Altamirano, D.; Cavecchi, Y.; Patruno, A.; Watts, A.; Linares, M.; Degenaar, N.; Kalamkar, M.; van der Klis, M.; Rea, N.; Casella, P.; Padilla, M. Armas; Kaur, R.; Yang, Y. J.; Soleri, P.; Wijnands, R.

    2011-01-01

    We report on the discovery and the timing analysis of the first eclipsing accretion-powered millisecond X-ray pulsar (AMXP): SWIFT J1749.4-2807. The neutron star rotates at a frequency of similar to 517.9 Hz and is in a binary system with an orbital period of 8.8 hr and a projected semimajor axis of

  2. Swings between rotation and accretion power in a binary millisecond pulsar.

    Science.gov (United States)

    Papitto, A; Ferrigno, C; Bozzo, E; Rea, N; Pavan, L; Burderi, L; Burgay, M; Campana, S; Di Salvo, T; Falanga, M; Filipović, M D; Freire, P C C; Hessels, J W T; Possenti, A; Ransom, S M; Riggio, A; Romano, P; Sarkissian, J M; Stairs, I H; Stella, L; Torres, D F; Wieringa, M H; Wong, G F

    2013-09-26

    It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.

  3. Discovery of Eclipses from the Accreting Millisecond X-Ray Pulsar Swift J1749.4-2807

    Science.gov (United States)

    Markwardt, C. B.; Stromhmayer, T. E.

    2010-01-01

    We report the discovery of X-ray eclipses in the recently discovered accreting millisecond X-ray pulsar SWIFT J1749.4-2807. This is the first detection of X-ray eclipses in a system of this type and should enable a precise neutron star mass measurement once the companion star is identified and studied. We present a combined pulse and eclipse timing solution that enables tight constraints on the orbital parameters and inclination and shows that the companion mass is in the range 0.6-0.8 solar mass for a likely range of neutron star masses, and that it is larger than a main-sequence star of the same mass. We observed two individual eclipse egresses and a single ingress. Our timing model shows that the eclipse features are symmetric about the time of 90 longitude from the ascending node, as expected. Our eclipse timing solution gives an eclipse duration (from the mid-points of ingress to egress) of 2172+/-13 s. This represents 6.85% of the 8.82 hr orbital period. This system also presents a potential measurement of "Shapiro" delay due to general relativity; through this technique alone, we set an upper limit to the companion mass of 2.2 Solar mass .

  4. Coherence of burst oscillations and accretion-powered pulsations in the accreting millisecond pulsar XTE J1814-338

    NARCIS (Netherlands)

    Watts, A.L.; Patruno, A.; van der Klis, M.

    2008-01-01

    X-ray timing of the accretion-powered pulsations during the 2003 outburst of the accreting millisecond pulsar XTE J1814-338 has revealed variation in the pulse time of arrival residuals. These can be interpreted in several ways, including spin-down and wandering of the fuel impact point around the

  5. Discovery of the Accretion-Powered Millisecond Pulsar SWIFT 51756.9-2508 with a Low-Mass Companion

    Science.gov (United States)

    Krimm, H.A.; Markwardt, C.B.; Deloye, C.J.; Romano, P.; Chakrabarty, S.; Campana. S.; Cummings, J.C.; Galloway, D.K.; Gehrels, N.; Hartman, J.M.; hide

    2007-01-01

    We report on the discovery by the Swift Gamma-Ray Burst Explorer of the eighth known transient accretion-powered millisecond pulsar: SWIFT J1756.9-2508, as part of routine observations with the Swift Burst Alert Telescope hard X-ray transient monitor. The pulsar was subsequently observed by both the X-Ray Telescope on Swift and the Rossi X-Ray Timing Explorer Proportional Counter Array. It has a spin frequency of 182 Hz (5.5 ms) and an orbital period of 54.7 minutes. The minimum companion mass is between 0.0067 and 0.0086 Solar Mass, depending on the mass of the neutron star, and the upper limit on the mass is 0.030 Solar Mass (95% confidence level). Such a low mass is inconsistent with brown dwarf models. and comparison with white dwarf models suggests that the companion is a He-dominated donor whose thermal cooling has been at least modestly slowed by irradiation from the accretion flux. No X-ray bursts. dips, eclipses or quasi-periodic oscillations were detected. The current outburst lasted approx. 13 days and no earlier outbursts were found in archival data.

  6. Orbital Evolution Measurement of the Accreting Millisecond X-ray ...

    Indian Academy of Sciences (India)

    accretion-powered millisecond X-ray pulsar SAX J1808.4–3658 using. X-ray data .... converts the photon arrival times to the solar system barycenter. ... applies all the known RXTE clock corrections and converts the photon arrival times.

  7. Discovery of burst oscillations in the intermittent accretion-powered millisecond pulsar HETE J1900.1-2455

    NARCIS (Netherlands)

    Watts, A.L.; Altamirano, D.; Linares, M.; Patruno, A.; Casella, P.; Cavecchi, Y.; Degenaar, N.; Rea, N.; Soleri, P.; van der Klis, M.; Wijnands, R.

    2009-01-01

    We report the discovery of burst oscillations from the intermittent accretion-powered millisecond pulsar (AMP) HETE J1900.1-2455, with a frequency ~1 Hz below the known spin frequency. The burst oscillation properties are far more similar to those of the non-AMPs and Aql X-1 (an intermittent AMP

  8. Transitional millisecond pulsars in the low-level accretion state

    Science.gov (United States)

    Jaodard, Amruta D.; Hessels, Jason W. T.; Archibald, Anne; Bogdanov, Slavko; Deller, Adam; Hernandez Santisteban, Juan; Patruno, Alessandro; D'Angelo, Caroline; Bassa, Cees; Amruta Jaodand

    2018-01-01

    In the canonical pulsar recycling scenario, a slowly spinning neutron star can be rejuvenated to rapid spin rates by the transfer of angular momentum and mass from a binary companion star. Over the last decade, the discovery of three transitional millisecond pulsars (tMSPs) has allowed us to study recycling in detail. These systems transition between accretion-powered (X-ray) and rotation-powered (radio) pulsar states within just a few days, raising questions such as: what triggers the state transition, when does the recycling process truly end, and what will the radio pulsar’s final spin rate be? Systematic multi-wavelength campaigns over the last decade have provided critical insights: multi-year-long, low-level accretion states showing coherent X-ray pulsations; extremely stable, bi-modal X-ray light curves; outflows probed by radio continuum emission; a surprising gamma-ray brightening during accretion, etc. In my thesis I am trying to bring these clues together to understand the low-level accretion process that recycles a pulsar. For example, recently we timed PSR J1023+0038 in the accretion state and found it to be spinning down ~26% faster compared to the non-accreting radio pulsar state. We are currently conducting simultaneous multi-wavelength campaigns (XMM, HST, Kepler and VLA) to understand the global variability of the accretion flow, as well as high-energy Fermi-LAT observations to probe the gamma-ray emission mechanism. I will highlight these recent developments, while also presenting a broad overview of tMSPs as exciting new laboratories to test low-level accretion onto magnetized neutron stars.

  9. Accreting Millisecond Pulsars: Neutron Star Masses and Radii

    Science.gov (United States)

    Strohmayer, Tod

    2004-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries. The recent discovery of X-ray burst oscillations from two accreting millisecond pulsars has confirmed this basic picture and provided a new route to measuring neutron star properties and constraining the dense matter equation of state. I will briefly summarize the current observational understanding of accreting millisecond pulsars, and describe recent attempts to determine the mass and radius of the neutron star in XTE J1814-338.

  10. Infrared observations of the eclipsing millisecond pulsar 1957 + 20

    International Nuclear Information System (INIS)

    Eales, S.A.; Becklin, E.E.; Zuckerman, B.

    1990-01-01

    We have taken 2.2-μm images, over the entire range of orbital phase, of the eclipsing millisecond pulsar 1957 + 20. We show that the 2.2-μm flux from the pulsar system is variable, and that the infrared light curve is similar to the optical light curve. Four additional images at 1.2 μm show that there is a possible infrared excess from the system. (author)

  11. Discovery of 245 Hz burst oscillations from the accreting millisecond pulsar IGR J17511-3057

    NARCIS (Netherlands)

    Watts, A.L.; Altamirano, D.; Markwardt, C.B.; Strohmayer, T.E.

    2009-01-01

    RXTE observations of the bursting accreting millisecond X-ray pulsar IGR J17511-3057 (ATEL #2196, #2197, #2198) showed a short Type I X-ray burst on September 14th 2009. We detect strong burst oscillations at 245 Hz, very close to the spin frequency. Maximum Leahy power is in the range 130-215 in 3

  12. XMM-Newton Spectroscopy of the Accretion-driven Millisecond X-Ray Pulsar XTE J1751-305 in Outburst

    NARCIS (Netherlands)

    Miller, J. M.; Wijnands, R.; Méndez, M.; Kendziorra, E.; Tiengo, A.; van der Klis, M.; Chakrabarty, D.; Gaensler, B. M.; Lewin, W. H. G.

    2003-01-01

    We present an analysis of the first high-resolution spectra measured from an accretion-driven millisecond X-ray pulsar in outburst. We observed XTE J1751-305 with XMM-Newton on 2002 April 7 for approximately 35 ks. Using a simple absorbed blackbody plus power-law model, we measure an unabsorbed flux

  13. Further NICER observations of the accreting millisecond pulsar Swift J1756.9-2508

    Science.gov (United States)

    Bult, P. M.; Gendreau, K. C.; Ray, P. S.; Altamirano, D.; Arzoumanian, Z.; Strohmayer, T. E.; Homan, J.; Chakrabarty, D.

    2018-04-01

    The accreting millisecond X-ray pulsar Swift J1756.9-2508 has been in outburst since 2018 April 1 (ATel #11497, #11502, #11505, #11523, #11566) and has been subject to regular monitoring with NICER (ATel #11502).

  14. Motion of the hot spot and spin torque in accreting millisecond pulsars

    NARCIS (Netherlands)

    Patruno, A.

    2008-01-01

    The primary concern of this contribution is that accreting millisecond pulsars (AMXPs) show a much larger amount of information than is commonly believed. The three questions to be addressed are: 1. Is the apparent spin torque observed in AMXPs real ? 2. Why do we see correlations and

  15. Accretion torques and motion of the hot spot on the accreting millisecond pulsar XTE J1807-294

    NARCIS (Netherlands)

    Patruno, A.; Hartman, J.M.; Wijnands, R.; Chakrabarty, D.; van der Klis, M.

    2010-01-01

    We present a coherent timing analysis of the 2003 outburst of the accreting millisecond pulsar (AMXP) XTEJ1807-294. We find a 95% confidence interval for the pulse frequency derivative of (+0.7, +4.7) x 10(-14) Hz s(-1) and (-0.6, +3.8) x 10(-14) Hz s(-1) for the fundamental and second harmonics,

  16. IGR J170626143 is an Accreting Millisecond X-Ray Pulsar

    Science.gov (United States)

    Strohmayer, Tod E.; Keek, Laurens

    2017-01-01

    We present the discovery of 163.65 Hz X-ray pulsations from IGR J17062-6143 in the only observation obtained from the source with the Rossi X-ray Timing Explorer. This detection makes IGR J17062-6143 the lowest frequency accreting millisecond X-ray pulsar presently known. The pulsations are detected in the 2-12 keV band with an overall significance of 4.3sigma and an observed pulsed amplitude of 5.54% +/-0.67% (in this band). Both dynamic power spectral and coherent phase timing analysis indicate that the pulsation frequency is decreasing during the approx. =1.2 ks observation in a manner consistent with orbital motion of the neutron star. Because the observation interval is short, we cannot precisely measure the orbital period; however, periods shorter than 17 minutes are excluded at 90% confidence. For the range of acceptable circular orbits the inferred binary mass function substantially overlaps the observed range for the AMXP population as a whole.

  17. THE EFFECT OF TRANSIENT ACCRETION ON THE SPIN-UP OF MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Sudip; Chakrabarty, Deepto, E-mail: sudip@tifr.res.in [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400005 (India)

    2017-01-20

    A millisecond pulsar is a neutron star that has been substantially spun up by accretion from a binary companion. A previously unrecognized factor governing the spin evolution of such pulsars is the crucial effect of nonsteady or transient accretion. We numerically compute the evolution of accreting neutron stars through a series of outburst and quiescent phases, considering the drastic variation of the accretion rate and the standard disk–magnetosphere interaction. We find that, for the same long-term average accretion rate, X-ray transients can spin up pulsars to rates several times higher than can persistent accretors, even when the spin-down due to electromagnetic radiation during quiescence is included. We also compute an analytical expression for the equilibrium spin frequency in transients, by taking spin equilibrium to mean that no net angular momentum is transferred to the neutron star in each outburst cycle. We find that the equilibrium spin rate for transients, which depends on the peak accretion rate during outbursts, can be much higher than that for persistent sources. This explains our numerical finding. This finding implies that any meaningful study of neutron star spin and magnetic field distributions requires the inclusion of the transient accretion effect, since most accreting neutron star sources are transients. Our finding also implies the existence of a submillisecond pulsar population, which is not observed. This may point to the need for a competing spin-down mechanism for the fastest-rotating accreting pulsars, such as gravitational radiation.

  18. A soft mHz quasi periodic oscillation in the fastest accreting millisecond pulsar.

    Science.gov (United States)

    Ferrigno, C.; Bozzo, E.; Sanna, A.; Pintore, F.; Papitto, A.; Riggio, A.; Burderi, L.; Di Salvo, T.; Iaria, R.; D'ai, A.

    2017-10-01

    We illustrate the peculiar X-ray variability displayed by the accreting millisecond X-ray pulsar IGR J00291+5934 in a 80 ks-long joint Nustar and XMM-Newton observation performed during the source outburst in 2015. The lightcurve of the source is characterized by a flaring behavior, with typical rise and decay timescales of ˜120 s. The flares are accompanied by a remarkable spectral variability, with the X- ray emission being generally softer at the peak of the flares. A strong QPO is detected at ˜8 mHz in the power spectrum of the source and clearly associated to its flaring-like behaviour. This feature has the strongest power at soft X-rays (hearth-beat in the black-hole binary GRS 1915+105, or, less likely, to unstable nuclear burning on the neutron star surface, as observed in the burster 4U 1636-536. This phenomenology could be ideally studied with the large throughput and wide energy coverage of present and future instruments.

  19. Swift observations of the accreting millisecond pulsar IGR J17498-2921 : From outburst to quiescence

    NARCIS (Netherlands)

    Linares, M.; Bozzo, E.; Altamirano, D.; Degenaar, N.; Wijnands, R.; Soleri, P.; Belloni, T.; Di Salvo, T.; D'Ai, A.; Papitto, A.; Riggio, A.; Burderi, L.

    Swift has been monitoring the accreting millisecond pulsar IGR J17498-2921 since the start of its outburst in 2011 August 12 (ATels #3551, #3555, #3556). We detected two X-ray bursts on Aug. 18 and 28. During the first ~12 days the average persistent XRT count rate remained approximately constant at

  20. IGR J17062–6143 Is an Accreting Millisecond X-Ray Pulsar

    Energy Technology Data Exchange (ETDEWEB)

    Strohmayer, Tod [Astrophysics Science Division and Joint Space-Science Institute, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Keek, Laurens [X-ray Astrophysics Laboratory, NASA/GSFC and CRESST and the Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2017-02-20

    We present the discovery of 163.65 Hz X-ray pulsations from IGR J17062−6143 in the only observation obtained from the source with the Rossi X-ray Timing Explorer . This detection makes IGR J17062−6143 the lowest-frequency accreting millisecond X-ray pulsar presently known. The pulsations are detected in the 2–12 keV band with an overall significance of 4.3 σ and an observed pulsed amplitude of 5.54% ± 0.67% (in this band). Both dynamic power spectral and coherent phase timing analysis indicate that the pulsation frequency is decreasing during the ≈1.2 ks observation in a manner consistent with orbital motion of the neutron star. Because the observation interval is short, we cannot precisely measure the orbital period; however, periods shorter than 17 minutes are excluded at 90% confidence. For the range of acceptable circular orbits the inferred binary mass function substantially overlaps the observed range for the AMXP population as a whole.

  1. Evolution towards and beyond accretion-induced collapse of massive white dwarfs and formation of millisecond pulsars

    OpenAIRE

    Tauris, Thomas M.; Sanyal, Debashis; Yoon, Sung-Chul; Langer, Norbert

    2013-01-01

    Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs), formed via type Ib/c core-collapse supernovae (SNe), which have been spun up to high rotation rates via accretion from a companion star in a low-mass X-ray binary (LMXB). In an alternative formation channel, NSs are produced via the accretion-induced collapse (AIC) of a massive white dwarf (WD) in a close binary. Here we investigate binary evolution leading to AIC and examine if NSs formed in this way can subsequ...

  2. Constraining Relativistic Bow Shock Properties in Rotation-powered Millisecond Pulsar Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Wadiasingh, Zorawar; Venter, Christo; Böttcher, Markus [Centre for Space Research, North–West University, Potchefstroom (South Africa); Harding, Alice K. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Baring, Matthew G., E-mail: zwadiasingh@gmail.com [Department of Physics and Astronomy, Rice University, Houston, TX 77251 (United States)

    2017-04-20

    Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase centering of the double-peaked X-ray orbital modulation originating from mildly relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock standoff R {sub 0}. We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the standoff is R {sub 0} ∼ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R {sub 0} ≲ 0.4, while X-ray light curves suggest 0.1 ≲ R {sub 0} ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy dependence in the shape of light curves, motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.

  3. Constraining Relativistic Bow Shock Properties in Rotation-Powered Millisecond Pulsar Binaries

    Science.gov (United States)

    Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Bottcher, Markus; Baring, Matthew G.

    2017-01-01

    Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R(sub 0). We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R(sub 0) approximately 0:15 - 0:3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R(sub 0) is approximately less than 0:4 while X-ray light curves suggest 0:1 is approximately less than R(sub 0) is approximately less than 0:3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.

  4. CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES

    Science.gov (United States)

    Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Böttcher, Markus; Baring, Matthew G.

    2018-01-01

    Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R0. We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R0 ~ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein. PMID:29651167

  5. The puzzling case of the accreting millisecond X-ray pulsar IGR J00291+5934: flaring optical emission during quiescence

    Science.gov (United States)

    Baglio, M. C.; Campana, S.; D'Avanzo, P.; Papitto, A.; Burderi, L.; Di Salvo, T.; Muñoz-Darias, T.; Rea, N.; Torres, D. F.

    2017-04-01

    We present an optical (gri) study during quiescence of the accreting millisecond X-ray pulsar IGR J00291+5934 performed with the 10.4 m Gran Telescopio Canarias (GTC) in August 2014. Although the source was in quiescence at the time of our observations, it showed a strong optical flaring activity, more pronounced in bluer filters (I.e. the g-band). After subtracting the flares, we tentatively recovered a sinusoidal modulation at the system orbital period in all bands, even when a significant phase shift with respect to an irradiated star, typical of accreting millisecond X-ray pulsars, was detected. We conclude that the observed flaring could be a manifestation of the presence of an accretion disc in the system. The observed light curve variability could be explained by the presence of a superhump, which might be another proof of the formation of an accretion disc. In particular, the disc at the time of our observations was probably preparing the new outburst of the source, which occurred a few months later, in 2015. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma.

  6. Discovery of a 205.89 Hz accreting millisecond X-ray pulsar in the globular cluster NGC 6440

    NARCIS (Netherlands)

    Altamirano, D.; Patruno, A.; Heinke, C.O.; Markwardt, C.; Strohmayer, T.E.; Linares, M.; Wijnands, R.; van der Klis, M.; Swank, J.H.

    2010-01-01

    We report on the discovery of the second accreting millisecond X-ray pulsar (AMXP) in the globular cluster NGC 6440. Pulsations with a frequency of 205.89 Hz were detected with RXTE on 2009 August 30, October 1 and October 28, during the decays of less than or similar to 4 day outbursts of a newly

  7. Binary millisecond pulsar discovery via gamma-ray pulsations.

    Science.gov (United States)

    Pletsch, H J; Guillemot, L; Fehrmann, H; Allen, B; Kramer, M; Aulbert, C; Ackermann, M; Ajello, M; de Angelis, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Çelik, Ö; Charles, E; Chaves, R C G; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; den Hartog, P R; Hayashida, M; Hays, E; Hill, A B; Hou, X; Hughes, R E; Jóhannesson, G; Jackson, M S; Jogler, T; Johnson, A S; Johnson, W N; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; de Palma, F; Paneque, D; Perkins, J S; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Romoli, C; Sanchez, D A; Saz Parkinson, P M; Schulz, A; Sgrò, C; do Couto e Silva, E; Siskind, E J; Smith, D A; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Tinivella, M; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S

    2012-12-07

    Millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.

  8. Swinging between rotation and accretion power in a binary millisecond pulsar

    Directory of Open Access Journals (Sweden)

    Papitto A.

    2014-01-01

    While accreting mass, the X-ray emission of IGR J18245–2452 varies dramatically on time-scales ranging from a second to a few hours. We interpret a state characterised by a lower flux and pulsed fraction, and by sudden increases of the hardness of the X-ray emission, in terms of the onset of a magnetospheric centrifugal inhibition of the accretion flow. Prospects of finding new members of the newly established class of transitional pulsars are also briefly discussed.

  9. A PROPELLER MODEL FOR THE SUB-LUMINOUS STATE OF THE TRANSITIONAL MILLISECOND PULSAR PSR J1023+0038

    Energy Technology Data Exchange (ETDEWEB)

    Papitto, A.; Torres, D. F. [Institute of Space Sciences (CSIC-IEEC), Campus UAB, Carrer de Can Magrans, S/N, E-08193, Cerdanyola del Vallés, Barcelona (Spain)

    2015-07-01

    The discovery of millisecond pulsars switching between states powered either by the rotation of their magnetic field or by the accretion of matter has recently proved the tight link shared by millisecond radio pulsars and neutron stars in low-mass X-ray binaries. Transitional millisecond pulsars also show an enigmatic intermediate state in which the neutron star is surrounded by an accretion disk and emits coherent X-ray pulsations, but is sub-luminous in X-rays with respect to accreting neutron stars, and is brighter in gamma-rays than millisecond pulsars in the rotation-powered state. Here, we model the X-ray and gamma-ray emission observed from PSR J1023+0038 in such a state based on the assumptions that most of the disk in-flow is propelled away by the rapidly rotating neutron star magnetosphere, and that electrons can be accelerated to energies of a few GeV at the turbulent disk–magnetosphere boundary. We show that the synchrotron and self-synchrotron Compton emission coming from such a region, together with the hard disk emission typical of low states of accreting compact objects, is able to explain the radiation observed in the X-ray and gamma-ray bands. The average emission observed from PSR J1023+0038 is modeled by a disk in-flow with a rate of 1–3 × 10{sup −11} M{sub ⊙} yr{sup −1}, truncated at a radius ranging between 30 and 45 km, compatible with the hypothesis of a propelling magnetosphere. We compare the results we obtained with models that assume that a rotation-powered pulsar is turned on, showing how the spin-down power released in similar scenarios is hardly able to account for the magnitude of the observed emission.

  10. A non-radial oscillation mode in an accreting millisecond pulsar?

    Energy Technology Data Exchange (ETDEWEB)

    Strohmayer, Tod [Astrophysics Science Division and Joint Space-Science Institute, NASA' s Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mahmoodifar, Simin [Department of Physics and Joint Space-Science Institute, University of Maryland College Park, MD 20742 (United States)

    2014-03-20

    We present results of targeted searches for signatures of non-radial oscillation modes (such as r- and g-modes) in neutron stars using RXTE data from several accreting millisecond X-ray pulsars (AMXPs). We search for potentially coherent signals in the neutron star rest frame by first removing the phase delays associated with the star's binary motion and computing fast Fourier transform power spectra of continuous light curves with up to 2{sup 30} time bins. We search a range of frequencies in which both r- and g-modes are theoretically expected to reside. Using data from the discovery outburst of the 435 Hz pulsar XTE J1751–305 we find a single candidate, coherent oscillation with a frequency of 0.5727597 × ν{sub spin} = 249.332609 Hz, and a fractional Fourier amplitude of 7.46 × 10{sup –4}. We estimate the significance of this feature at the 1.6 × 10{sup –3} level, slightly better than a 3σ detection. Based on the observed frequency we argue that possible mode identifications include rotationally modified g-modes associated with either a helium-rich surface layer or a density discontinuity due to electron captures on hydrogen in the accreted ocean. In the latter case the presence of sufficient hydrogen in this ultracompact system with a likely helium-rich donor would present an interesting puzzle. Alternatively, the frequency could be identified with that of an inertial mode or a core r-mode modified by the presence of a solid crust; however, the r-mode amplitude required to account for the observed modulation amplitude would induce a large spin-down rate inconsistent with the observed pulse timing measurements. For the AMXPs XTE J1814–338 and NGC 6440 X–2 we do not find any candidate oscillation signals, and we place upper limits on the fractional Fourier amplitude of any coherent oscillations in our frequency search range of 7.8 × 10{sup –4} and 5.6 × 10{sup –3}, respectively. We briefly discuss the prospects and sensitivity for

  11. NICER Discovers the Ultracompact Orbit of the Accreting Millisecond Pulsar IGR J17062–6143

    DEFF Research Database (Denmark)

    Strohmayer, T. E.; Arzoumanian, Z.; Bogdanov, S.

    2018-01-01

    We present results of recent Neutron Star Interior Composition Explorer (NICER) observations of the accreting millisecond X-ray pulsar (AMXP) IGR J17062−6143 that show that it resides in a circular, ultracompact binary with a 38-minute orbital period. NICER observed the source for ≈26 ks over a 5...... of the neutron star. A coherent search for the orbital solution using the Z2 method finds a best-fitting circular orbit with a period of 2278.21 s (37.97 minutes), a projected semimajor axis of 0.00390 lt-s, and a barycentric pulsar frequency of 163.6561105 Hz. This is currently the shortest known orbital period...

  12. SAX J1808.4−3658, an accreting millisecond pulsar shining in gamma rays?

    International Nuclear Information System (INIS)

    Oña Wilhelmi, E. de; Papitto, A.; Li, J.; Rea, N.

    2015-01-01

    We report the detection of a possible gamma-ray counterpart of the accreting millisec- ond pulsar SAXJ1808.4–3658. The analysis of ~6 years of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (Fermi-LAT) within a re- gion of 15° radius around the position of the pulsar reveals a point gamma-ray source detected at a significance of ~6σ (Test Statistic TS = 32), with position compatible with that of SAXJ1808.4–3658 within 95% Confidence Level. The energy flux in the energy range between 0.6 GeV and 10 GeV amounts to (2.1 ± 0.5) × 10 -12 erg cm -2 s -1 and the spectrum is well-represented by a power-law function with photon index 2.1±0.1. We searched for significant variation of the flux at the spin frequency of the pulsar and for orbital modulation, taking into account the trials due to the uncertain- ties in the position, the orbital motion of the pulsar and the intrinsic evolution of the pulsar spin. No significant deviation from a constant flux at any time scale was found, preventing a firm identification via time variability. Nonetheless, the association of the LAT source as the gamma-ray counterpart of SAXJ1808.4–3658 would match the emission expected from the millisecond pulsar, if it switches on as a rotation-powered source during X-ray quiescence.

  13. Quasi-periodic Pulse Amplitude Modulation in the Accreting Millisecond Pulsar IGR J00291+5934

    Energy Technology Data Exchange (ETDEWEB)

    Bult, Peter [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Doesburgh, Marieke van; Klis, Michiel van der [Anton Pannekoek Institute, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands)

    2017-08-20

    We introduce a new method for analyzing the aperiodic variability of coherent pulsations in accreting millisecond X-ray pulsars (AMXPs). Our method involves applying a complex frequency correction to the time-domain light curve, allowing for the aperiodic modulation of the pulse amplitude to be robustly extracted in the frequency domain. We discuss the statistical properties of the resulting modulation spectrum and show how it can be correlated with the non-pulsed emission to determine if the periodic and aperiodic variability are coupled processes. Using this method, we study the 598.88 Hz coherent pulsations of the AMXP IGR J00291+5934 as observed with the Rossi X-ray Timing Explorer and XMM-Newton . We demonstrate that our method easily confirms the known coupling between the pulsations and a strong 8 mHz quasi-periodic oscillation (QPO) in XMM-Newton observations. Applying our method to the RXTE observations, we further show, for the first time, that the much weaker 20 mHz QPO and its harmonic are also coupled with the pulsations. We discuss the implications of this coupling and indicate how it may be used to extract new information on the underlying accretion process.

  14. Quasi-Periodic Pulse Amplitude Modulation in the Accreting Millisecond Pulsar IGR J00291+5934

    Science.gov (United States)

    Bult, Peter; van Doesburgh, Marieke; van der Klis, Michiel

    2017-01-01

    We introduce a new method for analyzing the a periodic variability of coherent pulsations in accreting millisecond X-ray pulsars (AMXPs). Our method involves applying a complex frequency correction to the time-domain lightcurve, allowing for the aperiodic modulation of the pulse amplitude to be robustly extracted in the frequency domain. We discuss the statistical properties of the resulting modulation spectrum and show how it can be correlated with the non-pulsed emission to determine if the periodic and a periodic variability are coupled processes. Using this method, we study the 598.88 Hz coherent pulsations of the AMXP IGR J00291+5934 as observed with the Rossi X-ray Timing Explorer and XMM-Newton. We demonstrate that our method easily confirms the known coupling between the pulsations and a strong 8 mHz quasi-periodic oscillation (QPO) in XMM-Newton observations. Applying our method to the RXTE observations, we further show, for the first time, that the much weaker 20 mHz QPO and its harmonic are also coupled with the pulsations. We discuss the implications of this coupling and indicate how it may be used to extract new information on the underlying accretion process.

  15. The Stochastic X-Ray Variability of the Accreting Millisecond Pulsar MAXI J0911-655

    Science.gov (United States)

    Bult, Peter

    2017-01-01

    In this work, I report on the stochastic X-ray variability of the 340 hertz accreting millisecond pulsar MAXI J0911-655. Analyzing pointed observations of the XMM-Newton and NuSTAR observatories, I find that the source shows broad band-limited stochastic variability in the 0.01-10 hertz range with a total fractional variability of approximately 24 percent root mean square timing residuals in the 0.4 to 3 kiloelectronvolt energy band that increases to approximately 40 percent root mean square timing residuals in the 3 to 10 kiloelectronvolt band. Additionally, a pair of harmonically related quasi-periodic oscillations (QPOs) are discovered. The fundamental frequency of this harmonic pair is observed between frequencies of 62 and 146 megahertz. Like the band-limited noise, the amplitudes of the QPOs show a steep increase as a function of energy; this suggests that they share a similar origin, likely the inner accretion flow. Based on their energy dependence and frequency relation with respect to the noise terms, the QPOs are identified as low-frequency oscillations and discussed in terms of the Lense-Thirring precession model.

  16. Symbiotic star CI Cygni: S-process episode or accretion event

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, S J; Webbink, R F; Gallagher, J S; Truran, J W

    1982-02-01

    Evidence that the symbiotic star C I Cygni is an eclipsing binary is reviewed. It is shown that the s-process episode described by Audouze et al. (1981) during its 1975 outburst arises from superposition of normal gM4 absorption features on the continuum of the hot component during eclipse ingress, and not to sudden enhancements of rare earth elements. The peculiar velocity displacements of absorption lines with different excitation potentials during this episode are identified as signatures of an optically thick accretion disk, which dominates the visible spectrum during outburst. The data presented by Audouze et al., and the shape of the light curve thus provide evidence that the outburst is accretion-powered.

  17. The End of Accretion: The X-Ray Binary/Millisecond Pulsar Transition Object PSR J1023+0038

    Science.gov (United States)

    Archibald, Anne

    2015-04-01

    Millisecond radio pulsars (MSRPs), those spinning hundreds of times per second, have long been understood to be old pulsars that have been spun up by the accretion of matter from a companion in a low-mass X-ray binary (LMXB) phase. Yet the details of this transformation, particularly the end of the accretion process and the birth of a radio pulsar, remain mysterious. I will describe the discovery and detailed study of the first object known to transition between MSRP and LMXB states, PSR J1023+0038. By dint of a multiwavelength campaign of observations in the RMSP state, we are able to measure all the key system parameters and show the existence of an X-ray shock close to the pulsar-facing side of the companion. Since the discovery of PSR J1023+0038, two more objects (XSS J12270-4859 and M28I) have been found to make the same transition, and the study of these transitioning objects has become an active field of research. Most interestingly, PSR J1023+0038 has transitioned back into an LMXB state, with an active accretion disk and a puzzling increase in gamma-ray flux. Our detailed picture of the system allows us to test models of accretion against the phenomena we observe in PSR J1023+0038, and in fact these observations challenge current models: in spite of the low luminosity of the system (and low inferred accretion rate) some material is penetrating the centrifugal barrier and falling on the neutron-star surface. Key evidence for explaining this puzzling behaviour will come when PSR J1023+0038 returns to an MSRP state and we are able to compare pulsar timing models from after the LMXB state with those we obtained in this work.

  18. The symbiotic star CI Cygni: S-process episode or accretion event

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Webbink, R.F.; Gallagher, J.S.; Truran, J.W.

    1982-01-01

    Evidence that the symbiotic star C I Cygni is an eclipsing binary is reviewed. It is shown that the 's-process episode' described by Audouze et al. (1981) during its 1975 outburst arises from superposition of normal gM4 absorption features on the continuum of the hot component during eclipse ingress, and not to sudden enhancements of rare earth elements. The peculiar velocity displacements of absorption lines with different excitation potentials during this episode are identified as signatures of an optically thick accretion disk, which dominates the visible spectrum during outburst. The data presented by Audouze et al., and the shape of the light curve thus provide evidence that the outburst is accretion-powered. (orig.)

  19. X-ray states of redback millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Linares, M. [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as 'redbacks', constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk, and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback that showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L {sub X}), between (6-9) × 10{sup 32} erg s{sup –1} (disk-passive state) and (3-5) × 10{sup 33} erg s{sup –1} (disk-active state). This strongly suggests that mode switching—which has not been observed in quiescent low-mass X-ray binaries—is universal among redback millisecond pulsars in the disk state. We briefly explore the implications for accretion disk truncation and find that the inferred magnetospheric radius in the disk state of PSR J1023+0038 and XSS J12270-4859 lies outside the light cylinder. Finally, we note that all three redbacks that have developed accretion disks have relatively high L {sub X} in the pulsar state (>10{sup 32} erg s{sup –1}).

  20. The rotation of accretion-disks and the power spectra of X-rays 'flickering'

    International Nuclear Information System (INIS)

    Zhang Xiaohe; Bao Gang

    1990-07-01

    The X-ray producing, inner region of the accretion disk in Active Galactic Nuclei (AGN) is likely to be non-stationary and non-axisymmetric. This non-stationarity and non-axisymmetry in disk surface brightness may be modeled by considering the pre-sense of many 'hot spots' on a steady, axisymmetric disk. As long as a 'spot' can survive for a few orbital periods, its orbital frequency can be introduced into the light curve either by relativistic orbital motion or by eclipsing of the spot by the disk. These rotational effects vary with the local properties of the spot population. Depending on the radial variation of spot brightness, lifetime and number density, the observed variability power spectrum may differ from that due to the intrinsic variability of spots alone, within the orbital frequency range in which these spots occur. In this paper, we explore the relation between properties assumed for the spot population and the resulting predictions for the observed variability. The implications of our results for the 'flickering' of X-ray sources powered by accretion disks (both AGN and galactic sources) are also discussed. (author). 24 refs, 6 figs

  1. New outburst of the accreting millisecond X-ray pulsar NGC 6440 X-2 and discovery of a strong 1 Hz modulation in the light-curve

    NARCIS (Netherlands)

    Patruno, A.; Yang, Y.; Altamirano, D.; Armas-Padilla, M.; Cavecchi, Y.; Degenaar, N.; Kalamkar, M.; Kaur, R.; Klis, M. Van Der; Watts, A.; Wijnands, R.; Linares, M.; Casella, P.; Rea, N.; Soleri, P.; Markwardt, C.; Strohmayer, T.; Heinke, C.

    On June 11th, 2010, RXTE/PCA galactic bulge scan observations showed an increase in activity from the globular cluster NGC 6440. Two accreting millisecond X-ray pulsars (AMXPs) and 22 other X-ray binaries are known in NGC 6440 (see Pooley et al. 2002, ApJ 573, 184, Altarmirano et al. 2010, ApJL 712,

  2. High-speed photometry of the eclipsing dwarf nova OY Carinae

    Science.gov (United States)

    Cook, M. C.

    1985-01-01

    High-speed photometry of the eclipsing dwarf nova OY Car in the quiescent state is presented. OY Car becomes highly reddened during eclipse, with minimum flux colours inconsistent with optically thick emission in the U and B bandpasses. Mass ratios in the range 6.5 to 12 are required to reconcile the eclipse structure with theoretical gas stream trajectories. Primary eclipse timings reveal a significant decrease in the orbital period and the duration of primary eclipse indicates the presence of a luminous ring about the white dwarf. The hotspot eclipse reveals a hotspot which is elongated along the rim of the accretion disc, with optical emission being non-uniformly distributed along the rim. The location of the hotspot in the accretion disc implies a disc radius larger than that of an inviscid disc, with variation in the position of the hotspot being consistent with a fixed stream trajectory.

  3. GMRT DISCOVERY OF PSR J1544+4937: AN ECLIPSING BLACK-WIDOW PULSAR IDENTIFIED WITH A FERMI-LAT SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, B.; Roy, J.; Gupta, Y. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Ray, P. S.; Wolff, M. T.; Wood, K. S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Bhattacharya, D. [Inter-University Centre for Astronomy and Astrophysics, Pune 411 007 (India); Romani, R. W.; Den Hartog, P. R.; Kerr, M.; Michelson, P. F. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Ransom, S. M. [National Radio Astronomy Observatory (NRAO), Charlottesville, VA 22903 (United States); Ferrara, E. C.; Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Cognard, I. [Laboratoire de Physique et Chimie de l' Environnement, LPCE UMR 6115 CNRS, F-45071 Orleans Cedex 02 (France); Johnston, S.; Keith, M. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Epping, NSW 1710 (Australia); Saz Parkinson, P. M. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Wood, D. L. [Praxis Inc., Alexandria, VA 22303 (United States)

    2013-08-10

    Using the Giant Metrewave Radio Telescope, we performed deep observations to search for radio pulsations in the directions of unidentified Fermi-Large Area Telescope {gamma}-ray sources. We report the discovery of an eclipsing black-widow millisecond pulsar, PSR J1544+4937, identified with the uncataloged {gamma}-ray source FERMI J1544.2+4941. This 2.16 ms pulsar is in a 2.9 hr compact circular orbit with a very low mass companion (M{sub c} > 0.017M{sub Sun }). At 322 MHz this pulsar is found to be eclipsing for 13% of its orbit, whereas at 607 MHz the pulsar is detected throughout the low-frequency eclipse phase. Variations in the eclipse ingress phase are observed, indicating a clumpy and variable eclipsing medium. Moreover, additional short-duration absorption events are observed around the eclipse boundaries. Using the radio timing ephemeris we were able to detect {gamma}-ray pulsations from this pulsar, confirming it as the source powering the {gamma}-ray emission.

  4. On the morphology of outbursts of accreting millisecond X-ray pulsar Aquila X-1

    Science.gov (United States)

    Güngör, C.; Ekşi, K. Y.; Göğüş, E.

    2017-10-01

    We present the X-ray light curves of the last two outbursts - 2014 & 2016 - of the well known accreting millisecond X-ray pulsar (AMXP) Aquila X-1 using the monitor of all sky X-ray image (MAXI) observations in the 2-20 keV band. After calibrating the MAXI count rates to the all-sky monitor (ASM) level, we report that the 2016 outburst is the most energetic event of Aql X-1, ever observed from this source. We show that 2016 outburst is a member of the long-high class according to the classification presented by Güngör et al. with ˜ 68 cnt/s maximum flux and ˜ 60 days duration time and the previous outburst, 2014, belongs to the short-low class with ˜ 25 cnt/s maximum flux and ˜ 30 days duration time. In order to understand differences between outbursts, we investigate the possible dependence of the peak intensity to the quiescent duration leading to the outburst and find that the outbursts following longer quiescent episodes tend to reach higher peak energetic.

  5. Spin-down of radio millisecond pulsars at genesis.

    Science.gov (United States)

    Tauris, Thomas M

    2012-02-03

    Millisecond pulsars are old neutron stars that have been spun up to high rotational frequencies via accretion of mass from a binary companion star. An important issue for understanding the physics of the early spin evolution of millisecond pulsars is the impact of the expanding magnetosphere during the terminal stages of the mass-transfer process. Here, I report binary stellar evolution calculations that show that the braking torque acting on a neutron star, when the companion star decouples from its Roche lobe, is able to dissipate >50% of the rotational energy of the pulsar. This effect may explain the apparent difference in observed spin distributions between x-ray and radio millisecond pulsars and help account for the noticeable age discrepancy with their young white dwarf companions.

  6. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, Jason; Kasen, Daniel, E-mail: jdexter@berkeley.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2013-07-20

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time ({approx}>days) power potentially associated with the accretion of this 'fallback' material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as M-dot {proportional_to}t{sup -5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous ({approx}> 10{sup 44} erg s{sup -1}) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  7. Discovery of a Second Millesecond Accreting Pulsar: XTE J1751-305

    Science.gov (United States)

    Markwardt, C. B.; Swank, J. H.; Strohmayer, T. E.; intZand, J. J. M.; Marshall, F. E.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report the discovery by the RXTE PCA of a second transient accreting millisecond pulsar, XTE J1751-305, during regular monitoring observations of the galactic bulge region. The pulsar has a spin frequency of 435 Hz, making it one of the fastest pulsars. The pulsations contain the signature of orbital Doppler modulation, which implies an orbital period of 42 minutes, the shortest orbital period of any known radio or X-ray millisecond pulsar. The mass function, f(sub x) = (1.278 +/- 0.003) x 10 (exp -6) solar mass, yields a minimum mass for the companion of between 0.013 and 0.0017 solar mass depending on the mass of the neutron star. No eclipses were detected. A previous X-ray outburst in June, 1998, was discovered in archival All-Sky Monitor data. Assuming mass transfer in this binary system is driven by gravitational radiation, we constrain the orbital inclination to be in the range 30 deg-85 deg and the companion mass to be 0.013-0.035 solar mass. The companion is most likely a heated helium dwarf. We also present results from the Chandra HRC-S observations which provide the best known position of XTE J1751-305.

  8. Simulating X-ray bursts during a transient accretion event

    Science.gov (United States)

    Johnston, Zac; Heger, Alexander; Galloway, Duncan K.

    2018-06-01

    Modelling of thermonuclear X-ray bursts on accreting neutron stars has to date focused on stable accretion rates. However, bursts are also observed during episodes of transient accretion. During such events, the accretion rate can evolve significantly between bursts, and this regime provides a unique test for burst models. The accretion-powered millisecond pulsar SAX J1808.4-3658 exhibits accretion outbursts every 2-3 yr. During the well-sampled month-long outburst of 2002 October, four helium-rich X-ray bursts were observed. Using this event as a test case, we present the first multizone simulations of X-ray bursts under a time-dependent accretion rate. We investigate the effect of using a time-dependent accretion rate in comparison to constant, averaged rates. Initial results suggest that using a constant, average accretion rate between bursts may underestimate the recurrence time when the accretion rate is decreasing, and overestimate it when the accretion rate is increasing. Our model, with an accreted hydrogen fraction of X = 0.44 and a CNO metallicity of ZCNO = 0.02, reproduces the observed burst arrival times and fluences with root mean square (rms) errors of 2.8 h, and 0.11× 10^{-6} erg cm^{-2}, respectively. Our results support previous modelling that predicted two unobserved bursts and indicate that additional bursts were also missed by observations.

  9. Study of the eclipses of cataclysmic variables

    International Nuclear Information System (INIS)

    Zhang, E.H.

    1986-01-01

    The cataclysmic variables (CV's) are all close binary stars in which a secondary star fills its Roche lobe and transfers mass to its white dwarf companion. The transferred mass forms an accretion disk or ring, around the white dwarf. Reliable determinations of the masses of the two-component stars, the distributions of temperature and brightness across the disk, and other parameters, are necessary to understand both the CV's and the accretion processes, but they are extremely difficult to measure. The best way to obtain this data is to observe eclipsing CV's. The author developed a computer program to synthesize light curves of eclipsing CV's using the most realistic model built so far to analyze the eclipses of CV's. A statistical method was developed to perform a complete error analysis of the results of the numerical studies. High-speed, multi-color photometry of three eclipsing CV's - HT Cas, U Gem, and AC Cnc - was obtained. Using the program to analyze the observed light curves, the author derived, for each system, the orbital inclination, the sizes, masses and temperature of the two component stars, and the temperature distribution across the disk

  10. Anti-correlated X-ray and Radio Variability in the Transitional Millisecond Pulsar PSR J1023+0038

    Science.gov (United States)

    Bogdanov, Slavko; Deller, Adam; Miller-Jones, James; Archibald, Anne; Hessels, Jason W. T.; Jaodand, Amruta; Patruno, Alessandro; Bassa, Cees; D'Angelo, Caroline

    2018-01-01

    The PSR J1023+0038 binary system hosts a 1.69-ms neutron star and a low-mass, main-sequence-like star. The system underwent a transformation from a rotation-powered to a low-luminosity accreting state in 2013 June, in which it has remained since. We present an unprecedented set of strictly simultaneous Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations, which for the first time reveal a highly reproducible, anti-correlated variability pattern. Rapid declines in X-ray flux are always accompanied by a radio brightening with duration that closely matches the low X-ray flux mode intervals. We discuss these findings in the context of accretion and jet outflow physics and their implications for using the radio/X-ray luminosity plane to distinguish low-luminosity candidate black hole binary systems from accreting transitional millisecond pulsars.

  11. Rotation and Accretion Powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, V M [Department of Physics, McGill University, 3600 University St, Montreal, QC H3A 2T8 (Canada)

    2008-03-07

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly

  12. Rotation and Accretion Powered Pulsars

    International Nuclear Information System (INIS)

    Kaspi, V M

    2008-01-01

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Meszaros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you

  13. NICER Discovers the Ultracompact Orbit of the Accreting Millisecond Pulsar IGR J17062–6143

    Science.gov (United States)

    Strohmayer, T. E.; Arzoumanian, Z.; Bogdanov, S.; Bult, P. M.; Chakrabarty, D.; Enoto, T.; Gendreau, K. C.; Guillot, S.; Harding, A. K.; Ho, W. C. G.; Homan, J.; Jaisawal, G. K.; Keek, L.; Kerr, M.; Mahmoodifar, S.; Markwardt, C. B.; Ransom, S. M.; Ray, P. S.; Remillard, R.; Wolff, M. T.

    2018-05-01

    We present results of recent Neutron Star Interior Composition Explorer (NICER) observations of the accreting millisecond X-ray pulsar (AMXP) IGR J17062‑6143 that show that it resides in a circular, ultracompact binary with a 38-minute orbital period. NICER observed the source for ≈26 ks over a 5.3-day span in 2017 August, and again for 14 and 11 ks in 2017 October and November, respectively. A power spectral analysis of the August exposure confirms the previous detection of pulsations at 163.656 Hz in Rossi X-ray Timing Explorer (RXTE) data, and reveals phase modulation due to orbital motion of the neutron star. A coherent search for the orbital solution using the Z 2 method finds a best-fitting circular orbit with a period of 2278.21 s (37.97 minutes), a projected semimajor axis of 0.00390 lt-s, and a barycentric pulsar frequency of 163.6561105 Hz. This is currently the shortest known orbital period for an AMXP. The mass function is 9.12 × 10‑8 M ⊙, presently the smallest known for a stellar binary. The minimum donor mass ranges from ≈0.005 to 0.007 M ⊙ for a neutron star mass from 1.2 to 2 M ⊙. Assuming mass transfer is driven by gravitational radiation, we find donor mass and binary inclination bounds of 0.0175–0.0155 M ⊙ and 19° < i < 27.°5, where the lower and upper bounds correspond to 1.4 and 2 M ⊙ neutron stars, respectively. Folding the data accounting for the orbital modulation reveals a sinusoidal profile with fractional amplitude 2.04 ± 0.11% (0.3–3.2 keV).

  14. DISCOVERY OF PSR J1227−4853: A TRANSITION FROM A LOW-MASS X-RAY BINARY TO A REDBACK MILLISECOND PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Jayanta; Bhattacharyya, Bhaswati; Stappers, Ben [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, M13 9PL (United Kingdom); Ray, Paul S.; Wolff, Michael; Wood, Kent S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Chengalur, Jayaram N. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Deneva, Julia [NRC Research Associate, resident at Naval Research Laboratory, Washington, DC 20375-5352 (United States); Camilo, Fernando [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Johnson, Tyrel J. [College of Science, George Mason University, Fairfax, VA 22030, USA, resident at Naval Research Laboratory, Washington, DC 20375 (United States); Hessels, Jason W. T.; Bassa, Cees G. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Keane, Evan F. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Mail H30, P.O. Box 218, VIC 3122 (Australia); Ferrara, Elizabeth C.; Harding, Alice K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-02-10

    XSS J12270−4859 is an X-ray binary associated with the Fermi Large Area Telescope gamma-ray source 1FGL J1227.9−4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disk disappeared. We report the discovery of a 1.69 millisecond pulsar (MSP), PSR J1227−4853, at a dispersion measure of 43.4 pc cm{sup −3} associated with this source, using the Giant Metrewave Radio Telescope (GMRT) at 607 MHz. This demonstrates that, post-transition, the system hosts an active radio MSP. This is the third system after PSR J1023+0038 and PSR J1824−2452I showing evidence of state switching between radio MSP and low-mass X-ray binary states. We report timing observations of PSR J1227−4853 with the GMRT and Parkes, which give a precise determination of the rotational and orbital parameters of the system. The companion mass measurement of 0.17–0.46 M{sub ⊙} suggests that this is a redback system. PSR J1227−4853 is eclipsed for about 40% of its orbit at 607 MHz with additional short-duration eclipses at all orbital phases. We also find that the pulsar is very energetic, with a spin-down luminosity of ∼10{sup 35} erg s{sup −1}. We report simultaneous imaging and timing observations with the GMRT, which suggests that eclipses are caused by absorption rather than dispersion smearing or scattering.

  15. Past as Prediction: Newcomb, Huxley, The Eclipse of Thales, and The Power of Science

    Science.gov (United States)

    Stanley, Matthew

    2009-12-01

    The ancient eclipse of Thales was an important, if peculiar, focus of scientific attention in the 19th century. Victorian-era astronomers first used it as data with which to calibrate their lunar theories, but its status became strangely malleable as the century progressed. The American astronomer Simon Newcomb re-examined the eclipse and rejected it as the basis for lunar theory. But strangely, it was the unprecedented accuracy of Newcomb's calculations that led the British biologist T.H. Huxley to declare the eclipse to be the quintessential example of the power of science. Huxley argued that astronomy's ability to create "retrospective prophecy” showed how scientific reasoning was superior to religion (and incidentally, helped support Darwin's theories). Both Newcomb and Huxley declared that prediction (of past and future) was what gave science its persuasive power. The eclipse of Thales's strange journey through Victorian astronomy reveals how these two influential scientists made the case for the social and cultural authority of science.

  16. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    International Nuclear Information System (INIS)

    Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

    2012-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  17. Radio Detection of the Fermi-LAT Blind Search Millisecond Pulsar J1311-3430

    Science.gov (United States)

    Ray, P. S.; Ransom, S. M.; Cheung, C. C.; Giroletti, M.; Cognard, I.; Camilo, F.; Bhattacharyya, B.; Roy, J.; Romani, R. W.; Ferrara, E. C.; Guillemot, L.; Johnston, S.; Keith, M.; Kerr, M.; Kramer, M.; Pletsch, H. J.; Saz Parkinson, P. M.; Wood, K. S.

    2013-01-01

    We report the detection of radio emission from PSR J1311-3430, the first millisecond pulsar (MSP) discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for delay in the radio pulses as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.

  18. NuSTAR Observations of the State Transition of Millisecond Pulsar Binary PSR J1023+0038

    DEFF Research Database (Denmark)

    Tendulkar, Shriharsh P.; Yang, Chengwei; An, Hongjun

    2014-01-01

    We report NuSTAR observations of the millisecond pulsar - low mass X-ray binary (LMXB) transition system PSR J1023+0038 from June and October 2013, before and after the formation of an accretion disk around the neutron star. Between June 10-12, a few days to two weeks before the radio disappearance...... and current multi-wavelength observations and show the hard X-ray power law extending to 79 keV without a spectral break. Sharp edged, flat bottomed `dips' are observed with widths between 30-1000 s and ingress and egress time-scales of 30-60 s. No change in hardness ratio was observed during the dips...

  19. A visible and infrared study of the eclipsing dwarf nova Oy Carinae

    International Nuclear Information System (INIS)

    Berriman, G.

    1984-01-01

    This paper presents three simultaneous visible (V) and infrared (J,H,K) light curves of the eclipsing dwarf nova binary system OY Carinae in quiescence. The infrared light curves show a secondary minimum, not seen in the visible, which is the ellipsoidal variations of the red dwarf and its eclipse by the accretion disc surrounding the white dwarf companion. The red star, an M dwarf, supplies between 30 and 60 per cent of the total light at J,H and K. This requires that the system is between 100 and 300 pc away. The infrared continuum of the accretion disc around the white dwarf companion comes largely from the optically thin gas giving rise to the emission lines seen in the visible and ultraviolet. (author)

  20. ASSESSING THE ROLE OF SPIN NOISE IN THE PRECISION TIMING OF MILLISECOND PULSARS

    International Nuclear Information System (INIS)

    Shannon, Ryan M.; Cordes, James M.

    2010-01-01

    We investigate rotational spin noise (referred to as timing noise) in non-accreting pulsars: millisecond pulsars, canonical pulsars, and magnetars. Particular attention is placed on quantifying the strength and non-stationarity of timing noise in millisecond pulsars because the long-term stability of these objects is required to detect nanohertz gravitational radiation. We show that a single scaling law is sufficient to characterize timing noise in millisecond and canonical pulsars while the same scaling law underestimates the levels of timing noise in magnetars. The scaling law, along with a detailed study of the millisecond pulsar B1937+21, leads us to conclude that timing noise is latent in most millisecond pulsars and will be measurable in many objects when better arrival time estimates are obtained over long data spans. The sensitivity of a pulsar timing array to gravitational radiation is strongly affected by any timing noise. We conclude that detection of proposed gravitational wave backgrounds will require the analysis of more objects than previously suggested over data spans that depend on the spectra of both the gravitational wave background and of the timing noise. It is imperative to find additional millisecond pulsars in current and future surveys in order to reduce the effects of timing noise.

  1. Occultations from an Active Accretion Disk in a 72-day Detached Post-Algol System Detected by K2

    DEFF Research Database (Denmark)

    Zhou, G.; Rappaport, S.; Nelson, L.

    2018-01-01

    Disks in binary systems can cause exotic eclipsing events. MWC 882 (BD –22 4376, EPIC 225300403) is such a disk-eclipsing system identified from observations during Campaign 11 of the K2 mission. We propose that MWC 882 is a post-Algol system with a B7 donor star of mass in a 72-day orbit around...... an A0 accreting star of mass . The disk around the accreting star occults the donor star once every orbit, inducing 19-day long, 7% deep eclipses identified by K2 and subsequently found in pre-discovery All-Sky Automated Survey and All Sky Automated Survey for Supernovae observations. We coordinated...

  2. IUE observations of long period eclipsing binaries: a study of accretion onto non-degenerate stars

    International Nuclear Information System (INIS)

    Plavec, M.J.

    1980-01-01

    It has long been thought that β Lyrae is a unique system, by virtue of its UV spectrum and its nature. The author argues that a whole class of interacting long-period binaries exists, similar to β Lyrae. According to IUE observations made in 1978-79 this group comprises: RX Cas, SX Cas, V 367 Cyg, W Cru, β Lyr, and W Ser. AR Pav is a transition case linking them with the symbiotics. The author also suggests that HD 218393 (KX And), HD 72754, and HD 51480 are their non-eclipsing counterparts. The whole group is called the W Serpentis stars. These systems are mass-transfering binaries (case B) in which the mass transfer rate is relatively high, probably on the order 10 -6 to 10 -4 solar masses/year. They display an ultraviolet continuum with a color temperature definitely higher than the one observed in the optical region. Even more characteristical is the presence of strong emission lines of N V, C IV, Si IV, Fe III, Al III, and lower ions of C and Si. The author discusses these phenomena on the assumption that they are due to accretion onto non-degenerate stars. (Auth.)

  3. Jet launching radius in low-power radio-loud AGNs in advection-dominated accretion flows

    Science.gov (United States)

    Le, Truong; Newman, William; Edge, Brinkley

    2018-06-01

    Using our theory for the production of relativistic outflows, we estimate the jet launching radius and the inferred mass accretion rate for 52 low-power radio-loud AGNs based on the observed jet powers. Our analysis indicates that (1) a significant fraction of the accreted energy is required to convert the accreted mass to relativistic energy particles for the production of the jets near the event horizon, (2) the jet's launching radius moves radially towards the horizon as the mass accretion rate or jet's power increases, and (3) no jet/outflow formation is possible beyond 44 gravitational radii.

  4. Eclipsing the innermost accretion disc regions in AGN

    Czech Academy of Sciences Publication Activity Database

    Sanfrutos, M.; Miniutti, G.; Dovčiak, Michal; Agis-Gonzalez, B.

    2016-01-01

    Roč. 337, 4-5 (2016), s. 546-551 ISSN 0004-6337 Institutional support: RVO:67985815 Keywords : accretion disks * black hole physics * relativistic effects Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.916, year: 2016

  5. Effects of Fallback Accretion on Protomagnetar Outflows in Gamma-Ray Bursts and Superluminous Supernovae

    Science.gov (United States)

    Metzger, Brian D.; Beniamini, Paz; Giannios, Dimitrios

    2018-04-01

    Rapidly spinning, strongly magnetized protoneutron stars (“millisecond protomagnetars”) are candidate central engines of long-duration gamma-ray bursts (GRBs), superluminous supernovae (SLSNe), and binary neutron star mergers. Magnetar birth may be accompanied by the fallback of stellar debris, lasting for seconds or longer following the explosion. Accretion alters the magnetar evolution by (1) providing an additional source of rotational energy (or a potential sink, if the propeller mechanism operates), (2) enhancing the spin-down luminosity above the dipole rate by compressing the magnetosphere and expanding the polar cap region of open magnetic field lines, and (3) supplying an additional accretion-powered neutrino luminosity that sustains the wind baryon loading, even after the magnetar’s internal neutrino luminosity has subsided. The more complex evolution of the jet power and magnetization of an accreting magnetar more readily accounts for the high 56Ni yields of GRB SNe and the irregular time evolution of some GRB light curves (e.g., bursts with precursors followed by a long quiescent interval before the main emission episode). Additional baryon loading from accretion-powered neutrino irradiation of the polar cap lengthens the time frame over which the jet magnetization is in the requisite range σ ≲ 103 for efficient gamma-ray emission, thereby accommodating GRBs with ultralong durations. Though accretion does not significantly raise the maximum energy budget from the limit of ≲ few × 1052 erg for an isolated magnetar, it greatly expands the range of magnetic field strengths and birth spin periods capable of powering GRB jets, reducing the differences between the magnetar properties normally invoked to explain GRBs versus SLSNe.

  6. ECLIPSES DURING THE 2010 ERUPTION OF THE RECURRENT NOVA U SCORPII

    International Nuclear Information System (INIS)

    Schaefer, Bradley E.; Pagnotta, Ashley; LaCluyze, Aaron P.; Reichart, Daniel E.; Ivarsen, Kevin M.; Haislip, Joshua B.; Nysewander, Melissa C.; Moore, Justin P.; Oksanen, Arto; Worters, Hannah L.; Sefako, Ramotholo R.; Mentz, Jaco; Dvorak, Shawn; Gomez, Tomas; Harris, Barbara G.; Henden, Arne A.; Tan, Thiam Guan; Templeton, Matthew; Allen, W. H.; Monard, Berto

    2011-01-01

    The eruption of the recurrent nova U Scorpii on 2010 January 28 is now the all-time best observed nova event. We report 36,776 magnitudes throughout its 67 day eruption, for an average of one measure every 2.6 minutes. This unique and unprecedented coverage is the first time that a nova has had any substantial amount of fast photometry. With this, two new phenomena have been discovered: the fast flares in the early light curve seen from days 9-15 (which have no proposed explanation) and the optical dips seen out of eclipse from days 41-61 (likely caused by raised rims of the accretion disk occulting the bright inner regions of the disk as seen over specific orbital phases). The expanding shell and wind cleared enough from days 12-15 so that the inner binary system became visible, resulting in the sudden onset of eclipses and the turn-on of the supersoft X-ray source. On day 15, a strong asymmetry in the out-of-eclipse light points to the existence of the accretion stream. The normal optical flickering restarts on day 24.5. For days 15-26, eclipse mapping shows that the optical source is spherically symmetric with a radius of 4.1 R ☉ . For days 26-41, the optical light is coming from a rim-bright disk of radius 3.4 R ☉ . For days 41-67, the optical source is a center-bright disk of radius 2.2 R ☉ . Throughout the eruption, the colors remain essentially constant. We present 12 eclipse times during eruption plus five just after the eruption.

  7. ECLIPSES DURING THE 2010 ERUPTION OF THE RECURRENT NOVA U SCORPII

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Bradley E.; Pagnotta, Ashley [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); LaCluyze, Aaron P.; Reichart, Daniel E.; Ivarsen, Kevin M.; Haislip, Joshua B.; Nysewander, Melissa C.; Moore, Justin P. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC (United States); Oksanen, Arto [Caisey Harlingten Observatory, Caracoles 166, San Pedro de Atacama (Chile); Worters, Hannah L.; Sefako, Ramotholo R. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Mentz, Jaco [Unit for Space Physics, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Dvorak, Shawn; Gomez, Tomas; Harris, Barbara G.; Henden, Arne A.; Tan, Thiam Guan; Templeton, Matthew [American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138 (United States); Allen, W. H. [Center for Backyard Astrophysics, Vintage Lane Observatory, RD 3, Blenheim (New Zealand); Monard, Berto [Center for Backyard Astrophysics, 538 W. 120th St., New York, NY 10027 (United States); and others

    2011-12-01

    The eruption of the recurrent nova U Scorpii on 2010 January 28 is now the all-time best observed nova event. We report 36,776 magnitudes throughout its 67 day eruption, for an average of one measure every 2.6 minutes. This unique and unprecedented coverage is the first time that a nova has had any substantial amount of fast photometry. With this, two new phenomena have been discovered: the fast flares in the early light curve seen from days 9-15 (which have no proposed explanation) and the optical dips seen out of eclipse from days 41-61 (likely caused by raised rims of the accretion disk occulting the bright inner regions of the disk as seen over specific orbital phases). The expanding shell and wind cleared enough from days 12-15 so that the inner binary system became visible, resulting in the sudden onset of eclipses and the turn-on of the supersoft X-ray source. On day 15, a strong asymmetry in the out-of-eclipse light points to the existence of the accretion stream. The normal optical flickering restarts on day 24.5. For days 15-26, eclipse mapping shows that the optical source is spherically symmetric with a radius of 4.1 R{sub Sun }. For days 26-41, the optical light is coming from a rim-bright disk of radius 3.4 R{sub Sun }. For days 41-67, the optical source is a center-bright disk of radius 2.2 R{sub Sun }. Throughout the eruption, the colors remain essentially constant. We present 12 eclipse times during eruption plus five just after the eruption.

  8. How young the accretion-powered pulsars could be?

    Science.gov (United States)

    Kostina, M. V.; Ikhsanov, N. R.

    2017-12-01

    A question about the age of accretion-powered X-ray pulsars has recently been reopened by a discovery of the X-ray pulsar SXP 1062 in the SMC. This High Mass X-ray Binary (HMXB) contains a neutron star rotating with the period of 1062 s and is associated with a supernova remnant of the age ∼ 104 yr. An attempt to explain the origin of this young long-period X-ray pulsar within the traditional scenario of three basic states (ejector, propeller and accretor) encounters difficulties. Even if this pulsar were born as a magnetar the spin-down time during the propeller stage would exceed 104 yr. Here we explore a more circuitous way of the pulsar spin evolution in HMXBs, in which the propeller stage in the evolutionary track is avoided. We find this way to be possible if the stellar wind of the massive companion to the neutron star is magnetized. The geometry of plasma flow captured by the neutron star in this case differs from spherically symmetrical and the magnetospheric radius of the neutron star is smaller than that evaluated in the convention accretion scenarios. We show that the age of an accretion-powered pulsar in this case can be as small as ∼ 104 years without the need of invoking initial magnetic field in excess of 1013 G.

  9. Observations and modeling of the companions of short period binary millisecond pulsars: evidence for high-mass neutron stars

    International Nuclear Information System (INIS)

    Schroeder, Joshua; Halpern, Jules

    2014-01-01

    We present observations of fields containing eight recently discovered binary millisecond pulsars using the telescopes at MDM Observatory. Optical counterparts to four of these systems are detected, one of which, PSR J2214+3000, is a novel detection. Additionally, we present the fully phase-resolved B, V, and R light curves of the optical counterparts to two objects, PSR J1810+1744 and PSR J2215+5135 for which we employ model fitting using the eclipsing light curve (ELC) model of Orosz and Hauschildt to measure the unknown system parameters. For PSR J1810+1744, we find that the system parameters cannot be fit even assuming that 100% of the spin-down luminosity of the pulsar is irradiating the secondary, and so radial velocity measurements of this object will be required for the complete solution. However, PSR J2215+5135 exhibits light curves that are extremely well constrained using the ELC model and we find that the mass of the neutron star is constrained by these and the radio observations to be M NS > 1.75 M ☉ at the 3σ level. We also find a discrepancy between the model temperature and the measured colors of this object, which we interpret as possible evidence for an additional high-temperature source such as a quiescent disk. Given this and the fact that PSR J2215+5135 contains a relatively high mass companion (M c > 0.1 M ☉ ), we propose that similar to the binary pulsar systems PSR J1023+0038 and IGR J18245–2452, the pulsar may transition between accretion- and rotation-powered modes.

  10. Eclipses of cataclysmic variables. II. U Geminorum

    International Nuclear Information System (INIS)

    Zhang, E.H.; Robinson, E.L.

    1987-01-01

    U Gem is an eclipsing dwarf nova with an orbital period of 4 h 15 m. High-speed, multicolor photometric observations of U Gem in its quiescent state were obtained. A program was used that synthesizes the light curves of cataclysmic variables to derive the properties of U Gem from its eclipses. Using radial velocity curves published by Wade (1981) and by Stover (1981), it was found that i = 69.7 + or - 0.7 deg, M1 = 1.12 + or - 0.13 solar masses, and M2 = 0.53 + or - 0.06 solar mass. The radial temperature distribution across the accretion disk in U Gem shows that the disk is a hollow ring around the white dwarf with R(out) = 0.30 + or - 0.04 and R(in) = 0.12 + or - 0.05 a, where a is the separation of the two stars. The temperature of the ring is 4800 + or - 300 K. The model also reproduces the published infrared light curves and ultraviolet spectral distributions of U Gem. A mass transfer rate of 7.8 x 10 to the -10th solar mass/yr is derived. The structure of the ring around the white dwarf is consistent with the current theories of accretion disk instabilities in dwarf novae. 39 references

  11. Simultaneous Chandra and VLA Observations of the Transitional Millisecond Pulsar PSR J1023+0038: Anti-correlated X-Ray and Radio Variability

    Science.gov (United States)

    Bogdanov, Slavko; Deller, Adam T.; Miller-Jones, James C. A.; Archibald, Anne M.; Hessels, Jason W. T.; Jaodand, Amruta; Patruno, Alessandro; Bassa, Cees; D’Angelo, Caroline

    2018-03-01

    We present coordinated Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations of the transitional millisecond pulsar PSR J1023+0038 in its low-luminosity accreting state. The unprecedented five hours of strictly simultaneous X-ray and radio continuum coverage for the first time unambiguously show a highly reproducible, anti-correlated variability pattern. The characteristic switches from the X-ray high mode into a low mode are always accompanied by a radio brightening with a duration that closely matches the X-ray low mode interval. This behavior cannot be explained by a canonical inflow/outflow accretion model where the radiated emission and the jet luminosity are powered by, and positively correlated with, the available accretion energy. We interpret this phenomenology as alternating episodes of low-level accretion onto the neutron star during the X-ray high mode that are interrupted by rapid ejections of plasma by the active rotation-powered pulsar, possibly initiated by a reconfiguration of the pulsar magnetosphere, that cause a transition to a less X-ray luminous mode. The observed anti-correlation between radio and X-ray luminosity has an additional consequence: transitional MSPs can make excursions into a region of the radio/X-ray luminosity plane previously thought to be occupied solely by black hole X-ray binary sources. This complicates the use of this luminosity relation for identifying candidate black holes, suggesting the need for additional discriminants when attempting to establish the true nature of the accretor.

  12. RXTE PCA and Swift BAT detects the millisecond pulsar Swift J1756.9-2508 in outburst

    NARCIS (Netherlands)

    Patruno, A.; Markwardt, C.B.; Strohmayer, T.E.; Swank, J.H.; Smith, S.E.; Pereira, D.

    2009-01-01

    We report a detection of increased activity of the accreting millisecond X-ray pulsar Swift J1756.9-2508 observed with the RXTE-PCA monitoring on July 8, 9hr UTC. Increased flux is detected simultaneously on the Swift-BAT camera. RXTE-PCA follow up observations starting on July 13, 23hr UTC,

  13. POPULATION III GAMMA-RAY BURSTS AND BREAKOUT CRITERIA FOR ACCRETION-POWERED JETS

    Energy Technology Data Exchange (ETDEWEB)

    Nagakura, Hiroki; Suwa, Yudai [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Ioka, Kunihito, E-mail: hiroki@heap.phys.waseda.ac.jp [KEK Theory Center, 1-1 Oho, Tsukuba 305-0801 (Japan)

    2012-08-01

    We investigate the propagation of accretion-powered jets in various types of massive stars such as Wolf-Rayet stars, light Population III (Pop III) stars, and massive Pop III stars, all of which are the progenitor candidates of gamma-ray bursts (GRBs). We perform two-dimensional axisymmetric simulations of relativistic hydrodynamics, taking into account both the envelope collapse and the jet propagation (i.e., the negative feedback of the jet on the accretion). Based on our hydrodynamic simulations, we show for the first time that the accretion-powered jet can potentially break out relativistically from the outer layers of Pop III progenitors. In our simulations, the accretion rate is estimated by the mass flux going through the inner boundary, and the jet is injected with a fixed accretion-to-jet conversion efficiency {eta}. By varying the efficiency {eta} and opening angle {theta}{sub op} for more than 40 models, we find that the jet can make a relativistic breakout from all types of progenitors for GRBs if a simple condition {eta} {approx}> 10{sup -4}({theta}{sub op}/8 Degree-Sign ){sup 2} is satisfied, which is consistent with analytical estimates. Otherwise no explosion or some failed spherical explosions occur.

  14. Occultations from an Active Accretion Disk in a 72-day Detached Post-Algol System Detected by K2

    Science.gov (United States)

    Zhou, G.; Rappaport, S.; Nelson, L.; Huang, C. X.; Senhadji, A.; Rodriguez, J. E.; Vanderburg, A.; Quinn, S.; Johnson, C. I.; Latham, D. W.; Torres, G.; Gary, B. L.; Tan, T. G.; Johnson, M. C.; Burt, J.; Kristiansen, M. H.; Jacobs, T. L.; LaCourse, D.; Schwengeler, H. M.; Terentev, I.; Bieryla, A.; Esquerdo, G. A.; Berlind, P.; Calkins, M. L.; Bento, J.; Cochran, W. D.; Karjalainen, M.; Hatzes, A. P.; Karjalainen, R.; Holden, B.; Butler, R. P.

    2018-02-01

    Disks in binary systems can cause exotic eclipsing events. MWC 882 (BD –22 4376, EPIC 225300403) is such a disk-eclipsing system identified from observations during Campaign 11 of the K2 mission. We propose that MWC 882 is a post-Algol system with a B7 donor star of mass 0.542+/- 0.053 {M}ȯ in a 72-day orbit around an A0 accreting star of mass 3.24+/- 0.29 {M}ȯ . The 59.9+/- 6.2 {R}ȯ disk around the accreting star occults the donor star once every orbit, inducing 19-day long, 7% deep eclipses identified by K2 and subsequently found in pre-discovery All-Sky Automated Survey and All Sky Automated Survey for Supernovae observations. We coordinated a campaign of photometric and spectroscopic observations for MWC 882 to measure the dynamical masses of the components and to monitor the system during eclipse. We found the photometric eclipse to be gray to ≈1%. We found that the primary star exhibits spectroscopic signatures of active accretion, and we observed gas absorption features from the disk during eclipse. We suggest that MWC 882 initially consisted of a ≈3.6 M ⊙ donor star transferring mass via Roche lobe overflow to a ≈2.1 M ⊙ accretor in a ≈7-day initial orbit. Through angular momentum conservation, the donor star is pushed outward during mass transfer to its current orbit of 72 days. The observed state of the system corresponds with the donor star having left the red giant branch ∼0.3 Myr ago, terminating active mass transfer. The present disk is expected to be short-lived (102 yr) without an active feeding mechanism, presenting a challenge to this model.

  15. The eclipsing AM Herculis star 2A 0311 - 227

    International Nuclear Information System (INIS)

    Allen, D.A.; Wright, A.E.; Ward, M.J.

    1981-01-01

    Infrared photometry and optical spectrophotometry of the AM Herculis star 2A 0311 - 227 are described. In its 81-min orbit there are two eclipses at infrared wavelengths and a third, intermittent eclipse of the optical emission lines. One of these eclipses is caused by an M dwarf which orbits a magnetic white dwarf. Much of the geometry of the system can be specified. An inclination near 80 0 is found, and a mass of the M dwarf which corresponds to a spectral type of M7 or M8. Accretion appears to occur on to two magnetic poles of the white dwarf, but the field strengths differ so that one pole emits preferentially at optical wavelengths and the other mostly in the infrared. The location of the redder-emitting magnetic pole can be specified because of its eclipse by the white dwarf, but there remains some uncertainty in the location of the bluer pole. All interpretations seem to require that the magnetic poles are not symmetrically disposed about the white dwarf, and some evidence suggests that like poles are less than 60 0 apart. (author)

  16. THE ELECTROMAGNETIC MODEL OF SHORT GRBs, THE NATURE OF PROMPT TAILS, SUPERNOVA-LESS LONG GRBs, AND HIGHLY EFFICIENT EPISODIC ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Lyutikov, Maxim [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907-2036 (United States)

    2013-05-01

    Many short gamma-ray bursts (GRBs) show prompt tails lasting up to hundreds of seconds that can be energetically dominant over the initial sub-second spike. In this paper we develop an electromagnetic model of short GRBs that explains the two stages of the energy release, the prompt spike and the prompt tail. The key ingredient of the model is the recent discovery that an isolated black hole can keep its open magnetic flux for times much longer than the collapse time and thus can spin down electromagnetically, driving the relativistic wind. First, the merger is preceded by an electromagnetic precursor wind with total power L{sub p} Almost-Equal-To (((GM{sub NS}){sup 3}B{sub NS}{sup 2})/c{sup 5}R){proportional_to}(-t){sup - Vulgar-Fraction-One-Quarter }, reaching 3 Multiplication-Sign 10{sup 44} erg s{sup -1} for typical neutron star masses of 1.4 M{sub Sun} and magnetic fields B {approx} 10{sup 12} G. If a fraction of this power is converted into pulsar-like coherent radio emission, this may produce an observable radio burst of a few milliseconds (like the Lorimer burst). At the active stage of the merger, two neutron stars produce a black hole surrounded by an accretion torus in which the magnetic field is amplified to {approx}10{sup 15} G. This magnetic field extracts the rotational energy of the black hole and drives an axially collimated electromagnetic wind that may carry of the order of 10{sup 50} erg, limited by the accretion time of the torus, a few hundred milliseconds. For observers nearly aligned with the orbital normal this is seen as a classical short GRB. After the accretion of the torus, the isolated black hole keeps the open magnetic flux and drives the equatorially (not axially) collimated outflow, which is seen by an observer at intermediate polar angles as a prompt tail. The tail carries more energy than the prompt spike, but its emission is de-boosted for observers along the orbital normal. Observers in the equatorial plane miss the prompt spike

  17. Observation of variable pre-eclipse dips and disk winds in the eclipsing LMXB XTE J1710-281

    Science.gov (United States)

    Raman, Gayathri; Maitra, Chandreyee; Paul, Biswajit

    2018-04-01

    We report the first detection of highly ionized Fe species in the X-ray spectrum of the eclipsing and dipping Low Mass X-ray Binary XTE J1710-281. Using archival Chandra and Suzaku observations, we have carried out a spectro-timing analysis of the source during three different epochs. We compare the average orbital profile and obtain differences in pre-eclipse dip morphologies between different observation epochs. We observe an orbit to orbit evolution of the dips for the first time in this source in both the Chandra observations, reflecting changes in the structure of the accretion disc in timescales of hours. We further perform intensity resolved spectroscopy for both the Chandra and the Suzaku data to characterize the changes in the spectral parameters from the persistent to the dipping intervals. We find that the absorbers responsible for the dips, can be best described using a partially ionized partial covering absorber, with an ionization parameter, log(ξ) of ˜2. The photon index of the source remained at ˜2 during both the Chandra and the Suzaku observations. In the 0.6-9 keV Suzaku spectra, we detect a broad 0.72 keV Fe L-alpha emission line complex and two narrow absorption lines at ˜6.60 keV and ˜7.01 keV. The highly ionized Fe line signatures, being an indicator of accretion disc-winds, has been observed for the first time in XTE J1710-281.

  18. Simultaneous broadband observations and high-resolution X-ray spectroscopy of the transitional millisecond pulsar PSR J1023+0038

    Science.gov (United States)

    Coti Zelati, F.; Campana, S.; Braito, V.; Baglio, M. C.; D'Avanzo, P.; Rea, N.; Torres, D. F.

    2018-03-01

    We report on the first simultaneous XMM-Newton, NuSTAR, and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.

  19. Where Are the r-modes? Chandra Observations of Millisecond Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodifar, Simin; Strohmayer, Tod [Astrophysics Science Division and Joint Space-Science Institute, NASA' s Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-05-10

    We present the results of Chandra observations of two non-accreting millisecond pulsars, PSRs J1640+2224 (J1640) and J1709+2313 (J1709), with low inferred magnetic fields and spin-down rates in order to constrain their surface temperatures, obtain limits on the amplitude of unstable r -modes in them, and make comparisons with similar limits obtained for a sample of accreting low-mass X-ray binary (LMXB) neutron stars. We detect both pulsars in the X-ray band for the first time. They are faint, with inferred soft X-ray fluxes (0.3–3 keV) of ≈6 × 10{sup −15} and 3 × 10{sup −15} erg cm{sup −2} s{sup −1} for J1640 and J1709, respectively. Spectral analysis assuming hydrogen atmosphere emission gives global effective temperature upper limits (90% confidence) of 3.3–4.3 × 10{sup 5} K for J1640 and 3.6–4.7 × 10{sup 5} K for J1709, where the low end of the range corresponds to canonical neutron stars ( M = 1.4 M {sub ⊙}), and the upper end corresponds to higher-mass stars ( M = 2.21 M {sub ⊙}). Under the assumption that r -mode heating provides the thermal support, we obtain dimensionless r -mode amplitude upper limits of 3.2–4.8 × 10{sup −8} and 1.8–2.8 × 10{sup −7} for J1640 and J1709, respectively, where again the low end of the range corresponds to lower-mass, canonical neutron stars ( M = 1.4 M {sub ⊙}). These limits are about an order of magnitude lower than those we derived previously for a sample of LMXBs, except for the accreting millisecond X-ray pulsar SAX J1808.4–3658, which has a comparable amplitude limit to J1640 and J1709.

  20. The ephemeris and variations of the accretion disc radius in IP Pegasi

    International Nuclear Information System (INIS)

    Wood, J.H.; Robinson, E.L.

    1989-01-01

    We present timings of 37 previously unpublished eclipses of the dwarf nova IP Pegasi, obtained in 1986 through to 1988, and combine these with earlier published timings in order to update the orbital ephemeris and to examine the behaviour of the accretion disc radius through the outburst cycle. (author)

  1. Circular polarimetry of EXO 033319-2554.2 - A new eclipsing AM Herculis star

    Science.gov (United States)

    Berriman, Graham; Smith, Paul S.

    1988-01-01

    This Letter presents circular polarimetry that unequivocally identifies EXO 033319-2554.2 as only the third eclipsing AM Her star and brings the total number of AM Her stars now identified to 14. The orbital period is 126.4 minutes, as previously reported, and defines a new short-period edge to the period gap seen in all classes of cataclysmic variable stars. EXO 033319-2554.2 shows 2.5 mag deep eclipses of the predominantly accreting magnetic pole on the white dwarf. Before the eclipse, the pole rotates into the line of sight and shows white-light circular polarization, due to cyclotron radiation, that reaches values as high as 10 percent. There is some evidence that the second pole is emitting cyclotron radiation too. How high time resolution photometry, linear polarimetry, and spectroscopy will be of great value in understanding this system.

  2. Discovery of the optical counterparts to four energetic Fermi millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Breton, R. P. [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Van Kerkwijk, M. H. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Roberts, M. S. E. [Eureka Scientific Inc., 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017 (United States); Hessels, J. W. T. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990-AA Dwingeloo (Netherlands); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, 550 West, 120th Street, New York, NY 10027 (United States); McLaughlin, M. A. [Department of Physics, White Hall, West Virginia University, Morgantown, WV 26506 (United States); Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Ray, P. S. [Space Science Division, Naval Research Laboratory, Code 7655, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Stairs, I. H., E-mail: r.breton@soton.ac.uk [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada)

    2013-06-01

    In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified γ-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show eclipses of the pulsar signal and are commonly known as black widows and redbacks because the pulsar is gradually destroying its companion. In this paper, we report on the optical discovery of four strongly irradiated millisecond pulsar companions. All four sources show modulations of their color and luminosity at the known orbital periods from radio timing. Light curve modeling of our exploratory data shows that the equilibrium temperature reached on the companion's dayside with respect to their nightside is consistent with about 10%-30% of the available spin-down energy from the pulsar being reprocessed to increase the companion's dayside temperature. This value compares well with the range observed in other irradiated pulsar binaries and offers insights about the energetics of the pulsar wind and the production of γ-ray emission. In addition, this provides a simple way of estimating the brightness of irradiated pulsar companions given the pulsar spin-down luminosity. Our analysis also suggests that two of the four new irradiated pulsar companions are only partially filling their Roche lobe. Some of these sources are relatively bright and represent good targets for spectroscopic follow-up. These measurements could enable, among other things, mass determination of the neutron stars in these systems.

  3. Super-Eddington Mechanical Power of an Accreting Black Hole in M83

    Science.gov (United States)

    Soria, R.; Long, K. S.; Blair, W. P.; Godfrey, L.; Kuntz, K. D.; Lenc, E.; Stockdale, C.; Winkler, P. F.

    2014-01-01

    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(exp 40) erg second(exp -1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.

  4. GMRT Discovery of A Millisecond Pulsar in a Very Eccentric Binary System

    OpenAIRE

    Freire, Paulo C.; Gupta, Yashwant; Ransom, Scott M.; Ishwara-Chandra, C. H.

    2004-01-01

    We report the discovery of the binary millisecond pulsar J0514-4002A, which is the first known pulsar in the globular cluster NGC 1851 and the first pulsar discovered using the Giant Metrewave Radio Telescope (GMRT). The pulsar has a rotational period of 4.99 ms, an orbital period of 18.8 days, and the most eccentric pulsar orbit yet measured (e = 0.89). The companion has a minimum mass of 0.9 M_sun and its nature is presently unclear. After accreting matter from a low-mass companion star whi...

  5. A 5.75-millisecond pulsar in the globular cluster 47 Tucanae

    International Nuclear Information System (INIS)

    Manchester, R.N.; Lyne, A.G.; Johnston, S.; D'Amico, N.; Lim, J.; Kniffen, D.A.

    1990-01-01

    Millisecond pulsars are generally believed to be old pulsars that have been spun up ('recycled') as a result of accretion of matter from a companion in a low-mass X-ray binary system. As there is a high incidence of such systems in globular clusters, these are good places to search for millisecond pulsars; so far, ten globular-cluster pulsars have been detected unambiguously. Using the Parkes radiotelescope in Australia, we have found a pulsar with a period of 5.75 ms and a dispersion measure of 25 cm -3 pc in the direction of 47 Tucanae. Despite its probable origin as a member of a binary system, timing measurements show that the pulsar is now single. The observed dispersion measure is consistent with the pulsar lying outside the galactic electron layer and within 47 Tucanae; but it is very different from the value of 67 cm -3 pc for the pulsars that were reported recently as being in this globular cluster, and we suggest that the latter pulsars probably do not in fact lie within 47 Tucanae. (author)

  6. MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion

    Directory of Open Access Journals (Sweden)

    Lii Patrick

    2014-01-01

    Full Text Available Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and inhibits matter accretion onto the rapidly rotating star. Instead, the matter accreting through the disc accumulates at the disc-magnetosphere interface where it picks up angular momentum and is ejected from the system as a wide-angled outflow which gradually collimates at larger distances from the star. If the ejection rate is lower than the accretion rate, the matter will accumulate at the boundary faster than it can be ejected; in this case, accretion onto the star proceeds through an episodic accretion instability in which the episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion of matter onto the star. In addition to the matter dominated wind component, the propeller outflow also exhibits a well-collimated, magnetically-dominated Poynting jet which transports energy and angular momentum away from the star. The propeller mechanism may explain some of the weakly-collimated jets and winds observed around some T Tauri stars as well as the episodic variability present in their light curves. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.

  7. The X-ray eclipse geometry of the super-soft X-ray source CAL 87

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, T.; Lopes de Oliveira, R. [Departamento de Física, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49100-000 São Cristóvão, SE (Brazil); Borges, B. W., E-mail: tribeiro@ufs.br, E-mail: rlopes@ufs.br, E-mail: bernardo@astro.ufsc.br [Universidade Federal de Santa Catarina, Campus Araranguá, 88905-120 Araranguá, SC (Brazil)

    2014-09-01

    We explore XMM-Newton observations of the eclipsing super-soft X-ray source CAL 87 in order to map the accretion structures of the system. Indirect imaging techniques were applied in X-ray light curves to provide eclipse maps. The surface brightness distribution exhibits an extended and symmetric emission, and a feature is revealed from the hardest X-rays that is likely due to a bright spot. A rate of P-dot =(+6±2)×10{sup −10} for changes in the orbital period of the system was derived from the eclipses. There is no significant variation of the emission lines even during eclipses, arguing that the lines are formed in an extended region. The continuum emission dominates the decrease in flux that is observed during eclipses. The O VIII Lyα line reveals a broadening velocity that is estimated to be 365{sub −69}{sup +65} km s{sup –1} (at 1σ), marginal evidence for asymmetry in its profile, and sometimes shows evidence of double-peaked emission. Together, the results support that the wind-driven mass transfer scenario is running in CAL 87.

  8. Circular polarimetry of EXO 033319-2554.2 - a new eclipsing AM Herculis star

    International Nuclear Information System (INIS)

    Berriman, G.; Smith, P.S.

    1988-01-01

    This Letter presents circular polarimetry that unequivocally identifies EXO 033319-2554.2 as only the third eclipsing AM Her star and brings the total number of AM Her stars now identified to 14. The orbital period is 126.4 minutes, as previously reported, and defines a new short-period edge to the period gap seen in all classes of cataclysmic variable stars. EXO 033319-2554.2 shows 2.5 mag deep eclipses of the predominantly accreting magnetic pole on the white dwarf. Before the eclipse, the pole rotates into the line of sight and shows white-light circular polarization, due to cyclotron radiation, that reaches values as high as 10 percent. There is some evidence that the second pole is emitting cyclotron radiation too. How high time resolution photometry, linear polarimetry, and spectroscopy will be of great value in understanding this system. 17 references

  9. Student artistry sparks eclipse excitement on Maui: NSO/DKIST EPO for the 2016 Partial Solar Eclipse

    Science.gov (United States)

    Schad, Thomas A.; Penn, Matthew J.; Armstrong, James

    2016-05-01

    Local creativity and artistry is a powerful resource that enhances education programs and helps us generate excitement for science within our communities. In celebration of the 2016 Solar Eclipse, the National Solar Observatory (NSO) and its Daniel K Inouye Solar Telescope (DKIST) project were pleased to engage with students across Maui County, Hawai`i, via the 2016 Maui Eclipse Art Contest. With the help of the Maui Economic Development Board and the University of Hawai'is Institute for Astronomy, we solicited art entries from all K-12 schools in Maui County approximately 6 months prior to the eclipse. Along with divisional prizes, a grand prize was selected by a panel of local judges, which was subsequently printed on 25,000 solar eclipse viewing glasses and distributed to all Maui students. We found that the impact of a locally-sourced glasses design cannot be understated. Overall, the success of this program relied upon reaching out to individual teachers, supplying educational flyers to all schools, and visiting classrooms. On the day of the eclipse, all of the art entries were prominently displayed during a community eclipse viewing event at Kalama Beach Park in Kihei, HI, that was co-hosted by NSO and the Maui Science Center. This eclipse art contest was integral to making local connections to help promote science education on Maui, and we suggest that it could be adapted to the solar community's EPO activities for the upcoming 2017 Great American Solar Eclipse.

  10. A model for neutrino emission from nuclear accretion disks

    Science.gov (United States)

    Deaton, Michael

    2015-04-01

    Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).

  11. Models for the formation of binary and millisecond radio pulsars

    International Nuclear Information System (INIS)

    van den Heuvel, E.P.J.

    1984-01-01

    The peculiar combination of a relatively short pulse period and a relatively weak surface dipole magnetic field strength of binary radio pulsars finds a consistent explanation in terms of: (i) decay of the surface dipole component of neutron star magnetic fields on a timescale of (2-5).10 6 yrs, in combination with: (ii) spin up of the rotation of the neutron star during a subsequent mass-transfer phase. The two observed classes of binary radio pulsars (very close and very wide systems, respectively) are expected to have been formed by the later evolution of binaries consisting of a neutron star and a normal companion star, in which the companion was (considerably) more massive than the neutron star, or less massive than the neutron star, respectively. In the first case the companion of the neutron star in the final system will be a fairly massive white dwarf, in a circular orbit, or a neutron star in an eccentric orbit. In the second case the final companion to the neutron star will be a low-mass (approx. 0.3 Msub solar) helium white dwarf in a wide and nearly circular orbit. In systems of the second type the neutron star was most probably formed by the accretion-induced collapse of a white dwarf. This explains why PSR 1953+29 has a millisecond rotation period and why PSR 0820+02 has not. Binary coalescence models for the formation of the 1.5 millisecond pulsar appear to be viable. The companion to the neutron star may have been a low-mass red dwarf, a neutron star, or a massive (> 0.7 Msub solar) white dwarf. In the red-dwarf case the progenitor system probably was a CV binary in which the white dwarf collapsed by accretion. 66 references, 6 figures, 1 table

  12. Investigations of a New Eclipsing Cataclysmic Variable HBHA 4705-03

    Science.gov (United States)

    Yakin, D. G.; Suleimanov, V. F.; Shimansky, V. V.; Vlasyuk, V. V.; Spiridonova, O. I.

    2013-01-01

    Results of photometric and spectroscopic investigations of the recently discovered eclipsing cataclysmic variable star HBHA 4705-03 are presented. The emission spectra of the system show broad hydrogen and helium emission lines. The bright spots with an approximately zero velocity components are found in the Doppler maps for the hydrogen and ionized helium lines. The disc structure is more prominent in the maps for the neutral helium lines. The masses of the components (MWD = 0.54 ± 0.10M⊙ and MRD = 0.45 ± 0.05 M⊙), and the orbit inclination (i = 71.°8 ± 0.°7) were estimated using the radial velocity light curve and the eclipse width. The modeling of the light curve allows us to evaluate the bright spot parameters and the mass accretion rate (M ≍ 2 ·1017 g s-1).

  13. Suzaku Observation of the Dwarf Nova V893 Scorpii: The Discovery of a Partial X-Ray Eclipse

    Science.gov (United States)

    Mukai, Koji; Zietsman, E.; Still, M.

    2008-01-01

    V893 Sco is an eclipsing dwarf nova that had attracted little attention from X-ray astronomers until it was proposed as the identification of an RXTE all-sky slew survey (XSS) source. Here we report on the po inted X-ray observations of this object using Suzaku. We confirm V893 Sco to be X-ray bright, whose spectrum is highly absorbed for a dwar f nova. We have also discovered a partial X-ray eclipse in V893 Sco. This is the first time that a partial eclipse is seen in Xray light c urves of a dwarf nova. We have successfully modeled the gross features of the optical and X-ray eclipse light curves using a boundary layer geometry of the X-ray emission region. Future observations may lead to confirmation of this basic picture, and allow us to place tight co nstraints on the size of the X-ray emission region. The partial X-ray eclipse therefore should make V893 Sco a key object in understanding the physics of accretion in quiescent dwarf nova.

  14. A visible and infrared study of the eclipsing dwarf nova OY Carinae

    International Nuclear Information System (INIS)

    Berriman, G.

    1984-01-01

    This paper presents four visible light curves of the highly inclined, short-period cataclysmic binary star OY Carinae in quiescence. These light curves show that the red dwarf eclipses both its white dwarf companion and the accretion disc and hotspot, which originate from material transferred from the red dwarf to the white dwarf. The consequences of the findings are discussed in the light of current ideas about the evolution of cataclysmic variable stars. (author)

  15. Millisecond pulsars: Timekeepers of the cosmos

    Science.gov (United States)

    Kaspi, Victoria M.

    1995-01-01

    A brief discussion on the characteristics of pulsars is given followed by a review of millisecond pulsar discoveries including the very first, PRS B1937+21, discovered in 1982. Methods of timing millisecond pulsars and the accuracy of millisecond pulsars as clocks are discussed. Possible reasons for the pulse residuals, or differences between the observed and predicted pulse arrival times for millisecond pulsars, are given.

  16. Kepler K2 observations of the transitional millisecond pulsar PSR J1023+0038

    Science.gov (United States)

    Kennedy, M. R.; Clark, C. J.; Voisin, G.; Breton, R. P.

    2018-06-01

    For 80 d in 2017, the Kepler Space Telescope continuously observed the transitional millisecond pulsar system PSR J1023+0038 in its accreting state. We present analyses of the 59-s cadence data, focusing on investigations of the orbital light curve of the irradiated companion star and of flaring activity in the neutron star's accretion disc. The underlying orbital modulation from the companion star retains a similar amplitude and asymmetric heating profile as seen in previous photometric observations of the system in its radio pulsar state, suggesting that the heating mechanism has not been affected by the state change. We also find tentative evidence that this asymmetry may vary with time. The light curve also exhibits `flickering' activity, evident as short time-scale flux correlations throughout the observations, and periods of rapid mode-switching activity on time-scales shorter than the observation cadence. Finally, the system spent ˜ 20 per cent of the observations in a flaring state, with the length of these flares varying from <2 min up to several hours. The flaring behaviour is consistent with a self-organized criticality mechanism, most likely related to the build-up and release of mass at the inner edge of the accretion disc.

  17. Assessing the impact of a solar eclipse on weather and photovoltaic production

    Directory of Open Access Journals (Sweden)

    Carmen Köhler

    2016-02-01

    Full Text Available With the strong expansion of the installed renewable energy over the last years, the relevance of weather forecasts for operating the German power system has considerably increased. In that context, rare but important events like the solar eclipse on the morning of 20 March 2015 pose an additional challenge when operating the power system, as it affects the photovoltaic (PV power production by inducing strong gradients in the feed-in. In order to maintain grid stability, the uncertainties associated with the eclipse have been estimated in advance for planning necessary precautions. Especially the maximum gradients in PV-power were of importance for the provision of balancing energy. Numerical weather prediction (NWP is very suited for this assessment, as it allows to consider the complex mechanisms occurring in the atmosphere. Thus the impact of the eclipse on meteorological parameters which affect the PV-power generation were evaluated. Sensitivity studies with NWP models have been conducted in order to assess the reduction in short wave radiation and temperature during the total solar eclipse months before the actual event. For this purpose, model simulations with the non-hydrostatic COSMO models from the German Weather Service (DWD have been performed over Germany and Europe. As the weather situation and especially the cloud cover during the eclipse could not be known in advance, a realistic worst case (clear sky conditions and a best case (overcast conditions scenario were simulated over Germany. Thereof the PV-power production has been estimated and analyzed for the different scenarios. The NWP model data from the sensitivity studies are openly distributed (doi:10.1594/PANGAEA.839163. As near real-time NWP simulations considering the solar eclipse were conducted a few days prior to the event, they are herein validated with measurements. Furthermore, the actual PV-power production and actions taken by the TSOs during the solar eclipse are

  18. Behavior of Photovoltaic System during Solar Eclipse in Prague

    Directory of Open Access Journals (Sweden)

    Martin Libra

    2016-01-01

    Full Text Available PV power plants have been recently installed in very large scale. So the effects of the solar eclipse are of big importance especially for grid connected photovoltaic (PV systems. There was a partial solar eclipse in Prague on 20th March 2015. We have evaluated the data from our facility in order to monitor the impact of this natural phenomenon on the behavior of PV system, and these results are presented in the paper. The behavior of PV system corresponds with the theoretical assumption. The power decrease of the PV array corresponds with the relative size of the solar eclipse. I-V characteristics of the PV panel correspond to the theoretical model presented in our previous work.

  19. Powerful jets from accreting black holes: evidence from the optical and infrared

    NARCIS (Netherlands)

    Russell, D.M.; Fender, R.P.; Wachter, A.D.; Propst, R.J.

    2010-01-01

    A common consequence of accretion onto black holes is the formation of powerful, relativistic jets that escape the system. In the case of supermassive black holes at the centres of galaxies this has been known for decades, but for stellar-mass black holes residing within galaxies like our own, it

  20. AN ENERGETIC AGN OUTBURST POWERED BY A RAPIDLY SPINNING SUPERMASSIVE BLACK HOLE OR AN ACCRETING ULTRAMASSIVE BLACK HOLE

    International Nuclear Information System (INIS)

    McNamara, B. R.; Kazemzadeh, F.; Kirkpatrick, C. C.; Rafferty, D. A.; Birzan, L.; Nulsen, P. E. J.; Wise, M. W.

    2009-01-01

    Powering the 10 62 erg nuclear outburst in the MS0735.6+7421 cluster central galaxy by accretion with a 10% mass-to-energy conversion efficiency implies that its putative supermassive black hole (SMBH) grew by ∼6 x 10 8 M sun over the past 100 Myr. Guided by data at several wavelengths, we place upper limits on the amount of cold gas and star formation near the nucleus of 9 M sun and sun yr -1 , respectively. These limits imply that an implausibly large fraction of the preexisting cold gas in the inner several kpc must have been consumed by its SMBH at the rate of ∼3-5 M sun yr -1 during the past 100 Myr while leaving no trace of star formation. Such a high accretion rate would be difficult to maintain by stellar accretion or the Bondi mechanism, unless the black hole mass approaches 10 11 M sun . Furthermore, its feeble nuclear luminosities in the UV, I, and X-ray bands compared to its enormous mechanical power are inconsistent with rapid accretion onto a ∼5 x 10 9 M sun black hole. We suggest instead that the active galactic nucleus (AGN) outburst is powered by angular momentum released from a rapidly spinning black hole. The rotational energy and power available from a spinning black hole are consistent with the cavity and shock energetics inferred from X-ray observations. A maximally spinning 10 9 M sun black hole contains enough rotational energy, ∼10 62 erg, to quench a cooling flow over its lifetime and to contribute significantly to the excess entropy found in the hot atmospheres of groups and clusters. Two modes of AGN feedback may be quenching star formation in elliptical galaxies centered in cooling halos at late times. An accretion mode that operates in gas-rich systems, and a spin mode operating at modest accretion rates. The spin conjecture may be avoided in MS0735 by appealing to Bondi accretion onto a central black hole whose mass greatly exceeds 10 10 M sun . The host galaxy's unusually large 3.8 kpc stellar core radius (light deficit) may

  1. NuSTAR OBSERVATIONS AND BROADBAND SPECTRAL ENERGY DISTRIBUTION MODELING OF THE MILLISECOND PULSAR BINARY PSR J1023+0038

    Energy Technology Data Exchange (ETDEWEB)

    Li, K. L.; Kong, A. K. H.; Tam, P. H. T.; Jin, Ruolan [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Takata, J.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Hui, C. Y., E-mail: lilirayhk@gmail.com, E-mail: akong@phys.nthu.edu.tw, E-mail: takata@hku.hk [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of)

    2014-12-20

    We report the first hard X-ray (3-79 keV) observations of the millisecond pulsar (MSP) binary PSR J1023+0038 using NuSTAR. This system has been shown transiting between a low-mass X-ray binary (LMXB) state and a rotation-powered MSP state. The NuSTAR observations were taken in both LMXB state and rotation-powered state. The source is clearly seen in both states up to ∼79 keV. During the LMXB state, the 3-79 keV flux is about a factor of 10 higher than in the rotation-powered state. The hard X-rays show clear orbital modulation during the X-ray faint rotation-powered state but the X-ray orbital period is not detected in the X-ray bright LMXB state. In addition, the X-ray spectrum changes from a flat power-law spectrum during the rotation-powered state to a steeper power-law spectrum in the LMXB state. We suggest that the hard X-rays are due to the intrabinary shock from the interaction between the pulsar wind and the injected material from the low-mass companion star. During the rotation-powered MSP state, the X-ray orbital modulation is due to Doppler boosting of the shocked pulsar wind. At the LMXB state, the evaporating matter of the accretion disk due to the gamma-ray irradiation from the pulsar stops almost all the pulsar wind, resulting in the disappearance of the X-ray orbital modulation.

  2. Magnetically gated accretion in an accreting 'non-magnetic' white dwarf.

    Science.gov (United States)

    Scaringi, S; Maccarone, T J; D'Angelo, C; Knigge, C; Groot, P J

    2017-12-13

    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 10 6 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as 'non-magnetic', because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the 'non-magnetic' accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 10 4 gauss and 1 × 10 5 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  3. Are some of the luminous high-latitude stars accretion-powered runaways?

    International Nuclear Information System (INIS)

    Leonard, P.J.T.; Hills, J.G.; Dewey, R.J.

    1992-01-01

    It is well known that (1) runaway stars can be produced via supernova explosions in close binary systems, (2) most of such runaways should possess neutron star companions, and (3) neutron stars receive randomly oriented kicks of ≅ 100 to 200 km s -1 at birth. We find that this kick sometimes has the right amplitude and direction to make the neutron star fall into the runaway. Accretion onto a neutron star is a source of energy that is roughly an order of magnitude more mass efficient than nuclear burning. Thus, runaways containing neutron stars may live much longer than would normally be expected, which would allow them to travel great distances from their birthplaces during their lifetimes. Some of the early B-type stars far from the Galactic plane and the high-latitude F and G-type supergiants may be accretion-powered runaway stars

  4. Eclipsing binary stars with a δ Scuti component

    Science.gov (United States)

    Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.

    2017-09-01

    Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.

  5. Millisecond radio pulsars in globular clusters

    Science.gov (United States)

    Verbunt, Frank; Lewin, Walter H. G.; Van Paradijs, Jan

    1989-01-01

    It is shown that the number of millisecond radio pulsars, in globular clusters, should be larger than 100, applying the standard scenario that all the pulsars descend from low-mass X-ray binaries. Moreover, most of the pulsars are located in a small number of clusters. The prediction that Teran 5 and Liller 1 contain at least about a dozen millisecond radio pulsars each is made. The observations of millisecond radio pulsars in globular clusters to date, in particular the discovery of two millisecond radio pulsars in 47 Tuc, are in agreement with the standard scenario, in which the neutron star is spun up during the mass transfer phase.

  6. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  7. Orbital Dynamics of Candidate Transitional Millisecond Pulsar 3FGL J1544.6-1125: An unusually face-on system

    Science.gov (United States)

    Britt, Christopher T.; Strader, Jay; Chomiuk, Laura; Halpern, Jules P.; Tremou, Evangelina; Peacock, Mark; Salinas, Ricardo

    2018-01-01

    We present the orbital solution for the donor star of the candidate transitional millisecond pulsar 3FGL J1544.6-1125, currently observed as an accreting low-mass X-ray binary. The orbital period is 0.2415361(36) days, entirely consistent with the spectral classification of the donor star as a mid to late K dwarf. The semi-amplitude of the radial velocity curve is exceptionally low at K2=39.3+/-1.5 km s-1, implying a remarkably face-on inclination in the range 5-8o, depending on the neutron star and donor masses. After determining the veiling of the secondary, we derive a distance to the binary of 3.8+/-0.7 kpc, yielding a 0.3-10 keV X-ray luminosity of 6.1+/-1.9 x1033 erg s-1, similar to confirmed transitional millisecond pulsars. As face-on binaries rarely occur by chance, we discuss the possibility that Fermi-selected samples of transitional milli-second pulsars in the sub-luminous disk state are affected by beaming. By phasing emission line strength on the spectroscopic ephemeris, we find coherent variations, and argue that some optical light originates from emission from an asymmetric shock originating near the inner disk.

  8. Solar eclipse effects of 22 July 2009 on Sporadic-E

    Directory of Open Access Journals (Sweden)

    G. Chen

    2010-02-01

    Full Text Available The total solar eclipse of 22 July 2009, was visible from some regions of China and the intense sporadic-E (Es that broke out during the solar eclipse period over the eastern China provided a unique chance to study solar eclipse effects on the Es-layer. The ground based high-frequency (HF vertical-incidence and oblique-incidence backscatter radio systems in Wuhan and an HF oblique receivers located in Suzhou were operated to detect the Es-layer. The vertical, oblique and backscatter ionograms of 22 and 23 July were recorded, processed and analyzed. The analyzing results show that the critical frequency of Es, the hop number and power of the rays transmitted from Wuhan to Suzhou as well as the Doppler frequency shift of the one-hop oblique-incidence waves reflected by the Es-layer all increased during the solar eclipse period. These variations are displayed in the paper and explained to be induced by the wind-field, which is produced by the powerful meridional air flows from the sunshine region to the moon's shadow.

  9. Solar eclipse effects of 22 July 2009 on Sporadic-E

    Directory of Open Access Journals (Sweden)

    G. Chen

    2010-02-01

    Full Text Available The total solar eclipse of 22 July 2009, was visible from some regions of China and the intense sporadic-E (Es that broke out during the solar eclipse period over the eastern China provided a unique chance to study solar eclipse effects on the Es-layer. The ground based high-frequency (HF vertical-incidence and oblique-incidence backscatter radio systems in Wuhan and an HF oblique receivers located in Suzhou were operated to detect the Es-layer. The vertical, oblique and backscatter ionograms of 22 and 23 July were recorded, processed and analyzed. The analyzing results show that the critical frequency of Es, the hop number and power of the rays transmitted from Wuhan to Suzhou as well as the Doppler frequency shift of the one-hop oblique-incidence waves reflected by the Es-layer all increased during the solar eclipse period. These variations are displayed in the paper and explained to be induced by the wind-field, which is produced by the powerful meridional air flows from the sunshine region to the moon's shadow.

  10. Photometric and spectral studies of the eclipsing polar CRTS CSS081231 J071126+440405

    Science.gov (United States)

    Borisov, N. V.; Gabdeev, M. M.; Shimansky, V. V.; Katysheva, N. A.; Kolbin, A. I.; Shugarov, S. Yu.; Goranskij, V. P.

    2016-01-01

    We present the results of the study of the eclipsing polar CRTS CSS081231 J071126+440405. Photometric observations allowed us to refine the orbital period of the system P_ circ = 0_ \\cdot ^d 0.08137673. Considerable changes in the appearance of the object's spectra have occurred over the period of September 20-21, 2001: the slope of the continuum changed from "red" to "blue", and the variability of the line profiles over the duration of the orbital period has also changed. Doppler maps have shown a shift of the emission line-forming region along the accretion stream closer to the white dwarf. We measured the duration of the eclipse of the system and imposed constraints on the inclination angle 78_ \\cdot ^ circ 7 < i < 79_ \\cdot ^ circ 3. The derived radial velocity amplitude was used to obtain the basic parameters of the system: M 1 = 0.86 ± 0.08 M ⊙, M 2 = 0.18 ± 0.02 M ⊙, q = 0.21 ± 0.01, R L2 = 0.20 ± 0.03 R ⊙, A = 0.80 ± 0.03 R ⊙. The spectra of the object exhibit cyclotron harmonics. Their comparison with model spectra allowed us to determine the parameters of the accretion column: B = 31-34 MG, T e = 10-12 keV, θ = 80-90°, and Λ = 105.

  11. Totality eclipses of the Sun

    CERN Document Server

    Littmann, Mark; Willcox, Ken

    2008-01-01

    A total eclipse of the Sun is the most awesome sight in the heavens. Totality: Eclipses of the Sun takes you to eclipses of the past, present, and future, and lets you see - and feel - why people travel to the ends of the Earth to observe them. - ;A total eclipse of the Sun is the most awesome sight in the heavens. Totality: Eclipses of the Sun takes you to eclipses of the past, present, and future, and lets you see - and feel - why people travel to the ends of the Earth to observe them. Totality: Eclipses of the Sun is the best guide and reference book on solar eclipses ever written. It explains: how to observe them; how to photograph and videotape them; why they occur; their history and mythology; and future eclipses - when and where to see them. Totality also tells the remarkable story of how eclipses shocked scientists, revealed the workings of the Sun, and made Einstein famous. And the book shares the experiences and advice of many veteran eclipse observers. Totality: Eclipses of the Sun is profusely ill...

  12. A NEW CLASS OF NASCENT ECLIPSING BINARIES WITH EXTREME MASS RATIOS

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Maxwell; Stefano, Rosanne Di, E-mail: mmoe@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-10, Cambridge, MA 02138 (United States)

    2015-03-10

    Early B-type main-sequence (MS) stars (M {sub 1} ≈ 5-16 M {sub ☉}) with closely orbiting low-mass stellar companions (q = M {sub 2}/M {sub 1} < 0.25) can evolve to produce Type Ia supernovae, low-mass X-ray binaries, and millisecond pulsars. However, the formation mechanism and intrinsic frequency of such close extreme mass-ratio binaries have been debated, especially considering none have hitherto been detected. Utilizing observations of the Large Magellanic Cloud galaxy conducted by the Optical Gravitational Lensing Experiment, we have discovered a new class of eclipsing binaries in which a luminous B-type MS star irradiates a closely orbiting low-mass pre-MS companion that has not yet fully formed. The primordial pre-MS companions have large radii and discernibly reflect much of the light they intercept from the B-type MS primaries (ΔI {sub refl} ≈ 0.02-0.14 mag). For the 18 definitive MS + pre-MS eclipsing binaries in our sample with good model fits to the observed light-curves, we measure short orbital periods P = 3.0-8.5 days, young ages τ ≈ 0.6-8 Myr, and small secondary masses M {sub 2} ≈ 0.8-2.4 M {sub ☉} (q ≈ 0.07-0.36). The majority of these nascent eclipsing binaries are still associated with stellar nurseries, e.g., the system with the deepest eclipse ΔI {sub 1} = 2.8 mag and youngest age τ = 0.6 ± 0.4 Myr is embedded in the bright H II region 30 Doradus. After correcting for selection effects, we find that (2.0 ± 0.6)% of B-type MS stars have companions with short orbital periods P = 3.0-8.5 days and extreme mass ratios q ≈ 0.06-0.25. This is ≈10 times greater than that observed for solar-type MS primaries. We discuss how these new eclipsing binaries provide invaluable insights, diagnostics, and challenges for the formation and evolution of stars, binaries, and H II regions.

  13. Binary and Millisecond Pulsars.

    Science.gov (United States)

    Lorimer, Duncan R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M ⊙ , a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric ( e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.

  14. A Search for Millisecond-pulsar Radio Emission from the Faint Quiescent Soft X-Ray Transient 1H 1905+000

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, K.; Van Leeuwen, J. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Jonker, P. G., E-mail: K.Mikhailov@uva.nl [SRON, the Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA, Utrecht (Netherlands)

    2017-05-01

    Transitional millisecond pulsars (tMSPs) switch between an accretion-powered state without radio pulsations and a rotation-powered state with radio pulsations. In the former state, tMSPs are X-ray bright, while in the latter state, they are X-ray dim. Soft X-ray transients (SXTs) undergo similar switches in X-ray, between “high” states with bright X-ray outbursts and “low” states of quiescence. The upper limit on the quiescent X-ray luminosity of SXT 1H 1905+000 suggests that its luminosity might be similar to that of the known tMSPs. A detection of radio pulsations would link SXTs more strongly with tMSPs; and thus, e.g., put stricter constraints on tMSP transitional timescales through the connection with the well-known SXT periods of quiescence. A nondetection allows us, based on the telescope sensitivity, to estimate how likely these sources are to pulsate in radio. Over a 10-year span, 2006–2015, we carried out targeted radio observations at 400/800 MHz with Arecibo, and searched for radio pulsations from the quiescent SXT 1H 1905+000. None of the observations have revealed radio pulsations from the targeted SXT. For a 1 ms pulsar, our flux density upper limit is 10.3 μ Jy. At an assumed distance of 10 kpc this translates to a pseudo-luminosity upper limit of 1.0 mJy kpc{sup 2}, which makes our search complete to ∼85% of the known MSP population. Given the high sensitivity, and the generally large beaming fraction of millisecond pulsars, we conclude that SXT 1H 1905+000 is unlikely to emit in radio as a tMSP.

  15. A New Model for Thermal and Bulk Comptonization in Accretion-Powered X-ray Pulsars

    Science.gov (United States)

    Becker, Peter A.; Wolff, Michael T.

    2018-01-01

    The theory of spectral formation in accretion-powered X-ray pulsars has advanced considerably in the past decade, with the development of new models for the continuum and the cyclotron line formation processes. In many sources, the cyclotron line centroid energy is observed to vary as a function of source luminosity (and therefore accretion rate). In some cases, the variations in the luminosity seem to indicate a change in the structure of the accretion column, as the source passes from the sub-critical to the super-critical regime. With the recent launches of NuSTAR and NICER, observations of accreting X-ray pulsars are entering a new era, with large effective areas, broadband energy coverage, and good temporal resolution. These observations are already presenting new challenges to the theory, requiring the development of a new generation of more sophisticated physical models. In this paper, we discuss an improved model for bulk and thermal Comptonization in X-ray pulsars that will allow greater self-consistency in the data analysis process than current models, leading to more rigorous determinations of source parameters such as magnetic field strength, temperature, etc. The model improvements include (1) a more realistic geometry for the accretion column; (2) a more rigorous accretion velocity profile that merges smoothly with Newtonian free-fall as r → ∞ and (3) a more realistic free-streaming radiative boundary condition at the top of the column. This latter improvement means that we can now compute the pencil and fan beam components separately, which is necessary in order to analyze phase-dependent spectral data. We discuss applications of the new model to Her X-1, LMC X-4, and Cen X-3, and also to the Be X-ray binary 4U 0115+63.

  16. Towards a Fundamental Understanding of Short Period Eclipsing Binary Systems Using Kepler Data

    Science.gov (United States)

    Prsa, Andrej

    -to-primary light ratio regime of ~1-2% for the circumbinary host system Kepler-16. Semi-detached binaries are ideal targets to study the dynamical processes such as mass flow and accretion, and the associated thermal processes such as intensity variation due to distortion of the lobe-filling component and material inflow collisions with accretion disks. Overcontact binaries are very abundant, yet their evolution and radiative properties are poorly understood and conflicting theories exist to explain their population frequency and structure. In addition, we will measure eclipse timing variations for all program binaries that attest to the presence of perturbing third bodies (stellar and substellar!) or dynamical interaction between the components. By a dedicated, detailed, manual modeling of these sets of targets, we will be able to use Kepler's ultra-high precision photometry to a rewarding scientific end. Thanks to the unprecedented quality of Kepler data, this will be a highly focused effort that maximizes the scientific yield and the reliability of the results. Our team has ample experience dealing with Kepler data (PI Prsa serves as chair of the Eclipsing Binary Working Group in the Kepler Science Team), spectroscopic follow-up (Co-Is Mahadevan and Bender both have experience with radial velocity instrumentation and large spectroscopic surveys), and eclipsing binary modeling (PI Prsa and Co-I Devinney both have a long record of theoretical and computational development of modeling tools). The bulk of funding we are requesting is for two postdoctoral research fellows to conduct this work at 0.5 FTE/year each, for the total of 2 years.

  17. Orbital simulation life tests of nickel hydrogen batteries with additional non-eclipse cycles

    Science.gov (United States)

    Johnson, P. J.; Donley, S. W.; Verrier, D. C.

    Nickel-hydrogen battery technology has established itself as the system of choice to provide energy storage on board Earth orbiting satellites. In addition to providing electrical power for the satellite during the periods the satellite's solar arrays are eclipsed by the Earth, applications are evolving (such as ion propulsion) where the battery is required to supplement the power supplied to the spacecraft by the solar panels in order to meet the peak power demands. In this paper, the results of a four-year accelerated life test programme, equivalent to more than 20 years in orbit, are reported. Additional non-eclipse cycles were added to both the eclipse and solstice seasons of each simulated spacecraft year. The results show that the additional discharges do not significantly effect the rates of performance degradation of the batteries.

  18. The effect of an accretion disk on coherent pulsed emission from weakly magnetized neutron stars

    International Nuclear Information System (INIS)

    Asaoka, Ikuko; Hoshi, Reiun.

    1989-01-01

    Using a simple model for hot spots formed on the magnetic polar regions we calculate the X-ray pulse profiles expected from bright low-mass X-ray binaries. We assume that neutron stars in close binary systems are surrounded by accretion disks extending down in the vicinity of their surfaces. Even partial eclipses of a hot spot by the accretion disk change the coherent pulsed fraction and, in some cases, the phase of pulsations by almost 180deg. Coherent pulsations are clearly seen even for sufficiently compact model neutron stars, if the hot spots emit isotropic or fan-beam radiation. In the case of pencil-beam radiation, coherent pulsations are also seen if the cap-opening angle is less than ∼60deg, while the inclination angle is larger than 68deg. Gravitational lensing alone does not smear coherent pulsations in moderately weak magnetized neutron stars in the presence of an absorbing accretion disk. (author)

  19. A SEARCH FOR RAPIDLY SPINNING PULSARS AND FAST TRANSIENTS IN UNIDENTIFIED RADIO SOURCES WITH THE NRAO 43 METER TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Deborah; Crawford, Fronefield; Gilpin, Claire [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Langston, Glen [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States)

    2013-04-15

    We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g., sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications for models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a different epoch with a new 800 MHz backend on the NRAO 43 m Telescope at a center frequency of 1200 MHz. Our search was sensitive to sub-millisecond pulsars in highly accelerated binary systems and to short transient pulses. No periodic or transient signals were detected from any of the target sources. We conclude that diffractive scintillation, dispersive smearing, and binary acceleration are unlikely to have prevented detection of the large majority of the sources if they are pulsars, though we cannot rule out eclipsing, nulling or intermittent emission, or radio interference as possible factors for some non-detections. Other (speculative) possibilities for what these sources might include radio-emitting magnetic cataclysmic variables or older pulsars with aligned magnetic and spin axes.

  20. Accretion dynamics and polarized x-ray emission of magnetized neutron stars

    International Nuclear Information System (INIS)

    Arons, J.

    1991-01-01

    The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such as star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-rays from the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40% at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of ''photon bubbles,'' regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scales. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined

  1. Accretion dynamics and polarized X-ray emission of magnetized neutron stars

    Science.gov (United States)

    Arons, Jonathan

    1991-01-01

    The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such a star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-raysfrom the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40 percent at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of 'photon bubbles', regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scale. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined.

  2. Monitoring a photovoltaic system during the partial solar eclipse of August 2017

    Science.gov (United States)

    Kurinec, Santosh K.; Kucer, Michal; Schlein, Bill

    2018-05-01

    The power output of a 4.85 kW residential photovoltaic (PV) system located in Rochester, NY is monitored during the partial solar eclipse of August 21, 2017. The data is compared with the data on a day before and on the same day, a year ago. The area of exposed solar disk is measured using astrophotography every 16 s of the eclipse. Global solar irradiance is estimated using the eclipse shading, time of the day, location coordinates, atmospheric conditions and panel orientation. A sharp decline, as expected in the energy produced is observed at the time of the peak of the eclipse. The observed data of the PV energy produced is related with the model calculations taking into account solar eclipse coverage and cloudiness conditions. The paper provides a cohesive approach of irradiance calculations and obtaining anticipated PV performance.

  3. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2005-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.

  4. Eclipse Soundscapes Project: Making the August 21, 2017 Total Solar Eclipse Accessible to Everyone

    Science.gov (United States)

    Winter, H. D., III

    2017-12-01

    The Eclipse Soundscapes Project delivered a multisensory experience that allowed the blind and visually impaired to engage with the August 21, 2017 total solar eclipse along with their sighted peers in a way that would not have been possible otherwise. The project, from the Smithsonian Astrophysical Observatory and NASA's Heliophysics Education Consortium, includes illustrative audio descriptions of the eclipse in real time, recordings of the changing environmental sounds during the eclipse, and an interactive "rumble map" app that allows users to experience the eclipse through touch and sound. The Eclipse Soundscapes Project is working with organizations such as the National Parks Service (NPS), Science Friday, and Brigham Young University and by WGBH's National Center for Accessible Media (NCAM) to bring the awe and wonder of the total solar eclipse and other astronomical phenomena to a segment of the population that has been excluded from and astronomy and astrophysics for far too long, while engaging all learners in new and exciting ways.

  5. DASCH ON KU Cyg: A ∼ 5 YEAR DUST ACCRETION EVENT IN ∼ 1900

    International Nuclear Information System (INIS)

    Tang Sumin; Grindlay, Jonathan; Los, Edward; Servillat, Mathieu

    2011-01-01

    KU Cyg is an eclipsing binary consisting of an F-type star accreting through a large accretion disk from a K5III red giant. Here we present the discovery of a 5 year dip around 1900 found from its 100 year DASCH light curve. It showed a ∼0.5 mag slow fading from 1899 to 1903 and brightened back around 1904 on a relatively shorter timescale. The light curve shape of the 1899-1904 fading-brightening event differs from the dust production and dispersion process observed in R Coronae Borealis stars, which usually has a faster fading and slower recovery, and for KU Cyg is probably related to the accretion disk surrounding the F star. The slow fading in KU Cyg is probably caused by increases in dust extinction in the disk, and the subsequent quick brightening may be due to the evaporation of dust transported inward through the disk. The extinction excess which caused the fading may arise from increased mass transfer rate in the system or from dust clump ejections from the K giant.

  6. NEWS: Eclipse matters (still)!

    Science.gov (United States)

    1999-05-01

    This collection of snippets has as its theme the 1999 Solar Eclipse, and covers items that might be of interest to eclipse watchers and their associates. Much information can be obtained from the national web site at http://www.eclipse.org.uk. Set up by the CLRC Rutherford Appleton Laboratory, on behalf of the UK Eclipse Group, the site is intended to keep viewers abreast of developments during the countdown to the eclipse. The list of contents includes: about eclipses; eclipse pictures; eclipse science; safety advice; latest news; and local information. There is also a wealth of images and video footage, so the site has been organized with the visitor having a small PC and modem in mind, so that the key information can be accessed as quickly as possible. Free colour leaflets containing useful details for eclipse watchers can be obtained from the Particle Physics and Astronomy Research Council. `The Sun - our local star' and `Neutrinos' are additions to PPARC's series introducing key areas of its science. They answer such questions as what the Sun is, what eclipses are, why the Sun is important and where neutrinos come from. They support the National Curriculum Key Stages 3 and 4 plus A-level physics. The A5 leaflets open out into an A2 sized double-sided wall chart and bulk quantitites are available for class sets, visitor centres, exhibitions, open days etc. A full list of PPARC materials can be found at the website http://www.pparc.ac.uk or by order from Mark Wells, PPARC, Polaris House, North Star Avenue, Swindon SN2 1SZ (fax: 01793 442002). A message has been received from George Care, Head of Physics in the Science Department at Mounts Bay School, Penzance, which we now pass on to our readers. During his application for electronic access to Physics Education via the Institute of Physics Affiliated Schools and Colleges scheme, George notes that his school is on the track of the eclipse this summer and he has invited us to pass on the details to anyone who

  7. Accreting Compact Object at the Center of the Supernova Remnant RCW 103.

    Science.gov (United States)

    Sanwal, D.; Garmire, G. P.; Garmire, A.; Pavlov, G. G.; Mignani, R.

    2002-05-01

    We observed the radio-quiet central compact object of the supernova remnant RCW 103 with the Chandra ACIS during 13.8 hours on 2002 March 3, when the source was in high state, with a time-averaged flux of 8*E-12 erg cm-2 s-1 in the 0.5--8.0 keV band. The complex light curve of the source shows a period of about 6.4 hours and two partial eclipses or dips per period, separated by 180o in phase. The variability of the source proves that it is powered by accretion, likely from a low-mass companion in a binary system. Deep near-IR observations of the source with VLT suggest a potential counterpart of the compact object about 2'' from the nominal Chandra position. The magnitudes of the potential counterpart are J ≈ 22.3, H ≈ 19.6, and Ks ≈ 18.5, with an uncertainty of about 0.5 mag. We will discuss possible interpretations of the observational results. This work was partially supported by NASA grants NAS8-01128 and NAG5-10865.

  8. [Development of a Software for Automatically Generated Contours in Eclipse TPS].

    Science.gov (United States)

    Xie, Zhao; Hu, Jinyou; Zou, Lian; Zhang, Weisha; Zou, Yuxin; Luo, Kelin; Liu, Xiangxiang; Yu, Luxin

    2015-03-01

    The automatic generation of planning targets and auxiliary contours have achieved in Eclipse TPS 11.0. The scripting language autohotkey was used to develop a software for automatically generated contours in Eclipse TPS. This software is named Contour Auto Margin (CAM), which is composed of operational functions of contours, script generated visualization and script file operations. RESULTS Ten cases in different cancers have separately selected, in Eclipse TPS 11.0 scripts generated by the software could not only automatically generate contours but also do contour post-processing. For different cancers, there was no difference between automatically generated contours and manually created contours. The CAM is a user-friendly and powerful software, and can automatically generated contours fast in Eclipse TPS 11.0. With the help of CAM, it greatly save plan preparation time and improve working efficiency of radiation therapy physicists.

  9. A Solution to the Protostellar Accretion Problem

    OpenAIRE

    Padoan, Paolo; Kritsuk, Alexei; Norman, Michael L.; Nordlund, Ake

    2004-01-01

    Accretion rates of order 10^-8 M_\\odot/yr are observed in young protostars of approximately a solar mass with evidence of circumstellar disks. The accretion rate is significantly lower for protostars of smaller mass, approximately proportional to the second power of the stellar mass, \\dot{M}_accr\\propto M^2. The traditional view is that the observed accretion is the consequence of the angular momentum transport in isolated protostellar disks, controlled by disk turbulence or self--gravity. Ho...

  10. Early Results from NICER Observations of Accreting Neutron Stars

    Science.gov (United States)

    Chakrabarty, Deepto; Ozel, Feryal; Arzoumanian, Zaven; Gendreau, Keith C.; Bult, Peter; Cackett, Ed; Chenevez, Jerome; Fabian, Andy; Guillot, Sebastien; Guver, Tolga; Homan, Jeroen; Keek, Laurens; Lamb, Frederick; Ludlam, Renee; Mahmoodifar, Simin; Markwardt, Craig B.; Miller, Jon M.; Psaltis, Dimitrios; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael T.

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) offers significant new capabilities for the study of accreting neuton stars relative to previous X-ray missions including large effective area, low background, and greatly improved low-energy response. The NICER Burst and Accretion Working Group has designed a 2 Ms observation program to study a number of phenomena in accreting neutron stars including type-I X-ray bursts, superbursts, accretion-powered pulsations, quasi-periodic oscillations, and accretion disk reflection spectra. We present some early results from the first six months of the NICER mission.

  11. David Levy's Guide to Eclipses, Transits, and Occultations

    Science.gov (United States)

    Levy, David H.

    2010-08-01

    Introduction; Part I. The Magic and History of Eclipses: 1. Shakespeare, King Lear, and the Great Eclipse of 1605; 2. Three centuries later: Einstein, relativity, and the solar eclipse of 1919; 3. What causes solar and lunar eclipses; Part II. Observing Solar Eclipses: 4. Safety considerations; 5. What to expect during a partial eclipse; 6. Annular eclipses and what to see in them; 7. Total eclipse of the Sun: introduction to the magic; 8. The onset: temperature drop, Baily's Beads, Diamond Ring; 9. Totality: Corona, Prominences, Chromosphere, and surrounding area; 10. Photographing and imaging a solar eclipse; Part III. Observing Lunar Eclipses: 11. Don't forget the penumbral eclipses!; 12. Partial lunar eclipses; 13. Total lunar eclipses; 14. Photographing and imaging lunar eclipses; Part IV. Occultations: 15. When the Moon occults a star; Part V. Transits: 16. When planets cross the Sun; Part VI. My Favorite Eclipses: 17. A personal canon of eclipses, occultations, and transits I have seen; Appendices; Index.

  12. St. Benedict Sees the Light: Asam's Solar Eclipses as Metaphor

    Science.gov (United States)

    Olson, Roberta J. M.; Pasachoff, Jay M.

    During the Baroque period, artists worked in a style - encouraged by the Roman Catholic Church and the Council of Trent - that revealed the divine in natural forms and made religious experiences more accessible. Cosmas Damian Asam, painter and architect, and his brother Egid (Aegid) Quirin Asam, sculptor and stuccatore, were the principal exponents of eighteenth-century, southern-German religious decoration and architecture in the grand manner, the Gesamtkunstwerk. Cosmas Damian's visionary and ecstatic art utilized light, both physical and illusionistic, together with images of meteorological and astronomical phenomena, such as solar and lunar eclipses. This paper focuses on his representations of eclipses and demonstrates how Asam was galvanized by their visual, as well as metaphorical power and that he studied a number of them. He subsequently applied his observations in a series of paintings for the Benedictine order that become increasingly astronomically accurate and spiritually profound. From the evidence presented, especially in three depictions of St. Benedict's vision, the artist harnessed his observations to visualize the literary description of the miraculous event in the Dialogues of St. Gregory the Great, traditionally a difficult scene to illustrate, even for Albrecht Dürer. Asam painted the trio at Einsiedeln, Switzerland (1724-27); Kladruby, the Czech Republic (1725-27), where he captured the solar corona and the "diamond-ring effect"; and Weltenburg, Germany (1735), where he also depicted the diamond-ring effect at a total solar eclipse. We conclude that his visualizations were informed by his personal observations of the solar eclipses on 12 May 1706, 22 May 1724, and 13 May 1733. Asam may have also known the eclipse maps of Edmond Halley and William Whiston that were issued in advance. Astronomers did not start studying eclipses scientifically until the nineteenth century, making Asam's depictions all the more fascinating. So powerful was the

  13. High energy transients: The millisecond domain

    Science.gov (United States)

    Rao, A. R.

    2018-02-01

    The search for high energy transients in the millisecond domain has come to the focus in recent times due to the detection of gravitational wave events and the identification of fast radio bursts as cosmological sources. Here we highlight the sensitivity limitations in the currently operating hard X-ray telescopes and give some details of the search for millisecond events in the AstroSat CZT Imager data.

  14. The First Continuous Optical Monitoring of the Transitional Millisecond Pulsar PSR J1023+0038 with Kepler

    Science.gov (United States)

    Papitto, A.; Rea, N.; Coti Zelati, F.; de Martino, D.; Scaringi, S.; Campana, S.; de Ońa Wilhelmi, E.; Knigge, C.; Serenelli, A.; Stella, L.; Torres, D. F.; D’Avanzo, P.; Israel, G. L.

    2018-05-01

    We report on the first continuous, 80-day optical monitoring of the transitional millisecond pulsar PSR J1023+0038 carried out in mid 2017 with Kepler in the K2 configuration, when an X-ray subluminous accretion disk was present in the binary. Flares lasting from minutes to 14 hr were observed for 15.6% of the time, which is a larger fraction than previously reported on the basis of X-ray and past optical observations, and more frequently when the companion was at superior conjunction of the orbit. A sinusoidal modulation at the binary orbital period was also present with an amplitude of ≃16%, which varied by a few percent over timescales of days, and with a maximum that took place 890 ± 85 s earlier than the superior conjunction of the donor. We interpret this phenomena in terms of reprocessing of the X-ray emission by an asymmetrically heated companion star surface and/or a non-axisymmetric outflow possibly launched close to the inner Lagrangian point. Furthermore, the non-flaring average emission varied by up to ≈40% over a timescale of days in the absence of correspondingly large variations of the irradiating X-ray flux. The latter suggests that the observed changes in the average optical luminosity might be due to variations of the geometry, size, and/or mass accretion rate in the outer regions of the accretion disk.

  15. Serial Millisecond Crystallography of Membrane Proteins.

    Science.gov (United States)

    Jaeger, Kathrin; Dworkowski, Florian; Nogly, Przemyslaw; Milne, Christopher; Wang, Meitian; Standfuss, Joerg

    2016-01-01

    Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) is a powerful method to determine high-resolution structures of pharmaceutically relevant membrane proteins. Recently, the technology has been adapted to carry out serial millisecond crystallography (SMX) at synchrotron sources, where beamtime is more abundant. In an injector-based approach, crystals grown in lipidic cubic phase (LCP) or embedded in viscous medium are delivered directly into the unattenuated beam of a microfocus beamline. Pilot experiments show the application of microjet-based SMX for solving the structure of a membrane protein and compatibility of the method with de novo phasing. Planned synchrotron upgrades, faster detectors and software developments will go hand-in-hand with developments at free-electron lasers to provide a powerful methodology for solving structures from microcrystals at room temperature, ligand screening or crystal optimization for time-resolved studies with minimal or no radiation damage.

  16. Mixed ice accretion on aircraft wings

    Science.gov (United States)

    Janjua, Zaid A.; Turnbull, Barbara; Hibberd, Stephen; Choi, Kwing-So

    2018-02-01

    Ice accretion is a problematic natural phenomenon that affects a wide range of engineering applications including power cables, radio masts, and wind turbines. Accretion on aircraft wings occurs when supercooled water droplets freeze instantaneously on impact to form rime ice or runback as water along the wing to form glaze ice. Most models to date have ignored the accretion of mixed ice, which is a combination of rime and glaze. A parameter we term the "freezing fraction" is defined as the fraction of a supercooled droplet that freezes on impact with the top surface of the accretion ice to explore the concept of mixed ice accretion. Additionally we consider different "packing densities" of rime ice, mimicking the different bulk rime densities observed in nature. Ice accretion is considered in four stages: rime, primary mixed, secondary mixed, and glaze ice. Predictions match with existing models and experimental data in the limiting rime and glaze cases. The mixed ice formulation however provides additional insight into the composition of the overall ice structure, which ultimately influences adhesion and ice thickness, and shows that for similar atmospheric parameter ranges, this simple mixed ice description leads to very different accretion rates. A simple one-dimensional energy balance was solved to show how this freezing fraction parameter increases with decrease in atmospheric temperature, with lower freezing fraction promoting glaze ice accretion.

  17. Reflected eclipses on circumbinary planets

    Directory of Open Access Journals (Sweden)

    Deeg H.J.

    2011-02-01

    Full Text Available A photometric method to detect planets orbiting around shortperiodic binary stars is presented. It is based on the detection of eclipse-signatures in the reflected light of circumbinary planets. Amplitudes of such ’reflected eclipses’ will depend on the orbital configurations of binary and planet relative to the observer. Reflected eclipses will occur with a period that is distinct from the binary eclipses, and their timing will also be modified by variations in the light-travel time of the eclipse signal. For the sample of eclipsing binaries found by the Kepler mission, reflected eclipses from close circumbinary planets may be detectable around at least several dozen binaries. A thorough detection effort of such reflected eclipses may then detect the inner planets present, or give solid limits to their abundance.

  18. WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS

    International Nuclear Information System (INIS)

    Perets, Hagai B.; Kenyon, Scott J.

    2013-01-01

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10 –5 -10 –3 M ☉ , with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M ☉ . When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  19. Eclipse Megamovie: Solar Discoveries, Education, and Outreach through Crowdsourcing 2017 Eclipse Images

    Science.gov (United States)

    Peticolas, L. M.; Hudson, H. S.; Martinez Oliveros, J. C.; Johnson, C.; Zevin, D.; Krista, L. D.; Bender, M.; Mcintosh, S. W.; Konerding, D.; Koh, J.; Pasachoff, J.; Lorimore, B.; Jiang, G.; Storksdieck, M.; Yan, D.; Shore, L.; Fraknoi, A.; Filippenko, A.

    2016-12-01

    Since 2011, a team of solar scientists, eclipse chasers, education and outreach professionals, and film makers have been working to explore the possibility of gathering images from the public during the 2017 eclipse across the United States, to be used for scientific research, education, and enhancing the public's experience of the eclipse. After years of testing the initial ideas, engaging new organizations, and exploring new technologies, our team has developed a blueprint for this project. There are three main goals for this effort: 1. to learn more about the dynamic non-equilibrium processes in the corona and lower atmosphere of the Sun, 2. to educate the public about space physics, 3. provide different levels of engagement opportunities for an interested public, and 4. to understand how these various levels of engagement with a major scientific phenomena allow people to develop deeper personal connections to Science, Technology, Engineering, and Mathematics (STEM). We will meet these goals by training 1000 volunteers to take scientifically valid images and donate the images to this project, while also allowing the general public to share their images as well. During the Aug 21, 2017 eclipse, we will analyze these images in real-time to produce public-generated movies showing the corona of the Sun during totality from thousands of people. These movies will be disseminated in near real-time (on the order of 10s of minutes) to other eclipse programs, news organizations, and to the general public. Meanwhile, images collected during and after the eclipse will be available to scientists and the public for research purposes. To further engage the public, video clips, film, and a documentary will be produced prior and after the event. A science education research team will work alongside the team to understand how the project supports deeper connections to the eclipse experience.

  20. Total eclipses of the sun

    CERN Document Server

    Zirker, Jack B

    2014-01-01

    Eclipses have captured attention and sparked curiosity about the cosmos since the first appearance of humankind. Having been blamed for everything from natural disasters to the fall of kings, they are now invaluable tools for understanding many celestial as well as terrestrial phenomena. This clear, easy-to-understand guide explains what causes total eclipses and how they can be used in experiments to examine everything from the dust between the planets to general relativity. A new chapter has been added on the eclipse of July 11, 1991 (the great Hawaiian eclipse). Originally published in 19

  1. Eclipsed neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: The total solar eclipse visible in Southern Asia on 24 October provided an opportunity for an unusual physics experiment. At face value, the levels of solar neutrinos detected on the Earth's surface are difficult to understand and suggest that perhaps the composition of solar neutrinos oscillates between different neutrino types on their journey. In this way neutrinos originating in the Sun as electrontype could convert into heavy neutrinos, which could subsequently disintegrate into an electron-neutrino and a photon. In certain neutrino scenarios, such a photon would have an energy corresponding to that of visible light, and in principle should be detectable if there are enough of them. The problem is that they would normally be swamped by the copious photons of sunlight. The 24 October solar eclipse provided a chance to check this out. A team led by François Vannucci, spokesman of the Nomad neutrino experiment at CERN, en route to the 'Rencontres du Vietnam' physics meeting in Ho Chi Minh Ville, set up a CCD-equipped telescope. To insure against cloud cover, a second telescope followed the eclipse in the desert of Rajastan, India, where the eclipse was to last only half as long, but the chance of cloud was minimal. No background solar signal was seen, or, expressed in physics terms, if solar radiation has any heavy neutrino component, then less than a millionth of it disintegrates into an electron neutrino and a visible photon before it arrives at the Earth. The negative result also has implications for candidate massive, unstable neutrinos from other sources, notably a component of the missing 'dark matter' of the Universe. The next such eclipse should be visible in North Asia in 1997, when hopefully better measurements will be made

  2. Mapping the 2017 Eclipse: Education, Navigation, Inspiration

    Science.gov (United States)

    Zeiler, M.

    2015-12-01

    Eclipse maps are a unique vessel of knowledge. At a glance, they communicate the essential knowledge of where and when to successfully view a total eclipse of the sun. An eclipse map also provides detailed knowledge of eclipse circumstances superimposed on the highway system for optimal navigation, especially in the event that weather forces relocation. Eclipse maps are also a vital planning tool for solar physicists and astrophotographers capturing high-resolution imagery of the solar corona. Michael Zeiler will speak to the role of eclipse maps in educating the American public and inspiring people to make the effort to reach the path of totality for the sight of a lifetime. Michael will review the role of eclipse maps in astronomical research and discuss a project under development, the 2017 Eclipse Atlas for smartphones, tablets, and desktop computers.

  3. Maven for Eclipse

    CERN Document Server

    Shah, Sanjay

    2014-01-01

    If you want to learn about Maven and use it from within Eclipse to develop Java projects, this is the book for you. Prior experience in developing Java projects and using the Eclipse IDE is presumed. Whether you are a beginner or an experienced developer, this book will get you up and running quickly, with a hands-on approach.

  4. An ultraluminous X-ray source powered by an accreting neutron star

    DEFF Research Database (Denmark)

    Bachetti, M.; Harrison, F. A.; Walton, D. J.

    2014-01-01

    the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects....

  5. Spectral Eclipse Timing

    Science.gov (United States)

    Dobbs-Dixon, Ian; Agol, Eric; Deming, Drake

    2015-12-01

    We utilize multi-dimensional simulations of varying equatorial jet strength to predict wavelength-dependent variations in the eclipse times of gas-giant planets. A displaced hot spot introduces an asymmetry in the secondary eclipse light curve that manifests itself as a measured offset in the timing of the center of eclipse. A multi-wavelength observation of secondary eclipse, one probing the timing of barycentric eclipse at short wavelengths and another probing at longer wavelengths, will reveal the longitudinal displacement of the hot spot and break the degeneracy between this effect and that associated with the asymmetry due to an eccentric orbit. The effect of time offsets was first explored in the IRAC wavebands by Williams et al. Here we improve upon their methodology, extend to a broad range of wavelengths, and demonstrate our technique on a series of multi-dimensional radiative-hydrodynamical simulations of HD 209458b with varying equatorial jet strength and hot-spot displacement. Simulations with the largest hot-spot displacement result in timing offsets of up to 100 s in the infrared. Though we utilize a particular radiative hydrodynamical model to demonstrate this effect, the technique is model independent. This technique should allow a much larger survey of hot-spot displacements with the James Webb Space Telescope than currently accessible with time-intensive phase curves, hopefully shedding light on the physical mechanisms associated with thermal energy advection in irradiated gas giants.

  6. SPECTRAL ECLIPSE TIMING

    International Nuclear Information System (INIS)

    Dobbs-Dixon, Ian; Agol, Eric; Deming, Drake

    2015-01-01

    We utilize multi-dimensional simulations of varying equatorial jet strength to predict wavelength-dependent variations in the eclipse times of gas-giant planets. A displaced hot spot introduces an asymmetry in the secondary eclipse light curve that manifests itself as a measured offset in the timing of the center of eclipse. A multi-wavelength observation of secondary eclipse, one probing the timing of barycentric eclipse at short wavelengths and another probing at longer wavelengths, will reveal the longitudinal displacement of the hot spot and break the degeneracy between this effect and that associated with the asymmetry due to an eccentric orbit. The effect of time offsets was first explored in the IRAC wavebands by Williams et al. Here we improve upon their methodology, extend to a broad range of wavelengths, and demonstrate our technique on a series of multi-dimensional radiative-hydrodynamical simulations of HD 209458b with varying equatorial jet strength and hot-spot displacement. Simulations with the largest hot-spot displacement result in timing offsets of up to 100 s in the infrared. Though we utilize a particular radiative hydrodynamical model to demonstrate this effect, the technique is model independent. This technique should allow a much larger survey of hot-spot displacements with the James Webb Space Telescope than currently accessible with time-intensive phase curves, hopefully shedding light on the physical mechanisms associated with thermal energy advection in irradiated gas giants

  7. SPECTRAL ECLIPSE TIMING

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs-Dixon, Ian [Department of Physics, NYU Abu Dhabi P.O. Box 129188 Abu Dhabi (United Arab Emirates); Agol, Eric [Department of Astronomy, University of Washington, Seattle WA 98195 (United States); Deming, Drake [NASA Astrobiology Institute Virtual Planet Laboratory (United States)

    2015-12-10

    We utilize multi-dimensional simulations of varying equatorial jet strength to predict wavelength-dependent variations in the eclipse times of gas-giant planets. A displaced hot spot introduces an asymmetry in the secondary eclipse light curve that manifests itself as a measured offset in the timing of the center of eclipse. A multi-wavelength observation of secondary eclipse, one probing the timing of barycentric eclipse at short wavelengths and another probing at longer wavelengths, will reveal the longitudinal displacement of the hot spot and break the degeneracy between this effect and that associated with the asymmetry due to an eccentric orbit. The effect of time offsets was first explored in the IRAC wavebands by Williams et al. Here we improve upon their methodology, extend to a broad range of wavelengths, and demonstrate our technique on a series of multi-dimensional radiative-hydrodynamical simulations of HD 209458b with varying equatorial jet strength and hot-spot displacement. Simulations with the largest hot-spot displacement result in timing offsets of up to 100 s in the infrared. Though we utilize a particular radiative hydrodynamical model to demonstrate this effect, the technique is model independent. This technique should allow a much larger survey of hot-spot displacements with the James Webb Space Telescope than currently accessible with time-intensive phase curves, hopefully shedding light on the physical mechanisms associated with thermal energy advection in irradiated gas giants.

  8. Practicing for 2023 and 2024: What the AAS Solar Eclipse Task Force Learned from the "Great American Eclipse" of 2017

    Science.gov (United States)

    Fienberg, R. T.; Speck, A. K.; Habbal, S. R.

    2017-12-01

    More than three years ahead of the "Great American Eclipse" of August 2017, the American Astronomical Society formed the AAS Solar Eclipse Task Force to function as a think tank, coordinating body, and communication gateway to the vast resources available about the 2017 eclipse and solar eclipses more generally. The task force included professional and amateur astronomers, formal and informal educators, and science journalists; many had experienced total solar eclipses before, and others would experience their first totality in August 2017. The AAS task force secured funding from the AAS Council, the National Science Foundation, and NASA. These resources were used mainly for three purposes: (1) to build a website that contains basic information about solar eclipses, safe viewing practices, and eclipse imaging and video, along with resources for educators and the media and a searchable map of eclipse-related events and activities, with links to other authoritative websites with more detailed information; (2) to solicit, receive, evaluate, and fund proposals for mini-grants to support eclipse-related education and public outreach to underrepresented groups both inside and outside the path of totality; and (3) to organize a series of multidisciplinary workshops across the country to prepare communities for the eclipse and to facilitate collaborations between astronomers, meteorologists, school administrators, and transporation and emergency-management professionals. Most importantly, the AAS Solar Eclipse Task Force focused on developing and disseminating appropriate eclipse safety information. The AAS and NASA jointly developed safety messaging that won the endorsement of the American Academies of Opthalmology and Optometry. In the weeks immediately preceding the eclipse, it became clear that the marketplace was being flooded by counterfeit eclipse glasses and solar viewers, leading to a last minute change in our communication strategy. In this talk, we'll review the

  9. WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Perets, Hagai B. [Technion-Israel Institute of Technology, Haifa (Israel); Kenyon, Scott J., E-mail: hperets@physics.technion.ac.il [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-02-20

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10{sup -5}-10{sup -3} M {sub Sun }, with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M {sub Sun }. When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  10. Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems

    International Nuclear Information System (INIS)

    Conroy, Kyle E.; Stassun, Keivan G.; Prša, Andrej; Orosz, Jerome A.; Welsh, William F.; Fabrycky, Daniel C.

    2014-01-01

    We present a catalog of precise eclipse times and analysis of third-body signals among 1279 close binaries in the latest Kepler Eclipsing Binary Catalog. For these short-period binaries, Kepler's 30 minute exposure time causes significant smearing of light curves. In addition, common astrophysical phenomena such as chromospheric activity, as well as imperfections in the light curve detrending process, can create systematic artifacts that may produce fictitious signals in the eclipse timings. We present a method to measure precise eclipse times in the presence of distorted light curves, such as in contact and near-contact binaries which exhibit continuously changing light levels in and out of eclipse. We identify 236 systems for which we find a timing variation signal compatible with the presence of a third body. These are modeled for the light travel time effect and the basic properties of the third body are derived. This study complements J. A. Orosz et al. (in preparation), which focuses on eclipse timing variations of longer period binaries with flat out-of-eclipse regions. Together, these two papers provide comprehensive eclipse timings for all binaries in the Kepler Eclipsing Binary Catalog, as an ongoing resource freely accessible online to the community.

  11. Effect of solar eclipse on microbes

    Directory of Open Access Journals (Sweden)

    Amrita Shriyan

    2011-01-01

    Full Text Available Objective : A solar eclipse was observed in India on 15 th January, 2010. It was a total eclipse in some parts of the country, while it was a partial eclipse in other parts. Microorganisms play an important role in various phenomena on the earth. This study was undertaken to know the influence of solar eclipse on nature indirectly, by analyzing certain genotypic and phenotypic variations in prokaryotes and eukaryotes. Since yeast have similar gene expression as that of humans, investigations were pursued on Candida albicans. Hence the study of the effect of solar eclipse on cultures of Staphylococcus aureus, Klebsiella species, Escherichia coli, and C. albicans was performed in the laboratory. The effect of the total or partial eclipse on the microorganism isolated from clinical isolates was investigated during the time period from 11.15 am to 3.15 pm. Materials and Methods : Cultures of S. aureus, Klebsiella species, and E. coli colonies on nutrient agar slants and broth and C. albicans on Sabouraud′s dextrose agar plates and broth. Slants were exposed to sunlight during eclipse and exposure to normal sunlight at Mangalore, Dakshina Kannada district, Karnataka state, India. Results : There was significant change observed during exposure to normal sunlight and eclipse phase. Bacterial colonies showed difference in morphology on smear examination and sensitivity pattern during this study. One fungal species and three bacterial isolates were studied and changes were recorded. Fungal species showed a definite change in their morphology on exposure to sunlight during eclipse observed by stained smear examination from broth, plate, and slant. Conclusion : Present study concludes that blocking of the sun rays during eclipse does not harm prokaryotes and eukaryotes, instead promoted the progeny of predators in the race of better acclimatization and survival in the natural and changing environmental conditions.

  12. Neutron star crustal plate tectonics. I. Magnetic dipole evolution in millisecond pulsars and low-mass X-ray binaries

    International Nuclear Information System (INIS)

    Ruderman, M.

    1991-01-01

    Crust lattices in spinning-up or spinning-down neutron stars have growing shear stresses caused by neutron superfluid vortex lines pinned to lattice nuclei. For the most rapidly spinning stars, this stress will break and move the crust before vortex unpinning occurs. In spinning-down neutron stars, crustal plates will move an equatorial subduction zone in which the plates are forced into the stellar core below the crust. The opposite plate motion occurs in spinning-up stars. Magnetic fields which pass through the crust or have sources in it move with the crust. Spun-up neutron stars in accreting low-mass X-ray binaries LMXBs should then have almost axially symmetric magnetic fields. Spun-down ones with very weak magnetic fields should have external magnetic fields which enter and leave the neutron star surface only near its equator. The lowest field millisecond radiopulsars seem to be orthogonal rotators implying that they have not previously been spun-up in LMXBs but are neutron stars initially formed with periods near 0.001 s that subsequently spin down to their present periods. Accretion-induced white dwarf collapse is then the most plausible genesis for them. 29 refs

  13. On the illumination of neutron star accretion discs

    Science.gov (United States)

    Wilkins, D. R.

    2018-03-01

    The illumination of the accretion disc in a neutron star X-ray binary by X-rays emitted from (or close to) the neutron star surface is explored through general relativistic ray tracing simulations. The applicability of the canonical suite of relativistically broadened emission line models (developed for black holes) to discs around neutron stars is evaluated. These models were found to describe well emission lines from neutron star accretion discs unless the neutron star radius is larger than the innermost stable orbit of the accretion disc at 6 rg or the disc is viewed at high inclination, above 60° where shadowing of the back side of the disc becomes important. Theoretical emissivity profiles were computed for accretion discs illuminated by hotspots on the neutron star surfaces, bands of emission and emission by the entirety of the hot, spherical star surface and in all cases, the emissivity profile of the accretion disc was found to be well represented by a single power law falling off slightly steeper than r-3. Steepening of the emissivity index was found where the emission is close to the disc plane and the disc can appear truncated when illuminated by a hotspot at high latitude. The emissivity profile of the accretion disc in Serpens X-1 was measured and found to be consistent with a single unbroken power law with index q=3.5_{-0.4}^{+0.3}, suggestive of illumination by the boundary layer between the disc and neutron star surface.

  14. Eclipses and the Olympics

    Science.gov (United States)

    Pang, K. D.; Yau, K. K.

    2000-12-01

    Like returns of Halley's comet the Olympic games occur periodically, though not as regularly in antiquity. Dates were also imprecise due to the chaotic calendars in use. Reported sightings of comets and eclipses can be used with game dates to help fix ancient events. However some reported darkening of the sun, e.g., after Julius Caesar's murder in 44 BC, was due to volcanic eruptions. A red comet, visible in daylight, first appeared during the games that year. It was also seen from China and Korea (Pang, Sciences 31, 30). Phlegon's ``Olympiads" (2nd century) says that Christ's crucifixion was in the 4th year of the 202nd Olympiad (AD 29-33), when a total solar eclipse occurred in the 6th hour. Only the Nov. 24, AD 29 eclipse over Asia Minor can match that, and Joel's prophecy (Acts 2, 14-21) that ``the sun will be turned to darkness and moon to blood." However it conflicts with ``the first day of Passover," as recorded by Mathew, Mark and Luke, i.e., full moon in early spring. Humphreys and Waddington (Nature 306, 743) have suggested meteorological darkening and the April 3, AD 33 lunar eclipse instead. Schaefer has questioned the eclipse's visibility from Jerusalem (31.46N, 35.14E). The six computations he cited gave dissimilar answers due to the imprecise rates of the secular lunar acceleration, and lengthening of the day used (Q.Jl.R.astr.Soc. 31, 53). Lunar laser ranging has since fixed the former at -26"/cen2. Analysis of ancient Chinese solar eclipse records, e.g., the April 21, 899 BC and April 4, AD 368 ``double dawns" over Zheng, has given us a delta T (in sec) = 30t2, where t is centuries before 1800 (Pang, Yau and Chou, in ``Dynamics of Ice Age Earth: A Modern Perspective," 1998). Our computations show that the moon rose over Jerusalem, with 1/3 still in the umbra and the rest in penumbra. Holdover meteorological darkening with long absorption air mass could have help reddened the moon also. Finally the first ``eclipse season" (the Aug. 21 lunar, and

  15. Eclipse plugin development by example beginner's guide

    CERN Document Server

    Blewitt, Alex

    2013-01-01

    A Beginner's Guide following the ""by Example"" approach. There will be 5-8 major examples that will be used in the book to develop advanced plugins with the Eclipse IDE.This book is for Java developers who are familiar with Eclipse as a Java IDE and are interested in learning how to develop plug-ins for Eclipse. No prior knowledge of Eclipse plug-in development or OSGi is necessary, although you are expected to know how to create, run, and debug Java programs in Eclipse.

  16. Searching for millisecond pulsars: surveys, techniques and prospects

    International Nuclear Information System (INIS)

    Stovall, K; Lorimer, D R; Lynch, R S

    2013-01-01

    Searches for millisecond pulsars (which we here loosely define as those with periods < 20 ms) in the galactic field have undergone a renaissance in the past five years. New or recently refurbished radio telescopes utilizing cooled receivers and state-of-the art digital data acquisition systems are carrying out surveys of the entire sky at a variety of radio frequencies. Targeted searches for millisecond pulsars in point sources identified by the Fermi Gamma-ray Space Telescope have proved phenomenally successful, with over 50 discoveries in the past five years. The current sample of millisecond pulsars now numbers almost 200 and, for the first time in 25 years, now outnumbers their counterparts in galactic globular clusters. While many of these searches are motivated to find pulsars which form part of pulsar timing arrays, a wide variety of interesting systems are now being found. Following a brief overview of the millisecond pulsar phenomenon, we describe these searches and present some of the highlights of the new discoveries in the past decade. We conclude with predictions and prospects for ongoing and future surveys. (paper)

  17. A STRANGE STAR SCENARIO FOR THE FORMATION OF ECCENTRIC MILLISECOND PULSAR/HELIUM WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Long; Li, Xiang-Dong [Department of Astronomy, Nanjing University, Nanjing 210046 (China); Dey, Jishnu; Dey, Mira, E-mail: lixd@nju.edu.cn [Department of Physics, Presidency University, 86/1, College Street, Kolkata 700 073 (India)

    2015-07-01

    According to the recycling scenario, millisecond pulsars (MSPs) have evolved from low-mass X-ray binaries (LMXBs). Their orbits are expected to be circular due to tidal interactions during binary evolution, as observed in most binary MSPs. There are some peculiar systems that do not fit this picture. Three recent examples are the PSRs J2234+06, J1946+3417, and J1950+2414, all of which are MSPs in eccentric orbits but with mass functions compatible with expected He white dwarf (WD) companions. It has been suggested these MSPs may have formed from delayed accretion-induced collapse of massive WDs, or the eccentricity may be induced by dynamical interaction between the binary and a circumbinary disk. Assuming that the core density of accreting neutron stars (NSs) in LMXBs may reach the density of quark deconfinement, which can lead to phase transition from NSs to strange quark stars, we show that the resultant MSPs are likely to have an eccentric orbit, due to the sudden loss of the gravitational mass of the NS during the transition. The eccentricities can be reproduced with a reasonable estimate of the mass loss. This scenario might also account for the formation of the youngest known X-ray binary Cir X–1, which also possesses a low-field compact star in an eccentric orbit.

  18. Optical eclipses and precessional effects in the X-ray binary system HD 77581=4U 0900-40

    International Nuclear Information System (INIS)

    Khruzina, T.S.; Cherepashchuk, A.M.

    1982-01-01

    The longperiod (P=93.3sup(d)) variability of the amplitude and shape of the optical light curves of the X-ray binary HD 77581 has been discovered from the analysis of all published photometric data. The 93.3-day period is presumably the period of the forced precession of the rotational axis of the optical star. It is shown that the system HD 77581 appears to be an eclipsing binary in the optical range with the amplitude of the ellipsoidal variability approximately 0sup(m).04 and the depth of the eclipse reaching approximately 0sup(m).04. The eclipses are caused by the gaseous streams and the accreting structure, the orientation of which in the binary system is varying with the precession period of the optical star. The estimates of the parameters of the system are obtained. It is shown that the parameter of the Roche Lobe filling for the optical star is μ < 1. The mass of the neutron star is Msub(x)=(1.6+-0.3) Msub(Sun), where Msub(Sun) is the solar mass. The forced precession of the optical star is connected with the non-perpendicularity of its rotational axis to the orbit plane of the binary system. This non-perpendicularity may be a result of supernova explosion in a close binary system

  19. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    2006-01-01

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  20. Chandra Sees Remarkable Eclipse of Black Hole

    Science.gov (United States)

    2007-04-01

    Chandra X-ray Image of NGC 1365 "Thanks to this eclipse, we were able to probe much closer to the edge of this black hole than anyone has been able to before," said co-author Martin Elvis from CfA. "Material this close in will likely cross the event horizon and disappear from the universe in about a hundred years, a blink of an eye in cosmic terms." In addition to measuring the size of this disk of material, Risaliti and his colleagues were also able to estimate the location of the dense gas cloud that eclipsed the X-ray source and central black hole. The Chandra data show that this cloud is one hundredth of a light year from the black hole's event horizon, or 300 times closer than generally thought. "AGN include the brightest objects in the Universe and are powerful probes of the early universe. So, it's vital to understand their basic structure," said Risaliti. "It turns out that we still have work to do to understand these monsters." A series of six Chandra observations of NGC 1365 were made every two days over a period of two weeks in April 2006. During five of the observations, high energy X-rays from the central X-ray source were visible, but in the second one - corresponding to the eclipse - they were not. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  1. Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar.

    Science.gov (United States)

    Clark, Colin J; Pletsch, Holger J; Wu, Jason; Guillemot, Lucas; Kerr, Matthew; Johnson, Tyrel J; Camilo, Fernando; Salvetti, David; Allen, Bruce; Anderson, David; Aulbert, Carsten; Beer, Christian; Bock, Oliver; Cuéllar, Andres; Eggenstein, Heinz-Bernd; Fehrmann, Henning; Kramer, Michael; Kwang, Shawn A; Machenschalk, Bernd; Nieder, Lars; Ackermann, Markus; Ajello, Marco; Baldini, Luca; Ballet, Jean; Barbiellini, Guido; Bastieri, Denis; Bellazzini, Ronaldo; Bissaldi, Elisabetta; Blandford, Roger D; Bloom, Elliott D; Bonino, Raffaella; Bottacini, Eugenio; Brandt, Terri J; Bregeon, Johan; Bruel, Philippe; Buehler, Rolf; Burnett, Toby H; Buson, Sara; Cameron, Rob A; Caputo, Regina; Caraveo, Patrizia A; Cavazzuti, Elisabetta; Cecchi, Claudia; Charles, Eric; Chekhtman, Alexandre; Ciprini, Stefano; Cominsky, Lynn R; Costantin, Denise; Cutini, Sara; D'Ammando, Filippo; De Luca, Andrea; Desiante, Rachele; Di Venere, Leonardo; Di Mauro, Mattia; Di Lalla, Niccolò; Digel, Seth W; Favuzzi, Cecilia; Ferrara, Elizabeth C; Franckowiak, Anna; Fukazawa, Yasushi; Funk, Stefan; Fusco, Piergiorgio; Gargano, Fabio; Gasparrini, Dario; Giglietto, Nico; Giordano, Francesco; Giroletti, Marcello; Gomez-Vargas, Germán A; Green, David; Grenier, Isabelle A; Guiriec, Sylvain; Harding, Alice K; Hewitt, John W; Horan, Deirdre; Jóhannesson, Guðlaugur; Kensei, Shiki; Kuss, Michael; La Mura, Giovanni; Larsson, Stefan; Latronico, Luca; Li, Jian; Longo, Francesco; Loparco, Francesco; Lovellette, Michael N; Lubrano, Pasquale; Magill, Jeffrey D; Maldera, Simone; Manfreda, Alberto; Mazziotta, Mario N; McEnery, Julie E; Michelson, Peter F; Mirabal, Nestor; Mitthumsiri, Warit; Mizuno, Tsunefumi; Monzani, Maria Elena; Morselli, Aldo; Moskalenko, Igor V; Nuss, Eric; Ohsugi, Takashi; Omodei, Nicola; Orienti, Monica; Orlando, Elena; Palatiello, Michele; Paliya, Vaidehi S; de Palma, Francesco; Paneque, David; Perkins, Jeremy S; Persic, Massimo; Pesce-Rollins, Melissa; Porter, Troy A; Principe, Giacomo; Rainò, Silvia; Rando, Riccardo; Ray, Paul S; Razzano, Massimiliano; Reimer, Anita; Reimer, Olaf; Romani, Roger W; Saz Parkinson, Pablo M; Sgrò, Carmelo; Siskind, Eric J; Smith, David A; Spada, Francesca; Spandre, Gloria; Spinelli, Paolo; Thayer, Jana B; Thompson, David J; Torres, Diego F; Troja, Eleonora; Vianello, Giacomo; Wood, Kent; Wood, Matthew

    2018-02-01

    Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered MSPs. In an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data. This survey discovered two isolated MSPs, one of which is the only known rotation-powered MSP to remain undetected in radio observations. These gamma-ray MSPs were discovered in completely blind searches without prior constraints from other observations, raising hopes for detecting MSPs from a predicted Galactic bulge population.

  2. Raspberry Pi Eclipse Experiments

    Science.gov (United States)

    Chizek Frouard, Malynda

    2018-01-01

    The 21 August 2017 solar eclipse was an excellent opportunity for electronics and science enthusiasts to collect data during a fascinating phenomenon. With my recent personal interest in Raspberry Pis, I thought measuring how much the temperature and illuminance changes during a total solar eclipse would be fun and informational.Previous observations of total solar eclipses have remarked on the temperature drop during totality. Illuminance (ambient light) varies over 7 orders of magnitude from day to night and is highly dependent on relative positions of Sun, Earth, and Moon. I wondered whether totality was really as dark as night.Using a Raspberry Pi Zero W, a Pimoroni Enviro pHAT, and a portable USB charger, I collected environmental temperature; CPU temperature (because the environmental temperature sensor sat very near the CPU on the Raspberry Pi); barometric pressure; ambient light; R, G, and B colors; and x, y, and z acceleration (for marking times when I moved the sensor) data at a ~15 second cadence starting at about 5 am until 1:30 pm from my eclipse observation site in Glendo, WY. Totality occurred from 11:45 to 11:47 am, lasting about 2 minutes and 30 seconds.The Raspberry Pi recorded a >20 degree F drop in temperature during the eclipse, and the illuminance during totality was equivalent to twilight measurements earlier in the day. A limitation in the ambient light sensor prevented accurate measurements of broad daylight and most of the partial phase of the eclipse, but an alternate ambient light sensor combined with the Raspberry Pi setup would make this a cost-efficient set-up for illuminance studies.I will present data from the ambient light sensor, temperature sensor, and color sensor, noting caveats from my experiments, lessons learned for next time, and suggestions for anyone who wants to perform similar experiments for themselves or with a classroom.

  3. An Outreach Project to Provide 2.1 Million Eclipse Glasses and Eclipse Information through 7,100 Libraries Nationwide

    Science.gov (United States)

    Fraknoi, Andrew; Schatz, Dennis; Dusenbery, Paul; Duncan, Douglas; Holland, Anne; Laconte, Keliann

    2018-01-01

    With support from the Moore Foundation, Google, the Research Corporation, and NASA, we were able to distribute about 2.1 million eclipse glasses and an extensive booklet of eclipse information and outreach suggestions to 7,100 public libraries throughout the nation. It appears that this project was the single largest program to provide glasses and eclipse information to the public in the U.S. The project using (and significantly enlarged) the existing STARNet network of libraries set up and maintained by the Space Science Institute. We were able to get glasses to a diverse set of institutions, including urban, rural, Native American, small town and large city libraries. In this poster, we will summarize the history of the project, the various components and how they worked together, and the results of a post survey of the librarians, which provided numbers, photographs, and impressions from the many libraries and their patrons. A map of the libraries involved is at www.starnetlibraries.org/2017eclipse/. The booklet of information that was sent to help train librarians in eclipse science and eclipse outreach can still be downloaded free at: http://www.starnetlibraries.org/EclipseGuide/.”

  4. The Accretion-Ejection Mechanisms in X-ray Binaries: an Unified View

    International Nuclear Information System (INIS)

    Petrucci, P. O.; Foellmi, C.; Ferreira, J.; Henri, G.; Cabanac, C.; Belmont, R.; Malzac, J.

    2009-01-01

    We present a new keplerian accretion disc solution, the so-called Jet Emitting Disc (JED hereafter), which is part of global self-consistent disc-jet MHD structure. In our framework, a large scale, organized vertical magnetic field is threading the JED giving birth, when conditions are met, to stationnary self-collimated non relativistic jets. The main condition is that the magnetic pressure P mag must be of the order of the total pressure P tot in the JED and a direct consequence is a jet torque largely dominating the viscuous torque. This in turn implies an accretion velocity of the order of the sound speed and then a density much lower than a standard accretion disc. Moreover, most of the accretion power P acc being extracted by the jet, only part of it (<50%) is liberated in the JED as heating power.

  5. Observations of the atmospheric surface layer parameters during the total solar eclipse of March 29th, in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Founda, Dimitra; Lykoudis, Spyridon; Psiloglou, Basil E.; Petrakis, Michael; Zerefos, Christos [Inst. for Environmental Research and Sustainable Development, National Observatory of Athens (Greece)

    2009-10-15

    This study examines the effect of the total solar eclipse of March 29{sup th} 2006, on some parameters of the atmospheric surface layer. The eclipse effects on the mean, but also turbulent parameters of the wind were studied at Kastelorizo, a small island of southeastern Greece situated within the totality path of the eclipse. Although the eclipse effect on the mean flow was partly masked by the synoptic situation, the analysis of the intensive (high frequency) wind measurements showed a decrease of the turbulent processes with reduced values of the turbulent kinetic energy and shear stress for a short period around the maximum phase of the eclipse. The buoyancy flux decreased by one order of magnitude during the phenomenon. The power spectra of the three wind components were found to be lower by almost one order of magnitude near the total phase when compared to spectra after the end of the eclipse. (orig.)

  6. Millisecond accuracy video display using OpenGL under Linux.

    Science.gov (United States)

    Stewart, Neil

    2006-02-01

    To measure people's reaction times to the nearest millisecond, it is necessary to know exactly when a stimulus is displayed. This article describes how to display stimuli with millisecond accuracy on a normal CRT monitor, using a PC running Linux. A simple C program is presented to illustrate how this may be done within X Windows using the OpenGL rendering system. A test of this system is reported that demonstrates that stimuli may be consistently displayed with millisecond accuracy. An algorithm is presented that allows the exact time of stimulus presentation to be deduced, even if there are relatively large errors in measuring the display time.

  7. Solar Eclipse Computer API: Planning Ahead for August 2017

    Science.gov (United States)

    Bartlett, Jennifer L.; Chizek Frouard, Malynda; Lesniak, Michael V.; Bell, Steve

    2016-01-01

    With the total solar eclipse of 2017 August 21 over the continental United States approaching, the U.S. Naval Observatory (USNO) on-line Solar Eclipse Computer can now be accessed via an application programming interface (API). This flexible interface returns local circumstances for any solar eclipse in JavaScript Object Notation (JSON) that can be incorporated into third-party Web sites or applications. For a given year, it can also return a list of solar eclipses that can be used to build a more specific request for local circumstances. Over the course of a particular eclipse as viewed from a specific site, several events may be visible: the beginning and ending of the eclipse (first and fourth contacts), the beginning and ending of totality (second and third contacts), the moment of maximum eclipse, sunrise, or sunset. For each of these events, the USNO Solar Eclipse Computer reports the time, Sun's altitude and azimuth, and the event's position and vertex angles. The computer also reports the duration of the total phase, the duration of the eclipse, the magnitude of the eclipse, and the percent of the Sun obscured for a particular eclipse site. On-line documentation for using the API-enabled Solar Eclipse Computer, including sample calls, is available (http://aa.usno.navy.mil/data/docs/api.php). The same Web page also describes how to reach the Complete Sun and Moon Data for One Day, Phases of the Moon, Day and Night Across the Earth, and Apparent Disk of a Solar System Object services using API calls.For those who prefer using a traditional data input form, local circumstances can still be requested that way at http://aa.usno.navy.mil/data/docs/SolarEclipses.php. In addition, the 2017 August 21 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) consolidates all of the USNO resources for this event, including a Google Map view of the eclipse track designed by Her Majesty's Nautical Almanac Office (HMNAO). Looking further ahead, a

  8. Mastering Eclipse plug-in development

    CERN Document Server

    Blewitt, Alex

    2014-01-01

    If you are a Java developer who is familiar with the Eclipse plug-in environment, this book covers the advanced concepts that you need to know to achieve true expertise. Prior experience in creating Eclipse plug-ins is assumed for this book.

  9. Clear-Sky Probability for the August 21, 2017, Total Solar Eclipse Using the NREL National Solar Radiation Database

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Roberts, Billy J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kutchenreiter, Mark C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wilcox, Steve [Solar Resource Solutions, LLC, Lakewood, CO (United States); Stoffel, Tom [Solar Resource Solutions, LLC, Lakewood, CO (United States)

    2017-07-21

    The National Renewable Energy Laboratory (NREL) and collaborators have created a clear-sky probability analysis to help guide viewers of the August 21, 2017, total solar eclipse, the first continent-spanning eclipse in nearly 100 years in the United States. Using cloud and solar data from NREL's National Solar Radiation Database (NSRDB), the analysis provides cloudless sky probabilities specific to the date and time of the eclipse. Although this paper is not intended to be an eclipse weather forecast, the detailed maps can help guide eclipse enthusiasts to likely optimal viewing locations. Additionally, high-resolution data are presented for the centerline of the path of totality, representing the likelihood for cloudless skies and atmospheric clarity. The NSRDB provides industry, academia, and other stakeholders with high-resolution solar irradiance data to support feasibility analyses for photovoltaic and concentrating solar power generation projects.

  10. Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar

    Science.gov (United States)

    Clark, Colin J.; Pletsch, Holger J.; Wu, Jason; Guillemot, Lucas; Kerr, Matthew; Johnson, Tyrel J.; Camilo, Fernando; Salvetti, David; Allen, Bruce; Anderson, David; Aulbert, Carsten; Beer, Christian; Bock, Oliver; Cuéllar, Andres; Eggenstein, Heinz-Bernd; Fehrmann, Henning; Kramer, Michael; Kwang, Shawn A.; Machenschalk, Bernd; Nieder, Lars; Ackermann, Markus; Ajello, Marco; Baldini, Luca; Ballet, Jean; Barbiellini, Guido; Bastieri, Denis; Bellazzini, Ronaldo; Bissaldi, Elisabetta; Blandford, Roger D.; Bloom, Elliott D.; Bonino, Raffaella; Bottacini, Eugenio; Brandt, Terri J.; Bregeon, Johan; Bruel, Philippe; Buehler, Rolf; Burnett, Toby H.; Buson, Sara; Cameron, Rob A.; Caputo, Regina; Caraveo, Patrizia A.; Cavazzuti, Elisabetta; Cecchi, Claudia; Charles, Eric; Chekhtman, Alexandre; Ciprini, Stefano; Cominsky, Lynn R.; Costantin, Denise; Cutini, Sara; D’Ammando, Filippo; De Luca, Andrea; Desiante, Rachele; Di Venere, Leonardo; Di Mauro, Mattia; Di Lalla, Niccolò; Digel, Seth W.; Favuzzi, Cecilia; Ferrara, Elizabeth C.; Franckowiak, Anna; Fukazawa, Yasushi; Funk, Stefan; Fusco, Piergiorgio; Gargano, Fabio; Gasparrini, Dario; Giglietto, Nico; Giordano, Francesco; Giroletti, Marcello; Gomez-Vargas, Germán A.; Green, David; Grenier, Isabelle A.; Guiriec, Sylvain; Harding, Alice K.; Hewitt, John W.; Horan, Deirdre; Jóhannesson, Guðlaugur; Kensei, Shiki; Kuss, Michael; La Mura, Giovanni; Larsson, Stefan; Latronico, Luca; Li, Jian; Longo, Francesco; Loparco, Francesco; Lovellette, Michael N.; Lubrano, Pasquale; Magill, Jeffrey D.; Maldera, Simone; Manfreda, Alberto; Mazziotta, Mario N.; McEnery, Julie E.; Michelson, Peter F.; Mirabal, Nestor; Mitthumsiri, Warit; Mizuno, Tsunefumi; Monzani, Maria Elena; Morselli, Aldo; Moskalenko, Igor V.; Nuss, Eric; Ohsugi, Takashi; Omodei, Nicola; Orienti, Monica; Orlando, Elena; Palatiello, Michele; Paliya, Vaidehi S.; de Palma, Francesco; Paneque, David; Perkins, Jeremy S.; Persic, Massimo; Pesce-Rollins, Melissa; Porter, Troy A.; Principe, Giacomo; Rainò, Silvia; Rando, Riccardo; Ray, Paul S.; Razzano, Massimiliano; Reimer, Anita; Reimer, Olaf; Romani, Roger W.; Saz Parkinson, Pablo M.; Sgrò, Carmelo; Siskind, Eric J.; Smith, David A.; Spada, Francesca; Spandre, Gloria; Spinelli, Paolo; Thayer, Jana B.; Thompson, David J.; Torres, Diego F.; Troja, Eleonora; Vianello, Giacomo; Wood, Kent; Wood, Matthew

    2018-01-01

    Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered MSPs. In an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data. This survey discovered two isolated MSPs, one of which is the only known rotation-powered MSP to remain undetected in radio observations. These gamma-ray MSPs were discovered in completely blind searches without prior constraints from other observations, raising hopes for detecting MSPs from a predicted Galactic bulge population. PMID:29503868

  11. Boise State's Idaho Eclipse Outreach Program

    Science.gov (United States)

    Davis, Karan; Jackson, Brian

    2017-10-01

    The 2017 total solar eclipse is an unprecedented opportunity for astronomical education throughout the continental United States. With the path of totality passing through 14 states, from Oregon to South Carolina, the United States is expecting visitors from all around the world. Due to the likelihood of clear skies, Idaho was a popular destination for eclipse-chasers. In spite of considerable enthusiasm and interest by the general population, the resources for STEM outreach in the rural Pacific Northwest are very limited. In order to help prepare Idaho for the eclipse, we put together a crowdfunding campaign through the university and raised over $10,000. Donors received eclipse shades as well as information about the eclipse specific to Idaho. Idaho expects 500,000 visitors, which could present a problem for the many small, rural towns scattered across the path of totality. In order to help prepare and equip the public for the solar eclipse, we conducted a series of site visits to towns in and near the path of totality throughout Idaho. To maximize the impact of this effort, the program included several partnerships with local educational and community organizations and a focus on the sizable refugee and low-income populations in Idaho, with considerable attendance at most events.

  12. Eclipse of epsilon Aurigae

    Science.gov (United States)

    Templeton, Matthew R.

    2009-07-01

    The bright, long-period, eclipsing binary star epsilon Aurigae is predicted to begin its next eclipse late July or early August of 2009. Epsilon Aurigae is now past solar conjunction and has reappeared as a morning object. All observers -- both visual and instrumental -- are encouraged to contribute observations of the eclipse during the next two years, beginning immediately for morning observers. Observations are urgently requested right now because it is less likely to be observed in the morning, and the eclipse will begin within the next month. The AAVSO is participating in a global campaign to record this eclipse as part of the International Year of Astronomy 2009 celebrations, organized by the Citizen Sky project (http://www.citizensky.org). For experienced visual observers, please observe this star on a weekly basis, using charts available via VSP from the AAVSO website. For novice visual observers, we recommend participating in this observing program by following the Citizen Sky 10-Star tutorial program, which provides a simple training experience in variable star observing. Photoelectric observers belonging to the AAVSO PEP-V program may submit data as usual via the WebObs feature of the AAVSO website Blue&Gold section. Photoelectric observers may also contribute reduced observations in all filters (including infrared J- and H-bands) directly to the AAVSO via WebObs. Observers using wide-field CCD and DSLR systems are also encouraged to participate; avoid saturating the star. For those with narrower-field systems (D Jeffrey Hopkins are co-leading the precision photometry efforts.

  13. Evaluating the Eclipse: How good was it?

    Science.gov (United States)

    Noel-Storr, Jacob; InsightSTEM Evaluation Team

    2018-01-01

    We present findings from the evaluation program carried out of education, public outreach, and communication activities around the "Great American Eclipse" of August 21, 2017. We include findings drawn from the experiences of 30 participants in planning activities prior to the eclipse and 31 recipients of mini-grants for eclipse activities supported by the American Astronomical Society through a grant from the National Science Foundation. We synthesize evaluations gathered by these and other volunteering organizations to provide a multi-site picture of experiences and learning outcomes at eclipse-related events - both in the path of totality and in partial eclipse settings. We make use of qualitative and quantitative responses representing over 30,000 individuals who observed (or tried to observe) the eclipse. We will share findings from across the range of programs included in our evaluation network along with specific highlights. We emphasize a reflection on the motivation and activity behind the 2017 eclipse, and how to leverage the lessons learned for future events on this scale (such as the eclipse of April 8, 2024) along with messages relevant to other events connected with astronomical phenomena, or in multi-site settings.This work was supported in part by the National Science Foundation under Grant No. 1564535 awarded to the American Astronomical Society. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation or the American Astronomical Society.

  14. Is an eclipse described in the Odyssey?

    Science.gov (United States)

    Baikouzis, Constantino; Magnasco, Marcelo O

    2008-07-01

    Plutarch and Heraclitus believed a certain passage in the 20th book of the Odyssey ("Theoclymenus's prophecy") to be a poetic description of a total solar eclipse. In the late 1920s, Schoch and Neugebauer computed that the solar eclipse of 16 April 1178 B.C.E. was total over the Ionian Islands and was the only suitable eclipse in more than a century to agree with classical estimates of the decade-earlier sack of Troy around 1192-1184 B.C.E. However, much skepticism remains about whether the verses refer to this, or any, eclipse. To contribute to the issue independently of the disputed eclipse reference, we analyze other astronomical references in the Epic, without assuming the existence of an eclipse, and search for dates matching the astronomical phenomena we believe they describe. We use three overt astronomical references in the epic: to Boötes and the Pleiades, Venus, and the New Moon; we supplement them with a conjectural identification of Hermes's trip to Ogygia as relating to the motion of planet Mercury. Performing an exhaustive search of all possible dates in the span 1250-1115 B.C., we looked to match these phenomena in the order and manner that the text describes. In that period, a single date closely matches our references: 16 April 1178 B.C.E. We speculate that these references, plus the disputed eclipse reference, may refer to that specific eclipse.

  15. Twin peak high-frequency quasi-periodic oscillations as a spectral imprint of dual oscillation modes of accretion tori

    Science.gov (United States)

    Bakala, P.; Goluchová, K.; Török, G.; Šrámková, E.; Abramowicz, M. A.; Vincent, F. H.; Mazur, G. P.

    2015-09-01

    Context. High-frequency (millisecond) quasi-periodic oscillations (HF QPOs) are observed in the X-ray power-density spectra of several microquasars and low-mass X-ray binaries. Two distinct QPO peaks, so-called twin peak QPOs, are often detected simultaneously exhibiting their frequency ratio close or equal to 3:2. A widely discussed class of proposed QPOs models is based on oscillations of accretion toroidal structures orbiting in the close vicinity of black holes or neutron stars. Aims: Following the analytic theory and previous studies of observable spectral signatures, we aim to model the twin peak QPOs as a spectral imprint of specific dual oscillation regime defined by a combination of the lowest radial and vertical oscillation mode of slender tori. We consider the model of an optically thick slender accretion torus with constant specific angular momentum. We examined power spectra and fluorescent Kα iron line profiles for two different simulation setups with the mode frequency relations corresponding to the epicyclic resonance HF QPOs model and modified relativistic precession QPOs model. Methods: We used relativistic ray-tracing implemented in the parallel simulation code LSDplus. In the background of the Kerr spacetime geometry, we analyzed the influence of the distant observer inclination and the spin of the central compact object. Relativistic optical projection of the oscillating slender torus is illustrated by images in false colours related to the frequency shift. Results: We show that performed simulations yield power spectra with the pair of dominant peaks that correspond to the frequencies of radial and vertical oscillation modes and with the peak frequency ratio equal to the proper value 3:2 on a wide range of inclinations and spin values. We also discuss exceptional cases of a very low and very high inclination, as well as unstable high spin relativistic precession-like configurations that predict a constant frequency ratio equal to 1:2. We

  16. Radio Loud AGN Unification: Connecting Jets and Accretion

    Directory of Open Access Journals (Sweden)

    Meyer Eileen T.

    2013-12-01

    Full Text Available While only a fraction of Active Galactic Nuclei are observed to host a powerful relativistic jet, a cohesive picture is emerging that radio-loud AGN may represent an important phase in the evolution of galaxies and the growth of the central super-massive black hole. I will review my own recent observational work in radio-loud AGN unification in the context of understanding how and why jets form and their the connection to different kinds of accretion and growing the black hole, along with a brief discussion of possible connections to recent modeling work in jet formation. Starting from the significant observational advances in our understanding of jetted AGN as a population over the last decade thanks to new, more sensitive instruments such as Fermi and Swift as well as all-sky surveys at all frequencies, I will lay out the case for a dichotomy in the jetted AGN population connected to accretion mode onto the black hole. In recent work, we have identified two sub-populations of radio-loud AGN which appear to be distinguished by jet structure, where low-efficiency accreting systems produce ‘weak’ jets which decelerate more rapidly than the ’strong’ jets of black holes accreting near the Eddington limit. The two classes are comprised of: (1The weak jet sources, corresponding to the less collimated, edge-darkened FR Is, with a decelerating or spine-sheath jet with velocity gradients, and (2 The strong jet sources, having fast, collimated jets, and typically displaying strong emission lines. The dichotomy in the vp-Lp plane can be understood as a "broken power sequence" in which jets exist on one branch or the other based on the particular accretion mode (Georganopolous 2011.We suggest that the intrinsic kinetic power (as measured by low-frequency, isotropic radio emission, the orientation, and the accretion rate of the SMBH system are the the fundamental axes needed for unification of radio-loud AGN by studying a well-characterized sample

  17. Pulsar-irradiated stars in dense globular clusters

    Science.gov (United States)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  18. The Great American Eclipse: Lessons Learned from Public Education

    Science.gov (United States)

    Edson, Shauna Elizabeth; Phoebe Waterman Haas Public Observatory

    2018-01-01

    The total solar eclipse of 2017 was a high-profile opportunity for nationwide public education. Astronomy experts suddenly became vital sources of information for a lay population whose interest in the eclipse greatly surpassed expectations. At the National Air and Space Museum, we leveraged our relatively accessible location and particularly diverse audience to help thousands of people, from novices to enthusiasts, prepare to view the eclipse safely. The goal was to empower all people so they could experience this unique astronomical event, understand what was happening, and observe the Sun safely. Over the course of two years spent talking with the public about the eclipse, we encountered common misconceptions, worries about safety or liability, and people experiencing confusion or information overload. We developed guidelines for handling these challenges, from correcting misinformation to managing the sudden spike in demand for glasses just before August 21.In particular, we helped people understand the following essential points:- The total phase of the eclipse is only visible from a limited path.- The partial eclipse is visible from a large area outside the path of totality.- The eclipse takes up to three hours from start to finish, providing ample time for viewing.- The Sun can be observed safely using several methods, including but not limited to eclipse glasses.- The eclipse happens because the Moon’s orbit is taking it directly between the Sun and the Earth.- Eclipses do not happen every month because the Moon’s orbit is tilted with respect to the Earth's orbital plane.- Students in schools can safely view the eclipse, with proper protection and supervision, to prevent eye damage and minimize liability.Public education about the eclipse appears to have been successful, as evidenced by the large number of people who saw their first total solar eclipse and the absence of reported eye damage cases. Amidst the excitement, photographs, and stories that

  19. Resource Letter OSE-1: Observing Solar Eclipses

    Science.gov (United States)

    Pasachoff, Jay M.; Fraknoi, Andrew

    2017-07-01

    This Resource Letter provides a guide to the available literature, listing selected books, articles, and online resources about scientific, cultural, and practical issues related to observing solar eclipses. It is timely, given that a total solar eclipse will cross the continental United States on August 21, 2017. The next total solar eclipse path crossing the U.S. and Canada will be on April 8, 2024. In 2023, the path of annularity of an annular eclipse will cross Mexico, the United States, and Canada, with partial phases visible throughout those countries.

  20. Toward a New Paradigm for the Unification of Radio Loud AGN and its Connection to Accretion

    Science.gov (United States)

    Georganpoulos, Markos; Meyer, Eileen T.; Fossati, Giovanni; Lister, Matthew L.

    2012-01-01

    We recently argued [21J that the collective properties. of radio loud active galactic nuclei point to the existence of two families of sources, one of powerful sources with single velocity jets and one of weaker jets with significant velocity gradients in the radiating plasma. These families also correspond to different accretion modes and therefore different thermal and emission line intrinsic properties: powerful sources have radiatively efficient accretion disks, while in weak sources accretion must be radiatively inefficient. Here, after we briefly review of our recent work, we present the following findings that support our unification scheme: (i) along the broken sequence of aligned objects, the jet kinetic power increases. (ii) in the powerful branch of the sequence of aligned objects the fraction of BLLs decreases with increasing jet power. (iii) for powerful sources, the fraction of BLLs increases for more un-aligned objects, as measured by the core to extended radio emission. Our results are also compatible with the possibility that a given accretion power produces jets of comparable kinetic power.

  1. Accretion disk emission from a BL Lacertae object

    International Nuclear Information System (INIS)

    Wandel, A.; Urry, C.M.

    1991-01-01

    It is suggested here that the UV and X-ray emission of BL Lac objects may originate in an accretion disk. Using detailed calculations of accretion disk spectra, the best-measured ultraviolet and soft X-ray spectra of the BL Lac object PKS 2155-304 are fitted, and the mass and accretion rate required is determined. The ultraviolet through soft X-ray continuum is well fitted by the spectrum of an accretion disk, but near-Eddington accretion rates are required to produce the soft X-ray excess. A hot disk or corona could Comptonize soft photons from the cool disk and produce the observed power-law spectrum in the 1-10 keV range. The dynamic time scale in the disk regions that contribute most of the observed ultraviolet and soft X-ray photons are consistent with the respective time scales for intensity variations observed in these two wave bands; the mass derived from fitting the continuum spectrum is consistent with the limit derived from the fastest hard X-ray variability. 37 refs

  2. Notable Images of the 2017 Total Solar Eclipse

    Science.gov (United States)

    Wilson, Teresa; Dahiwale, Aishwarya; Nemiroff, Robert; Bonnell, Jerry

    2018-01-01

    The "Great American Eclipse" – the total solar eclipse visible across the USA on 21 August 2017 – resulted in some notable eclipse images and videos high in educational and scientific value. Some of the images that were selected to appear on the Astronomy Picture of the Day (APOD) website are shown in high resolution accompanied by educational descriptions. The questions of whether this eclipse was the most viewed and the most photographed event of any type in human history will be discussed. People are invited to come by and share their own eclipse images and stories.

  3. Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power

    DEFF Research Database (Denmark)

    Liu, Haichun; Xu, Can T.; Dumlupinar, Gökhan

    2013-01-01

    We have accomplished deep tissue optical imaging of upconverting nanoparticles at 800 nm, using millisecond single pulse excitation with high peak power. This is achieved by carefully choosing the pulse parameters, derived from time-resolved rate-equation analysis, which result in higher intrinsic...... quantum yield that is utilized by upconverting nanoparticles for generating this near infrared upconversion emission. The pulsed excitation approach thus promises previously unreachable imaging depths and shorter data acquisition times compared with continuous wave excitation, while simultaneously keeping...... therapy and remote activation of biomolecules in deep tissues....

  4. The (Almost) Unseen Total Eclipse of 1831

    Science.gov (United States)

    Bartky, Ian R.

    2008-03-01

    The total eclipse of August 1831 began at sunrise in Australia, swept across the western South Pacific Ocean, and ended at sunset in the central South Pacific. As a result of the eclipse's path over mostly uninhabited ocean, the region's sparse European (British) population, and near-useless local predictions of the event at Hobart and Sydney in almanacs sold to the general public, almost no one witnessed its passage. In an attempt to document the eclipse, journals of naive observers - those having no access to a prediction - were examined. Thus far, the sole record is in the Pitcairn Island Register Book. Considering the Pitcairners' extreme isolation and the rather modest partial eclipse that occurred there, the entry is a surprising one; however, it can be explained in terms of events associated with their initial removal to Tahiti in March 1831 followed by their return home in June. Further, an authoritative means to identify any issues associated with eclipse predictions compiled for private-sector almanacs came in 1833 when sweeping changes in the British Nautical Almanac's section on eclipses were instituted.

  5. Celestial shadows eclipses, transits, and occultations

    CERN Document Server

    Westfall, John

    2015-01-01

    Much of what is known about the universe comes from the study of celestial shadows—eclipses, transits, and occultations.  The most dramatic are total eclipses of the Sun, which constitute one of the most dramatic and awe-inspiring events of nature.  Though once a source of consternation or dread, solar eclipses now lead thousands of amateur astronomers and eclipse-chasers to travel to remote points on the globe to savor their beauty and the adrenaline-rush of experiencing totality, and were long the only source of information about the hauntingly beautiful chromosphere and corona of the Sun.   Long before Columbus, the curved shadow of the Earth on the Moon during a lunar eclipse revealed that we inhabit a round world. The rare and wonderful transits of Venus, which occur as it passes between the Earth and the Sun, inspired eighteenth century expeditions to measure the distance from the Earth to the Sun, while the recent transits of 2004 and 2012 were the most widely observed ever--and still produced re...

  6. A New Paradigm for Gamma Ray Bursts: Long Term Accretion Rate Modulation by an External Accretion Disk

    Science.gov (United States)

    Cannizzo, John; Gehrels, Neil

    2009-01-01

    We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.

  7. Two possible approaches to form sub-millisecond pulsars

    OpenAIRE

    Du, Yuanjie; Xu, R. X.; Qiao, G. J.; Han, J. L.

    2008-01-01

    Pulsars have been recognized as normal neutron stars or quark stars. Sub-millisecond pulsars, if detected, would play an essential and important role in distinguishing quark stars from neutron stars. A key question is how sub-millisecond pulsars could form. Both sub-Keplerian (for neutron and quark stars) and super-Keplerian cases (only for quark stars, which are bound additionally by strong interaction) have been discussed in this paper in order to investigate possible ways of forming sub-mi...

  8. Getting started with Eclipse Juno

    CERN Document Server

    Durelli, Vinicius H S; Teixeira, Rafael Medeiros

    2013-01-01

    Written as a concise yet practical guide that details the main features which are usually required by a programmer who makes use of the Eclipse platform, this book covers Eclipse 3.8 in a way that is accessible to the Java novice and expert alike. The reader is guided through a series of hands-on examples that introduce Eclipse and some of its plugins.The primary audience for this book are the Java programmers. This book has been written in a way that it is accessible both to beginners and advanced Java programmers alike. Also, if you are a seasoned Java developer who has been using another ID

  9. Bringing the Great American Solar Eclipse to West Virginia

    Science.gov (United States)

    Keesee, A. M.; Williamson, K.; Robertson-Honecker, J.

    2017-12-01

    West Virginia experienced up to 90% coverage during the Great American Solar Eclipse on August 21st. To reach the greatest number of West Virginians, we targeted educators and the 4-H program to provide those community leaders with the tools to help students learn about and safely view the eclipse. We developed a website that consolodated relevant eclipse activities, fact sheets, and outreach videos to train educators and others in the public about the science of the eclipse and how to view a partial eclipse safely. The 4-H Summer Experiement used at all 4-H summer camps and events was designed to focus on the eclipse. We distributed over 20,000 custom designed eclipse glasses. These were distributed to teachers through an online request system and to 4-H members involved in summer activities. We hosted a pre-eclipse event on the campus of West Virginia University for the public to learn about the science of the eclipse, relevant research being conducted at the university, and provide tips for safe viewing. Student volunteers were available on campus during the day of the eclipse to hand out glasses and answer questions. We will present the results of our outreach and events as well as lessons learned for the 2024 eclipse. Support for this project was provided by the WVU Department of Physics and Astronomy, WVU Extension, the WV Space Grant Consortium, a WVU internal grant, the Green Bank Observatory, and individual supporters of a crowdfunding campaign.

  10. Radio Detection of the Fermi-LAT Blind Search Millisecond Pulsar J1311-3430

    Science.gov (United States)

    Ray, P. S.; Ransom, S. M.; Cheung, C. C.; Giroletti, M.; Cognard, I.; Camilo, F.; Bhattacharyya, B.; Roy, J.; Romani, R. W.; Ferrara, E. C.; hide

    2013-01-01

    We report the detection of radio emission from PSR J1311.3430, the first millisecond pulsar (MSP) discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for less than 10% of approximately 4.5 hr of observations using the Green Bank Telescope (GBT). Observations at 5 GHz with the GBT and at several lower frequencies with Parkes, Nan cay, and the Giant Metrewave Radio Telescope resulted in non-detections. We also report the faint detection of a steep spectrum continuum radio source (0.1 mJy at 5 GHz) in interferometric imaging observations with the Jansky Very Large Array. These detections demonstrate that PSR J1311.3430 is not radio quiet and provide additional evidence that radio-quiet MSPs are rare. The radio dispersion measure of 37.8 pc cm(exp -3) provides a distance estimate of 1.4 kpc for the system, yielding a gamma-ray efficiency of 30%, typical of LAT-detected MSPs. We see apparent excess delay in the radio pulses as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.

  11. Living matter: the "lunar eclipse" phenomena.

    Science.gov (United States)

    Korpan, Nikolai N

    2010-01-01

    The present investigations describe a unique phenomenon, namely the phenomenon of the "lunar eclipse", which has been observed and discovered by the author in living substance during the freeze-thawing processes in vivo using temperatures of various intensities and its cryosurgical response in animal experiment. Similar phenomena author has observed in nature, namely the total lunar eclipse and total solar eclipse. In this experimental study 76 animals (mongrel dogs) were investigated. A disc cryogenic probe was placed on the pancreas after the laparotomy. For cryosurgical exposure a temperature range of -40 degrees C, -80 degrees C, -120 degrees C and -180 degrees C was selected in contact with pancreas parenchyma. The freeze-thaw cycle was monitored by intraoperative ultrasound before, during and after cryosurgery. Each cryolesion was observed for one hour after thawing intraoperatively. Immediately after freezing, during the thawing process, the snow-white pancreas parenchyma, frozen hard to an ice block and resembling a full moon with a sharp demarcation line, gradually assumed a ruby-red shade and a hemispherical shape as it grew in size depend on reconstruction vascular circulation from the periphery to the center. This snow-white cryogenic lesion dissolved in the same manner in all animal tissues. The "lunar eclipse" phenomenon contributes to a fundamental understanding of the mechanisms of biological tissue damage during low temperature exposure in cryoscience and cryomedicine. Properties of the pancreas parenchyma response during the phenomenon of the "lunar eclipse" provide important insights into the mechanisms of damage and the formation of cryogenic lesion immediately after thawing in cryosurgery. Vascular changes and circulatory stagnation are commonly considered to be the main mechanism of biological tissue injury during low temperature exposure. The phenomenon of the "lunar eclipse" suggests that cryosurgery is the first surgical technique to use

  12. Strategies for the public communication of eclipses

    Science.gov (United States)

    Bretones, P. S.

    2015-03-01

    Eclipses are among the celestial events that draw the attention of the public. This paper discusses strategies for using eclipses as public communication opportunities in the media. It discusses the impact of articles written by the author and analysis of published material for 25 observed eclipses over the last 30 years by mass media in the state of São Paulo, Brazil. On each occasion, a standard article was posted on the Internet and sent to newspapers, radio and TV with information, such as: date, time and local circumstances; type of the eclipse; area of visibility; explanation; diagram of the phenomenon, and the Moon's path through Earth's shadow; eclipses in history; techniques of observation; getting photographs; place and event for public observation. Over the years, direct contact was maintained with the media and jounralists by the press offices of the institutions.

  13. Educating the Public about the 2017 Total Solar Eclipse

    Science.gov (United States)

    Pasachoff, Jay M.

    2017-01-01

    On behalf of the International Astronomical Union's Working Group on Solar Eclipses, I have long worked to bring knowledge about eclipses and how to observe the safely to the people of the various countries from which partial, annular, or total solar eclipses are visible. In 2017, we have first a chance to educate the people of South America on the occasion of the February 26 annular eclipse through southern Chile and Argentina that is partial throughout almost the entire continent (and an eclipse workshop will be held February 22-24 in Esquel, Argentina: http://sion.frm.utn.edu.ar/WDEAII) and then a chance to educate the 300 million people of the United States and others in adjacent countries as far south as northern South America about the glories of totality and how to observe partial phases. Our website, a compendium of links to information about maps, safe observing, science, and more is at http://eclipses.info. We link to important mapping sites at EclipseWise.com, GreatAmericanEclipse.com, and http://xjubier.free.fr/en/site_pages/solar_eclipses/xSE_GoogleMap3.php?Ecl=+20170821&Acc=2&Umb=1&Lmt=1&Mag=1&Max=1, and information about cloudiness statistics at http://eclipsophile.com, as well as simulation sites at https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4314 and http://eyes.jpl.nasa.gov. The American Astronomical Society's task force on the 2017 eclipse has a website at http://eclipse.aas.org. We are working to disseminate accurate information about how and why to observe the total solar eclipse, trying among other things to head off common misinformation about the hazards of looking at the sun at eclipses or otherwise. About 12 million Americans live within the 70-mile-wide band of totality, and we encourage others to travel into it, trying to make clear the difference between even a 99% partial eclipse and a total eclipse, with its glorious Baily's beads, diamond rings, and totality that on this occasion lasts between 2 minutes and 2 minutes 40 seconds

  14. Binary and Millisecond Pulsars at the New Millennium

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2001-01-01

    Full Text Available We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.

  15. Interacting Winds in Eclipsing Symbiotic Systems

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Interacting Winds in Eclipsing Symbiotic Systems – The Case Study of EG Andromedae ... to obtain the physical parameters of a quiescent eclipsing symbiotic system. ... Articles are also visible in Web of Science immediately.

  16. Regimes of mini black hole abandoned to accretion

    Science.gov (United States)

    Paik, Biplab

    2018-01-01

    Being inspired by the Eddington’s idea, along with other auxiliary arguments, it is unveiled that there exist regimes of a black hole that would prohibit accretion of ordinary energy. In explicit words, there exists a lower bound to black hole mass below which matter accretion process does not run for black holes. Not merely the baryonic matter, but, in regimes, also the massless photons could get prohibited from rushing into a black hole. However, unlike the baryon accretion abandoned black hole regime, the mass-regime of a black hole prohibiting accretion of radiation could vary along with its ambient temperature. For example, we discuss that earlier to 10‑8 s after the big-bang, as the cosmological temperature of the Universe grew above ˜ 1014 K, the mass range of black hole designating the radiation accretion abandoned regime, had to be in varying state being connected with the instantaneous age of the evolving Universe by an “one half” power law. It happens to be a fact that a black hole holding regimes prohibiting accretion of energy is gigantic by its size in comparison to the Planck length-scale. Hence the emergence of these regimes demands mini black holes for not being viable as profound suckers of energy. Consideration of accretion abandoned regimes could be crucial for constraining or judging the evolution of primordial black holes over the age of the Universe.

  17. The Mystery and Beauty of Total Solar Eclipses

    Indian Academy of Sciences (India)

    ARTICLE. The Mystery and Beauty of Total Solar Eclipses. T Chandrasekhar is with the Astronomy and ..... Specialized instruments called coronagraphs, lo- cated at mountaintop ... Scientific studies of the solar eclipses began with the eclipse of. 1842 which ... a method simultaneously evolved by English spectroscopist.

  18. THE DISTURBANCE OF A MILLISECOND PULSAR MAGNETOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, R. M.; Kerr, M.; Dai, S.; Hobbs, G.; Manchester, R. N.; Reardon, D. J.; Toomey, L. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Box 76, Epping, NSW 1710 (Australia); Lentati, L. T. [Astrophysics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Bailes, M.; Osłowski, S.; Rosado, P. A.; Van Straten, W. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Bhat, N. D. R. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Coles, W. A. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Dempsey, J. [CSIRO Information Management and Technology, Box 225, Dickson, ACT 2602 (Australia); Keith, M. J. [Jodrell Bank Centre for Astrophysics, University of Manchester, M13 9PL (United Kingdom); Lasky, P. D.; Levin, Y. [Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800 (Australia); Ravi, V. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Spiewak, R., E-mail: ryan.shannon@csiro.au [Department of Physics, University of Wisconsin-Milwaukee, Box 413, Milwaukee, WI 53201 (United States); and others

    2016-09-01

    Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here, we report on a broadband variation in the pulse profile of the millisecond pulsar J1643−1224. A new component of emission suddenly appears in the pulse profile, decays over four months, and results in a permanently modified pulse shape. Profile variations such as these may be the origin of timing noise observed in other millisecond pulsars. The sensitivity of pulsar-timing observations to gravitational radiation can be increased by accounting for this variability.

  19. THE DISTURBANCE OF A MILLISECOND PULSAR MAGNETOSPHERE

    International Nuclear Information System (INIS)

    Shannon, R. M.; Kerr, M.; Dai, S.; Hobbs, G.; Manchester, R. N.; Reardon, D. J.; Toomey, L.; Lentati, L. T.; Bailes, M.; Osłowski, S.; Rosado, P. A.; Van Straten, W.; Bhat, N. D. R.; Coles, W. A.; Dempsey, J.; Keith, M. J.; Lasky, P. D.; Levin, Y.; Ravi, V.; Spiewak, R.

    2016-01-01

    Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here, we report on a broadband variation in the pulse profile of the millisecond pulsar J1643−1224. A new component of emission suddenly appears in the pulse profile, decays over four months, and results in a permanently modified pulse shape. Profile variations such as these may be the origin of timing noise observed in other millisecond pulsars. The sensitivity of pulsar-timing observations to gravitational radiation can be increased by accounting for this variability.

  20. Spitzer secondary eclipses of Qatar-1b

    Science.gov (United States)

    Garhart, Emily; Deming, Drake; Mandell, Avi; Knutson, Heather; Fortney, Jonathan J.

    2018-02-01

    Aims: Previous secondary eclipse observations of the hot Jupiter Qatar-1b in the Ks band suggest that it may have an unusually high day side temperature, indicative of minimal heat redistribution. There have also been indications that the orbit may be slightly eccentric, possibly forced by another planet in the system. We investigate the day side temperature and orbital eccentricity using secondary eclipse observations with Spitzer. Methods: We observed the secondary eclipse with Spitzer/IRAC in subarray mode, in both 3.6 and 4.5 μm wavelengths. We used pixel-level decorrelation to correct for Spitzer's intra-pixel sensitivity variations and thereby obtain accurate eclipse depths and central phases. Results: Our 3.6 μm eclipse depth is 0.149 ± 0.051% and the 4.5 μm depth is 0.273 ± 0.049%. Fitting a blackbody planet to our data and two recent Ks band eclipse depths indicates a brightness temperature of 1506 ± 71 K. Comparison to model atmospheres for the planet indicates that its degree of longitudinal heat redistribution is intermediate between fully uniform and day-side only. The day side temperature of the planet is unlikely to be as high (1885 K) as indicated by the ground-based eclipses in the Ks band, unless the planet's emergent spectrum deviates strongly from model atmosphere predictions. The average central phase for our Spitzer eclipses is 0.4984 ± 0.0017, yielding e cos ω = -0.0028 ± 0.0027. Our results are consistent with a circular orbit, and we constrain e cos ω much more strongly than has been possible with previous observations. Tables of the lightcurve data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A55

  1. Secondary eclipses in the CoRoT light curves

    Directory of Open Access Journals (Sweden)

    Belmonte Juan Antonio

    2013-04-01

    Full Text Available We identify and characterize secondary eclipses in the original light curves of published CoRoT planets using uniform detection and evaluation criteria. Our analysis is based on a Bayesian statistics: the eclipse search is carried out using Bayesian model selection, and the characterization of the plausible eclipse candidates using Bayesian parameter estimation. We discover statistically significant eclipse events for two planets, CoRoT-6b and CoRoT-11b, and for one brown dwarf, CoRoT-15b. We also find marginally significant eclipse events passing our plausibility criteria for CoRoT-3b, 13b, 18b, and 21b, and confirm the previously published CoRoT-1b and CoRoT-2b eclipses.

  2. Digitizing Villanova University's Eclipsing Binary Card Catalogue

    Science.gov (United States)

    Guzman, Giannina; Dalton, Briana; Conroy, Kyle; Prsa, Andrej

    2018-01-01

    Villanova University’s Department of Astrophysics and Planetary Science has years of hand-written archival data on Eclipsing Binaries at its disposal. This card catalog began at Princeton in the 1930’s with notable contributions from scientists such as Henry Norris Russel. During World War II, the archive was moved to the University of Pennsylvania, which was one of the world centers for Eclipsing Binary research, consequently, the contributions to the catalog during this time were immense. It was then moved to University of Florida at Gainesville before being accepted by Villanova in the 1990’s. The catalog has been kept in storage since then. The objective of this project is to digitize this archive and create a fully functional online catalog that contains the information available on the cards, along with the scan of the actual cards. Our group has built a database using a python-powered infrastructure to contain the collected data. The team also built a prototype web-based searchable interface as a front-end to the catalog. Following the data-entry process, information like the Right Ascension and Declination will be run against SIMBAD and any differences between values will be noted as part of the catalog. Information published online from the card catalog and even discrepancies in information for a star, could be a catalyst for new studies on these Eclipsing Binaries. Once completed, the database-driven interface will be made available to astronomers worldwide. The group will also acquire, from the database, a list of referenced articles that have yet to be found online in order to further pursue their digitization. This list will be comprised of references in the cards that were neither found on ADS nor online during the data-entry process. Pursuing the integration of these references to online queries such as ADS will be an ongoing process that will contribute and further facilitate studies on Eclipsing Binaries.

  3. Accreting CO material onto ONe white dwarfs towards accretion-induced collapse

    Science.gov (United States)

    Wu, Cheng-Yuan; Wang, Bo

    2018-03-01

    The final outcomes of accreting ONe white dwarfs (ONe WDs) have been studied for several decades, but there are still some issues that are not resolved. Recently, some studies suggested that the deflagration of oxygen would occur for accreting ONe WDs with Chandrasekhar masses. In this paper, we aim to investigate whether ONe WDs can experience accretion-induced collapse (AIC) or explosions when their masses approach the Chandrasekhar limit. Employing the stellar evolution code Modules for Experiments in Stellar Astrophysics (MESA), we simulate the long-term evolution of ONe WDs with accreting CO material. The ONe WDs undergo weak multicycle carbon flashes during the mass-accretion process, leading to mass increase of the WDs. We found that different initial WD masses and mass-accretion rates influence the evolution of central density and temperature. However, the central temperature cannot reach the explosive oxygen ignition temperature due to neutrino cooling. This work implies that the final outcome of accreting ONe WDs is electron-capture induced collapse rather than thermonuclear explosion.

  4. The eclipse period of Escherichia coli

    DEFF Research Database (Denmark)

    von Freiesleben, Ulrik; Krekling, Martin A.; Hansen, Flemming G.

    2000-01-01

    corresponds to the period of origin hemimethylation. The SeqA protein was absolutely required for the eclipse, and DnaA titration studies suggested that the SeqA protein prevented the binding of multiple DnaA molecules on oriC (initial complex formation). No correlation between the amount of SeqA and eclipse...... length was revealed, but increased SeqA levels affected chromosome partitioning and/or cell division. This was corroborated further by an aberrant nucleoid distribution in SeqA-deficient cells. We suggest that the SeqA protein's role in maintaining the eclipse is tied to a function in chromosome...

  5. Radiation-driven Turbulent Accretion onto Massive Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Park, KwangHo; Wise, John H.; Bogdanović, Tamara, E-mail: kwangho.park@physics.gatech.edu [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2017-09-20

    Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo , equipped with adaptive ray-tracing module Moray , to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findings from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ∼2–3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.

  6. Observations of Accreting Pulsars with the FERMI-GBM

    Science.gov (United States)

    Wilson-Hodge, Colleen

    2012-01-01

    The Gamma-ray Burst Monitor (GBM) on-board Fermi comprises 12 NaI detectors spanning the 8-1000 keV band and 2 BGO detectors spanning the 100 keV to 40 MeV band. These detectors view the entire unocculted sky, providing long (approximately 40 ks/day) observations of accreting pulsars daily, which allow long-term monitoring of spin-frequencies and pulsed uxes via epoch-folded searches plus daily blind searches for new pulsars. Phase averaged uxes can be measured using the Earth occultation technique. In this talk I will present highlights of GBM accretion-powered pulsar monitoring such as the discovery of a torque reversal in 4U1626-67, a high-energy QPO in A0535+26, and evidence for a stable accretion disk in OAO 1657-415.

  7. Modeling the response of a standard accretion disc to stochastic viscous fluctuations

    Science.gov (United States)

    Ahmad, Naveel; Misra, Ranjeev; Iqbal, Naseer; Maqbool, Bari; Hamid, Mubashir

    2018-01-01

    The observed variability of X-ray binaries over a wide range of time-scales can be understood in the framework of a stochastic propagation model, where viscous fluctuations at different radii induce accretion rate variability that propagate inwards to the X-ray producing region. The scenario successfully explains the power spectra, the linear rms-flux relation as well as the time-lag between different energy photons. The predictions of this model have been obtained using approximate analytical solutions or empirically motivated models which take into account the effect of these propagating variability on the radiative process of complex accretion flows. Here, we study the variation of the accretion rate due to such viscous fluctuations using a hydro-dynamical code for the standard geometrically thin, gas pressure dominated α-disc with a zero torque boundary condition. Our results confirm earlier findings that the time-lag between a perturbation and the resultant inner accretion rate variation depends on the frequency (or time-period) of the perturbation. Here we have quantified that the time-lag tlag ∝f-0.54 , for time-periods less than the viscous time-scale of the perturbation radius and is nearly constant otherwise. This, coupled with radiative process would produce the observed frequency dependent time-lag between different energy bands. We also confirm that if there are random Gaussian fluctuations of the α-parameter at different radii, the resultant inner accretion rate has a power spectrum which is a power-law.

  8. The Solar Eclipse Predictions of Chiljeongsam-Oepyeon in Early Choseon

    Science.gov (United States)

    Ahn, Young Sook; Lee, Yong Sam

    2004-12-01

    The history books of East Asia about astronomical phenomena have the more records of the solar eclipse frequently than any other ones. It is because traditionally, the solar eclipse meaned the fate of dynasty and the king's rule. The Sun, the biggest thing in the heaven symbolized the king, and the solar eclipse foresaw that the king had the problem in private including the body, and the country might suffer from difficulties in a great scale. So the king and all of the ministers used to gather to hold a ceremony named Gusikrye which solar eclipse may pass safely. Consequently, kings always had concernments on collecting informations of solar eclipse. Inspite of importance of solar eclipse predictions, but at the beginning of the Choseon, the predictions of the solar eclipse didn't fit. King Sejong compiled the Chiljeongsan-naepion and the Chiljeongsan-oepyeon to calculate the celestial phenomena including the solar eclipse. By the publications of these two books, the calendar making system of Choseon was firmly established. The Chiljeongsan-oepyeon adopted Huihui calendar of Arabia. The Solar eclipse predictions of Chiljeongsan-oepyeon were relative correct compared to modern method in early Choseon dynasty.

  9. The Solar Eclipse Predictions of Chiljeongsam-Oepyeon in Early Choseon

    Directory of Open Access Journals (Sweden)

    Young Sook Ahn

    2004-12-01

    Full Text Available The history books of East Asia about astronomical phenomena have the more records of the solar eclipse frequently than any other ones. It is because traditionally, the solar eclipse meaned the fate of dynasty and the king's rule. The Sun, the biggest thing in the heaven symbolized the king, and the solar eclipse foresaw that the king had the problem in private including the body, and the country might suffer from difficulties in a great scale. So the king and all of the ministers used to gather to hold a ceremony named Gusikrye which solar eclipse may pass safely. Consequently, kings always had concernments on collecting informations of solar eclipse. Inspite of importance of solar eclipse predictions, but at the beginning of the Choseon, the predictions of the solar eclipse didn't fit. King Sejong compiled the Chiljeongsan-naepion and the Chiljeongsan-oepyeon to calculate the celestial phenomena including the solar eclipse. By the publications of these two books, the calendar making system of Choseon was firmly established. The Chiljeongsan-oepyeon adopted Huihui calendar of Arabia. The Solar eclipse predictions of Chiljeongsan-oepyeon were relative correct compared to modern method in early Choseon dynasty.

  10. Eclipse journeys to the dark side of the Moon

    CERN Document Server

    Close, Frank

    2017-01-01

    On August 21st, over one hundred million people will gather across the USA to witness the most-watched total solar eclipse in history. Eclipse: Journeys to the Dark Side of the Moon, by popular science author Frank Close, describes the spellbinding allure of this beautiful natural phenomenon. The book explains why eclipses happen, reveals their role in history, literature and myth, and introduces us to eclipse chasers, who travel with ecstatic fervor to some of the most inaccessible places on the globe. The book also includes the author's quest to solve a 3000-year-old mystery: how did the moon move backward during a total solar eclipse, as claimed in the Book of Joshua? Eclipse is also the story of how a teacher inspired the author, aged eight, to pursue a career in science and a love affair with eclipses that has taken him to a war zone in the Western Sahara, the South Pacific, and the African bush. The tale comes full circle with another eight-year old boy - the author's grandson - at the 2017 great Americ...

  11. Total Addiction The Life of an Eclipse Chaser

    CERN Document Server

    Russo, Kate

    2012-01-01

    Seeing a total solar eclipse is often described as a once-in-a-lifetime experience. However, for many who have experienced totality, once-in-a-lifetime is simply not enough. They want more, and are willing to go to great lengths often at great expense to repeat the experience. What is it like to experience totality? What is it about the experience that motivates these eclipse chasers? Is there an eclipse chaser personality? Can eclipse chasing actually be described as an addiction? This book describes the people who dedicate their lives to chasing their dream.

  12. Discovery of the Optical Counterparts to Four Energetic Fermi Millisecond Pulsars

    NARCIS (Netherlands)

    Breton, R.P.; van Kerkwijk, M.H.; Roberts, M.S.E.; Hessels, J.W.T.; Camilo, F.; McLaughlin, M.A.; Ransom, S.M.; Ray, P.S.; Stairs, I.H.

    2013-01-01

    In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified γ-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show

  13. An Accretion Model for Anomalous X-Ray Pulsars

    Science.gov (United States)

    Chatterjee, Pinaki; Hernquist, Lars; Narayan, Ramesh

    2000-05-01

    We present a model for the anomalous X-ray pulsars (AXPs) in which the emission is powered by accretion from a fossil disk, established from matter falling back onto the neutron star following its birth. The time-dependent accretion drives the neutron star toward a ``tracking'' solution in which the rotation period of the star increases slowly, in tandem with the declining accretion rate. For appropriate choices of disk mass, neutron star magnetic field strength, and initial spin period, we demonstrate that a rapidly rotating neutron star can be spun down to periods characteristic of AXPs on timescales comparable to the estimated ages of these sources. In other cases, accretion onto the neutron star switches off after a short time and the star becomes an ordinary radio pulsar. Thus, in our picture, radio pulsars and AXPs are drawn from the same underlying population, in contrast to the situation in models involving neutron stars with ultrastrong magnetic fields, which require a new population of stars with very different properties.

  14. Corot 310266512: A Light Curve With Primary, Secondary And Tertiary Eclipses

    Directory of Open Access Journals (Sweden)

    Fernández Fernández Javier

    2015-01-01

    Full Text Available We present the photometric study of an interesting target in the CoRoT exoplanet database: CoRoT 310266512. Its light curve shows primary, secondary and tertiary eclipses that suggests the presence of at least three celestial bodies. The primary and secondary eclipses have the same orbital period, 7.42 days, and the tertiary eclipse has an orbital period of 3.27 days. Two of the tertiary eclipses fall within a primary eclipse and a secondary eclipse. The properties of the light curve indicate the presence of two physically separated systems. The primary and secondary eclipses corresponds to a binary system (System I. The tertiary eclipses correspond to a star-planet system or a star-dwarf system (System II. Some parameters of these two systems are obtained from JKTEBOP [1] program.

  15. Implementation of Bessel's method for solar eclipses prediction in the WRF-ARW model

    Directory of Open Access Journals (Sweden)

    A. Montornès

    2016-05-01

    Full Text Available Solar eclipses are predictable astronomical events that abruptly reduce the incoming solar radiation into the Earth's atmosphere, which frequently results in non-negligible changes in meteorological fields. The meteorological impacts of these events have been analyzed in many studies since the late 1960s. The recent growth in the solar energy industry has greatly increased the interest in providing more detail in the modeling of solar radiation variations in numerical weather prediction (NWP models for the use in solar resource assessment and forecasting applications. The significant impact of the recent partial and total solar eclipses that occurred in the USA (23 October 2014 and Europe (20 March 2015 on solar power generation have provided additional motivation and interest for including these astronomical events in the current solar parameterizations.Although some studies added solar eclipse episodes within NWP codes in the 1990s and 2000s, they used eclipse parameterizations designed for a particular case study. In contrast to these earlier implementations, this paper documents a new package for the Weather Research and Forecasting–Advanced Research WRF (WRF-ARW model that can simulate any partial, total or hybrid solar eclipse for the period 1950 to 2050 and is also extensible to a longer period. The algorithm analytically computes the trajectory of the Moon's shadow and the degree of obscuration of the solar disk at each grid point of the domain based on Bessel's method and the Five Millennium Catalog of Solar Eclipses provided by NASA, with a negligible computational time. Then, the incoming radiation is modified accordingly at each grid point of the domain.This contribution is divided in three parts. First, the implementation of Bessel's method is validated for solar eclipses in the period 1950–2050, by comparing the shadow trajectory with values provided by NASA. Latitude and longitude are determined with a bias lower than 5

  16. Cross-sections for some millisecond beta activities. [14. 7 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Garg, K C; Khurana, C S [Punjabi Univ., Patiala (India). Dept. of Physics

    1979-06-01

    An on-line irradiation system involving pulsed beam technique has been developed to handle the millisecond isomers produced in nuclear reactions with 14.7 MeV neutrons. The system originally used to measure the half-lives of a number of millisecond gamma-active isomers has been extended to handle the millisecond pure beta-activities produced in nuclear reactions. An end-window type GM counter has been employed to measure the produced beta activities of /sup 6/He and /sup 9/Li in /sup 7/ /sup 6/Li((n,d))/sup 6/He, /sup 9/Be(n,..cap alpha..)/sup 6/He and /sup 9/Be(n,p)/sup 9/Li reactions.

  17. Spectral irradiance curve calculations for any type of solar eclipse

    International Nuclear Information System (INIS)

    Deepak, A.; Merrill, J.E.

    1974-01-01

    A simple procedure is described for calculating the eclipse function (EF), alpha, and hence the spectral irradiance curve (SIC), (1-alpha), for any type of solar eclipse: namely, the occultation (partial/total) eclipse and the transit (partial/annular) eclipse. The SIC (or the EF) gives the variation of the amount (or the loss) of solar radiation of a given wavelength reaching a distant observer for various positions of the moon across the sun. The scheme is based on the theory of light curves of eclipsing binaries, the results of which are tabulated in Merrill's Tables, and is valid for all wavelengths for which the solar limb-darkening obeys the cosine law: J = /sub c/(1 - X + X cost gamma). As an example of computing the SIC for an occultation eclipse which may be total, the calculations for the March 7, 1970, eclipse are described in detail. (U.S.)

  18. Further Evidence of a Brown Dwarf Orbiting the Post-Common Envelope Eclipsing Binary V470 Cam (HS 0705+6700

    Directory of Open Access Journals (Sweden)

    Bogensberger David

    2017-12-01

    Full Text Available Several post-common envelope binaries have slightly increasing, decreasing or oscillating orbital periods. One of several possible explanations is light travel-time changes, caused by the binary centre-of-mass being perturbed by the gravitational pull of a third body. Further studies are necessary because it is not clear how a third body could have survived subdwarf progenitor mass-loss at the tip of the Red Giant Branch, or formed subsequently. Thirty-nine primary eclipse times for V470 Cam were secured with the Philip Wetton Telescope during the period 2016 November 25th to 2017 January 27th. Available eclipse timings suggest a brown dwarf tertiary having a mass of at least 0.0236(40 M⊙, an elliptical orbit with an eccentricity of 0.376(98 and an orbital period of 11.77(67 years about the binary centreof- mass. The mass and orbit suggest a hybrid formation, in which some ejected material from the subdwarf progenitor was accreted on to a precursor tertiary component, although additional observations would be needed to confirm this interpretation and investigate other possible origins for the binary orbital period change.

  19. Accretion-induced variability links young stellar objects, white dwarfs, and black holes.

    Science.gov (United States)

    Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C

    2015-10-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.

  20. Planetesimals around nearby millisecond pulsars

    International Nuclear Information System (INIS)

    Chakrabarti, S.K.

    1992-05-01

    We predict that it is possible to observe line emissions of OH, CN and C 2 from the planetesimals around some of the nearby millisecond pulsars, such as PSR1257+12. Observation of these lines will provide an independent test of either an existing planetary system or one which is in the process of formation. (author). 11 refs, 1 tab

  1. Statistical analysis of geomagnetic field variations during solar eclipses

    Science.gov (United States)

    Kim, Jung-Hee; Chang, Heon-Young

    2018-04-01

    We investigate the geomagnetic field variations recorded by INTERMAGNET geomagnetic observatories, which are observed while the Moon's umbra or penumbra passed over them during a solar eclipse event. Though it is generally considered that the geomagnetic field can be modulated during solar eclipses, the effect of the solar eclipse on the observed geomagnetic field has proved subtle to be detected. Instead of exploring the geomagnetic field as a case study, we analyze 207 geomagnetic manifestations acquired by 100 geomagnetic observatories during 39 solar eclipses occurring from 1991 to 2016. As a result of examining a pattern of the geomagnetic field variation on average, we confirm that the effect can be seen over an interval of 180 min centered at the time of maximum eclipse on a site of a geomagnetic observatory. That is, demonstrate an increase in the Y component of the geomagnetic field and decreases in the X component and the total strength of the geomagnetic field. We also find that the effect can be overwhelmed, depending more sensitively on the level of daily geomagnetic events than on the level of solar activity and/or the phase of solar cycle. We have demonstrated it by dividing the whole data set into subsets based on parameters of the geomagnetic field, solar activity, and solar eclipses. It is suggested, therefore, that an evidence of the solar eclipse effect can be revealed even at the solar maximum, as long as the day of the solar eclipse is magnetically quiet.

  2. Broad-Band Variability in Accreting Compact Objects

    Directory of Open Access Journals (Sweden)

    S. Scaringi

    2015-02-01

    Full Text Available Cataclysmic variable stars are in many ways similar to X-ray binaries. Both types of systems possess an accretion disk, which in most cases can reach the surface (or event horizon of the central compact object. The main difference is that the embedded gravitational potential well in X-ray binaries is much deeper than those found in cataclysmic variables. As a result, X-ray binaries emit most of their radiation at X-ray wavelengths, as opposed to cataclysmic variables which emit mostly at optical/ultraviolet wavelengths. Both types of systems display aperiodic broad-band variability which can be associated to the accretion disk. Here, the properties of the observed X-ray variability in XRBs are compared to those observed at optical wavelengths in CVs. In most cases the variability properties of both types of systems are qualitatively similar once the relevant timescales associated with the inner accretion disk regions have been taken into account. The similarities include the observed power spectral density shapes, the rms-flux relation as well as Fourier-dependant time lags. Here a brief overview on these similarities is given, placing them in the context of the fluctuating accretion disk model which seeks to reproduce the observed variability.

  3. Brightening of an accretion disk due to viscous dissipation of gravitational waves during the coalescence of supermassive black holes.

    Science.gov (United States)

    Kocsis, Bence; Loeb, Abraham

    2008-07-25

    Mergers of supermassive black hole binaries release peak power of up to approximately 10(57) erg s(-1) in gravitational waves (GWs). As the GWs propagate through ambient gas, they induce shear and a small fraction of their power is dissipated through viscosity. The dissipated heat appears as electromagnetic (EM) radiation, providing a prompt EM counterpart to the GW signal. For thin accretion disks, the GW heating rate exceeds the accretion power at distances farther than approximately 10(3) Schwarzschild radii, independently of the accretion rate and viscosity coefficient.

  4. Lunar eclipses: Probing the atmosphere of an inhabited planet

    Science.gov (United States)

    García Muñoz, A.

    2013-04-01

    The Moon's brightness during a lunar eclipse is indicative of the composition, cloudiness and aerosol loading of the Earth's atmosphere. The idea of using lunar eclipse observations to characterize the Earth's atmosphere is not new, but the interest raised by the prospects of discovering Earth-like exoplanets transiting their host stars has brought renewed attention to the method. We review some recent efforts made in the prediction and interpretation of lunar eclipses. We also comment on the contribution of the lunar eclipse theory to the refractive theory of planetary transits.

  5. Lunar eclipses: Probing the atmosphere of an inhabited planet

    Directory of Open Access Journals (Sweden)

    Muñoz A. García

    2013-04-01

    Full Text Available The Moon's brightness during a lunar eclipse is indicative of the composition, cloudiness and aerosol loading of the Earth's atmosphere. The idea of using lunar eclipse observations to characterize the Earth's atmosphere is not new, but the interest raised by the prospects of discovering Earth-like exoplanets transiting their host stars has brought renewed attention to the method. We review some recent efforts made in the prediction and interpretation of lunar eclipses. We also comment on the contribution of the lunar eclipse theory to the refractive theory of planetary transits.

  6. Eclipses and dust formation by WC9 type Wolf-Rayet stars

    Science.gov (United States)

    Williams, P. M.

    2014-12-01

    Visual photometry of 16 WC8-9 dust-making Wolf-Rayet (WR) stars during 2001-2009 was extracted from the All-Sky Automated Survey All Star Catalogue (ASAS-3) to search for eclipses attributable to extinction by dust formed in clumps in our line of sight. Data for a comparable number of dust-free WC6-9 stars were also examined to help characterize the data set. Frequent eclipses were observed from WR 104, and several from WR 106, extending the 1994-2001 studies by Kato et al., but not supporting their phasing the variations in WR 104 with its `pinwheel' rotation period. Only four other stars showed eclipses, WR 50 (one of the dust-free stars), WR 69, WR 95 and WR 117, and there may have been an eclipse by WR 121, which had shown two eclipses in the past. No dust eclipses were shown by the `historic' eclipsers WR 103 and WR 113. The atmospheric eclipses of the latter were observed but the suggestion by David-Uraz et al. that dust may be partly responsible for these is not supported. Despite its frequent eclipses, there is no evidence in the infrared images of WR 104 for dust made in its eclipses, demonstrating that any dust formed in this process is not a significant contributor to its circumstellar dust cloud and suggesting that the same applies to the other stars showing fewer eclipses.

  7. A Coral Sea Rehearsal for the Eclipse Megamovie

    Science.gov (United States)

    Hudson, H. S.; Davey, A. R.; Ireland, J.; Jones, L.; Mcintosh, S. W.; Paglierani, R.; Pasachoff, J. M.; Peticolas, L. M.; Russell, R. M.; Suarez Sola, F. I.; Sutherland, L.; Thompson, M. J.

    2012-12-01

    The "Eclipse on the Coral Sea" - 13/14 November 2012 (GMT/Australia) - will have happened already. Our intention is to have used this opportunity as a trial run for the eclipse in 2017, which features 1.5 hours of totality across the whole width of the continental US. Conceived first and foremost as an education and public outreach activity, the plan is to engage the public in solar science and technology by providing a way for them to include images they have taken of the solar eclipse, into a movie representation of coronal evolution in time. This project will assimilate as much eclipse photography as possible from the public. The resulting movie(s) will cover all ranges of expertise, and at the basic smartphone or hand-held digital camera level, we expect to have obtained a huge number of images in the case of good weather conditions. The capability of modern digital technology to handle such a data flow is new. The basic purpose of this and the 2017 Megamovie observations is to explore this capability and its ability to engage people from many different communities in the solar science, astronomy, mathematics, and technology. The movie in 2017, especially, may also have important science impact because of the uniqueness of the corona as seen under eclipse conditions. In this presentation we will describe our smartphone application development (see the "Transit of Venus" app for a role model here). We will also summarize data acquisition via both the app and more traditional web interfaces. Although for the Coral Sea eclipse event we don't expect to have a movie product by the time of the AGU, for the 2017 event we do intend to assemble the heterogenous data into beautiful movies within a short space of time after the eclipse. These movies may have relatively low resolution but would extend to the base of the corona. We encourage participation in the 2012 observations, noting that no total eclipse, prior to 2017, will occur in a region with good infrastructure

  8. Preparing a Nation for the Eclipse of a Generation -

    Science.gov (United States)

    Speck, Angela; Habbal, Shadia; Tresch Fienberg, Richard; Kentrianakis, Michael; Fraknoi, Andrew; Nordgren, Tyler; Penn, Matthew; Pasachoff, Jay M.; Bakich, Michael; Winter, Henry; Gay, Pamela; Motta, Mario

    2018-01-01

    On August 21st 2017, there was a total solar eclipse visible from a vast swath of the US.In preparation for that event, the American Astronomical society created a taskforce charged with planning for the eclipse for the entire nation. The preparations included interfacing with the public, the media, non-profit organizations and governmental organizations. Preliminary data suggests that nearly 90% of American adults watched the eclipse either directly or via live streams. Moreover, there were no major problems associated with the event, in spite of valiant attempts from, e.g. imprope solar viewing materials. The eclipse offered opportunities for many scientific experiments within and ebyond astronomy. Here we present on the work of the taskforce, and the lessons learned as well as lesser known science experiments undertaken during the eclipse.

  9. Total Eclipse of the Ballpark: Connecting Space and Sports

    Science.gov (United States)

    Wasser, Molly; Petro, Noah; Jones, Andrea; Bleacher, Lora; Keller, John; Wes Patterson, G.

    2018-01-01

    The anticipation and excitement surrounding the total solar eclipse of 2017 provided astronomy educators with an incredible platform to share space science with huge audiences. The Public Engagement Team for NASA’s Lunar Reconnaissance Orbiter (LRO) took advantage of this opportunity to share lunar science with the public by highlighting the often-overlooked central player in the eclipse – the Moon. As the sole planetary science representatives on NASA’s Science Mission Directorate eclipse leadership team, the LRO team had limited resources to conduct national public outreach. In order to increase our reach, we found success in partnerships.In early 2017, we began working with Minor League Baseball (MiLB) teams across the path of totality on August eclipse events. These partnerships proved fruitful for both parties. While MiLB is a national organization, each team is deeply rooted in its community. This proved essential as each of our four main MiLB partners handled event logistics, provided facilities, connected NASA Subject Matter Experts (SMEs) with local media, and drew in captive crowds. With this tactic, a handful of NASA representatives were able to reach nearly 30,000 people. In turn, LRO provided engaging educational content relevant to the context, SMEs to guide the eclipse viewing experience, eclipse glasses, and safety information. Our participation drew in an audience who would not typically attend baseball games while we were able to reach individuals who would not normally attend a science event. In addition, the eclipse inspired one team, the Salem-Keizer Volcanoes from Salem, OR, to make baseball history by holding the first ever eclipse delay in professional sports.In this talk, we will present on the benefits of the partnership, offer lessons learned, and suggest ways to get involved for the 2024 eclipse – and all the baseball seasons in between.

  10. The Great American Eclipse Glasses Debacle of 2017

    Science.gov (United States)

    Tresch Fienberg, Richard; AAS Solar Eclipse Task Force

    2018-01-01

    In 2014, looking ahead to the “Great American” solar eclipse of 21 August 2017, the American Astronomical Society established the AAS Solar Eclipse Task Force to help prepare the public for a safe and enjoyable experience. We worked with NASA and several associations of eye-care professionals to come up a safety message that we could all stand behind. The gist of it was that it is perfectly safe to view totality without protection, but when any part of the Sun’s bright face is exposed, you must view through eclipse glasses or handheld viewers that meet the ISO 12312-2 international safety standard for filters for direct viewing of the Sun. We compiled a list of manufacturers whose products we knew to meet the standard (because we examined their test data) and posted it on our website. These manufacturers were all based in the US or Europe. A few weeks before the eclipse, reports surfaced of viewers purchased on Amazon.com labeled “Made in China” or that were obvious knock-offs of US manufacturers’ products. Amazon responded by suspending virtually all sales of eclipse viewers and recalling many of units already sold and shipped. Millions of people who’d bought eclipse glasses online, whether from legitimate sources or from bad actors, were unsure whether they could trust their purchases. We had to change our safety messaging: it was no longer sufficient to tell people to look for the ISO 12312-2 label, because that was being printed on Chinese-made glasses that hadn’t actually been shown to meet the standard. Instead, the only way to know that you had safe viewers was to know that you got them from a legitimate source — which meant we had to expand the list on our website to include every legitimate seller we could identify. Doing so required a monumental effort under intense time pressure. Thankfully there were few reports of eye injuries following the eclipse, but apparently many people who otherwise would have viewed the eclipse chose to skip

  11. Theories of magnetospheres around accreting compact objects

    International Nuclear Information System (INIS)

    Vasyliunas, V.M.

    1979-01-01

    A wide class of galactic X-ray sources are believed to be binary systems where mass is flowing from a normal star to a companion that is a compact object, such as a neutron star. The strong magnetic fields of the compact object create a magnetosphere around it. We review the theoretical models developed to describe the properties of magnetospheres in such accreting binary systems. The size of the magnetosphere can be estimated from pressure balance arguments and is found to be small compared to the over-all size of the accretion region but large compared object if the latter is a neutron star. In the early models the magnetosphere was assumed to have open funnels in the polar regions, through which accreting plasma could pour in. Later, magnetically closed models were developed, with plasma entry made possible by instabilities at the magnetosphere boundary. The theory of plasma flow inside the magnetosphere has been formulated in analogy to a stellar wind with reversed flow; a complicating factor is the instability of the Alfven critical point for inflow. In the case of accretion via a well-defined disk, new problems if magnetospheric structure appear, in particular the question to what extent and by what process the magnetic fields from the compact object can penetrate into the acretion disk. Since the X-ray emission is powered by the gravitational energy released in the accretion process, mass transfer into the magnetosphere is of fundamental importance; the various proposed mechanisms are critically examined. (orig.)

  12. Your guide to the 2017 total solar eclipse

    CERN Document Server

    Bakich, Michael E

    2016-01-01

    In this book Astronomy Magazine editor Michael Bakich presents all the information you’ll need to be ready for the total solar eclipse that will cross the United States on August 21, 2017. In this one resource you’ll find out where the eclipse will occur, how to observe it safely, what you’ll experience during the eclipse, the best equipment to choose, how to photograph the event, detailed weather forecasts for locations where the Moon’s shadow will fall, and much more. Written in easy-to-understand language (and with a glossary for those few terms you may not be familiar with), this is the must-have reference for this unique occurrence. It’s not a stretch to say that this eclipse will prove to be the most viewed sky event in history. That’s why even now, more than a year before the eclipse, astronomy clubs, government agencies, cities — even whole states — are preparing for the unprecedented onslaught of visitors whose only desire is to experience darkness at midday. Bakich informs observers ...

  13. An x-ray nebula associated with the millisecond pulsar B1957+20.

    Science.gov (United States)

    Stappers, B W; Gaensler, B M; Kaspi, V M; van der Klis, M; Lewin, W H G

    2003-02-28

    We have detected an x-ray nebula around the binary millisecond pulsar B1957+20. A narrow tail, corresponding to the shocked pulsar wind, is seen interior to the known Halpha bow shock and proves the long-held assumption that the rotational energy of millisecond pulsars is dissipated through relativistic winds. Unresolved x-ray emission likely represents the shock where the winds of the pulsar and its companion collide. This emission indicates that the efficiency with which relativistic particles are accelerated in the postshock flow is similar to that for young pulsars, despite the shock proximity and much weaker surface magnetic field of this millisecond pulsar.

  14. Modelling secondary eclipses of Kepler exoplanets

    Directory of Open Access Journals (Sweden)

    Hambálek Lubomír

    2015-01-01

    Full Text Available We have selected several Kepler objects with potentially the deepest secondary eclipses. By combination of many single phased light-curves (LCs we have produced a smooth LC with a larger SNR and made the secondary eclipses more distinct. This allowed us to measure the depth of primary and secondary minimum with greater accuracy and then to determine stellar and planetary radii by simplex modelling.

  15. Accreting Black Holes

    OpenAIRE

    Begelman, Mitchell C.

    2014-01-01

    I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole accretion depend on interactions between the relatively simple black-hole spacetime and complex radiation, plasma and magnetohydrodynamical processes in the surrounding gas. I will show how transient accretion processes could provide clues to these ...

  16. Gravitational wave emission from oscillating millisecond pulsars

    Science.gov (United States)

    Alford, Mark G.; Schwenzer, Kai

    2015-02-01

    Neutron stars undergoing r-mode oscillation emit gravitational radiation that might be detected on the Earth. For known millisecond pulsars the observed spin-down rate imposes an upper limit on the possible gravitational wave signal of these sources. Taking into account the physics of r-mode evolution, we show that only sources spinning at frequencies above a few hundred Hertz can be unstable to r-modes, and we derive a more stringent universal r-mode spin-down limit on their gravitational wave signal. We find that this refined bound limits the gravitational wave strain from millisecond pulsars to values below the detection sensitivity of next generation detectors. Young sources are therefore a more promising option for the detection of gravitational waves emitted by r-modes and to probe the interior composition of compact stars in the near future.

  17. Coordinated weather balloon solar radiation measurements during a solar eclipse.

    Science.gov (United States)

    Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  18. Accretion from an inhomogeneous medium

    International Nuclear Information System (INIS)

    Livio, M.; Soker, N.; Koo, M. de; Savonije, G.J.

    1986-01-01

    The problem of accretion by a compact object from an inhomogeneous medium is studied in the general γnot=1 case. The mass accretion rate is found to decrease with increasing γ. The rate of accretion of angular momentum is found to be significantly lower than the rate at which angular momentum is deposited into the Bondi-Hoyle, symmetrical, accretion cylinder. The consequences of the results are studied for the cases of neutron stars accreting from the winds of early-type companions and white dwarfs and main-sequence stars accreting from winds of cool giants. (author)

  19. Eclipsing binaries observed with the WIRE satellite I. Discovery and photometric analysis of the new bright A0 IV eclipsing binary psi centauri

    DEFF Research Database (Denmark)

    Bruntt, Hans; Southworth, J.; Penny, A. J.

    2006-01-01

    Stars: fundamental parameters, binaries: close, eclipsing, techniques: photometric Udgivelsesdato: Sep.......Stars: fundamental parameters, binaries: close, eclipsing, techniques: photometric Udgivelsesdato: Sep....

  20. BRIGHT 'MERGER-NOVA' FROM THE REMNANT OF A NEUTRON STAR BINARY MERGER: A SIGNATURE OF A NEWLY BORN, MASSIVE, MILLISECOND MAGNETAR

    International Nuclear Information System (INIS)

    Yu, Yun-Wei; Zhang, Bing; Gao, He

    2013-01-01

    A massive millisecond magnetar may survive the merger of a neutron star (NS) binary, which would continuously power the merger ejecta. We develop a generic dynamic model for the merger ejecta with energy injection from the central magnetar. The ejecta emission (the m erger-nova ) powered by the magnetar peaks in the UV band and the peak of the light curve, progressively shifts to an earlier epoch with increasing frequency. A magnetar-powered merger-nova could have an optical peak brightness comparable to a supernova, which is a few tens or hundreds times brighter than the radioactive-powered merger-novae (the so-called macro-nova or kilo-nova). On the other hand, such a merger-nova would peak earlier and have a significantly shorter duration than that of a supernova. An early collapse of the magnetar could suppress the brightness of the optical emission and shorten its duration. Such millisecond-magnetar-powered merger-novae may be detected from NS-NS merger events without an observed short gamma-ray burst, and could be a bright electromagnetic counterpart for gravitational wave bursts due to NS-NS mergers. If detected, it suggests that the merger leaves behind a massive NS, which has important implications for the equation-of-state of nuclear matter

  1. Lessons from ECLIPSE

    DEFF Research Database (Denmark)

    Faner, Rosa; Tal-Singer, Ruth; Riley, John H

    2014-01-01

    The Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) study was a large 3-year observational controlled multicentre international study aimed at defining clinically relevant subtypes of chronic obstructive pulmonary disease (COPD) and identifying novel biomar...

  2. Fourier analysis of the light curves of eclipsing variables. XI

    International Nuclear Information System (INIS)

    Kopal, Z.

    1977-01-01

    The aim of the present paper is to introduce a new definition of the loss of light suffered by mutual eclipses of the components of close binary systems: namely, as a cross-correlation of two apertures representing the eclipsing and eclipsed discs. The advantages of such a strategy over the more conventional (geometrical) approach are (a) greater symmetry of the respective expressions; (b) greater affinity of expressions arising from distortion with those expressing the light changes due to eclipses of spherical stars; and (c) greater freedom in dealing with the effects of particular distribution of brightness over the disc of the star undergoing eclipse (generalized limb-darkening), as well as of possible semi-transparency of the eclipsing component (Wolf-Rayet stars). In point of fact, none of these tasks could be handled with equal ease by any other technique; nor could the corresponding loss of light be so automated by any other approach. (Auth.)

  3. Integration of BETA with Eclipse

    DEFF Research Database (Denmark)

    Andersen, Peter; Madsen, Ole Lehrmann; Enevoldsen, Mads Brøgger

    2004-01-01

    This paper presents language interoperability issues appearing in order to implement support for the BETA language in the Java-based Eclipse integrated development environment. One of the challenges is to implement plug-ins in BETA and be able to load them in Eclipse. In order to do this, some fo...... it is possible to implement plug-ins in BETA and even inherit from Java classes. In the paper the two approaches are described together with part of the mapping from BETA to Java class files. http://www.sciencedirect.com/science/journal/15710661...

  4. EGRET upper limits to the high-energy gamma-ray emission from the millisecond pulsars in nearby globular clusters

    Science.gov (United States)

    Michelson, P. F.; Bertsch, D. L.; Brazier, K.; Chiang, J.; Dingus, B. L.; Fichtel, C. E.; Fierro, J.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.

    1994-01-01

    We report upper limits to the high-energy gamma-ray emission from the millisecond pulsars (MSPs) in a number of globular clusters. The observations were done as part of an all-sky survey by the energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during Phase I of the CGRO mission (1991 June to 1992 November). Several theoretical models suggest that MSPs may be sources of high-energy gamma radiation emitted either as primary radiation from the pulsar magnetosphere or as secondary radiation generated by conversion into photons of a substantial part of the relativistic e(+/-) pair wind expected to flow from the pulsar. To date, no high-energy emission has been detected from an individual MSP. However, a large number of MSPs are expected in globular cluster cores where the formation rate of accreting binary systems is high. Model predictions of the total number of pulsars range in the hundreds for some clusters. These expectations have been reinforced by recent discoveries of a substantial number of radio MSPs in several clusters; for example, 11 have been found in 47 Tucanae (Manchester et al.). The EGRET observations have been used to obtain upper limits for the efficiency eta of conversion of MSP spin-down power into hard gamma rays. The upper limits are also compared with the gamma-ray fluxes predicted from theoretical models of pulsar wind emission (Tavani). The EGRET limits put significant constraints on either the emission models or the number of pulsars in the globular clusters.

  5. RADIATIVELY EFFICIENT MAGNETIZED BONDI ACCRETION

    International Nuclear Information System (INIS)

    Cunningham, Andrew J.; Klein, Richard I.; McKee, Christopher F.; Krumholz, Mark R.; Teyssier, Romain

    2012-01-01

    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of ∼2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of ∼0.2 β 1/2 compared to the Bondi value, where β is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  6. RADIATIVELY EFFICIENT MAGNETIZED BONDI ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Andrew J.; Klein, Richard I. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McKee, Christopher F. [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720 (United States); Krumholz, Mark R. [Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA 94560 (United States); Teyssier, Romain, E-mail: ajcunn@gmail.com [Service d' Astrophysique, CEA Saclay, 91191 Gif-sur-Yvette (France)

    2012-01-10

    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of {approx}2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of {approx}0.2 {beta}{sup 1/2} compared to the Bondi value, where {beta} is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  7. The Emerging Paradigm of Pebble Accretion

    NARCIS (Netherlands)

    Ormel, C.W.; Pessah, M.; Gressel, O.

    2017-01-01

    Pebble accretion is the mechanism in which small particles ("pebbles") accrete onto big bodies big (planetesimals or planetary embryos) in gas-rich environments. In pebble accretion accretion , accretion occurs by settling and depends only on the mass of the gravitating body gravitating , not its

  8. A DEEPLY ECLIPSING DETACHED DOUBLE HELIUM WHITE DWARF BINARY

    International Nuclear Information System (INIS)

    Parsons, S. G.; Marsh, T. R.; Gaensicke, B. T.; Drake, A. J.; Koester, D.

    2011-01-01

    Using Liverpool Telescope+RISE photometry we identify the 2.78 hr period binary star CSS 41177 as a detached eclipsing double white dwarf binary with a 21,100 K primary star and a 10,500 K secondary star. This makes CSS 41177 only the second known eclipsing double white dwarf binary after NLTT 11748. The 2 minute long primary eclipse is 40% deep and the secondary eclipse 10% deep. From Gemini+GMOS spectroscopy, we measure the radial velocities of both components of the binary from the Hα absorption line cores. These measurements, combined with the light curve information, yield white dwarf masses of M 1 = 0.283 ± 0.064 M sun and M 2 = 0.274 ± 0.034 M sun , making them both helium core white dwarfs. As an eclipsing, double-lined spectroscopic binary, CSS 41177 is ideally suited to measuring precise, model-independent masses and radii. The two white dwarfs will merge in roughly 1.1 Gyr to form a single sdB star.

  9. The 2017 Solar Eclipse Community Impacts through Public Library Engagement

    Science.gov (United States)

    Dusenbery, P.; Holland, A.; LaConte, K.; Mosshammer, G.; Harold, J. B.; Fraknoi, A.; Schatz, D.; Duncan, D. K.

    2017-12-01

    More than two million pairs of eclipse glasses were distributed free through public libraries in the U.S. for the solar eclipse of the Sun taking place on August 21, 2017. About 7,000 organizations, including public library branches, bookmobiles, tribal libraries, library consortia, and state libraries took part in the celestial event of the century. Many organizations received a package of free safe-viewing glasses, plus a 24-page information booklet about eclipse viewing and suggested program ideas. An educational video was also produced on how best to do public outreach programs about the eclipse. The project was supported, in part, by the Gordon and Betty Moore Foundation, with additional help from Google, NASA, the Research Corporation, and the National Science Foundation (NSF). The program was managed through the Space Science Institute's National Center for Interactive Learning as part of its STAR Library Network (STAR_Net). Resources developed by STAR_Net for this event included an Eclipse Resource Center; a newsletter for participating libraries to learn about eclipses and how to implement an effective and safe eclipse program; eclipse program activities on its STEM Activity Clearinghouse; webinars; and connections to subject matter experts from NASA's and the American Astronomical Society's volunteer networks. This presentation will provide an overview of the extensive collaboration that made this program possible as well as highlight the national impact that public libraries made in their communities.

  10. Evolution of the accretion structure of the compact object in the symbiotic binary BF Cygni during outburst in 2009-2014

    Science.gov (United States)

    Tomov, N. A.; Tomova, M. T.; Bisikalo, D. V.

    2017-12-01

    The eclipsing symbiotic binary BF Cyg has had five orbital minima during its last optical outburst after 2006. The second minimum is much shallower than the first one and after that the minimum get deeper again. We determined the parameters of the accretion structure surrounding the compact object in two minima and traced its evolution until 2014. Moreover, we analysed the continuum of the system in the region of the UBVRCIC photometric bands to derive the parameters of its components at two times orbital maximum and calculated the mass-loss rate of the compact object. The results obtained allow us to conclude about the mechanism of fading of the optical light of the system until 2014. These results show that the optical flux of the outbursted compact object decreases because of "contraction" of its observed photosphere (pseudophotosphere) which, on its side, is due to increase of the velocity of its stellar wind, and the optical flux of the circumbinary nebula decreases mainly because of reduction of its mean density, which, on its side, is due to destruction of the accretion structure.

  11. Observations of eclipses of UU Sge

    Science.gov (United States)

    Shimansky, V. V.; Borisov, N. V.; Bikmaev, I. F.; Shimanskaya, N. N.

    2012-06-01

    We have performed spectroscopy and photometry of eclipses of the pre-cataclysmic variable UUSge using the 6-m telescope of the Special AstrophysicalObservatory and the 1.5-mRussian-Turkish telescope. Our analysis of variations of the B- V and V- R color indices during the eclipses indicates that the temperature of the secondary is T eff,2 = 6000-6300 K. A similar value, T eff,2 = 6200 ± 200 K, follows from our comparison of the observed spectrum of UU Sge at the total eclipse phase and theoretical spectra of late-type stars. We identify 27 absorption lines of 11 chemical elements in the secondary's spectrum. Their abnormal intensities indicate possible high-velocity turbulent motions (up to ξ turb = 10.0 km/s) in the atmosphere of the star and the presence of hot gas above its surface.

  12. Lessons from Distributing Eclipse Glasses: Planning Ahead for April 2024

    Science.gov (United States)

    Bartlett, Jennifer Lynn; Wilson, Teresa; Chizek Frouard, Malynda R.; Phlips, Alan

    2018-01-01

    In preparation for the 2017 August 21 total solar eclipse across the continental United States, a multifaceted effort encouraged safe public observation of this spectacular event. However, we experienced mixed results distributing free ISO 12312-2 compliant eclipse glasses.On the positive side, we successfully dispensed several hundred in Virginia through in-school programs about the eclipse. We created a 2017-eclipse information sheet to accompany a safe-viewing handout. To facilitate sending glasses home in student backpacks, we wrapped each pair in a double-sided flyer and sealed the bundle in an individual envelope. We also passed out glasses during evening and weekend activities at a planetarium. Religious, business, and educational groups were all excited to receive them as were co-workers, family, and friends.On the negative side, planetarium staff declined to give eclipse glasses to students without a parent due to safety and liability concerns. Then, a day camp returned 200 pairs less than 72 hours before the event for the same reasons. However, we also received several requests from groups that had waited until too late to be accommodated easily.During the week before the eclipse, demand for eclipse glasses in New York, Michigan, Indiana, Illinois, Wisconsin, Minnesota, South Dakota, Nebraska, and Missouri was less than anticipated. While many people were well prepared, the recalls and reported counterfeiting made others suspicious. Concurrently, vendors were offering their remaining stock for $1–10 each.The experiences of the 2017 total solar eclipse, both good and bad, will not completely fade before preparations for 2024 begin. We look forward enthusiastically to sharing that event with as many people as possible and hope that the overall distribution of eclipse glasses goes more smoothly.We thank the AAS for providing 1,000+ of the eclipse glasses we shared, which were donated to them by Google to promote the Eclipse Megamovie project; Rainbow

  13. Observational constraints on neutron star masses and radii

    Energy Technology Data Exchange (ETDEWEB)

    Coleman Miller, M. [University of Maryland, Department of Astronomy and Joint Space-Science Institute, College Park, MD (United States); Lamb, Frederick K. [University of Illinois at Urbana-Champaign, Center for Theoretical Astrophysics and Department of Physics, Urbana, IL (United States); University of Illinois at Urbana-Champaign, Department of Astronomy, Urbana, IL (United States)

    2016-03-15

    Precise and reliable measurements of the masses and radii of neutron stars with a variety of masses would provide valuable guidance for improving models of the properties of cold matter with densities above the saturation density of nuclear matter. Several different approaches for measuring the masses and radii of neutron stars have been tried or proposed, including analyzing the X-ray fluxes and spectra of the emission from neutron stars in quiescent low-mass X-ray binary systems and thermonuclear burst sources; fitting the energy-dependent X-ray waveforms of rotation-powered millisecond pulsars, burst oscillations with millisecond periods, and accretion-powered millisecond pulsars; and modeling the gravitational radiation waveforms of coalescing double neutron star and neutron star - black hole binary systems. We describe the strengths and weaknesses of these approaches, most of which currently have substantial systematic errors, and discuss the prospects for decreasing the systematic errors in each method. (orig.)

  14. INTERFERENCE AS AN ORIGIN OF THE PEAKED NOISE IN ACCRETING X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Veledina, Alexandra, E-mail: alexandra.veledina@gmail.com [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2016-12-01

    We propose a physical model for the peaked noise in the X-ray power density spectra of accreting X-ray binaries. We interpret its appearance as an interference of two Comptonization continua: one coming from the upscattering of seed photons from the cold thin disk and the other fed by the synchrotron emission of the hot flow. Variations of both X-ray components are caused by fluctuations in mass accretion rate, but there is a delay between them corresponding to the propagation timescale from the disk Comptonization radius to the region of synchrotron Comptonization. If the disk and synchrotron Comptonization are correlated, the humps in the power spectra are harmonically related and the dips between them appear at frequencies related as odd numbers 1:3:5. If they are anti-correlated, the humps are related as 1:3:5, but the dips are harmonically related. Similar structures are expected to be observed in accreting neutron star binaries and supermassive black holes. The delay can be easily recovered from the frequency of peaked noise and further used to constrain the combination of the viscosity parameter and disk height-to-radius ratio α ( H / R ){sup 2} of the accretion flow. We model multi-peak power spectra of black hole X-ray binaries GX 339–4 and XTE J1748–288 to constrain these parameters.

  15. Optical and Infrared Lightcurve Modeling of the Gamma-ray Millisecond Pulsar 2FGL J2339.6-0532

    Directory of Open Access Journals (Sweden)

    Tzu-Ching Yen

    2013-09-01

    Full Text Available We report the detection of a quasi-sinusoidally modulated optical flux with a period of 4.6343 hour in the optical and infrared band of the Fermi source 2FGL J2339.7-0531. Comparing the multi-wavelength observations, we suggest that 2FGL J2339.7- 0531 is a γ-ray emitting millisecond pulsar (MSP in a binary system with an optically visible late-type companion accreted by the pulsar, where the MSP is responsible for the γ-ray emission while the optical and infrared emission originate from the heated side of the companion. Based on the optical properties, the companion star is believed to be heated by the pulsar and reaches peak magnitude when the heated side faces the observer. We conclude that 2FGL J2339.7-0531 is a member of a subclass of γ-ray emitting pulsars -the ‘black widows’- recently revealed to be evaporating their companions in the late-stage of recycling as a prominent group of these newly revealed Fermi sources.

  16. Signature of a Newborn Black Hole from the Collapse of a Supra-massive Millisecond Magnetar

    Science.gov (United States)

    Chen, Wei; Xie, Wei; Lei, Wei-Hua; Zou, Yuan-Chuan; Lü, Hou-Jun; Liang, En-Wei; Gao, He; Wang, Ding-Xiong

    2017-11-01

    An X-ray plateau followed by a steep decay (“internal plateau”) has been observed in both long and short gamma-ray burst (GRBs), implying that a millisecond magnetar operates in some GRBs. The sharp decay at the end of the plateau, marking the abrupt cessation of the magnetar’s central engine, has been considered the collapse of a supra-massive magnetar into a black hole (BH) when it spins down. If this “internal plateau” is indeed evidence of a magnetar central engine, the natural expectation in some candidates would be a signature from the newborn BH. In this work, we find that GRB 070110 is a particular case which shows a small X-ray bump following its “internal plateau.” We interpret the plateau as a spin-down supra-massive magnetar and the X-ray bump as fallback BH accretion. This indicates that a newborn BH is likely active in some GRBs. Therefore, GRB 070110-like events may provide further support to the magnetar central engine model and enable us to investigate the properties of the magnetar as well as the newborn BH.

  17. Books and Other Resources for Education about the August 21, 2017, Solar Eclipse

    Science.gov (United States)

    Pasachoff, Jay M.; Fraknoi, Andrew; Kentrianakis, Michael

    2017-06-01

    As part of our work to reach and educate the 300+ million Americans of all ages about observing the August 21 solar eclipse, especially by being outdoors in the path of totality but also for those who will see only partial phases, we have compiled annotated lists of books, pamphlets, travel guides, websites, and other information useful for teachers, students, and the general public and made them available on the web, at conferences, and through webinars. Our list includes new eclipse books by David Barron, Anthony Aveni, Frank Close, Tyler Nordgren, John Dvorak, Michael Bakich, and others. We list websites accessible to the general public including those of the International Astronomical Union Working Group on Eclipses (http://eclipses.info, which has links to all the sites listed below); the AAS Eclipse 2017 Task Force (http://eclipse2017.aas.org); NASA Heliophysics (http://eclipse.nasa.gov); Fred Espenak (the updated successor to his authoritative "NASA website": http://EclipseWise.com); Michael Zeiler (http://GreatAmericanEclipse.com); Xavier Jubier (http://xjubier.free.fr/en/site_pages/solar_eclipses/); Jay Anderson (meteorology: http://eclipsophile.com); NASA's Eyes (http://eyes.nasa.gov/eyes-on-eclipse.html and its related app); the Astronomical Society of the Pacific (http://www.astrosociety.org/eclipse); Dan McGlaun (http://eclipse2017.org/); Bill Kramer (http://eclipse-chasers.com). Specialized guides include Dennis Schatz and Andrew Fraknoi's Solar Science for teachers (from the National Science Teachers Association:http://www.nsta.org/publications/press/extras/files/solarscience/SolarScienceInsert.pdf), and a printing with expanded eclipse coverage of Jay Pasachoff's, Peterson Field Guide to the Stars and Planets (14th printing of the fourth edition, 2016: http://solarcorona.com).A version of our joint list is to be published in the July issue of the American Journal of Physics as a Resource Letter on Eclipses, adding to JMP's 2010, "Resource Letter SP

  18. Solar Eclipse Engagement and Outreach in Madras and Warm Springs, Oregon

    Science.gov (United States)

    Kirk, M. S.; Pesnell, W. D.; Ahern, S.; Boyle, M.; Gonzales, T.; Leone, C.

    2017-12-01

    The Central Oregon towns of Madras and Warm Springs were in an ideal location to observe the total solar eclipse of 2017. In anticipation of this event, we embarked on a yearlong partnership to engage and excite these communities. We developed educational events for all students in the school district, grades K-12, as well as two evening keynote addresses during an eclipse week in May. This eclipse week provided resources, learning opportunities, and safety information for all students and families prior to the end of the school year. With the collaboration of graphic design students at Oregon State University, we produced static educational displays as an introduction to the Museum at Warm Springs' exhibit featuring eclipse art. The weekend before the eclipse, we gave away 15,000 pairs of solar viewing glasses to the local community and manned a science booth at the Oregon Solarfest to engage the arriving eclipse tourists. These efforts culminated on Monday, August 21st with tens of thousands of people viewing eclipse totality in Madras and Warm Springs.

  19. Is Episodic Accretion Necessary to Resolve the Luminosity Problem in Low-Mass Protostars?

    Science.gov (United States)

    Sevrinsky, Raymond Andrew; Dunham, Michael

    2017-01-01

    In this contribution, we compare the results of protostellar accretion simulations for scenarios both containing and lacking episodic accretion activity. We determine synthetic observational signatures for collapsing protostars by taking hydrodynamical simulations predicting highly variable episodic accretion events, filtering out the stochastic behavior by applying power law fits to the mass accretion rates onto the disk and central star, and using the filtered rates as inputs to two-dimensional radiative transfer calculations. The spectral energy distributions generated by these calculations are used to calculate standard observational signatures of Lbol and Tbol, and compared directly to a sample of 230 embedded protostars. We explore the degree to which these continually declining accretion models successfully reproduce the observed spread of protostellar luminosities, and examine their consistency with the prior variable models to investigate the degree to which episodic accretion bursts are necessary in protostellar formation theories to match observations of field protostars. The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  20. Thermal Comptonization in standard accretion disks

    International Nuclear Information System (INIS)

    Maraschi, L.; Molendi, S.

    1990-01-01

    The standard model of an accretion disk is considered. The temperature in the inner region is computed assuming that the radiated power derives from Comptonized photons, produced in a homogeneous single-temperature plasma, supported by radiation pressure. The photon production mechanisms are purely thermal, including ion-electron bremsstrahlung, bound-free and bound-bound processes, and e-e bremsstrahlung. Pair production is not included, which limits the validity of the treatment to kT less than 60 keV. Three different approximations for the effects of Comptonization on the energy loss are used, yielding temperatures which agree within 50 percent. The maximum temperature is very sensitive to the accretion rate and viscosity parameters, ranging, for a 10 to the 8th solar mass black hole, between 0.1 and 50 keV for m between 0.1 and 1 and alpha between 0.1 and 1 and, for a 10-solar-mass black hole, between 0.6 and 60 keV for m between 0.1 and 0.9 and alpha between 0.1 and 0.5. For high viscosity and accretion rates, the emission spectra show a flat component following a peak corresponding to the temperature of the innermost optically thick annulus. 28 refs

  1. Wind accretion: Theory and observations

    Science.gov (United States)

    Shakura, N. I.; Postnov, K. A.; Kochetkova, A. Yu.; Hjalmarsdotter, L.; Sidoli, L.; Paizis, A.

    2015-07-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus on different regimes of quasi-spherical accretion onto the neutron star (NS): the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically towards the NS magnetosphere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. These two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg s-1. In the subsonic case, which sets in at lower luminosities, a hot quasi-spherical shell must form around the magnetosphere, and the actual accretion rate onto NS is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. In turn, two regimes of subsonic accretion are possible, depending on plasma cooling mechanism (Compton or radiative) near the magnetopshere. The transition from the high-luminosity with Compton cooling to the lowluminosity (Lx ≲ 3 × 1035 erg s-1) with radiative cooling can be responsible for the onset of the off states repeatedly observed in several low-luminosity slowly accreting pulsars, such as Vela X-1, GX 301-2, and 4U 1907+09. The triggering of the transitionmay be due to a switch in the X-ray beam pattern in response to a change in the optical depth in the accretion column with changing luminosity. We also show that in the settling accretion theory, bright X-ray flares (~1038-1040 erg) observed in supergiant fast X-ray transients (SFXT) can be produced by sporadic capture of magnetized stellar wind plasma. At sufficiently low accretion rates, magnetic reconnection can enhance the magnetospheric plasma entry rate, resulting in copious production of X-ray photons, strong Compton cooling and ultimately in unstable accretion of the entire shell. A bright flare develops on the free-fall time scale in the shell, and the typical energy released in an SFXT bright flare corresponds to the mass

  2. A lower limit to the accretion disc radius in the low-luminosity AGN NGC 1052 derived from high-angular resolution data

    Science.gov (United States)

    Reb, Lennart; Fernández-Ontiveros, Juan A.; Prieto, M. Almudena; Dolag, Klaus

    2018-05-01

    We investigate the central sub-arcsec region of the low-luminosity active galactic nucleus NGC 1052, using a high-angular resolution dataset that covers 10 orders of magnitude in frequency. This allows us to infer the continuum emission within the innermost ˜17 pc around the black hole to be of non-thermal, synchrotron origin and to set a limit to the maximum contribution of a standard accretion disc. Assuming the canonical 10 per cent mass-light conversion efficiency for the standard accretion disc, its inferred accretion power would be too low by one order of magnitude to account for the observed continuum luminosity. We thus introduce a truncated accretion disc and derive a truncation radius to mass-light conversion efficiency relation, which we use to reconcile the inferred accretion power with the continuum luminosity. As a result we find that a truncated disc providing the necessary accretion power must be truncated at rtr ≳ 26 rg, consistent with the inner radius derived from the observations of the Fe Kα line in the X-ray spectrum of this nucleus. This is the first time to derive a limit on the truncation radius of the accretion disc from high-angular resolution data only.

  3. Solar Eclipse: Concept of “Science” and “Language” Literacy

    Science.gov (United States)

    Haristiani, N.; Zaen, R.; Nandiyanto, A. B. D.; Rusmana, A. N.; Azis, F.; Danuwijaya, A. A.; Abdullah, A. G.

    2018-02-01

    The purpose of this study was to evaluate the concept of science and language literacy of solar eclipse. The study was conducted through a survey to 250 students with different ages (from 17 to 23 years old), grades, and majors in Universitas Pendidikan Indonesia. The survey was completed with a questionnaire consisting of 41 questions. In the case of the language literacy, experimental results showed that various expressions in facing the solar eclipse phenomenon are found. Relating to the science literacy, most students have good science understanding to the solar eclipse phenomenon. In conclusion, the understanding about the solar eclipse is affected by formal science education and religion understanding that they have been accepted since their childhood. These factors have also influenced the belief of Indonesian people to the solar eclipse myth and the way of expressions a language literacy.

  4. Three Millisecond Pulsars in Fermi LAT Unassociated Bright Sources

    Science.gov (United States)

    Ransom, S. M.; Ray, P. S.; Camilo, F.; Roberts, M. S. E.; Celik, O.; Wolff, M. T.; Cheung, C. C.; Kerr, M.; Pennucci, T.; DeCesar, M. E.; hide

    2010-01-01

    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsar (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (pulsars are power law in nature with exponential cutoffs at a few Ge V, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of approx 10(exp 30) - 10(exp 31) erg/s are typical of the rare radio MSPs seen in X-rays.

  5. The « 3-D donut » electrostatic analyzer for millisecond timescale electron measurements in the solar wind

    Science.gov (United States)

    Berthomier, M.; Techer, J. D.

    2017-12-01

    Understanding electron acceleration mechanisms in planetary magnetospheres or energy dissipation at electron scale in the solar wind requires fast measurement of electron distribution functions on a millisecond time scale. Still, since the beginning of space age, the instantaneous field of view of plasma spectrometers is limited to a few degrees around their viewing plane. In Earth's magnetosphere, the NASA MMS spacecraft use 8 state-of-the-art sensor heads to reach a time resolution of 30 milliseconds. This costly strategy in terms of mass and power consumption can hardly be extended to the next generation of constellation missions that would use a large number of small-satellites. In the solar wind, using the same sensor heads, the ESA THOR mission is expected to reach the 5ms timescale in the thermal energy range, up to 100eV. We present the « 3-D donut » electrostatic analyzer concept that can change the game for future space missions because of its instantaneous hemispheric field of view. A set of 2 sensors is sufficient to cover all directions over a wide range of energy, e.g. up to 1-2keV in the solar wind, which covers both thermal and supra-thermal particles. In addition, its high sensitivity compared to state of the art instruments opens the possibility of millisecond time scale measurements in space plasmas. With CNES support, we developed a high fidelity prototype (a quarter of the full « 3-D donut » analyzer) that includes all electronic sub-systems. The prototype weights less than a kilogram. The key building block of the instrument is an imaging detector that uses EASIC, a low-power front-end electronics that will fly on the ESA Solar Orbiter and on the NASA Parker Solar Probe missions.

  6. Predicting the past: ancient eclipses and Airy, Newcomb, and Huxley on the authority of science.

    Science.gov (United States)

    Stanley, Matthew

    2012-06-01

    Greek historical accounts of ancient eclipses were an important, if peculiar, focus of scientific attention in the nineteenth century. Victorian-era astronomers tried to correct the classical histories using scientific methods, then used those histories as data with which to calibrate their lunar theories, then rejected the histories as having any relevance at all. The specific dating of these eclipses--apparently a simple exercise in celestial mechanics--became bound up with tensions between scientific and humanistic approaches to the past as well as with wider social debates over the power and authority of science in general. The major figures discussed here, including G. B. Airy, Simon Newcomb, and T. H. Huxley, argued that the critical question was whether science could speak authoritatively about the past. To them, the ability of science to talk about the past indicated its power to talk about the future; it was also the fulcrum of fierce boundary disputes among science, history, and religion.

  7. There's An App For That: Planning Ahead for the Solar Eclipse in August 2017

    Science.gov (United States)

    Chizek Frouard, Malynda R.; Lesniak, Michael V.; Bell, Steve

    2017-01-01

    With the total solar eclipse of 2017 August 21 over the continental United States approaching, the U.S. Naval Observatory (USNO) on-line Solar Eclipse Computer can now be accessed via an Android application, available on Google Play.Over the course of the eclipse, as viewed from a specific site, several events may be visible: the beginning and ending of the eclipse (first and fourth contacts), the beginning and ending of totality (second and third contacts), the moment of maximum eclipse, sunrise, or sunset. For each of these events, the USNO Solar Eclipse 2017 Android application reports the time, Sun's altitude and azimuth, and the event's position and vertex angles. The app also lists the duration of the total phase, the duration of the eclipse, the magnitude of the eclipse, and the percent of the Sun obscured for a particular eclipse site.All of the data available in the app comes from the flexible USNO Solar Eclipse Computer Application Programming Interface (API), which produces JavaScript Object Notation (JSON) that can be incorporated into third-party Web sites or custom applications. Additional information is available in the on-line documentation (http://aa.usno.navy.mil/data/docs/api.php).For those who prefer using a traditional data input form, the local circumstances can still be requested at http://aa.usno.navy.mil/data/docs/SolarEclipses.php.In addition the 2017 August 21 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) consolidates all of the USNO resources for this event, including a Google Map view of the eclipse track designed by Her Majesty's Nautical Almanac Office (HMNAO).Looking further ahead, a 2024 April 8 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2024.php) is also available.

  8. COMPLEX VARIABILITY OF THE Hα EMISSION LINE PROFILE OF THE T TAURI BINARY SYSTEM KH 15D: THE INFLUENCE OF ORBITAL PHASE, OCCULTATION BY THE CIRCUMBINARY DISK, AND ACCRETION PHENOMENA

    International Nuclear Information System (INIS)

    Hamilton, Catrina M.; Johns-Krull, Christopher M.; Mundt, Reinhard; Herbst, William; Winn, Joshua N.

    2012-01-01

    We have obtained 48 high-resolution echelle spectra of the pre-main-sequence eclipsing binary system KH 15D (V582 Mon, P = 48.37 days, e ∼ 0.6, M A = 0.6 M ☉ , M B = 0.7 M ☉ ). The eclipses are caused by a circumbinary disk (CBD) seen nearly edge on, which at the epoch of these observations completely obscured the orbit of star B and a large portion of the orbit of star A. The spectra were obtained over five contiguous observing seasons from 2001/2002 to 2005/2006 while star A was fully visible, fully occulted, and during several ingress and egress events. The Hα line profile shows dramatic changes in these time series data over timescales ranging from days to years. A fraction of the variations are due to 'edge effects' and depend only on the height of star A above or below the razor sharp edge of the occulting disk. Other observed variations depend on the orbital phase: the Hα emission line profile changes from an inverse P-Cygni-type profile during ingress to an enhanced double-peaked profile, with both a blue and a red emission component, during egress. Each of these interpreted variations are complicated by the fact that there is also a chaotic, irregular component present in these profiles. We find that the complex data set can be largely understood in the context of accretion onto the stars from a CBD with gas flows as predicted by the models of eccentric T Tauri binaries put forward by Artymowicz and Lubow, Günther and Kley, and de Val-Borro et al. In particular, our data provide strong support for the pulsed accretion phenomenon, in which enhanced accretion occurs during and after perihelion passage.

  9. Modeling and Detection of Ice Particle Accretion in Aircraft Engine Compression Systems

    Science.gov (United States)

    May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei

    2012-01-01

    The accretion of ice particles in the core of commercial aircraft engines has been an ongoing aviation safety challenge. While no accidents have resulted from this phenomenon to date, numerous engine power loss events ranging from uneventful recoveries to forced landings have been recorded. As a first step to enabling mitigation strategies during ice accretion, a detection scheme must be developed that is capable of being implemented on board modern engines. In this paper, a simple detection scheme is developed and tested using a realistic engine simulation with approximate ice accretion models based on data from a compressor design tool. These accretion models are implemented as modified Low Pressure Compressor maps and have the capability to shift engine performance based on a specified level of ice blockage. Based on results from this model, it is possible to detect the accretion of ice in the engine core by observing shifts in the typical sensed engine outputs. Results are presented in which, for a 0.1 percent false positive rate, a true positive detection rate of 98 percent is achieved.

  10. 1982-1984 Eclipse of Epsilon Aurigae

    International Nuclear Information System (INIS)

    Stencel, R.E.

    1985-09-01

    A workshop proceedings concerned with the new data collected during the 1982-1984 eclipse period of the 27-year system Epsilon Aurigae is presented. This binary star has been a classic problem in astrophysics because the opaque eclipsing object is nonstellar, and probably disk shaped. Invited papers concerning the history of the system, optical, infrared and ultraviolet photometry, optical polarimetry and ultraviolet spectroscopy are included. An invited paper concerning comprehensive theoretical interpretation in the context of stellar evolution also is included

  11. Periodic Accretion-powered Flares from Colliding EMRIs as TDE Imposters

    Science.gov (United States)

    Metzger, Brian D.; Stone, Nicholas C.

    2017-07-01

    When a main-sequence star undergoes Roche lobe overflow onto a supermassive black hole (SMBH) in a circular extreme mass ratio inspiral (EMRI), a phase of steady mass transfer ensues. Over millions of years, the binary evolves to a period minimum before reversing course and migrating outward as a brown dwarf. Because the time interval between consecutive EMRIs is comparable to the mass-transfer timescale, the semimajor axes of two consecutive mass-transferring EMRIs will cross on a radial scale of less than a few au. We show that such EMRI crossing events are inevitably accompanied by a series of mildly relativistic, grazing physical collisions between the stars. Each collision strips a small quantity of mass, primarily from the more massive star, which generally increases their radial separation to set up the next collision after a delay of decades to centuries (or longer) set by further gravitational radiation. Depending on the mass of the SMBH, this interaction can result in {N}{{c}}˜ 1{--}{10}4 gas production events of mass ˜ {M}⊙ /{N}{{c}}, thus powering a quasi-periodic sequence of SMBH accretion-powered flares over a total duration of thousands of years or longer. Although the EMRI rate is 2-3 orders of magnitude lower than the rate of tidal disruption events (TDEs), the ability of a single interacting EMRI pair to produce a large number of luminous flares—and to make more judicious use of the available stellar fuel—could make their observed rate competitive with the TDE rate, enabling them to masquerade as “TDE imposters.” Gas produced by EMRI collisions is easier to circularize than the highly eccentric debris streams produced in TDEs. We predict flares with bolometric luminosities that decay both as power laws shallower than {t}-5/3 and as decaying exponentials in time. Viscous spreading of the gaseous disks produced by the accumulation of previous mass-stripping events will place a substantial mass of gas on radial scales ≳ 10{--}100 {au

  12. Accretion-Ejection Instability in magnetized accretion disk around compact objects

    International Nuclear Information System (INIS)

    Varniere, Peggy

    2002-01-01

    The major problem in accretion physics come from the origin of angular momentum transfer in the disk. My PhD deal with a mechanism (the Accretion-Ejection Instability, AEI) able to explain and link together accretion in the inner region of the disk and ejection. This instability occurs in magnetized accretion disk near equipartition with gas pressure. We first study the impact of some relativistic effects on the instability, particularly on the m = 1 mode. And compared the results with the Quasi-Periodic Oscillation (QPO) observed in micro-quasars. In the second part we study analytically and numerically the Alfven wave emission mechanism which re-emit the angular momentum and energy taken from the inner region of the disk into the corona. The last part deals with MHD numerical simulation. First of all a 2D non-linear disk simulation which contribute to QPO modelization. The last chapter is about a beginning collaboration on 3D simulation in order to study the Alfven wave emission in the corona. (author) [fr

  13. X-RAY DETERMINATION OF THE VARIABLE RATE OF MASS ACCRETION ONTO TW HYDRAE

    Energy Technology Data Exchange (ETDEWEB)

    Brickhouse, N. S.; Cranmer, S. R.; Dupree, A. K.; Guenther, H. M.; Wolk, S. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Luna, G. J. M. [Current address: Instituto de Astronomia y Fisica del Espacio (IAFE), Buenos Aires (Argentina)

    2012-12-01

    Diagnostics of electron temperature (T{sub e} ), electron density (n{sub e} ), and hydrogen column density (N{sub H}) from the Chandra High Energy Transmission Grating spectrum of He-like Ne IX in TW Hydrae (TW Hya), in conjunction with a classical accretion model, allow us to infer the accretion rate onto the star directly from measurements of the accreting material. The new method introduces the use of the absorption of Ne IX lines as a measure of the column density of the intervening, accreting material. On average, the derived mass accretion rate for TW Hya is 1.5 Multiplication-Sign 10{sup -9} M{sub Sun} yr{sup -1}, for a stellar magnetic field strength of 600 G and a filling factor of 3.5%. Three individual Chandra exposures show statistically significant differences in the Ne IX line ratios, indicating changes in N{sub H}, T{sub e} , and n{sub e} by factors of 0.28, 1.6, and 1.3, respectively. In exposures separated by 2.7 days, the observations reported here suggest a five-fold reduction in the accretion rate. This powerful new technique promises to substantially improve our understanding of the accretion process in young stars.

  14. On accretion from an inhomogeneous medium

    International Nuclear Information System (INIS)

    Davies, R.E.; Pringle, J.E.

    1980-01-01

    Hypersonic accretion flow in two dimensions from an infinite medium which contains a small density and/or velocity gradient is considered. To first order in rsub(a)/h, where rsub(a) is the accretion radius and h the scale of the gradient, the accretion rate is unaffected and the accreted angular momentum is zero. Thus previous estimates of the amount of angular momentum accreted may severely overestimate the actual value. (author)

  15. Snow accretion on overhead wires

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Y. [Meteorological Research Inst. for Technology Co. Ltd., Tokyo (Japan); Tachizaki, S.; Sudo, N. [Tohoku Electric Power Co. Ltd., Miyagi (Japan)

    2005-07-01

    Wet snow accretion can cause extensive damage to transmission systems. This paper reviewed some of the difficulties faced by researchers in the study of wet snow accretion on overhead lines in Japan. The study of snow accretion phenomena is complicated by the range of phase changes in water. Snowflakes produced in an upper atmospheric layer with a temperature below freezing do not melt when they go through a lower atmospheric layer with a temperature above freezing, but are in a mixed state of solid and liquid due to the latent heat of melting. The complicated properties of water make studies of snow accretion difficult, as well as the fact that snow changes its physical properties rapidly, due to the effects of ambient temperature, rainfall, and solar radiation. The adhesive forces that cause snow accretion include freezing; bonding through freezing; sintering; condensation and freezing of vapor in the air; mechanical intertwining of snowflakes; capillary action due to liquids; coherent forces between ice particles and water formed through the metamorphosis of snowflakes. In addition to these complexities, differences in laboratory room environments and natural snow environments can also pose difficulties for researchers. Equations describing the relationship between the density of accreted snow and the meteorological parameters involved were presented, as well as empirical equations which suggested that snow accretion efficiency has a dependency on air temperature. An empirical model for estimating snow loads in Japan was outlined, as well as various experiments observing show shedding. Correlations for wet snow accretion included precipitation intensity; duration of precipitation; air temperature; wind speed and wind direction in relation to the overhead line. Issues concerning topography and wet snow accretion were reviewed. It was concluded that studies of snow accretion will benefit by the collection of data in each matrix of the relevant parameters. 12 refs

  16. Exoplanet Characterization With Spitzer Eclipses

    Science.gov (United States)

    Harrington, Joseph

    We will analyze our existing Spitzer eclipse data for 11 exoplanets (GJ 436b, WASP-8b, WASP-29b, WASP-11b, TrES-1, WASP-34b, WASP-43b, HD 209458b, HAT-P-30b, HAT-P-13b, and WASP-12b) along with all other Spitzer eclipse and transit data for these systems (723 hours of total data). In combination with transit results, these measurements reveal the surface fluxes emitted by the planets' atmospheres in the six Spitzer bandpasses (3.6, 4.5, 5.8, 8.0, 16, and 24 1-4m), as well as orbital eccentricity and in a few cases possibly even precession rate. The fluxes, in turn, can constrain atmospheric composition and thermal profiles. We propose here to analyze data for these planets using Monte Carlo-driven, radiative-transfer, model-fitting codes; to conduct aggregate analyses; and to develop and share statistical modeling tools. Secondary eclipses provide us with a unique way to characterize exoplanetary atmospheres. Since other techniques like spectroscopy divide the planetary signal into many channels, they require very high signal-to-noise ratio (S/N) and are only possible for a few planets. Broadband eclipse photometry is thus the only technique that can measure dozens of atmospheres and identify the mechanisms that cause planets at a given irradiation level to behave so differently from one another. Until JWST becomes available, the broad variety of Spitzer data that we already have in hand, along with observations from the Hubble Space Telescope and possibly SOFIA, are our best way to understand the wide diversity of exoplanetary atmospheres. Since 2010, the team has produced six papers from a new, highly modular pipeline that implements optimal methods for analysis of Spitzer photometric time series, and our efficiency is increasing. The sensitivity needed for these measurements is up to 100 times better than Spitzer's design criteria, so careful treatment of systematic error is critically important and first-order approximations rarely work. The new pipeline

  17. MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries

    Science.gov (United States)

    Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team

    2016-01-01

    Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.

  18. Solar Eclipse-Induced Changes in the Ionosphere over the Continental US

    Science.gov (United States)

    Erickson, P. J.; Zhang, S.; Goncharenko, L. P.; Coster, A. J.; Hysell, D. L.; Sulzer, M. P.; Vierinen, J.

    2017-12-01

    For the first time in 26 years, a total solar eclipse occurred over the continental United States on 21 August 2017, between 16:00-20:00 UT. We report on American solar eclipse observations of the upper atmosphere, conducted by a team led by MIT Haystack Observatory. Efforts measured ionospheric and thermospheric eclipse perturbations. Although eclipse effects have been studied for more than 50 years, recent major sensitivity and resolution advances using radio-based techniques are providing new information on the eclipse ionosphere-thermosphere-mesosphere (ITM) system response. Our study was focused on quantifying eclipse effects on (1) traveling ionospheric disturbances (TIDs) and atmospheric gravity waves (AGWs); (2) spatial ionospheric variations associated with the eclipse; and (3) altitudinal and temporal ionospheric profile variations. We present selected early findings on ITM eclipse response including a dense global network of 6000 GNSS total electron content (TEC) receivers (100 million measurements per day; 1x1 degree spatial grid) and the Millstone Hill and Arecibo incoherent scatter radars. TEC depletions of up to 60% in magnitude were associated with the eclipse umbra and penumbra and consistently trailed the eclipse totality center. TEC enhancements associated with prominent orographic features were observed in the western US due to complex interactions as the lower atmosphere cooled in response to decreasing EUV energy inputs. Strong TIDs in the form of bow waves, stern waves, and a stern wake were observed in TEC data. Altitude-resolved plasma parameter profiles from Millstone Hill saw a nearly 50% decrease in F region electron density in vertical profiles, accompanied by a corresponding 200-250 K decrease in electron temperature. Wide field Millstone Hill radar scans showed similar decreases in electron density to the southwest, maximizing along the line of closest approach to totality. Data is available to the research community through the MIT

  19. New Insights on the Accretion Disk-Winds Connection in Radio-Loud AGNs from Suzaku

    Science.gov (United States)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Cappi, M.; Reynolds, S.; Mushotzky, R. F.

    2011-01-01

    From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ,,approx.0.1 c in three of them, namely 3C III, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C III to monitor its outflow on approx.7 days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disc-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/jets.

  20. Geospatial Analysis of Low-frequency Radio Signals Collected During the 2017 Solar Eclipse

    Science.gov (United States)

    Liles, W. C.; Nelson, J.; Kerby, K. C.; Lukes, L.; Henry, J.; Oputa, J.; Lemaster, G.

    2017-12-01

    The total solar eclipse of 2017, with a path that crosses the continental United States, offers a unique opportunity to gather geospatially diverse data. The EclipseMob project has been designed to crowdsource this data by building a network of citizen scientists across the country. The project focuses on gathering low-frequency radio wave data before, during, and after the eclipse. WWVB, a 60 KHz transmitter in Ft. Collins, CO operated by the National Institutes of Standard and Technology, will provide the transmit signal that will be observed by project participants. Participating citizen scientists are building simple antennas and receivers designed by the EclipseMob team and provided to participants in the form of "receiver kits." The EclipseMob receiver downsamples the 60 KHz signal to 18 KHz and supplies the downsampled signal to the audio jack of a smartphone. A dedicated app is used to collect data and upload it to the EclipseMob server. By studying the variations in WWVB amplitude observed during the eclipse at over 150 locations across the country, we aim to understand how the ionization of the D layer of the ionosphere is impacted by the eclipse as a function of both time and space (location). The diverse locations of the EclipseMob participants will provide data from a wide variety of propagation paths - some crossing the path of the total eclipse, and some remaining on the same side of the eclipse path as the transmitter. Our initial data analysis will involve identifying characteristics that define geospatial relationships in the behavior of observed WWVB signal amplitudes.

  1. On the Importance of Solar Eclipse Geometry in the Interpretation of Ionospheric Observations

    Science.gov (United States)

    Stankov, S.; Verhulst, T. G. W.

    2017-12-01

    A reliable interpretation of solar eclipse effects on the geospace environment, and on the ionosphere in particular, necessitates a careful consideration of the so-called eclipse geometry. A solar eclipse is a relatively rare astronomical phenomenon, which geometry is rather complex, specific for each event, and fast changing in time. The standard, most popular way to look at the eclipse geometry is via the two-dimensional representation (map) of the solar obscuration on the Earth's surface, in which the path of eclipse totality is drawn together with isolines of the gradually-decreasing eclipse magnitude farther away from this path. Such "surface maps" are widely used to readily explain some of the solar eclipse effects including, for example, the well-known decrease in total ionisation (due to the substantial decrease in solar irradiation), usually presented by the popular and easy to understand ionospheric characteristic of Total Electron Content (TEC). However, many other effects, especially those taking place at higher altitudes, cannot be explained in this fashion. Instead, a complete, four-dimensional (4D) description of the umbra (and penumbra), would be required. This presentation will address the issue of eclipse geometry effects on various ionospheric observations carried out during the total solar eclipse of August 21, 2017. In particular, GPS-based TEC and ionosonde measurements will be analysed and the eclipse effects on the ionosphere will be interpreted with respect to the actual eclipse geometry at ionospheric heights. Whenever possible, a comparison will be made with results from previous events, such as the ones from March 20, 2015 and October 3, 2005.

  2. EVOLUTION OF MASSIVE PROTOSTARS VIA DISK ACCRETION

    International Nuclear Information System (INIS)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yorke, Harold W.

    2010-01-01

    Mass accretion onto (proto-)stars at high accretion rates M-dot * > 10 -4 M sun yr -1 is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of 'cold' disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10 -3 M sun yr -1 , the radius of a protostar is initially small, R * ≅ a few R sun . After several solar masses have accreted, the protostar begins to bloat up and for M * ≅ 10 M sun the stellar radius attains its maximum of 30-400 R sun . The large radius ∼100 R sun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M * ≅ 30 M sun , independent of the accretion geometry. For accretion rates exceeding several 10 -3 M sun yr -1 , the protostar never contracts to the ZAMS. The very large radius of several hundreds R sun results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.

  3. Search for Protoplanetary and Debris Disks Around Millisecond Pulsars

    National Research Council Canada - National Science Library

    Foster, R. S; Fischer, J

    1995-01-01

    .... If planetary formation is common around millisecond pulsars and if it occurs by coalescence of small dust particles within a protoplanetary disk, as is thought to have occurred during the formation...

  4. Instrumentation for millisecond-resolution scattering studies

    International Nuclear Information System (INIS)

    Stephenson, G.B.; Ludwig, K.F. Jr.; Jordan-Sweet, J.L.; Brauer, S.; Mainville, J.; Yang, Y.S.; Sutton, M.

    1989-01-01

    Time-resolved x-ray scattering studies of phase transition kinetics have been carried out using the wide-bandpass monochromator and fast linear position-sensitive detector system at the IBM/MIT beamline X-20C at the National Synchrotron Light Source (NSLS). We report here on the instrumentation that has been developed for these studies, and in particular on the methods used to measure, change, and control sample temperature with millisecond resolution

  5. An RXTE observation of the intermediate polar XY Arietis

    International Nuclear Information System (INIS)

    Hellier, Coel

    1999-01-01

    RXTE's observation of XY Ari covered more eclipses of this close binary at a higher count rate than ever before. The eclipses located the accretion regions on the white dwarf and showed that they covered < 0.002 of the white dwarf surface. Additionally we recorded the first outburst of XY Ari seen, allowing us to watch as an unstable accretion disk overwhelmed the magnetic field of the white dwarf and pushed inwards, cutting off our line-of-sight to the lower accretion pole. We also find limits on the mass of the white dwarf

  6. Nearly collisionless spherical accretion

    International Nuclear Information System (INIS)

    Begelman, M.C.

    1977-01-01

    A fluid-like gas accretes much more efficiently than a collisionless gas. The ability of an accreting gas to behave like a fluid depends on the relationship of the mean free path of a gas particle at r → infinity lambdasub(infinity), to the typical length scales associated with the star-gas system. This relationship is examined in detail. For constant collision cross-section evidence is found for a rapid changeover from collisionless to fluid-like accretion flow when lambdasub(infinity) drops below a certain value, but for hard Coulomb collisions, the transition is more gradual, and is sensitive to the adiabatic index of the gas at r→ infinity. To these results must be added the effects of the substantial cusp of bound particles, which always develops in a system with arbitrarily small but non-zero cross-section. The density run in such a cusp depends on the collision properties of the particles. 'Loss-cone' accretion from the cusp may in some cases exceed the predicted accretion rate. (author)

  7. TIMING OBSERVATIONS OF PSR J1023+0038 DURING A LOW-MASS X-RAY BINARY STATE

    Energy Technology Data Exchange (ETDEWEB)

    Jaodand, Amruta; Archibald, Anne M.; Hessels, Jason W. T.; Bassa, Cees; Deller, Adam T. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Bogdanov, Slavko [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); D’Angelo, Caroline R.; Patruno, Alessandro [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands)

    2016-10-20

    Transitional millisecond pulsars (tMSPs) switch, on roughly multi-year timescales, between rotation-powered radio millisecond pulsar (RMSP) and accretion-powered low-mass X-ray binary (LMXB) states. The tMSPs have raised several questions related to the nature of accretion flow in their LMXB state and the mechanism that causes the state switch. The discovery of coherent X-ray pulsations from PSR J1023+0038 (while in the LMXB state) provides us with the first opportunity to perform timing observations and to compare the neutron star’s spin variation during this state to the measured spin-down in the RMSP state. Whereas the X-ray pulsations in the LMXB state likely indicate that some material is accreting onto the neutron star’s magnetic polar caps, radio continuum observations indicate the presence of an outflow. The fraction of the inflowing material being ejected is not clear, but it may be much larger than that reaching the neutron star’s surface. Timing observations can measure the total torque on the neutron star. We have phase-connected nine XMM-Newton observations of PSR J1023+0038 over the last 2.5 years of the LMXB state to establish a precise measurement of spin evolution. We find that the average spin-down rate as an LMXB is 26.8 ± 0.4% faster than the rate (−2.39 × 10{sup −15} Hz s{sup −1}) determined during the RMSP state. This shows that negative angular momentum contributions (dipolar magnetic braking, and outflow) exceed positive ones (accreted material), and suggests that the pulsar wind continues to operate at a largely unmodified level. We discuss implications of this tight observational constraint in the context of possible accretion models.

  8. Spatiotemporal change of sky polarization during the total solar eclipse on 29 March 2006 in Turkey: polarization patterns of the eclipsed sky observed by full-sky imaging polarimetry.

    Science.gov (United States)

    Sipocz, Brigitta; Hegedüs, Ramón; Kriska, György; Horváth, Gábor

    2008-12-01

    Using 180 degrees field-of-view (full-sky) imaging polarimetry, we measured the spatiotemporal change of the polarization of skylight during the total solar eclipse on 29 March 2006 in Turkey. We present our observations here on the temporal variation of the celestial patterns of the degree p and angle alpha of linear polarization of the eclipsed sky measured in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We also report on the temporal and spectral change of the positions of neutral (unpolarized, p = 0) points, and points with local minima or maxima of p of the eclipsed sky. Our results are compared with the observations performed by the same polarimetric technique during the total solar eclipse on 11 August 1999 in Hungary. Practically the same characteristics of celestial polarization were encountered during both eclipses. This shows that the observed polarization phenomena of the eclipsed sky may be general.

  9. After the Eclipse

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Chief Editor's column - After the Eclipse. Rajaram Nityananda. Article-in-a-Box Volume 1 Issue 2 February 1996 pp 2-3. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/001/02/0002-0003 ...

  10. Absolute dimensions of eclipsing binaries XXVII. V1130 tauri

    DEFF Research Database (Denmark)

    Clausen, Jens Viggo; Olsen, E, H.; Helt, B. E.

    2010-01-01

    stars: evolution / stars: fundamental parameters / stars: individual: V1130¿Tau / binaries: eclipsing / techniques: photometric / techniques: radial velocities Udgivelsesdato: 17 Feb.......stars: evolution / stars: fundamental parameters / stars: individual: V1130¿Tau / binaries: eclipsing / techniques: photometric / techniques: radial velocities Udgivelsesdato: 17 Feb....

  11. Outreach to Scientists and to the Public about the Scientific Value of Solar Eclipses

    Science.gov (United States)

    Pasachoff, J.

    2017-12-01

    The Great American Eclipse of August 21, 2017, provided an unprecedented opportunity for outreach among American audiences on a giant scale in the age of social media. Professonal scientists and other educators, however, were not exempt from ignorance of the remaining scientific value of observing solar eclipses, often mistakenly thinking that space satellites or mountaintop observatories could make artificial eclipses as good as natural ones, which they can't. Further, as Chair of the Working Group on Eclipses of the International Astronomical Union and as a frequent observer of solar eclipses in other countries, I felt an obligation to provide at-least-equal hospitality in our country. Here I discuss our welcome to and interaction with eclipse scientists from Greece, Slovakia, Australia, Bulgaria, Iran, China, and Japan and their participation in the eclipse observations. I describe my own outreach about the still-vital solar-eclipse observations through my August 2017 articles in Nature Astronomy and Scientific American as well as through book reviews in Nature and Phi Beta Kappa's Key Reporter and co-authorship of a Resource Letter on Observing Solar Eclipses in the July issue og the American Journal of Physics. I describe my eclipse-day Academic Minute on National Public Radio via WAMC and on http://365daysofastronomy.org, a website started during the International Year of Astronomy. I discuss my blog post on lecturing to pre-school through elementary-school students for the National Geographic Society's Education Blog. I show my Op-Ed pre-eclipse in the Washington Post. I discuss our eclipse-night broadcast of an eclipse program on PBS's NOVA, and its preparation over many months, back as far and farther than the February 26, 2017, annular solar eclipse observed from Argentinian Patagonia, with images from prior eclipses including 2013 in Gabon and 2015 in Svalbard. My work at the 2017 total solar eclipse was supported in large part with grants from the

  12. Magnetohydrodynamics of accretion disks

    International Nuclear Information System (INIS)

    Torkelsson, U.

    1994-04-01

    The thesis consists of an introduction and summary, and five research papers. The introduction and summary provides the background in accretion disk physics and magnetohydrodynamics. The research papers describe numerical studies of magnetohydrodynamical processes in accretion disks. Paper 1 is a one-dimensional study of the effect of magnetic buoyancy on a flux tube in an accretion disk. The stabilizing influence of an accretion disk corona on the flux tube is demonstrated. Paper 2-4 present numerical simulations of mean-field dynamos in accretion disks. Paper 11 verifies the correctness of the numerical code by comparing linear models to previous work by other groups. The results are also extended to somewhat modified disk models. A transition from an oscillatory mode of negative parity for thick disks to a steady mode of even parity for thin disks is found. Preliminary results for nonlinear dynamos at very high dynamo numbers are also presented. Paper 3 describes the bifurcation behaviour of the nonlinear dynamos. For positive dynamo numbers it is found that the initial steady solution is replaced by an oscillatory solution of odd parity. For negative dynamo numbers the solution becomes chaotic at sufficiently high dynamo numbers. Paper 4 continues the studies of nonlinear dynamos, and it is demonstrated that a chaotic solution appears even for positive dynamo numbers, but that it returns to a steady solution of mixed parity at very high dynamo numbers. Paper 5 describes a first attempt at simulating the small-scale turbulence of an accretion disk in three dimensions. There is only find cases of decaying turbulence, but this is rather due to limitations of the simulations than that turbulence is really absent in accretion disks

  13. Eclipse 2017: Partnering with NASA MSFC to Inspire Students

    Science.gov (United States)

    Fry, Craig " Ghee" Adams, Mitzi; Gallagher, Dennis; Krause, Linda

    2017-01-01

    NASA's Marshall Space Flight Center (MSFC) is partnering with the U.S. Space and Rocket Center (USSRC), and Austin Peay State University (APSU) to engage citizen scientists, engineers, and students in science investigations during the 2017 American Solar Eclipse. Investigations will support the Citizen Continental America Telescopic Eclipse (CATE), Ham Radio Science Citizen Investigation(HamSCI), and Interactive NASA Space Physics Ionosphere Radio Experiments (INSPIRE). All planned activities will engage Space Campers and local high school students in the application of the scientific method as they seek to explore a wide range of observations during the eclipse. Where planned experiments touch on current scientific questions, the camper/students will be acting as citizen scientists, participating with researchers from APSU and MSFC. Participants will test their expectations and after the eclipse, share their results, experiences, and conclusions to younger Space Campers at the US Space & Rocket Center.

  14. Ancient Chinese observations of physical phenomena attending solar eclipses

    International Nuclear Information System (INIS)

    Wang, P.K.; Siscoe, G.L.

    1980-01-01

    The realization that solar activity probably undergoes changes in qualitative character on time scales greater than the 11 or 22 year cycle but short compared to the duration of recorded history gives renewed importance to historical documents describing the state of solar activity. Modern eclipse observation reveal the presence of solar acitivity through the appearance of coronal structures and prominences. It has been widely remarked that eclipse records prior to the 18th century are uniformly silent on these conspicuous solar eclipse features, raising the possibility, however unlikely, that a change in solar activity has occurred which rendered them only recently noticeable. We present here material from ancient Chinese sources, primarily astrological, that describe phenomena attending solar eclipses that are almost certainly coronal structures and prominences. Thus, these aspects of the present character of solar activity have apparently occurred at other times in history, if not continuously. (orig.)

  15. Two-temperature accretion disks in pair equilibrium

    International Nuclear Information System (INIS)

    Kusunose, Masaaki; Takahara, Fumio.

    1989-01-01

    We investigate two-temperature accretion disks with electron-positron pair production, taking account of the bremsstrahlung and Comptonization of soft photons produced by the cyclotron higher harmonics. The properties of the disks are qualitatively the same as those of disks in which bremsstrahlung is the only photon source. For an accretion rate higher than a critical value, M cr , no steady solutions exist for a certain range of radial distance from a central black hole. The critical value increases only slightly with the input of soft photons; the increment is 45%, i.e., M cr ∼ 0.43 M Edd , for the viscosity parameter α = 0.1, where M Edd ≡ L Edd /c 2 = 4πGM BH m p /(σ T c) with M BH being the mass of the central black hole. Furthermore, the disks are unstable against perturbations of the proton temperature. For α ∼ 0.1, the equipartition magnetic field, and a range of accretion rates, emission spectra obey the power law with a spectral index of -0.7 to -0.6, which coincides with the observed universal X-ray spectra of Seyfert galaxies. Brief comments on the model of the γ-ray flare of Cyg X-1 are also given. (author)

  16. LOFAR Discovery of the Fastest-spinning Millisecond Pulsar in the Galactic Field

    Science.gov (United States)

    Bassa, C. G.; Pleunis, Z.; Hessels, J. W. T.; Ferrara, E. C.; Breton, R. P.; Gusinskaia, N. V.; Kondratiev, V. I.; Sanidas, S.; Nieder, L.; Clark, C. J.; Li, T.; van Amesfoort, A. S.; Burnett, T. H.; Camilo, F.; Michelson, P. F.; Ransom, S. M.; Ray, P. S.; Wood, K.

    2017-09-01

    We report the discovery of PSR J0952-0607, a 707 Hz binary millisecond pulsar that is now the fastest-spinning neutron star known in the Galactic field (I.e., outside of a globular cluster). PSR J0952-0607 was found using LOFAR at a central observing frequency of 135 MHz, well below the 300 MHz to 3 GHz frequencies typically used in pulsar searches. The discovery is part of an ongoing LOFAR survey targeting unassociated Fermi-Large Area Telescope γ-ray sources. PSR J0952-0607 is in a 6.42 hr orbit around a very low-mass companion ({M}{{c}}≳ 0.02 {M}⊙ ), and we identify a strongly variable optical source, modulated at the orbital period of the pulsar, as the binary companion. The light curve of the companion varies by 1.6 mag from {r}{\\prime }=22.2 at maximum to {r}{\\prime }> 23.8, indicating that it is irradiated by the pulsar wind. Swift observations place a 3σ upper limit on the 0.3-10 {keV} X-ray luminosity of {L}Xdispersion measure). Though no eclipses of the radio pulsar are observed, the properties of the system classify it as a black widow binary. The radio pulsed spectrum of PSR J0952-0607, as determined through flux density measurements at 150 and 350 MHz, is extremely steep with α ˜ -3 (where S\\propto {ν }α ). We discuss the growing evidence that the fastest-spinning radio pulsars have exceptionally steep radio spectra, as well as the prospects for finding more sources like PSR J0952-0607.

  17. Cold, clumpy accretion onto an active supermassive black hole.

    Science.gov (United States)

    Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W

    2016-06-09

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  18. Impact of the 2017 Solar Eclipse on Smart Grid

    Science.gov (United States)

    Reda, I.; Andreas, A.; Sengupta, M.; Habte, A.

    2017-12-01

    With the increasing interest in using solar energy as a major contributor to renewable energy utilization, and with the focus on using smart grids to optimize the use of electrical energy based on demand and resources from different locations, arises the need to know the Moon position in the sky with respect to the Sun. When a solar eclipse occurs, the Moon disk might totally or partially shade the Sun disk, which can affect the irradiance level from the sun disk, consequently, a resource on the grid is affected. The Moon position can then provide the smart grid users with information about potential total or partial solar eclipse at different locations in the grid, so that other resources on the grid can be directed where this might be needed when such phenomena occurs. At least five solar eclipses occur yearly at different locations on earth, they can last three hours or more depending on the location, which can have devastating effects on the smart grid users. On August 21, 2017 a partial solar eclipse will occur at the National Renewable Energy Laboratory in Golden, Colorado, USA. The solar irradiance will be measured during the eclipse and compared to the data generated by a model for validation.

  19. Absolute dimensions of solar-type eclipsing binaries III. EW orionis

    DEFF Research Database (Denmark)

    Clausen, Jens Viggo; Bruntt, H.; Olsen, E. H.

    2010-01-01

    stars: evolution / stars: fundamental parameters / stars: abundances / binaries: eclipsing / techniques: photometric / techniques: spectroscopic Udgivelsesdato: 23 Feb.......stars: evolution / stars: fundamental parameters / stars: abundances / binaries: eclipsing / techniques: photometric / techniques: spectroscopic Udgivelsesdato: 23 Feb....

  20. A METAL-RICH LOW-GRAVITY COMPANION TO A MASSIVE MILLISECOND PULSAR

    International Nuclear Information System (INIS)

    Kaplan, D. L.; Bhalerao, V. B.; Van Kerkwijk, M. H.; Koester, D.; Kulkarni, S. R.; Stovall, K.

    2013-01-01

    Most millisecond pulsars with low-mass companions are in systems with either helium-core white dwarfs or non-degenerate (''black widow'' or ''redback'') stars. A candidate counterpart to PSR J1816+4510 was identified by Kaplan et al. whose properties were suggestive of both types of companions although identical to neither. We have assembled optical spectroscopy of the candidate companion and confirm that it is part of the binary system with a radial velocity amplitude of 343 ± 7 km s –1 , implying a high pulsar mass, M psr sin 3 i = 1.84 ± 0.11 M ☉ , and a companion mass M c sin 3 i = 0.193 ± 0.012 M ☉ , where i is the inclination of the orbit. The companion appears similar to proto-white dwarfs/sdB stars, with a gravity log 10 (g) = 4.9 ± 0.3, and effective temperature 16, 000 ± 500 K. The strongest lines in the spectrum are from hydrogen, but numerous lines from helium, calcium, silicon, and magnesium are present as well, with implied abundances of roughly 10 times solar (relative to hydrogen). As such, while from the spectrum the companion to PSR J1816+4510 is superficially most similar to a low-mass white dwarf, it has much lower gravity, is substantially larger, and shows substantial metals. Furthermore, it is able to produce ionized gas eclipses, which had previously been seen only for low-mass, non-degenerate companions in redback or black widow systems. We discuss the companion in relation to other sources, but find that we understand neither its nature nor its origins. Thus, the system is interesting for understanding unusual stellar products of binary evolution, as well as, independent of its nature, for determining neutron-star masses.

  1. Girl Scout Stars: Engaging Girl Scouts in the 2017 Total Eclipse

    Science.gov (United States)

    Harman, P. K.

    2017-12-01

    Reaching for the Stars: NASA Science for Girl Scouts (Girl Scout Stars) engages Girl Scouts in observing the 2017 eclipse. Three councils are host-sponsors of Girl Scout Total Eclipse Destinations,. Total Eclipse of the Heartland, sponsored by Girl Scouts of Southern Illinois, begins with planetarium, and science center visits in St. Louis, and transits to Carbondale for the eclipse. The Great Eclipse Adventure, sponsored by the Girl Scouts of the Missouri Heartland, features hands-on science activities led by Astronomy and Physics faculty and grad students at University of Missouri, Columbia, MO, and observing the eclipse at a camp nearby. Eyes to the Sky: A Once in a Lifetime Destination, by the Girl Scouts of South Carolina - Mountains to Midlands, visits a Challenger Center, a planetarium, and observatory, and culminates at Camp MaBak, Marietta, SC. Girl Scout Destinations are travel adventures, for individual girls ages 11 and older, that are inspiring, life-changing experiences. Destinations are determined via an application and review process by Girls Scouts of the USA. Girl Scout Stars also developed an Eclipse Activity Guide and kit box of materials, distributed the materials to 91 Girl Scout Councils, and delivered webinar training to councils. The eclipse materials enrich the girls' summer camp experiences with activities that promote understanding the Sun-Earth-Moon relationship, the solar system and safe eclipse viewing; and that feature science practices. Examples of the reach of the kit boxes are Girl Scouts of Montana and Wyoming Total Eclipse Event in Casper, WY, and the Girl Scouts of Northern California summer camps featuring the activities. In Girl Scouting, girls discover their skills, talents and what they care about; connect with other Girl Scouts and people in their community; and take action to change the world. This is called the Girl Scout Leadership Experience. With girl-led, hands on activities where girls can team up and work together

  2. Eclipse effects on field crops and marine zooplankton: the 29 March 2006 total solar eclipse

    Science.gov (United States)

    Economou, G.; Christou, E. D.; Giannakourou, A.; Gerasopoulos, E.; Georgopoulos, D.; Kotoulas, V.; Lyra, D.; Tsakalis, N.; Tzortziou, M.; Vahamidis, P.; Papathanassiou, E.; Karamanos, A.

    2008-08-01

    Some effects in the biosphere from the Total Solar Eclipse of 29 March 2006 were investigated in field crops and marine zooplankton. Taking into account the decisive role of light on plant life and productivity, measurements of photosynthesis and stomatal behaviour were conducted on seven important field-grown cereal and leguminous crops. A drop in photosynthetic rates, by more than a factor of 5 in some cases, was observed, and the minimum values of photosynthetic rates ranged between 3.13 and 10.13 μmol CO2 m-2 s-1. The drop in solar irradiance and the increase in mesophyll CO2-concentration during the eclipse did not induce stomatal closure thus not blocking CO2 uptake by plants. Light effects on the photochemical phase of photosynthesis may be responsible for the observed depression in photosynthetic rates. Field studies addressing the migratory responses of marine zooplankton (micro-zooplankton (ciliates), and meso-zooplankton) due to the rapid changes in underwater light intensity were also performed. The light intensity attenuation was simulated with the use of accurate underwater radiative transfer modeling techniques. Ciliates, responded to the rapid decrease in light intensity during the eclipse adopting night-time behaviour. From the meso-zooplankton assemblage, various vertical migratory behaviours were adopted by different species.

  3. The Gaugamela Battle Eclipse: An Archaeoastronomical Analysis

    Science.gov (United States)

    Polcaro, V. F.; Valsecchi, G. B.; Verderame, L.

    A total lunar eclipse occurred during the night preceding the decisive Battle of Gaugamela (20th September 331 BCE), when the Macedonian army, led by Alexander the Great, finally defeated the Persian king Darius and his army. This astronomical event, well known to historians, had a relevant role on the battle outcome. The eclipse was described in detail by Babylonian astronomers, though, unfortunately, the text of their report has only partially been preserved. We have reconstructed the evolution of the phenomenon as it appeared to the observer in Babylonia, by using the positional astronomy code "Planetario V2.0". On the base of this reconstruction we suggest a number of integrations to the lost part of the text, allowing a finer astrological interpretation of the eclipse and of its influence on the mood of the armies that set against each other on the following morning.

  4. Accretion onto CO White Dwarfs using MESA

    Science.gov (United States)

    Feng, Wanda; Starrfield, Sumner

    2018-06-01

    The nature of type Ia Supernovae (SNe Ia) progenitor systems and their underlying mechanism are not well understood. There are two competing progenitor scenarios: the single-degenerate scenario wherein a white dwarf (WD) star accretes material from a companion star, reaching the Chandrasekhar mass limit; and, the double-degenerate scenario wherein two WDs merge. In this study, we investigate the single-degenerate scenario by accretion onto carbon-oxygen (CO) WDs using the Modules for Experiments in Stellar Astrophysics (MESA). We vary the WD mass, composition of the accreting material, and accretion rate in our models. Mixing between the accreted material and the WD core is informed by multidimensional studies that suggest occurance after thermonuclear runaway (TNR) ensues. We compare the accretion of solar composition material onto CO WDs with the accretion of mixed solar and core material after TNR. As many of our models eject less material than accreted, our study supports that accretion onto CO WDs is a feasible channel for SNe I progenitors.

  5. Retrograde versus Prograde Models of Accreting Black Holes

    Directory of Open Access Journals (Sweden)

    David Garofalo

    2013-01-01

    Full Text Available There is a general consensus that magnetic fields, accretion disks, and rotating black holes are instrumental in the generation of the most powerful sources of energy in the known universe. Nonetheless, because magnetized accretion onto rotating black holes involves both the complications of nonlinear magnetohydrodynamics that currently cannot fully be treated numerically, and uncertainties about the origin of magnetic fields that at present are part of the input, the space of possible solutions remains less constrained. Consequently, the literature still bears witness to the proliferation of rather different black hole engine models. But the accumulated wealth of observational data is now sufficient to meaningfully distinguish between them. It is in this light that this critical paper compares the recent retrograde framework with standard “spin paradigm” prograde models.

  6. Detection of the Secondary Eclipse of Exoplanet HAT P-11b

    Science.gov (United States)

    Barry, R. K.; Deming, L. D.; Bakos, G.; Harrington, J.; Madhusudhan, N.; Noyes, R.; Seager, S.

    2010-01-01

    We have successfully conducted secondary eclipse observations of exoplanet HAT-P-11b using the Spitzer Space Telescope. HAT-P-11b was, until very recently, the smallest transiting extrasolar planet yet found and one of only two known exo-Neptunes. We observed the system at 3.6 microns for a period of 22 hours centered on the anticipated secondary eclipse time, to detect the eclipse and determine its phase. Having detected the secondary eclipse, we are at present making a more focused series of observations in both the 3.6 and 4.5 micron bands to fully characterize it. HAT-P-11b has a period of 4.8878 days, radius of 0.422 RJ, mass of 0.081 MJ and semi-major axis 0.053 AU. Measurements of the secondary eclipse will serve to clarify two key issues; 1) the planetary brightness temperature and the nature of its atmosphere, and 2) the eccentricity of its orbit, with implications for its dynamical evolution. A precise determination of the orbit phase for the secondary eclipse will also be of great utility for Kepler observations of this system at visible wavelengths.

  7. Ice accretion modeling for wind turbine rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, D.; Brahimi, T.; Paraschivoiu, I.; Bombardier, J.A. [Ecole Polytechnique de Montreal (Canada)

    1997-12-31

    The increasing application of wind energy in northern climates implies operation of wind turbines under severe atmospheric icing conditions. Such conditions are well known in the Scandinavian countries, Canada and most of Eastern European countries. An extensive study to develop a procedure for the prediction of ice accretion on wind turbines rotor blades appears to be essential for the safe and economic operation of wind turbines in these cold regions. The objective of the present paper is to develop a computer code capable of simulating the shape and amount of ice which may accumulate on horizontal axis wind turbine blades when operating in icing conditions. The resulting code is capable to predict and simulate the formation of ice in rime and glaze conditions, calculate the flow field and particle trajectories and to perform thermodynamic analysis. It also gives the possibility of studying the effect of different parameters that influence ice formation such as temperature, liquid water content, droplet diameter and accretion time. The analysis has been conducted on different typical airfoils as well as on NASA/DOE Mod-0 wind turbine. Results showed that ice accretion on wind turbines may reduce the power output by more than 20%.

  8. Relativistic, accreting disks

    International Nuclear Information System (INIS)

    Abramowicz, M.A; Jaroszynski, M.; Sikora, M.

    1978-01-01

    An analytic theory of the hydrodynamical structure of accreting disks (without self-gravitation but with pressure) orbiting around and axially symmetric, stationary, compact body (e.g. black hole) is presented. The inner edge of the marginally stable accreting disk (i.e. disk with constant angular momentum density) has a sharp cusp located on the equatorial plane between rsub(ms) and rsub(mb). The existence of the cusp is also typical for any angular momentum distribution. The physical importance of the cusp follows from the close analogy with the case of a close binary system (L 1 Lagrange point on the Roche lobe). The existence of the cusp is thus a crucial phenomenon in such problems as boundary condition for the viscous stresses, accretion rate etc. (orig.) [de

  9. Accretion onto a Kiselev black hole

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Lei [Hebei University, College of Physical Science and Technology, Baoding (China); Yang, Rongjia [Hebei University, College of Physical Science and Technology, Baoding (China); Hebei University, Hebei Key Lab of Optic-Electronic Information and Materials, Baoding (China)

    2017-05-15

    We consider accretion onto a Kiselev black hole. We obtain the fundamental equations for accretion without the back-reaction. We determine the general analytic expressions for the critical points and the mass accretion rate and find the physical conditions the critical points should fulfill. The case of a polytropic gas are discussed in detail. It turns out that the quintessence parameter plays an important role in the accretion process. (orig.)

  10. Possible Accretion Disk Origin of the Emission Variability of a Blazar Jet

    Science.gov (United States)

    Chatterjee, Ritaban; Roychowdhury, Agniva; Chandra, Sunil; Sinha, Atreyee

    2018-06-01

    We analyze X-ray light curves of the blazar Mrk 421 obtained from the Soft X-ray Imaging Telescope (SXT) and the Large Area X-ray Proportional Counter (LAXPC) instrument on board the Indian space telescope AstroSat and archival observations from Swift. We show that the X-ray power spectral density (PSD) is a piece-wise power-law with a break; i.e., the index becomes more negative below a characteristic “break timescale.” Galactic black hole (BH) X-ray binaries and Seyfert galaxies exhibit a similar characteristic timescale in their X-ray variability that is proportional to their respective BH mass. X-rays in these objects are produced in the accretion disk or corona. Hence, such a timescale is believed to be linked to the properties of the accretion flow. Any relation observed between events in the accretion disk and those in the jet can be used to characterize the disk–jet connection. However, evidence of such a link has been scarce and indirect. Mrk 421 is a BL Lac object that has a prominent jet pointed toward us and a weak disk emission, and it is assumed that most of its X-rays are generated in the jet. Hence, the existence of the break in its X-ray PSD may indicate that changes in the accretion disk, which may be the source of the break timescale, are translating into the jet where the X-rays are produced.

  11. Millisecond Magnetars as the Central Engine of Gamma-ray Bursts

    Science.gov (United States)

    Wang, L. J.

    2017-05-01

    The durations of GRBs (gamma-ray bursts) have a bimodal distribution with short-duration GRBs (SGRBs) lasting for less than ˜ 2 s and long-duration GRBs (LGRBs) greater than ˜ 2 s. A large number of observations indicate that LGRBs originate from the collapses of massive stars and are therefore associated with supernovae (SNe). SGRBs, on the other hand, are believed to be the results of binary compact object mergers. Now the study of GRBs has progressed to the stage of identifing the nature of central engines, i.e., black holes or millisecond magnetars. We elaborate the progress in Chapter 1. Numerical simulations support the idea of black holes as the central engine of GRBs since the simulations find the formation of jets by black holes. Some observational features, however, cannot be easily integrated into the black hole model, for example, the X-ray plateau lasting for 100-104 s, the extended emission of SGRBs, X-ray flares, etc. The most concise interpretation for these features is that they are powered by rapidly rotating magnetars. If the central engine is a magnetar, it will dissipate its rotational energy by injecting Poynting flux to the ejecta. Such energy injection will enable an observer outside the jet angle of the SGRB to detect the electromagnetic signals. In Chapter 2, we assume that the Poynting flux from the magnetar will quickly transform into the wind dominated by the ultrarelativistic electron-positron, and then a reverse shock will develop when the wind encounters the ejecta. We find that the recently discovered optical transient PTF11agg can be interpreted as synchrotron emission of reverse shock powered by a millisecond magnetar. In Chapter 3, we consider the absorption of reverse shock emission by the ejecta which is ignored when we study PTF11agg. We also adopt a more realistic dynamics of the blast wave than that adopted in Chapter 2. The ejecta is believed to be pure r-process material which is difficult to study in laboratory. We

  12. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    Science.gov (United States)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2012-01-01

    We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  13. Characterisation of COPD heterogeneity in the ECLIPSE cohort

    DEFF Research Database (Denmark)

    Agusti, Alvar; Calverley, Peter M A; Celli, Bartolome

    2010-01-01

    Chronic obstructive pulmonary disease (COPD) is a complex condition with pulmonary and extra-pulmonary manifestations. This study describes the heterogeneity of COPD in a large and well characterised and controlled COPD cohort (ECLIPSE).......Chronic obstructive pulmonary disease (COPD) is a complex condition with pulmonary and extra-pulmonary manifestations. This study describes the heterogeneity of COPD in a large and well characterised and controlled COPD cohort (ECLIPSE)....

  14. Implications of the Secondary Eclipse of Exoplanet HAT-P-11b

    Science.gov (United States)

    Barry, Richard K.; Deming, L. D.; Bakos, G.; Harrington, J.; Madhusudhan, N.; Noyes, R.; Seager, S.

    2010-01-01

    We observed exoplanet HAT-P-11b and have successfully detected its secondary eclipse. We conducted observations using the Spitzer Space Telescope in the post-cryo mission at 3.6 microns for a period of 22 hours centered on the anticipated secondary eclipse time, to detect the eclipse and determine its phase. Having detected the secondary eclipse, we are at present making a more focused series of observations in both the 3.6 and 4.5 micron bands to fully characterize it. HAT-P-11b is one of only two known exo-Neptunes and has a period of 4.8878 days, radius of 0.422 RJ, mass of 0.081 MJ and semi-major axis 0.053 AU. Measurements of the secondary eclipse will serve to clarify two key issues; 1) the planetary brightness temperature and the nature of its atmosphere, and 2) the eccentricity of its orbit, with implications for its dynamical evolution. We discuss implications of these observations.

  15. What are the Perspectives of Indonesian Students to Japanese Ritual during Solar Eclipse?

    Science.gov (United States)

    Haristiani, N.; Rusli, A.; Wiryani, A. S.; Nandiyanto, A. B. D.; Purnamasari, A.; Sucahya, T. N.; Permatasari, N.

    2018-02-01

    In this globalization era, many people still believe the myths about solar eclipse. The myths about solar eclipse are different between one country or are to another. In this context, the aim of this study was to investigate the perspective of Indonesian students in viewing how the Japanese people face their believing myths in solar eclipse. This research also investigated the student belief on several mythical stories in Indonesia, their understanding of the Islamic view, and their knowledge based on science concept relating to the solar eclipse phenomenon. To understand the Indonesian students’ perspective about the solar eclipse myths in Japanese, we took a survey to Indonesian students which are studying Japanese culture and language. Based on the results, the Indonesian student think that there is no significant difference between Indonesian and Japanese people in facing the solar eclipse.

  16. Report about the Solar Eclipse on August 11, 1999

    Science.gov (United States)

    1999-08-01

    This webpage provides information about the total eclipse on Wednesday, August 11, 1999, as it was seen by ESO staff, mostly at or near the ESO Headquarters in Garching (Bavaria, Germany). The zone of totality was about 108 km wide and the ESO HQ were located only 8 km south of the line of maximum totality. The duration of the phase of totality was about 2 min 17 sec. The weather was quite troublesome in this geographical area. Heavy clouds moved across the sky during the entire event, but there were also some holes in between. Consequently, sites that were only a few kilometres from each other had very different viewing conditions. Some photos and spectra of the eclipsed Sun are displayed below, with short texts about the circumstances under which they were made. Please note that reproduction of pictures on this webpage is only permitted, if the author is mentioned as source. Information made available before the eclipse is available here. Eclipse Impressions at the ESO HQ Photo by Eddy Pomaroli Preparing for the Eclipse Photo: Eddy Pomaroli [JEG: 400 x 239 pix - 116k] [JPEG: 800 x 477 pix - 481k] [JPEG: 3000 x 1789 pix - 3.9M] Photo by Eddy Pomaroli During the 1st Partial Phase Photo: Eddy Pomaroli [JPEG: 400 x 275 pix - 135k] [JPEG: 800 x 549 pix - 434k] [JPEG: 2908 x 1997 pix - 5.9M] Photo by Hamid Mehrgan Heavy Clouds Above Digital Photo: Hamid Mehrgan [JPEG: 400 x 320 pix - 140k] [JPEG: 800 x 640 pix - 540k] [JPEG: 1280 x 1024 pix - 631k] Photo by Olaf Iwert Totality Approaching Digital Photo: Olaf Iwert [JPEG: 400 x 320 pix - 149k] [JPEG: 800 x 640 pix - 380k] [JPEG: 1280 x 1024 pix - 536k] Photo by Olaf Iwert Beginning of Totality Digital Photo: Olaf Iwert [JPEG: 400 x 236 pix - 86k] [JPEG: 800 x 471 pix - 184k] [JPEG: 1280 x 753 pix - 217k] Photo by Olaf Iwert A Happy Eclipse Watcher Digital Photo: Olaf Iwert [JPEG: 400 x 311 pix - 144k] [JPEG: 800 x 622 pix - 333k] [JPEG: 1280 x 995 pix - 644k] ESO HQ Eclipse Video Clip [MPEG-version] ESO HQ Eclipse Video

  17. Radial Velocities of 41 Kepler Eclipsing Binaries

    Science.gov (United States)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  18. Theoretical, numerical and experimental study of accretion shocks dynamics in magnetic cataclysmic variables

    International Nuclear Information System (INIS)

    Busschaert, Clotilde

    2013-01-01

    Magnetic cataclysmic variables are interacting binary Systems containing a highly magnetized white dwarf which accretes material from a companion. Material is led along magnetic field lines and falls onto the magnetic pole(s) supersonically forming an accretion column. As the material hits the surface, a reverse shock is formed and the shocked region is structured by the cooling effect of radiation processes. This work is a multidisciplinary study of the dynamics of the accretion column. Firstly, a numerical study of the accretion column structure at the astrophysical scale is presented. The observational consequences are discussed. This approach is completed by experiments using radiative flows generated by powerful lasers. The relevance of such experiments is based on the establishment of scaling laws. News scaling laws in the frame of radiative ideal or resistive MHD are exposed. The results of the sizing and the interpretation of the POLAR experimental campaign of 2012 on LULI2000 installation are presented. (author) [fr

  19. Gravity signatures of terrane accretion

    Science.gov (United States)

    Franco, Heather; Abbott, Dallas

    1999-01-01

    In modern collisional environments, accreted terranes are bracketed by forearc gravity lows, a gravitational feature which results from the abandonment of the original trench and the initiation of a new trench seaward of the accreted terrane. The size and shape of the gravity low depends on the type of accreted feature and the strength of the formerly subducting plate. Along the Central American trench, the accretion of Gorgona Island caused a seaward trench jump of 48 to 66 km. The relict trench axes show up as gravity lows behind the trench with minimum values of -78 mgal (N of Gorgona) and -49 mgal (S of Gorgona) respectively. These forearc gravity lows have little or no topographic expression. The active trench immediately seaward of these forearc gravity lows has minimum gravity values of -59 mgal (N of Gorgona) and -58 mgal (S of Gorgona), respectively. In the north, the active trench has a less pronounced gravity low than the sediment covered forearc. In the Mariana arc, two Cretaceous seamounts have been accreted to the Eocene arc. The northern seamount is most likely a large block, the southern seamount may be a thrust slice. These more recent accretion events have produced modest forearc topographic and gravity lows in comparison with the topographic and gravity lows within the active trench. However, the minimum values of the Mariana forearc gravity lows are modest only by comparison to the Mariana Trench (-216 mgal); their absolute values are more negative than at Gorgona Island (-145 to -146 mgal). We speculate that the forearc gravity lows and seaward trench jumps near Gorgona Island were produced by the accretion of a hotspot island from a strong plate. The Mariana gravity lows and seaward trench jumps (or thrust slices) were the result of breaking a relatively weak plate close to the seamount edifice. These gravity lows resulting from accretion events should be preserved in older accreted terranes.

  20. Relativistic, accreting disks

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, M A; Jaroszynski, M; Sikora, M [Polska Akademia Nauk, Warsaw

    1978-02-01

    An analytic theory of the hydrodynamical structure of accreting disks (without self-gravitation but with pressure) orbiting around an axially symmetric, stationary, compact body (e.g. black hole) is presented. The inner edge of the marginally stable accreting disk (i.e. disk with constant angular momentum density) has a sharp cusp located on the equatorial plane between r/sub ms/ and r/sub mb/. The existence of the cusp is also typical for any angular momentum distribution. The physical importance of the cusp follows from the close analogy with the case of a close binary system (L/sub 1/ Lagrange point on the Roche lobe). The existence of the cusp is thus a crucial phenomenon in such problems as boundary condition for the viscous stresses, accretion rate, etc.

  1. Pulsed Gamma-Rays From the Millisecond Pulsar J0030+0451 with the Fermi Large Area Telescope

    International Nuclear Information System (INIS)

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, Guido; Bastieri, Denis; Battelino, M.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, Thompson H.

    2009-01-01

    We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar PSR J0030+0451 with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second millisecond pulsar to be detected in gamma-rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma Ray Observatory. The spin-down power (dot E) = 3.5 x 10 33 ergs s -1 is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, respectively 0.07 ± 0.01 and 0.08 ± 0.02 wide, separated by 0.44 ± 0.02 in phase. The first gamma-ray peak falls 0.15 ± 0.01 after the main radio peak. The pulse shape is similar to that of the 'normal' gamma-ray pulsars. An exponentially cut-off power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 ± 1.05 ± 1.35) x 10 -8 cm -2 s -1 with cut-off energy (1.7 ± 0.4 ± 0.5) GeV. Based on its parallax distance of (300 ± 90) pc, we obtain a gamma-ray efficiency L γ /(dot E) ≅ 15% for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

  2. Pulsed Gamma-Rays From the Millisecond Pulsar J0030+0451 with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M. /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Battelino, M.; /Stockholm U., OKC /Royal Inst. Tech., Stockholm; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /LPCE, Orleans /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U.; /more authors..

    2011-11-17

    We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar PSR J0030+0451 with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second millisecond pulsar to be detected in gamma-rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma Ray Observatory. The spin-down power {dot E} = 3.5 x 10{sup 33} ergs s{sup -1} is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, respectively 0.07 {+-} 0.01 and 0.08 {+-} 0.02 wide, separated by 0.44 {+-} 0.02 in phase. The first gamma-ray peak falls 0.15 {+-} 0.01 after the main radio peak. The pulse shape is similar to that of the 'normal' gamma-ray pulsars. An exponentially cut-off power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 {+-} 1.05 {+-} 1.35) x 10{sup -8} cm{sup -2} s{sup -1} with cut-off energy (1.7 {+-} 0.4 {+-} 0.5) GeV. Based on its parallax distance of (300 {+-} 90) pc, we obtain a gamma-ray efficiency L{sub {gamma}}/{dot E} {approx_equal} 15% for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

  3. PLANETARY CONSTRUCTION ZONES IN OCCULTATION: DISCOVERY OF AN EXTRASOLAR RING SYSTEM TRANSITING A YOUNG SUN-LIKE STAR AND FUTURE PROSPECTS FOR DETECTING ECLIPSES BY CIRCUMSECONDARY AND CIRCUMPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Mamajek, Eric E.; Quillen, Alice C.; Pecaut, Mark J.; Moolekamp, Fred; Scott, Erin L. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States); Kenworthy, Matthew A. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Cameron, Andrew Collier; Parley, Neil R. [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2012-03-15

    The large relative sizes of circumstellar and circumplanetary disks imply that they might be seen in eclipse in stellar light curves. We estimate that a survey of {approx}10{sup 4} young ({approx}10 million year old) post-accretion pre-main-sequence stars monitored for {approx}10 years should yield at least a few deep eclipses from circumplanetary disks and disks surrounding low-mass companion stars. We present photometric and spectroscopic data for a pre-main-sequence K5 star (1SWASP J140747.93-394542.6 = ASAS J140748-3945.7), a newly discovered {approx}0.9 M{sub Sun} member of the {approx}16 Myr old Upper Centaurus-Lupus subgroup of Sco-Cen at a kinematic distance of 128 {+-} 13 pc. This star exhibited a remarkably long, deep, and complex eclipse event centered on 2007 April 29 (as discovered in Super Wide Angle Search for Planets (SuperWASP) photometry, and with portions of the dimming confirmed by All Sky Automated Survey (ASAS) data). At least five multi-day dimming events of >0.5 mag are identified, with a >3.3 mag deep eclipse bracketed by two pairs of {approx}1 mag eclipses symmetrically occurring {+-}12 days and {+-}26 days before and after. Hence, significant dimming of the star was taking place on and off over at least a {approx}54 day period in 2007, and a strong >1 mag dimming event occurring over a {approx}12 day span. We place a firm lower limit on the period of 850 days (i.e., the orbital radius of the eclipser must be >1.7 AU and orbital velocity must be <22 km s{sup -1}). The shape of the light curve is similar to the lopsided eclipses of the Be star EE Cep. We suspect that this new star is being eclipsed by a low-mass object orbited by a dense inner disk, further girded by at least three dusty rings of optical depths near unity. Between these rings are at least two annuli of near-zero optical depth (i.e., gaps), possibly cleared out by planets or moons, depending on the nature of the secondary. For possible periods in the range 2.33-200 yr, the

  4. Eclipse effects on field crops and marine zooplankton: the 29 March 2006 total solar eclipse

    Directory of Open Access Journals (Sweden)

    G. Economou

    2008-08-01

    Full Text Available Some effects in the biosphere from the Total Solar Eclipse of 29 March 2006 were investigated in field crops and marine zooplankton. Taking into account the decisive role of light on plant life and productivity, measurements of photosynthesis and stomatal behaviour were conducted on seven important field-grown cereal and leguminous crops. A drop in photosynthetic rates, by more than a factor of 5 in some cases, was observed, and the minimum values of photosynthetic rates ranged between 3.13 and 10.13 μmol CO2 m−2 s−1. The drop in solar irradiance and the increase in mesophyll CO2-concentration during the eclipse did not induce stomatal closure thus not blocking CO2 uptake by plants. Light effects on the photochemical phase of photosynthesis may be responsible for the observed depression in photosynthetic rates. Field studies addressing the migratory responses of marine zooplankton (micro-zooplankton (ciliates, and meso-zooplankton due to the rapid changes in underwater light intensity were also performed. The light intensity attenuation was simulated with the use of accurate underwater radiative transfer modeling techniques. Ciliates, responded to the rapid decrease in light intensity during the eclipse adopting night-time behaviour. From the meso-zooplankton assemblage, various vertical migratory behaviours were adopted by different species.

  5. Self-gravity in Magnetized Neutrino-dominated Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Shahamat, Narjes; Abbassi, Shahram, E-mail: abbassi@um.ac.ir [Department of Physics, School of Science, Ferdowsi University of Mashhad, Mashhad, P.O. Box 91775-1436 (Iran, Islamic Republic of)

    2017-08-10

    In the present work we study self-gravity effects on the vertical structure of a magnetized neutrino-dominated accretion disk as a central engine for gamma-ray bursts (GRBs). Some of the disk physical timescales that are supposed to play a pivotal role in the late-time evolutions of the disk, such as viscous, cooling, and diffusion timescales, have been studied. We are interested in investigating the possibility of the occurrence of X-ray flares, observed in late-time GRBs’ extended emission through the “magnetic barrier” and “fragmentation” processes in our model. The results lead us to interpret self-gravity as an amplifier for Blandford–Payne luminosity (BP power) and the generated magnetic field, but a suppressor for neutrino luminosity and magnetic barrier processes via highlighting the fragmentation mechanism in the outer disk, especially for the higher mass accretion rates.

  6. Investigation of eclipsing binary stars exhibiting calcium II emission

    International Nuclear Information System (INIS)

    Oliver, J.P.

    1974-01-01

    Three color photometry of some eclipsing binaries showing Calcium II emission is reported. A highly stable and accurate d.c. amplifier, and a new type digital averaging system are described. Past and current light curves of SS Boo, RS CVn, WY Cnc, WW Dra, UV Psc, Z Her, SS Cam, RW UMa, AR Lac, and RT Lac are discussed with particular emphasis on asymmetries in the heights of the maxima and variations in the depths of the minima. Both RS CVn and SS Boo show nearly sinusoidal variation outside eclipse. Spectra of SS Boo and RS CVn are discussed. The suggestion is made that many of these systems belong to a new category of variable eclipsing binary star. It is pointed out that most double line eclipsing binaries with late-type sub-giant secondary components fall into this group, and that many of the characteristics of this group are not easily explained on the basis of existing data and theory. Possible models are discussed and the need for future photometric and spectroscopic study is emphasized. (U.S.)

  7. The Solar Eclipse Mural Series by Howard Russell Butler

    Science.gov (United States)

    Pasachoff, J. M.; Olson, R. J. M.

    2016-01-01

    There is a rich trove of astronomical phenomena in works of art by artists from the greater New York area, a trend that is even more pronounced in the oeuvres of New York City residents through the present day. A case in point is the trio of oil paintings by artist (and former physics professor) Howard Russell Butler depicting total solar eclipses in 1918, 1923, and 1925 that are based on his own observations. They were long displayed in the former art-deco building of the Hayden Planetarium of the American Museum of Natural History, the location of this conference. (The Museum also has nine other Butler paintings, none of which are currently exhibited.) Since the eclipse paintings have been in storage for many years, these once famous works are now virtually forgotten. Based on our research as an astronomer who has seen sixty-two solar eclipses and an art historian who has written extensively about astronomical imagery, we will discuss Butler's Solar Eclipse Triptych to explore its place in the history of astronomical imaging.

  8. Suppression of the Polar Tongue of Ionization During the 21 August 2017 Solar Eclipse

    Science.gov (United States)

    Dang, Tong; Lei, Jiuhou; Wang, Wenbin; Burns, Alan; Zhang, Binzheng; Zhang, Shun-Rong

    2018-04-01

    It has long been recognized that during solar eclipses, the ionosphere-thermosphere system changes greatly within the eclipse shadow, due to the rapid reduction of solar irradiation. However, the concept that a solar eclipse impacts polar ionosphere behavior and dynamics as well as magnetosphere-ionosphere coupling has not been appreciated. In this study, we investigate the potential impact of the 21 August 2017 solar eclipse on the polar tongue of ionization (TOI) using a high-resolution, coupled ionosphere-thermosphere-electrodynamics model. The reduction of electron densities by the eclipse in the middle latitude TOI source region leads to a suppressed TOI in the polar region. The TOI suppression occurred when the solar eclipse moved into the afternoon sector. The Global Positioning System total electron content observations show similar tendency of polar region total electron content suppression. This study reveals that a solar eclipse occurring at middle latitudes may have significant influences on the polar ionosphere and magnetosphere-ionosphere coupling.

  9. Migration of accreting giant planets

    Science.gov (United States)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  10. Solar eclipses at high latitudes: ionospheric effects in the lower ionosphere

    Science.gov (United States)

    Cherniakov, S.

    2017-12-01

    The partial reflection facility of the Polar Geophysical Institute (the Tumanny observatory, 69.0N, 35.7E) has observed behavior of the high-latitude lower ionosphere during the 20 March 2015 total solar eclipse. There were several effects during the eclipse. At the heights of 60-80 km the ionosphere has shown the effect of a "short night", but at the higher altitudes local enhanced electron concentration had a wave-like form. Data received by the riometer of the Tumanny observatory have also shown wave-like behavior. The behavior can be explained by influence of acoustic-gravity waves which originated after cooling of the atmosphere during the lunar shadow supersonic movement, and transport processes during the eclipse. During the 21 August 2017 solar eclipse there was a substorm at the high latitudes. But after the end of the substorm in the region of the Tumanny observatory the observed amplitudes of the reflected waves had wave effects which could be connected with the coming waves from the region of the eclipse. The wave features were also shown in the behavior of the total electron content (TEC) of the lower ionosphere. During several solar eclipses it was implemented observations of lower ionosphere behavior by the partial reflection facility of the Tumanny observatory. The consideration of the lower ionosphere TEC had revealed common features in the TEC behavior during the eclipses. The photochemical theory of processes in the lower ionosphere is very complicated and up to now it is not completely developed. Therefore introduction of the effective coefficients determining the total speed of several important reactions has been widely adopted when modeling the D-region of the ionosphere. However, experimental opportunities for obtaining effective recombination coefficients are rather limited. One of the methods to estimate effective recombination coefficients uses the phenomenon of a solar eclipse. During solar eclipses at the partial reflection facility of

  11. Comparisons of Measurements and Modeling of Solar Eclipse Effects on VLF Transmissions

    Science.gov (United States)

    Eccles, J. V.; Rice, D. D.; Sojka, J. J.; Marshall, R. A.; Drob, D. P.; Decena, J. C.

    2017-12-01

    The solar eclipse of 2017 August 21 provides an excellent opportunity to examine Very Low Frequency (VLF) radio signal propagation through the path of the solar eclipse between Navy VLF transmitters and several VLF receivers. The VLF transmitters available for this study radio signal propagation study are NLK in Jim Creek, Washington (24.8 kHz, 192 kW, 48.20N, 121.90W), NML in LaMour, North Dakota (25.2 kHz, 500 kW 46.37N, 93.34W), and NAA in Cutler, Maine (24.0 kHz, 1000 kW, 44.65N, 67.29W). These VLF transmitters provide propagation paths to three VLF receivers at Utah State University (41.75N, 111.76W), Bear Lake Observatory (41.95N, 111.39W), Salt Lake City (40.76N, 111.89W) and one receiver in Boulder, Colorado (40.02N, 105.27W). The solar eclipse shadow will cross all propagations paths during the day and will modify the D region electron density within the solar shadow. The week prior to the solar eclipse will be used to generate a diurnal baseline of VLF single strength for each transmitter-receiver pair. These will be compared to the day of the solar eclipse to identify VLF propagation differences through the solar eclipse shawdow. Additionally, the electron density effects of the week prior and of the solar eclipse day will be modeled using the Data-Driven D Region (DDDR) model [Eccles et al., 2005] with a detailed eclipse solar flux mask. The Long-Wave Propagation Code and the HASEL RF ray-tracing code will be used to generate VLF signal strength for each measured propagation path through the days prior and the solar eclipse day. Model-measurement comparisons will be presented and the D region electron density effects of the solar eclipse will be examined. The DDDR is a time-dependent D region model, which makes it very suitable for the solar eclipse effects on the electron density for the altitude range of 36 to 130 km. Eccles J. V., R. D. Hunsucker, D. Rice, J. J. Sojka (2005), Space weather effects on midlatitude HF propagation paths: Observations and

  12. Eclipse Across America: Through the Eyes of NASA

    Science.gov (United States)

    Young, C. Alex; Heliophysics Education Consortium

    2018-01-01

    Monday, August 21, 2017, marked the first total solar eclipse to cross the continental United States coast-to-coast in almost a century. NASA scientists and educators, working alongside many partners, were spread across the entire country, both inside and outside the path of totality. Like many other organizations, NASA prepared for this eclipse for several years. The August 21 eclipse was NASA's biggest media event in recent history, and was made possible by the work of thousands of volunteers, collaborators and NASA employees. The agency supported science, outreach, and media communications activities along the path of totality and across the country. This culminated in a 3 ½-hour broadcast from Charleston, SC, showcasing the sights and sounds of the eclipse – starting with the view from a plane off the coast of Oregon and ending with images from the International Space Station as the Moon's inner shadow left the US East Coast. Along the way, NASA shared experiments and research from different groups of scientists, including 11 NASA-supported studies, 50+ high-altitude balloon launches, and 12 NASA and partner space-based assets. This talk shares the timeline of this momentous event from NASA's perspective, describing outreach successes and providing a glimpse at some of the science results available and yet to come.

  13. Zimbabwe's total solar eclipse June 21st 2001 | Unknown ...

    African Journals Online (AJOL)

    The research was developed to observe and record the effects of the total solar eclipse on the behaviour of wildlife in the park, and covered a period of 3 days in order to provide comparisons between normal and eclipse conditions. The data is still undergoing comparative analysis, and the results will be submitted to the ...

  14. Fourier analysis of the light curves of eclipsing variables. XV

    International Nuclear Information System (INIS)

    Demircan, O.

    1978-01-01

    A new general expression for the theoretical moments Asub(2m) of the light curves of eclipsing systems has been presented in the form of infinite series expansion. In this expansion, the terms have been given as the product of two different polynomials which satisfy certain three-term recursion formulae, and the coefficients diminish rapidly with increasing number of terms. Thus, the numerical values of the theoretical moments Asub(2m) can be generated recursively up to four significant figures for any given set of eclipse elements. This can be utilized to solve the eclipse elements in two ways: (i) with an indirect method, (ii) with a direct method as minimization to the observational moments Asub(2m) (area fitting). The procedures for obtaining the elements of any eclipsing system consisting of spherical stars have been automated by making use of the new expression for the moments Asub(2m) of the light curves. The theoretical functions f 0 , f 2 , f 4 , f 6 , g 2 and g 4 which are the functions of a and c 0 , have been used to solve the eclipse elements from the observed photometric data. The closed-form expressions for the functions f 2 , f 4 and f 6 have also been derived in terms of Kopal's I-integrals. The automated methods for obtaining the eclipse elements from one minimum alone have been tested on the light curves of YZ (21) Cassiopeiae under the spherical model assumptions. The results of these applications are given. (Auth.)

  15. Analysis of 45-years of Eclipse Timings of the Hyades (K2 V+ DA) Eclipsing Binary V471 Tauri

    Science.gov (United States)

    Marchioni, Lucas; Guinan, Edward; Engle, Scott

    2018-01-01

    V471 Tau is an important detached 0.521-day eclipsing binary composed of a K2 V and a hot DA white dwarf star. This system resides in the Hyades star cluster located approximately 153 Ly from us. V471 Tau is considered to be the end-product of common-envelope binary star evolution and is currently a pre-CV system. V471 Tau serves as a valuable astrophysical laboratory for studying stellar evolution, white dwarfs, stellar magnetic dynamos, and possible detection of low mass companions using the Light Travel Time (LTT) Effects. Since its discovery as an eclipsing binary in 1970, photometry has been carried out and many eclipse timings have been determined. We have performed an analysis of the available photometric data available on V471 Tauri. The binary system has been the subject of analyses regarding the orbital period. From this analysis several have postulated the existence of a third body in the form of a brown dwarf that is causing periodic variations in the system’s apparent period. In this study we combine ground based data with photometry secured recently from the Kepler K2 mission. After detrending and phasing the available data, we are able to compare the changing period of the eclipsing binary system against predictions on the existence of this third body. The results of the analysis will be presented. This research is sponsored by grants from NASA and NSF for which we are very grateful.

  16. Foundations of Black Hole Accretion Disk Theory

    Directory of Open Access Journals (Sweden)

    Marek A. Abramowicz

    2013-01-01

    Full Text Available This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks, Shakura-Sunyaev (thin disks, slim disks, and advection-dominated accretion flows (ADAFs. After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs.

  17. Foundations of Black Hole Accretion Disk Theory.

    Science.gov (United States)

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  18. Pebble Accretion in Turbulent Protoplanetary Disks

    Science.gov (United States)

    Xu, Ziyan; Bai, Xue-Ning; Murray-Clay, Ruth A.

    2017-09-01

    It has been realized in recent years that the accretion of pebble-sized dust particles onto planetary cores is an important mode of core growth, which enables the formation of giant planets at large distances and assists planet formation in general. The pebble accretion theory is built upon the orbit theory of dust particles in a laminar protoplanetary disk (PPD). For sufficiently large core mass (in the “Hill regime”), essentially all particles of appropriate sizes entering the Hill sphere can be captured. However, the outer regions of PPDs are expected to be weakly turbulent due to the magnetorotational instability (MRI), where turbulent stirring of particle orbits may affect the efficiency of pebble accretion. We conduct shearing-box simulations of pebble accretion with different levels of MRI turbulence (strongly turbulent assuming ideal magnetohydrodynamics, weakly turbulent in the presence of ambipolar diffusion, and laminar) and different core masses to test the efficiency of pebble accretion at a microphysical level. We find that accretion remains efficient for marginally coupled particles (dimensionless stopping time {τ }s˜ 0.1{--}1) even in the presence of strong MRI turbulence. Though more dust particles are brought toward the core by the turbulence, this effect is largely canceled by a reduction in accretion probability. As a result, the overall effect of turbulence on the accretion rate is mainly reflected in the changes in the thickness of the dust layer. On the other hand, we find that the efficiency of pebble accretion for strongly coupled particles (down to {τ }s˜ 0.01) can be modestly reduced by strong turbulence for low-mass cores.

  19. REPEATABILITY AND ACCURACY OF EXOPLANET ECLIPSE DEPTHS MEASURED WITH POST-CRYOGENIC SPITZER

    Energy Technology Data Exchange (ETDEWEB)

    Ingalls, James G.; Krick, J. E.; Carey, S. J.; Stauffer, John R.; Lowrance, Patrick J.; Grillmair, Carl J.; Capak, Peter; Glaccum, William; Laine, Seppo; Surace, Jason; Storrie-Lombardi, Lisa [Spitzer Science Center, California Institute of Technology, 1200 E California Boulevard, Mail Code 314-6, Pasadena, CA 91125 (United States); Buzasi, Derek [Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, FL 33965 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Diamond-Lowe, Hannah; Stevenson, Kevin B. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 (United States); Evans, Thomas M. [School of Physics, University of Exeter, EX4 4QL Exeter (United Kingdom); Morello, G. [Department of Physics and Astronomy, University College London, Gower Street, WC1 E6BT (United Kingdom); Wong, Ian, E-mail: ingalls@ipac.caltech.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-08-01

    We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. We have re-analyzed an existing 4.5 μ m data set, consisting of 10 observations of the XO-3b system during secondary eclipse, using seven different techniques for removing correlated noise. We find that, on average, for a given technique, the eclipse depth estimate is repeatable from epoch to epoch to within 156 parts per million (ppm). Most techniques derive eclipse depths that do not vary by more than a factor 3 of the photon noise limit. All methods but one accurately assess their own errors: for these methods, the individual measurement uncertainties are comparable to the scatter in eclipse depths over the 10 epoch sample. To assess the accuracy of the techniques as well as to clarify the difference between instrumental and other sources of measurement error, we have also analyzed a simulated data set of 10 visits to XO-3b, for which the eclipse depth is known. We find that three of the methods (BLISS mapping, Pixel Level Decorrelation, and Independent Component Analysis) obtain results that are within three times the photon limit of the true eclipse depth. When averaged over the 10 epoch ensemble,  5 out of 7 techniques come within 60 ppm of the true value. Spitzer exoplanet data, if obtained following current best practices and reduced using methods such as those described here, can measure repeatable and accurate single eclipse depths, with close to photon-limited results.

  20. Impact of the 2017 Solar Eclipse on the Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Reda, Ibrahim M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Andreas, Afshin M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-12

    With the increasing interest in using solar energy as a major contributor to the use of renewable generation, and with the focus on using smart grids to optimize the use of electrical energy based on demand and resources from different locations, the need arises to know the moons position in the sky with respect to the sun. When a solar eclipse occurs, the moon disk might totally or partially shade the sun disk, which can affect the irradiance level from the sun disk, consequently affecting a resource on the electric grid. The moons position can then provide smart grid users with information about how potential total or partial solar eclipses might affect different locations on the grid so that other resources on the grid can be directed to where they might be needed when such phenomena occurs. At least five solar eclipses occur yearly at different locations on Earth, they can last 3 hours or more depending on the location, and they can affect smart grid users. On August 21, 2017, a partial and full solar eclipse occurred in many locations in the United States, including at the National Renewable Energy Laboratory in Golden, Colorado. Solar irradiance measurements during the eclipse were compared to the data generated by a model for validation at eight locations.

  1. Effects of solar eclipse on the electrodynamical processes of the equatorial ionosphere: a case study during 11 August 1999 dusk time total solar eclipse over India

    Directory of Open Access Journals (Sweden)

    R. Sridharan

    Full Text Available The effects on the electrodynamics of the equatorial E- and F-regions of the ionosphere, due to the occurrence of the solar eclipse during sunset hours on 11 August 1999, were investigated in a unique observational campaign involving ground based ionosondes, VHF and HF radars from the equatorial location of Trivandrum (8.5° N; 77° E; dip lat. 0.5° N, India. The study revealed the nature of changes brought about by the eclipse in the evening time E- and F-regions in terms of (i the sudden intensification of a weak blanketing ES-layer and the associated large enhancement of the VHF backscattered returns, (ii significant increase in h' F immediately following the eclipse and (iii distinctly different spatial and temporal structures in the spread-F irregularity drift velocities as observed by the HF radar. The significantly large enhancement of the backscattered returns from the E-region coincident with the onset of the eclipse is attributed to the generation of steep electron density gradients associated with the blanketing ES , possibly triggered by the eclipse phenomena. The increase in F-region base height immediately after the eclipse is explained as due to the reduction in the conductivity of the conjugate E-region in the path of totality connected to the F-region over the equator along the magnetic field lines, and this, with the peculiar local and regional conditions, seems to have reduced the E-region loading of the F-region dynamo, resulting in a larger post sunset F-region height (h' F rise. These aspects of E-and F-region behaviour on the eclipse day are discussed in relation to those observed on the control day.

    Key words. Ionosphere (electric fields and currents; equatorial ionosphere; ionospheric irregularities

  2. Effects of solar eclipse on the electrodynamical processes of the equatorial ionosphere: a case study during 11 August 1999 dusk time total solar eclipse over India

    Directory of Open Access Journals (Sweden)

    R. Sridharan

    2002-12-01

    Full Text Available The effects on the electrodynamics of the equatorial E- and F-regions of the ionosphere, due to the occurrence of the solar eclipse during sunset hours on 11 August 1999, were investigated in a unique observational campaign involving ground based ionosondes, VHF and HF radars from the equatorial location of Trivandrum (8.5° N; 77° E; dip lat. 0.5° N, India. The study revealed the nature of changes brought about by the eclipse in the evening time E- and F-regions in terms of (i the sudden intensification of a weak blanketing ES-layer and the associated large enhancement of the VHF backscattered returns, (ii significant increase in h' F immediately following the eclipse and (iii distinctly different spatial and temporal structures in the spread-F irregularity drift velocities as observed by the HF radar. The significantly large enhancement of the backscattered returns from the E-region coincident with the onset of the eclipse is attributed to the generation of steep electron density gradients associated with the blanketing ES , possibly triggered by the eclipse phenomena. The increase in F-region base height immediately after the eclipse is explained as due to the reduction in the conductivity of the conjugate E-region in the path of totality connected to the F-region over the equator along the magnetic field lines, and this, with the peculiar local and regional conditions, seems to have reduced the E-region loading of the F-region dynamo, resulting in a larger post sunset F-region height (h' F rise. These aspects of E-and F-region behaviour on the eclipse day are discussed in relation to those observed on the control day.Key words. Ionosphere (electric fields and currents; equatorial ionosphere; ionospheric irregularities

  3. Modeling Radial Velocities and Eclipse Photometry of the Kepler Target KIC 4054905: an Oscillating Red Giant in an Eclipsing Binary

    Science.gov (United States)

    Benbakoura, M.; Gaulme, P.; McKeever, J.; Beck, P. G.; Jackiewicz, J.; García, R. A.

    2017-12-01

    Asteroseismology is a powerful tool to measure the fundamental properties of stars and probe their interiors. This is particularly efficient for red giants because their modes are well detectable and give information on their deep layers. However, the seismic relations used to infer the mass and radius of a star have been calibrated on the Sun. Therefore, it is crucial to assess their accuracy for red giants which are not perfectly homologous to it. We study eclipsing binaries with a giant component to test their validity. We identified 16 systems for which we intend to compare the dynamical masses and radii obtained by combined photometry and spectroscopy to the values obtained from asteroseismology. In the present work, we illustrate our approach on a system from our sample.

  4. System Geometries and Transit/Eclipse Probabilities

    Directory of Open Access Journals (Sweden)

    Howard A.

    2011-02-01

    Full Text Available Transiting exoplanets provide access to data to study the mass-radius relation and internal structure of extrasolar planets. Long-period transiting planets allow insight into planetary environments similar to the Solar System where, in contrast to hot Jupiters, planets are not constantly exposed to the intense radiation of their parent stars. Observations of secondary eclipses additionally permit studies of exoplanet temperatures and large-scale exo-atmospheric properties. We show how transit and eclipse probabilities are related to planet-star system geometries, particularly for long-period, eccentric orbits. The resulting target selection and observational strategies represent the principal ingredients of our photometric survey of known radial-velocity planets with the aim of detecting transit signatures (TERMS.

  5. Super-Eddington Accretion in Tidal Disruption Events: the Impact of Realistic Fallback Rates on Accretion Rates

    Science.gov (United States)

    Wu, Samantha; Coughlin, Eric R.; Nixon, Chris

    2018-04-01

    After the tidal disruption of a star by a massive black hole, disrupted stellar debris can fall back to the hole at a rate significantly exceeding its Eddington limit. To understand how black hole mass affects the duration of super-Eddington accretion in tidal disruption events, we first run a suite of simulations of the disruption of a Solar-like star by a supermassive black hole of varying mass to directly measure the fallback rate onto the hole, and we compare these fallback rates to the analytic predictions of the "frozen-in" model. Then, adopting a Zero-Bernoulli Accretion flow as an analytic prescription for the accretion flow around the hole, we investigate how the accretion rate onto the black hole evolves with the more accurate fallback rates calculated from the simulations. We find that numerically-simulated fallback rates yield accretion rates onto the hole that can, depending on the black hole mass, be nearly an order of magnitude larger than those predicted by the frozen-in approximation. Our results place new limits on the maximum black hole mass for which super-Eddington accretion occurs in tidal disruption events.

  6. Building on the US Eclipse Experience in Schools, with the Public, and Beyond the US

    Science.gov (United States)

    Simmons, Mike; Chee, Zoe; Bartolone, Lindsay

    2018-01-01

    Astronomers Without Borders (AWB) organized several programs for the August 21, 2017 total solar eclipse, both before and after the event, to increase participation, build on the inspiration of the eclipse, share the eclipse experience, and prepare for the eclipse in 2024.AWB focused on preparing institutions that were least likely to receive resources despite extensive nationwide efforts. AWB distributed more than 100,000 donated glasses, to isolated schools, children's cancer hospitals, abused women’s shelters, and other institutions without access to other resource providers.AWB’s Building on the Eclipse Education Program builds on the inspiration of the eclipse for STEM education. The program uses a small, personal spectroscope kit to study sunlight in different scientific fields and includes free classroom activities that meet NGSS standards.A program to collect eclipse observing glasses for schools in developing countries for future eclipses was announced around the time of the eclipse and quickly went viral, with coverage by national and innumerable local media outlets. This effort builds on AWB’s earlier programs for schools in Africa and in South America for past eclipses. Well over one million pairs are expected, as compared to the tens of thousands AWB provided through crowdfunding for previous efforts. Nearly 1000 glasses collection centers were created spontaneously, without a public call. Factors leading to widespread and diverse public participation will be presented.A program calling for first-time eclipse observers to share their experiences addresses a major issue in encouraging people to travel to the path of totality. Expert and eclipse-enthusiast testimony often fails to convince people of the value of the experience of totality as “a few minutes of darkness.” This program will share the disconnect between expectation and experience from first-time “ordinary” observers to encourage others to travel to the path of totality for the

  7. Hot Accretion onto Black Holes with Outflow

    Directory of Open Access Journals (Sweden)

    Park Myeong-Gu

    2018-01-01

    Full Text Available Classic Bondi accretion flow can be generalized to rotating viscous accretion flow. Study of hot accretion flow onto black holes show that its physical charateristics change from Bondi-like for small gas angular momentum to disk-like for Keperian gas angular momentum. Especially, the mass accretion rate divided by the Bondi accretion rate is proportional to the viscosity parameter alpha and inversely proportional to the gas angular momentum divided by the Keplerian angular momentum at the Bondi radius for gas angular momentum comparable to the Keplerian value. The possible presence of outflow will increase the mass inflow rate at the Bondi radius but decrease the mass accretion rate across the black hole horizon by many orders of magnitude. This implies that the growth history of supermassive black holes and their coevolution with host galaxies will be dramatically changed when the accreted gas has angular momentum or develops an outflow.

  8. Changes in the Silicate Dust Features of the Symbiotic Star R Aquarii Prior to the Upcoming 2022 Eclipse and Periastron Events

    Science.gov (United States)

    Omelian, Eric; Sankrit, Ravi; Helton, Andrew; Gorti, Uma; Wagner, R. Mark

    2018-01-01

    The symbiotic star, R Aquarii (R Aqr) consists of a dusty, pulsating Mira (period 387 days) and a hot white dwarf (WD) that orbit each other with a period of about 44 years. Based on the light curve from ca. 1890 CE onwards, and associated nebular and jet activity, it has been established (with a high degree of confidence) that the WD eclipses the Mira around the time of the periastron passage. One of the phenomena associated with this phase in the orbit is enhanced accretion onto the WD, which in turn energizes the jet outflow. The next eclipse is imminent, and it is estimated that periastron will occur in 2022. Infrared observations of R Aqr have established that the emission consists of a thermal spectrum with an effective temperature of about 2500 K with superposed silicate dust features. These silicate features are known to vary with time, and UKIRT spectra taken within a single Mira phase have shown that some of the variation is correlated with the pulsation of the dust envelope of the AGB star.We have used the FORCAST instrument on SOFIA to observe R Aqr during Cycles 4 and 5 as part of an ongoing monitoring of the system as it goes through eclipse and periastron. Photometry between 6 and 37 μm, and spectra covering the 10 and 18 μm silicate features have shown significant changes in the spectrum compared with earlier data in the same wavelength range obtained by ISO at an epoch closer to apastron. We present our data along with archival data from other IR observatories and use them to characterize the changes in the silicate emission. These data are presented along with model calculations using DUSTY and RADMC-3D that we have used to explore the changes in dust properties that are necessary to explain the differences in the emission profiles. We also present our plans for continued monitoring of R Aqr through the upcoming eclipse, which is required in order to separate the effects of pulsation from the longer-term orbital effects on the dust profiles.

  9. Rapid growth of seed black holes in the early universe by supra-exponential accretion.

    Science.gov (United States)

    Alexander, Tal; Natarajan, Priyamvada

    2014-09-12

    Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang. Copyright © 2014, American Association for the Advancement of Science.

  10. Source to Accretion Disk Tilt

    OpenAIRE

    Montgomery, M. M.; Martin, E. L.

    2010-01-01

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source to cause and maintain disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through...

  11. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni.

    Science.gov (United States)

    Muñoz-Darias, T; Casares, J; Mata Sánchez, D; Fender, R P; Armas Padilla, M; Linares, M; Ponti, G; Charles, P A; Mooley, K P; Rodriguez, J

    2016-06-02

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10(-8) solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.

  12. Prediction of ice accretion and anti-icing heating power on wind turbine blades using standard commercial software

    International Nuclear Information System (INIS)

    Villalpando, Fernando; Reggio, Marcelo; Ilinca, Adrian

    2016-01-01

    An approach to numerically simulate ice accretion on 2D sections of a wind turbine blade is presented. The method uses standard commercial ANSYS-Fluent and Matlab tools. The Euler-Euler formulation is used to calculate the water impingement on the airfoil, and a UDF (Used Defined Function) has been devised to turn the airfoil's solid wall into a permeable boundary. Mayer's thermodynamic model is implemented in Matlab for computing ice thickness and for updating the airfoil contour. A journal file is executed to systematize the procedure: meshing, droplet trajectory calculation, thermodynamic model application for computing ice accretion, and the updating of airfoil contours. The proposed ice prediction strategy has been validated using iced airfoil contours obtained experimentally in the AMIL refrigerated wind tunnel (Anti-icing Materials International Laboratory). Finally, a numerical prediction method has been generated for anti-icing assessment, and its results compared with data obtained in this laboratory. - Highlights: • A methodology for ice accretion prediction using commercial software is proposed. • Euler model gives better prediction of airfoil water collection with detached flow. • A source term is used to change from a solid wall to a permeable wall in Fluent. • Energy needed for ice-accretion mitigation system is predicted.

  13. The Trojan war dated by two solar eclipses.

    Science.gov (United States)

    Henriksson, Goran

    The Trojan War was very significant for the ancient Greeks and they dated historical events according to the number of years after the fall of Troy. However, there was already in antiquity no consensus as to the exact date of the war when compared with different epochs. Even after the modern discovery of the ancient city, there has been disagreement among different excavators as to which layer corresponds to the city mentioned in the Iliad attributed to Homer. In this paper an attempt is made to identify the strange obscuration of the sun that occurred during the final battle of the Iliad as a total solar eclipse close to the southern border of the zone of totality. There exists only one solar eclipse that corresponds to the description in the text and this is the total solar eclipse of June 11, in 1312 BC. When I first presented this date in 1986, there was a difference of about 60 years compared with the most common archaeological dating at that time. My date is now fully supported by the latest results from the German-American excavation that identifies the fall of Homer's Troy with the destruction of the archaeological layer Troy VIh, dated to about 1300 BC. Further independent support is provided by another solar eclipse that dates the reign of the Hittite king Muwatalli II. This king wrote a letter to king Alaksandu in Wilusa, identified as the Hittite name for Ilios, the most frequently used name for Troy in the Iliad. Alexander was another name for Paris who abducted Helen, the crime that resulted in the war. Muwatalli II was king 1315-1297 BC, according to the chronology for the Hittite Kingdom based on a solar eclipse in 1335 BC, during the tenth year of King Mursili II (1345- 1315 BC), the father of Muwatalli II.

  14. Visual damage following direct sighting of solar eclipse in Ghana ...

    African Journals Online (AJOL)

    education concerning the damaging effects of the solar eclipse. Advanced techniques, such as scanning laser Ophthalmoscopy and the multifocal electroretinography (ERG) offer the possibility of detailed examination of small retina lesions in Ghana after an eclipse of the sun. African Journal of Health Sciences Vol. 14 (3-4) ...

  15. To Measure Probable Physical Changes On The Earth During Total Solar Eclipse Using Geophysical Methods

    International Nuclear Information System (INIS)

    Gocmen, C.

    2007-01-01

    When the total solar eclipse came into question, people connected the eclipse with the earthquake dated 17.08.1999. We thought if any physical parameters change during total solar eclipse on the earth, we could measure this changing and we did the project 'To Measure Probable Physical Changes On The Earth During Total Solar Eclipse Using Geophysical Methods' We did gravity, magnetic and self-potential measurements at Konya and Ankara during total solar eclipse (29, March, 2006) and the day before eclipse and the day after eclipse. The measurements went on three days continuously twenty-four hours at Konya and daytime in Ankara. Bogazici University Kandilli Observatory gave us magnetic values in Istanbul and we compare the values with our magnetic values. Turkish State Meteorological Service sent us temperature and air pressure observations during three days, in Konya and Ankara. We interpreted all of them

  16. Mechanism of adsorption and eclipse of bacteriophage phi X174. I. In vitro conformational change under conditions of eclipse.

    Science.gov (United States)

    Incardona, N L; Blonski, R; Feeney, W

    1972-01-01

    Bacteriophage phiX174 undergoes a conformational change during viral eclipse when virus-host cell complexes are incubated briefly at 37 C in a complex starvation buffer at pH 8. In this report, basically the same transition is demonstrated in vitro. Incubation of phiX alone for 2 to 3 hr at 35 C in 0.1 m CaCl(2) (pH 7.2) results in an irreversible decrease in S(20,w) because of an increase in the frictional coefficient that occurs during the change in conformation. The slower sedimenting conformation is noninfectious. These properties are remarkably similar to those of the eclipsed particles characterized by Newbold and Sinsheimer. Therefore, the key structural requirements for the molecular mechanism must reside within the architecture of the virus itself. This extremely simplified system uncovered the calcium ion requirement and pronounced dependence on pH between 6 and 7, both inherent properties of adsorption. This and the more than 10-fold greater rate of the in vivo conformational transition allude to the cooperative nature of attachment and eclipse for phiX.

  17. Multineuronal Spike Sequences Repeat with Millisecond Precision

    Directory of Open Access Journals (Sweden)

    Koki eMatsumoto

    2013-06-01

    Full Text Available Cortical microcircuits are nonrandomly wired by neurons. As a natural consequence, spikes emitted by microcircuits are also nonrandomly patterned in time and space. One of the prominent spike organizations is a repetition of fixed patterns of spike series across multiple neurons. However, several questions remain unsolved, including how precisely spike sequences repeat, how the sequences are spatially organized, how many neurons participate in sequences, and how different sequences are functionally linked. To address these questions, we monitored spontaneous spikes of hippocampal CA3 neurons ex vivo using a high-speed functional multineuron calcium imaging technique that allowed us to monitor spikes with millisecond resolution and to record the location of spiking and nonspiking neurons. Multineuronal spike sequences were overrepresented in spontaneous activity compared to the statistical chance level. Approximately 75% of neurons participated in at least one sequence during our observation period. The participants were sparsely dispersed and did not show specific spatial organization. The number of sequences relative to the chance level decreased when larger time frames were used to detect sequences. Thus, sequences were precise at the millisecond level. Sequences often shared common spikes with other sequences; parts of sequences were subsequently relayed by following sequences, generating complex chains of multiple sequences.

  18. Population synthesis of radio and gamma-ray millisecond pulsars using Markov Chain Monte Carlo techniques

    Science.gov (United States)

    Gonthier, Peter L.; Koh, Yew-Meng; Kust Harding, Alice

    2016-04-01

    We present preliminary results of a new population synthesis of millisecond pulsars (MSP) from the Galactic disk using Markov Chain Monte Carlo techniques to better understand the model parameter space. We include empirical radio and gamma-ray luminosity models that are dependent on the pulsar period and period derivative with freely varying exponents. The magnitudes of the model luminosities are adjusted to reproduce the number of MSPs detected by a group of thirteen radio surveys as well as the MSP birth rate in the Galaxy and the number of MSPs detected by Fermi. We explore various high-energy emission geometries like the slot gap, outer gap, two pole caustic and pair starved polar cap models. The parameters associated with the birth distributions for the mass accretion rate, magnetic field, and period distributions are well constrained. With the set of four free parameters, we employ Markov Chain Monte Carlo simulations to explore the model parameter space. We present preliminary comparisons of the simulated and detected distributions of radio and gamma-ray pulsar characteristics. We estimate the contribution of MSPs to the diffuse gamma-ray background with a special focus on the Galactic Center.We express our gratitude for the generous support of the National Science Foundation (RUI: AST-1009731), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program (NNX09AQ71G).

  19. Pulsed Thermal Emission from the Accreting Pulsar XMMU J054134.7-682550

    Science.gov (United States)

    Manousakis, Antonis; Walter, Roland; Audard, Marc; Lanz, Thierry

    2009-05-01

    XMMU J054134.7-682550, located in the LMC, featured a type II outburst in August 2007. We analyzed XMM-Newton (EPIC-MOS) and RXTE (PCA) data in order to derive the spectral and temporal characteristics of the system throughout the outburst. Spectral variability, spin period evolution, energy dependent pulse shape are discussed. The outburst (LX~3×1038 erg/s~LEDD) spectrum can be modeled using, cutoff power law, soft X-ray blackbody, disk emission, and cyclotron absorption line. The blackbody component shows a sinusoidal behavior, expected from hard X-ray reprocessing on the inner edge of the accretion disk. The thickness of the inner accretion disk (width of ~75 km) can be constrained. The spin-up of the pulsar during the outburst is the signature of a (huge) accretion rate. Simbol-X will provide similar capabilities as XMM-Newton and RXTE together, for such bright events.

  20. Accretion disks in active galactic nuclei

    International Nuclear Information System (INIS)

    Begelman, M.C.

    1985-01-01

    The innermost regions of the central engines in active galactic nuclei are examined, and it is shown how different modes of accretion with angular momentum may account for the diverse manifestations of activity in the nuclei of galaxies. These modes are subsequently compared with the observed properties of quasars, Type I Seyferts, and radio galaxies. It was found that the qualitative features of an accretion flow orbiting a massive black hole depend principally on the ratio of the actual accretion rate to the Eddington accretion rate. For a value of this ratio much less than one, the flow may become an ion torus supported by gas pressure; for a value much greater than one, the flow traps its radiative output and becomes an inefficient radiation torus. At intermediate values, the flow may settle into a thin accretion disk. 62 references

  1. Millisecond Pulsar Timing Precision with NICER

    Science.gov (United States)

    Deneva, Julia; Ray, Paul S.; Ransom, Scott; Wood, Kent S.; Kerr, Matthew T.; Lommen, Andrea; Arzoumanian, Zaven; Black, Kevin; Gendreau, Keith C.; Lewandowska, Natalia; Markwardt, Craig B.; Price, Samuel; Winternitz, Luke

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) is an array of 56 X-ray detectors mounted on the outside of the International Space Station. It allows high-precision timing of millisecond pulsars (MSPs) without the pulse broadening effects due to dispersion and scattering by the interstellar medium that plague radio timing. We present initial timing results from four months of NICER data on the MSPs B1937+21, B1821-24, and J0218+4232, and compare them to simulations and theoretical models for X-ray times-of-arrival, and radio observations.

  2. Orbital Light Curves of UU Aquarii in Stunted Outburst

    Science.gov (United States)

    Robertson, J. W.; Honeycutt, R. K.; Henden, A. A.; Campbell, R. T.

    2018-02-01

    Stunted outbursts are ∼0.ͫ6 eruptions, typically lasting 5–10 days, which are found in some novalike cataclysmic variables, including UU Aqr. The mechanism responsible for stunted outbursts is uncertain but is likely related to an accretion disk instability or to variations in the mass transfer rate. A campaign to monitor the eclipse light curves in UU Aqr has been conducted in order to detect any light curve distortions due to the appearance of a hot spot on the disk at the location of the impact point of the accretion stream. If stunted outbursts are due to a temporary mass transfer enhancement, then predictable deformations of the orbital light curve are expected to occur during such outbursts. This study used 156 eclipses on 135 nights during the years 2000–2012. During this interval, random samples found the system to be in stunted outbursts 4%–5% of the time, yielding ∼7 eclipses obtained during some stage of stunted outburst. About half of the eclipses obtained during stunted outbursts showed clear evidence for hot spot enhancement, providing strong evidence that the stunted outbursts in UU Aqr are associated with mass transfer variations. The other half of the eclipses during stunted outburst showed little or no evidence for hot spot enhancement. Furthermore, there were no systematic changes in the hot spot signature as stunted outbursts progressed. Therefore, we have tentatively attributed the changes in hot spot visibility during stunted outburst to random blobby accretion, which likely further modulates the strength of the accretion stream on orbital timescales.

  3. EclipseMob: Results from a nation-wide citizen science experiment on the effects of the 2017 Solar Eclipse on Low-frequency (LF) Radio Propagation

    Science.gov (United States)

    Liles, W. C.; Lukes, L.; Nelson, J.; Henry, J.; Oputa, J.; Kerby-Patel, K. C.

    2017-12-01

    Early experiments to study the effects of a solar eclipse on radio wave propagation were done with either a limited number of sites before any theory of the ionosphere had been confirmed or involved collecting data that proved to be unusable because submissions were missing critical information such as date, time or location. This study used the 2017 solar eclipse over the continental U.S. to conduct the first wide-area (across the U.S.) low-frequency (LF) propagation study. The data collection process was crowdsourced through the engagement of students/educators, citizens, ham radio enthusiasts, and the scientific community. In order to accomplish data collection by geographically dispersed citizen scientists, the EclipseMob team designed and shared a low cost, low tool/skill DIY receiver system to collect LF data that leveraged existing cell phone technology and made the experiment more accessible to students and people with no prior experience constructing electronic systems. To support engagement, in addition to web guides (eclipsemob..org), EclipseMob supplied 150 DIY kits and provided build/Q&A webinars and events. For the experiment, participants constructed a simple receiver system consisting of a homemade antenna, a simple homemade receiver to convert the radio frequency (RF) signals to audio frequencies, and a smart phone app. Before, during, and after the eclipse, participants used their receiver systems to record transmitter signal data from WWVB located near Fort Collins, Colorado on 60.000 kHz (a U.S. frequency standard that is operated by NIST and transmits time codes). A second frequency, 55.500 kHz transmitted by a LF station in Dixon, CA was also used. By using the time, date and location features of the smart phone, the problems experienced in earlier experiments could be minimized. By crowdsourcing the observation sites across the U.S., data from a number of different short, medium and long- paths could be obtained as the total eclipse crossed

  4. Accuracy of lunar eclipse observations made by Jesuit astronomers in China.

    Science.gov (United States)

    Fatoohi, L. J.; Stephenson, F. R.

    1996-02-01

    The Jesuit astronomers observed numerous lunar eclipses at Beijing and summaries of their observations - made between 1644 and 1785 - are preserved. The various lunar eclipse measurements that the Jesuits made are compared with the results of present-day computation.

  5. Relativistic Outflows from Advection-dominated Accretion Disks around Black Holes

    Science.gov (United States)

    Becker, Peter A.; Subramanian, Prasad; Kazanas, Demosthenes

    2001-05-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter and are therefore gravitationally unbound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a pseudo-Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self-similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Hence, our self-similar solution may help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approaches the unique form M~r1/2, with an associated density variation given by ρ~r-1. This density variation agrees with that implied by the dependence of the hard X-ray time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the predictions made using our self-similar solution need to be confirmed in the future using a detailed model that includes a physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  6. Probing the Jet Turnover Frequency Dependence on Mass and Mass Accretion Rate

    Science.gov (United States)

    Hammerstein, Erica; Gültekin, Kayhan; King, Ashley

    2018-01-01

    We have examined a sample of 15 sub-Eddington supermassive black holes (SMBHs) in a variety of galaxy classifications to further understand the proposed fundamental plane of black hole activity and scaling relations between black hole masses and their radio and X-ray luminosities. This plane describes black holes from stellar-mass to supermassive. The physics probed by these sub-Eddington systems is thought to be a radiatively inefficient, jet-dominated accretion flow. By studying black holes in this regime, we can learn important information on the disk-jet connection for accreting black holes.A key factor in studying the fundamental plane is the turnover frequency — the frequency at which emission transitions from optically thick at lower frequencies to optically thin at higher frequencies. This turnover point can be measured by observing the source in both radio and X-ray. Our project aims to test the dependence of the turnover frequency on mass and mass accretion rate.Radio observations of the sample were obtained using the Karl G. Jansky Very Large Array (VLA) in the range of 5-40 GHz across four different frequency bands in A configuration to give the highest spatial resolution to focus on the core emission. Our carefully chosen sample of SMBHs with dynamically measured masses consists of two sub-samples: those with approximately constant mass accretion rate (LX/LEdd ~ 10‑7) and those with approximately constant mass (MBH ~ 108 Msun). X-ray data were obtained from archival Chandra observations. To find the turnover frequency, we used Markov Chain Monte Carlo methods to fit two power laws to the radio data and the archival X-ray data. The intersection of the radio and X-ray fits is the turnover frequency.We present the results for both subsamples of SMBHs and their relationship between the turnover frequency and X-ray luminosity, which we take to scale with mass accretion rate, and jet power derived from both radio and X-ray properties.

  7. Interacting Winds in Eclipsing Symbiotic Systems - The Case Study of EG Andromedae

    Science.gov (United States)

    Calabrò, Emanuele

    2014-03-01

    We report the mathematical representation of the so called eccentric eclipse model, whose numerical solutions can be used to obtain the physical parameters of a quiescent eclipsing symbiotic system. Indeed the nebular region produced by the collision of the stellar winds should be shifted to the orbital axis because of the orbital motion of the system. This mechanism is not negligible, and it led us to modify the classical concept of an eclipse. The orbital elements obtained from spectroscopy and photometry of the symbiotic EG Andromedae were used to test the eccentric eclipse model. Consistent values for the unknown orbital elements of this symbiotic were obtained. The physical parameters are in agreement with those obtained by means of other simulations for this system.

  8. Ionospheric response over Europe during the solar eclipse of March 20, 2015

    Directory of Open Access Journals (Sweden)

    Hoque Mohammed Mainul

    2016-01-01

    Full Text Available The solar eclipse on March 20, 2015 was a fascinating event for people in Northern Europe. From a scientific point of view, the solar eclipse can be considered as an in situ experiment on the Earth’s upper atmosphere with a well-defined switching off and on of solar irradiation. Due to the strong changes in solar radiation during the eclipse, dynamic processes were initiated in the atmosphere and ionosphere causing a measurable impact, for example, on temperature and ionization. We analyzed the behavior of total ionospheric ionization over Europe by reconstructing total electron content (TEC maps and differential TEC maps. Investigating the large depletion zone around the shadow spot, we found a TEC reduction of up to 6 TEC units, i.e., the total plasma depletion reached up to about 50%. However, the March 20, 2015 eclipse occurred during the recovery phase of a strong geomagnetic storm and the ionosphere was still perturbed and depleted. Therefore, the unusual high depletion is due to the negative bias of up to 20% already observed over Northern Europe before the eclipse occurred. After removing the negative storm effect, the eclipse-induced depletion amounts to about 30%, which is in agreement with previous observations. During the solar eclipse, ionospheric plasma redistribution processes significantly affected the shape of the electron density profile, which is seen in the equivalent slab thickness derived by combining vertical incidence sounding (VS and TEC measurements. We found enhanced slab thickness values revealing, on the one hand, an increased width of the ionosphere around the maximum phase and, on the other, evidence for delayed depletion of the topside ionosphere. Additionally, we investigated very low frequency (VLF signal strength measurements and found immediate amplitude changes due to ionization loss at the lower ionosphere during the eclipse time. We found that the magnitude of TEC depletion is linearly dependent on the

  9. Optical counterparts of two Fermi millisecond pulsars: PSR J1301+0833 and PSR J1628–3205

    International Nuclear Information System (INIS)

    Li, Miao; Halpern, Jules P.; Thorstensen, John R.

    2014-01-01

    Using the 1.3 m and 2.4 m Telescopes of the MDM Observatory, we identified the close companions of two eclipsing millisecond radio pulsars that were discovered by the Green Bank Telescope in searches of Fermi Gamma-ray Space Telescope sources, and measured their light curves. PSR J1301+0833 is a black widow pulsar in a 6.5 hr orbit whose companion star is strongly heated on the side facing the pulsar. It varies from R = 21.8 to R > 24 around the orbit. PSR J1628–3205 is a 'redback', a nearly Roche-lobe-filling system in a 5.0 hr orbit whose optical modulation in the range 19.0 < R < 19.4 is dominated by strong ellipsoidal variations, indicating a large orbital inclination angle. PSR J1628–3205 also shows evidence for a long-term variation of about 0.2 mag, and an asymmetric temperature distribution possibly due to either off-center heating by the pulsar wind, or large starspots. Modeling of its light curve restricts the inclination angle to i > 55°, the mass of the companion to 0.16 < M c < 0.30 M ☉ , and the effective temperature to 3560 < T eff < 4670 K. As is the case for several redbacks, the companion of PSR J1628–3205 is less dense and hotter than a main-sequence star of the same mass.

  10. Hot spot manifestation in eclipsing dwarf nova HT Cassiopeiae

    OpenAIRE

    Bakowska, K.; Olech, A.

    2014-01-01

    We report the detection of the hot spot in light curves of the eclipsing dwarf nova HT Cassiopeiae during its superoutburst in 2010 November. Analysis of eight reconstructed light curves of the hot spot eclipses showed directly that the brightness of the hot spot was changing significantly during the superoutburst. Thereby, detected hot spot manifestation in HT Cas is the newest observational evidence for the EMT model for dwarf novae.

  11. Eclipse Megamovie 2017: How did we do?

    Science.gov (United States)

    Hudson, Hugh; Bender, Mark; Collier, Braxton; Johnson, Calvin; Koh, Justin; Konerding, David; Martinez Oliveros, Juan Carlos; Peticolas, Laura; White, Vivian; Zevin, Dan

    2018-01-01

    The Eclipse Megamovie program, as set up for the Great American Eclipse of 21 August 2017, achived a massive volunteer participation, making maximal use existing equipment but with coordinated training. Everything worked fine, and the archive entered the public domain on Friday, October 6. It comprises about 800 GB of data from DSLR cameras and telescopes. An additional 200 GB of data were obtained by smartphone cameras operating a dedicated free app. The massive oversampling made possible by the many (about 2500) volunteer observers has opened new parameter space for tracking coronal and chromospheric time development. Fortuitously some solar activity appeared during the 90-minute period of totality, including a C-class flare and an ongoing CME. At the smartphone level, with the advantage of precise GPS timing, we have data on solar structure via the timing of Baily's Beads at the 2nd and 3rd contacts. The Megamovie archive is an historical first, and we hope that it has already been a springboard for citizen-science projects. We discuss the execution of the program, presenting some of the 2017 science plans and results. We expect that the eclipse of 2024 will be better still.

  12. Polarimetry of the millisecond pulsar

    Energy Technology Data Exchange (ETDEWEB)

    Stinebring, D R

    1983-04-21

    Polarization observations of the millisecond pulsar PSR1937+21 at 1415 and 2380 MHz were made with the 305-m telescope at the Arecibo Observatory in January 1983. The main pulse is found to depolarize substantially, while the interpulse polarization almost doubles. Evidence for orthogonally polarized radiation was detected on the edges facing across the 173 deg of longitude separating the main pulse from the interpulse, accounting for the approximately 90-deg difference in position angle. From the spectral-index difference (close to 1.0 over the frequency range observed) it is inferred that the interpulse may dominate the main pulse below 700 MHz; such behavior is noted to be similar to that of the physically different Crab pulsar.

  13. Searching for X-ray Pulsations from Neutron Stars Using NICER

    Science.gov (United States)

    Ray, Paul S.; Arzoumanian, Zaven; Gendreau, Keith C.; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Chakrabarty, Deepto; Guillot, Sebastien; Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick; Mahmoodifar, Simin; Miller, Cole; Strohmayer, Tod; Wilson-Hodge, Colleen; Wolff, Michael T.; NICER Science Team Working Group on Pulsation Searches and Multiwavelength Coordination

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We present our science plan and initial results from the first months of the NICER mission.

  14. Photometry of the SW Sextantis-type nova-like BH Lyncis in high state

    Science.gov (United States)

    Stanishev, V.; Kraicheva, Z.; Genkov, V.

    2006-08-01

    Aims.We present a photometric study of the deeply eclipsing SW Sex-type nova-like cataclysmic variable star BH Lyn. Methods: .Time-resolved V-band CCD photometry was obtained for seven nights between 1999 and 2004. Results: .We determined 11 new eclipse timings of BH Lyn and derived a refined orbital ephemeris with an orbital period of 0.155875577(14) °. During the observations, BH Lyn was in high-state with V≃15.5 mag. The star presents ~1.5 mag deep eclipses with mean full-width at half-flux of 0.0683(±0.0054)P_orb. The eclipse shape is highly variable, even changing form cycle to cycle. This is most likely due to accretion disc surface brightness distribution variations, most probably caused by strong flickering. Time-dependent accretion disc self-occultation or variations of the hot spot(s) intensity are also possible explanations. Negative superhumps with period of ˜0.145 ° are detected in two long runs in 2000. A possible connection between SW Sex and negative superhump phenomena through the presence of tilted accretion disc is discussed, and a way to observationally test this is suggested.

  15. Soft excess and orbital evolution studies of X-ray pulsars with BeppoSAX

    International Nuclear Information System (INIS)

    Paul, B.; Naik, S.; Bhatt, N.

    2004-01-01

    We present here a spectral study of two accreting binary X-ray pulsars LMC X-4 and SMC X-1 made with the BeppoSAX observatory. The energy spectrum of both the pulsars in 0.1-10.0 keV band can be described by a model consisting of a hard power-law component, a soft excess and an iron emission line at 6.4 keV. In addition, the power-law component of SMC X-1 also has an exponential cutoff at ∼ 6 keV. Pulse-phase resolved spectroscopy confirms a pulsating nature of the soft spectral component in both the pulsars, with a certain phase offset compared to the hard power-law component. A dissimilar pulse profile of the two spectral components and a phase difference between the pulsating soft and hard spectral components are evidence for their different origins. In another study of an accreting binary X-ray pulsar Her X-1, we have made accurate measurements of new mid-eclipse times from pulse arrival time delays using observations made with the BeppoSAX and RXTE observatories. The new measurements, combined with the earlier reported mid-eclipse times are used to investigate orbital evolution of the binary. The most recent observation indicates deviation from a quadratic trend coincident with an anomalous low X-ray state, observed for the second time in this pulsar

  16. The effects of a solar eclipse on photo-oxidants in different areas of China

    Directory of Open Access Journals (Sweden)

    J.-B. Wu

    2011-08-01

    Full Text Available This study investigates the effects of the total solar eclipse of 22 July 2009 on surface ozone and other photo-oxidants over China. A box model was used to study the sensitivity of ozone to the limb darkening effect during an eclipse event, and to show that the impact on ozone is small (less than 0.5 %. In addition, the regional model WRF-Chem was applied to study the effects of the eclipse on meteorological and chemical parameters, focusing on different regions in China. Chemical and meteorological observations were used to validate the model and to show that it can capture the effects of the total solar eclipse well. Model calculations show distinct differences in the spatial distributions of meteorological and chemical parameters with and without the eclipse. The maximum impacts of the eclipse occur over the area of totality, where there is a decrease in surface temperature of 1.5 °C and decrease in wind speed of 1 m s−1. The maximum impacts on atmospheric pollutants occur over parts of north and east China where emissions are greater, with an increase of 5 ppbv in NO2 and 25 ppbv in CO and a decrease of 10 ppbv in O3 and 4 ppbv in NO. This study also demonstrates the effects of the solar eclipse on surface photo-oxidants in different parts of China. Although the sun was obscured to a smaller extent in polluted areas than in clean areas, the impacts of the eclipse in polluted areas are greater and last longer than they do in clean areas. In contrast, the change in radical concentrations (OH, HO2 and NO3 in clean areas is much larger than in polluted areas mainly because of the limited source of radicals in these areas. The change in radical concentrations during the eclipse reveals that nighttime chemistry dominates in both clean and polluted areas. As solar eclipses provide a natural opportunity to test more thoroughly our understanding of atmospheric chemistry, especially that

  17. The 1984 eclipse of the symbiotic binary SY Muscae

    Science.gov (United States)

    Kenyon, S. J.; Michalitisianos, A. G.; Lutz, J. H.; Kafatos, M.

    1985-01-01

    Data from IUE spectra obtained with the 10 x 20-arcsec aperture on May 13, 1984, and optical spectrophotometry obtained with an SIT vidicon on the 1.5-m telescope at CTIO on April 29-May 1, 1984, are reported for the symbiotic binary SY Mus. The data are found to be consistent with a model of a red-giant secondary of 60 solar radii which completely eclipses the hot primary every 627 d but only partially eclipses the 75-solar-radius He(+) region surrounding the primary. The distance to SY Mus is estimated as 1.3 kpc. It is suggested that the large Balmer decrement in eclipse, with (H-alpha)/(H-beta) = 8.3 and (H-beta)/(H-gamma) = 1.5, is associated with an electron density of about 10 to the 10th/cu cm.

  18. Mission profile resolution effects on lifetime estimation of doubly-fed induction generator power converter

    DEFF Research Database (Denmark)

    Zhang, Guanguan; Zhou, Dao; Blaabjerg, Frede

    2017-01-01

    , and the corresponding thermal modeling of power semiconductors are discussed. Accordingly, effects of different mission profiles on the consumed lifetime of the power converter are evaluated. In the above three thermal cycles, the IGBT of the grid-side converter and the diode of the rotor-side converter are more...... fragile, and the total consumed lifetimes are higher. Moreover, the short-term thermal cycles with milliseconds resolution induce the unbalance of the lifetime between the diode and IGBT of the grid-side converter, while thermal cycles with hour, second, and millisecond resolution consumes the similar......In the wind energy generation system, mission profiles are complicated, which range from seconds to years. In order to estimate the consumed lifetime of the power converter, wind speed profiles with the time resolution of 1 hour, 1 second and 0.5 millisecond are studied in this paper...

  19. Engage All Americans with Eclipse 2017 Through the Eyes of NASA

    Science.gov (United States)

    Ng, C.; Young, C. A.; Mayo, L.; Cline, T. D.; Stephenson, B. E.; Debebe, A.; Lewis, E. M.; Odenwald, S. F.; Hill, S. W.

    2016-12-01

    Join NASA and millions in the U.S. and around the world in observing the August 21, 2017 solar eclipse. This presentation will discuss NASA's education and communication plans for the 2017 eclipse, highlighting some programs, resources, and citizen science activities that will engage and educate many across the country and beyond. NASA will offer unique observations of this celestial event from the ground to space. Additionally, there are do-it-yourself (DIY) science, lunar and math challenges, art contests, Makerspace ideas, and various activities for learners of all ages. Education resources and tool kits may be of particular interest to formal and informal educators. Find out what events are happening in your neighborhood, and plan your own eclipse parties with resources and activities. Last but not the least, experience the eclipse on August 21 and learn more through NASA broadcast programming that will include telescopic views from multiple locations, simple measurements, and live and taped interviews.

  20. COMPETITIVE ACCRETION IN A SHEET GEOMETRY AND THE STELLAR IMF

    International Nuclear Information System (INIS)

    Hsu, Wen-Hsin; Hartmann, Lee; Heitsch, Fabian; Gomez, Gilberto C.

    2010-01-01

    We report a set of numerical experiments aimed at addressing the applicability of competitive accretion to explain the high-mass end of the stellar initial mass function in a sheet geometry with shallow gravitational potential, in contrast to most previous simulations which have assumed formation in a cluster gravitational potential. Our flat cloud geometry is motivated by models of molecular cloud formation due to large-scale flows in the interstellar medium. The experiments consisted of smoothed particle hydrodynamics simulations of gas accretion onto sink particles formed rapidly from Jeans-unstable dense clumps placed randomly in the finite sheet. These simplifications allow us to study accretion with a minimum of free parameters and to develop better statistics on the resulting mass spectra. We considered both clumps of equal mass and Gaussian distributions of masses and either uniform or spatially varying gas densities. In all cases, the sink mass function develops a power-law tail at high masses, with dN/dlog M ∝ M -Γ . The accretion rates of individual sinks follow M-dot ∝M 2 at high masses; this results in a continual flattening of the slope of the mass function toward an asymptotic form Γ ∼ 1 (where the Salpeter slope is Γ = 1.35). The asymptotic limit is most rapidly reached when starting from a relatively broad distribution of initial sink masses. In general, the resulting upper mass slope is correlated with the maximum sink mass; higher sink masses are found in simulations with flatter upper mass slopes. Although these simulations are of a highly idealized situation, the results suggest that competitive accretion may be relevant in a wider variety of environments than previously considered, and in particular that the upper mass distribution may generally evolve toward a limiting value of Γ ∼ 1.

  1. Cold gas accretion in galaxies

    NARCIS (Netherlands)

    Sancisi, Renzo; Fraternali, Filippo; Oosterloo, Tom; van der Hulst, Thijs

    Evidence for the accretion of cold gas in galaxies has been rapidly accumulating in the past years. HI observations of galaxies and their environment have brought to light new facts and phenomena which are evidence of ongoing or recent accretion: (1) A large number of galaxies are accompanied by

  2. Fundamental Ice Crystal Accretion Physics Studies

    Science.gov (United States)

    Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan

    2012-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component

  3. Analysis of Geomagnetic Field Variations during Total Solar Eclipses Using INTERMAGNET Data

    Science.gov (United States)

    KIM, J. H.; Chang, H. Y.

    2017-12-01

    We investigate variations of the geomagnetic field observed by INTERMAGNET geomagnetic observatories over which the totality path passed during a solar eclipse. We compare results acquired by 6 geomagnetic observatories during the 4 total solar eclipses (11 August 1999, 1 August 2008, 11 July 2010, and 20 March 2015) in terms of geomagnetic and solar ecliptic parameters. These total solar eclipses are the only total solar eclipse during which the umbra of the moon swept an INTERMAGNET geomagnetic observatory and simultaneously variations of the geomagnetic field are recorded. We have confirmed previous studies that increase BY and decreases of BX, BZ and F are conspicuous. Interestingly, we have noted that variations of geomagnetic field components observed during the total solar eclipse at Isla de Pascua Mataveri (Easter Island) in Chile (IPM) in the southern hemisphere show distinct decrease of BY and increases of BX and BZ on the contrary. We have found, however, that variations of BX, BY, BZ and F observed at Hornsund in Norway (HRN) seem to be dominated by other geomagnetic occurrence. In addition, we have attempted to obtain any signatures of influence on the temporal behavior of the variation in the geomagnetic field signal during the solar eclipse by employing the wavelet analysis technique. Finally, we conclude by pointing out that despite apparent success a more sophisticate and reliable algorithm is required before implementing to make quantitative comparisons.

  4. An outstanding researcher of the solar eclipses- Nicolas Donitch

    Science.gov (United States)

    Gaina, Alex

    1998-09-01

    Nicolae Donitch (1874, Chisinau-1958, Nice, France?) worked in Russia (until 1917), Romania (1918-1944) and France (1945-1958?). His observatory was placed in Dubossary-Vechi (where he worked with some intervals between 1908 and 1944. He was designated by the Russian Academy of Sciences for the observations of the total Solar eclipse in Elche (Spain) on 28 May 1900. Other solar eclipses observed by N. Donitch: 17-18 may 1901, Padong (Sumatra); 1904 - the annular eclipse of the Sun in Pnom-Penh (Cambodge); august 1905, Alcala de Chisvert (Spain) and Assuan (Upper Egypt); 16/17 April 1912, Portugal; 21 august 1914, Crimea; 1925, USA; 1929 Indochina and Philipines; 1930, Egypt; 1932 Egypt and cape Porpoise,Maine USA; 1936, Inneboli, Turkey. Other solar investigations by N. Donitch; Solar cromosphere (Odessa, 1902; Mount- Blanch, 1902-1903); The passage of the planet Mercury through the solar disk (November, 1907, Egypt; October 1914, Algeria).

  5. Measurement of millisecond half-lives of isomeric levels in some nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Garg, K C; Khurana, C S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1976-09-01

    Half-lives of 2.7, 14.5, 17, 20, 20.4, 44 and 2230 msec, of isomeric levels in /sup 208/Bi, /sup 88/Y, /sup 75/As, /sup 24/Na, /sup 71/Ge, /sup 114/In and /sup 167/Er respectively have been measured, employing on-line irradiation system. These millisecond isomeric levels are produced by 14.7 MeV neutrons through (n,p), (n,..cap alpha..), (n,n') and (n,2n) reactions on natural target samples. A ..gamma..-ray scintillation detector coupled with NTA-512B, 1024 channel analyzer has been used to follow the decay of the millisecond activities. Deflected deuteron beam bursts have been used to reduce the long-time background to initial count ratios in the decay curves to achieve a better accuracy of measurements.

  6. Increases to Inferred Rates of Planetesimal Accretion due to Thermohaline Mixing in Metal-accreting White Dwarfs

    Science.gov (United States)

    Bauer, Evan B.; Bildsten, Lars

    2018-06-01

    Many isolated, old white dwarfs (WDs) show surprising evidence of metals in their photospheres. Given that the timescale for gravitational sedimentation is astronomically short, this is taken as evidence for ongoing accretion, likely of tidally disrupted planetesimals. The rate of such accretion, {\\dot{M}}acc}, is important to constrain, and most modeling of this process relies on assuming an equilibrium between diffusive sedimentation and metal accretion supplied to the WD’s surface convective envelope. Building on the earlier work of Deal and collaborators, we show that high {\\dot{M}}acc} models with only diffusive sedimentation are unstable to thermohaline mixing and that models that account for the enhanced mixing from the active thermohaline instability require larger accretion rates, sometimes reaching {\\dot{M}}acc}≈ {10}13 {{g}} {{{s}}}-1 to explain observed calcium abundances. We present results from a grid of MESA models that include both diffusion and thermohaline mixing. These results demonstrate that both mechanisms are essential for understanding metal pollution across the range of polluted WDs with hydrogen atmospheres. Another consequence of active thermohaline mixing is that the observed metal abundance ratios are identical to accreted material.

  7. Millisecond Magnetar Birth Connects FRB 121102 to Superluminous Supernovae and Long-duration Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Brian D.; Margalit, Ben [Columbia Astrophysics Laboratory, New York, NY 10027 (United States); Berger, Edo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-05-20

    Subarcsecond localization of the repeating fast radio burst FRB 121102 revealed its coincidence with a dwarf host galaxy and a steady (“quiescent”) nonthermal radio source. We show that the properties of the host galaxy are consistent with those of long-duration gamma-ray bursts (LGRB) and hydrogen-poor superluminous supernovae (SLSNe-I). Both LGRBs and SLSNe-I were previously hypothesized to be powered by the electromagnetic spin-down of newly formed, strongly magnetized neutron stars with millisecond birth rotation periods (“millisecond magnetars”). This motivates considering a scenario whereby the repeated bursts from FRB 121102 originate from a young magnetar remnant embedded within a young hydrogen-poor supernova (SN) remnant. Requirements on the gigahertz free–free optical depth through the expanding SN ejecta (accounting for photoionization by the rotationally powered magnetar nebula), energetic constraints on the bursts, and constraints on the size of the quiescent source all point to an age of less than a few decades. The quiescent radio source can be attributed to synchrotron emission from the shock interaction between the fast outer layer of the supernova ejecta with the surrounding wind of the progenitor star, or the radio source can from deeper within the magnetar wind nebula as outlined in Metzger et al. Alternatively, the radio emission could be an orphan afterglow from an initially off-axis LGRB jet, though this might require the source to be too young. The young age of the source can be tested by searching for a time derivative of the dispersion measure and the predicted fading of the quiescent radio source. We propose future tests of the SLSNe-I/LGRB/FRB connection, such as searches for FRBs from nearby SLSNe-I/LGRBs on timescales of decades after their explosions.

  8. Millisecond Magnetar Birth Connects FRB 121102 to Superluminous Supernovae and Long-duration Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Metzger, Brian D.; Margalit, Ben; Berger, Edo

    2017-01-01

    Subarcsecond localization of the repeating fast radio burst FRB 121102 revealed its coincidence with a dwarf host galaxy and a steady (“quiescent”) nonthermal radio source. We show that the properties of the host galaxy are consistent with those of long-duration gamma-ray bursts (LGRB) and hydrogen-poor superluminous supernovae (SLSNe-I). Both LGRBs and SLSNe-I were previously hypothesized to be powered by the electromagnetic spin-down of newly formed, strongly magnetized neutron stars with millisecond birth rotation periods (“millisecond magnetars”). This motivates considering a scenario whereby the repeated bursts from FRB 121102 originate from a young magnetar remnant embedded within a young hydrogen-poor supernova (SN) remnant. Requirements on the gigahertz free–free optical depth through the expanding SN ejecta (accounting for photoionization by the rotationally powered magnetar nebula), energetic constraints on the bursts, and constraints on the size of the quiescent source all point to an age of less than a few decades. The quiescent radio source can be attributed to synchrotron emission from the shock interaction between the fast outer layer of the supernova ejecta with the surrounding wind of the progenitor star, or the radio source can from deeper within the magnetar wind nebula as outlined in Metzger et al. Alternatively, the radio emission could be an orphan afterglow from an initially off-axis LGRB jet, though this might require the source to be too young. The young age of the source can be tested by searching for a time derivative of the dispersion measure and the predicted fading of the quiescent radio source. We propose future tests of the SLSNe-I/LGRB/FRB connection, such as searches for FRBs from nearby SLSNe-I/LGRBs on timescales of decades after their explosions.

  9. THE NANOGRAV NINE-YEAR DATA SET: EXCESS NOISE IN MILLISECOND PULSAR ARRIVAL TIMES

    Energy Technology Data Exchange (ETDEWEB)

    Lam, M. T.; Jones, M. L.; McLaughlin, M. A.; Pennucci, T. T. [Department of Physics, West Virginia University, White Hall, Morgantown, WV 26506 (United States); Cordes, J. M.; Chatterjee, S. [Department of Astronomy and Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853 (United States); Arzoumanian, Z. [Center for Research and Exploration in Space Science and Technology and X-Ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Crowter, K.; Fonseca, E.; Gonzalez, M. E. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Demorest, P. B. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM, 87801 (United States); Dolch, T. [Department of Physics, Hillsdale College, 33 E. College Street, Hillsdale, MI 49242 (United States); Ellis, J. A [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena CA, 91109 (United States); Ferdman, R. D. [Department of Physics, McGill University, 3600 rue Universite, Montreal, QC H3A 2T8 (Canada); Jones, G. [Department of Physics, Columbia University, 550 W. 120th Street, New York, NY 10027 (United States); Levin, L. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Madison, D. R.; Ransom, S. M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Nice, D. J. [Department of Physics, Lafayette College, Easton, PA 18042 (United States); Shannon, R. M., E-mail: michael.lam@mail.wvu.edu [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Box 76, Epping NSW 1710 (Australia); and others

    2017-01-01

    Gravitational wave (GW) astronomy using a pulsar timing array requires high-quality millisecond pulsars (MSPs), correctable interstellar propagation delays, and high-precision measurements of pulse times of arrival. Here we identify noise in timing residuals that exceeds that predicted for arrival time estimation for MSPs observed by the North American Nanohertz Observatory for Gravitational Waves. We characterize the excess noise using variance and structure function analyses. We find that 26 out of 37 pulsars show inconsistencies with a white-noise-only model based on the short timescale analysis of each pulsar, and we demonstrate that the excess noise has a red power spectrum for 15 pulsars. We also decompose the excess noise into chromatic (radio-frequency-dependent) and achromatic components. Associating the achromatic red-noise component with spin noise and including additional power-spectrum-based estimates from the literature, we estimate a scaling law in terms of spin parameters (frequency and frequency derivative) and data-span length and compare it to the scaling law of Shannon and Cordes. We briefly discuss our results in terms of detection of GWs at nanohertz frequencies.

  10. Topics in the physics of accretion onto black holes

    International Nuclear Information System (INIS)

    Stoeger, W.R.

    1977-06-01

    The subject is covered in chapters, entitled: introduction and overview; boundary-condition modification of accretion-disk models; standard assumptions and nonkeplerian inner-disk models; the 'inner edge' of accretion disks and spiral orbits; a review of comptonization in accretion disks and a criterion for Lightman-Eardley stability; the thickening of accretion disks and flows; radial pressure gradients and low-angular-momentum accretion; accretion-disk scenarios for X-ray transient and burst sources; photon pair-creation processes in transrelativistic plasmas; and the astrophysical consequences of Rosen's bi-metric theory of gravity. (U.K.)

  11. Android development tools for Eclipse

    CERN Document Server

    Shah, Sanjay

    2013-01-01

    A standard tutorial aimed at developing Android applications in a practical manner.Android Development Tools for Eclipse is aimed at beginners and existing developers who want to learn more about Android development. It is assumed that you have experience in Java programming and that you have used IDE for development.

  12. Confirming Variability in the Secondary Eclipse Depth of the Rocky Super-Earth 55 Cancri e

    Science.gov (United States)

    Tamburo, Patrick; Mandell, Avi; Deming, Drake; Garhart, Emily

    2017-01-01

    We present a reanalysis of Spitzer transit and secondary eclipse observations of the rocky super Earth 55 Cancri e using Pixel Level Decorrelation (Deming et al. 2015). Secondary eclipses of this planet were found to be significantly variable by Demory et al. (2016), implying a changing brightness temperature which could be evidence of volcanic activity due to tidal forces. If genuine, this result would represent the first evidence for such a process outside of bodies in our own solar system, and would further expand our understanding of the huge variety of planetary systems that can develop in our universe. Spitzer eclipse observations, however, are subject to strong systematic effects which can heavily impact the retrieved eclipse model. A reanalysis of this result with an independent method is therefore needed to confirm eclipse depth variability. We tentatively confirm variability, finding a shallower increase in eclipse depth over the course of observations compared to Demory et al. (2015).

  13. The 1st of April 2470 BC Total Solar Eclipse Seen by the Prophet Ibraheem

    Science.gov (United States)

    Yousef, S. M.

    The Holy Quran describes a phenomenon seen by young Abraham that can only fit a solar eclipse. Two criteria were given for this particular eclipse; first only one planet was seen as soon as it got dark and second no corona was seen. In order to justify the first selection rule, examinations of solar and planetary longitudes for total solar eclipses passing over Babel were carried out. Only the eclipse of the 1st of April 2470 BC meets this condition, as it was only Venus that was seen at that eclipse. The second selection rule was also naturally fulfilled, as Babel happened to be on the border of the totality zone hence no corona was seen, however all the time the moon glistened as Baily's beads. There is no doubt that the prophet Abraham witnessed the 1st of April total solar eclipse that passed over Babel. This will put him about 470 years backward than it was previously anticipated.

  14. Numerical study of nonspherical black hole accretion

    International Nuclear Information System (INIS)

    Hawley, J.F.

    1984-01-01

    This thesis describes in detail a two-dimensional, axisymmetric computer code for calculating fully relativistic ideal gas hydrodynamics around a Kerr black hole. The aim is to study fully dynamic inviscid fluid accretion onto black holes, as well as to study the evolution and development of nonlinear instabilities in pressure supported accretion disks. In order to fully calibrate and document the code, certain analytic solutions for shock tubes and special accretion flows are derived; these solutions form the basis for code testing. The numerical techniques used are developed and discussed. A variety of alternate differencing schemes are compared on an analytic test bed. Some discussion is devoted to general issues in finite differencing. The working code is calibrated using analytically solvable accretion problems, including the radial accretion of dust and of fluid with pressure (Bondi accretion). Two dimensional test problems include the spiraling infall of low angular momentum fluid, the formation of a pressure supported torus, and the stable evolution of a torus. A series of numerical models are discussed and illustrated with selected plots

  15. Lessons Learned During the Recent ɛ Aurigae Eclipse Observing Campaign

    Science.gov (United States)

    Stencel, R. E.

    2012-06-01

    (Abstract only) The eighteen-month-long eclipse of the third-magnitude star, epsilon Aurigae, is forecast to end during May 2011, based on six eclipse events, in 2010, 1982, 1955, 1930, 1902, and 1874. In partnership with AAVSO, Hopkins Phoenix Observatory, and others, we have organized observing campaigns during the past several years in order to maximize data acquired during this rare event and to promote reporting and analysis of observations of all kinds. Hundreds of registered participants have signed up for alert notices and newsletters, and many dozens of observers have contributed photometry, spectra, and ideas to the ongoing effort - see websites: www.CitizenSky.org and www.hposoft.com/Campaign09.html. In this presentation, I will provide an update on the participation leading to extensive photometric results. Similarly, bright star spectroscopy has greatly benefited from small telescope plus spectrometer capabilities, now widely available, that complement traditional but less-frequent large telescope high dispersion work. Polarimetry provided key insights during the last eclipse, and we promoted the need for new data using this method. Finally, interferometry has come of age since the last eclipse, leading to the direct detection of the transiting dark disk causing the eclipse. Along with these traditional measurements, I will outline campaign-related efforts to promote Citizen Science opportunities among the public. Support for these efforts derives in part from AAVSO/NSF-Informal Science Education, NSF AAG grant 10-16678, and a bequest to the University of Denver Astronomy Program by alumnus William Herschel Womble, for which I am grateful.

  16. Lessons Learned During the Recent Epsilon Aurigae Eclipse Observing Campaign

    Science.gov (United States)

    Stencel, Robert E.

    2011-05-01

    The 18 month long eclipse of the 3rd magnitude star, epsilon Aurigae, is forecast to end during May 2011, based on six eclipse events, in 2010, 1982, 1955, 1930, 1902 and 1874. In partnership with AAVSO, Hopkins Phoenix Observatory and others, we have organized observing campaigns during the past several years in order to maximize data acquired during this rare event and to promote reporting and analysis of observations of all kinds. Hundreds of registered participants have signed up for alert notices and newsletters, and many dozens of observers have contributed photometry, spectra and ideas to the ongoing effort - see websites: www.CitizenSky.org and www.hposoft.com/Campaign09.html . In this presentation, I will provide an update on the participation leading to extensive photometric results. Similarly, bright star spectroscopy has greatly benefited from small telescope plus spectrometer capabilities, now widely available, that complement traditional but less-frequent large telescope high dispersion work. Polarimetry provided key insights during the last eclipse, and we promoted the need for new data using this method. Finally, interferometry has come of age since the last eclipse, leading to the direct detection of the transiting dark disk causing the eclipse. Along with these traditional measurements, I will outline campaign-related efforts to promote Citizen Science opportunities among the public. Support for these efforts derives in part from AAVSO/NSF-Informal Science Education, NSF AAG grant 10-16678 and a bequest to the University of Denver Astronomy Program by alumnus William Herschel Womble, for which I am grateful.

  17. Numerical Simulations of Wind Accretion in Symbiotic Binaries

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-08-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10-4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent on

  18. NUMERICAL SIMULATIONS OF WIND ACCRETION IN SYMBIOTIC BINARIES

    International Nuclear Information System (INIS)

    De Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-01-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10 -4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent

  19. Physics Of Eclipsing Binaries. II. Towards the Increased Model Fidelity

    OpenAIRE

    Prša, Andrej; Conroy, Kyle E.; Horvat, Martin; Pablo, Herbert; Kochoska, Angela; Bloemen, Steven; Giammarco, Joseph; Hambleton, Kelly M.; Degroote, Pieter

    2016-01-01

    The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures and luminosities), yet the models are not capable of reproducing observed...

  20. Worldwide photometry of the January 1989 Tau Persei eclipse

    Science.gov (United States)

    Hall, Douglas S.; Curott, David R.; Barksdale, William S.; Diethelm-Sutter, Roger; Ells, Jack

    1991-01-01

    New UBV photoelectric photometry of Tau Persei obtained at 19 different observatories during its recent January 1989 eclipse is presented. Mideclipse occurred at JD 2 447 542.31 + or - 0.01. The resulting light curve, though not complete at all phases, is solved for the elements with the help of two quantities derived from spectroscopy: the eclipse is 84 percent total at mideclipse, and the ratio of the radii is 0.135 + or - 0.01. Radii relative to the semimajor axis are 0.0236 for the G5 giant and 0.0032 for the A2 star. With a reasonable total mass assumed, the absolute radii say the A2 star could be luminosity class V or somewhat evolved and the G5 star is between III and II but could be closer to II. The G5 giant is brighter than the A2 star by 1.72 mag in V and the color excess in B - V is 0.06 mag, both quantities consistent (within uncertainties) with earlier estimates of Ake (1986). The eclipse duration, from first to fourth contact, is 2.09 day. The orbital inclination is 88.74 deg, consistent with what McAlister derived from speckle interferometry. Because of the large (e = 0.73) eccentricity, there is no secondary eclipse at all.

  1. 75 FR 61345 - Airworthiness Directives; Eclipse Aerospace, Inc. Model EA500 Airplanes

    Science.gov (United States)

    2010-10-05

    ... Airworthiness Directives; Eclipse Aerospace, Inc. Model EA500 Airplanes AGENCY: Federal Aviation Administration... service information identified in this AD, contact Eclipse Aerospace Incorporated, 2503 Clark Carr Loop... Kinney, Aerospace Engineer, Ft. Worth Aircraft Certification Office, FAA, 2601 Meacham Blvd., Fort Worth...

  2. Structures formation through self-organized accretion on cosmic strings

    International Nuclear Information System (INIS)

    Murdzek, R.

    2009-01-01

    In this paper, we shall show that the formation of structures through accretion by a cosmic string is driven by a natural feed-back mechanism: a part of the energy radiated by accretions creates a pressure on the accretion disk itself. This phenomenon leads to a nonlinear evolution of the accretion process. Thus, the formation of structures results as a consequence of a self-organized growth of the accreting central object.

  3. The total solar eclipse of 2010 July 11

    Science.gov (United States)

    McGee, H.; James, N.; Mason, J.

    2010-08-01

    The solar eclipse of 2010 July 11 always promised to be a logistical nightmare to observe. The Moon's shadow first touched the Earth in the southern Pacific, encountering land at Mangaia in the Cook Islands only after 1450km of open ocean. The narrow track of totality then swung northeast, passing tantalisingly close to the islands of Tahiti and Moorea, which experienced a 98% partial eclipse. Beyond Tahiti the track crossed the Tuamotu archipelago of French Polynesia - thousands of tiny coral atolls, of which very few are inhabited, and even fewer have airstrips that make them accessible to visitors.

  4. Electronic perturbation investigations into excitation and ionization in the millisecond pulsed glow discharge plasma

    International Nuclear Information System (INIS)

    Li Lei; Robertson-Honecker, Jennifer; Vaghela, Vishal; King, Fred L.

    2006-01-01

    This study employed a power perturbation method to examine the energy transfer processes at different locations within the afterpeak regime of a millisecond pulsed glow discharge plasma. Brief power perturbation pulses were applied during the afterpeak regime altering the environment of the collapsing plasma. Responses of several transitions to the power perturbations were measured via atomic emission and absorption spectroscopic methods at various distances from the surface of the cathode. The experimental data provide further insight into the energy transfer processes that occur at different spatial locations and in different temporal regimes of these pulsed glow discharge plasmas. Although the enhancement of the large population of metastable argon atoms is again confirmed, the mechanism responsible for this enhancement remains unclear. The most likely possibility involves some form of ion-electron recombination followed by radiative relaxation of the resulting species. The metastable argon atoms subsequently Penning ionize sputtered copper atoms which then appear to undergo a similar ion-electron recombination process yielding variable degrees of observable afterpeak emission for copper atom transitions. The kinetic information of these processes was approximated from the corresponding relaxation time. The electron thermalization time allowing for recombination with ions was found to be ∼25 μs after the discharge power termination

  5. X-Ray and Optical Observations of the Unique Binary System HD 49798/RX J0648.0-4418

    Science.gov (United States)

    Mereghetti, S.; La Palombara, N.; Tiengo, A.; Pizzolato, F.; Esposito, P.; Woudt, P. A.; Israel, G. L.; Stella, L.

    2011-08-01

    We report the results of XMM-Newton observations of HD 49798/RX J0648.0-4418, the only known X-ray binary consisting of a hot sub-dwarf and a white dwarf. The white dwarf rotates very rapidly (P = 13.2 s) and has a dynamically measured mass of 1.28 ± 0.05 M sun. Its X-ray emission consists of a strongly pulsed, soft component, well fit by a blackbody with kT BB ~ 40 eV, accounting for most of the luminosity, and a fainter hard power-law component (photon index ~1.6). A luminosity of ~1032 erg s-1 is produced by accretion onto the white dwarf of the helium-rich matter from the wind of the companion, which is one of the few hot sub-dwarfs showing evidence of mass loss. A search for optical pulsations at the South African Astronomical Observatory 1.9 m telescope gave negative results. X-rays were also detected during the white dwarf eclipse. This emission, with luminosity 2 × 1030 erg s-1, can be attributed to HD 49798 and represents the first detection of a hot sub-dwarf star in the X-ray band. HD 49798/RX J0648.0-4418 is a post-common-envelope binary which most likely originated from a pair of stars with masses ~8-10 M sun. After the current He-burning phase, HD 49798 will expand and reach the Roche lobe, causing a higher accretion rate onto the white dwarf which can reach the Chandrasekhar limit. Considering the fast spin of the white dwarf, this could lead to the formation of a millisecond pulsar. Alternatively, this system could be a Type Ia supernova progenitor with the appealing characteristic of a short time delay, being the descendent of relatively massive stars.

  6. Power market competition

    International Nuclear Information System (INIS)

    Kelly, J.

    1998-01-01

    In the Unites States the prospect of greater competition in wholesale power market was immediately eclipsed by talk of retail competition. Attempts to move to retail competition have been costly and complex. Prudent public policy and economic analyses suggest that retail competition not be implemented until it can first be demonstrated that effective competition exists in wholesale power markets [it

  7. Thin accretion disks in stationary axisymmetric wormhole spacetimes

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Kovacs, Zoltan; Lobo, Francisco S. N.

    2009-01-01

    In this paper, we study the physical properties and the equilibrium thermal radiation emission characteristics of matter forming thin accretion disks in stationary axially symmetric wormhole spacetimes. The thin disk models are constructed by taking different values of the wormhole's angular velocity, and the time averaged energy flux, the disk temperature, and the emission spectra of the accretion disks are obtained. Comparing the mass accretion in a rotating wormhole geometry with the one of a Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for wormholes than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating wormholes provide a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Therefore specific signatures appear in the electromagnetic spectrum of thin disks around rotating wormholes, thus leading to the possibility of distinguishing wormhole geometries by using astrophysical observations of the emission spectra from accretion disks.

  8. EXPECTED LARGE SYNOPTIC SURVEY TELESCOPE (LSST) YIELD OF ECLIPSING BINARY STARS

    International Nuclear Information System (INIS)

    Prsa, Andrej; Pepper, Joshua; Stassun, Keivan G.

    2011-01-01

    In this paper, we estimate the Large Synoptic Survey Telescope (LSST) yield of eclipsing binary stars, which will survey ∼20,000 deg 2 of the southern sky during a period of 10 years in six photometric passbands to r ∼ 24.5. We generate a set of 10,000 eclipsing binary light curves sampled to the LSST time cadence across the whole sky, with added noise as a function of apparent magnitude. This set is passed to the analysis-of-variance period finder to assess the recoverability rate for the periods, and the successfully phased light curves are passed to the artificial-intelligence-based pipeline ebai to assess the recoverability rate in terms of the eclipsing binaries' physical and geometric parameters. We find that, out of ∼24 million eclipsing binaries observed by LSST with a signal-to-noise ratio >10 in mission lifetime, ∼28% or 6.7 million can be fully characterized by the pipeline. Of those, ∼25% or 1.7 million will be double-lined binaries, a true treasure trove for stellar astrophysics.

  9. McDonald 2.1-m and CRTS Photometry of Eclipsing Polars

    Science.gov (United States)

    Wells, Natalie; Mason, Paul

    2018-01-01

    We present broadband optical photometry of five polars made using the 2.1-m telescope of McDonald Observatory. Four of the polars are eclipsing (EP Dra, FL Cet, V2301 Oph, and a Catalina Sky Survey (CSS) polar candidate). In addition, a pre-polar (MQ Dra) was observed. Typical integration times were 1-3 seconds with no dead time. At this time resolution, eclipse structure can be seen in both one- and two-pole accretors. McDonald 2.1-m data over several years is phased together with CSS photometry covering up to 7 years, in search of indications of period variation. Combining the high-resolution, high-speed photometry obtained using the ProEm camera on the McDonald 2.1-m with the sparse, but high-quality multi-year baseline photometry of the CSS places strong constraints on the time variability of the eclipse periods in these binary systems. In most cases, eclipse variations do not perfectly fit a linear ephemeris. We investigate the source of variations using standard O-C diagram techniques and period search algorithms.

  10. Astronomy in Denver: Centenary of the 1918 total solar eclipse across Denver

    Science.gov (United States)

    Stencel, Robert E.

    2018-06-01

    Totality during the 2017 August 21 solar eclipse (Saros 145) traveled along a path across the United States similar to that which occurred for the eclipse on 1918 June 8 (Saros 126), but with a less west-northerly track. This placed Denver and its then new Chamberlin Observatory in the path of totality. Denver University astronomy Professor Herbert Howe offered use of the Chamberlin Observatory 20-inch f/15 refractor, with its Clark doublet lens and Saegmueller mounting, in service of eclipse-related research. In preparation for the eclipse, Professor Howe and assistants had spent the last three months of 1917, refurbishing mechanical aspects of the telescope. Edwin Frost, then Director of Yerkes Observatory expressed interest and made a reconnaissance visit to the area in September 1917, reporting results in the Feb. 1918 issue of Popular Astronomy ( http://adsabs.harvard.edu/abs/1918PA.....26R.103F ). Frank Schlesinger, then director of Allegheny Observatory, asked if he might attach a special camera for star photography to the telescope at the eclipse, to test displacement of stars, in order to test a prediction of relativity theory. Among the additional visiting astronomical luminaries present on that June day in 1918 were Annie J. Cannon (Harvard), John Duncan (Wellesley), Herbert R. Morgan (U.S. Naval Observatory) and Robert Trumpler (Berkeley). To learn the results of all this eclipse preparedness, you will need to attend my talk in order to get “the rest of the story” or visit our twitter feed at: https://twitter.com/Chamberlin_Obs .

  11. EPIC 219217635: A Doubly Eclipsing Quadruple System Containing an Evolved Binary

    DEFF Research Database (Denmark)

    Borkovits, T.; Albrecht, S.; Rappaport, S.

    2018-01-01

    We have discovered a doubly eclipsing, bound, quadruple star system in the field of K2 Campaign 7. EPIC 219217635 is a stellar image with Kp = 12.7 that contains an eclipsing binary (‘EB’) with PA = 3.59470 d and a second EB with PB = 0.61825 d. We have obtained followup radial-velocity (‘RV’) sp...

  12. [A New Way to Look Up. Solar Retinopathy Risks and Methods of Prevention Prior to the 2015 Solar Eclipse].

    Science.gov (United States)

    Tsatsos, M; MacGregor, C; Gousia, D; Moschos, M; Detorakis, E

    2017-06-01

    A solar eclipse is an impressive natural phenomenon that was last experienced in Europe in 2006. Last year, on March 20th 2015, a solar eclipse was visible in much of Europe. Solar retinopathy is a recognised potentially sight threatening condition that has been associated with direct or unprotected sun gazing. Public education has been shown to improve behaviour and attitudes that could influence the development of solar retinopathy during an eclipse. We have performed a study through newspapers prior to the 2015 solar eclipse in different European countries, in order to determine the level of public health awareness and attitudes to protection. Methods: 31 online editions of national newspapers were reviewed from six countries where the eclipse was most visible. Solar retinopathy, potential warnings, safe methods of viewing an eclipse and assessment of use and dangers of modern technologies were assessed. Results: All 25 newspapers examined mentioned the solar eclipse and risk to eyesight. Safe methods for viewing the eclipse were discussed in all newspapers. Eclipse eyeglasses were mentioned in 29 of the 31 newspapers reviewed. Children were identified as a high-risk group but advice for children viewing the eclipse varied between countries. Conclusion: Since the solar eclipse of 2006, there has been an increase in the level of education available in the media. Although the safe methods for viewing an eclipse have not changed in recent years, emerging technologies, such as camera phones and the "selfie" trend, have potentially increased the risk of eclipse-associated retinopathy. Georg Thieme Verlag KG Stuttgart · New York.

  13. Gamma-burst emission from neutron-star accretion

    Science.gov (United States)

    Colgate, S. A.; Petschek, A. G.; Sarracino, R.

    1983-01-01

    A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without a magnetic field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required to drag electrons into the star with the nuclei against the flux of photons leaking out through the accreting matter. The photon number is not increased substantially by Bremsstrahlung or any other process. It is suggested that instability in an accretion disc might provide the infalling matter required.

  14. A Comprehensive Catalog of Galactic Eclipsing Binary Stars with Eccentric Orbits Based on Eclipse Timing Diagrams

    Science.gov (United States)

    Kim, C.-H.; Kreiner, J. M.; Zakrzewski, B.; Ogłoza, W.; Kim, H.-W.; Jeong, M.-J.

    2018-04-01

    A comprehensive catalog of 623 galactic eclipsing binary (EB) systems with eccentric orbits is presented with more than 2830 times of minima determined from the archived photometric data by various sky-survey projects and new photometric measurements. The systems are divided into two groups according to whether the individual system has a GCVS name or not. All the systems in both groups are further classified into three categories (D, A, and A+III) on the basis of their eclipse timing diagrams: 453 D systems showing just constantly displaced secondary minima, 139 A systems displaying only apsidal motion (AM), and 31 A+III systems exhibiting both AM and light-time effects. AM parameters for 170 systems (A and A+III systems) are consistently calculated and cataloged with basic information for all systems. Some important statistics for the AM parameters are discussed and compared with those derived for the eccentric EB systems in the Large and Small Magellanic Clouds.

  15. Evidence for large temperature fluctuations in quasar accretion disks from spectral variability

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, John J.; Anderson, Scott F.; Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Dexter, Jason, E-mail: jruan@astro.washington.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2014-03-10

    The well-known bluer-when-brighter trend observed in quasar variability is a signature of the complex processes in the accretion disk and can be a probe of the quasar variability mechanism. Using a sample of 604 variable quasars with repeat spectra in the Sloan Digital Sky Survey-I/II (SDSS), we construct difference spectra to investigate the physical causes of this bluer-when-brighter trend. The continuum of our composite difference spectrum is well fit by a power law, with a spectral index in excellent agreement with previous results. We measure the spectral variability relative to the underlying spectra of the quasars, which is independent of any extinction, and compare to model predictions. We show that our SDSS spectral variability results cannot be produced by global accretion rate fluctuations in a thin disk alone. However, we find that a simple model of an inhomogeneous disk with localized temperature fluctuations will produce power-law spectral variability over optical wavelengths. We show that the inhomogeneous disk will provide good fits to our observed spectral variability if the disk has large temperature fluctuations in many independently varying zones, in excellent agreement with independent constraints from quasar microlensing disk sizes, their strong UV spectral continuum, and single-band variability amplitudes. Our results provide an independent constraint on quasar variability models and add to the mounting evidence that quasar accretion disks have large localized temperature fluctuations.

  16. Gas accretion onto galaxies

    CERN Document Server

    Davé, Romeel

    2017-01-01

    This edited volume presents the current state of gas accretion studies from both observational and theoretical perspectives, and charts our progress towards answering the fundamental yet elusive question of how galaxies get their gas. Understanding how galaxies form and evolve has been a central focus in astronomy for over a century. These studies have accelerated in the new millennium, driven by two key advances: the establishment of a firm concordance cosmological model that provides the backbone on which galaxies form and grow, and the recognition that galaxies grow not in isolation but within a “cosmic ecosystem” that includes the vast reservoir of gas filling intergalactic space. This latter aspect in which galaxies continually exchange matter with the intergalactic medium via inflows and outflows has been dubbed the “baryon cycle”. The topic of this book is directly related to the baryon cycle, in particular its least well constrained aspect, namely gas accretion. Accretion is a rare area of ast...

  17. Through the Eyes of NASA: NASA's 2017 Eclipse Education Progam

    Science.gov (United States)

    Mayo, L.

    2017-12-01

    Over the last three years, NASA has been developing plans to bring the August 21st total solar eclipse to the nation, "as only NASA can", leveraging its considerable space assets, technology, scientists, and its unmatched commitment to science education. The eclipse, long anticipated by many groups, represents the largest Big Event education program that NASA has ever undertaken. It is the latest in a long string of successful Big Event international celebrations going back two decades including both transits of Venus, three solar eclipses, solar maximum, and mission events such as the MSL/Curiosity landing on Mars, and the launch of the Lunar Reconnaissance Orbiter (LRO) to name a few. This talk will detail NASA's program development methods, strategic partnerships, and strategies for using this celestial event to engage the nation and improve overall science literacy.

  18. Bringing the Great American Eclipse of 2017 to Audiences across the Nation

    Science.gov (United States)

    Young, C. A.; Mayo, L.; Cline, T. D.; Ng, C.; Stephenson, B. E.

    2015-12-01

    The August 21, 2017 eclipse across America will be seen by an estimated 500 million people from northern Canada to South America as well as parts of western Europe and Africa. Through This "Great American Eclipse" NASA in partnership with Google, the American Parks Network, American Astronomical Society, the Astronomical League, and numerous other science, education, outreach, and public communications groups and organizations will develop the approaches, resources, partnerships, and technology applications necessary to bring the excitement and the science of the August 21st, 2017 total solar eclipse across America to formal and informal audiences in the US and around the world. This effort will be supported by the highly visible and successful Sun Earth Days program and will be the main theme for Sun-Earth Days 2017.This presentation will discuss NASA's education and communication plans for the eclipse and will detail a number of specific programs and partnerships being leveraged to enhance our reach and impact.

  19. Dynamic processes during accretion into a black hole

    Directory of Open Access Journals (Sweden)

    G. S. Bisonvatyi-kogan

    2001-01-01

    Full Text Available Accretion disc theory was first developed as a theory with the local heat balance, where the whole energy produced by a viscous heating was emitted to the sides of the disc. One of the most important new invention of this theory was a phenomenological treatment of the turbulent viscosity, known as “alpha” prescription, when the (rϕ component of the stress tensor was approximated by (αP with a unknown constant α This prescription played the role in the accretion disc theory as well important as the mixing-length theory of convection for stellar evolution. Sources of turbulence in the accretion disc are discussed, including nonlinear hydrodynamic turbulence, convection and magnetic filed role. In parallel to the optically thick geometrically thin accretion disc models, a new branch of the optically thin accretion disc models was discovered, with a larger thickness for the same total luminosity. The choice between these solutions should be done of the base of stability analysis. The ideas underlying the necessity to include advection into the accretion disc theory are presented and first models with advection are reviewed. The present status of the solution for a low-luminous optically thin accretion disc model with advection is discussed and the limits for an advection dominated accretion flows (ADAF imposed by the presence of magnetic field are analyzed.

  20. Stonehenge: A Simple and Accurate Predictor of Lunar Eclipses

    Science.gov (United States)

    Challener, S.

    1999-12-01

    Over the last century, much has been written about the astronomical significance of Stonehenge. The rage peaked in the mid to late 1960s when new computer technology enabled astronomers to make the first complete search for celestial alignments. Because there are hundreds of rocks or holes at Stonehenge and dozens of bright objects in the sky, the quest was fraught with obvious statistical problems. A storm of controversy followed and the subject nearly vanished from print. Only a handful of these alignments remain compelling. Today, few astronomers and still fewer archaeologists would argue that Stonehenge served primarily as an observatory. Instead, Stonehenge probably served as a sacred meeting place, which was consecrated by certain celestial events. These would include the sun's risings and settings at the solstices and possibly some lunar risings as well. I suggest that Stonehenge was also used to predict lunar eclipses. While Hawkins and Hoyle also suggested that Stonehenge was used in this way, their methods are complex and they make use of only early, minor, or outlying areas of Stonehenge. In contrast, I suggest a way that makes use of the imposing, central region of Stonehenge; the area built during the final phase of activity. To predict every lunar eclipse without predicting eclipses that do not occur, I use the less familiar lunar cycle of 47 lunar months. By moving markers about the Sarsen Circle, the Bluestone Circle, and the Bluestone Horseshoe, all umbral lunar eclipses can be predicted accurately.

  1. Interpretation of eclipsing light curves of dwarf novae

    International Nuclear Information System (INIS)

    Matvienko, A.N.; Cherepashchuk, A.M.; Yagola, A.G.

    1988-01-01

    The method for interpretation of eclipsing light curves of dwarf novae is proposed, taking into account the influence of the hot spot situated in the outer part of the disk-like envelope surrounding a white dwarf. This method is applied to the analysis of the eclipsing light curves of the system Z Cha in the quiet and active stages. It is shown that the optical luminosity of the hot spot in the system Z Cha in the active stage is 3-5 times greater than that in the quiet stage. Radius of the disk-like envelope in the active stage is more than twice greater than that in the quiet stage

  2. Observations of Comets and Eclipses in the Andes

    Science.gov (United States)

    Ziółkowski, Mariusz

    There is no doubt that the Incas possessed a system for observing and interpreting unusual astronomical phenomena, such as eclipses or comets. References to it, however, are scarce, often of anecdotal nature and are not collected into any coherent "Inca observation catalog". The best documented of such events is the "Ataw Wallpa's comet", seen in Cajamarca in July of 1533 and the solar eclipse, that in 1543, prevented conquistador Lucas Martínez from discovering the rich silver mines in northern Chile. Archived descriptions of the Andean population's reaction to these phenomena indicate that they were treated as extremely important omens, that should not, under any circumstances, be ignored.

  3. Theory of Disk Accretion onto Magnetic Stars

    Directory of Open Access Journals (Sweden)

    Lai Dong

    2014-01-01

    Full Text Available Disk accretion onto magnetic stars occurs in a variety of systems, including accreting neutron stars (with both high and low magnetic fields, white dwarfs, and protostars. We review some of the key physical processes in magnetosphere-disk interaction, highlighting the theoretical uncertainties. We also discuss some applications to the observations of accreting neutron star and protostellar systems, as well as possible connections to protoplanetary disks and exoplanets.

  4. White dwarf radii and boundary-layer constraints in three dwarf novae

    International Nuclear Information System (INIS)

    Wood, J.H.

    1990-01-01

    The structure of the boundary layer between the accretion disc and white dwarf in three quiescent dwarf novae is explored with high signal-to-noise eclipse light curves obtained by phase folding 12-20 eclipses. Models of the eclipse shapes of various white dwarf/boundary layer configurations that might be at the centres of the accretion discs are calculated and compared with observations of the eclipses in Z Cha, OY Car and HT Cas. Possible models for the central objects are found to be a white dwarf with or without its lower hemisphere occulted by the disc, or a white dwarf with an optically thick boundary layer significantly extended in latitude up and down its sides. The most likely of these models for each system is an unocculted white dwarf with no boundary layer contributing significantly to the optical flux, or a white dwarf totally covered by an optically thick boundary layer. (author)

  5. Gravitomagnetic acceleration from black hole accretion disks

    International Nuclear Information System (INIS)

    Poirier, J; Mathews, G J

    2016-01-01

    We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet. (note)

  6. Gravitomagnetic acceleration from black hole accretion disks

    Science.gov (United States)

    Poirier, J.; Mathews, G. J.

    2016-05-01

    We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  7. Confirming Variability in the Secondary Eclipse Depth of the Super-Earth 55 Cancri e

    Science.gov (United States)

    Tamburo, P.; Mandell, A.; Deming, D.; Garhart, E.

    2018-05-01

    We present a reanalysis of five transit and eight eclipse observations of the ultrashort-period super-Earth 55 Cancri e observed using the Spitzer Space Telescope during 2011–2013. We use pixel-level decorrelation to derive accurate transit and eclipse depths from the Spitzer data, and we perform an extensive error analysis. We focus on determining possible variability in the eclipse data, as was reported in Demory et al. From the transit data, we determine updated orbital parameters, yielding T 0 = 2,455,733.0037 ± 0.0002, P = 0.7365454 ± 0.0000003 days, i = 83.5 ± 1.°3, and R p = 1.89 ± 0.05 R ⊕. Our transit results are consistent with a constant depth, and we conclude that they are not variable. We find a significant amount of variability between the eight eclipse observations and confirm agreement with Demory et al. through a correlation analysis. We convert the eclipse measurements to brightness temperatures, and generate and discuss several heuristic models that explain the evolution of the planet’s eclipse depth versus time. The eclipses are best modeled by a year-to-year variability model, but variability on shorter timescales cannot be ruled out. The derived range of brightness temperatures can be achieved by a dark planet with inefficient heat redistribution intermittently covered over a large fraction of the substellar hemisphere by reflective grains, possibly indicating volcanic activity or cloud variability. This time-variable system should be observable with future space missions, both planned (JWST) and proposed (i.e., ARIEL).

  8. Project Report ECLIPSE: European Citizenship Learning Program for Secondary Education

    Directory of Open Access Journals (Sweden)

    Olga Bombardelli

    2014-04-01

    Full Text Available This paper reports on a European project, the Comenius ECLIPSE project (European Citizenship Learning in a Programme for Secondary Education developed by six European partners coordinated by the University of Trento in the years 2011-2014. ECLIPSE (co-financed by the EACEA - Education, Audiovisual and Culture Executive Agency aims at developing, testing, and implementing a Programme of European Citizenship, in order to improve citizenship competence and responsibility and to strengthen the sense of belonging and European identity of 8th grade pupils. These goals are reachable thanks to a number of measures in formal, non-formal and informal fields. The project partners created teaching and monitoring tools for pupils: seven ECMs (European Citizenship Modules, knowledge tests, pupils’ portfolio, and suggestions for teachers, especially a portfolio for ECLIPSE educators. The ECLIPSE teaching/ testing materials were implemented in several schools of the partner’s countries in order to make sure that it is useful for European pupils of different school systems. It can be used in a flexible way keeping in mind different learning needs in each school system, with a view to improving transversal competencies like learning to learn, as well as initiative and active involvement in improving the chances for young people in citizenship and work worlds. Dieses Papier beschreibt ein europäisches Projekt: das Comenius Projekt ECLIPSE (European Citizenship Learning in einem Programm für Secondary Education, das von sechs europäischen Partnern entwickelt und von der Universität Trient in den Jahren 2011-2014 koordiniert wurde. ECLIPSE wurde von der EACEA (Education, Audiovisual and Culture Executive Agency kofinanziert; es zielt auf die Entwicklung, Überprüfung und Implementierung eines Programms zur Entwicklung eines europäischen Bürgersinns, um Kompetenzen als Staatsbürger und zugleich einer europäischen Identität und Verantwortung bei Sch

  9. The 2017 solar eclipse and Majorana & Allais gravity anomalies

    Science.gov (United States)

    Munera, Hector A.

    2017-01-01

    Two little known anomalies hint to phenomena beyond current theory. Majorana effect: around 1920 in a series of well-designed experiments with a chemical laboratory balance, Quirino Majorana found in Italy that mercury (Hg) and lead (Pb) might shield terrestrial gravity. Majorana experiments were never repeated by the international scientific community. Instead his results were dismissed on theoretical claims: a) unobserved heating of earth by absorption of gravity, and b) unobserved cyclic lunar perturbation of solar gravity at earth’s surface. However, Majorana critics missed the crucial fact that shielding is not mere absorption, but also scattering, and that atomic number Z of matter in the moon is much lower than Z=80 (Hg) and Z=82 (Pb). From the June 30/1954 solar eclipse onwards, high-quality mechanical gravimeters were used to search for Majorana shielding by the moon. Results are positive, provided that shielding is interpreted as scattering rather than absorption of gravity by moon (H. A. Munera, Physics Essays 24, 428-434, 2011). Allais effect: during the same 1954 eclipse (partial in Paris) Maurice Allais had in operation a sensitive paraconical pendulum for a very different purpose. Surprisingly, the pendulum was perturbed by the eclipse, condition repeated once again in a 1959 solar eclipse, also partial in Paris. During the past sixty years, paraconical, torsion and Foucault pendula, and other mechanical devices, have been used to (dis)confirm Allais effect, but the results are not conclusive thus far. A book edited by this author (Should the laws of gravitation be revised? Apeiron 2011) describes some of those observations. Various unexpected effects, some of them torsional, appear both near the optical shadow, and far away. The Sun-Moon-Earth alignment in a solar eclipse allows detection on the terrestrial surface of the dark matter flow scattered on moon’s surface (flow not hitting earth in other geometries). Rotation of moon may induce

  10. Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray microbeam.

    Science.gov (United States)

    Graceffa, Rita; Nobrega, R Paul; Barrea, Raul A; Kathuria, Sagar V; Chakravarthy, Srinivas; Bilsel, Osman; Irving, Thomas C

    2013-11-01

    Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynamic processes on a molecular level with sub-millisecond time resolution. Reaction kinetics in the sub-millisecond time range has been achieved using continuous-flow mixers manufactured using micromachining techniques. The time resolution of these devices has previously been limited, in part, by the X-ray beam sizes delivered by typical SAXS beamlines. These limitations can be overcome using optics to focus X-rays to the micrometer size range providing that beam divergence and photon flux suitable for performing SAXS experiments can be maintained. Such micro-SAXS in combination with microfluidic devices would be an attractive probe for time-resolved studies. Here, the development of a high-duty-cycle scanning microsecond-time-resolution SAXS capability, built around the Kirkpatrick-Baez mirror-based microbeam system at the Biophysics Collaborative Access Team (BioCAT) beamline 18ID at the Advanced Photon Source, Argonne National Laboratory, is reported. A detailed description of the microbeam small-angle-scattering instrument, the turbulent flow mixer, as well as the data acquisition and control and analysis software is provided. Results are presented where this apparatus was used to study the folding of cytochrome c. Future prospects for this technique are discussed.

  11. OGLE-LMC-ECL-11893: The discovery of a long-period eclipsing binary with a circumstellar disk

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Subo [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Road 5, Hai Dian District, Beijing 100871 (China); Katz, Boaz [Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08544 (United States); Prieto, Jose L. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Udalski, Andrzej; Kozlowski, Szymon [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Street, R. A.; Tsapras, Y. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, suite 102, Goleta, CA 93117 (United States); Bramich, D. M. [Qatar Environment and Energy Research Institute, Qatar Foundation, Tornado Tower, Floor 19, P.O. Box 5825, Doha (Qatar); Hundertmark, M.; Horne, K.; Dominik, M.; Jaimes, R. Figuera [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Snodgrass, C. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2014-06-10

    We report the serendipitous discovery of a disk-eclipse system OGLE-LMC-ECL-11893. The eclipse occurs with a period of 468 days, a duration of about 15 days, and a deep (up to Δm{sub I} ≈ 1.5), peculiar, and asymmetric profile. A possible origin of such an eclipse profile involves a circumstellar disk. The presence of the disk is confirmed by the H-α line profile from the follow-up spectroscopic observations, and the star is identified as Be/Ae type. Unlike the previously known disk-eclipse candidates, the eclipses of OGLE-LMC-ECL-11893 retain the same shape throughout the span of ∼17 yr (13 orbital periods), indicating no measurable orbital precession of the disk.

  12. Einstein@Home DISCOVERY OF A PALFA MILLISECOND PULSAR IN AN ECCENTRIC BINARY ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Knispel, B.; Allen, B. [Leibniz Universität, Hannover, D-30167 Hannover (Germany); Lyne, A. G.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Freire, P. C. C.; Lazarus, P. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Aulbert, C.; Bock, O.; Eggenstein, H.-B.; Fehrmann, H. [Max-Planck-Institut für Gravitationsphysik, Callinstr. 38, D-30167 Hannover (Germany); Bogdanov, S.; Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Brazier, A.; Chatterjee, S.; Cordes, J. M. [Department of Astronomy and Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States); Cardoso, F. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Crawford, F. [Department of Physics and Astronomy, Franklin and Marshall College, Lancaster, PA 17604-3003 (United States); Deneva, J. S. [National Research Council, resident at the Naval Research Laboratory, Washington, DC 20375 (United States); Ferdman, R. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Hessels, J. W. T., E-mail: benjamin.knispel@aei.mpg.de [ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); and others

    2015-06-10

    We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M{sub ⊙} and is most likely a white dwarf (WD). Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities e < 0.001. However, four recently discovered binary MSPs have orbits with 0. 027 < e < 0.44; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are (a) initial evolution of the pulsar in a triple system which became dynamically unstable, (b) origin in an exchange encounter in an environment with high stellar density, (c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar WD, and (d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.

  13. Kepler Eclipsing Binary Stars. I. Catalog and Principal Characterization of 1879 Eclipsing Binaries in the First Data Release

    Science.gov (United States)

    Prša, Andrej; Batalha, Natalie; Slawson, Robert W.; Doyle, Laurance R.; Welsh, William F.; Orosz, Jerome A.; Seager, Sara; Rucker, Michael; Mjaseth, Kimberly; Engle, Scott G.; Conroy, Kyle; Jenkins, Jon; Caldwell, Douglas; Koch, David; Borucki, William

    2011-03-01

    The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg2 field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID), ephemeris (BJD0, P 0), morphology type, physical parameters (T eff, log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T 2/T 1, q, fillout factor, and sin i for overcontacts, and T 2/T 1, (R 1 + R 2)/a, esin ω, ecos ω, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be ~1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.

  14. KEPLER ECLIPSING BINARY STARS. I. CATALOG AND PRINCIPAL CHARACTERIZATION OF 1879 ECLIPSING BINARIES IN THE FIRST DATA RELEASE

    International Nuclear Information System (INIS)

    Prsa, Andrej; Engle, Scott G.; Conroy, Kyle; Batalha, Natalie; Rucker, Michael; Mjaseth, Kimberly; Slawson, Robert W.; Doyle, Laurance R.; Welsh, William F.; Orosz, Jerome A.; Seager, Sara; Jenkins, Jon; Caldwell, Douglas; Koch, David; Borucki, William

    2011-01-01

    The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg 2 field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID), ephemeris (BJD 0 , P 0 ), morphology type, physical parameters (T eff , log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T 2 /T 1 , q, fillout factor, and sin i for overcontacts, and T 2 /T 1 , (R 1 + R 2 )/a, esin ω, ecos ω, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be ∼1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.

  15. A PC parallel port button box provides millisecond response time accuracy under Linux.

    Science.gov (United States)

    Stewart, Neil

    2006-02-01

    For psychologists, it is sometimes necessary to measure people's reaction times to the nearest millisecond. This article describes how to use the PC parallel port to receive signals from a button box to achieve millisecond response time accuracy. The workings of the parallel port, the corresponding port addresses, and a simple Linux program for controlling the port are described. A test of the speed and reliability of button box signal detection is reported. If the reader is moderately familiar with Linux, this article should provide sufficient instruction for him or her to build and test his or her own parallel port button box. This article also describes how the parallel port could be used to control an external apparatus.

  16. VizieR Online Data Catalog: Parameters of 529 Kepler eclipsing binaries (Kjurkchieva+, 2017)

    Science.gov (United States)

    Kjurkchieva, D.; Vasileva, D.; Atanasova, T.

    2017-11-01

    We reviewed the Kepler eclipsing binary catalog (Prsa et al. 2011, Cat. J/AJ/141/83; Slawson et al. 2011, Cat. J/AJ/142/160; Matijevic et al. 2012) to search for detached eclipsing binaries with eccentric orbits. (5 data files).

  17. Measuring the spins of accreting black holes

    International Nuclear Information System (INIS)

    McClintock, Jeffrey E; Narayan, Ramesh; Gou, Lijun; Kulkarni, Akshay; Penna, Robert F; Steiner, James F; Davis, Shane W; Orosz, Jerome A; Remillard, Ronald A

    2011-01-01

    A typical galaxy is thought to contain tens of millions of stellar-mass black holes, the collapsed remnants of once massive stars, and a single nuclear supermassive black hole. Both classes of black holes accrete gas from their environments. The accreting gas forms a flattened orbiting structure known as an accretion disk. During the past several years, it has become possible to obtain measurements of the spins of the two classes of black holes by modeling the x-ray emission from their accretion disks. Two methods are employed, both of which depend upon identifying the inner radius of the accretion disk with the innermost stable circular orbit, whose radius depends only on the mass and spin of the black hole. In the Fe Kα method, which applies to both classes of black holes, one models the profile of the relativistically broadened iron line with a special focus on the gravitationally redshifted red wing of the line. In the continuum-fitting (CF) method, which has so far only been applied to stellar-mass black holes, one models the thermal x-ray continuum spectrum of the accretion disk. We discuss both methods, with a strong emphasis on the CF method and its application to stellar-mass black holes. Spin results for eight stellar-mass black holes are summarized. These data are used to argue that the high spins of at least some of these black holes are natal, and that the presence or absence of relativistic jets in accreting black holes is not entirely determined by the spin of the black hole.

  18. Daylight levels during the solar eclipse of 11 August 1999

    Science.gov (United States)

    Darula, S.; Kambezidis, H. D.; Kittler, R.

    Solar eclipses are unique phenomena not only for astronomical and space observations but also for terrestrial; they create unique conditions of sunbeam blockage which cause not only the reduction of direct sunlight but also the dimming of skylight from the whole sky vault. Very favorable conditions were met during the recent August 1999 solar eclipse in Athens, Greece and Bratislava, Slovakia. General class daylight stations operate within the International Daylight Measurements Program in the two cities. One-minute data of global/diffuse illuminance and zenith luminance from those stations have been used to provide information about their levels and the daylight reduction rate during the eclipse. An approximate formula for the estimation of sunlight and skylight illuminance levels as well as zenith luminance using relative luminance sky patterns is also presented in this work. To achieve this, recently developed sky standards together with their parameterizations are utilized.

  19. Accretion and ejection in resistive GR-MHD

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Qian

    2017-05-10

    In this thesis, the accretion and ejection processes from a black hole accretion system is investigated by means of resistive general relativistic magnetohydrodynamic simulations. As a supplement to the results from prior research with non-relativistic simulations, my results confirm that the winds and outflows originated from thin accretion disks can also be observed in general relativistic simulations. In the first part, the execution of the implementation of resistivity, namely magnetic diffusivity, into the existing non-resistive general relativistic magnetohydrodynamic code HARM is illustrated. The test simulations of the new code rHARM include the comparison with analytical solution of the diffusion equation and a classic shock tube test. rHARM shows reliable performances in these tests. In the second part, rHARM is applied to investigate the evolution of magnetized tori. The results show that the existence of resistivity leads to inefficient accretions of matter from tori onto black holes by weakening the magnetorotational instability inside the tori. An indication for a critical magnetic diffusivity in this simulation setup is found beyond which no magnetorotational instability develops in the linear regime. In the third part, as the main purpose of this PhD project, rHARM is used to perform simulations of magnetically diffusive thin accretion disks that are threaded by a large-scale poloidal magnetic field around non-rotating and rotating black holes. These long-term simulations last 3000 code time units, which are about 195 rotation periods at the disk inner boundary, correspondingly. Their computational domains extend from black hole horizon to 80 Schwarzschild radii. Outflows driven from the accretion disk are clearly seen. These outflows have the typical radial velocity of 0.1 speed of light. In my analyses, I argue that these outflows are driven by the magnetic pressure gradient from the toroidal magnetic field generated by the rotation of the disk

  20. Solar-system Education for the 2017 Total Solar Eclipse

    Science.gov (United States)

    Pasachoff, Jay M.

    2017-10-01

    I describe an extensive outreach program about the Sun, the silhouette of the Moon, and the circumstances both celestial and terrestrial of the August 21, 2017, total solar eclipse. Publications included a summary of the last decade of solar-eclipse research for Nature Astronomy, a Resource Letter on Observing Solar Eclipses for the American Journal of Physics, and book reviews for Nature and for Phi Beta Kappa's Key Reporter. Symposia arranged include sessions at AAS, APS, AGU, and AAAS. Lectures include all ages from pre-school through elementary school to high school to senior-citizen residences. The work, including the scientific research about the solar corona that is not part of this abstract, was supported by grants from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of NSF and from the Committee for Research and Exploration of the National Geographic Society. Additional student support was received from NSF, NASA's Massachusetts Space Grant Consortium, the Honorary Research Society Sigma Xi, the Clare Booth Luce Foundation, and funds at Williams College.

  1. A spin-down mechanism for accreting neutron stars

    International Nuclear Information System (INIS)

    Illarionov, A.F.; AN SSSR, Moscow. Fizicheskij Inst.); Kompaneets, D.A.

    1990-01-01

    We propose a new spin-down mechanism for accreting neutron stars that explains the existence of a number of long-period (p≅100-1000 s) X-ray pulsars in wide binaries with OB-stars. The spin-down is a result of efficient angular momentum transfer from the rotating magnetosphere of the accreting star to an outflowing stream of magnetized matter. The outflow is formed within a limited solid angle, and the outflow rate is less than the accretion rate. The outflow formation is connected with the anisotropy and intensity of the hard X-ray emission of the neutron star. X-rays from the pulsar heat through Compton scattering the accreting matter anisotropically. The heated matter has a lower density than the surrounding accreting matter and flows up by the action of the buoyancy force. We find the criterion for the outflow to form deep in the accretion flow (i.e., close to the neutron star magnetosphere). The neutron star loses angular momentum when the outflow forms so deep as to capture the magnetic field lines from the rotating magnetosphere. The balance between angular momentum gain by accreting gas and loss by outflowing matter takes place at a particular value of the period of the spinning neutron star. (orig.)

  2. A truncated accretion disk in the galactic black hole candidate source H1743-322

    International Nuclear Information System (INIS)

    Sriram, Kandulapati; Agrawal, Vivek Kumar; Rao, Arikkala Raghurama

    2009-01-01

    To investigate the geometry of the accretion disk in the source H1743-322, we have carried out a detailed X-ray temporal and spectral study using RXTE pointed observations. We have selected all data pertaining to the Steep Power Law (SPL) state during the 2003 outburst of this source. We find anti-correlated hard X-ray lags in three of the observations and the changes in the spectral and timing parameters (like the QPO frequency) confirm the idea of a truncated accretion disk in this source. Compiling data from similar observations of other sources, we find a correlation between the fractional change in the QPO frequency and the observed delay. We suggest that these observations indicate a definite size scale in the inner accretion disk (the radius of the truncated disk) and we explain the observed correlation using various disk parameters like Compton cooling time scale, viscous time scale etc. (research papers)

  3. Statistical eclipses of close-in Kepler sub-Saturns

    Energy Technology Data Exchange (ETDEWEB)

    Sheets, Holly A.; Deming, Drake, E-mail: hsheets@astro.umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States)

    2014-10-20

    We present a method to detect small atmospheric signals in Kepler's planet candidate light curves by averaging light curves for multiple candidates with similar orbital and physical characteristics. Our statistical method allows us to measure unbiased physical properties of Kepler's planet candidates, even for candidates whose individual signal-to-noise precludes the detection of their secondary eclipse. We detect a secondary eclipse depth of 3.83{sub −1.11}{sup +1.10} ppm for a group of 31 sub-Saturn (R < 6 R {sub ⊕}) planet candidates with the greatest potential for a reflected light signature ((R{sub p} /a){sup 2} > 10 ppm). Including Kepler-10b in this group increases the depth to 5.08{sub −0.72}{sup +0.71} ppm. For a control group with (R{sub p} /a){sup 2} < 1 ppm, we find a depth of 0.36 ± 0.37 ppm, consistent with no detection. We also analyze the light curve of Kepler-10b and find an eclipse depth of 7.08 ± 1.06 ppm. If the eclipses are due solely to reflected light, this corresponds to a geometric albedo of 0.22 ± 0.06 for our group of close-in sub-Saturns, 0.37 ± 0.05 if including Kepler-10b in the group, and 0.60 ± 0.09 for Kepler-10b alone. Including a thermal emission model does not change the geometric albedo appreciably, assuming A{sub B} = (3/2)*A{sub g} . Our result for Kepler-10b is consistent with previous works. Our result for close-in sub-Saturns shows that Kepler-10b is unusually reflective, but our analysis is consistent with the results of Demory for super-Earths. Our results also indicate that hot Neptunes are typically more reflective than hot Jupiters.

  4. Citizen CATE: Evaluating Outcomes of a Solar Eclipse Citizen Science Project

    Science.gov (United States)

    Penn, M. J.; Haden, C.

    2017-12-01

    On August 21, 2017, a total solar eclipse will be visible along a path of totality from Oregon to South Carolina. The Citizen Continental-America Telescopic Eclipse Experiment (CATE) will use scientists, students and volunteers to take images of the solar corona using 68 identical telescopes, software and instrument packages along the 2,500-mile path of totality. CATE partners include National Solar Observatory scientists, university faculty and students, high school students, and professional and amateur astronomers. NASA funded CATE educational components including training undergraduates and volunteers on solar imaging software and equipment. The National Science Foundation and corporations including DayStar, MathWorks, Celestron and ColorMaker funded equipment. Undergraduates participated in summer research experiences to build their capacity for gathering eclipse data, and subsequently trained volunteers across the U.S. Aligned to NASA education goals, CATE goals range from providing an authentic research experience for students and lifelong learners, to making state-of-the-art solar coronal observations, to increasing scientific literacy of the public. While project investigators are examining the wealth of scientific data that will come from CATE, evaluators are examining impacts on participants. Through mixed methods, evaluators are examining outcomes related to changes in volunteers' knowledge, skills and attitudes. Additionally, the study will examine how citizen science astronomy using CATE equipment will continue after the eclipse to sustain project impacts. Preliminary findings for undergraduates indicate that they are gaining knowledge and skills related to studying solar coronal phenomena, conducting rigorous scientific research, and interfacing with the public to conduct outreach. Preliminary findings for citizen scientists indicate a high level of engagement in the research, and that they are gaining new knowledge and skills related to solar

  5. Accretion of Ghost Condensate by Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, A

    2004-06-02

    The intent of this letter is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as tenth of a solar mass per second for 10MeV-scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model.

  6. Review of gravitomagnetic acceleration from accretion disks

    Science.gov (United States)

    Poirier, J.; Mathews, G. J.

    2015-11-01

    We review the development of the equations of gravitoelectromagnetism and summarize how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near the accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism to produce collimated jets, it is a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  7. Dayside atmospheric structure of HD209458b from Spitzer eclipses

    Science.gov (United States)

    Reinhard, Matthew; Harrington, Joseph; Challener, Ryan; Cubillos, Patricio; Blecic, Jasmina

    2017-10-01

    HD209458b is a hot Jupiter with a radius of 1.26 ± 0.08 Jupiter radii (Richardson et al, 2006) and a mass of 0.64 ± 0.09 Jupiter masses (Snellen et al, 2010). The planet orbits a G0 type star with an orbital period of 3.52472 ± 2.81699e-05 days, and a relatively low eccentricity of 0.0082 +0.0078/-0.0082 (Wang and Ford 2013). We report the analysis of observations of HD209458b during eclipse, taken in the 3.6 and 4.5 micron channels by the Spitzer Space Telescope's Infrared Array Camera (Program 90186). We produce a photometric light curve of the eclipses in both channels, using our Photometry for Orbits Eclipses and Transits (POET) code, and calculate the brightness temperatures and eclipse depths. We also present best estimates of the atmospheric parameters of HD209458b using our Bayesian Atmospheric Radiative Transfer (BART) code. These are some preliminary results of what will be an analysis of all available Spitzer data for HD209458b. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  8. Spectral and photometric analysis of the eclipsing binary epsilon Aurigae prior to and during the 2009-2011 eclipse

    Czech Academy of Sciences Publication Activity Database

    Chadima, P.; Harmanec, P.; Bennett, P.D.; Kloppenborg, B.; Stencel, R.; Yang, S.; Božić, H.; Šlechta, Miroslav; Kotková, Lenka; Wolf, M.; Škoda, Petr; Votruba, Viktor; Hopkins, J.L.; Buil, C.; Sudar, D.

    2011-01-01

    Roč. 530, June (2011), A146/1-A146/13 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : variables stars * binaries * eclipsing Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011

  9. The 1995 total solar eclipse: an overview.

    Science.gov (United States)

    Singh, J.

    A number of experiments were conducted during the total solar eclipse of October 24, 1995. First time efforts were made to photograph the solar corona using IAF jet aircrafts and transport planes ad hot air balloons.

  10. Pulsed Accretion in the T Tauri Binary TWA 3A

    Energy Technology Data Exchange (ETDEWEB)

    Tofflemire, Benjamin M.; Mathieu, Robert D. [Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53706 (United States); Herczeg, Gregory J. [The Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Akeson, Rachel L.; Ciardi, David R. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States)

    2017-06-20

    TWA 3A is the most recent addition to a small group of young binary systems that both actively accrete from a circumbinary disk and have spectroscopic orbital solutions. As such, it provides a unique opportunity to test binary accretion theory in a well-constrained setting. To examine TWA 3A’s time-variable accretion behavior, we have conducted a two-year, optical photometric monitoring campaign, obtaining dense orbital phase coverage (∼20 observations per orbit) for ∼15 orbital periods. From U -band measurements we derive the time-dependent binary mass accretion rate, finding bursts of accretion near each periastron passage. On average, these enhanced accretion events evolve over orbital phases 0.85 to 1.05, reaching their peak at periastron. The specific accretion rate increases above the quiescent value by a factor of ∼4 on average but the peak can be as high as an order of magnitude in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in good agreement with numerical simulations of binary accretion with similar orbital parameters. In these simulations, periastron accretion bursts are fueled by periodic streams of material from the circumbinary disk that are driven by the binary orbit. We find that TWA 3A’s average accretion behavior is remarkably similar to DQ Tau, another T Tauri binary with similar orbital parameters, but with significantly less variability from orbit to orbit. This is only the second clear case of orbital-phase-dependent accretion in a T Tauri binary.

  11. Focused Wind Mass Accretion in Mira AB

    Science.gov (United States)

    Karovska, Margarita; de Val-Borro, M.; Hack, W.; Raymond, J.; Sasselov, D.; Lee, N. P.

    2011-05-01

    At a distance of about only 100pc, Mira AB is the nearest symbiotic system containing an Asymptotic Giant Branch (AGB) star (Mira A), and a compact accreting companion (Mira B) at about 0.5" from Mira A. Symbiotic systems are interacting binaries with a key evolutionary importance as potential progenitors of a fraction of asymmetric Planetary Nebulae, and SN type Ia, cosmological distance indicators. The region of interaction has been studied using high-angular resolution, multiwavelength observations ranging from radio to X-ray wavelengths. Our results, including high-angular resolution Chandra imaging, show a "bridge" between Mira A and Mira B, indicating gravitational focusing of the Mira A wind, whereby components exchange matter directly in addition to the wind accretion. We carried out a study using 2-D hydrodynamical models of focused wind mass accretion to determine the region of wind acceleration and the characteristics of the accretion in Mira AB. We highlight some of our results and discuss the impact on our understanding of accretion processes in symbiotic systems and other detached and semidetached interacting systems.

  12. Reanalysis of the radii of the Benchmark eclipsing binary V578 Mon

    International Nuclear Information System (INIS)

    Garcia, E. V.; Stassun, Keivan G.; Torres, Guillermo

    2013-01-01

    V578 Mon is an eclipsing binary system in which both stars have masses above 10 M ☉ determined with an accuracy better than 3%. It is one of only five such massive eclipsing binaries known that also possess eccentric orbits and measured apsidal motions, thus making it an important benchmark for theoretical stellar evolution models. However, recently reported determinations of the radii of V578 Mon differ significantly from previously reported values. We reanalyze the published data for V578 Mon and trace the discrepancy to the use of an incorrect formulation for the stellar potentials in the most recent analysis. Here we report corrected radii for this important benchmark eclipsing binary.

  13. Misaligned Accretion and Jet Production

    Science.gov (United States)

    King, Andrew; Nixon, Chris

    2018-04-01

    Disk accretion onto a black hole is often misaligned from its spin axis. If the disk maintains a significant magnetic field normal to its local plane, we show that dipole radiation from Lense–Thirring precessing disk annuli can extract a significant fraction of the accretion energy, sharply peaked toward small disk radii R (as R ‑17/2 for fields with constant equipartition ratio). This low-frequency emission is immediately absorbed by surrounding matter or refracted toward the regions of lowest density. The resultant mechanical pressure, dipole angular pattern, and much lower matter density toward the rotational poles create a strong tendency to drive jets along the black hole spin axis, similar to the spin-axis jets of radio pulsars, also strong dipole emitters. The coherent primary emission may explain the high brightness temperatures seen in jets. The intrinsic disk emission is modulated at Lense–Thirring frequencies near the inner edge, providing a physical mechanism for low-frequency quasi-periodic oscillations (QPOs). Dipole emission requires nonzero hole spin, but uses only disk accretion energy. No spin energy is extracted, unlike the Blandford–Znajek process. Magnetohydrodynamic/general-relativistic magnetohydrodynamic (MHD/GRMHD) formulations do not directly give radiation fields, but can be checked post-process for dipole emission and therefore self-consistency, given sufficient resolution. Jets driven by dipole radiation should be more common in active galactic nuclei (AGN) than in X-ray binaries, and in low accretion-rate states than high, agreeing with observation. In non-black hole accretion, misaligned disk annuli precess because of the accretor’s mass quadrupole moment, similarly producing jets and QPOs.

  14. Exploring the accretion model of M87 and 3C 84 with the Faraday rotation measure observations

    OpenAIRE

    Li, Ya-Ping; Yuan, Feng; Xie, Fu-Guo

    2016-01-01

    Low-luminosity active galactic nuclei (LLAGNs) are believed to be powered by an accretion-jet model, consisting of an inner advection-dominated accretion flow (ADAF), an outer truncated standard thin disk, and a jet. But model degeneracy still exists in this framework. For example, the X-ray emission can originate from either the ADAF or jet. The aim of the present work is to check these models with the Faraday rotation measure (RM) observations recently detected for two LLAGNs, M87 and 3C 84...

  15. Accretion and evaporation of modified Hayward black hole

    International Nuclear Information System (INIS)

    Debnath, Ujjal

    2015-01-01

    We assume the most general static spherically symmetric black hole metric. The accretion of any general kind of fluid flow around the black hole is investigated. The accretion of the fluid flow around the modified Hayward black hole is analyzed, and we then calculate the critical point, the fluid's four-velocity, and the velocity of sound during the accretion process. Also the nature of the dynamical mass of the black hole during accretion of the fluid flow, taking into consideration Hawking radiation from the black hole, i.e., evaporation of the black hole, is analyzed. (orig.)

  16. ON THE PULSATIONAL-ORBITAL-PERIOD RELATION OF ECLIPSING BINARIES WITH δ-SCT COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. B.; Luo, C. Q. [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Fu, J. N. [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2013-11-01

    We have deduced a theoretical relation between the pulsation and orbital-periods of pulsating stars in close binaries based on their Roche lobe filling. It appears to be of a simple linear form, with the slope as a function of the pulsation constant, the mass ratio, and the filling factor for an individual system. Testing the data of 69 known eclipsing binaries containing δ-Sct-type components yields an empirical slope of 0.020 ± 0.006 for the P{sub pul}-P{sub orb} relation. We have further derived the upper limit of the P{sub pul}/P{sub orb} ratio for the δ-Sct stars in eclipsing binaries with a value of 0.09 ± 0.02. This value could serve as a criterion to distinguish whether or not a pulsator in an eclipsing binary pulsates in the p-mode. Applying the deduced P{sub pul}-P{sub orb} relation, we have computed the dominant pulsation constants for 37 δ-Sct stars in eclipsing systems with definite photometric solutions. These ranged between 0.008 and 0.033 days with a mean value of about 0.014 days, indicating that δ-Sct stars in eclipsing binaries mostly pulsate in the fourth or fifth overtones.

  17. Bondi-Hoyle-Lyttleton Accretion onto Binaries

    Science.gov (United States)

    Antoni, Andrea; MacLeod, Morgan; Ramírez-Ruiz, Enrico

    2018-01-01

    Binary stars are not rare. While only close binary stars will eventually interact with one another, even the widest binary systems interact with their gaseous surroundings. The rates of accretion and the gaseous drag forces arising in these interactions are the key to understanding how these systems evolve. This poster examines accretion flows around a binary system moving supersonically through a background gas. We perform three-dimensional hydrodynamic simulations of Bondi-Hoyle-Lyttleton accretion using the adaptive mesh refinement code FLASH. We simulate a range of values of semi-major axis of the orbit relative to the gravitational focusing impact parameter of the pair. On large scales, gas is gravitationally focused by the center-of-mass of the binary, leading to dynamical friction drag and to the accretion of mass and momentum. On smaller scales, the orbital motion imprints itself on the gas. Notably, the magnitude and direction of the forces acting on the binary inherit this orbital dependence. The long-term evolution of the binary is determined by the timescales for accretion, slow down of the center-of-mass, and decay of the orbit. We use our simulations to measure these timescales and to establish a hierarchy between them. In general, our simulations indicate that binaries moving through gaseous media will slow down before the orbit decays.

  18. A Statistical Approach to Exoplanetary Molecular Spectroscopy Using Spitzer Eclipses

    Science.gov (United States)

    Deming, Drake; Garhart, Emily; Burrows, Adam; Fortney, Jonathan; Knutson, Heather; Todorov, Kamen

    2018-01-01

    Secondary eclipses of exoplanets observed using the Spitzer Space Telescope measure the total emission emergent from exoplanetary atmospheres integrated over broad photometric bands. Spitzer photometry is excellent for measuring day side temperatures, but is less well suited to the detection of molecular absorption or emission features. Even for very hot exoplanets, it can be difficult to attain the accuracy on eclipse depth that is needed to unambiguously interpret the Spitzer results in terms of molecular absorption or emission. However, a statistical approach, wherein we seek deviations from a simple blackbody planet as a function of the planet's equilibrium temperature, shows promise for defining the nature and strength of molecular absorption in ensembles of planets. In this paper, we explore such an approach using secondary eclipses observed for tens of hot exoplanets during Spitzer's Cycles 10, 12, and 13. We focus on the possibility that the hottest planets exhibit molecular features in emission, due to temperature inversions.

  19. He stars and He-accreting CO white dwarfs

    International Nuclear Information System (INIS)

    Limongi, M.; Tornambe, A.

    1991-01-01

    He star models in the mass range 0.4-1.0 solar mass have been evolved until the red giant phase or, depending on their mass, until crystallization on the white-dwarf cooling sequence. Some of the degenerate structures obtained in these computations have been successively accreted at various He accretion rates in order to better define the fate of the accreting dwarf versus its mass and accretion rate for a fixed degeneracy level of the accreting dwarf. He stars have been further induced to transfer mass to a degenerate companion through Roche lobe overflow, in conditions of large gravitational wave radiation by the system. CO dwarfs in binary systems with He stars are found to experience a thermal behavior whose effects are such to locate the structure on the verge of obtaining a strong SN-like explosive event. 22 refs

  20. Accretion onto a noncommutative geometry inspired black hole

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rahul [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Jamia Millia Islamia, Multidisciplinary Centre for Advanced Research and Studies (MCARS), New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2017-09-15

    The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate M, sonic speed a{sub s} and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that M ∼ M{sup 2} is still achievable but r{sub s} seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process. (orig.)

  1. Energy transport in radially accreting white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.M.

    1986-10-01

    Some of the non-thermal energy transport processes which may be present in a white dwarf accretion column are examined and it is determined whether these could in any way contribute to a resolution of the soft X-ray puzzle. The first two Chapters of this Thesis constitute a review of the observations and proposed models for white dwarf accretion columns. In Chapter 3 we show that in Kuijpers and Pringle's original bombardment model of white dwarf accretion columns, in which the energy of the accreting material is deposited uniformly into a static atmosphere which then radiates the energy away as optically thin bremsstrahlung/line radiation, an incorrect Coulomb collisional timescale was used. In Chapter 4 we extend the calculations of Chapter 3 to include the effect of cyclotron radiation. It is concluded that a cyclotron cooled bombardment solution for a white dwarf accretion column may exist. We extend this calculation to derive a simple piecewise uniform temperature structure for such an accretion column, incorporating the effect of thermal conduction. In Chaper 5 we examine two of the non thermal emission mechanisms that might be present in white dwarf accretion columns:- non thermal Lyman-{alpha} emission and non thermal inverse bremsstrahlung emission. It is shown that neither would actually be sufficiently large to be detectable. In Chapter 6 some possible extensions to the work presented are suggested. (author).

  2. Photometry of the three eclipsing novalike variables EC 21178-5417, GS Pav and V345 Pav

    Science.gov (United States)

    Bruch, Albert

    2017-10-01

    As part of a project to better characterize comparatively bright, yet little studied cataclysmic variables time resolved photometry of the three eclipsing novalike variables EC 21178-5417, GS Pav und V345 Pav is presented. Previously known orbital periods are significantly improved and long-term ephemeris are derived. Variations of eclipse profiles, occurring on time scales of days to weeks, are analyzed. Out of eclipse the light curves are characterized by low scale flickering superposed on more gradual variations with amplitudes limited to a few tenths of a magnitude and profiles which at least in EC 21178-5417 and GS Pav roughly follow the same pattern in all observed cycles. Additionally, signs for variations on the time scale of some tens of minutes are seen in GS Pav, most clearly in two subsequent nights when in the first of these a signal with a period of 15.7 min was observed over several hours. In the second night variations with twice this period were seen. While no additional insight could be gained on quasi periodic oscillations (QPOs) and dwarf nova oscillations in EC 21178-5417, previously detected by Warner et al. (2003), and while such oscillations could not be found in V345 Pav, stacked power spectra of GS Pav clearly reveal the presence of QPOs over time intervals of several hours with periods varying between 200 s and 500 s in that system.

  3. The low-frequency radio eclipses of the black widow pulsar J1810+1744

    Science.gov (United States)

    Polzin, E. J.; Breton, R. P.; Clarke, A. O.; Kondratiev, V. I.; Stappers, B. W.; Hessels, J. W. T.; Bassa, C. G.; Broderick, J. W.; Grießmeier, J.-M.; Sobey, C.; ter Veen, S.; van Leeuwen, J.; Weltevrede, P.

    2018-05-01

    We have observed and analysed the eclipses of the black widow pulsar J1810+1744 at low radio frequencies. Using LOw-Frequency ARray (LOFAR) and Westerbork Synthesis Radio Telescope observations between 2011 and 2015, we have measured variations in flux density, dispersion measure, and scattering around eclipses. High-time resolution, simultaneous beamformed, and interferometric imaging LOFAR observations show concurrent disappearance of pulsations and total flux from the source during the eclipses, with a 3σ upper limit of 36 mJy ( duration scaling as ∝ ν-0.41 ± 0.03. The results are discussed in the context of the physical parameters of the system, and an examination of eclipse mechanisms reveals cyclotron-synchrotron absorption as the most likely primary cause, although non-linear scattering mechanisms cannot be quantitatively ruled out. The inferred mass-loss rate is a similar order of magnitude to the mean rate required to fully evaporate the companion in a Hubble time.

  4. Applying a physical continuum model to describe the broadband X-ray spectra of accreting pulsars at high luminosity

    Science.gov (United States)

    Pottschmidt, Katja; Hemphill, Paul B.; Wolff, Michael T.; Cheatham, Diana M.; Iwakiri, Wataru; Gottlieb, Amy M.; Falkner, Sebastian; Ballhausen, Ralf; Fuerst, Felix; Kuehnel, Matthias; Ferrigno, Carlo; Becker, Peter A.; Wood, Kent S.; Wilms, Joern

    2018-01-01

    A new window for better understanding the accretion onto strongly magnetized neutron stars in X-ray binaries is opening. In these systems the accreted material follows the magnetic field lines as it approaches the neutron star, forming accretion columns above the magnetic poles. The plasma falls toward the neutron star surface at near-relativistic speeds, losing energy by emitting X-rays. The X-ray spectral continua are commonly described using phenomenological models, i.e., power laws with different types of curved cut-offs at higher energies. Here we consider high luminosity pulsars. In these systems the mass transfer rate is high enough that the accreting plasma is thought to be decelerated in a radiation-dominated radiative shock in the accretion columns. While the theory of the emission from such shocks had already been developed by 2007, a model for direct comparison with X-ray continuum spectra in xspec or isis has only recently become available. Characteristic parameters of this model are the accretion column radius and the plasma temperature, among others. Here we analyze the broadband X-ray spectra of the accreting pulsars Centaurus X-3 and 4U 1626-67 obtained with NuSTAR. We present results from traditional empirical modeling as well as successfully apply the radiation-dominated radiative shock model. We also take the opportunity to compare to similar recent analyses of both sources using these and other observations.

  5. Prospects for neutron star equation of state constraints using ''recycled'' millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, Slavko [Columbia University, Columbia Astrophysics Laboratory, New York, NY (United States)

    2016-02-15

    ''Recycled'' millisecond pulsars are a variety of rapidly spinning neutron stars that typically show thermal X-ray radiation due to the heated surface of their magnetic polar caps. Detailed numerical modeling of the rotation-induced thermal X-ray pulsations observed from recycled millisecond pulsars, including all relevant relativistic and stellar atmospheric effects, has been identified as a promising approach towards an astrophysical determination of the true neutron star mass-radius relation, and by extension the state of cold matter at densities exceeding those of atomic nuclei. Herein, I review the basic model and methodology commonly used to extract information regarding neutron star structure from the pulsed X-ray radiation observed from millisecond pulsars. I also summarize the results of past X-ray observations of these objects and the prospects for precision neutron star mass-radius measurements with the upcoming Neutron Star Interior Composition Explorer (NICER) X-ray timing mission. (orig.)

  6. Teaching Using Immersion - Explaining Magnetism and Eclipses in a Planetarium Dome

    Science.gov (United States)

    Reiff, P. H.; Sumners, C.

    2017-12-01

    Previously we have shown that three-dimensional concepts are more readily learned in a three-dimensional context. Although VR headsets are growing in popularity, they only provide a quite limited field of view, and each person in a group may be viewing a different direction or a different time in the visualization. By using instead a fullsphere movie (VR360) in a planetarium dome instead of a headset, you can share the VR and specify which half of the sphere your audience is looking at. You can pause the movie, ask questions using a clicker system, display the results, and move on if the subject is mastered or explain if items are not understood. In this paper we have used a planetarium dome in its more traditional "hemisphere" mode to teach about magnetism (using our new show "Magnetism - Defending Our Planet, Defining the Cosmos" ) and pre/post testing to show how many concepts can be understood in a relatively short experience. We have identified 35 concepts that most high school students do NOT know about magnetism, and have done pre/post testing on students and teachers. Most students more than doubled the number of concepts that they were able to explain after watching the show just one time. We have also created a series of eclipse animations to teach about solar and lunar eclipses. These animations have been used in more than 500 planetarium theaters and used as part of several TV specials on the August 2017 eclipse. By teaching eclipses in a dome, the students correctly understand the three-dimensional geometry of the Earth and Moon orbits and the causes of eclipses.

  7. Selling the Great American Eclipse: An Education and Public Outreach Retrospective

    Science.gov (United States)

    Nordgren, T.

    2017-12-01

    The August 21, 2017 total solar eclipse was the single largest public scientific outreach event of the last several decades. The astronomical community, from organizations like to the American Astronomical Society, to government agencies such as NASA, to the nation-wide amateur astronomy community all worked to raise awareness of this unique event that would be visible to every single inhabitant of the United States. This outreach, like the event itself, was unique in requiring education on not just the science of the event, but the societal nature as well. This included such variety of subjects as: 1) eye safety for millions of individuals, 2) the importance of traveling to totality, 3) transportation issues over mass travel to regions in totality, 3) lodging, food, and logistics information for communities in totality, 4) governmental emergency response, and much more. I interview a number of communities, city managers, event planners, and national park rangers after the eclipse to identify what were the most important education and outreach information they received leading up to the event to assess what we in the astronomical community did that was most effective and what could have been done better in retrospect. In particular, I look at the use of the solar eclipse "travel poster" campaign I designed for event organizers, chambers of commerce, universities, and national and state parks in the four years leading up to the eclipse. How were they used and were they effective in raising the public's awareness of community events across the country? The lessons learned will be important for planning for the next eclipse that touches the U.S. in less than seven years from now on April 8, 2024.

  8. Evolution and Outbursts of Cataclysmic Variables

    Directory of Open Access Journals (Sweden)

    S.-B. Qian

    2015-02-01

    Full Text Available Mass transfer and accretion are very important to understand the evolution and observational properties of cataclysmic variables (CVs. Due to the lack of an accretion disk, eclipsing profiles of polars are the best source to study the character of mass transfer in CVs. By analyzing long-term photometric variations in the eclipsing polar HU Aqr, the property of mass transfer and accretion are investigated. The correlation between the brightness state change and the variation of the ingress profile suggests that both the accretion hot spot and the accretion stream are produced instantaneously. The observations clearly show that it is the variation of mass transfer causing the brightness state changes that is a direct evidence of variable mass transfer in a CV. It is shown that it is the local dark-spot activity near the L1 point to cause the change of the mass transfer rather than the activity cycles of the cool secondary star. Our results suggest that the evolution of CVs is more complex than that predicted by the standard model and we should consider the effect of variable mass accretion in nova and dwarf nova outbursts.

  9. Plans to Observe the 2017 Total Solar Eclipse from near the Path Edges

    Science.gov (United States)

    Waring Dunham, David; Nugent, Richard; Guhl, Konrad; Bode, Hans-Joachim

    2015-08-01

    The August 21st, 2017 solar eclipse provides a good opportunity, to time the totality contacts, other Baily’s bead phenomena, and observe other dynamic edge phenomena, from locations near the edges of the path of totality. A good network of roads and generally favorable weather prospects means that more observers will likely be able to deploy more equipment than during most previous eclipses. The value of contact and Baily’s bead timings of total solar eclipses, for determining solar diameter and intensity variations, was described in an earlier presentation in Focus Meeting 13. This presentation will concentrate on how observations of different types that have been used during past eclipses can be made by different observers, to obtain better information about the accuracy of the different types of observations for determining the mean solar diameter, and the systematic differences between them. A problem has been that the few observers who have attempted recording Baily’s beads from path edge locations have wanted to use the latest technology, to try to record the observations better, rather than try to make the observations in the same ways that were used for many past eclipses. Several observers trying different techniques at the same location, and doing that at several locations at different places along the path, is needed. Past techniques that we would like to compare include direct visual observation (but keeping eye safety in mind); visual observation of telescopically projected images; direct filtered video telescopic observations; and recording the flash spectrum. There are several towns that straddle the path edges. The International Occultation Timing Association would like to mobilize people in those towns to observe the eclipse from many places, to say whether or not the eclipse happened, and if it did, time it. A suitable cell phone app could be designed to report observations, including the observer’s location, as was attempted for an

  10. Discovery of decaHz flaring in SAX J1808.4-3658

    Directory of Open Access Journals (Sweden)

    Bult P.

    2014-01-01

    Full Text Available We report on the discovery of strong decaHz flaring in the early decay of two out of five outbursts of the accreting millisecond X-ray pulsar SAX J1808.4-3658. The decaHz flaring switches on and, after ~3 days, off again, on a time scale of 1-2 hours. When the flaring is present, the total 0.05-10 Hz variability has a fractional rms amplitude of 20 to 30 percent, well in excess of the 8 to 12 percent rms broad-band noise usually seen in power spectra of SAX J1808 in this frequency range. Coherent 401 Hz pulsations are seen throughout the observations in which the decaHz flaring is detected. We find that the absolute amplitude of the pulsations varies with the flux modulation of the decaHz flaring, indicating that the flaring is caused by an accretion rate modulation already present in the accretion flow prior to matter entering the accretion funnel. We suggest that the decaHz flaring is the result of the Spruit-Taam instability [1]. This instability arises when the inner accretion disk approaches co-rotation. The rotation of the stellar magnetosphere then acts as a propeller, suppressing accretion onto the neutron star. A matter reservoir forms in the inner accretion disk, which episodically empties onto the neutron star, causing flares at a decaHz timescale. A similar explanation was proposed earlier for 1 Hz flaring occurring late in three of five outbursts, mutually exclusive with the decaHz flaring. The 1 Hz flaring was observed at luminosities a factor 5 to 10 below where we see the decaHz flaring. That a different branch of the Spruit-Taam instability could also act at the much higher luminosity levels of the decaHz flaring had recently been predicted by D’Angelo & Spruit [2, 3]. We discuss these findings in the context of the parameters of the Spruit-Taam-d’Angelo model of the instability. If confirmed, after millisecond pulsations, 1 Hz and decaHz flaring would be another diagnostic of the presence of a magnetosphere in accreting low

  11. Search for optical millisecond pulsars in globular clusters

    International Nuclear Information System (INIS)

    Middleditch, J.H.; Imamura, J.N.; Steiman-Cameron, T.Y.

    1988-01-01

    A search for millisecond optical pulsars in several bright, compact globular clusters was conducted. The sample included M28, and the X-ray clusters 47 Tuc, NGC 6441, NGC 6624, M22, and M15. The globular cluster M28 contains the recently discovered 327 Hz radio pulsar. Upper limits of 4 sigma to pulsed emission of (1-20) solar luminosities were found for the globular clusters tested, and 0.3 solar luminosity for the M28 pulsar for frequencies up to 500 Hz. 8 references

  12. The accretion of migrating giant planets

    Science.gov (United States)

    Dürmann, Christoph; Kley, Wilhelm

    2017-02-01

    Aims: Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect one another. Methods: We modeled a two-dimensional disk with a steady accretion flow onto the central star and embedded a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant α. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Results: Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas originating predominantly from the inner disk for a fast migrating planet. In the case of slower migration, the fraction of gas from the outer disk increases. We also found that even for very high accretion rates, in some cases gas crosses the planetary gap from the inner to the outer disk. Our simulations show that the crossing of gas changes during the migration process as the migration rate slows down. Therefore, classical type II migration where the planet migrates with the viscous drift rate and no gas crosses the gap is no general process but may only occur for special parameters and at a certain time during the orbital evolution of the planet.

  13. Relativistic jets from accreting black holes

    International Nuclear Information System (INIS)

    Coriat, Mickael

    2010-01-01

    Matter ejection processes, more commonly called jets, are among the most ubiquitous phenomena of the universe at ail scales of size and energy and are inseparable from accretion process. This intimate link, still poorly understood, is the main focus of this thesis. Through multi-wavelength observations of X-ray binary Systems hosting a black hole, I will try to bring new constraints on the physics of relativistic jets and the accretion - ejection coupling. We strive first to compare the simultaneous infrared, optical and X-ray emissions of the binary GX 339-4 over a period of five years. We study the nature of the central accretion flow, one of the least understood emission components of X-ray binaries, both in its geometry and in term of the physical processes that take place. This component is fundamental since it is could be the jets launching area or be highly connected to it. Then we focus on the infrared emission of the jets to investigate the physical conditions close to the jets base. We finally study the influence of irradiation of the outer accretion disc by the central X-ray source. Then, we present the results of a long-term radio and X-ray study of the micro-quasar H1743- 322. This System belongs to a population of accreting black holes that display, for a given X-ray luminosity, a radio emission fainter than expected. We make several assumptions about the physical origin of this phenomenon and show in particular that these sources could have a radiatively efficient central accretion flow. We finally explore the phases of return to the hard state of GX 339-4. We follow the re-emergence of the compact jets emission and try to bring new constraints on the physics of jet formation. (author) [fr

  14. Stability of black hole accretion disks

    Directory of Open Access Journals (Sweden)

    Czerny B.

    2012-12-01

    Full Text Available We discuss the issues of stability of accretion disks that may undergo the limit-cycle oscillations due to the two main types of thermal-viscous instabilities. These are induced either by the domination of radiation pressure in the innermost regions close to the central black hole, or by the partial ionization of hydrogen in the zone of appropriate temperatures. These physical processes may lead to the intermittent activity in AGN on timescales between hundreds and millions of years. We list a number of observational facts that support the idea of the cyclic activity in high accretion rate sources. We conclude however that the observed features of quasars may provide only indirect signatures of the underlying instabilities. Also, the support from the sources with stellar mass black holes, whose variability timescales are observationally feasible, is limited to a few cases of the microquasars. Therefore we consider a number of plausible mechanisms of stabilization of the limit cycle oscillations in high accretion rate accretion disks. The newly found is the stabilizing effect of the stochastic viscosity fluctuations.

  15. How Cool was the Eclipse? Atmospheric Measurements and Citizen Science via NASA's GLOBE Observer

    Science.gov (United States)

    Weaver, K. L. K.; Riebeek Kohl, H.

    2017-12-01

    The solar eclipse of 2017 presented an extraordinary opportunity to engage the public in shared science activity across the entire United States. While a natural focus of the eclipse was on astronomy and heliophysics, there was also an opening for excellent connections to Earth science. Because of the excitement of the event, many people gathered for long periods before and after totality, a perfect opportunity for observations and data collection to explore the impact of the eclipse on the atmosphere. The data was collected via NASA's GLOBE Observer app, a subset of the Global Learning and Observations to Benefit the Environment Program, a citizen science project which has been active for more than 20 years training teachers to collect many different types of environmental science data with their students. GLOBE Observer expands that audience to citizen scientists who might not be connected to a school, but are still interested in collecting data. In addition to the clouds observations that are normally part of GLOBE Observer, a special temporary protocol was added for the eclipse to include air temperature. Both types of measurements were collected at regular intervals for several hours before and after the point of maximum eclipse. By crowdsourcing data from all across the United States, on and off the path of totality, the hope was to be able to see patterns that wouldn't be apparent with fewer data points. In particular, there are few sources of detailed cloud data from the ground, including cloud type as well as overall cloud cover, especially as collected during a unique natural experiment such as an eclipse. This presentation will report preliminary results of the GLOBE Observer eclipse citizen science project, including participation totals and impact, data site distribution, as well as early analyses of both temperature and cloud data.

  16. DISCOVERY OF AN ULTRACOMPACT GAMMA-RAY MILLISECOND PULSAR BINARY CANDIDATE

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Albert K. H.; Jin, Ruolan; Yen, T.-C.; Tam, P. H. T.; Lin, L. C. C. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hu, C.-P. [Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China); Hui, C. Y.; Park, S. M. [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Takata, J.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Kim, C. L., E-mail: akong@phys.nthu.edu.tw [Department of Physics and Astronomy, Seoul National University (Korea, Republic of)

    2014-10-20

    We report multi-wavelength observations of the unidentified Fermi object 2FGL J1653.6-0159. With the help of high-resolution X-ray observations, we have identified an X-ray and optical counterpart to 2FGL J1653.6-0159. The source exhibits a periodic modulation of 75 minutes in the optical and possibly also in the X-ray. We suggest that 2FGL J1653.6-0159 is a compact binary system with an orbital period of 75 minutes. Combining the gamma-ray and X-ray properties, 2FGL J1653.6-0159 is potentially a black-widow-/redback-type gamma-ray millisecond pulsar (MSP). The optical and X-ray light curve profiles show that the companion is mildly heated by the high-energy emission and that the X-rays are from intrabinary shock. Although no radio pulsation has yet been detected, we estimated that the spin period of the MSP is ∼ 2 ms based on a theoretical model. If pulsation can be confirmed in the future, 2FGL J1653.6-0159 will become the first ultracompact rotation-powered MSP.

  17. TESTING THE ASTEROSEISMIC SCALING RELATIONS FOR RED GIANTS WITH ECLIPSING BINARIES OBSERVED BY KEPLER

    Energy Technology Data Exchange (ETDEWEB)

    Gaulme, P.; McKeever, J.; Jackiewicz, J.; Rawls, M. L. [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Corsaro, E. [Laboratoire AIM, CEA/DRF-CNRS, Université Paris 7 Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Mosser, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Université Pierre et Marie Curie, Université Denis Diderot, F-92195 Meudon (France); Southworth, J. [Astrophysics Group, Keele University, Staffordshire, ST5 5BG (United Kingdom); Mahadevan, S.; Bender, C.; Deshpande, R., E-mail: gaulme@nmsu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States)

    2016-12-01

    Given the potential of ensemble asteroseismology for understanding fundamental properties of large numbers of stars, it is critical to determine the accuracy of the scaling relations on which these measurements are based. From several powerful validation techniques, all indications so far show that stellar radius estimates from the asteroseismic scaling relations are accurate to within a few percent. Eclipsing binary systems hosting at least one star with detectable solar-like oscillations constitute the ideal test objects for validating asteroseismic radius and mass inferences. By combining radial velocity (RV) measurements and photometric time series of eclipses, it is possible to determine the masses and radii of each component of a double-lined spectroscopic binary. We report the results of a four-year RV survey performed with the échelle spectrometer of the Astrophysical Research Consortium’s 3.5 m telescope and the APOGEE spectrometer at Apache Point Observatory. We compare the masses and radii of 10 red giants (RGs) obtained by combining radial velocities and eclipse photometry with the estimates from the asteroseismic scaling relations. We find that the asteroseismic scaling relations overestimate RG radii by about 5% on average and masses by about 15% for stars at various stages of RG evolution. Systematic overestimation of mass leads to underestimation of stellar age, which can have important implications for ensemble asteroseismology used for Galactic studies. As part of a second objective, where asteroseismology is used for understanding binary systems, we confirm that oscillations of RGs in close binaries can be suppressed enough to be undetectable, a hypothesis that was proposed in a previous work.

  18. Accretion onto a charged higher-dimensional black hole

    International Nuclear Information System (INIS)

    Sharif, M.; Iftikhar, Sehrish

    2016-01-01

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  19. Accretion onto a charged higher-dimensional black hole

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Iftikhar, Sehrish [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  20. z'-BAND GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE OF WASP-19b

    Energy Technology Data Exchange (ETDEWEB)

    Burton, J. R.; Watson, C. A.; Pollacco, D. [Astrophysics Research Centre, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Littlefair, S. P.; Dhillon, V. S. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Gibson, N. P. [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Marsh, T. R., E-mail: jburton04@qub.ac.uk [Department of Physics and Astronomy, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2012-08-01

    We present the ground-based detection of the secondary eclipse of the transiting exoplanet WASP-19b. The observations were made in the Sloan z' band using the ULTRACAM triple-beam CCD camera mounted on the New Technology Telescope. The measurement shows a 0.088% {+-} 0.019% eclipse depth, matching previous predictions based on H- and K-band measurements. We discuss in detail our approach to the removal of errors arising due to systematics in the data set, in addition to fitting a model transit to our data. This fit returns an eclipse center, T{sub 0}, of 2455578.7676 HJD, consistent with a circular orbit. Our measurement of the secondary eclipse depth is also compared to model atmospheres of WASP-19b and is found to be consistent with previous measurements at longer wavelengths for the model atmospheres we investigated.

  1. Physics of Eclipsing Binaries: Motivation for the New-Age Modeling Suite

    OpenAIRE

    Pavlovski, K.; Prša, A.; Degroote, P.; Conroy, K.; Bloemen, S.; Hambleton, Kelly; Giammarco, J.; Pablo, H.; Tkachenko, A.; Torres, G.

    2013-01-01

    Recent ultra-high precision observations of eclipsing binaries, especially data acquired by the Kepler satellite, have made accurate light curve modelling increasingly challenging but also more rewarding. In this contribution, we discuss low-amplitude signals in light curves that can now be used to derive physical information about eclipsing binaries but that were unaccessible before the Kepler era. A notable example is the detection of Doppler beaming, which leads to an increase in flux when...

  2. Solar eclipse demonstrating the importance of photochemistry in new particle formation

    OpenAIRE

    Jokinen, Tuija; Kontkanen, Jenni; Lehtipalo, Katrianne; Manninen, Hanna E.; Aalto, Juho; Porcar-Castell, Albert; Garmash, Olga; Nieminen, Tuomo; Ehn, Mikael; Kangasluoma, Juha; Junninen, Heikki; Levula, Janne; Duplissy, Jonathan; Ahonen, Lauri R.; Rantala, Pekka

    2017-01-01

    Solar eclipses provide unique possibilities to investigate atmospheric processes, such as new particle formation (NPF), important to the global aerosol load and radiative balance. The temporary absence of solar radiation gives particular insight into different oxidation and clustering processes leading to NPF. This is crucial because our mechanistic understanding on how NPF is related to photochemistry is still rather limited. During a partial solar eclipse over Finland in 2015, we found that...

  3. Pre-main-sequence disk accretion in Z Canis Majoris

    International Nuclear Information System (INIS)

    Hartmann, L.; Kenyon, S.J.; Hewett, R.; Edwards, S.; Strom, K.M.; Strom, S.E.; Stauffer, J.R.

    1989-01-01

    It is suggested that the pre-main-sequence object Z CMa is a luminous accretion disk, similar in many respects to the FU Orionis variables. Z CMa shows the broad, doubled optical absorption lines expected from a rapidly rotating accretion disk. The first overtone CO absorption detected in Z CMa is blue-shifted, suggesting line formation in a disk wind. Accretion at rates about 0.001 solar mass/yr over 100 yr is required to explain the luminosity of Z CMa. The large amount of material accreted (0.1 solar mass/yr) indicates that Z CMa is in a very early stage of stellar evolution, possibly in an initial phase of massive disk accretion. 41 references

  4. Pre-main-sequence disk accretion in Z Canis Majoris

    Science.gov (United States)

    Hartmann, L.; Kenyon, S. J.; Hewett, R.; Edwards, S.; Strom, K. M.; Strom, S. E.; Stauffer, J. R.

    1989-01-01

    It is suggested that the pre-main-sequence object Z CMa is a luminous accretion disk, similar in many respects to the FU Orionis variables. Z CMa shows the broad, doubled optical absorption lines expected from a rapidly rotating accretion disk. The first overtone CO absorption detected in Z CMa is blue-shifted, suggesting line formation in a disk wind. Accretion at rates about 0.001 solar mass/yr over 100 yr is required to explain the luminosity of Z CMa. The large amount of material accreted (0.1 solar mass/yr) indicates that Z CMa is in a very early stage of stellar evolution, possibly in an initial phase of massive disk accretion.

  5. Accretion in Radiative Equipartition (AiRE) Disks

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, Yasaman K.; Afshordi, Niayesh, E-mail: yyazdi@pitp.ca, E-mail: nafshordi@pitp.ca [Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, ON N2L 2Y5 (Canada)

    2017-07-01

    Standard accretion disk theory predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability timescale, our accretion models in the radiation-pressure-dominated regime (i.e., inner disk) need to be modified. Here, we present a modification to the Shakura and Sunyaev model, where the radiation pressure is in equipartition with the gas pressure in the inner region. We call these flows accretion in radiative equipartition (AiRE) disks. We introduce the basic features of AiRE disks and show how they modify disk properties such as the Toomre parameter and the central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a function of cosmic time (and spin), while the latter could explain the transition between hard and soft states of X-ray binaries.

  6. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, C. E.; Espaillat, C. C. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Owen, J. E. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Adams, F. C., E-mail: connorr@bu.edu [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States)

    2017-04-01

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that if the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.

  7. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    International Nuclear Information System (INIS)

    Robinson, C. E.; Espaillat, C. C.; Owen, J. E.; Adams, F. C.

    2017-01-01

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that if the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.

  8. THE ECLIPSING SYSTEM EP ANDROMEDAE AND ITS CIRCUMBINARY COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Woo; Hinse, Tobias Cornelius; Park, Jang-Ho, E-mail: jwlee@kasi.re.kr, E-mail: tchinse@gmail.com, E-mail: pooh107162@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2013-04-15

    We present new long-term CCD photometry for EP And acquired during the period 2007-2012. The light curves display total eclipses at primary minima and season-to-season light variability. Our synthesis for all available light curves indicates that the eclipsing pair is a W-type overcontact binary with parameters of q = 2.578, i = 83. Degree-Sign 3, {Delta}T = 27 K, f = 28%, and l{sub 3} = 2%-3%. The asymmetric light curves in 2007 were satisfactorily modeled by a cool spot on either of the eclipsing components from a magnetic dynamo. Including our 95 timing measurements, a total of 414 times of minimum light spanning about 82 yr was used for a period study. A detailed analysis of the eclipse timing diagram revealed that the orbital period of EP And has varied as a combination of an upward-opening parabola and two periodic variations, with cycle lengths of P{sub 3} = 44.6 yr and P{sub 4} = 1.834 yr and semi-amplitudes of K{sub 3} = 0.0100 days and K{sub 4} = 0.0039 days, respectively. The observed period increase at a fractional rate of +1.39 Multiplication-Sign 10{sup -10} is in excellent agreement with that calculated from the W-D code and can be plausibly explained by some combination of mass transfer from the primary to the secondary star and angular momentum loss due to magnetic braking. The most reasonable explanation for both cycles is a pair of light-travel-time effects driven by the possible existence of a third and fourth component with projected masses of M{sub 3} = 0.25 M{sub Sun} and M{sub 4} = 0.90 M{sub Sun }. The more massive companion could be revealed using high-resolution spectroscopic data extending over the course of a few years and could also be a binary itself. It is possible that the circumbinary objects may have played an important role in the formation and evolution of the eclipsing pair, which would cause it to have a short initial orbital period and thus evolve into an overcontact configuration by angular momentum loss.

  9. Modeling of the Ionospheric Scintillation and Total Electron Content Observations during the 21 August 2017 Total Solar Eclipse

    Science.gov (United States)

    Datta-Barua, S.; Gachancipa, J. N.; Deshpande, K.; Herrera, J. A.; Lehmacher, G. A.; Su, Y.; Gyuk, G.; Bust, G. S.; Hampton, D. L.

    2017-12-01

    High concentration of free electrons in the ionosphere can cause fluctuations in incoming electromagnetic waves, such as those from the different Global Navigation Satellite Systems (GNSS). The behavior of the ionosphere depends on time and location, and it is highly influenced by solar activity. The purpose of this study is to determine the impact of a total solar eclipse on the local ionosphere in terms of ionospheric scintillations, and on the global ionosphere in terms of TEC (Total Electron Content). The studied eclipse occurred on 21 August 2017 across the continental United States. During the eclipse, we expected to see a decrease in the scintillation strength, as well as in the TEC values. As a broader impact part of our recently funded NSF proposal, we temporarily deployed two GNSS receivers on the eclipse's totality path. One GNSS receiver was placed in Clemson, SC. This is a multi-frequency GNSS receiver (NovAtel GPStation-6) capable of measuring high and low rate scintillation data as well as TEC values from four different GNSS systems. We had the receiver operating before, during, and after the solar eclipse to enable the comparison between eclipse and non-eclipse periods. A twin receiver collected data at Daytona Beach, FL during the same time, where an 85% partial solar eclipse was observed. Additionally, we set up a ground receiver onsite in the path of totality in Perryville, Missouri, from which the Adler Planetarium of Chicago launched a high-altitude balloon to capture a 360-degree video of the eclipse from the stratosphere. By analyzing the collected data, this study looks at the effects of partial and total solar eclipse periods on high rate GNSS scintillation data at mid-latitudes, which had not been explored in detail. This study also explores the impact of solar eclipses on signals from different satellite constellations (GPS, GLONASS, and Galileo). Throughout the eclipse, the scintillation values did not appear to have dramatic changes

  10. ACCRETION DISK SIGNATURES IN TYPE I X-RAY BURSTS: PROSPECTS FOR FUTURE MISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Keek, L. [CRESST and X-ray Astrophysics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States); Wolf, Z.; Ballantyne, D. R., E-mail: laurens.keek@nasa.gov [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430 (United States)

    2016-07-20

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst–disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi , Neutron Star Interior Composition Explorer ( NICER ), Athena , and Large Observatory For X-ray Timing ( LOFT ). Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi -like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes ≳10{sup 7.5} erg cm{sup 2} s{sup 1} and also effectively constrain the reflection parameters for bright bursts with fluxes of ∼10{sup 7} erg cm{sup 2} s{sup 1} in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.

  11. X-ray pulsars: accretion flow deceleration

    International Nuclear Information System (INIS)

    Miller, G.S.

    1987-01-01

    X-ray pulsars are thought to be neutron stars that derive the energy for their x-ray emission by accreting material onto their magnetic polar caps. The accreting material and the x-ray pulsar atmospheres were idealized as fully ionized plasmas consisting only of electrons and protons. A high magnetic field (∼ 5 x 10 12 Gauss) permeates the atmospheric plasma, and causes the motion of atmospheric electrons perpendicular to the field to be quantized into discrete Landau levels. All atmospheric electrons initially lie in the Landau ground state, but in the author's calculations of Coulomb collisions between atmospheric electrons and accreting protons, he allows for processes that leave the electrons in the first excited Landau level. He also considers interactions between accreting protons and the collective modes of the atmospheric plasma. Division of the electromagnetic interaction of a fast proton with a magnetized plasma into single particle and collective effects is described in detail in Chapter 2. Deceleration of the accretion flow due to Coulomb collisions with atmospheric electrons and collective plasma effects was studied in a number of computer simulations. These simulations, along with a discussion of the physical state of the atmospheric plasma and its interactions with a past proton, are presented in Chapter 3. Details of the atmospheric model and a description of the results of the simulations are given in Chapter 4. Chapter 5 contains some brief concluding remarks, and some thoughts on future research

  12. Stellar Obliquity and Magnetic Activity of Planet-hosting Stars and Eclipsing Binaries Based on Transit Chord Correlation

    Science.gov (United States)

    Dai, Fei; Winn, Joshua N.; Berta-Thompson, Zachory; Sanchis-Ojeda, Roberto; Albrecht, Simon

    2018-04-01

    The light curve of an eclipsing system shows anomalies whenever the eclipsing body passes in front of active regions on the eclipsed star. In some cases, the pattern of anomalies can be used to determine the obliquity Ψ of the eclipsed star. Here we present a method for detecting and analyzing these patterns, based on a statistical test for correlations between the anomalies observed in a sequence of eclipses. Compared to previous methods, ours makes fewer assumptions and is easier to automate. We apply it to a sample of 64 stars with transiting planets and 24 eclipsing binaries for which precise space-based data are available, and for which there was either some indication of flux anomalies or a previously reported obliquity measurement. We were able to determine obliquities for 10 stars with hot Jupiters. In particular we found Ψ ≲ 10° for Kepler-45, which is only the second M dwarf with a measured obliquity. The other eight cases are G and K stars with low obliquities. Among the eclipsing binaries, we were able to determine obliquities in eight cases, all of which are consistent with zero. Our results also reveal some common patterns of stellar activity for magnetically active G and K stars, including persistently active longitudes.

  13. Using Stellarium to cyber-observe the Great American Eclipse

    Science.gov (United States)

    Prim, Ellie R.; Sitar, David J.

    2017-09-01

    The Great American Eclipse is over. Somewhat sad, is it not? Individuals who were unable to experience the event on August 21, 2017, can now cyber-observe the eclipse with Stellarium (http://www.stellarium.org). In the authors' opinion, it is fun and has many great applications in the classroom. In addition it is open source and available for Android, iOS, and Linux users. We here at Appalachian use it in our introductory astronomy labs for specific activities such as investigating coordinate systems, discovering differences between solar and sidereal days, as well as determining why your "astrological sign" is most often not your "astronomical sign."

  14. Thermal structure of accreting neutron stars and strange stars

    International Nuclear Information System (INIS)

    Miralda-Escude, J.; Paczynski, B.; Haensel, P.

    1990-01-01

    Steady-state models of accreting neutron stars and strange stars are presented, and their properties as a function of accretion rate are analyzed. The models have steady-state envelopes, with stationary hydrogen burning taken into account, the helium shell flashes artificially suppressed, and the crust with a large number of secondary heat sources. The deep interiors are almost isothermal and are close to thermal equilibrium. A large number of models were calculated for many values of the accretion rates, with ordinary, pion-condensed, and strange cores, with and without secondary heat sources in the crust, and with the heavy element content of the accreting matter in the range Z = 0.0002-0.02. All models show a similar pattern of changes as the accretion rate is varied. For low accretion rates, the hydrogen burning shell is unstable; for intermediate rates, the hydrogen burning shell is stable, but helium burning is not; for high rates, the two shell sources burn together and are unstable. 60 refs

  15. General Relativistic Radiation MHD Simulations of Supercritical Accretion onto a Magnetized Neutron Star: Modeling of Ultraluminous X-Ray Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroyuki R. [Center for Computational Astrophysics, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan); Ohsuga, Ken, E-mail: takahashi@cfca.jp, E-mail: ken.ohsuga@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan)

    2017-08-10

    By performing 2.5-dimensional general relativistic radiation magnetohydrodynamic simulations, we demonstrate supercritical accretion onto a non-rotating, magnetized neutron star, where the magnetic field strength of dipole fields is 10{sup 10} G on the star surface. We found the supercritical accretion flow consists of two parts: the accretion columns and the truncated accretion disk. The supercritical accretion disk, which appears far from the neutron star, is truncated at around ≃3 R {sub *} ( R {sub *} = 10{sup 6} cm is the neutron star radius), where the magnetic pressure via the dipole magnetic fields balances with the radiation pressure of the disks. The angular momentum of the disk around the truncation radius is effectively transported inward through magnetic torque by dipole fields, inducing the spin up of a neutron star. The evaluated spin-up rate, ∼−10{sup −11} s s{sup −1}, is consistent with the recent observations of the ultraluminous X-ray pulsars. Within the truncation radius, the gas falls onto a neutron star along the dipole fields, which results in a formation of accretion columns onto the northern and southern hemispheres. The net accretion rate and the luminosity of the column are ≃66 L {sub Edd}/ c {sup 2} and ≲10 L {sub Edd}, where L {sub Edd} is the Eddington luminosity and c is the light speed. Our simulations support a hypothesis whereby the ultraluminous X-ray pulsars are powered by the supercritical accretion onto the magnetized neutron stars.

  16. Variable accretion of stellar winds onto Sgr A*

    Science.gov (United States)

    Cuadra, Jorge; Nayakshin, Sergei

    2006-12-01

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre.

  17. Variable accretion of stellar winds onto Sgr A*

    Energy Technology Data Exchange (ETDEWEB)

    Cuadra, Jorge [Max-Planck-Institut fuer Astrophysik, D-85741 Garching (Germany); Nayakshin, Sergei [Department of Physics and Astronomy, University of Leicester, LEI 7RH (United Kingdom)

    2006-12-15

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre.

  18. Variable accretion of stellar winds onto Sgr A*

    International Nuclear Information System (INIS)

    Cuadra, Jorge; Nayakshin, Sergei

    2006-01-01

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre

  19. SECONDARY ECLIPSE PHOTOMETRY OF THE EXOPLANET WASP-5b WITH WARM SPITZER

    Energy Technology Data Exchange (ETDEWEB)

    Baskin, Nathaniel J.; Knutson, Heather A.; Desert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 05844 (United States); Fortney, Jonathan J.; Laughlin, Gregory [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, Evanston, IL 60208 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Langton, Jonathan [Department of Physics, Principia College, Elsah, IL 62028 (United States); Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2013-08-20

    We present secondary eclipse photometry of the extrasolar planet WASP-5b taken in the 3.6 and 4.5 {mu}m bands with the Spitzer Space Telescope's Infrared Array Camera as part of the extended warm mission. By estimating the depth of the secondary eclipse in these two bands we can place constraints on the planet's atmospheric pressure-temperature profile and chemistry. We measure secondary eclipse depths of 0.197% {+-} 0.028% and 0.237% {+-} 0.024% in the 3.6 {mu}m and 4.5 {mu}m bands, respectively. For the case of a solar-composition atmosphere and chemistry in local thermal equilibrium, our observations are best matched by models showing a hot dayside and, depending on our choice of model, a weak thermal inversion or no inversion at all. We measure a mean offset from the predicted center of eclipse of 3.7 {+-} 1.8 minutes, corresponding to ecos {omega} = 0.0025 {+-} 0.0012 and consistent with a circular orbit. We conclude that the planet's orbit is unlikely to have been perturbed by interactions with another body in the system as claimed by Fukui et al.

  20. CVs and millisecond pulsar progenitors in globular clusters

    Science.gov (United States)

    Grindlay, J. E.; Cool, A. M.; Bailyn, C. D.

    1991-01-01

    The recent discovery of a large population of millisecond pulsars in globular clusters, together with earlier studies of both low luminosity X-ray sources and LMXBs in globulars, suggest there should be significant numbers of CVs in globulars. Although they have been searched for without success in selected cluster X-ray source fields, systematic surveys are lacking and would constrain binary production and both stellar and dynamical evolution in globular clusters. We describe the beginnings of such a search, using narrow band H-alpha imaging, and the sensitivities it might achieve.