WorldWideScience

Sample records for echo-planar imaging diffusion-weighted

  1. Functional imaging of submandibular glands: diffusion-weighted echo-planar MRI before and after stimulation

    International Nuclear Information System (INIS)

    Arndt, C.; Cramer, M.C.; Weiss, F.; Kaul, M.G.; Adam, G.; Habermann, C.R.; Graessner, J.; Petersen, K.; Reitmeier, F.; Jaehne, M.

    2006-01-01

    Purpose: To investigate the feasibility of diffusion-weighted (DWI) echo-planar imaging (EPI) to depict the submandibular glands and to measure different functional conditions. Materials and Methods: Twenty-seven healthy volunteers were examined. Diffusion weighted sequence was performed prior to stimulation. Exactly 30 seconds after a commercially available lemon juice was given orally, the diffusion weighted sequence was repeated. All examinations were performed by using a 1.5-T superconducting system with a 30 mT/m maximum gradient capability and maximum slew rate of 125 mT/m/sec (Magnetom Symphony, Siemens, Erlangen, Germany). The lower part of the circularly polarized (CP) head coil and a standard two-element CP neck array coil were used. The flexibility of the neck array coil allowed positioning the N1 element (upper part of the coil) right next to the submandibular gland. The axial diffusion-weighted EPI (echo planar imaging) sequence was performed using a matrix of 119 x 128, a field of view of 250 x 250 mm (pixel size 2.1 x 1.95 mm), a section thickness of 5 mm with an interslice gap of 1 mm. The b factors used were 0 sec/mm 2 , 500 sec/mm 2 and 1000 sec/mm 2 . Apparent diffusion coefficient (ADC) maps were digitally transferred to MRIcro (Chris Rorden, University of Nottingham, Great Britain). After detecting the submandibular glands a region of interest (ROI) was placed manually exactly within the boarder of both submandibular glands, excluding the external carotid artery on ADC maps. These procedures were performed on all ADC slices the submandibular glands could be differentiated in before and after oral stimulation. For statistical comparison of results, a student's t-test was performed with an overall two-tailed significance level of p=0.05. Results: The visualization of the submandibular glands using the diffusion-weighted EPI sequence was possible in all of the 27 volunteers. Prior to oral stimulation an ADC of 1.31 x 10 -3 mm 2 /sec (95% CI, 1

  2. Echo Planar Diffusion-Weighted Imaging: Possibilities and Considerations with 12- and 32-Channel Head Coils

    Directory of Open Access Journals (Sweden)

    John N Morelli

    2012-01-01

    Full Text Available Interest in clinical brain magnetic resonance imaging using 32-channel head coils for signal reception continues to increase. The present investigation assesses possibilities for improving diffusion-weighted image quality using a 32-channel in comparison to a conventional 12-channel coil. The utility of single-shot (ss and an approach to readout-segmented (rs echo planar imaging (EPI are examined using both head coils. Substantial image quality improvements are found with rs-EPI. Imaging with a 32-channel head coil allows for implementation of greater parallel imaging acceleration factors or acquisition of scans at a higher resolution. Specifically, higher resolution imaging with rs-EPI can be achieved by increasing the number of readout segments without increasing echo-spacing or echo time to the degree necessary with ss-EPI - a factor resulting in increased susceptibility artifact and reduced signal-to-noise with the latter.

  3. Functional imaging of parotid glands: Diffusion-weighted echo-planar MRI before and after stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Habermann, C.R.; Cramer, M.C.; Gossrau, P.; Adam, G. [University Hospital Hamburg-Eppendorf (Germany). Department of Diagnostic and Interventional Radiology; Graessner, J. [Siemens AG, Hamburg (Germany). Medical Solutions; Reitmeier, F.; Jaehne, M. [University Hospital Hamburg-Eppendorf (Germany). Department of Oto-, Rhino-, Laryngology; Fiehler, J. [University Hospital Hamburg-Eppendorf (Germany). Department of Neuroradiology; Schoder, V. [University Hospital Hamburg-Eppendorf (Germany). Institute for Medical Biometry and Epidemiology

    2004-10-01

    Purpose: To investigate the feasibility of diffusion-weighted (DW) echo-planar imaging (EPI) for measuring different functional conditions of the parotid gland and to compare different measurement approaches. Materials and Methods: Parotid glands of 27 healthy volunteers were examined with a DW EPI sequence (TR 1,500 msec, TE 77 msec, field-of-view 250 x 250 mm, pixel size 2.10 x 1.95 mm, section thickness 5 mm) before and after oral stimulation with commercially available lemon juice. The b factors used were 0, 500, and 1,000 sec/mm{sup 2}. Apparent diffusion coefficient (ADC) maps were digitally transferred to MRIcro (Chris Rorden, University of Nottingham, Great Britain) and evaluated with a manually placed circular region of interest (ROI) containing 100-200 pixel. Additional ROIs including the entire parotid gland were placed on either side. The results of both measurements were compared, using the Student's t test based on the median ADC values for each person. A two-tailed p-value of less than.05 was determined to indicate statistical significance. To compare both measurement approaches, the Pearson's correlation coefficient (r) was calculated. Results: Diffusion-weighted echo-planar MR imaging successfully visualized the parotid gland of all volunteers. In a first step, the median ADC value per person was computed. Using ROIs of 100-200 pixels, the mean was calculated to be 1.08 x 10{sup -3} mm{sup 2}/sec{+-}0.12 x 10{sup -3} mm{sup 2}/sec for both parotid glands prior to simulation. After stimulation, the mean ADC was measured at 1.15 x 10{sup -3} mm{sup 2}/sec{+-}0.11 x 10{sup -3} mm{sup 2}/sec for both parotid glands. Evaluating the entire parotid gland, the ADC was 1.12 x 10{sup -3} mm{sup 2}/sec{+-}0.08 x 10{sup -3} mm{sup 2}/sec prior to simulation, whereas the ADC increased to 1.18 x 10{sup -3} mm{sup 2}/sec{+-}0.09 x 10{sup -3} mm{sup 2}/sec after simulation with lemon juice. For both types of measurements, the increase in ADC after

  4. Readout-Segmented Echo-Planar Imaging in Diffusion-Weighted MR Imaging in Breast Cancer: Comparison with Single-Shot Echo-Planar Imaging in Image Quality

    International Nuclear Information System (INIS)

    Kim, Yun Ju; Kim, Sung Hun; Kang, Bong Joo; Park, Chang Suk; Kim, Hyeon Sook; Son, Yo Han; Porter, David Andrew; Song, Byung Joo

    2014-01-01

    The purpose of this study was to compare the image quality of standard single-shot echo-planar imaging (ss-EPI) and that of readout-segmented EPI (rs-EPI) in patients with breast cancer. Seventy-one patients with 74 breast cancers underwent both ss-EPI and rs-EPI. For qualitative comparison of image quality, three readers independently assessed the two sets of diffusion-weighted (DW) images. To evaluate geometric distortion, a comparison was made between lesion lengths derived from contrast enhanced MR (CE-MR) images and those obtained from the corresponding DW images. For assessment of image parameters, signal-to-noise ratio (SNR), lesion contrast, and contrast-to-noise ratio (CNR) were calculated. The rs-EPI was superior to ss-EPI in most criteria regarding the qualitative image quality. Anatomical structure distinction, delineation of the lesion, ghosting artifact, and overall image quality were significantly better in rs-EPI. Regarding the geometric distortion, lesion length on ss-EPI was significantly different from that of CE-MR, whereas there were no significant differences between CE-MR and rs-EPI. The rs-EPI was superior to ss-EPI in SNR and CNR. Readout-segmented EPI is superior to ss-EPI in the aspect of image quality in DW MR imaging of the breast

  5. Readout-segmented echo-planar imaging improves the image quality of diffusion-weighted MR imaging in rectal cancer: Comparison with single-shot echo-planar diffusion-weighted sequences

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Chun-chao; Liu, Xi; Peng, Wan-lin; Li, Lei; Zhang, Jin-ge [Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 (China); Meng, Wen-jian; Deng, Xiang-bing [Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 (China); Zuo, Pan-li [Siemens Healthcare, MR Collaborations NE Asia, 100010, Beijing (China); Li, Zhen-lin, E-mail: lzlcd01@126.com [Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 (China)

    2016-10-15

    Purpose: To determine whether readout-segmented echo-planar imaging (rs-EPI) diffusion-weighted imaging (DWI) can improve the image quality in patients with rectal cancer compared with single-shot echo-planar imaging (ss-EPI) DWI using 3.0 T magnetic resonance (MR) imaging. Materials and methods: This study was approved by the Institutional Review Board, and informed consent was obtained from all patients. Seventy-one patients with rectal cancer were enrolled in this study. For all patients, both rs-EPI and ss-EPI DWI were performed using a 3T MR scanner. Two radiologists independently assessed the overall image quality, lesion conspicuity, geometric distortion and distinction of anatomical structures. The signal-to-noise ratio (SNR), lesion contrast, contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) were also measured. Comparisons of the quantitative and qualitative parameters between the two sequences were performed using the paired t-test and the Wilcoxon signed rank test. Results: The scores of overall image quality, lesion conspicuity, geometric distortion and distinction of anatomical structures of rs-EPI were all significantly higher than those of ss-EPI (all p < 0.05). The SNR and CNR were higher in rs-EPI than those in ss-EPI (all p < 0.05). There was no significant difference between ss-EPI and rs-EPI with regard to ROI size and mean ADCs of the tumour (p = 0.574 and p = 0.479, respectively), but the mean ADC of the normal tissue was higher in rs-EPI than in ss-EPI (1.73 ± 0.30 × 10{sup −3} mm{sup 2}/s vs. 1.60 ± 0.31 × 10{sup −3} mm{sup 2}/s, p = 0.001). Conclusions: DW imaging based on readout-segmented echo-planar imaging is a clinically useful technique to improve the image quality for the purpose of evaluating lesions in patients with rectal tumours.

  6. Application of diffusion-weighted echo planar imaging for diagnosis of small acute and subacute brain ischemic lesions

    International Nuclear Information System (INIS)

    Enomoto, Kyoko; Watanabe, Tsuneya; Amanuma, Makoto; Heshiki, Atsuko

    1997-01-01

    The aim of this study was to determine the utility of diffusion-weighted echo planar imaging (DW-EPI) for detecting acute and subacute brain ischemic foci less than 2 cm in size. Thirty patients underwent DW-EPI on a 1.5 T super-conducting unit using a SE-EPI sequence with an arbitrary pair of Stejskal-Tanner gradients applied along the imaging axes. DW-EPI demonstrated all the mast recent ischemic lesions as areas of decreased diffusion, providing greater conspicuity and larger size than conventional spin-echo imaging. DW-EPI is a promising method to detect within a subsecond early ischemia and reversible ischemic changes that are not demonstrate on routine spin-echo images. (author)

  7. Diffusion-weighted single shot echo planar imaging of colorectal cancer using a sensitivity-encoding technique

    International Nuclear Information System (INIS)

    Nasu, Katsuhiro; Kuroki, Yoshihumi; Murakami, Koji; Nawano, Shigeru; Kuroki, Seiko; Moriyama, Noriyuki

    2004-01-01

    We wanted to determine the feasibility of diffusion-weighted single shot echo planar imaging using a sensitivity encoding diffusion weighted imaging (SENSE-DWI) technique in depicting colorectal cancer. Forty-two patients with sigmoid colon cancer and rectal cancer, all proven pathologically, were examined on T2-turbo spin echo (TSE) and SENSE-DWI. No bowel preparation was performed before examination. The b-factors used in SENSE-DWI were zero and 1000 s/mm 2 . In 10 randomly selected cases, the images whose b-factors were 250 and 500 s/mm 2 were also obtained. The reduction factor of SENSE was 2.0 in all sequences. Two radiologists evaluated the obtained images from the viewpoints of tumor detectability, image distortion and misregistration of the tumors. The apparent diffusion coefficients (ADCs) of the tumors and urine in the urinary bladders in each patient were measured to evaluate the correlation between ADC and pathological classification of each tumor. All tumors were depicted hyperintensely on SENSE-DWI. Even though single shot echo planar imaging (EPI) was used, the image distortion and misregistration was quite pronounced because of simultaneous use of SENSE. On SENSE-DWI whose b-factor was 1000 s/mm 2 , the normal colon wall and feces were always hypointense and easily differentiated from the tumors. The mean ADC value of each tumor was 1.02±0.1 (x 10 -3 ) mm 2 /s. No overt correlation can be pointed out between ADC and pathological classification of each tumor. SENSE-DWI is a feasible method for depicting colorectal cancer. SENSE-DWI provides strong contrast among colorectal cancers, normal rectal wall and feces. (authors)

  8. Diffusion-weighted echo planar imaging in patients with recent myocardial infarction

    International Nuclear Information System (INIS)

    Deux, Jean-Francois; Maatouk, Mezri; Luciani, Alain; Lenczner, Gregory; Mayer, Julie; Kobeiter, Hicham; Rahmouni, Alain; Vignaud, Alexandre; Lim, Pascal; Dubois-Rande, Jean-Luc

    2011-01-01

    To evaluate a diffusion-weighted (DW) black blood MR sequence for the detection of myocardium signal abnormalities in patients with recent myocardial infarction (MI). A DW black blood EPI sequence was acquired at 1.5 T in 12 patients with recent MI. One slice per patient was acquired with b = 0 and b = 50 s/mm 2 . A standard short tau inversion recovery (STIR) T2-weighted sequence was acquired at the same level. Viability was assessed with delayed-enhancement sequences. Images were analyzed qualitatively and quantitatively. A non parametric Wilcoxon test was used for statistical analysis, with a significance level of P <.05. The mean quality of blood suppression was higher on DW EPI images than on STIR T2-weighted images (3.9 ± 0.3 and 3.0 ± 0.7, respectively; P = 0.01). Myocardial high signal areas were detected in respectively 100% (12/12) and 67% (8/12) of the patients on DW EPI and STIR T2-weighted images. The four patients (33%) with false-negative STIR T2 findings all had high signal areas on DW EPI images corresponding to the location of the MI on the delayed-enhanced images. DW EPI sequences are a feasible alternative to standard STIR T2-weighted sequences for detecting myocardium high signal areas in patients with recent MI. (orig.)

  9. Diffusion-weighted imaging-guided MR spectroscopy in breast lesions using readout-segmented echo-planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kun; Chai, Weimin; Zhan, Ying; Luo, Xianfu; Yan, Fuhua [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Ruijin Hospital, Shanghai (China); Fu, Caixia [Siemens MRI Center, Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen (China); Shen, Kunwei [Shanghai Jiao Tong University School of Medicine, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai (China)

    2016-06-15

    To investigate the feasibility and effectiveness of diffusion-weighted imaging (DWI)-guided magnetic resonance spectroscopy (MRS) using readout-segmented echo-planar imaging (RS-EPI) to characterise breast lesions. A total of 258 patients with 258 suspicious breast lesions larger than 1 cm in diameter were examined using DWI-guided, single-voxel MRS with RS-EPI. The mean total choline-containing compound (tCho) signal-to-noise ratio (SNR) and concentration were used for the interpretation of MRS data. T-tests, χ{sup 2}-tests, receiver operating characteristic (ROC) curve analyses and Pearson correlations were conducted for statistical analysis. Histologically, 183 lesions were malignant, and 75 lesions were benign. Both the mean tCho SNR and concentration of malignant lesions were higher than those of benign lesions (6.23 ± 3.30 AU/mL vs. 1.26 ± 1.75 AU/mL and 3.17 ± 2.03 mmol/kg vs. 0.86 ± 0.83 mmol/kg, respectively; P < 0.0001). For a tCho SNR of 2.0 AU/mL and a concentration of 1.76 mmol/kg, the corresponding areas under the ROC curves were 0.93 and 0.90, respectively. The mean tCho SNR and concentration negatively correlated with apparent diffusion coefficients calculated from RS-EPI, with correlation coefficients of -0.54 and -0.48, respectively. DWI-guided MRS using RS-EPI is feasible and accurate for characterising breast lesions. (orig.)

  10. Clinical evaluation of echo-planar diffusion-weighted imaging (EPI-DWI) for diagnosis of breast cancer

    International Nuclear Information System (INIS)

    Nakajima, Mika; Nitatori, Toshiaki; Matsuda, Minoru; Fukushima, Hisaki; Ihara, Kuniko; Seki, Tsuneaki

    2008-01-01

    The purpose of this study was to compare echo-planar diffusion-weighted imaging (EPI-DWI) with dynamic contrast-enhanced magnetic resonance imaging (MRI) in terms of the rate of detection, extension, and quality of diagnosis of breast cancer in order to estimate the usefulness of EPI-DWI. One hundred and three cases of 101 patients who underwent MRI prior to surgery for breast cancer were evaluated. (papillotubular carcinoma 22; solid-tubular carcinoma 20; scirrhous carcinoma 45; mucinous carcinoma 2; medullary carcinoma 1; invasive lobular carcinoma 2; apocrine carcinoma 2; ductal carcinoma in situ (DCIS) and microinvasive ductal carcinoma 9). Twelve cases of benign lesion were also evaluated. Single-shot EPI-DWI was performed before routine dynamic MRI and images of cancer detection and cancer extension both were compared with the pathological findings. The apparent diffusion coefficient (ADC) values of the lesions were measured and compared to the ADC values of benign lesions and normal breast tissues. The differences between the ADC values for the various histopathological types and the time-intensity curve (TIC) patterns of the dynamic MRI were also estimated. The EPI-DWI demonstrated abnormal high-intensity areas corresponding to the breast cancer lesions; these areas demonstrated good correlation with the enhanced areas observed in the early phase of dynamic MRI and cancer extension in the pathological findings. Frequently, normal breast tissues manifested as high-intensity areas in EPI-DWI; however, it was possible to distinguish between normal breast tissues and breast lesions by correlating these images with T2- weighted images and corresponding ADC values. The threshold value between malignant and benign lesions that resulted both high sensitivity and specificity was about 1.5 x 10 -3 x mm 2 /second. Mucinous carcinoma and DCIS/ microinvasive carcinoma exhibited higher ADC values than those observed in the other histopathological types, however, no

  11. Does non-echo-planar diffusion-weighted magnetic resonance imaging have a role in assisting the clinical diagnosis of cholesteatoma in selected cases?

    Science.gov (United States)

    Nash, R; Lingam, R K; Chandrasekharan, D; Singh, A

    2018-03-01

    To determine the diagnostic performance of diffusion-weighted magnetic resonance imaging in the assessment of patients with suspected, but not clinically evident, cholesteatoma. A retrospective analysis of a prospectively collected database of non-echo-planar diffusion-weighted magnetic resonance imaging studies (using a half-Fourier single-shot turbo-spin echo sequence) was conducted. Clinical records were retrospectively reviewed to determine indications for imaging and operative findings. Seventy-eight investigations in 74 patients with suspected cholesteatoma aged 5.7-79.2 years (mean, 41.7 years) were identified. Operative confirmation was available in 44 ears. Diagnostic accuracy of the imaging technique was calculated using operative findings as a 'gold standard'. Sensitivity of the investigation was examined via comparison with clinically evident cholesteatoma. The accuracy of diffusion-weighted magnetic resonance imaging in assessment of suspected cholesteatoma was 63.6 per cent. The imaging technique was significantly less accurate in assessment of suspected cholesteatoma than clinically evident disease (p < 0.001). Computed tomography and diffusion-weighted magnetic resonance imaging may be complementary in assessment of suspected cholesteatoma, but should be used with caution, and clinical judgement is paramount.

  12. Diffusion-weighted echo-planar MRI of lacunar infarcts

    International Nuclear Information System (INIS)

    Noguchi, K.; Nagayoshi, T.; Watanabe, N.; Kanazawa, T.; Toyoshima, S.; Morijiri, M.; Shojaku, H.; Shimizu, M.; Seto, H.

    1998-01-01

    We studied 35 patients with lacunar infarcts, using diffusion-weighted echo-planar imaging (DW-EPI) at 1.5 T. The relative apparent diffusion coefficient ratio (ADCR) of each lesion was calculated and lesion conspicuity on DW-EPI was compared to that on images aquired with fast fluid-attenuated inversion recovery and T2-weighted fast spin-echo sequences. Acute small infarcts (within 3 days) were identified with DW-EPI as an area of decreased ADCR (range 0.33-0.87; mean 0.67) and high signal, subacute small infarcts (4-30 days) as a high-signal or isointense areas of decreased or nearly normal ADCR (0.54-0.98; 0.73), and chronic small infarcts (> 30 days) as low- or high-signal areas of nearly normal or increased ADCR (0.97-1.92; 1.32). In three patients, small infarcts of the brain stem in the hyperacute phase (within 6 h) were seen only with DW-EPI. In five patients, fresh small infarcts adjacent to multiple old infarcts could be distinguished only with DW-EPI. (orig.)

  13. Functional imaging of submandibular glands: diffusion-weighted echo-planar MRI before and after stimulation; Diffusionsgewichtete MRT zur Funktionsdiagnostik der Glandula submandibularis

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, C.; Cramer, M.C.; Weiss, F.; Kaul, M.G.; Adam, G.; Habermann, C.R. [Zentrum fuer Bildgebende Diagnostik und Intervention, Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie, Universitaetsklinikum Hamburg-Eppendorf (Germany); Graessner, J. [Siemens Medical Solutions (Germany); Petersen, K. [Zentrum fuer Psychosoziale Medizin, Klinik und Poliklinik fuer Psychiatrie und Psychotherapie, Universitaetsklinikum Hamburg-Eppendorf (Germany); Reitmeier, F.; Jaehne, M. [Kopf und Hautzentrum, Klinik und Poliklinik fuer Hals-, Nasen- und Ohrenheilkunde, Universitaetsklinikum Hamburg Eppendorf (Germany)

    2006-09-15

    Purpose: To investigate the feasibility of diffusion-weighted (DWI) echo-planar imaging (EPI) to depict the submandibular glands and to measure different functional conditions. Materials and Methods: Twenty-seven healthy volunteers were examined. Diffusion weighted sequence was performed prior to stimulation. Exactly 30 seconds after a commercially available lemon juice was given orally, the diffusion weighted sequence was repeated. All examinations were performed by using a 1.5-T superconducting system with a 30 mT/m maximum gradient capability and maximum slew rate of 125 mT/m/sec (Magnetom Symphony, Siemens, Erlangen, Germany). The lower part of the circularly polarized (CP) head coil and a standard two-element CP neck array coil were used. The flexibility of the neck array coil allowed positioning the N1 element (upper part of the coil) right next to the submandibular gland. The axial diffusion-weighted EPI (echo planar imaging) sequence was performed using a matrix of 119 x 128, a field of view of 250 x 250 mm (pixel size 2.1 x 1.95 mm), a section thickness of 5 mm with an interslice gap of 1 mm. The b factors used were 0 sec/mm{sup 2}, 500 sec/mm{sup 2} and 1000 sec/mm{sup 2}. Apparent diffusion coefficient (ADC) maps were digitally transferred to MRIcro (Chris Rorden, University of Nottingham, Great Britain). After detecting the submandibular glands a region of interest (ROI) was placed manually exactly within the boarder of both submandibular glands, excluding the external carotid artery on ADC maps. These procedures were performed on all ADC slices the submandibular glands could be differentiated in before and after oral stimulation. For statistical comparison of results, a student's t-test was performed with an overall two-tailed significance level of p=0.05. Results: The visualization of the submandibular glands using the diffusion-weighted EPI sequence was possible in all of the 27 volunteers. Prior to oral stimulation an ADC of 1.31 x 10{sup -3

  14. Comparison of intravoxel incoherent motion diffusion-weighted imaging between turbo spin-echo and echo-planar imaging of the head and neck

    Energy Technology Data Exchange (ETDEWEB)

    Mikayama, Ryoji; Yabuuchi, Hidetake; Nagatomo, Kazuya; Kimura, Mitsuhiro; Kumazawa, Seiji [Kyushu University, Department of Health Sciences, Graduate School of Medical Sciences, Fukuoka (Japan); Sonoda, Shinjiro; Kobayashi, Koji [Kyushu University Hospital, Division of Radiology, Department of Medical Technology, Fukuoka (Japan); Kawanami, Satoshi; Kamitani, Takeshi; Honda, Hiroshi [Kyushu University, Department of Clinical Radiology, Graduate School of Medical Sciences, Fukuoka (Japan)

    2018-01-15

    To compare image quality, apparent diffusion coefficient (ADC), and intravoxel incoherent motion (IVIM)-derived parameters between turbo spin-echo (TSE)-diffusion-weighted imaging (DWI) and echo-planar imaging (EPI)-DWI of the head and neck. Fourteen volunteers underwent head and neck imaging using TSE-DWI and EPI-DWI. Distortion ratio (DR), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), ADC and IVIM-derived parameters were compared between the two techniques. Bland-Altman analysis was performed to analyse reproducibility between the quantitative parameters of TSE-DWI and EPI-DWI. DR of TSE-DWI was significantly smaller than that of EPI-DWI. SNR and CNR of TSE-DWI were significantly higher than those of EPI-DWI. ADC and IVIM-derived parameters of TSE-DWI showed higher values than those of EPI-DWI, although the difference was not significant. Bland-Altman analysis showed wide limits of agreement between the two sequences. TSE-DWI can produce better image quality than EPI-DWI, while TSE-DWI possibly exhibits different values of quantitative parameters. Therefore, TSE-DWI could be a good alternative to EPI-DWI for patients sensitive to distortion. However, it is not recommended to use both TSE-DWI and EPI-DWI on follow-up. (orig.)

  15. Identification of the primary motor cortex: value of T2 echo-planar imaging, diffusion-weighted imaging and quantitative apparent diffusion coefficient measurement at 3 T

    International Nuclear Information System (INIS)

    Dincer, Alp; Erzen, Canan; Oezyurt, Onur; Pamir, M.N.

    2010-01-01

    To investigate the primary motor cortex (PMC) concerning T2 shortening on T2 echo-planar imaging (EPI-T2) and the double-layer sign on diffusion-weighted imaging (DWI), and also to measure its apparent diffusion coefficient (ADC). 3-T MR DWI was performed in 134 adult volunteers and 64 patients. T2 shortening was graded as hypointense or isointense compared with the signal of the superior frontal cortex (SFC). The double-layer sign of the PMC was graded as present or absent. Both findings (T2 shortening and double-layer sign) were evaluated independently by two authors. ADC of the PMC and the SFC were calculated using manually selected ROIs. T2 shortening was found in 131 adults and 62 patients by author 1 and in 132 adults and 61 patients by author 2 (κ = 0.96 and 0.91). The double-layer sign was found in 131 adults and 61 patients by author 1 and in 127 adults and 58 patients by author 2 (κ = 0.94 and 0.91). ADC values of the PMC and the SFC were different for all subjects (p < 0.01). T2 shortening and/or the double-layer sign on 3-T MR can be used to locate the PMC. The difference in ADC values between PMC and SFC is a distinguishing feature. (orig.)

  16. Anatomical details of the brainstem and cranial nerves visualized by high resolution readout-segmented multi-shot echo-planar diffusion-weighted images using unidirectional MPG at 3T

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Yamazaki, Masahiro; Kawai, Hisashi; Sone, Michihiko; Nakashima, Tsutomu; Isoda, Haruo

    2011-01-01

    We compared diffusion-weighted imaging (DWI) with readout-segmented multi-shot echo-planar imaging (rs-EPI) and single-shot EPI, both using unidirectional motion-probing gradient, in 10 patients for visualization of the anatomical structures in the brainstem. DWI by rs-EPI was significantly better than DWI by single-shot EPI for visualizing the medial longitudinal fasciculus, lateral lemniscus, corticospinal tract, and seventh/eighth cranial nerves and offered significantly less distortion of the brainstem. (author)

  17. Study on diffusion anisotropy of cerebral ischemia using diffusion weighted echo-planar MRI

    International Nuclear Information System (INIS)

    Kajima, Toshio

    1997-01-01

    Focal cerebral ischemia was produced by occlusion of the intracranial main cerebral artery with a silicone cylinder in Wistar rats. Diffusion-weighted echo-planar images (DW-EPls) using the motion-probing gradient (MPG) method were acquired at 1-3 hours and 24-48 hours after occlusion. Apparent diffusion coefficients (ADCs) were calculated from these images in ischemic lesions and in normal unoccluded regions. Results were as follows. Ischemic lesions could be detected on the DW-EPIs at 1 hour after occlusion. The ADC of water in the brain tissue was smaller than that of free water as a result of restricted diffusion. Anisotropic diffusion that probably can be attributed to the myelin sheath was observed in the normal white matter. In the ischemic lesions, the ADC decreased rapidly within 1-3 hours after occlusion and then decreased gradually after 24-48 hours. In the ischemic white matter, diffusion anisotropy disappeared at 24-48 hours after occlusion. Diffusion-weighted imaging may have applications in the examination of pathophysiological mechanisms in cerebral ischemia by means of evaluation of ADC and diffusion anisotropy. (author)

  18. Reduced field-of -view diffusion-weighted magnetic resonance imaging of the pancreas: Comparison with conventional single-shot echo-planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Jin; Lee, Jeong Min; Yoon, Jeong Hee; Jang, Jin Young; Kim, Sun Whe; Ryu, Ji Kon; Han, Joon Koo; Choi, Byung Ihn [Seoul National University Hospital, Seoul (Korea, Republic of); Kannengiesser, Stephan [Siemens Healthcare, Erlangen (Germany)

    2015-12-15

    To investigate the image quality (IQ) and apparent diffusion coefficient (ADC) of reduced field-of-view (FOV) diffusion-weighted imaging (DWI) of pancreas in comparison with full FOV DWI. In this retrospective study, 2 readers independently performed qualitative analysis of full FOV DWI (FOV, 38 × 38 cm; b-value, 0 and 500 s/mm{sup 2}) and reduced FOV DWI (FOV, 28 × 8.5 cm; b-value, 0 and 400 s/mm{sup 2}). Both procedures were conducted with a two-dimensional spatially selective radiofrequency excitation pulse, in 102 patients with benign or malignant pancreatic diseases (mean size, 27.5 ± 14.4 mm). The study parameters included 1) anatomic structure visualization, 2) lesion conspicuity, 3) artifacts, 4) IQ score, and 5) subjective clinical utility for confirming or excluding initially considered differential diagnosis on conventional imaging. Another reader performed quantitative ADC measurements of focal pancreatic lesions and parenchyma. Wilcoxon signed-rank test was used to compare qualitative scores and ADCs between DWI sequences. Mann Whitney U-test was used to compare ADCs between the lesions and parenchyma. On qualitative analysis, reduced FOV DWI showed better anatomic structure visualization (2.76 ± 0.79 at b = 0 s/mm{sup 2} and 2.81 ± 0.64 at b = 400 s/mm{sup 2}), lesion conspicuity (3.11 ± 0.99 at b = 0 s/mm{sup 2} and 3.15 ± 0.79 at b = 400 s/mm{sup 2}), IQ score (8.51 ± 2.05 at b = 0 s/mm{sup 2} and 8.79 ± 1.60 at b = 400 s/mm{sup 2}), and higher clinical utility (3.41 ± 0.64), as compared to full FOV DWI (anatomic structure, 2.18 ± 0.59 at b = 0 s/mm{sup 2} and 2.56 ± 0.47 at b = 500 s/mm{sup 2}; lesion conspicuity, 2.55 ± 1.07 at b = 0 s/mm{sup 2} and 2.89 ± 0.86 at b = 500 s/mm{sup 2}; IQ score, 7.13 ± 1.83 at b = 0 s/mm{sup 2} and 8.17 ± 1.31 at b = 500 s/mm{sup 2}; clinical utility, 3.14 ± 0.70) (p < 0.05). Artifacts were significantly improved on reduced FOV DWI (2.65 ± 0.68) at b = 0 s/mm{sup 2} (full FOV DWI, 2.41 ± 0.63) (p

  19. Comparative Analysis of Signal Intensity and Apparent Diffusion Coefficient at Varying b-values in the Brain : Diffusion Weighted-Echo Planar Image (T2 and FLAIR) Sequence

    International Nuclear Information System (INIS)

    Oh, Jong Kap; Im, Jung Yeol

    2009-01-01

    Diffusion-weighted imaging (DWI) has been demonstrated to be a practical method for the diagnosis of various brain diseases such as acute infarction, brain tumor, and white matter disease. In this study, we used two techniques to examine the average signal intensity (SI) and apparent diffusion coefficient (ADC) of the brains of patients who ranged in age from 10 to 60 years. Our results indicated that the average SI was the highest in amygdala (as derived from DWI), whereas that in the cerebrospinal fluid was the lowest. The average ADC was the highest in the cerebrospinal fluid, whereas the lowest measurement was derived from the pons. The average SI and ADC were higher in T 2 -DW-EPI than in FLAIR-DW-EPI. The higher the b-value, the smaller the average difference in both imaging techniques; the lower the b-value, the greater the average difference. Also, comparative analysis of the brains of patients who had experienced cerebral infarction showed no distinct lesion in the general MR image over time. However, there was a high SI in apparent weighted images. Analysis of other brain diseases (e.g., bleeding, acute, subacute, chronic infarction) indicated SI variance in accordance with characteristics of the two techniques. The higher the SI, the lower the ADC. Taken together, the value of SI and ADC in accordance with frequently occurring areas and various brain disease varies based on the b-value and imaging technique. Because they provide additional useful information in the diagnosis and treatment of patients with various brain diseases through signal recognition, the proper imaging technique and b-value are important for the detection and interpretation of subacute stroke and other brain diseases.

  20. Single-Shot Echo-Planar Diffusion-Weighted MR Imaging at 3T and 1.5T for Differentiation of Benign Vertebral Fracture Edema and Tumor Infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Jin; Lee, So Yeon; Rho, Myung Ho; Chung, Eun Chul; Kim, Mi Sung; Kwon, Heon Ju; Youn, In Young [Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181 (Korea, Republic of)

    2016-11-01

    To compare the apparent diffusion coefficient (ADC) value using single-shot echo-planar imaging sequences at 3T and 1.5T for differentiation of benign fracture edema and tumor infiltration of the vertebral body. A total of 46 spinal examinations were included in the 1.5T MRI group, and a total of 40 spinal examinations were included in the 3T MRI group. The ADC values of the lesion were measured and calculated. The diagnostic performance of the conventional MR image containing sagittal T2-weighted fat saturated image and each diffusion weighted image (DWI) with an ADC value with different b values were evaluated. The mean ADC value of the benign lesions was higher than that of the malignant lesions on 1.5T and 3T (p < 0.05). The sensitivity of the diagnostic performance was higher with an additional DWI in both 1.5T and 3T, but the sensitivities were similar with the addition of b values of 400 and 1000. The specificities of the diagnostic performances did not show significant differences (p value > 0.05). The diagnostic accuracies were higher when either of the DWIs (b values of 400 and 1000) was added to routine MR image for 1.5T and 3T. Statistical differences between 1.5T and 3T or between b values of 400 and 1000 were not seen. The ADC values of the benign lesions were significantly higher than those of the malignant lesions on 1.5T and 3T. There was no statistically significant difference in the diagnostic performances when either of the DWIs (b values of 400 and 1000) was added to the routine MR image for 1.5T and 3T.

  1. Simultaneous multi-slice echo planar diffusion weighted imaging of the liver and the pancreas: Optimization of signal-to-noise ratio and acquisition time and application to intravoxel incoherent motion analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boss, Andreas, E-mail: andreas.boss@usz.ch [Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (Switzerland); Barth, Borna; Filli, Lukas; Kenkel, David; Wurnig, Moritz C. [Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (Switzerland); Piccirelli, Marco [Institute of Neuroradiology, University Hospital of Zurich (Switzerland); Reiner, Caecilia S. [Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (Switzerland)

    2016-11-15

    Purpose: To optimize and test a diffusion-weighted imaging (DWI) echo-planar imaging (EPI) sequence with simultaneous multi-slice (SMS) excitation in the liver and pancreas regarding acquisition time (TA), number of slices, signal-to-noise ratio (SNR), image quality (IQ), apparent diffusion coefficient (ADC) quantitation accuracy, and feasibility of intravoxel incoherent motion (IVIM) analysis. Materials and methods: Ten healthy volunteers underwent DWI of the upper abdomen at 3T. A SMS DWI sequence with CAIPIRINHA unaliasing technique (acceleration factors 2/3, denoted AF2/3) was compared to standard DWI-EPI (AF1). Four schemes were evaluated: (i) reducing TA, (ii) keeping TA identical with increasing number of averages, (iii) increasing number of slices with identical TA (iv) increasing number of b-values for IVIM. Acquisition schemes i-iii were evaluated qualitatively (reader score) and quantitatively (ADC values, SNR). Results: In scheme (i) no differences in SNR were observed (p = 0.321 − 0.038) with reduced TA (AF2 increase in SNR/time 75.6%, AF3 increase SNR/time 102.4%). No SNR improvement was obtained in scheme (ii). Increased SNR/time could be invested in acquisition of more and thinner slices or higher number of b-values. Image quality scores were stable for AF2 but decreased for AF3. Only for AF3, liver ADC values were systematically lower. Conclusion: SMS-DWI of the liver and pancreas provides substantially higher SNR/time, which either may be used for shorter scan time, higher slice resolution or IVIM measurements.

  2. Simultaneous multi-slice echo planar diffusion weighted imaging of the liver and the pancreas: Optimization of signal-to-noise ratio and acquisition time and application to intravoxel incoherent motion analysis

    International Nuclear Information System (INIS)

    Boss, Andreas; Barth, Borna; Filli, Lukas; Kenkel, David; Wurnig, Moritz C.; Piccirelli, Marco; Reiner, Caecilia S.

    2016-01-01

    Purpose: To optimize and test a diffusion-weighted imaging (DWI) echo-planar imaging (EPI) sequence with simultaneous multi-slice (SMS) excitation in the liver and pancreas regarding acquisition time (TA), number of slices, signal-to-noise ratio (SNR), image quality (IQ), apparent diffusion coefficient (ADC) quantitation accuracy, and feasibility of intravoxel incoherent motion (IVIM) analysis. Materials and methods: Ten healthy volunteers underwent DWI of the upper abdomen at 3T. A SMS DWI sequence with CAIPIRINHA unaliasing technique (acceleration factors 2/3, denoted AF2/3) was compared to standard DWI-EPI (AF1). Four schemes were evaluated: (i) reducing TA, (ii) keeping TA identical with increasing number of averages, (iii) increasing number of slices with identical TA (iv) increasing number of b-values for IVIM. Acquisition schemes i-iii were evaluated qualitatively (reader score) and quantitatively (ADC values, SNR). Results: In scheme (i) no differences in SNR were observed (p = 0.321 − 0.038) with reduced TA (AF2 increase in SNR/time 75.6%, AF3 increase SNR/time 102.4%). No SNR improvement was obtained in scheme (ii). Increased SNR/time could be invested in acquisition of more and thinner slices or higher number of b-values. Image quality scores were stable for AF2 but decreased for AF3. Only for AF3, liver ADC values were systematically lower. Conclusion: SMS-DWI of the liver and pancreas provides substantially higher SNR/time, which either may be used for shorter scan time, higher slice resolution or IVIM measurements.

  3. Reversible changes in echo planar perfusion- and diffusion-weighted MRI in status epilepticus

    International Nuclear Information System (INIS)

    Flacke, S.; Keller, E.; Urbach, H.; Wuellner, U.; Hamzei, F.

    2000-01-01

    Perfusion imaging (PI) demonstrated increased perfusion and diffusion-weighted imaging (DWI) showed high signal limited to the left temporoparietal cortex in a 68-year-old man with nonconvulsive status epilepticus. The EEG showed a slow delta-wave focus. The patient recovered and PI, DWI and EEG changes completely resolved. (orig.)

  4. Reversible changes in echo planar perfusion- and diffusion-weighted MRI in status epilepticus

    Energy Technology Data Exchange (ETDEWEB)

    Flacke, S; Keller, E; Urbach, H [Dept. of Radiology, Univ. of Bonn (Germany); Wuellner, U; Hamzei, F [Dept. of Neurology, Univ. of Bonn (Germany)

    2000-02-01

    Perfusion imaging (PI) demonstrated increased perfusion and diffusion-weighted imaging (DWI) showed high signal limited to the left temporoparietal cortex in a 68-year-old man with nonconvulsive status epilepticus. The EEG showed a slow delta-wave focus. The patient recovered and PI, DWI and EEG changes completely resolved. (orig.)

  5. Detection of hyperacute parenchymal hemorrhage of the brain using echo-planar T2{sup *}-weighted and diffusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Wiesmann, M. [Dept. of Radiology, Medizinische Universitaet zu Luebeck (Germany); Mayer, T.E.; Yousry, I.; Brueckmann, H. [Dept. of Neuroradiology, Klinikum Grosshadern, Ludwig-Maximilians-Universitaet, Muenchen (Germany); Hamann, G.F. [Dept. of Neurology, Klinikum Grosshadern, Ludwig-Maximilians-Universitaet, Muenchen (Germany)

    2001-05-01

    We investigated the usefulness of echo-planar imaging (EPI) as well as T2{sup *}-weighted and diffusion-weighted MRI (DWI) to identify hyperacute hemorrhage (within 24 h after ictus) in the brain. Seven patients were examined 3.5 to 24 h after onset of symptoms using a whole-body 1.5-T MR system. Two diffusion-weighted sequences were run to obtain isotropic and anisotropic diffusion images. Apparent diffusion coefficients (ADC) were calculated from the isotropic diffusion images. All DWI images as well as the T2*-weighted EPI images showed the hematomas as either discrete, deeply hypointense homogeneous lesions, or as lesions of mixed signal intensity containing hypointense areas. We conclude that even in the early phase after hemorrhage, sufficient amounts of paramagnetic deoxyhemoglobin are present in intracerebral hemorrhages to cause hypointensity on EPI T2{sup *}-weighted and DWI images; thus, use of ultrafast EPI allows identification of intracerebral hemorrhage. (orig.)

  6. Role of diffusion-weighted echo-planar MRI in distinguishing between brain abscess and tumour: a preliminary report

    International Nuclear Information System (INIS)

    Noguchi, K.; Watanabe, N.; Nagayoshi, T.; Kanazawa, T.; Toyoshima, S.; Shimizu, M.; Seto, H.

    1999-01-01

    Our purpose was to evaluate diffusion-weighted (DW) echo-planar MRI in differentiating between brain abscess and tumour. We examined two patients with surgically confirmed pyogenic brain abscess and 18 with metastatic brain tumours or high-grade glioma, using a 1.5 T system. The apparent diffusion coefficient (ADC) of each necrotic or solid contrast-enhancing lesion was measured with two different b values (20 and 1200 s/mm 2 ). All capsule-stage brain abscesses (4 lesions) and zones of cerebritis (2 lesions) were identified on high-b-value DWI as markedly high-signal areas of decreased ADC (range, 0.58-0.70 [(10-3 mm 2 /s; mean, 0.63)]). All cystic or necrotic portions of brain tumours (14 lesions) were identified on high-b-value DWI as low-signal areas of increased ADC (range, 2.20-3.20 [(10-3 mm 2 /s; mean, 2.70)]). Solid, contrast-enhancing portions of brain tumours (19 lesions) were identified on high-b-value DWI as high-signal areas of sightly decreased or increased ADC (range, 0.77-1.29 [(10-3 mm 2 /s; mean, 0.94)]). Our preliminary results indicate that DW echo-planar MRI be used for distinguishing between brain abscess and tumour. (orig.) (orig.)

  7. Novel use of non-echo-planar diffusion weighted MRI in monitoring disease activity and treatment response in active Grave's orbitopathy: An initial observational cohort study.

    Science.gov (United States)

    Lingam, Ravi Kumar; Mundada, Pravin; Lee, Vickie

    2018-01-10

    To examine the novel use of non-echo-planar diffusion weighted MRI (DWI) in depicting activity and treatment response in active Grave's orbitopathy (GO) by assessing, with inter-observer agreement, for a correlation between its apparent diffusion coefficients (ADCs) and conventional Short tau Inversion Recovery (STIR) MRI signal-intensity ratios (SIRs). A total of 23 actively inflamed muscles and 30 muscle response episodes were analysed in patients with active GO who underwent medical treatment. The MRI orbit scans included STIR sequences and non-echo-planar DWI were evaluated. Two observers independently assessed the images qualitatively for the presence of activity in the extraocular muscles (EOMs) and recorded the STIR signal-intensity (SI), SIR (SI ratio of EOM/temporalis muscle), and ADC values of any actively inflamed muscle on the pre-treatment scans and their corresponding values on the subsequent post-treatment scans. Inter-observer agreement was examined. There was a significant positive correlation (0.57, p < 0.001) between ADC and both SIR and STIR SI of the actively inflamed EOM. There was also a significant positive correlation (0.75, p < 0.001) between SIR and ADC values depicting change in muscle activity associated with treatment response. There was good inter-observer agreement. Our preliminary results indicate that quantitative evaluation with non-echo-planar DWI ADC values correlates well with conventional STIR SIR in detecting active GO and monitoring its treatment response, with good inter-observer agreement.

  8. Comparative Analysis of Signal Intensity and Apparent Diffusion Coefficient at Varying b-values in the Brain : Diffusion Weighted-Echo Planar Image (T{sub 2} and FLAIR) Sequence

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jong Kap [Dept. of Radiology, Cheomdan Medical Center, Gwangju (Korea, Republic of); Im, Jung Yeol [Dept. of Digital Management Information Graduate School of Nambu Univesity, Gwangju (Korea, Republic of)

    2009-09-15

    Diffusion-weighted imaging (DWI) has been demonstrated to be a practical method for the diagnosis of various brain diseases such as acute infarction, brain tumor, and white matter disease. In this study, we used two techniques to examine the average signal intensity (SI) and apparent diffusion coefficient (ADC) of the brains of patients who ranged in age from 10 to 60 years. Our results indicated that the average SI was the highest in amygdala (as derived from DWI), whereas that in the cerebrospinal fluid was the lowest. The average ADC was the highest in the cerebrospinal fluid, whereas the lowest measurement was derived from the pons. The average SI and ADC were higher in T{sub 2}-DW-EPI than in FLAIR-DW-EPI. The higher the b-value, the smaller the average difference in both imaging techniques; the lower the b-value, the greater the average difference. Also, comparative analysis of the brains of patients who had experienced cerebral infarction showed no distinct lesion in the general MR image over time. However, there was a high SI in apparent weighted images. Analysis of other brain diseases (e.g., bleeding, acute, subacute, chronic infarction) indicated SI variance in accordance with characteristics of the two techniques. The higher the SI, the lower the ADC. Taken together, the value of SI and ADC in accordance with frequently occurring areas and various brain disease varies based on the b-value and imaging technique. Because they provide additional useful information in the diagnosis and treatment of patients with various brain diseases through signal recognition, the proper imaging technique and b-value are important for the detection and interpretation of subacute stroke and other brain diseases.

  9. Ultra-high-speed inversion recovery echo planar MR imaging

    International Nuclear Information System (INIS)

    Stehling, M.K.; Ordidge, R.J.; Coxon, R.; Chapman, B.; Houseman, A.M.; Guifoyle, D.; Blamire, A.; Gibbs, P.; Mansfield, P.

    1988-01-01

    Fast two-dimensional FT MR imaging techniques such as fast low-angle shot do not allow inversion recovery (IR). Rapid repetition of low-angle pulses is incompatible with a 180 0 inversion pulse. Echo planar imaging (EPI) can be applied in conjunction with IR, because after preparation of the spin system, a complete image is acquired. Data acquisition in less than 100 msec and real-time display allows interactive optimization of inversion time (4.0-9,000 msec) with little time penalty. The authors have applied IR EPI to the study of the brain, liver, and kidneys in normal volunteers and patients. Technical details are presented, and the applications of this first ultra-high-speed IR technique will be shown

  10. Evaluation of cardiac function using multi-shot echo planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tadashi; Tanitame, Nobuko; Hata, Ryoichiro; Hirai, Nobuhiko; Ikeda, Midori; Ono, Chiaki; Fukuoka, Haruhito; Ito, Katsuhide [Hiroshima Univ. (Japan). School of Medicine

    1998-01-01

    In this study, we performed multi-shot echo planar imaging (8 shot, TR/TE/FL=55 ms/18 ms/60 degrees) and k-space segmented fast gradient echo sequence (8 views per segment, TR/TE/FL=9.9 ms/1.8 ms/30 degrees) to assess cardiac function in healthy volunteers. Transaxial sections of the entire heart were obtained with both sequences in ECG triggered, breath hold, and with a 256 x 128 matrix. Resulting temporal resolution was 55 ms for echo planar imaging, and 71 ms for k-space segmented fast gradient echo sequence, respectively. Ventricular volume and ejection fraction of both ventricles and left ventricular mass obtained with multi-shot echo planar imaging were assessed in comparison with k-space segmented fast gradient echo sequence. Measurements of left ventricular volume, ejection fraction and mass obtained with multi-shot echo planar imaging demonstrated close correlation with those obtained with k-space segmented fast gradient echo sequence. Right ventricular volumes obtained with echo planar imaging were significantly higher than those obtained with k-space segmented fast gradient echo sequence. This tendency is considered to be due to differing contrast between right ventricular myocardium and fat tissue observed with echo planar imaging relative to that observed with fast gradient echo sequence, because fat suppression is always performed in echo planar images. Multi-shot echo planar imaging can be a reliable tool for measurement of cardiac functional parameters, although wall motion analysis of the left ventricle requires higher temporal resolution and a short axial section. (K.H.)

  11. Initial experience in perfusion MR imaging of intracranial major artery occlusion with echo-planar technique

    International Nuclear Information System (INIS)

    Tsuchiya, Kazuhiro; Mizutani, Yoshiyuki; Inaoka, Sayuki; Hachiya, Junichi

    1997-01-01

    The purpose of this study was to evaluate the usefulness of perfusion MR imaging using a single-shot echo-planar technique in occlusion of intracranial main arteries. Our patient group consisted of 16 patients with internal carotid artery occlusion (n=9), Moyamoya disease (n=4), and middle cerebral artery occlusion (n=3). We performed the echo-planar perfusion studies with a 1.5-T unit using a free-induction-decay-type echo-planar sequence. With a bolus injection of Gd-DTPA, 30 consecutive scans were obtained at 10 sections every 2 seconds. The data were analyzed in three ways: a time-intensity curves in the territory of the involved artery (n=16); semiquantitative flow map of each section representing signal changes due to passage of Gd-DTPA (n=15); and serial images at a selected section (n=7). The time intensity curves were abnormal in 13 patients. The peak of signal drop was delayed in all of them. Flow maps showed focal flow abnormalities in 11 patients, but they were apparently normal in 4 patients probably due to collateral flow. In serial images, delay in appearance and/or disappearance of Gd-DTPA was noted in 6 patients. In patients with occlusion of intracranial main arteries, MR single-shot echo-planar technique is of clinical use because it can provide information about hemodynamic changes in a short examination time, in multiple sections, and with good temporal resolution. (author)

  12. Automatic cortical surface reconstruction of high-resolution T1 echo planar imaging data

    OpenAIRE

    Renvall, Ville; Witzel, Thomas; Wald, Lawrence L.; Polimeni, Jonathan R.

    2016-01-01

    Echo planar imaging (EPI) is the method of choice for the majority of functional magnetic resonance imaging (fMRI), yet EPI is prone to geometric distortions and thus misaligns with conventional anatomical reference data. The poor geometric correspondence between functional and anatomical data can lead to severe misplacements and corruption of detected activation patterns. However, recent advances in imaging technology have provided EPI data with increasing quality and resolution. Here we pre...

  13. Study of turbulent flow using Half-Fourier Echo-Planar imaging

    International Nuclear Information System (INIS)

    Rodriguez, A.O.

    2006-01-01

    The Echo-Planar Imaging technique combined with a partial Fourier acquisition method was used to obtain velocity images for liquid flows in a circular cross-section pipe at Reynolds number of up to 8000. This partial-Fourier imaging scheme is able to generate shorter echo times than the full-Fourier Echo-Planar Imaging methods, reducing the signal attenuation due to T2 * and flow. Velocity images along the z axis were acquired with a time-scale of 80 ms thus obtaining a real-time description of flow in both the laminar and turbulent regimes. Velocity values and velocity fluctuations were computed with the flow image data. A comparison plot of NMR velocity and bulk velocity and a plot of velocity fluctuations were calculated to investigate the feasibility of this imaging technique. Flow encoded Echo-Planar Imaging together with a reduced data acquisition method can provide us with a real-time technique to capture instantaneous images of the flow field for both laminar and turbulent regimes. (author)

  14. Single-shot echo-planar imaging of multiple sclerosis: effects of varying echo time

    International Nuclear Information System (INIS)

    Wolansky, L.J.; Chong, S.; Liu, W.C.; Kang, E.; Simpson, S.W.; Karimi, S.; Akbari, H.

    1999-01-01

    Our aim was to determine the relative merits of short and long echo times (TE) with single-shot echo-planar imaging for imaging cerebral lesions such as multiple sclerosis. We examined seven patients with clinically definite multiple sclerosis were imaged at 1.5 T. Patients were scanned with spin-echo, single-shot echo-planar imaging, using TEs of 45, 75, 105, and 135 ms. Region of interest (ROI) measurements were performed on 36 lesions at or above the level of the corona radiata. The mean image contrast (IC) was highest (231.1) for a TE of 45 ms, followed by 75 ms (218.9), 105 ms (217.9), and 135 ms (191.6). When mean contrast-to-noise ratios (C/N) were compared, the value was again highest (29.7) for TE 45 ms, followed by 75 ms (28.9), 105 ms (28.5), and 135 ms (26.3). In a lesion-by-lesion comparison, TE 45 ms had the highest IC and C/N in the largest number of cases (50 % and 47.2 %, respectively). IC and C/N for TE 45 ms were superior to those of 75 ms in 64 % and 58 %, respectively. These results support the use of relatively short TEs for single-shot echo-planar imaging in the setting of cerebral lesions such as multiple sclerosis. (orig.) (orig.)

  15. Comparison of Turbo Spin Echo and Echo Planar Imaging for intravoxel incoherent motion and diffusion tensor imaging of the kidney at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, Fabian; Wech, Tobias; Neubauer, Henning; Veldhoen, Simon; Bley, Thorsten Alexander; Koestler, Herbert [Wuerzburg Univ. (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie

    2017-10-01

    Echo Planar Imaging (EPI) is most commonly applied to acquire diffusion-weighted MR-images. EPI is able to capture an entire image in very short time, but is prone to distortions and artifacts. In diffusion-weighted EPI of the kidney severe distortions may occur due to intestinal gas. Turbo Spin Echo (TSE) is robust against distortions and artifacts, but needs more time to acquire an entire image compared to EPI. Therefore, TSE is more sensitive to motion during the readout. In this study we compare diffusion-weighted TSE and EPI of the human kidney with regard to intravoxel incoherent motion (IVIM) and diffusion tensor imaging (DTI). Images were acquired with b-values between 0 and 750 s/mm{sup 2} with TSE and EPI. Distortions were observed with the EPI readout in all volunteers, while the TSE images were virtually distortion-free. Fractional anisotropy of the diffusion tensor was significantly lower for TSE than for EPI. All other parameters of DTI and IVIM were comparable for TSE and EPI. Especially the main diffusion directions yielded by TSE and EPI were similar. The results demonstrate that TSE is a worthwhile distortion-free alternative to EPI for diffusion-weighted imaging of the kidney at 3 Tesla.

  16. Sjoegren's syndrome of the parotid gland: value of diffusion-weighted echo-planar MRI for diagnosis at an early stage based on MR sialography grading in comparison with healthy volunteers

    International Nuclear Information System (INIS)

    Regier, Marc; Ries, T.; Arndt, C.; Cramer, M.C.; Adam, G.; Habermann, C.R.; Graessner, J.; Reitmeier, F.; Jaehne, M.

    2009-01-01

    To investigate the value of diffusion-weighted echo-planar imaging (DW-EPI) for quantifying functional changes of the parotid gland in Sjoegren's disease and to evaluate whether ADC mapping allows for early diagnosis based on MR sialography grading. Using a DW-EPI sequence at 1.5T (b-factors: 0, 500 and 1000 sec/mm 2 ), the parotid glands of 52 healthy volunteers and 13 patients with histologically verified affection of Sjoegren's disease were examined. All scans were performed prior to and following gustatory stimulation with 5 ml of lemon juice. ADC maps were evaluated by placing an inordinate region-of-interest (ROI) enclosing the entire parotid gland. Sjoegren's disease was graded based on MR sialography findings using a 4-point grading-scale. Statistics included student t-test and kappa-analysis. In healthy volunteers mean ADCs of 1.14 x 10 -3 mm 2 /sec before and 1.2 x 10 -3 mm 2 /sec after stimulation were observed. Higher ADCs were determined for early-stage Sjoegren's disease, averaging 1.22 x 10 -3 mm 2 /sec before and 1.29 x 10 -3 mm 2 /sec after stimulation. Advanced disease revealed significantly lower ADCs (0.97 x 10 -3 mm 2 /sec (p = 0.002) before and 1.01 x 10 -3 mm 2 /sec (p < 0.001) after stimulation). (orig.)

  17. Comparison of Fourier transform and continuous wavelet transform to study echo-planar imaging flow maps

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez G, A.; Bowtell, R.; Mansfield, P. [Area de Procesamiento Digital de Senales e Imagenes Biomedicas. Universidad Autonoma Metropolitana Iztapalapa. Mexico D.F. 09340 Mexico (Mexico)

    1998-12-31

    Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)

  18. Comparison of Fourier transform and continuous wavelet transform to study echo-planar imaging flow maps

    International Nuclear Information System (INIS)

    Rodriguez G, A.; Bowtell, R.; Mansfield, P.

    1998-01-01

    Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)

  19. Acoustic-noise-optimized diffusion-weighted imaging.

    Science.gov (United States)

    Ott, Martin; Blaimer, Martin; Grodzki, David M; Breuer, Felix A; Roesch, Julie; Dörfler, Arnd; Heismann, Björn; Jakob, Peter M

    2015-12-01

    This work was aimed at reducing acoustic noise in diffusion-weighted MR imaging (DWI) that might reach acoustic noise levels of over 100 dB(A) in clinical practice. A diffusion-weighted readout-segmented echo-planar imaging (EPI) sequence was optimized for acoustic noise by utilizing small readout segment widths to obtain low gradient slew rates and amplitudes instead of faster k-space coverage. In addition, all other gradients were optimized for low slew rates. Volunteer and patient imaging experiments were conducted to demonstrate the feasibility of the method. Acoustic noise measurements were performed and analyzed for four different DWI measurement protocols at 1.5T and 3T. An acoustic noise reduction of up to 20 dB(A) was achieved, which corresponds to a fourfold reduction in acoustic perception. The image quality was preserved at the level of a standard single-shot (ss)-EPI sequence, with a 27-54% increase in scan time. The diffusion-weighted imaging technique proposed in this study allowed a substantial reduction in the level of acoustic noise compared to standard single-shot diffusion-weighted EPI. This is expected to afford considerably more patient comfort, but a larger study would be necessary to fully characterize the subjective changes in patient experience.

  20. The clinical potential of ultra-high-speed echo-planar imaging

    International Nuclear Information System (INIS)

    Worthington, B.S.; Firth, J.L.; Morris, G.K.; Johnson, I.R.; Coxon, R.; Blamire, A.M.; Gibbs, P.; Mansfield, P.

    1990-01-01

    Ultra-high-speed echo-planar imaging (EPI) allows acquisition of a complete two-dimensional image in 64 to 128 ms devoid of movement artefact and without sacrifice of contrast due to relaxation time effects. In conventional whole-body MRI, however, obtrusive movement artefact and extended imaging time, resulting from the need to apply multiple sequences to facilitate lesion detection and pathological characterization, remain limitations. Reduced total examination time increases patient tolerance and throughput; furthermore optimization of contrast to achieve maximal conspicuity of particular features in liver or brain pathology is achieved simply and interactively by real time adjustment of the imaging parameters. The method provides the opportunity to study in real time dynamic events such as flow phenomena in the vascular and cerebrospinal fluid compartments of the brain as well as the kinetics of administered contrast agents. EPI is the only means of capturing the irregular motion of aperiodic cardiac events and bowel peristalsis. (author)

  1. Sensitivity-encoded (SENSE) proton echo-planar spectroscopic imaging (PEPSI) in the human brain.

    Science.gov (United States)

    Lin, Fa-Hsuan; Tsai, Shang-Yueh; Otazo, Ricardo; Caprihan, Arvind; Wald, Lawrence L; Belliveau, John W; Posse, Stefan

    2007-02-01

    Magnetic resonance spectroscopic imaging (MRSI) provides spatially resolved metabolite information that is invaluable for both neuroscience studies and clinical applications. However, lengthy data acquisition times, which are a result of time-consuming phase encoding, represent a major challenge for MRSI. Fast MRSI pulse sequences that use echo-planar readout gradients, such as proton echo-planar spectroscopic imaging (PEPSI), are capable of fast spectral-spatial encoding and thus enable acceleration of image acquisition times. Combining PEPSI with recent advances in parallel MRI utilizing RF coil arrays can further accelerate MRSI data acquisition. Here we investigate the feasibility of ultrafast spectroscopic imaging at high field (3T and 4T) by combining PEPSI with sensitivity-encoded (SENSE) MRI using eight-channel head coil arrays. We show that the acquisition of single-average SENSE-PEPSI data at a short TE (15 ms) can be accelerated to 32 s or less, depending on the field strength, to obtain metabolic images of choline (Cho), creatine (Cre), N-acetyl-aspartate (NAA), and J-coupled metabolites (e.g., glutamate (Glu) and inositol (Ino)) with acceptable spectral quality and localization. The experimentally measured reductions in signal-to-noise ratio (SNR) and Cramer-Rao lower bounds (CRLBs) of metabolite resonances were well explained by both the g-factor and reduced measurement times. Thus, this technology is a promising means of reducing the scan times of 3D acquisitions and time-resolved 2D measurements. Copyright (c) 2007 Wiley-Liss, Inc.

  2. Sjoegren's syndrome of the parotid gland: value of diffusion-weighted echo-planar MRI for diagnosis at an early stage based on MR sialography grading in comparison with healthy volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Regier, Marc; Ries, T.; Arndt, C.; Cramer, M.C.; Adam, G.; Habermann, C.R. [Universitaetsklinikum Hamburg-Eppendorf (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie; Graessner, J. [Siemens AG, Hamburg (Germany). Medical Solutions; Reitmeier, F.; Jaehne, M. [Universitaetsklinikum Hamburg-Eppendorf (Germany). Klinik und Poliklinik fuer Hals-, Nasen- und Ohrenheilkunde

    2009-03-15

    To investigate the value of diffusion-weighted echo-planar imaging (DW-EPI) for quantifying functional changes of the parotid gland in Sjoegren's disease and to evaluate whether ADC mapping allows for early diagnosis based on MR sialography grading. Using a DW-EPI sequence at 1.5T (b-factors: 0, 500 and 1000 sec/mm{sup 2}), the parotid glands of 52 healthy volunteers and 13 patients with histologically verified affection of Sjoegren's disease were examined. All scans were performed prior to and following gustatory stimulation with 5 ml of lemon juice. ADC maps were evaluated by placing an inordinate region-of-interest (ROI) enclosing the entire parotid gland. Sjoegren's disease was graded based on MR sialography findings using a 4-point grading-scale. Statistics included student t-test and kappa-analysis. In healthy volunteers mean ADCs of 1.14 x 10{sup -3} mm{sup 2} /sec before and 1.2 x 10{sup -3} mm{sup 2} /sec after stimulation were observed. Higher ADCs were determined for early-stage Sjoegren's disease, averaging 1.22 x 10{sup -3} mm{sup 2} /sec before and 1.29 x 10{sup -3} mm{sup 2} /sec after stimulation. Advanced disease revealed significantly lower ADCs (0.97 x 10{sup -3} mm{sup 2} /sec (p = 0.002) before and 1.01 x 10{sup -3} mm{sup 2} /sec (p < 0.001) after stimulation). (orig.)

  3. Selective visualization of pelvic splanchnic nerve and pelvic plexus using readout-segmented echo-planar diffusion-weighted magnetic resonance neurography: A preliminary study in healthy male volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Rikiya, E-mail: rickdom@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Isoda, Hiroyoshi, E-mail: sayuki@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Arizono, Shigeki, E-mail: arizono@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Furuta, Akihiro, E-mail: akihirof@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Ohno, Tsuyoshi, E-mail: goohno@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging, Osaka Red Cross Hospital, 5-30 Fudegasaki-cho, Tennoji-ku, Osaka, 543-8555 (Japan); Ono, Ayako, E-mail: onoayako@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Murata, Katsutoshi, E-mail: katsutoshi.murata@siemens.com [Siemens Healthcare Japan KK, Gate City Osaki West Tower, 11-1 Osaki 1-Chome, Shinagawa-ku, Tokyo 141-8644 (Japan); Togashi, Kaori, E-mail: ktogashi@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan)

    2017-01-15

    Highlights: • RS-EPI DW-MRN has a potential to selectively depict the pelvic parasympathetic nerve. • The nervous visibility showed a moderate correlation with the image artifact level. • Our method could help preserving function after pelvic nerve-preserving surgery. - Abstract: Purpose: To evaluate the potential of readout-segmented echo-planar diffusion-weighted magnetic resonance neurography (RS-EPI DW-MRN) for the selective visualization of pelvic splanchnic nerve and pelvic plexus in healthy male volunteers. Materials and methods: Institutional review board approval and written informed consent were obtained. RS-EPI DW-MRN images were acquired from thirteen healthy male volunteers aged 25–48 years between September 2013 and December 2013. For RS-EPI DW-MRN, the following parameters were used: spatial resolution, 1.1 × 1.1 × 2.5 mm; b-value, 250 s/mm{sup 2}; number of readout-segments, seven; and acquisition time, 7 min 45 s. For qualitative assessment, two abdominal radiologists independently evaluated the visibility of the pelvic splanchnic nerves and pelvic plexuses bilaterally in each subject on oblique coronal thin-slab 10-mm-thick maximum intensity projection images and scored it with a 4-point grading scale (excellent, good, fair, poor). Both readers scored twice at 6-month intervals. Inter-observer and intra-observer variability were evaluated using Cohen’s quadratically weighted κ statistics. Image artifact level was scored on a 4-point grading scale by other two abdominal radiologists in order to evaluate the correlation between the nerve visibility and the severity of imaging artifacts using the Spearman’s correlation coefficient. Results: Qualitative grading showed the following success rate (number of nerves qualitatively scored as excellent or good divided by total number of nerves): reader 1 (first set), 73% (19/26); reader 2 (first set), 77% (20/26); reader 1 (second set), 81% (21/26); and reader 2 (second set), 77% (20

  4. Short-scan-time multi-slice diffusion MRI of the mouse cervical spinal cord using echo planar imaging.

    Science.gov (United States)

    Callot, Virginie; Duhamel, Guillaume; Cozzone, Patrick J; Kober, Frank

    2008-10-01

    Mouse spinal cord (SC) diffusion-weighted imaging (DWI) provides important information on tissue morphology and structural changes that may occur during pathologies such as multiple sclerosis or SC injury. The acquisition scheme of the commonly used DWI techniques is based on conventional spin-echo encoding, which is time-consuming. The purpose of this work was to investigate whether the use of echo planar imaging (EPI) would provide good-quality diffusion MR images of mouse SC, as well as accurate measurements of diffusion-derived metrics, and thus enable diffusion tensor imaging (DTI) and highly resolved DWI within reasonable scan times. A four-shot diffusion-weighted spin-echo EPI (SE-EPI) sequence was evaluated at 11.75 T on a group of healthy mice (n = 10). SE-EPI-derived apparent diffusion coefficients of gray and white matter were compared with those obtained using a conventional spin-echo sequence (c-SE) to validate the accuracy of the method. To take advantage of the reduction in acquisition time offered by the EPI sequence, multi-slice DTI acquisitions were performed covering the cervical segments (six slices, six diffusion-encoding directions, three b values) within 30 min (vs 2 h for c-SE). From these measurements, fractional anisotropy and mean diffusivities were calculated, and fiber tracking along the C1 to C6 cervical segments was performed. In addition, high-resolution images (74 x 94 microm(2)) were acquired within 5 min per direction. Clear delineation of gray and white matter and identical apparent diffusion coefficient values were obtained, with a threefold reduction in acquisition time compared with c-SE. While overcoming the difficulties associated with high spatially and temporally resolved DTI measurements, the present SE-EPI approach permitted identification of reliable quantitative parameters with a reproducibility compatible with the detection of pathologies. The SE-EPI method may be particularly valuable when multiple sets of images

  5. Anatomical constraints on visualization of the human hippocampus using echo-planar imaging

    International Nuclear Information System (INIS)

    Asano, Shuichiro; Kirino, Takaaki; Mihara, Ban; Sugishita, Morihiro

    2004-01-01

    Reliable visualization of the hippocampus on echo-planar imaging (EPI) is essential in analyzing memory function using functional magnetic resonance imaging. However, the hippocampal area is notoriously prone to susceptibility artifacts caused by structures at the skull base, and avoiding such artifacts by appropriately selecting the subjects for a study is of practical importance. To elucidate factors affecting the extent of the artifacts we obtained EPI in a total of 62 hippocampi from 31 healthy volunteers and evaluated various anatomical measurements possibly associated with the quality of the images. The hippocampal head was sufficiently well demonstrated on 40 of 62 images (65%), and there were two parameters that significantly differed between the good (n=40) and poor (n=22) imaging studies: The vertical diameter (DV) of the opening of the internal acoustic meatus (IAM) and the pneumatization rate of the sphenoid sinus (RP-SS). From logistic regression analysis with the stepwise method, in addition to these two factors, the distance between the hippocampal body and IAM (Dhippo-IAM) and the distance between the hippocampal head and the middle cranial fossa at the skull base (Dhippo-base) were extracted. DV-IAM, RP-SS, and Dhippo-base were negatively correlated with the good imaging of the hippocampal head. On the other hand, Dhippo-IAM was positively correlated. These easily measurable parameters will be helpful in selecting subjects and in increasing the efficiency of hippocampal visualization in studies on human memory function. (orig.)

  6. Study of internal structure of the human fetus in utero by echo-planar magnetic resonance imaging.

    Science.gov (United States)

    Johnson, I R; Stehling, M K; Blamire, A M; Coxon, R J; Howseman, A M; Chapman, B; Ordidge, R J; Mansfield, P; Symonds, E M; Worthington, B S

    1990-08-01

    The ultrafast echo-planar magnetic resonance imaging technology, developed and built in Nottingham, has been used to produce the first snapshot images of the human fetus in utero. The imager, operating at a proton resonance frequency of 22 MHz, produces transaxial views in 64 or 128 milliseconds. These images comprise either 64 x 128 or 128 x 128 pixels with an in-plane resolution of 3 x 3 mm2. The slice thickness is 10 mm. Fetal scans of up to 32 contiguous slices are produced in a few minutes. These have been used to study the internal structure of the uterus and the fetus in a range of cases with gestations ranging from 26 weeks to term. Echo-planar imaging seems particularly suitable as an imaging modality since its high speed obviates image blurring arising from fetal motion.

  7. Multishot echo-planar MREIT for fast imaging of conductivity, current density, and electric field distributions.

    Science.gov (United States)

    Chauhan, Munish; Vidya Shankar, Rohini; Ashok Kumar, Neeta; Kodibagkar, Vikram D; Sadleir, Rosalind

    2018-01-01

    Magnetic resonance electrical impedance tomography (MREIT) sequences typically use conventional spin or gradient echo-based acquisition methods for reconstruction of conductivity and current density maps. Use of MREIT in functional and electroporation studies requires higher temporal resolution and faster sequences. Here, single and multishot echo planar imaging (EPI) based MREIT sequences were evaluated to see whether high-quality MREIT phase data could be obtained for rapid reconstruction of current density, conductivity, and electric fields. A gel phantom with an insulating inclusion was used as a test object. Ghost artifact, geometric distortion, and MREIT correction algorithms were applied to the data. The EPI-MREIT-derived phase-projected current density and conductivity images were compared with simulations and spin-echo images as a function of EPI shot number. Good agreement among measures in simulated, spin echo, and EPI data was achieved. Current density errors were stable and below 9% as the shot number decreased from 64 to 2, but increased for single-shot images. Conductivity reconstruction relative contrast ratios were stable as the shot number decreased. The derived electric fields also agreed with the simulated data. The EPI methods can be combined successfully with MREIT reconstruction algorithms to achieve fast imaging of current density, conductivity, and electric field. Magn Reson Med 79:71-82, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Echo-planar MR imaging of dissolved hyperpolarized 129Xe. Potential for M angiography

    International Nuclear Information System (INIS)

    Maansson, S.

    2002-01-01

    Purpose: The feasibility of hyperpolarized 129 Xe for fast MR angiography (MRA) was evaluated using the echo-planar imaging (EPI) technique. Material and Methods: Hyperpolarized Xe gas was dissolved in ethanol; a carrier agent with high solubility for Xe (Ostwald solubility coefficient 2.5) and long relaxation times. The dissolved Xe was injected as a bolus into a flow phantom where the mean flow velocity was 15 cm/s. Ultrafast EPI images with 44 ms scan time were acquired of the flowing bolus and the signal-to-noise ratios (SNR) were measured. Results: The relaxation times of hyperpolarized Xe in ethanol were measured to T1=160±11 s and T2 ≅ 20 s. The resulting images of the flowing liquid were of reasonable quality and had an SNR of about 70. Conclusion: Based on the SNR of the obtained Xe EPI images; it was estimated that rapid in vivo MRA with 129 Xe may be feasible; provided that an efficient; biologically acceptable carrier for Xe can be found and polarization levels of more than 25% can be achieved in isotopically enriched 129 Xe

  9. Echo planar perfusion imaging with high spatial and temporal resolution: methodology and clinical aspects

    International Nuclear Information System (INIS)

    Bitzer, M.; Klose, U.; Naegele, T.; Friese, S.; Kuntz, R.; Voigt, K.; Fetter, M.; Opitz, H.

    1999-01-01

    The purpose of the present study was to analyse specific advantages of calculated parameter images and their limitations using an optimized echo-planar imaging (EPI) technique with high spatial and temporal resolution. Dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) was performed in 12 patients with cerebrovascular disease and in 13 patients with brain tumours. For MR imaging of cerebral perfusion an EPI sequence was developed which provides a temporal resolution of 0.68 s for three slices with a 128 x 128 image matrix. To evaluate DSC-MRI, the following parameter images were calculated pixelwise: (1) Maximum signal reduction (MSR); (2) maximum signal difference (ΔSR); (3) time-to-peak (T p ); and (4) integral of signal-intensity-time curve until T p (S Int ). The MSR maps were superior in the detection of acute infarctions and ΔSR maps in the delineation of vasogenic brain oedema. The time-to-peak (T p ) maps seemed to be highly sensitive in the detection of poststenotic malperfused brain areas (sensitivity 90 %). Hyperperfused areas of brain tumours were detectable down to a diameter of 1 cm with high sensitivity (> 90 %). Distinct clinical and neuroradiological conditions revealed different suitabilities for the parameter images. The time-to-peak (T p ) maps may be an important advantage in the detection of poststenotic ''areas at risk'', due to an improved temporal resolution using an EPI technique. With regard to spatial resolution, a matrix size of 128 x 128 is sufficient for all clinical conditions. According to our results, a further increase in matrix size would not improve the spatial resolution in DSC-MRI, since the degree of the vascularization of lesions and the susceptibility effect itself seem to be the limiting factors. (orig.)

  10. Diffusion-weighted MR imaging of the abdomen with pulse triggering

    International Nuclear Information System (INIS)

    Muertz, P.; Pauleit, D.; Traeber, F.; Kreft, B.P.; Schild, H.H.

    2000-01-01

    Purpose: The aim of this work was to reduce the influence of motion on diffusion-weighted MR images of the abdomen by pulse triggering of single-shot sequences. Methods: Five healthy volunteers were examined both without and with finger pulse-triggering of a diffusion-weighted single-shot echo planar MR imaging sequence at 1.5 T. Series of diffusion-weighted images were acquired at different phases of the cardiac cycle by varying the time delay between finger pulse and sequence acquisition. The measurements were repeated three times. The diffusion weighted images were analysed by measuring the signal intensities and by determining the ADC values within the spleen, kidney and liver. Results: The magnitude of motion artifacts on diffusion weighted images shows a strong dependence on the trigger delay. The optimum trigger delay is found to be between 500 and 600 ms. For these values the abdominal organs appear homogeneous on all diffusion weighted images and the strongest signal intensities are detected. At optimum triggering the accuracy of the apparent diffusion coefficients is up to 10 times better than without triggering. Moreover, the standard deviation of the repeated measurements is smaller than 12% for all volunteers and for all organs. Without triggering the standard deviation is larger by a factor of 4 on average. Conclusion: Pulse triggering of single-shot sequences leads to significant reduction of motion related artifacts on diffusion weighted images of the abdomen and provides more accurate and reproducible ADC values. (orig.) [de

  11. Automatic cortical surface reconstruction of high-resolution T1 echo planar imaging data.

    Science.gov (United States)

    Renvall, Ville; Witzel, Thomas; Wald, Lawrence L; Polimeni, Jonathan R

    2016-07-01

    Echo planar imaging (EPI) is the method of choice for the majority of functional magnetic resonance imaging (fMRI), yet EPI is prone to geometric distortions and thus misaligns with conventional anatomical reference data. The poor geometric correspondence between functional and anatomical data can lead to severe misplacements and corruption of detected activation patterns. However, recent advances in imaging technology have provided EPI data with increasing quality and resolution. Here we present a framework for deriving cortical surface reconstructions directly from high-resolution EPI-based reference images that provide anatomical models exactly geometric distortion-matched to the functional data. Anatomical EPI data with 1mm isotropic voxel size were acquired using a fast multiple inversion recovery time EPI sequence (MI-EPI) at 7T, from which quantitative T1 maps were calculated. Using these T1 maps, volumetric data mimicking the tissue contrast of standard anatomical data were synthesized using the Bloch equations, and these T1-weighted data were automatically processed using FreeSurfer. The spatial alignment between T2(⁎)-weighted EPI data and the synthetic T1-weighted anatomical MI-EPI-based images was improved compared to the conventional anatomical reference. In particular, the alignment near the regions vulnerable to distortion due to magnetic susceptibility differences was improved, and sampling of the adjacent tissue classes outside of the cortex was reduced when using cortical surface reconstructions derived directly from the MI-EPI reference. The MI-EPI method therefore produces high-quality anatomical data that can be automatically segmented with standard software, providing cortical surface reconstructions that are geometrically matched to the BOLD fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Ultrafast bold fMRI using single-shot spin-echo echo planar imaging

    Directory of Open Access Journals (Sweden)

    Boujraf Said

    2009-01-01

    Full Text Available The choice of imaging parameters for functional MRI can have an impact on the accuracy of functional localization by affecting the image quality and the degree of blood oxygenation-dependent (BOLD contrast achieved. By improving sampling efficiency, parallel acquisition techniques such as sensitivity encoding (SENSE have been used to shorten readout trains in single-shot (SS echo planar imaging (EPI. This has been applied to susceptibility artifact reduction and improving spatial resolution. SENSE together with single-shot spin-echo (SS-SE imaging may also reduce off-resonance artifacts. The goal of this work was to investigate the BOLD response of a SENSE-adapted SE-EPI on a three Tesla scanner. Whole-brain fMRI studies of seven healthy right hand-dominant volunteers were carried out in a three Tesla scanner. fMRI was performed using an SS-SE EPI sequence with SENSE. The data was processed using statistical parametric mapping. Both, group and individual subject data analyses were performed. Individual average percentage and maximal percentage signal changes attributed to the BOLD effect in M1 were calculated for all the subjects as a function of echo time. Corresponding activation maps and the sizes of the activated clusters were also calculated. Our results show that susceptibility artifacts were reduced with the use of SENSE; and the acquired BOLD images were free of the typical quadrature artifacts of SS-EPI. Such measures are crucial at high field strengths. SS SE-EPI with SENSE offers further benefits in this regard and is more specific for oxygenation changes in the microvasculature bed. Functional brain activity can be investigated with the help of single-shot spin echo EPI using SENSE at high magnetic fields.

  13. Clinical evaluation of multishot echo planar imaging after administration of superparamagnetic iron oxide for hepatic tumors

    International Nuclear Information System (INIS)

    Sugai, Yukio; Watanabe, Yorihisa; Ito, Kazushi; Hosoya, Takaaki; Yamaguchi, Koichi

    1998-01-01

    Ten cases of hepatocellular carcinoma and three cases of metastatic liver tumor were evaluated using breath-hold multishot echo planar imaging (EPI) before and after administration of super-paramagnetic iron oxide (SPIO), and the results were compared to those with breath-hold fast multi-planar SPGR (T 1 WI) and fat-suppressed respiratory-triggered FSE (T 2 WI). Qualitative imaging evaluation of lesion detectability showed that T 2 WI was much more useful than T 1 WI as previously reported, and more useful than EPI. Quantitative evaluation showed that the signal to noise (S/N) ratios of the liver parenchyma decreased after administration of SPIO and the changes were significant on all pulse sequences. The change ratio of the S/N ratio of the liver parenchyma after administration of SPIO on EPI was significantly higher than on T 1 WI and T 2 WI. The tumor-liver contrast to noise (C/N) ratios increased after administration of SPIO and the changes were significant on T 1 WI and T 2 WI, but not on EPI. These results suggested that the tumor S/N ratio decreased after administration of SPIO on EPI. The tumor diameters on EPI were significantly reduced after administration of SPIO. Magnetization and flow artifacts on EPI were detected in all cases and caused distortion: the signal decreased in the liver parenchyma. We concluded that EPI after administration of SPIO is not currently useful compared to other pulse sequences and cannot yet replace T 2 WI. (author)

  14. Diffusion-weighted MR imaging of thyroid nodules

    International Nuclear Information System (INIS)

    Bozgeyik, Zulkif; Coskun, Sonay; Ogur, Erkin; Dagli, A.F.; Ozkan, Yusuf; Sahpaz, Fatih

    2009-01-01

    The purpose of our study was to determine the diagnostic role of diffusion-weighted imaging (DWI) in the differentiating of malignant and benign thyroid nodules by using fine needle aspiration biopsy cytology criteria as a reference standard. The apparent diffusion coefficient (ADC) values of the normal-looking thyroid parenchyma were also evaluated both in normal patients and in patients with nodules. Between March 2007 and February 2008, 76 consecutive patients with ultrasound-diagnosed thyroid nodules and 20 healthy subjects underwent diffusion-weighted MR imaging by using single-shot spin echo, echo planar imaging. A total of 93 nodules were included in the study using the following b factors 100, 200, and 300 mm 2 /s. ADC values of thyroid nodules and normal area in all subjects were calculated and compared using suitable statistical analysis. Mean ADC values for malignant and benign nodules were 0.96±0.65 x 10 -3 and 3.06±0.71 x 10 -3 mm 2 /s. for b-300 factor, 0.56±0.43 x 10 -3 and 1.80±0.60 x 10 -3 mm 2 /s for b-200, and 0.30±0.20 x 10 -3 and 1.15±0.43 x 10 -3 mm 2 /s, for b-300, respectively. Mean ADC values of malignant nodules were lower than benign nodules. There were significant differences in ADC values between benign and malignant nodules. ADC values among normal-appearing thyroid parenchyma of patients and normal-appearing thyroid parenchyma of healthy subjects were insignificant at all b factors. Benign nodules have higher ADC values than malignant ones. DWI may be helpful in differentiating malign and benign thyroid nodules. (orig.)

  15. The clinical utility of reduced-distortion readout-segmented echo-planar imaging in the head and neck region: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Koyasu, Sho; Iima, Mami; Umeoka, Shigeaki; Morisawa, Nobuko; Togashi, Kaori [Kyoto University, Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Sakyo-Ku, Kyoto (Japan); Porter, David A. [Siemens AG, MED MR PLM AW Neurology, Allee am Roethelheimpark 2, Erlangen (Germany); Ito, Juichi [Kyoto University, Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Sakyo-Ku, Kyoto (Japan); Le Bihan, Denis [Kyoto University, Human Brain Research Center, Graduate School of Medicine, Sakyo-Ku, Kyoto (Japan); Neurospin, CEA-Saclay Center, Gif-sur-Yvette Cedex (France)

    2014-12-15

    To evaluate whether readout-segmented echo-planar imaging (RS-EPI) diffusion weighted image (DWI) can diminish image distortion in the head and neck area, compared with single-shot (SS)-EPI DWI. We conducted phantom and patient studies using 3 T magnetic resonance imaging (MRI) with a 16-channel coil. For the phantom study, we evaluated distortion and signal homogeneity in gel phantoms. For the patient study, 29 consecutive patients with clinically suspicious parotid lesions were prospectively enrolled. RS-EPI and SS-EPI DWI were evaluated by two independent readers for identification of organ/lesion and distortion, using semiquantitative scales and quantitative scores. Apparent diffusion coefficient (ADC) values and contrast-noise ratios of parotid tumours (if present; n = 15) were also compared. The phantom experiments showed that RS-EPI provided less distorted and more homogeneous ADC maps than SS-EPI. In the patient study, RS-EPI was found to provide significantly less distortion in almost all organs/lesions (p < 0.05), according to both semiquantitative scales and quantitative scores. There was no significant difference in ADC values and contrast-noise ratios between the two DWI techniques. The distortion in DWI was significantly reduced with RS-EPI in both phantom and patient studies. The RS-EPI technique provided more homogenous images than SS-EPI, and can potentially offer higher image quality in the head and neck area. (orig.)

  16. Diffusion-weighted magnetic resonance imaging in autoimmune pancreatitis

    International Nuclear Information System (INIS)

    Taniguchi, Takao; Kobayashi, Hisato; Nishikawa, Koji; Iida, Etsushi; Michigami, Yoshihiro; Morimoto, Emiko; Yamashita, Rikiya; Miyagi, Ken; Okamoto, Motozumi

    2009-01-01

    The aim of this study was to investigate the usefulness of diffusion-weighted magnetic resonance imaging (DWI MRI) for the diagnosis and evaluation of autoimmune pancreatitis (AIP). A total of 4 consecutive patients with AIP, 5 patients with chronic alcoholic pancreatitis (CP), and 13 patients without pancreatic disease (controls) were studied. DWI was performed in the axial plane with spin-echo echo-planar imaging single-shot sequence. Apparent diffusion coefficients (ADCs) were measured in circular regions of interest in the pancreas. In AIP patients, abdominal MRI was performed before, and 2-4 weeks after steroid treatment. Follow-up study was performed chronologically for up to 11 months in two patients. The correlation between ADCs of the pancreas and the immunoglobulin G4 (IgG4) index (serum IgG4 value/serum IgG4 value before steroid treatment) was evaluated. In the AIP patients, DWI of the pancreas showed high signal intensity, and the ADCs of the pancreas (mean±standard deviation (SD): 0.97±0.18 x 10 -3 mm 2 /s) were significantly lower than those in patients with CP (1.45±0.10 x 10 -3 mm 2 /s) or the controls (1.45±0.16 x 10 -3 mm 2 /s) (Mann-Whitney U-test, P s =-0.80, P<0.05). Autoimmune pancreatitis showed high signal intensity on DWI, which improved after steroid treatment. ADCs reflected disease activity. Thus, diffusion-weighted MRI might be useful for diagnosing AIP, determining the affected area, and evaluating the effect of treatment. (author)

  17. Reconstruction strategy for echo planar spectroscopy and its application to partially undersampled imaging

    DEFF Research Database (Denmark)

    Hanson, L G; Schaumburg, K; Paulson, O B

    2000-01-01

    The most commonly encountered form of echo planar spectroscopy involves oscillating gradients in one spatial dimension during readout. Data are consequently not sampled on a Cartesian grid. A fast gridding algorithm applicable to this particular situation is presented. The method is optimal, i.......e., it performs as well as the full discrete Fourier transform for band limited signals while allowing for use of the fast Fourier transform. The method is demonstrated for reconstruction of data that are partially undersampled in the time domain. The advantages of undersampling are lower hardware requirements...

  18. Fast susceptibility-weighted imaging with three-dimensional short-axis propeller (SAP)-echo-planar imaging.

    Science.gov (United States)

    Holdsworth, Samantha J; Yeom, Kristen W; Moseley, Michael E; Skare, S

    2015-05-01

    Susceptibility-weighted imaging (SWI) in neuroimaging can be challenging due to long scan times of three-dimensional (3D) gradient recalled echo (GRE), while faster techniques such as 3D interleaved echo-planar imaging (iEPI) are prone to motion artifacts. Here we outline and implement a 3D short-axis propeller echo-planar imaging (SAP-EPI) trajectory as a faster, motion-correctable approach for SWI. Experiments were conducted on a 3T MRI system. The 3D SAP-EPI, 3D iEPI, and 3D GRE SWI scans were acquired on two volunteers. Controlled motion experiments were conducted to test the motion-correction capability of 3D SAP-EPI. The 3D SAP-EPI SWI data were acquired on two pediatric patients as a potential alternative to 2D GRE used clinically. The 3D GRE images had a better target resolution (0.47 × 0.94 × 2 mm, scan time = 5 min), iEPI and SAP-EPI images (resolution = 0.94 × 0.94 × 2 mm) were acquired in a faster scan time (1:52 min) with twice the brain coverage. SAP-EPI showed motion-correction capability and some immunity to undersampling from rejected data. While 3D SAP-EPI suffers from some geometric distortion, its short scan time and motion-correction capability suggest that SAP-EPI may be a useful alternative to GRE and iEPI for use in SWI, particularly in uncooperative patients. © 2014 Wiley Periodicals, Inc.

  19. Echo-planar magnetic resonance imaging (EPI) with high-resolution matrix in intra-axial brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, R.; Scheidler, J.; Porn, U.; Reiser, M. [Institute of Diagnostic Radiology, Klinikum Grosshadern, University of Munich (Germany); Seelos, K.; Yousry, T. [Department of Neuroradiology, Institute of Diagnostic Radiology, Klinikum Grosshadern, University of Munich (Germany); Exner, H. [Institute for Medical Epidemiology, Klinikum Grosshadern, University of Munich, Munich (Germany); Rosen, B.R. [Department of Radiology, Massachusetts General Hospital, NMR Center, Charlestown, MA (United States)

    1999-09-01

    The aim of this study was to assess the potential of high-speed interleaved echo-planar imaging (EPI) to achieve diagnostic image quality comparable to T2-weighted imaging in patients with brain tumors. Seventeen patients with intra-axial, supratentorial tumors (10 untreated gliomas, 7 radiated gliomas) were investigated on a 1.5-T scanner. The conventional scan (SE, TR/TE = 2200/80 ms, 18 slices) was acquired in 8 min, 4 s, and EPI (TR/TE = 3000/80 ms, 18 slices) was completed in 25 s. The films were compared in a blinded trail by three radiologists. On the general impression and anatomic display, both sequences were rated to be of similar quality. Artifacts were slightly more pronounced at the skull base and around surgical clips using EPI. Tumor delineation was nearly equivalent using EPI, compared with the T2-weighted sequence. Echo-planar imaging reached diagnostic quality in all patients. Interleaved high-resolution EPI yielded sufficient quality to depict intra-axial, supratentorial brain tumors. Since EPI can be obtained in a small fraction of the time needed for conventional spin echo, in addition to other indications it could be considered to study patients unable to cooperate. (orig.) With 3 figs., 3 tabs., 27 refs.

  20. Echo-planar magnetic resonance imaging (EPI) with high-resolution matrix in intra-axial brain tumors

    International Nuclear Information System (INIS)

    Bruening, R.; Scheidler, J.; Porn, U.; Reiser, M.; Seelos, K.; Yousry, T.; Exner, H.; Rosen, B.R.

    1999-01-01

    The aim of this study was to assess the potential of high-speed interleaved echo-planar imaging (EPI) to achieve diagnostic image quality comparable to T2-weighted imaging in patients with brain tumors. Seventeen patients with intra-axial, supratentorial tumors (10 untreated gliomas, 7 radiated gliomas) were investigated on a 1.5-T scanner. The conventional scan (SE, TR/TE = 2200/80 ms, 18 slices) was acquired in 8 min, 4 s, and EPI (TR/TE = 3000/80 ms, 18 slices) was completed in 25 s. The films were compared in a blinded trail by three radiologists. On the general impression and anatomic display, both sequences were rated to be of similar quality. Artifacts were slightly more pronounced at the skull base and around surgical clips using EPI. Tumor delineation was nearly equivalent using EPI, compared with the T2-weighted sequence. Echo-planar imaging reached diagnostic quality in all patients. Interleaved high-resolution EPI yielded sufficient quality to depict intra-axial, supratentorial brain tumors. Since EPI can be obtained in a small fraction of the time needed for conventional spin echo, in addition to other indications it could be considered to study patients unable to cooperate. (orig.)

  1. Diffusion-weighted imaging features in spinal cord infarction

    International Nuclear Information System (INIS)

    Zhang Jingsong; Huan Yi; Sun Lijun; Chang Yingjuan; Zhao Haitao; Yang Chunmin; Zhang Guangyun

    2005-01-01

    Objective: To analyze the diffusion-weighted MR imaging findings in ischemic spinal cord lesions and discuss the value of diffusion-weighted MR imaging in differentiating diagnosis with inflammatory diseases and tumors. Methods: Six patients (2 male, 4 female) with typical sudden onset of neurological deficits caused by spinal cord ischemia were evaluated. There were no definite etiologies in all patients. DW imaging was performed within 1 to 30 days after the initial neurological symptoms using a Philips Gyroscan 1.5 TMR system. Four patients had other scans including contrast-enhanced MR imaging (CE-MRI) and/or FLAIR scans. Two of them followed up with MR images in three months. All six patients were imaged using a multi-shot, navigator-corrected, echo-planar pulse sequence, and ADC values were calculated in sagittal-oriented plane. Results: MR abnormalities were demonstrated on sagittal T 2 -weighted images with 'patch-like' or 'strip-like' hyperintensities (6/6) and cord enlargement (5/6). Axial T 2 -weighted images showed bilateral (6/6) hyperintensities. In one patient only the posterior spinal artery (PSA) territory was involved. Spinal cord was mainly affected at the cervical (2/6) and thoracolumbar (4/6) region, two of them included the conus medullaris (T10-L1). DW images showed high signals in all infarct lesions, degree of intensity depended on scanning time from ill-onset and progress of illness and whether companied with hemorrhage. In this group, except one case with closely normal ADC value due to one month course of illness, the five others ADC values of lesions calculated from ADC maps arranged from 0.23 x 10 -3 mm 2 /s to 0.47 x 10 -3 mm 2 /s [average value (0.37 ± 0.10) x 10 -3 mm 2 /s], markedly lower than normal parts [ average value (0.89 ± 0.08) x 10 -3 mm 2 /s]. There were marked difference between lesions and normal regions (t=4.71, P 2 W images. Meanwhile, lesions could be displayed much better in DW images than in T 2 W images because

  2. Diffusion weighted MR imaging of brachial plexus diseases

    International Nuclear Information System (INIS)

    Okinaga, Shuji; Korenaga, Tateo; Tekemura, Atsushi; Tajiri, Yasuhito; Kawano, Ken-Ichi

    2010-01-01

    Diffusion weighted image (DWI) can specifically give running of nerve fibers as they have diffusion anisotropic property and DW whole body imaging with background body signal suppression (DWIBS) procedure, which being capable of imaging cervical and lumber nerve roots, is thus suggested to be useful for diagnosis of diseases related to brachial plexus (BP). The purpose of the present study is to confirm the usefulness of DWIBS by comparison of its images of the normal and sick plexuses. Subjects are 5 normal healthy males (27-36 y), 29 patients (19 M/10 F, 7-73 y) with BP diseases (10 cases of external injury, 6 of obstetric palsy, 2 of paralysis by dysfunctional position, 6 by Schwannoma, 2 by metastasis of breast cancer and 3 by radiation) and, to see the diagnostic specificity, 9 patients (M 7/F 2, 15-64 y) with severely reduced hand force by nervous causes other than BP ones. MRI with Philips Gyroscan INTERA 1.5T machine is conducted for DWIBS by DWI with single shot EPI (echo planar imaging) with the coil of either sensitivity encoding (SENSE) Cardiac, Flex-M or -S. Images are reconstructed 3D by a radiological technician possessing no information concerning patient's conditions, with Philips software Soap-bubble tool on the workstation, and are then evaluated by a radiologist and an orthopedist separately. It is found that BP disorders by injury, obstetric palsy and tumors, of which diagnosis has been difficult hitherto, can be imaged either negatively or positively depending on their history. In radiation paralysis, only 1/3 cases give a reduced signal intensity in the whole BP. DWIBS will be a new diagnostic mean for systemic peripheral nerve diseases as well as BP ones. (T.T.)

  3. Simultaneous multislice echo planar imaging with blipped controlled aliasing in parallel imaging results in higher acceleration: a promising technique for accelerated diffusion tensor imaging of skeletal muscle

    OpenAIRE

    Filli, Lukas; Piccirelli, Marco; Kenkel, David; Guggenberger, Roman; Andreisek, Gustav; Beck, Thomas; Runge, Val M; Boss, Andreas

    2015-01-01

    PURPOSE The aim of this study was to investigate the feasibility of accelerated diffusion tensor imaging (DTI) of skeletal muscle using echo planar imaging (EPI) applying simultaneous multislice excitation with a blipped controlled aliasing in parallel imaging results in higher acceleration unaliasing technique. MATERIALS AND METHODS After federal ethics board approval, the lower leg muscles of 8 healthy volunteers (mean [SD] age, 29.4 [2.9] years) were examined in a clinical 3-T magnetic ...

  4. Echo-Planar Imaging for a 9.4 Tesla Vertical-Bore Superconducting Magnet Using an Unshielded Gradient Coil.

    Science.gov (United States)

    Kodama, Nao; Kose, Katsumi

    2016-10-11

    Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (~54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room temperature bore, and this produced serious artifacts on the EPI images. We solved the problem using an unshielded gradient coil set of proper size (outer diameter = 39 mm, inner diameter = 32 mm) with time control of the current rise and reference scans. The obtained EPI images of a phantom and a plant sample were almost artifact-free and demonstrated the promise of our approach.

  5. Echo-Planar Imaging for a 9.4 Tesla Vertical-Bore Superconducting Magnet Using an Unshielded Gradient Coil

    Science.gov (United States)

    KODAMA, Nao; KOSE, Katsumi

    2016-01-01

    Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (∼54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room temperature bore, and this produced serious artifacts on the EPI images. We solved the problem using an unshielded gradient coil set of proper size (outer diameter = 39 mm, inner diameter = 32 mm) with time control of the current rise and reference scans. The obtained EPI images of a phantom and a plant sample were almost artifact-free and demonstrated the promise of our approach. PMID:27001398

  6. Diffusion-weighted MR imaging of ring-enhancing intracerebral lesions

    International Nuclear Information System (INIS)

    Li Youcheng; Li Jiance; Tian Wei; Li Zongfang

    2005-01-01

    Objective: To assess the diagnostic value of diffusion-weighted echo-planar MR Imaging (DWI) in ring-enhancing intracerebral lesions. Methods: Magnetic resonance diffusion-weighted images of ninty-three patients presenting with ring-ehancing intracerebral lesions diagnosed by clinical or histopathologic findings were studied retrospectively, including 21 gliomas, 26 metastases, 13 pyogenic abscesses, 18 neurocysticercoses and 15 subacute intracerebral hematomas. The signal intensity ratio on diffusion-weighted images and exponential diffusion coefficient images was calculated respectively in ring walls, central contents, and perilesional edemas of ring-enhancing lesions, and normal contralateral cerebral parenchyma was used for comparison. ADC values of interest of lesions, contralateral cerebral parenchyma and CFS were calculated as well. Results: In pyogenic abscesses and subacute intracerebral hematomas, the central content was always extremely hyperintense on diffusion-weighted images, and showed low ADCs [(0.56 ± 0.20) x 10 -3 mm 2 /s, (0.69 ± 0.16) x 10 -3 mm 2 /s, respectively]. On the other hand the central content of gliomas, metastases and neurocysticercoses was hypointense, and showed high ADCs [(2.76 ± 0.41 ) x 10 -3 mm 2 /s, (2.31 ± 0.39 ) x 10 -3 mm 2 /s, (2.10 ± 0.32) x 10 -3 mm 2 /s, respectively]. The ADCs of the first two lesions were significantly lower than of the last three lesions (P 2 -weighted images should be reviewed in daily clinical practice. (authors)

  7. Characterization of Soft Tissue Tumors by Diffusion-Weighted Imaging

    International Nuclear Information System (INIS)

    Pekcevik, Yeliz; Kahya, Mehmet Onur; Kaya, Ahmet

    2015-01-01

    Diffusion-weighted imaging (DWI) is a noninvasive method for investigation of tumor histological content. It has been applied for some musculoskeletal tumors and reported to be useful. The aim of the present study was to prospectively evaluate the apparent diffusion coefficient (ADC) values of benign and malignant soft tissue tumors and to determine if ADC can help differentiate these tumors. DWI was performed on 25 histologically proven soft tissue masses. It was obtained with a single-shot echo-planar imaging technique using a 1.5T magnetic resonance (MR) machine. The mean ADC values were calculated. We grouped soft tissue tumors as benign cystic, benign solid or mixed, malignant cystic and malignant solid or mixed tumors and compared mean ADC values between these groups. There was only one patient with a malignant cystic tumor and was not included in the statistical analysis. The median ADC values of benign and malignant tumors were 2.31 ± 1.29 and 0.90 ± 0.70 (median ± interquartile range), respectively. The mean ADC values were different between benign and malignant tumors (P = 0.031). Benign cystic tumors had significantly higher ADC values than benign solid or mixed tumors and malignant solid or mixed tumors (p values were < 0.001 and 0.003, respectively). Malignant solid or mixed tumors had lower ADC values than benign solid or mixed tumors (P = 0.02). Our preliminary results have shown that although there is some overlap between benign and malignant tumors, adding DWI, MR imaging to routine soft tissue tumor protocols may improve diagnostic accuracy

  8. Short repetition time multiband echo-planar imaging with simultaneous pulse recording allows dynamic imaging of the cardiac pulsation signal.

    Science.gov (United States)

    Tong, Yunjie; Hocke, Lia M; Frederick, Blaise deB

    2014-11-01

    Recently developed simultaneous multislice echo-planar imaging (EPI) sequences permit imaging of the whole brain at short repetition time (TR), allowing the cardiac fluctuations to be fully sampled in blood-oxygen-level dependent functional MRI (BOLD fMRI). A novel low computational analytical method was developed to dynamically map the passage of the pulsation signal through the brain and visualize the whole cerebral vasculature affected by the pulse signal. This algorithm is based on a simple combination of fast BOLD fMRI and the scanner's own built-in pulse oximeter. Multiple, temporally shifted copies of the pulse oximeter data (with 0.08 s shifting step and coverage of a 1-s span) were downsampled and used as cardiac pulsation regressors in a general linear model based analyses (FSL) of the fMRI data. The resulting concatenated z-statistics maps show the voxels that are affected as the cardiac signal travels through the brain. Many voxels were highly correlated with the pulsation regressor or its temporally shifted version. The dynamic and static cardiac pulsation maps obtained from both the task and resting state scans, resembled cerebral vasculature. The results demonstrated: (i) cardiac pulsation significantly affects most voxels in the brain; (ii) combining fast fMRI and this analytical method can reveal additional clinical information to functional studies. Copyright © 2013 Wiley Periodicals, Inc.

  9. Diffusion weighted imaging (DWI) in the abdomen

    International Nuclear Information System (INIS)

    Collaku, A.

    2013-01-01

    Full text: Introduction: The use of diffusion weighted images when performing abdomen MRI has been increased during the last years; achieving high quality images for a short period of time remains still a challenge. Learning points: We present a literature review together with our experience in optimizing the DW imaging in the abdomen, focused on creating high density ADC maps and handling the uncooperative patients. Discussion: The factors that influence the image quality are discussed as well. Conclusion: The factors that influence the image quality are discussed as well

  10. Diffusion weighted imaging by MR method

    International Nuclear Information System (INIS)

    Horikawa, Yoshiharu; Naruse, Shoji; Ebisu, Toshihiko; Tokumitsu, Takuaki; Ueda, Satoshi; Tanaka, Chuzo; Higuchi, Toshihiro; Umeda, Masahiro.

    1993-01-01

    Diffusion weighted magnetic resonance imaging is a recently developed technique used to examine the micromovement of water molecules in vivo. We have applied this technique to examine various kinds of brain diseases, both experimentally and clinically. The calculated apparent diffusion coefficient (ADC) in vivo showed reliable values. In experimentally induced brain edema in rats, the pathophysiological difference of the type of edema (such as cytotoxic, and vasogenic) could be differentiated on the diffusion weighted MR images. Cytotoxic brain edema showed high intensity (slower diffusion) on the diffusion weighted images. On the other hand, vasogenic brain edema showed a low intensity image (faster diffusion). Diffusion anisotropy was demonstrated according to the direction of myelinated fibers and applied motion proving gradient (MPG). This anisotropy was also demonstrated in human brain tissue along the course of the corpus callosum, pyramidal tract and optic radiation. In brain ischemia cases, lesions were detected as high signal intensity areas, even one hour after the onset of ischemia. Diffusion was faster in brain tumor compared with normal brain. Histological differences were not clearly reflected by the ADC value. In epidermoid tumor cases, the intensity was characteristically high, was demonstrated, and the cerebrospinal fluid border was clearly demonstrated. New clinical information obtainable with this molecular diffusion method will prove to be useful in various clinical studies. (author)

  11. Diffusion-weighted MR imaging in leukodystrophies

    Energy Technology Data Exchange (ETDEWEB)

    Patay, Zoltan [King Faisal Specialist Hospital and Research Centre, Department of Radiology, Riyadh (Saudi Arabia)

    2005-11-01

    Leukodystrophies are genetically determined metabolic diseases, in which the underlying biochemical abnormality interferes with the normal build-up and/or maintenance of myelin, which leads to hypo- (or arrested) myelination, or dysmyelination with resultant demyelination. Although conventional magnetic resonance imaging has significantly contributed to recent progress in the diagnostic work-up of these diseases, diffusion-weighted imaging has the potential to further improve our understanding of underlying pathological processes and their dynamics through the assessment of normal and abnormal diffusion properties of cerebral white matter. Evaluation of conventional diffusion-weighted and ADC map images allows the detection of major diffusion abnormalities and the identification of various edema types, of which the so-called myelin edema is particularly relevant to leukodystrophies. Depending on the nature of histopathological changes, stage and progression gradient of diseases, various diffusion-weighted imaging patterns may be seen in leukodystrophies. Absent or low-grade myelin edema is found in mucopolysaccharidoses, GM gangliosidoses, Zellweger disease, adrenomyeloneuropathy, L-2-hydroxyglutaric aciduria, non-ketotic hyperglycinemia, classical phenylketonuria, Van der Knaap disease and the vanishing white matter, medium grade myelin edema in metachromatic leukodystrophy, X-linked adrenoleukodystrophy and HMG coenzyme lyase deficiency and high grade edema in Krabbe disease, Canavan disease, hyperhomocystinemias, maple syrup urine disease and leukodystrophy with brainstem and spinal cord involvement and high lactate. (orig.)

  12. Diffusion-weighted MR imaging in leukodystrophies

    International Nuclear Information System (INIS)

    Patay, Zoltan

    2005-01-01

    Leukodystrophies are genetically determined metabolic diseases, in which the underlying biochemical abnormality interferes with the normal build-up and/or maintenance of myelin, which leads to hypo- (or arrested) myelination, or dysmyelination with resultant demyelination. Although conventional magnetic resonance imaging has significantly contributed to recent progress in the diagnostic work-up of these diseases, diffusion-weighted imaging has the potential to further improve our understanding of underlying pathological processes and their dynamics through the assessment of normal and abnormal diffusion properties of cerebral white matter. Evaluation of conventional diffusion-weighted and ADC map images allows the detection of major diffusion abnormalities and the identification of various edema types, of which the so-called myelin edema is particularly relevant to leukodystrophies. Depending on the nature of histopathological changes, stage and progression gradient of diseases, various diffusion-weighted imaging patterns may be seen in leukodystrophies. Absent or low-grade myelin edema is found in mucopolysaccharidoses, GM gangliosidoses, Zellweger disease, adrenomyeloneuropathy, L-2-hydroxyglutaric aciduria, non-ketotic hyperglycinemia, classical phenylketonuria, Van der Knaap disease and the vanishing white matter, medium grade myelin edema in metachromatic leukodystrophy, X-linked adrenoleukodystrophy and HMG coenzyme lyase deficiency and high grade edema in Krabbe disease, Canavan disease, hyperhomocystinemias, maple syrup urine disease and leukodystrophy with brainstem and spinal cord involvement and high lactate. (orig.)

  13. In vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI) : [3,4-(CH2)-C-13] glutamate/glutamine tomography in rat brain

    NARCIS (Netherlands)

    Hyder, F; Renken, R; Rothman, DL

    1999-01-01

    A method for in vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI) is described. This method is composed of an echo-planar based acquisition implemented with C-13-H-1 J editing spectroscopy and is intended for high temporal and spatial resolution in vivo

  14. Clinical application of EPI diffusion weighted image (DWI) for ischemic brain disease

    International Nuclear Information System (INIS)

    Zenke, Kiichiro; Kusunoki, Katsusuke; Saito, Masahiro; Sadamoto, Kazuhiko; Sakaki, Saburo; Kumon, Yoshiaki; Nagasawa, Kiyoshi

    1999-01-01

    Diffusion-weighted magnetic resonance image (DWI) with Echo Planar imaging (EPI) techniques were utilized in 74 consecutive patients who were suspected or diagnosed as having occlusive cerebrovascular diseases. Of three EPI-DWI techniques-single shot DWI, multi-shot DWI and isotropic DWI-, isotropic DWI was the most useful study for diagnosing occlusive cerebro-vascular disease. EPI-DWI could identify fresh infarction, even small cortical infarctions, in the setting of multiple high intensity lesions shown by T2 weighted image (T2WI), and could detect infarcted lesions early after the onset. In the patients whose lesions were not revealed on the initial EPI-DWIs, new infarcted lesion were not found on later MRIs, and their symptoms disappeared completely. High intensity lesions observed on EPI-DWIs mostly decreased signal intensities about 2 weeks after the onset, and the intensities of lesions in the gray matter were reduced earlier than those in the white matter. (author)

  15. Concurrent correction of geometric distortion and motion using the map-slice-to-volume method in echo-planar imaging.

    Science.gov (United States)

    Yeo, Desmond T B; Fessler, Jeffrey A; Kim, Boklye

    2008-06-01

    The accuracy of measuring voxel intensity changes between stimulus and rest images in fMRI echo-planar imaging (EPI) data is severely degraded in the presence of head motion. In addition, EPI is sensitive to susceptibility-induced geometric distortions. Head motion causes image shifts and associated field map changes that induce different geometric distortion at different time points. Conventionally, geometric distortion is "corrected" with a static field map independently of image registration. That approach ignores all field map changes induced by head motion. This work evaluates the improved motion correction capability of mapping slice to volume with concurrent iterative field corrected reconstruction using updated field maps derived from an initial static field map that has been spatially transformed and resampled. It accounts for motion-induced field map changes for translational and in-plane rotation motion. The results from simulated EPI time series data, in which motion, image intensity and activation ground truths are available, show improved accuracy in image registration, field corrected image reconstruction and activation detection.

  16. Diffusion weighted imaging in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Cher Heng [The University of Texas, M D Anderson Cancer Center, Department of Diagnostic Radiology, Division of Diagnostic Imaging, Houston, TX (United States); Tan Tock Seng Hospital, Department of Diagnostic Radiology, Singapore (Singapore); Wang, Jihong [The University of Texas, M D Anderson Cancer Center, Department of Imaging Physics, Division of Diagnostic Imaging, Houston, TX (United States); Kundra, Vikas [The University of Texas, M D Anderson Cancer Center, Department of Diagnostic Radiology, Division of Diagnostic Imaging, Houston, TX (United States); The University of Texas, M D Anderson Cancer Center, Department of Experimental Diagnostic Imaging, Division of Diagnostic Imaging, Houston, TX (United States)

    2011-03-15

    Diffusion-weighted imaging has generated substantial interest in the hope that it can be developed into a robust technique to improve the accuracy of MRI for the evaluation of prostate cancer. This technique has the advantages of short acquisition times, no need for intravenous administration of contrast medium, and the ability to study diffusion of water molecules that indirectly reflects tissue cellularity. In this article, we review the existing literature on the utility of DWI in tumour detection, localisation, treatment response, limitations of the technique, how it compares with other imaging techniques, technical considerations and future directions. (orig.)

  17. Diffusion weighted MR imaging of pancreatic islet cell tumors

    International Nuclear Information System (INIS)

    Bakir, Baris; Salmaslioglu, Artur; Poyanli, Arzu; Rozanes, Izzet; Acunas, Bulent

    2010-01-01

    Purpose: The aim of our study is to demonstrate the feasibility of body diffusion weighted (DW) MR imaging in the evaluation of pancreatic islet cell tumors (ICTs) and to define apparent diffusion coefficient (ADC) values for these tumors. Materials and methods: 12 normal volunteers and 12 patients with histopathologically proven pancreatic ICT by surgery were included in the study. DW MR images were obtained by a body-phased array coil using a multisection single-shot echo planar sequence on the axial plane without breath holding. In addition, the routine abdominal imaging protocol for pancreas was applied in the patient group. We measured the ADC value within the normal pancreas in control group, pancreatic ICT, and surrounding pancreas parenchyma. Mann-Whitney U-test has been used to compare ADC values between tumoral tissues and normal pancreatic tissues of the volunteers. Wilcoxon Signed Ranks Test was preferred to compare ADC values between tumoral tissues and surrounding pancreatic parenchyma of the patients. Results: In 11 patients out of 12, conventional MR sequences were able to demonstrate ICTs successfully. In 1 patient an indistinct suspicious lesion was noted at the pancreatic tail. DW sequence was able to demonstrate the lesions in all of the 12 patients. On the DW images, all ICTs demonstrated high signal intensity relative to the surrounding pancreatic parenchyma. The mean and standard deviations of the ADC values (x10 -3 mm 2 /s) were as follows: ICT (n = 12), 1.51 ± 0.35 (0.91-2.11), surrounding parenchyma (n = 11) 0.76 ± 0.15 (0.51-1.01) and normal pancreas in normal volunteers (n = 12), 0.80 ± 0.06 (0.72-0.90). ADC values of the ICT were significantly higher compared with those of surrounding parenchyma (p < 0.01) and normal pancreas (p < 0.001). Conclusion: DW MR imaging does not appear to provide significant contribution to routine MR imaging protocol in the evaluation of pancreatic islet cell tumors. But it can be added to MR imaging

  18. Diuretic-enhanced gadolinium excretory MR urography: comparison of conventional gradient-echo sequences and echo-planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nolte-Ernsting, C.C.A.; Tacke, J.; Adam, G.B.; Haage, P.; Guenther, R.W. [Univ. of Technology, Aachen (Germany). Dept. of Diagnostic Radiology; Jung, P.; Jakse, G. [Univ. of Technology, Aachen (Germany). Dept. of Urology

    2001-01-01

    The aim of this study was to investigate the utility of different gadolinium-enhanced T1-weighted gradient-echo techniques in excretory MR urography. In 74 urologic patients, excretory MR urography was performed using various T1-weighted gradient-echo (GRE) sequences after injection of gadolinium-DTPA and low-dose furosemide. The examinations included conventional GRE sequences and echo-planar imaging (GRE EPI), both obtained with 3D data sets and 2D projection images. Breath-hold acquisition was used primarily. In 20 of 74 examinations, we compared breath-hold imaging with respiratory gating. Breath-hold imaging was significantly superior to respiratory gating for the visualization of pelvicaliceal systems, but not for the ureters. Complete MR urograms were obtained within 14-20 s using 3D GRE EPI sequences and in 20-30 s with conventional 3D GRE sequences. Ghost artefacts caused by ureteral peristalsis often occurred with conventional 3D GRE imaging and were almost completely suppressed in EPI sequences (p < 0.0001). Susceptibility effects were more pronounced on GRE EPI MR urograms and calculi measured 0.8-21.7% greater in diameter compared with conventional GRE sequences. Increased spatial resolution degraded the image quality only in GRE-EPI urograms. (orig.)

  19. Accelerated three-dimensional cine phase contrast imaging using randomly undersampled echo planar imaging with compressed sensing reconstruction.

    Science.gov (United States)

    Basha, Tamer A; Akçakaya, Mehmet; Goddu, Beth; Berg, Sophie; Nezafat, Reza

    2015-01-01

    The aim of this study was to implement and evaluate an accelerated three-dimensional (3D) cine phase contrast MRI sequence by combining a randomly sampled 3D k-space acquisition sequence with an echo planar imaging (EPI) readout. An accelerated 3D cine phase contrast MRI sequence was implemented by combining EPI readout with randomly undersampled 3D k-space data suitable for compressed sensing (CS) reconstruction. The undersampled data were then reconstructed using low-dimensional structural self-learning and thresholding (LOST). 3D phase contrast MRI was acquired in 11 healthy adults using an overall acceleration of 7 (EPI factor of 3 and CS rate of 3). For comparison, a single two-dimensional (2D) cine phase contrast scan was also performed with sensitivity encoding (SENSE) rate 2 and approximately at the level of the pulmonary artery bifurcation. The stroke volume and mean velocity in both the ascending and descending aorta were measured and compared between two sequences using Bland-Altman plots. An average scan time of 3 min and 30 s, corresponding to an acceleration rate of 7, was achieved for 3D cine phase contrast scan with one direction flow encoding, voxel size of 2 × 2 × 3 mm(3) , foot-head coverage of 6 cm and temporal resolution of 30 ms. The mean velocity and stroke volume in both the ascending and descending aorta were statistically equivalent between the proposed 3D sequence and the standard 2D cine phase contrast sequence. The combination of EPI with a randomly undersampled 3D k-space sampling sequence using LOST reconstruction allows a seven-fold reduction in scan time of 3D cine phase contrast MRI without compromising blood flow quantification. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Interpolation of diffusion weighted imaging datasets

    DEFF Research Database (Denmark)

    Dyrby, Tim B; Lundell, Henrik; Burke, Mark W

    2014-01-01

    anatomical details and signal-to-noise-ratio for reliable fibre reconstruction. We assessed the potential benefits of interpolating DWI datasets to a higher image resolution before fibre reconstruction using a diffusion tensor model. Simulations of straight and curved crossing tracts smaller than or equal......Diffusion weighted imaging (DWI) is used to study white-matter fibre organisation, orientation and structural connectivity by means of fibre reconstruction algorithms and tractography. For clinical settings, limited scan time compromises the possibilities to achieve high image resolution for finer...... interpolation methods fail to disentangle fine anatomical details if PVE is too pronounced in the original data. As for validation we used ex-vivo DWI datasets acquired at various image resolutions as well as Nissl-stained sections. Increasing the image resolution by a factor of eight yielded finer geometrical...

  1. In vivo measurement of regional brain metabolic response to hyperventilation using magnetic resonance: proton echo planar spectroscopic imaging (PEPSI).

    Science.gov (United States)

    Posse, S; Dager, S R; Richards, T L; Yuan, C; Ogg, R; Artru, A A; Müller-Gärtner, H W; Hayes, C

    1997-06-01

    A new rapid spectroscopic imaging technique with improved sensitivity and lipid suppression, referred to as Proton Echo Planar Spectroscopic Imaging (PEPSI), has been developed to measure the 2-dimensional distribution of brain lactate increases during hyperventilation on a conventional clinical scanner equipped with a head surface coil phased array. PEPSI images (nominal voxel size: 1.125 cm3) in five healthy subjects from an axial section approximately 20 mm inferior to the intercommissural line were obtained during an 8.5-min baseline period of normocapnia and during the final 8.5 min of a 10-min period of capnometry-controlled hyperventilation (end-tidal PCO2 of 20 mmHg). The lactate/N-acetyl aspartate signal increased significantly from baseline during hyperventilation for the insular cortex, temporal cortex, and occipital regions of both the right and left hemisphere, but not in the basal ganglia. Regional or hemispheric right-to-left differences were not found. The study extends previous work using single-voxel MR spectroscopy to dynamically study hyperventilation effects on brain metabolism.

  2. Functional evaluation of the kidney by diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Hasegawa, Taro; Hasegawa, Norio; Irie, Takeo; Fukuda, Kunihiko

    2003-01-01

    The purpose of this study was to determine the relationship between the apparent diffusion coefficient (ADC) and diffuse renal disease by diffusion-weighted echo planar magnetic resonance (MR) imaging (EPI). Ten volunteers, seven patients with chronic renal failure and eighteen recipients of renal transplants were examined with diffusion-weighted EPI. We compared renal function (serum creatinine level) with provided ADC value. The average ADC values were 2.63 x 10 -3 mm 2 /sec for the whole kidney, 2.67 x 10 -3 mm 2 /sec for the cortex and 2.61 x 10 -3 mm 2 /sec for the medulla in normal kidneys. ADC values in the whole kidney, the cortex and the medulla in chronic renal failure were significantly lower than those for normal kidneys. In renal transplantation kidneys, the ADC values in the cortex were significantly lower than those for normal kidney. There was a linear correlation between ADC value and serum creatinine level. Our results show that diffusion-weighted MR imaging may be useful to identify renal dysfunction. (author)

  3. Fast mapping of the T2 relaxation time of cerebral metabolites using proton echo-planar spectroscopic imaging (PEPSI).

    Science.gov (United States)

    Tsai, Shang-Yueh; Posse, Stefan; Lin, Yi-Ru; Ko, Cheng-Wen; Otazo, Ricardo; Chung, Hsiao-Wen; Lin, Fa-Hsuan

    2007-05-01

    Metabolite T2 is necessary for accurate quantification of the absolute concentration of metabolites using long-echo-time (TE) acquisition schemes. However, lengthy data acquisition times pose a major challenge to mapping metabolite T2. In this study we used proton echo-planar spectroscopic imaging (PEPSI) at 3T to obtain fast T2 maps of three major cerebral metabolites: N-acetyl-aspartate (NAA), creatine (Cre), and choline (Cho). We showed that PEPSI spectra matched T2 values obtained using single-voxel spectroscopy (SVS). Data acquisition for 2D metabolite maps with a voxel volume of 0.95 ml (32 x 32 image matrix) can be completed in 25 min using five TEs and eight averages. A sufficient spectral signal-to-noise ratio (SNR) for T2 estimation was validated by high Pearson's correlation coefficients between logarithmic MR signals and TEs (R2 = 0.98, 0.97, and 0.95 for NAA, Cre, and Cho, respectively). In agreement with previous studies, we found that the T2 values of NAA, but not Cre and Cho, were significantly different between gray matter (GM) and white matter (WM; P PEPSI and SVS scans was less than 9%. Consistent spatial distributions of T2 were found in six healthy subjects, and disagreement among subjects was less than 10%. In summary, the PEPSI technique is a robust method to obtain fast mapping of metabolite T2. (c) 2007 Wiley-Liss, Inc.

  4. Basic principles of diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Bammer, Roland.

    2003-01-01

    In diffusion-weighted MRI (DWI), image contrast is determined by the random microscopic motion of water protons. During the last years, DWI has become an important modality in the diagnostic work-up of acute ischemia in the CNS. There are also a few promising reports about the application of DWI to other regions in the human body, such as the vertebral column or the abdomen. This manuscript provides an introduction into the basics of DWI and Diffusion Tensor imaging. The potential of various MR sequences in concert with diffusion preparation are discussed with respect to acquisition speed, spatial resolution, and sensitivity to bulk physiologic motion. More advanced diffusion measurement techniques, such as high angular resolution diffusion imaging, are also addressed

  5. Efficacy of dynamic susceptibility contrast MRI using echo-planar imaging in differential diagnosis of breast tumors

    International Nuclear Information System (INIS)

    Yoshino, Ayako

    1998-01-01

    It has been shown that T1-weighted dynamic MR imaging is a useful method in differentiating malignant breast tumors from benign lesions. Invasive breast carcinomas enhance more rapidly than benign lesions such as fibroadenomas, papillomas, and proliferative fibrocystic diseases. However, significant overlap in the dynamic profile of benign and malignant lesions may occur, resulting in relatively low specificity, which is an inherent limitation of this technique. The author attempted to improve diagnostic accuracy by utilizing dynamic susceptibility contrast MR imaging (DSC-MRI) with a single-shot echo-planar imaging sequence. Twenty-two patients underwent DSC-MRI using a 1.5-T unit (Magnetom Vision, Siemens). Images were obtained before, during and after the bolus injection of 20 mL of gadopentetate dimeglumine. The signal reduction rate within the first 30 seconds (ΔRT2) was calculated by the following equation: ΔRT2 = (postcontrast signal intensity-precontrast signal intensity) /precontrast signal intensity. A rapid, strong decrease in signal intensity was observed on the first pass of the contrast material in all cases of carcinoma, whereas no or only a minimal decrease in signal intensity was observed in all but one of the benign lesions. This method seems to be more accurate than T1-weighted dynamic MR imaging in the differentiation benign and malignant breast lesions. Since DSC-MRI can be performed quickly, subsequent conventional T1-weighted imaging can provide additional information about the morphologic features of lesions, to further support the diagnosis. In conclusion, DSC-MRI seems to be a promising method for the accurate preoperative assessment of breast lesions. (author)

  6. Efficacy of dynamic susceptibility contrast MRI using echo-planar imaging in differential diagnosis of breast tumors

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Ayako [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1998-07-01

    It has been shown that T1-weighted dynamic MR imaging is a useful method in differentiating malignant breast tumors from benign lesions. Invasive breast carcinomas enhance more rapidly than benign lesions such as fibroadenomas, papillomas, and proliferative fibrocystic diseases. However, significant overlap in the dynamic profile of benign and malignant lesions may occur, resulting in relatively low specificity, which is an inherent limitation of this technique. The author attempted to improve diagnostic accuracy by utilizing dynamic susceptibility contrast MR imaging (DSC-MRI) with a single-shot echo-planar imaging sequence. Twenty-two patients underwent DSC-MRI using a 1.5-T unit (Magnetom Vision, Siemens). Images were obtained before, during and after the bolus injection of 20 mL of gadopentetate dimeglumine. The signal reduction rate within the first 30 seconds ({Delta}RT2) was calculated by the following equation: {Delta}RT2 (postcontrast signal intensity-precontrast signal intensity) /precontrast signal intensity. A rapid, strong decrease in signal intensity was observed on the first pass of the contrast material in all cases of carcinoma, whereas no or only a minimal decrease in signal intensity was observed in all but one of the benign lesions. This method seems to be more accurate than T1-weighted dynamic MR imaging in the differentiation benign and malignant breast lesions. Since DSC-MRI can be performed quickly, subsequent conventional T1-weighted imaging can provide additional information about the morphologic features of lesions, to further support the diagnosis. In conclusion, DSC-MRI seems to be a promising method for the accurate preoperative assessment of breast lesions. (author)

  7. Magnetic resonance fingerprinting using echo-planar imaging: Joint quantification of T1 and T2∗ relaxation times.

    Science.gov (United States)

    Rieger, Benedikt; Zimmer, Fabian; Zapp, Jascha; Weingärtner, Sebastian; Schad, Lothar R

    2017-11-01

    To develop an implementation of the magnetic resonance fingerprinting (MRF) paradigm for quantitative imaging using echo-planar imaging (EPI) for simultaneous assessment of T 1 and T2∗. The proposed MRF method (MRF-EPI) is based on the acquisition of 160 gradient-spoiled EPI images with rapid, parallel-imaging accelerated, Cartesian readout and a measurement time of 10 s per slice. Contrast variation is induced using an initial inversion pulse, and varying the flip angles, echo times, and repetition times throughout the sequence. Joint quantification of T 1 and T2∗ is performed using dictionary matching with integrated B1+ correction. The quantification accuracy of the method was validated in phantom scans and in vivo in 6 healthy subjects. Joint T 1 and T2∗ parameter maps acquired with MRF-EPI in phantoms are in good agreement with reference measurements, showing deviations under 5% and 4% for T 1 and T2∗, respectively. In vivo baseline images were visually free of artifacts. In vivo relaxation times are in good agreement with gold-standard techniques (deviation T 1 : 4 ± 2%, T2∗: 4 ± 5%). The visual quality was comparable to the in vivo gold standard, despite substantially shortened scan times. The proposed MRF-EPI method provides fast and accurate T 1 and T2∗ quantification. This approach offers a rapid supplement to the non-Cartesian MRF portfolio, with potentially increased usability and robustness. Magn Reson Med 78:1724-1733, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Accelerated proton echo planar spectroscopic imaging (PEPSI) using GRAPPA with a 32-channel phased-array coil.

    Science.gov (United States)

    Tsai, Shang-Yueh; Otazo, Ricardo; Posse, Stefan; Lin, Yi-Ru; Chung, Hsiao-Wen; Wald, Lawrence L; Wiggins, Graham C; Lin, Fa-Hsuan

    2008-05-01

    Parallel imaging has been demonstrated to reduce the encoding time of MR spectroscopic imaging (MRSI). Here we investigate up to 5-fold acceleration of 2D proton echo planar spectroscopic imaging (PEPSI) at 3T using generalized autocalibrating partial parallel acquisition (GRAPPA) with a 32-channel coil array, 1.5 cm(3) voxel size, TR/TE of 15/2000 ms, and 2.1 Hz spectral resolution. Compared to an 8-channel array, the smaller RF coil elements in this 32-channel array provided a 3.1-fold and 2.8-fold increase in signal-to-noise ratio (SNR) in the peripheral region and the central region, respectively, and more spatial modulated information. Comparison of sensitivity-encoding (SENSE) and GRAPPA reconstruction using an 8-channel array showed that both methods yielded similar quantitative metabolite measures (P > 0.1). Concentration values of N-acetyl-aspartate (NAA), total creatine (tCr), choline (Cho), myo-inositol (mI), and the sum of glutamate and glutamine (Glx) for both methods were consistent with previous studies. Using the 32-channel array coil the mean Cramer-Rao lower bounds (CRLB) were less than 8% for NAA, tCr, and Cho and less than 15% for mI and Glx at 2-fold acceleration. At 4-fold acceleration the mean CRLB for NAA, tCr, and Cho was less than 11%. In conclusion, the use of a 32-channel coil array and GRAPPA reconstruction can significantly reduce the measurement time for mapping brain metabolites. (c) 2008 Wiley-Liss, Inc.

  9. Accelerated echo-planar J-resolved spectroscopic imaging in the human brain using compressed sensing: a pilot validation in obstructive sleep apnea.

    Science.gov (United States)

    Sarma, M K; Nagarajan, R; Macey, P M; Kumar, R; Villablanca, J P; Furuyama, J; Thomas, M A

    2014-06-01

    Echo-planar J-resolved spectroscopic imaging is a fast spectroscopic technique to record the biochemical information in multiple regions of the brain, but for clinical applications, time is still a constraint. Investigations of neural injury in obstructive sleep apnea have revealed structural changes in the brain, but determining the neurochemical changes requires more detailed measurements across multiple brain regions, demonstrating a need for faster echo-planar J-resolved spectroscopic imaging. Hence, we have extended the compressed sensing reconstruction of prospectively undersampled 4D echo-planar J-resolved spectroscopic imaging to investigate metabolic changes in multiple brain locations of patients with obstructive sleep apnea and healthy controls. Nonuniform undersampling was imposed along 1 spatial and 1 spectral dimension of 4D echo-planar J-resolved spectroscopic imaging, and test-retest reliability of the compressed sensing reconstruction of the nonuniform undersampling data was tested by using a brain phantom. In addition, 9 patients with obstructive sleep apnea and 11 healthy controls were investigated by using a 3T MR imaging/MR spectroscopy scanner. Significantly reduced metabolite differences were observed between patients with obstructive sleep apnea and healthy controls in multiple brain regions: NAA/Cr in the left hippocampus; total Cho/Cr and Glx/Cr in the right hippocampus; total NAA/Cr, taurine/Cr, scyllo-Inositol/Cr, phosphocholine/Cr, and total Cho/Cr in the occipital gray matter; total NAA/Cr and NAA/Cr in the medial frontal white matter; and taurine/Cr and total Cho/Cr in the left frontal white matter regions. The 4D echo-planar J-resolved spectroscopic imaging technique using the nonuniform undersampling-based acquisition and compressed sensing reconstruction in patients with obstructive sleep apnea and healthy brain is feasible in a clinically suitable time. In addition to brain metabolite changes previously reported by 1D MR

  10. Quantitative mapping of total choline in healthy human breast using proton echo planar spectroscopic imaging (PEPSI) at 3 Tesla.

    Science.gov (United States)

    Zhao, Chenguang; Bolan, Patrick J; Royce, Melanie; Lakkadi, Navneeth; Eberhardt, Steven; Sillerud, Laurel; Lee, Sang-Joon; Posse, Stefan

    2012-11-01

    To quantitatively measure tCho levels in healthy breasts using Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI). The two-dimensional mapping of tCho at 3 Tesla across an entire breast slice using PEPSI and a hybrid spectral quantification method based on LCModel fitting and integration of tCho using the fitted spectrum were developed. This method was validated in 19 healthy females and compared with single voxel spectroscopy (SVS) and with PRESS prelocalized conventional Magnetic Resonance Spectroscopic Imaging (MRSI) using identical voxel size (8 cc) and similar scan times (∼7 min). A tCho peak with a signal to noise ratio larger than 2 was detected in 10 subjects using both PEPSI and SVS. The average tCho concentration in these subjects was 0.45 ± 0.2 mmol/kg using PEPSI and 0.48 ± 0.3 mmol/kg using SVS. Comparable results were obtained in two subjects using conventional MRSI. High lipid content in the spectra of nine tCho negative subjects was associated with spectral line broadening of more than 26 Hz, which made tCho detection impossible. Conventional MRSI with PRESS prelocalization in glandular tissue in two of these subjects yielded tCho concentrations comparable to PEPSI. The detection sensitivity of PEPSI is comparable to SVS and conventional PRESS-MRSI. PEPSI can be potentially used in the evaluation of tCho in breast cancer. A tCho threshold concentration value of ∼0.7 mmol/kg might be used to differentiate between cancerous and healthy (or benign) breast tissues based on this work and previous studies. Copyright © 2012 Wiley Periodicals, Inc.

  11. Combining parallel detection of proton echo planar spectroscopic imaging (PEPSI) measurements with a data-consistency constraint improves SNR.

    Science.gov (United States)

    Tsai, Shang-Yueh; Hsu, Yi-Cheng; Chu, Ying-Hua; Kuo, Wen-Jui; Lin, Fa-Hsuan

    2015-12-01

    One major challenge of MRSI is the poor signal-to-noise ratio (SNR), which can be improved by using a surface coil array. Here we propose to exploit the spatial sensitivity of different channels of a coil array to enforce the k-space data consistency (DC) in order to suppress noise and consequently to improve MRSI SNR. MRSI data were collected using a proton echo planar spectroscopic imaging (PEPSI) sequence at 3 T using a 32-channel coil array and were averaged with one, two and eight measurements (avg-1, avg-2 and avg-8). The DC constraint was applied using a regularization parameter λ of 1, 2, 3, 5 or 10. Metabolite concentrations were quantified using LCModel. Our results show that the suppression of noise by applying the DC constraint to PEPSI reconstruction yields up to 32% and 27% SNR gain for avg-1 and avg-2 data with λ = 5, respectively. According to the reported Cramer-Rao lower bounds, the improvement in metabolic fitting was significant (p < 0.01) when the DC constraint was applied with λ ≥ 2. Using the DC constraint with λ = 3 or 5 can minimize both root-mean-square errors and spatial variation for all subjects using the avg-8 data set as reference values. Our results suggest that MRSI reconstructed with a DC constraint can save around 70% of scanning time to obtain images and spectra with similar SNRs using λ = 5. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Ultra-high-speed imaging of the brain by the echo planar technique

    International Nuclear Information System (INIS)

    Worthington, B.S.; Stehling, M.K.; Ordidge, R.J.; Coxon, R.; Howseman, A.M.; Chapman, B.; Turner, R.; Firth, J.L.; Mansfield, P.

    1988-01-01

    Reduced examination time, greater patient tolerance and throughput, and the ability to study vascular and cerebrospinal fluid (CSF) flow phenomena are important advantages of ultra-high-speed brain imaging. The EPI derivatives BEST and MBEST create a complete 128 X 128-pixel image in 64 msec and 128 msec, respectively. In BEST images, T2 weighting is altered by adjusting the echo time, modulus BEST images have intrinsic T2 weighting. Repetition time alterations provide variable T1 weighting in both. Volunteer and patient studies illustrate how selective contrast manipulation allows excellent discrimination between gray and white matter and the brain and the CSF, enabling the demonstration of pathology

  13. Diffusion-weighted MR imaging of kidneys in patients with chronic kidney disease: initial study

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xueqin; Fang, Wenqiang; Ling, Huawei; Chai, Weimin; Chen, Kemin [Ruijin Hospital Shanghai, Jiaotong University School of Medicine, Department of Radiology, Shanghai (China)

    2010-04-15

    To prospectively evaluate the feasibility of diffusion-weighted (DW) magnetic resonance (MR) imaging in the assessment of renal function in patients with chronic kidney disease (CKD). Seventy-two healthy volunteers and 43 patients underwent coronal echo-planar DW MR imaging of the kidneys with a single breath-hold time of 16 s. The patients were grouped according to five stages as indicated by the K/DOQI CKD (kidney disease outcome quality initiative). The apparent diffusion coefficient (ADC) value of the kidneys was calculated with high b values (b = 500 s/mm{sup 2}). The ADC values were compared between patients and healthy volunteers, and among different stages. For statistical analysis, Student's t tests, ANOVA, Pearson's correlation tests, and Spearman's correlation tests were used. No difference between the cortex and medulla could be observed on DW images of all volunteers. Patients with CKD had significantly lower renal ADC (t = -4.383, P = 0.000) than volunteers. The ADC values of kidneys were significantly lower than normal at most stages of CKD, except CKD1. There was a negative correlation between the ADCs and serum creatinine (sCr) level (P = 0.000) amongst the patients. Diffusion-weighted MR imaging is feasible in the assessment of renal function, especially in the detection of early stage renal failure of CKD. (orig.)

  14. Diffusion-weighted MR imaging of kidneys in patients with chronic kidney disease: initial study

    International Nuclear Information System (INIS)

    Xu, Xueqin; Fang, Wenqiang; Ling, Huawei; Chai, Weimin; Chen, Kemin

    2010-01-01

    To prospectively evaluate the feasibility of diffusion-weighted (DW) magnetic resonance (MR) imaging in the assessment of renal function in patients with chronic kidney disease (CKD). Seventy-two healthy volunteers and 43 patients underwent coronal echo-planar DW MR imaging of the kidneys with a single breath-hold time of 16 s. The patients were grouped according to five stages as indicated by the K/DOQI CKD (kidney disease outcome quality initiative). The apparent diffusion coefficient (ADC) value of the kidneys was calculated with high b values (b = 500 s/mm 2 ). The ADC values were compared between patients and healthy volunteers, and among different stages. For statistical analysis, Student's t tests, ANOVA, Pearson's correlation tests, and Spearman's correlation tests were used. No difference between the cortex and medulla could be observed on DW images of all volunteers. Patients with CKD had significantly lower renal ADC (t = -4.383, P = 0.000) than volunteers. The ADC values of kidneys were significantly lower than normal at most stages of CKD, except CKD1. There was a negative correlation between the ADCs and serum creatinine (sCr) level (P = 0.000) amongst the patients. Diffusion-weighted MR imaging is feasible in the assessment of renal function, especially in the detection of early stage renal failure of CKD. (orig.)

  15. The Usefulness of Readout-Segmented Echo-Planar Imaging (RESOLVE) for Bio-phantom Imaging Using 3-Tesla Clinical MRI.

    Science.gov (United States)

    Yoshimura, Yuuki; Kuroda, Masahiro; Sugiantoc, Irfan; Bamgbosec, Babatunde O; Miyahara, Kanae; Ohmura, Yuichi; Kurozumi, Akira; Matsushita, Toshi; Ohno, Seiichiro; Kanazawa, Susumu; Asaumi, Junichi

    2018-02-01

    Readout-segmented echo-planar imaging (RESOLVE) is a multi-shot echo-planar imaging (EPI) modality with k-space segmented in the readout direction. We investigated whether RESOLVE decreases the distortion and artifact in the phase direction and increases the signal-to-noise ratio (SNR) in phantoms image taken with 3-tesla (3T) MRI versus conventional EPI. We used a physiological saline phantom and subtraction mapping and observed that RESOLVE's SNR was higher than EPI's. Using RESOLVE, the combination of a special-purpose coil and a large-loop coil had a higher SNR compared to using only a head/neck coil. RESOLVE's image distortioas less than EPI's. We used a 120 mM polyethylene glycol phantom to examine the phase direction artifact.vThe range where the artifact appeared in the apparent diffusion coefficient (ADC) image was shorter with RESOLVE compared to EPI. We used RESOLVE to take images of a Jurkat cell bio-phantom: the cell-region ADC was 856×10-6mm2/sec and the surrounding physiological saline-region ADC was 2,951×10-6mm2/sec. The combination of RESOLVE and the 3T clinical MRI device reduced image distortion and improved SNR and the identification of accurate ADC values due to the phase direction artifact reduction. This combination is useful for obtaining accurate ADC values of bio-phantoms.

  16. Time efficient whole-brain coverage with MR Fingerprinting using slice-interleaved echo-planar-imaging.

    Science.gov (United States)

    Rieger, Benedikt; Akçakaya, Mehmet; Pariente, José C; Llufriu, Sara; Martinez-Heras, Eloy; Weingärtner, Sebastian; Schad, Lothar R

    2018-04-27

    Magnetic resonance fingerprinting (MRF) is a promising method for fast simultaneous quantification of multiple tissue parameters. The objective of this study is to improve the coverage of MRF based on echo-planar imaging (MRF-EPI) by using a slice-interleaved acquisition scheme. For this, the MRF-EPI is modified to acquire several slices in a randomized interleaved manner, increasing the effective repetition time of the spoiled gradient echo readout acquisition in each slice. Per-slice matching of the signal-trace to a precomputed dictionary allows the generation of T 1 and T 2 * maps with integrated B 1 + correction. Subsequent compensation for the coil sensitivity profile and normalization to the cerebrospinal fluid additionally allows for quantitative proton density (PD) mapping. Numerical simulations are performed to optimize the number of interleaved slices. Quantification accuracy is validated in phantom scans and feasibility is demonstrated in-vivo. Numerical simulations suggest the acquisition of four slices as a trade-off between quantification precision and scan-time. Phantom results indicate good agreement with reference measurements (Difference T 1 : -2.4 ± 1.1%, T 2 *: -0.5 ± 2.5%, PD: -0.5 ± 7.2%). In-vivo whole-brain coverage of T 1 , T 2 * and PD with 32 slices was acquired within 3:36 minutes, resulting in parameter maps of high visual quality and comparable performance with single-slice MRF-EPI at 4-fold scan-time reduction.

  17. Clinical evaluation of single-shot and readout-segmented diffusion-weighted imaging in stroke patients at 3 T

    International Nuclear Information System (INIS)

    Morelli, John; Porter, David; Ai, Fei

    2013-01-01

    Background: Diffusion-weighted imaging (DWI) magnetic resonance imaging (MRI) is most commonly performed utilizing a single-shot echo-planar imaging technique (ss-EPI). Susceptibility artifact and image blur are severe when this sequence is utilized at 3 T. Purpose: To evaluate a readout-segmented approach to DWI MR in comparison with single-shot echo planar imaging for brain MRI. Material and Methods: Eleven healthy volunteers and 14 patients with acute and early subacute infarctions underwent DWI MR examinations at 1.5 and 3T with ss-EPI and readout-segmented echo-planar (rs-EPI) DWI at equal nominal spatial resolutions. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) calculations were made, and two blinded readers ranked the scans in terms of high signal intensity bulk susceptibility artifact, spatial distortions, image blur, overall preference, and motion artifact. Results: SNR and CNR were greatest with rs-EPI (8.1 ± 0.2 SNR vs. 6.0 ± 0.2; P -4 at 3T). Spatial distortions were greater with single-shot (0.23 ± 0.03 at 3T; P <0.001) than with rs-EPI (0.12 ± 0.02 at 3T). Combined with blur and artifact reduction, this resulted in a qualitative preference for the readout-segmented scans overall. Conclusion: Substantial image quality improvements are possible with readout-segmented vs. single-shot EPI - the current clinical standard for DWI - regardless of field strength (1.5 or 3 T). This results in improved image quality secondary to greater real spatial resolution and reduced artifacts from susceptibility in MR imaging of the brain

  18. Reducing task-based fMRI scanning time using simultaneous multislice echo planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Mate [Hungarian Academy of Sciences, Brain Imaging Centre, Research Centre for Natural Sciences, Budapest (Hungary); Janos Szentagothai PhD School, MR Research Centre, Budapest (Hungary); National Institute of Clinical Neuroscience, Department of Neuroradiology, Budapest (Hungary); Hermann, Petra; Vidnyanszky, Zoltan; Gal, Viktor [Hungarian Academy of Sciences, Brain Imaging Centre, Research Centre for Natural Sciences, Budapest (Hungary)

    2018-03-15

    To maintain alertness and to remain motionless during scanning represent a substantial challenge for patients/subjects involved in both clinical and research functional magnetic resonance imaging (fMRI) examinations. Therefore, availability and application of new data acquisition protocols allowing the shortening of scan time without compromising the data quality and statistical power are of major importance. Higher order category-selective visual cortical areas were identified individually, and rapid event-related fMRI design was used to compare three different sampling rates (TR = 2000, 1000, and 410 ms, using state-of-the-art simultaneous multislice imaging) and four different scanning lengths to match the statistical power of the traditional scanning methods to high sampling-rate design. The results revealed that ∝ 4 min of the scan time with 1 Hz (TR = 1000 ms) sampling rate and ∝ 2 min scanning at ∝ 2.5 Hz (TR = 410 ms) sampling rate provide similar localization sensitivity and selectivity to that obtained with 11-min session at conventional, 0.5 Hz (TR = 2000 ms) sampling rate. Our findings suggest that task-based fMRI examination of clinical population prone to distress such as presurgical mapping experiments might substantially benefit from the reduced (20-40%) scanning time that can be achieved by the application of simultaneous multislice sequences. (orig.)

  19. Usefulness and limitation of functional MRI with echo planar imaging using clinical MR apparatus

    International Nuclear Information System (INIS)

    Kusunoki, Katsusuke; Zenke, Kiichiro; Saito, Masahiro; Sadamoto, Kazuhiko; Ohue, Shiro; Sakaki, Saburo; Kumon, Yoshiaki; Kabasawa, Hiroyuki; Nagasawa, Kiyoshi

    1998-01-01

    We studied blood oxygen level-dependent (BOLD) functional MRI (fMRI) with EPI sequence in 21 normal volunteers and 8 presurgical clinical patients using a 1.5 T clinical MRI apparatus. To optimize the imaging parameters, we compared the fMRI images obtained by GFE-EPI and by SE-EPI in normal volunteers while each squeezed a sponge ball. We identified the motor cortex in 85.7% of normal volunteers by GFE-EPI in contrast to only 28.6% by SE-EPI. In addition, our clinical MR apparatus, using optimized parameters, maximally provides 15 slices per 5 seconds. In patients with brain tumor close to the sensorimotor cortex, we attempted to identify the motor cortex preoperatively by this procedure and found a significant increase of signal intensity in the motor cortex in 5 of 8 patients. In conclusion, fMRI using EPI may be useful for identifying the motor cortex preoperatively. However, further development of the apparatus is needed to obtain better temporal and spatial resolution for clinical applications. (author)

  20. Role of diffusion-weighted MR imaging in characterization of cervical lesions

    International Nuclear Information System (INIS)

    Salik, E.; Islim, F.; Ciftci, G.; Bayramoglu, S.; Sever, N.

    2012-01-01

    Full text: Introduction: Characterization of neck lesions is usually not possible without histopathological examination. Objective: To evaluate whether adhesion diffusion coefficient (ADC) values calculated from diffusion weighted magnetic resonance imaging can be used to characterize neck lesions. Material and methods: Diffusion-weighted echo planar MR imaging with b factors of 0, 500 and 1000 sec/mm 2 was prospectively performed with a 1.5 T MR unit in 119 neck lesions in 119 patients. ADC values were measured by 2 radiologists independently on an independent workstation console. Intraclass correlation coefficients were calculated. The mean ADC values were compared using Mann-whitney u test. Results: There was a statistically significant difference between the mean ADC values of benign and malign solid lesions (1.13±0.62 x 10 -3 mm 2 /s and 0.82±0.21 x 10 -3 mm 2 /s respectively). There was no malign lesion with an ADC value more than 1.15 x 10 -3 mm 2 /s. The mean ADC value of malignant lymphomas (0.61±0.14 x 10 -3 ) was significantly smaller than the mean ADC values of other cervical lymphadenopathies. But there was no statistically significant difference between the mean ADC values of reactive, granulomatous and metastatic lymph nodes. Conclusion: ADC values cannot totally distinguish the histopathological subgroups of the neck lesions but shows significant differences between malign and benign lesions.

  1. Diffusion-weighted MR imaging of the brain. 2. ed.

    International Nuclear Information System (INIS)

    Moritani, Toshio; Ekholm, Sven; Westesson, Per-Lennart

    2009-01-01

    This practical-minded text helps the radiologist and the clinician understand diffusion-weighted MR imaging. The book's 15 chapters range from basic principles to interpretation of diffusion-weighted MR imaging and specific disease. In this second edition, diffusion tensor imaging (fractional anisotropy, color map and fiber tractography) is covered and a new chapter, on ''Diffusion-Weighted Imaging of Scalp and Skull Lesions,'' is included. The volume is updated by newly added cases accompanied by radiological and pathological images along with the most recent references. It is aimed at all those who are involved in neuroimaging, including: residents, fellows, staff, as well as neurologists and neurosurgeons. Diffusion-weighted MR imaging is widely accepted as a means to identify acute infarction but also to differentiate many other pathologic conditions. Understanding diffusion-weighted imaging is important for radiologists, neurologists, neurosurgeons as well as radiology technologists. (orig.)

  2. Short- and long-term quantitation reproducibility of brain metabolites in the medial wall using proton echo planar spectroscopic imaging.

    Science.gov (United States)

    Tsai, Shang-Yueh; Lin, Yi-Ru; Wang, Woan-Chyi; Niddam, David M

    2012-11-15

    Proton echo planar spectroscopic imaging (PEPSI) is a fast magnetic resonance spectroscopic imaging (MRSI) technique that allows mapping spatial metabolite distributions in the brain. Although the medial wall of the cortex is involved in a wide range of pathological conditions, previous MRSI studies have not focused on this region. To decide the magnitude of metabolic changes to be considered significant in this region, the reproducibility of the method needs to be established. The study aims were to establish the short- and long-term reproducibility of metabolites in the right medial wall and to compare regional differences using a constant short-echo time (TE30) and TE averaging (TEavg) optimized to yield glutamatergic information. 2D sagittal PEPSI was implemented at 3T using a 32 channel head coil. Acquisitions were repeated immediately and after approximately 2 weeks to assess the coefficients of variation (COV). COVs were obtained from eight regions-of-interest (ROIs) of varying size and location. TE30 resulted in better spectral quality and similar or lower quantitation uncertainty for all metabolites except glutamate (Glu). When Glu and glutamine (Gln) were quantified together (Glx) reduced quantitation uncertainty and increased reproducibility was observed for TE30. TEavg resulted in lowered quantitation uncertainty for Glu but in less reliable quantification of several other metabolites. TEavg did not result in a systematically improved short- or long-term reproducibility for Glu. The ROI volume was a major factor influencing reproducibility. For both short- and long-term repetitions, the Glu COVs obtained with TEavg were 5-8% for the large ROIs, 12-17% for the medium sized ROIs and 16-26% for the smaller cingulate ROIs. COVs obtained with TE30 for the less specific Glx were 3-5%, 8-10% and 10-15%. COVs for N-acetyl aspartate, creatine and choline using TE30 with long-term repetition were between 2-10%. Our results show that the cost of more specific

  3. Dynamic multi-coil technique (DYNAMITE) shimming for echo-planar imaging of the human brain at 7 Tesla.

    Science.gov (United States)

    Juchem, Christoph; Umesh Rudrapatna, S; Nixon, Terence W; de Graaf, Robin A

    2015-01-15

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large-scale brain connectivity

  4. Dynamic Multi-Coil Technique (DYNAMITE) Shimming for Echo-Planar Imaging of the Human Brain at 7 Tesla

    Science.gov (United States)

    Juchem, Christoph; Rudrapatna, S. Umesh; Nixon, Terence W.; de Graaf, Robin A.

    2014-01-01

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (Juchem et al., J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13 Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8 mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3 mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large

  5. MR diffusion weighted imaging with background signal suppression in breast cancer

    International Nuclear Information System (INIS)

    Li Ming; Zhang Bing; Zhou Zhengyang; Yu Haiping; Yuan Lei; Zhu Bin

    2009-01-01

    Objective: To explore the feasibility of echo planar imaging with short time inversion recovery (STIR-EPI) diffusion weighted imaging with background signal (DWIBS) suppression in breast cancer. Methods: The diffusion weighted imaging (DWI)with background suppression (b=800 mm 2 /s) was performed in 26 patients with breast cancer. Apparent diffusion coefficient(ADC) of all lesions were measured and compared. 3D maximum intensity projection (3D-MIP)and reverse black and white technique were used to show the lesions. DWI and DWIBS were performed and compared for the detection of breast cancer. Randomized blocks analysis of variance was used for the ADC values in different breast tissues, the ADC values in breast cancer and benign lesion were compared using t test. The paired chi square test was used for the detection rate of breast cancer in two different imaging methods. Results: Most of the breast cancers were hyperintense on DWI (b=800 mm 2 /s). The ADC value of cancer tissue was (0.93±0.25) x 10 -3 mm 2 /s, tumor necrosis was (2.06±0.17) x 10 -3 mm 2 /s, normal breast tissue was (1.92±0.23) x 10 -3 mm 2 /s and metastatic lymph node was (1.10±0.14) x 10 -3 mm 2 /s and the differences were statistically significant between two structures (P 2 =8.307, P 2 = 12.235, P -3 mm 2 /s and benign lesion (2.15±0.53) x 10 -3 mm 2 /s had significant statistical differences (t=8.626,P<0.05). Conclusion: Diffusion weighted MRI with background suppression can detect more lesions than DWI and can be potentially applied for the detection of the breast cancer combining the ADC value. (authors)

  6. Thin-Section Diffusion-Weighted Magnetic Resonance Imaging of the Brain with Parallel Imaging

    International Nuclear Information System (INIS)

    Oner, A.Y.; Celik, H.; Tali, T.; Akpek, S.; Tokgoz, N.

    2007-01-01

    Background: Thin-section diffusion-weighted imaging (DWI) is known to improve lesion detectability, with long imaging time as a drawback. Parallel imaging (PI) is a technique that takes advantage of spatial sensitivity information inherent in an array of multiple-receiver surface coils to partially replace time-consuming spatial encoding and reduce imaging time. Purpose: To prospectively evaluate a 3-mm-thin-section DWI technique combined with PI by means of qualitative and quantitative measurements. Material and Methods: 30 patients underwent conventional echo-planar (EPI) DWI (5-mm section thickness, 1-mm intersection gap) without parallel imaging, and thin-section EPI-DWI with PI (3-mm section thickness, 0-mm intersection gap) for a b value of 1000 s/mm 2 , with an imaging time of 40 and 80 s, respectively. Signal-to-noise ratio (SNR), relative signal intensity (rSI), and apparent diffusion coefficient (ADC) values were measured over a lesion-free cerebral region on both series by two radiologists. A quality score was assigned for each set of images to assess the image quality. When a brain lesion was present, contrast-to-noise ratio (CNR) and corresponding ADC were also measured. Student t-tests were used for statistical analysis. Results: Mean SNR values of the normal brain were 33.61±4.35 and 32.98±7.19 for conventional and thin-slice DWI (P>0.05), respectively. Relative signal intensities were significantly higher on thin-section DWI (P 0.05). Quality scores and overall lesion CNR were found to be higher in thin-section DWI with parallel imaging. Conclusion: A thin-section technique combined with PI improves rSI, CNR, and image quality without compromising SNR and ADC measurements in an acceptable imaging time. Keywords: Brain; DWI; parallel imaging; thin section

  7. Experimental considerations on the removal of alimentary tract signal in T2 multi shot inversion recovery echo planar imaging using ferric ammonium citrate as contrast agent

    International Nuclear Information System (INIS)

    Kato, Joji; Saito, Haruyoshi; Tomisato, Kenichi; Maruyama, Tomoyuki; Watanabe, Tsuneo; Kawamura, Yoshihiko

    1997-01-01

    We investigated the removal of alimentary tract signal in T 2 echo planar imaging using an oral positive contrast agent for the alimentary tract mainly consisting of ferric ammonium citrate (FerriSeltz: Otsuka Pharmaceutical Co., Ltd.). It has been reported that the FerriSeltz preparation is useful as negative contrast agent because of its enhancing effect of reducing T 2 at high concentrations. However, it was shown to enhance susceptibility artifact in echo planar imaging (EPI). Thus, it is considered difficult to use FerriSeltz at high concentrations in EPI. In contrast, in IR EPI (TI 150 and 200 ms) high concentrations of FerriSeltz are not required, and it is possible to achieve excellent signal suppression at an ordinary concentration of 5.97 mmol/l. This might be due to the fact that the bounce point of FerriSeltz aqueous solution reached about 150 to 200 ms. At present, no effective negative contrast agent for alimentary tract MRI is available. Therefore, it is thought that IR EPI combined with FerriSeltz is a useful technique, since it can eliminate the signal of the alimentary tract at an ordinary concentration. (author)

  8. Diffusion weighted MR imaging of acute Wernicke's encephalopathy

    International Nuclear Information System (INIS)

    Chung, Tae-Ick; Kim, Joong-Seok; Park, Soung-Kyeong; Kim, Beum-Saeng; Ahn, Kook-Jin; Yang, Dong-Won

    2003-01-01

    We report a case of Wernicke's encephalopathy in which diffusion-weighted MR images demonstrated symmetrical hyperintense lesions in the paraventricular area of the third ventricles and medial thalami. Apparent diffusion coefficient mapping showed isointensity in the aforementioned areas. Diffusion-weighted MR images may provide evidence of vasogenic edema associated with thiamine deficiency, proven in the histopathology of experimental animals. In addition, diffusion-weighted MRI has many advantages over T2 or FLARE-weighted brain MRI in detecting structural and functional abnormalities in Wernicke's encephalopathy

  9. Diffusion-weighted imaging of breast tumours at 3 Tesla and 7 Tesla: a comparison

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, S.; Minarikova, L.; Zaric, O.; Chmelik, M.; Strasser, B.; Trattnig, S.; Bogner, W. [Medical University Vienna, MRCE, Department of Biomedical imaging and Image-Guided Therapy, Vienna (Austria); Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna (Austria); Pinker, K.; Baltzer, P.; Helbich, T. [Medical University Vienna, Division of Molecular and Gender Imaging, Department of Biomedical imaging and Image-Guided Therapy, Vienna (Austria)

    2016-05-15

    To compare bilateral diffusion-weighted MR imaging (DWI) at 3 T and 7 T in the same breast tumour patients. Twenty-eight patients were included in this IRB-approved study (mean age 56 ± 16 years). Before contrast-enhanced imaging, bilateral DWI with b = 0 and 850 s/mm{sup 2} was performed in 2:56 min (3 T) and 3:48 min (7 T), using readout-segmented echo planar imaging (rs-EPI) with a 1.4 x 1.4 mm{sup 2} (3 T)/0.9 x 0.9 mm{sup 2} (7 T) in-plane resolution. Apparent diffusion coefficients (ADC), signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were assessed. Twenty-eight lesions were detected (18 malignant, 10 benign). CNR and SNR were comparable at both field strengths (p > 0.3). Mean ADC values at 7 T were 4-22 % lower than at 3 T (p ≤ 0.03). An ADC threshold of 1.275 x 10{sup -3} mm{sup 2}/s resulted in a diagnostic specificity of 90 % at both field strengths. The sensitivity was 94 % and 100 % at 3 T and 7 T, respectively. 7-T DWI of the breast can be performed with 2.4-fold higher spatial resolution than 3 T, without significant differences in SNR if compared to 3 T. (orig.)

  10. Diffusion weighted MR imaging in the diagnosis of multiple sclerosis

    International Nuclear Information System (INIS)

    Hagen, T.; Schweigerer-Schroeter, G.; Wellnitz, J.; Wuerstle, T.

    2000-01-01

    Magnetic resonance (MR) imaging is one of the best methods in diagnosis of multiple sclerosis, particularly in disclosure of active demyelinating lesions. Aim of this study was to compare diffusion weighted imaging and contrast enhancement in the detection of active lesions. A MR study with a contrast enhanced T1-weighted pulse sequence with magnetization transfer presaturation and a diffusion weighted echoplanar pulse sequence (b=1000 s/mm 2 ) was performed in 17 patients (11 women, 6 men) with multiple sclerosis. 29 of 239 lesions showed an increased signal intensity in diffusion weighted imaging, 24 lesions a contrast enhancement, but only 16 lesions were visible in both pulse sequences. In patients with short clinical symptomatology significant more lesions could be detected with diffusion-weighted pulse sequence in comparison to patients with long standing symptomatology showing more lesions with contrast enhancement. Hence it is likely, that both pulse sequences detect different histopathologic changes. The early detection of demyelinating lesions in diffusion weighted imaging is attributed to the extracellular edema, however the contrast enhancement is caused by a blood brain barrier abnormality. It can be expected that diffusion weighted imaging will have a high impact on imaging of multiple sclerosis not only in therapeutic trials, but also in clinical routine. (orig.) [de

  11. Liver imaging at 3.0 T: Diffusion-induced black-blood echo-planar imaging with large anatomic volumetric coverage as an alternative for specific absorption rate-intensive echo-train spin-echo sequences: Feasibility study

    NARCIS (Netherlands)

    I.C. van den Bos (Indra); S.M. Hussain (Shahid); G.P. Krestin (Gabriel); P.A. Wielopolski (Piotr)

    2008-01-01

    textabstractInstitutional Review Board approval and signed informed consent were obtained by all participants for an ongoing sequence optimization project at 3.0 T. The purpose of this study was to evaluate breath-hold diffusion-induced blackblood echo-planar imaging (BBEPI) as a potential

  12. Serial diffusion-weighted imaging in MELAS

    International Nuclear Information System (INIS)

    Ohshita, T.; Oka, M.; Imon, Y.; Watanabe, C.; Katayama, S.; Yamaguchi, S.; Kajima, T.; Mimori, Y.; Nakamura, S.

    2000-01-01

    Clinical features of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) resemble those of cerebral infarcts, but the pathogenesis of infarct-like lesions is not fully understood. To characterise these infarct-like lesions, we studied two patients with MELAS using diffusion-weighted (DWI) MRI before and after stroke-like episodes and measured the apparent diffusion coefficient (ADC) in the new infarct-like lesions. These gave high signal on DWI and had much higher ADC than normal-appearing regions. The ADC remained high even 30 days after a stroke-like episode then decreased in lesions, with or without abnormality as shown by conventional MRI. We speculate that early elevation of ADC in the acute or subacute phase reflects vasogenic rather than cytotoxic edema. The ADC of the lesions, which disappeared almost completely with clinical improvement, returned to normal levels, which may reflect tissue recovery without severe damage. To our knowledge, this is the first study of DWI in MELAS. (orig.)

  13. Diffusion-weighted MR imaging of pleural fluid: differentiation of transudative vs exudative pleural effusions

    International Nuclear Information System (INIS)

    Baysal, T.; Bulut, T.; Dusak, A.; Dogan, M.; Goekirmak, M.; Kalkan, S.

    2004-01-01

    The aim of this study was to evaluate the ability of diffusion-weighted MRI in differentiating transudative from exudative pleural effusions. Fifty-seven patients with pleural effusion were studied. Diffusion-weighted imaging (DWI) was performed with an echo-planar imaging (EPI) sequence (b values 0, 1000 s/mm 2 ) in 52 patients. The apparent diffusion coefficient (ADC) values were reconstructed from three different regions. Subsequently, thoracentesis was performed and the pleural fluid was analyzed. Laboratory results revealed 20 transudative and 32 exudative effusions. Transudates had a mean ADC value of 3.42±0.76 x 10 -3 mm 2 /s. Exudates had a mean ADC value of 3.18±1.82 x 10 -3 mm 2 /s. The optimum cutoff point for ADC values was 3.38 x 10 -3 mm 2 /s with a sensitivity of 90.6% and specificity of 85%. A significant negative correlation was seen between ADC values and pleural fluid protein, albumin concentrations and lactate dehydrogenase (LDH) measurements (r=-0.69, -0.66, and -0.46, respectively; p<0.01). The positive predictive value, negative predictive value, and diagnostic accuracy of ADC values were determined to be 90.6, 85, and 88.5%, respectively. The application of diffusion gradients to analyze pleural fluid may be an alternative to the thoracentesis. Non-invasive characterization of a pleural effusion by means of DWI with single-shot EPI technique may obviate the need for thoracentesis with its associated patient morbidity. (orig.)

  14. MR diffusion weighted imaging of the prostate adenocarcinoma after endocrinotherapy: preliminary results

    International Nuclear Information System (INIS)

    Chen Zhiqiang; Wang Xiaoying; Li Feiyu; Guo Xuemei; Jiang Xuexiang; Guo Yulin

    2007-01-01

    Objective: To assess the changes of the apparent diffusion coefficient (ADC) values of cancerous and noncancerous regions of prostate peripheral zone in prostate cancer patients with and without endocrinotherapy. Methods: Diffusion-weighted echo-planar imaging (EPI) were performed in 32 patients with diagnosed prostate cancer, including 18 patients who were treated with endocrinotherapy over 6 months and 14 untreated matched control patients. According to the pathological results obtained by ultrasound guided biopsy, the locations of the prostate cancerous regions were marked at one or more of the sextants. The ADC values of the bladder and the obturator internus were also measured. Results: The mean ADC values of cancerous and noncancerous regions in 14 untreated controls were (1.22±0.25) x 10 -3 , (1.59 ± 0.19) x 10 -3 mm 2 /s, respectively (t=7.03, P -3 mm 2 /s in noncancerous regions, but increased to (1.46 ± 0.30) x 10 -3 mm 2 /s in cancerous regions. There still had significant difference between the cancerous and the noncancerous regions (t=2.46, P 0.05), in bladder and the obturator internus (t=0.48, 1.64; P>0.05). Conclusion: Measurement of ADCs might be useful to evaluate the efficacy of endocrinotherapy for patients with prostate cancer. (authors)

  15. In vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI): [3,4-(13)CH(2)]glutamate/glutamine tomography in rat brain.

    Science.gov (United States)

    Hyder, F; Renken, R; Rothman, D L

    1999-12-01

    A method for in vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI) is described. This method is composed of an echo-planar based acquisition implemented with (13)C-(1)H J editing spectroscopy and is intended for high temporal and spatial resolution in vivo spectroscopic imaging of (13)C turnover, from D-[1,6-(13)C]glucose to glutamate and glutamine, in the brain. At a static magnetic field strength of 7 T, both in vitro and in vivo chemical shift imaging data are presented with a spatial resolution of 8 microL (i.e., 1.25 x 1.25 x 5.00 mm(3)) and a maximum spectral bandwidth of 5.2 ppm in (1)H. Chemical shift imaging data acquired every 11 minutes allowed detection of regional [4-(13)CH(2)]glutamate turnover in rat brain. The [4-(13)CH(2)]glutamate turnover curves, which can be converted to tricarboxylic acid cycle fluxes, showed that the tricarboxylic acid cycle flux (V(TCA)) in pure gray and white matter can range from 1.2 +/- 0.2 to 0.5 +/- 0.1 micromol/g/min, respectively, for morphine-anesthetized rats. The mean cortical V(TCA) from 32 voxels of 1.0 +/- 0.3 micromol/g/min (N = 3) is in excellent agreement with previous localized measurements that have demonstrated that V(TCA) can range from 0.9-1.1 micromol/g/min under identical anesthetized conditions. Magn Reson Med 42:997-1003, 1999. Copyright 1999 Wiley-Liss, Inc.

  16. Regional cerebral blood volume (rCBV) in the cerebral and cerebellar hemispheres in nomal 52 healthy adults. Measurement with contrast-enhanced dynamic echo-planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Muroi, Kenzo; Kurihara, Hiroaki; Amauchi, Hiroshi; Nozawa, Takeo; Matsubara, Sho; Yamamoto, Isao [Yokohama City Univ. (Japan). Hospital; Iwasawa, Tae

    2001-05-01

    The aim of this study was to investigate the possibility of absolute quantification of mean transit time (MTT) and rCBV in normal 52 healthy adults using contrast-enhanced dynamic echo-planar imaging, changes in signals in the middle cerebral arteries (MCAs) in the Sylvian fissures as AIF. MR was performed with a 1.5 T magnet (Horizon, GE Medical System, Milwaukee, WI). Dynamic susceptibility contrast-enhanced imaging was obtained every 1.8 second using echo-planar imaging (EPI) sequence (TE=42 msec, matrices=128 x 128) in six slices (6 mm slice thickness with 10 mm gap) including the cerebellar hemisphere at the level of middle cerebellar peduncles. The regional cerebral blood volume (rCBV) was calculated based on dilution theory. We calculated rCBV of the cerebral white matter (WM), cortical gray matter (GM), and cerebellar hemispheres (CH), and the effect of age on MTT and rCBV were evaluated linear regression analyses. The MTT of MCAs did not change with age, and the area under the curve of MCAs declined slightly with age. The mean rCBV of cortical GM, cerebral WM and cerebellar hemispheres were 8.2{+-}2.8, 2.0{+-}0.8 and 8.8{+-}2.1 respectively. The rCBV of cortical GM and the CH decreased slightly with age, however, that of WM remained to be a greater extent than those in GM. From these results, the method using AIF determined in bilateral MCAs was considered as an practical approach for the quantification of rCBV. Further clinical and/or comparative studies with other modalities will be necessary for the application of this method for patients with atherosclerosis and/or major vessel occlusion. (author)

  17. Simultaneous Multislice Echo Planar Imaging With Blipped Controlled Aliasing in Parallel Imaging Results in Higher Acceleration: A Promising Technique for Accelerated Diffusion Tensor Imaging of Skeletal Muscle.

    Science.gov (United States)

    Filli, Lukas; Piccirelli, Marco; Kenkel, David; Guggenberger, Roman; Andreisek, Gustav; Beck, Thomas; Runge, Val M; Boss, Andreas

    2015-07-01

    The aim of this study was to investigate the feasibility of accelerated diffusion tensor imaging (DTI) of skeletal muscle using echo planar imaging (EPI) applying simultaneous multislice excitation with a blipped controlled aliasing in parallel imaging results in higher acceleration unaliasing technique. After federal ethics board approval, the lower leg muscles of 8 healthy volunteers (mean [SD] age, 29.4 [2.9] years) were examined in a clinical 3-T magnetic resonance scanner using a 15-channel knee coil. The EPI was performed at a b value of 500 s/mm2 without slice acceleration (conventional DTI) as well as with 2-fold and 3-fold acceleration. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in all 3 acquisitions. Fiber tracking performance was compared between the acquisitions regarding the number of tracks, average track length, and anatomical precision using multivariate analysis of variance and Mann-Whitney U tests. Acquisition time was 7:24 minutes for conventional DTI, 3:53 minutes for 2-fold acceleration, and 2:38 minutes for 3-fold acceleration. Overall FA and MD values ranged from 0.220 to 0.378 and 1.595 to 1.829 mm2/s, respectively. Two-fold acceleration yielded similar FA and MD values (P ≥ 0.901) and similar fiber tracking performance compared with conventional DTI. Three-fold acceleration resulted in comparable MD (P = 0.199) but higher FA values (P = 0.006) and significantly impaired fiber tracking in the soleus and tibialis anterior muscles (number of tracks, P DTI of skeletal muscle with similar image quality and quantification accuracy of diffusion parameters. This may increase the clinical applicability of muscle anisotropy measurements.

  18. Diffusion-weighted MR imaging for detection of extrahepatic cholangiocarcinoma

    International Nuclear Information System (INIS)

    Cui, Xing-Yu; Chen, Hong-Wei; Cai, Song; Bao, Jian; Tang, Qun-Feng; Wu, Li-Yuan; Fang, Xiang-Ming

    2012-01-01

    Objectives: To measure the sensitivity of diffusion-weighted imaging (DWI) and determine the most appropriate b value for DWI; to explore the correlation between the apparent diffusion coefficient (ADC) value and the degree of extrahepatic cholangiocarcinoma differentiation. Methods: Preoperative diffusion-weighted imaging and magnetic resonance examinations were performed for 31 patients with extrahepatic cholangiocarcinoma. Tumor ADC values were measured, and the signal-to-noise ratio, contrast-to-noise ratio, and signal-intensity ratio between the diffusion-weighted images with various b values as well as the T2-weighted images were calculated. Pathologically confirmed patients were pathologically graded to compare the ADC value with different b values of tumor at different degrees of differentiation, and the results were statistically analyzed by using the Friedman test. Results: A total of 29 cases of extrahepatic cholangiocarcinoma were detected by DWI. As the b value increased, tumor signal-to-noise ratio and contrast-to-noise ratio between the tumor and normal liver gradually decreased, but the tumor signal-intensity ratio gradually increased. When b = 800 s/mm 2 , contrast-to-noise ratio between tumor and normal liver, tumor signal-intensity ratio, and tumor signal-to-noise ratio of diffusion-weighted images were all higher than those of T2-weighted images; the differences were statistically significant (P 2 was the best in DWI of extrahepatic cholangiocarcinoma; the lesion ADC value declined as the degree of cancerous tissue differentiation decreased.

  19. Diffusion-weighted MR imaging of intracranial tumors

    International Nuclear Information System (INIS)

    Bydder, G.M.; Baudouin, C.J.; Steiner, R.E.; Hajnal, J.V.; Young, I.R.

    1991-01-01

    This paper assesses the effect of anisotropic diffusion weighting on the appearances of cerebral tumors as well as vasogenic and interstitial edema. Diffusion weighting produced a reduction in signal intensity in all or part of the tumors in the majority of cases. However, a relative increase in signal intensity was apparent in four cases. The decrease in signal intensity in vasogenic edema depended on the site and direction of gradient sensitization. Marked increase in conspicuity between tumor and edema was apparent in three cases. Changes in interstitial edema depended in detail in fiber direction. Differentiation between tumor and edema can be improved with diffusion-weighted imaging. Anisotropic change is seen in both vasogenic and interstitial edema

  20. The role of diffusion weighted magnetic resonance imaging in ...

    African Journals Online (AJOL)

    Aim of the work: To demonstrate the role of Diffusion Weighted Imaging and ADC maps in assessing normal progression of the infantile brain myelination. Patients and methods: The present work included 30 infants with normal MRI study of the brain, normal psychomotor development and normal neurological examination.

  1. Characterization of chondroid matrix-forming sarcomas: gadolinium-enhanced and diffusion weighted MR imaging

    International Nuclear Information System (INIS)

    Cheng Kebin; Zhang Jing; Qu Hui; Zhang Wei; Liang Wei; Li Xiaosong; Cheng Xiaoguang; Gong Lihua

    2010-01-01

    Objective: To study the Gadolinium-enhanced MRI and diffusion weighted imaging (DWI) characteristics of the chondroid matrix-forming sarcomas. Methods: Contrast-enhanced MRI and DWI were performed in 14 cases of chondroid matrix-forming sarcomas (10 chondrosarcomas, 4 chondroblastic osteosarcomas) and 13 cases of other types of osteosarcomas. DWI was obtained with a single-shot echo-planar imaging (EPI) sequence using a 1.5 T MR imager with two different b values of 0 and 700 s/mm 2 . The apparent diffusion coefficient (ADC) values were obtained in GE Functiontool software. The contrast-enhancement pattern was evaluated and the ADC values of chondroid matrix-forming sarcomas was compared with that of other types of osteosareoma. Independent sample t-test was performed to evaluate the difference of ADC values between the group of chondroid matrix-forming sarcoma and the group of other types of osteosarcoma. In addition, nonparametric test was used to assess the difference of ADC values between the chondrosarcoma and the chondroblastic osteosarcoma. P value less than 0.05 was considered to represent a statistical significance. Results: For 14 cases of chondroid matrix-forming sarcomas, peripheral enhancement was found in all cases, septonodular enhancement was identified in 12 cases. While 13 cases of other types of osteosarcomas demonstrated heterogeneous enhancement. The mean ADC value of chondroid matrix-forming sarcomas [(2.56±0.35) x 10 -3 mm 2 /s] was significantly higher than that of other types of osteosarcoma [(1.16 ± 0.20) x 10 -3 mm 2 /s] (t=12.704, P<0.01). There was no significant difference in the ADC value between the chondrosarcoma and the chondroblastic osteosarcoma (Z=0.507, P=0.959). Conclusion: Contrast-enhanced MRI and DWI can improve differentiation between chondroid matrix-forming sarcomas and other types of osteosarcomas. (authors)

  2. Diffusion-weighted MR imaging of neuro-Behcet's disease: initial and follow-up studies

    International Nuclear Information System (INIS)

    Heo, Suk Hee; Seo, Jeong Jin; Kim, Heung Joong; Chang, Nam Gyu; Shin, Sang Soo; Jeong, Yong Yeon; Jeong Gwang Woo; Kang, Heoung Keun

    2005-01-01

    To assess the usefulness of diffusion-weighted MR imaging (DWI) and apparent diffusion coefficient (ADC) in the initial and follow-up studies of patients with neuro-Behcet's disease. Six patients diagnosed with neuro-Behcet's disease were the subjects of this study. Initial and follow-up MR imaging were obtained in all six patients. Initial and follow-up DWI were also obtained is four of the six patients, with only an initial DWI in the other two. The DWI were obtained using multi-shot echo planar imaging, on a 1.5T MR unit, with two gradient steps (b values of 0, 1000 sec/mm 2 ). The ADC value and ADC maps were obtained using commercial software. The locations and signal intensities of the lesions were analyzed on conventional MRI and DWI, respectively. The ADC values of the lesions were calculated on the initial and follow-up DWI, and compared those of lesions in the normal contralateral regions. The initial DWI showed iso-signal intensities in four of the six patients, with high signal intensities in the other two. In five of the six patients, including three of the four that showed isosignal intensities and the two that showed high signal intensities on the initial DWI, the ADC values of the involved lesions were higher than those of the normal contralateral regions. In three of four that showed isosignal intensities, the ADC values of the lesions were decreased and normalized on the follow-up DWI. Obtaining DWI and ADC values in patients with neuro-Behcet's disease may be helpful in the understanding of pathophysiology and differential diagnosis of this disease

  3. Accelerated magnetic resonance diffusion tensor imaging of the median nerve using simultaneous multi-slice echo planar imaging with blipped CAIPIRINHA

    Energy Technology Data Exchange (ETDEWEB)

    Filli, Lukas; Kenkel, David; Boss, Andreas; Manoliu, Andrei; Andreisek, Gustav; Runge, Val M.; Guggenberger, Roman [University Hospital of Zurich, University of Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Piccirelli, Marco [University Hospital of Zurich, Department of Neuroradiology, Zurich (Switzerland); Bhat, Himanshu [Siemens Medical Solutions USA Inc, Charlestown, MA (United States)

    2016-06-15

    To investigate the feasibility of MR diffusion tensor imaging (DTI) of the median nerve using simultaneous multi-slice echo planar imaging (EPI) with blipped CAIPIRINHA. After federal ethics board approval, MR imaging of the median nerves of eight healthy volunteers (mean age, 29.4 years; range, 25-32) was performed at 3 T using a 16-channel hand/wrist coil. An EPI sequence (b-value, 1,000 s/mm{sup 2}; 20 gradient directions) was acquired without acceleration as well as with twofold and threefold slice acceleration. Fractional anisotropy (FA), mean diffusivity (MD) and quality of nerve tractography (number of tracks, average track length, track homogeneity, anatomical accuracy) were compared between the acquisitions using multivariate ANOVA and the Kruskal-Wallis test. Acquisition time was 6:08 min for standard DTI, 3:38 min for twofold and 2:31 min for threefold acceleration. No differences were found regarding FA (standard DTI: 0.620 ± 0.058; twofold acceleration: 0.642 ± 0.058; threefold acceleration: 0.644 ± 0.061; p ≥ 0.217) and MD (standard DTI: 1.076 ± 0.080 mm{sup 2}/s; twofold acceleration: 1.016 ± 0.123 mm{sup 2}/s; threefold acceleration: 0.979 ± 0.153 mm{sup 2}/s; p ≥ 0.074). Twofold acceleration yielded similar tractography quality compared to standard DTI (p > 0.05). With threefold acceleration, however, average track length and track homogeneity decreased (p = 0.004-0.021). Accelerated DTI of the median nerve is feasible. Twofold acceleration yields similar results to standard DTI. (orig.)

  4. Value of 3 Tesla diffusion-weighted magnetic resonance imaging for assessing liver fibrosis.

    Science.gov (United States)

    Papalavrentios, Lavrentios; Sinakos, Emmanouil; Chourmouzi, Danai; Hytiroglou, Prodromos; Drevelegas, Konstantinos; Constantinides, Manos; Drevelegas, Antonios; Talwalkar, Jayant; Akriviadis, Evangelos

    2015-01-01

    Limited data are available regarding the role of magnetic resonance imaging (MRI), particularly the new generation 3 Tesla technology, and especially diffusion-weighted imaging (DWI) in predicting liver fibrosis. The aim of our pilot study was to assess the clinical performance of the apparent diffusion coefficient (ADC) of liver parenchyma for the assessment of liver fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). 18 patients with biopsy-proven NAFLD underwent DWI with 3 Tesla MRI. DWI was performed with single-shot echo-planar technique at b values of 0-500 and 0-1000 s/mm 2 . ADC was measured in four locations in the liver and the mean ADC value was used for analysis. Staging of fibrosis was performed according to the METAVIR system. The median age of patients was 52 years (range 23-73). The distribution of patients in different fibrosis stages was: 0 (n=1), 1 (n=7), 2 (n=1), 3 (n=5), 4 (n=4). Fibrosis stage was poorly associated with ADC at b value of 0-500 s/mm 2 (r= -0.30, P=0.27). However it was significantly associated with ADC at b value of 0-1000 s/mm 2 (r= -0.57, P=0.01). For this b value (0-1000 s/mm 2 ) the area under receiver-operating characteristic curve was 0.93 for fibrosis stage ≥3 and the optimal ADC cut-off value was 1.16 ×10 -3 mm 2 /s. 3 Tesla DWI can possibly predict the presence of advanced fibrosis in patients with NAFLD.

  5. Echo-Planar Imaging Based J-Resolved Spectroscopic Imaging for Improved Metabolite Detection in Prostate Cancer

    Science.gov (United States)

    2012-10-01

    Clinical Setting" was presented at the 20th International Society of Magnetic Resonance in Medicine (ISMRM) meeting in Melbourne , Australia (May 5-11...experience. Eur Urol 2001;40(1):75–83. 5. Chandra RV, Heinze S, Dowling R, Shadbolt C, Costello A, Pedersen J. Endorectal mag- netic resonance imaging

  6. Echo-Planar Imaging-Based, J-Resolved Spectroscopic Imaging for Improved Metabolite Detection in Prostate Cancer

    Science.gov (United States)

    2016-12-01

    post-process the multi-dimensional MRS data from different prostate pathologies . Scope: Improved cancer detection (specificity) in differentiating...MATERIALS AND METHODS Patients Between March 2012 and May 2013, twenty-two patients with PCa with a mean age of 63.8 years (range, 46–79 years), who...tumor voxels, which was confirmed by the pathology report. After reconstruction, the EP-JRESI data were overlaid onto MRI images. MRI and MRSI A body

  7. Differential diagnosis of benign and malignant breast masses using diffusion-weighted magnetic resonance imaging.

    Science.gov (United States)

    Min, Qinghua; Shao, Kangwei; Zhai, Lulan; Liu, Wei; Zhu, Caisong; Yuan, Lixin; Yang, Jun

    2015-02-07

    Diffusion-weighted magnetic resonance imaging (DW-MRI) is different from conventional diagnostic methods and has the potential to delineate the microscopic anatomy of a target tissue or organ. The purpose of our study was to evaluate the value of DW-MRI in the diagnosis of benign and malignant breast masses, which would help the clinical surgeon to decide the scope and pattern of operation. A total of 52 female patients with palpable solid breast masses received breast MRI scans using routine sequences, dynamic contrast-enhanced imaging, and diffusion-weighted echo-planar imaging at b values of 400, 600, and 800 s/mm(2), respectively. Two regions of interest (ROIs) were plotted, with a smaller ROI for the highest signal and a larger ROI for the overall lesion. Apparent diffusion coefficient (ADC) values were calculated at three different b values for all detectable lesions and from two different ROIs. The sensitivity, specificity, positive predictive value, and positive likelihood ratio of DW-MRI were determined for comparison with histological results. A total of 49 (49/52, 94.2%) lesions were detected using DW-MRI, including 20 benign lesions (two lesions detected in the same patient) and 29 malignant lesions. Benign lesion had a higher mean ADC value than their malignant counterparts, regardless of b value. According to the receiver operating characteristic (ROC) curve, the smaller-range ROI was more effective in differentiation between benign and malignant lesions. The area under the ROC curve was the largest at a b value of 800 s/mm(2). With a threshold ADC value at 1.23 × 10(-3) mm(2)/s, DW-MRI achieved a sensitivity of 82.8%, specificity of 90.0%, positive predictive value of 92.3%, and positive likelihood ratio of 8.3 for differentiating benign and malignant lesions. DW-MRI is an accurate diagnostic tool for differentiation between benign and malignant breast lesions, with an optimal b value of 800 s/mm(2). A smaller-range ROI focusing on the

  8. Prior-knowledge Fitting of Accelerated Five-dimensional Echo Planar J-resolved Spectroscopic Imaging: Effect of Nonlinear Reconstruction on Quantitation.

    Science.gov (United States)

    Iqbal, Zohaib; Wilson, Neil E; Thomas, M Albert

    2017-07-24

    1 H Magnetic Resonance Spectroscopic imaging (SI) is a powerful tool capable of investigating metabolism in vivo from mul- tiple regions. However, SI techniques are time consuming, and are therefore difficult to implement clinically. By applying non-uniform sampling (NUS) and compressed sensing (CS) reconstruction, it is possible to accelerate these scans while re- taining key spectral information. One recently developed method that utilizes this type of acceleration is the five-dimensional echo planar J-resolved spectroscopic imaging (5D EP-JRESI) sequence, which is capable of obtaining two-dimensional (2D) spectra from three spatial dimensions. The prior-knowledge fitting (ProFit) algorithm is typically used to quantify 2D spectra in vivo, however the effects of NUS and CS reconstruction on the quantitation results are unknown. This study utilized a simulated brain phantom to investigate the errors introduced through the acceleration methods. Errors (normalized root mean square error >15%) were found between metabolite concentrations after twelve-fold acceleration for several low concentra- tion (OGM) human brain matter were quantified in vivo using the 5D EP-JRESI sequence with eight-fold acceleration.

  9. Diffusion-weighted imaging in acute demyelinating myelopathy

    International Nuclear Information System (INIS)

    Zecca, Chiara; Cereda, Carlo; Tschuor, Silvia; Staedler, Claudio; Nadarajah, Navarajah; Bassetti, Claudio L.; Gobbi, Claudio; Wetzel, Stephan; Santini, Francesco

    2012-01-01

    Diffusion-weighted imaging (DWI) has become a reference MRI technique for the evaluation of neurological disorders. Few publications have investigated the application of DWI for inflammatory demyelinating lesions. The purpose of the study was to describe diffusion-weighted imaging characteristics of acute, spinal demyelinating lesions. Six consecutive patients (two males, four females; aged 28-64 years) with acute spinal cord demyelinating lesions were studied in a prospective case series design from June 2009 to October 2010. We performed magnetic resonance imaging studies from 2 to 14 days from symptom onset on the patients with relapsing remitting multiple sclerosis (n = 3) or clinically isolated syndrome (n = 3). Main outcome measures were diffusion-weighted imaging and apparent diffusion coefficient pattern (ADC) of acute spinal cord demyelinating lesions. All spinal lesions showed a restricted diffusion pattern (DWI+/ADC-) with a 24% median ADC signal decrease. A good correlation between clinical presentation and lesion site was observed. Acute demyelinating spinal cord lesions show a uniform restricted diffusion pattern. Clinicians and neuro-radiologists should be aware that this pattern is not necessarily confirmatory for an ischaemic aetiology. (orig.)

  10. Diffusion-weighted imaging in acute demyelinating myelopathy

    Energy Technology Data Exchange (ETDEWEB)

    Zecca, Chiara; Cereda, Carlo; Tschuor, Silvia; Staedler, Claudio; Nadarajah, Navarajah; Bassetti, Claudio L.; Gobbi, Claudio [Ospedale Regionale di Lugano, Servizio di Neurologia e Neuroradiologia, Neurocenter of Southern Switzerland, Lugano (Switzerland); Wetzel, Stephan [Swiss Neuro Institute (SNI), Abteilung fuer Neuroradiologie, Hirslanden Klinik Zuerich, Zuerich (Switzerland); Santini, Francesco [University of Basel Hospital, Division of Radiological Physics, Basel (Switzerland)

    2012-06-15

    Diffusion-weighted imaging (DWI) has become a reference MRI technique for the evaluation of neurological disorders. Few publications have investigated the application of DWI for inflammatory demyelinating lesions. The purpose of the study was to describe diffusion-weighted imaging characteristics of acute, spinal demyelinating lesions. Six consecutive patients (two males, four females; aged 28-64 years) with acute spinal cord demyelinating lesions were studied in a prospective case series design from June 2009 to October 2010. We performed magnetic resonance imaging studies from 2 to 14 days from symptom onset on the patients with relapsing remitting multiple sclerosis (n = 3) or clinically isolated syndrome (n = 3). Main outcome measures were diffusion-weighted imaging and apparent diffusion coefficient pattern (ADC) of acute spinal cord demyelinating lesions. All spinal lesions showed a restricted diffusion pattern (DWI+/ADC-) with a 24% median ADC signal decrease. A good correlation between clinical presentation and lesion site was observed. Acute demyelinating spinal cord lesions show a uniform restricted diffusion pattern. Clinicians and neuro-radiologists should be aware that this pattern is not necessarily confirmatory for an ischaemic aetiology. (orig.)

  11. Diffusion-Weighted Magnetic Resonance Imaging in Renal Lesion Characterization

    Directory of Open Access Journals (Sweden)

    Elif Karadeli

    2012-03-01

    Conclusion: The technique has the advantage that it is non-invasive without need for gadolinium administration, takes about 2 minute. This method provides qualitative and quantitative infomation on tissue characterization. DA-MRI and ADC values are important for characterization of renal lesions. Especially, utility of diffusion-weighted magnetic resonance imaging in the patients with risk for nephrogenic systemic fibrosis (NSF could be beneficial. [Cukurova Med J 2012; 37(1: 27-36

  12. Diffusion-weighted MR imaging findings in carbon monoxide poisoning

    International Nuclear Information System (INIS)

    Teksam, M.; Casey, S.O.; Michel, E.; Liu, H.; Truwit, C.L.

    2002-01-01

    Diffusion-weighted MR imaging (DWI) of two patients with carbon monoxide (CO) poisoning demonstrated white matter and cortical hyperintensities. In one patient, the changes on the FLAIR sequence were more subtle than those on DWI. The DWI abnormality in this patient represented true restriction. In the second patient, repeated exposure to CO caused restricted diffusion. DWI may be helpful for earlier identification of the changes of acute CO poisoning. (orig.)

  13. Comparison of gradient-recalled echo and spin-echo echo-planar imaging MR elastography in staging liver fibrosis. A meta-analysis

    International Nuclear Information System (INIS)

    Kim, Yong Seek; Jang, Yu Na; Song, Ji Soo

    2018-01-01

    To compare the diagnostic performance of gradient-recalled echo-based magnetic resonance elastography (GRE-MRE) and spin-echo echo-planar imaging-based MRE (SE-EPI-MRE) in liver fibrosis staging. A systematic literature search was performed to identify studies involving the performance of MRE for the diagnosis of liver fibrosis. Pooled sensitivity, specificity, positive and negative likelihood ratios, the diagnostic odds ratio, and a summary receiver operating characteristic (ROC) curve were estimated by using a bivariate random effects model. Subgroup analyses were performed between different study characteristics. Twenty-six studies with a total of 3,200 patients were included in the meta-analysis. Pooled sensitivity and specificity of GRE-MRE and SE-EPI-MRE did not differ significantly. The area under the summary ROC curve for stage diagnosis of any (F ≥ 1), significant (F ≥ 2), advanced (F ≥ 3), and cirrhosis (F = 4) on GRE-MRE and SE-EPI-MRE were 0.93 versus 0.94, 0.95 versus 0.94, 0.94 versus 0.95, and 0.92 versus 0.93, respectively. Substantial heterogeneity was detected for both sequences. Both GRE and SE-EPI-MRE show high sensitivity and specificity for detection of each stage of liver fibrosis, without significant differences. Magnetic resonance elastography (MRE) may be useful for noninvasive evaluation of liver fibrosis in chronic liver disease. (orig.)

  14. Combination of chemical suppression techniques for dual suppression of fat and silicone at diffusion-weighted MR imaging in women with breast implants

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Dow-Mu; Hughes, J. [Royal Marsden Hospital, Department of Radiology, Sutton (United Kingdom); Blackledge, M.; Leach, M.O.; Collins, D.J. [Institute of Cancer Research, CR UK-EPSRC Cancer Imaging Centre, Sutton (United Kingdom); Burns, S. [Nuada 3T MRI Centre, London (United Kingdom); Stemmer, A.; Kiefer, B. [Siemens Healthcare, Erlangen (Germany)

    2012-12-15

    Silicone breast prostheses prove technically challenging when performing diffusion-weighted MR imaging in the breasts. We describe a combined fat and chemical suppression scheme to achieve dual suppression of fat and silicone, thereby improving the quality of diffusion-weighted images in women with breast implants. MR imaging was performed at 3.0 and 1.5 T in women with silicone breast implants using short-tau inversion recovery (STIR) fat-suppressed echo-planar (EPI) diffusion-weighted MR imaging (DWI) on its own and combined with the slice-select gradient-reversal (SSGR) technique. Imaging was performed using dedicated breast imaging coils. Complete suppression of the fat and silicone signal was possible at 3.0 T using EPI DWI with STIR and SSGR, evaluated with dedicated breast coils. However, a residual silicone signal was still perceptible at 1.5 T using this combined approach. Nevertheless, a further reduction in silicone signal at 1.5 T could be achieved by employing thinner slice partitions and the addition of the chemical-selective fat-suppression (CHESS) technique. DWI using combined STIR and SSGR chemical suppression techniques is feasible to eliminate or reduce silicone signal from prosthetic breast implants. (orig.)

  15. BOLD contrast fMRI of whole rodent tumour during air or carbogen breathing using echo-planar imaging at 1.5 T

    International Nuclear Information System (INIS)

    Landuyt, W.; Bogaert, W. van den; Lambin, P.; Hermans, R.; Bosmans, H.; Sunaert, S.; Beatse, E.; Farina, D.; Meijerink, M.; Zhang, H.; Marchal, G.

    2001-01-01

    The aim of this study was to evaluate the feasibility of functional MR imaging (fMRI) at 1.5 T, exploiting blood oxygenation level-dependent (BOLD) contrast, for detecting changes in whole-tumour oxygenation induced by carbogen (5% CO 2 +95% O 2 ) inhalation of the host. Adult WAG/Rij rats with rhabdomyosarcomas growing subcutaneously in the lower flank were imaged when tumours reached sizes between 1 and 11 cm 3 (n=12). Air and carbogen were alternatively supplied at 2 l/min using a snout mask. Imaging was done on a 1.5-T MR scanner using a T2*-weighted gradient-echo, echo-planar imaging (GE-EPI) sequence. Analysis of the whole-tumour EPI images was based on statistical parametric maps. Voxels with and without signal intensity changes (SIC) were recorded. Significance thresholds were set at p<0.05, corrected for multiple comparisons. In continuous air breathing condition, 3 of 12 tumours showed significant negative SIC and 1 tumour had a clear-cut positive SIC. The remaining tumours showed very little or no change. When switching to carbogen breathing, the SIC were significantly positive in 10 of 12 tumours. Negative SIC were present in 4 tumours, of which three were simultaneously characterised by positive SIC. The overall analysis indicated that 6 of the 12 tumours could be considered as strong positive responders to carbogen. Our research demonstrates the applicability of fMRI GE-EPI at 1.5 T to study whole-tumour oxygenation non-invasively. The observed negative SIC during air condition may reflect the presence of transient hypoxia during these measurements. Selection of tumours on the basis of their individual response to carbogen is possible, indicating a role of such non-invasive measurements for using tailor-made treatments. (orig.)

  16. Accelerated magnetic resonance diffusion tensor imaging of the median nerve using simultaneous multi-slice echo planar imaging with blipped CAIPIRINHA.

    Science.gov (United States)

    Filli, Lukas; Piccirelli, Marco; Kenkel, David; Boss, Andreas; Manoliu, Andrei; Andreisek, Gustav; Bhat, Himanshu; Runge, Val M; Guggenberger, Roman

    2016-06-01

    To investigate the feasibility of MR diffusion tensor imaging (DTI) of the median nerve using simultaneous multi-slice echo planar imaging (EPI) with blipped CAIPIRINHA. After federal ethics board approval, MR imaging of the median nerves of eight healthy volunteers (mean age, 29.4 years; range, 25-32) was performed at 3 T using a 16-channel hand/wrist coil. An EPI sequence (b-value, 1,000 s/mm(2); 20 gradient directions) was acquired without acceleration as well as with twofold and threefold slice acceleration. Fractional anisotropy (FA), mean diffusivity (MD) and quality of nerve tractography (number of tracks, average track length, track homogeneity, anatomical accuracy) were compared between the acquisitions using multivariate ANOVA and the Kruskal-Wallis test. Acquisition time was 6:08 min for standard DTI, 3:38 min for twofold and 2:31 min for threefold acceleration. No differences were found regarding FA (standard DTI: 0.620 ± 0.058; twofold acceleration: 0.642 ± 0.058; threefold acceleration: 0.644 ± 0.061; p ≥ 0.217) and MD (standard DTI: 1.076 ± 0.080 mm(2)/s; twofold acceleration: 1.016 ± 0.123 mm(2)/s; threefold acceleration: 0.979 ± 0.153 mm(2)/s; p ≥ 0.074). Twofold acceleration yielded similar tractography quality compared to standard DTI (p > 0.05). With threefold acceleration, however, average track length and track homogeneity decreased (p = 0.004-0.021). Accelerated DTI of the median nerve is feasible. Twofold acceleration yields similar results to standard DTI. • Standard DTI of the median nerve is limited by its long acquisition time. • Simultaneous multi-slice acquisition is a new technique for accelerated DTI. • Accelerated DTI of the median nerve yields similar results to standard DTI.

  17. The value of diffusion-weighted imaging for prediction of lasting deficit in acute stroke: an analysis of 134 patients with acute neurologic deficits

    International Nuclear Information System (INIS)

    Wiener, J.I.; King, J.T. Jr.; Moore, J.R.; Lewin, J.S.

    2001-01-01

    Acute stroke is one of the three major causes of death and disability in the United States. Now that new, and possibly effective therapy is becoming available, accurate, rapid diagnosis is important to provide timely treatment, while avoiding the risk of complications from unnecessary intervention. Our objective was to test the hypothesis that use of echo-planar (EPI) diffusion-weighted imaging (DWI) is more accurate than conventional T 2 weighted MRI in predicting progression to stroke in patients with acute ischemic neurologic deficits. We studied 134 patients presenting with acute neurologic deficits to a community hospital emergency room with both conventional MRI and DWI within 72 h of the onset of the acute deficit. We found DWI significantly more sensitive to permanent neurologic deficit at discharge (sensitivity 0.81) than conventional MRI (sensitivity 0.41). When available, DWI should be considered for routine use in patients being imaged for acute stroke. (orig.)

  18. Can a single-shot black-blood T2-weighted spin-echo echo-planar imaging sequence with sensitivity encoding replace the respiratory-triggered turbo spin-echo sequence for the liver? An optimization and feasibility study.

    Science.gov (United States)

    Hussain, Shahid M; De Becker, Jan; Hop, Wim C J; Dwarkasing, Soendersing; Wielopolski, Piotr A

    2005-03-01

    To optimize and assess the feasibility of a single-shot black-blood T2-weighted spin-echo echo-planar imaging (SSBB-EPI) sequence for MRI of the liver using sensitivity encoding (SENSE), and compare the results with those obtained with a T2-weighted turbo spin-echo (TSE) sequence. Six volunteers and 16 patients were scanned at 1.5T (Philips Intera). In the volunteer study, we optimized the SSBB-EPI sequence by interactively changing the parameters (i.e., the resolution, echo time (TE), diffusion weighting with low b-values, and polarity of the phase-encoding gradient) with regard to distortion, suppression of the blood signal, and sensitivity to motion. The influence of each change was assessed. The optimized SSBB-EPI sequence was applied in patients (N = 16). A number of items, including the overall image quality (on a scale of 1-5), were used for graded evaluation. In addition, the signal-to-noise ratio (SNR) of the liver was calculated. Statistical analysis was carried out with the use of Wilcoxon's signed rank test for comparison of the SSBB-EPI and TSE sequences, with P = 0.05 considered the limit for significance. The SSBB-EPI sequence was improved by the following steps: 1) less frequency points than phase-encoding steps, 2) a b-factor of 20, and 3) a reversed polarity of the phase-encoding gradient. In patients, the mean overall image quality score for the optimized SSBB-EPI (3.5 (range: 1-4)) and TSE (3.6 (range: 3-4)), and the SNR of the liver on SSBB-EPI (mean +/- SD = 7.6 +/- 4.0) and TSE (8.9 +/- 4.6) were not significantly different (P > .05). Optimized SSBB-EPI with SENSE proved to be feasible in patients, and the overall image quality and SNR of the liver were comparable to those achieved with the standard respiratory-triggered T2-weighted TSE sequence. (c) 2005 Wiley-Liss, Inc.

  19. Semiautomated spleen volumetry with diffusion-weighted MR imaging.

    Science.gov (United States)

    Lee, Jeongjin; Kim, Kyoung Won; Lee, Ho; Lee, So Jung; Choi, Sanghyun; Jeong, Woo Kyoung; Kye, Heewon; Song, Gi-Won; Hwang, Shin; Lee, Sung-Gyu

    2012-07-01

    In this article, we determined the relative accuracy of semiautomated spleen volumetry with diffusion-weighted (DW) MR images compared to standard manual volumetry with DW-MR or CT images. Semiautomated spleen volumetry using simple thresholding followed by 3D and 2D connected component analysis was performed with DW-MR images. Manual spleen volumetry was performed on DW-MR and CT images. In this study, 35 potential live liver donor candidates were included. Semiautomated volumetry results were highly correlated with manual volumetry results using DW-MR (r = 0.99; P volumetry was significantly shorter compared to that of manual volumetry with DW-MR (P volumetry with DW-MR images can be performed rapidly and accurately when compared with standard manual volumetry. Copyright © 2011 Wiley Periodicals, Inc.

  20. Effect of Task-Correlated Physiological Fluctuations and Motion in 2D and 3D Echo-Planar Imaging in a Higher Cognitive Level fMRI Paradigm.

    Science.gov (United States)

    Ladstein, Jarle; Evensmoen, Hallvard R; Håberg, Asta K; Kristoffersen, Anders; Goa, Pål E

    2016-01-01

    To compare 2D and 3D echo-planar imaging (EPI) in a higher cognitive level fMRI paradigm. In particular, to study the link between the presence of task-correlated physiological fluctuations and motion and the fMRI contrast estimates from either 2D EPI or 3D EPI datasets, with and without adding nuisance regressors to the model. A signal model in the presence of partly task-correlated fluctuations is derived, and predictions for contrast estimates with and without nuisance regressors are made. Thirty-one healthy volunteers were scanned using 2D EPI and 3D EPI during a virtual environmental learning paradigm. In a subgroup of 7 subjects, heart rate and respiration were logged, and the correlation with the paradigm was evaluated. FMRI analysis was performed using models with and without nuisance regressors. Differences in the mean contrast estimates were investigated by analysis-of-variance using Subject, Sequence, Day, and Run as factors. The distributions of group level contrast estimates were compared. Partially task-correlated fluctuations in respiration, heart rate and motion were observed. Statistically significant differences were found in the mean contrast estimates between the 2D EPI and 3D EPI when using a model without nuisance regressors. The inclusion of nuisance regressors for cardiorespiratory effects and motion reduced the difference to a statistically non-significant level. Furthermore, the contrast estimate values shifted more when including nuisance regressors for 3D EPI compared to 2D EPI. The results are consistent with 3D EPI having a higher sensitivity to fluctuations compared to 2D EPI. In the presence partially task-correlated physiological fluctuations or motion, proper correction is necessary to get expectation correct contrast estimates when using 3D EPI. As such task-correlated physiological fluctuations or motion is difficult to avoid in paradigms exploring higher cognitive functions, 2D EPI seems to be the preferred choice for higher

  1. Assessment of cerebral blood flow reserve using blood oxygen level-dependent echo planar imaging after acetazolamide administration in patients post-STA-MCA anastomosis surgery

    International Nuclear Information System (INIS)

    Zenke, Kiichiro; Kusunoki, Katsusuke; Saito, Masahiro; Sadamoto, Kazuhiko; Ohta, Shinsuke; Kumon, Yoshiaki; Sakaki, Saburo; Nagasawa, Kiyoshi

    1998-01-01

    Recently, blood oxygen level-dependent (BOLD) echo planar imaging (EPI) has been used to estimate blood flow changes. Theoretically, a relative decrement of deoxyhemoglobin in cerebral blood supply induces a MR signal change after neuronal stimulation. In the present study, we have attempted to evaluate CBF reserve capacity by the BOLD EPI in patients who had undergone STA-MCA anastomosis surgery. Then, we compared with the signal intensity changes obtained by this procedure with the CBF changes by Xe-SPECT after acetazolamide administration. Six patients, post-STA-MCA anastomosis surgery, were studied. Pre-operatively, MR signal intensity and CBF, by Xe-SPECT, were increased in the intact side after acetazolamide administration in all patients, and MR signal intensities were decreased in low flow regions after acetazolamide administration in all four patients in whom so-called steal phenomenon was demonstrated by Xe-SPECT study. Post-operatively, poor response was shown after acetazolamide administration with both Xe-SPECT and BOLD EPI in the two patients who had unsuccessful anastomoses. In the successfully anastomosed patients, improved vascular reactivity was demonstrated on BOLD EPI after acetazolamide administration in 3 of 4 patients in whom an improvement of vascular reactivity was demonstrated on Xe-SPECT. In one patient, MRI studies were considered to have technical artifacts, because the MR signal intensity did not increase, even in the intact side after acetazolamide administration. In conclusion, BOLD EPI after acetazolamide administration is an useful procedure for the pre- and post-operative of vascular reserve in patients with ischemic stroke. (author)

  2. Diffusion-weighted breast imaging at 3 T: Preliminary experience

    International Nuclear Information System (INIS)

    Nogueira, L.; Brandão, S.; Matos, E.; Nunes, R.G.; Ferreira, H.A.; Loureiro, J.; Ramos, I.

    2014-01-01

    Aim: To evaluate the performance of diffusion-weighted imaging (DWI) at 3 T for the detection and characterization of breast lesions. Materials and methods: Magnetic resonance imaging (MRI) of the breast, including DWI single-shot spin-echo echo planar images (SS-SE-EPI; eight b-values, 50–3000 s/mm 2 ), were acquired in women with a clinical indication for breast MRI. The exclusion criteria were as follows: (1) previous breast surgery, radiotherapy and/or chemotherapy within the prior 48 months (14 women); (2) only cystic lesions (one woman); (3) no detectable enhancing lesion at dynamic contrast-enhanced (DCE)-MRI (15 women); and (4) breast implants (four women). MRI results were corroborated by histopathology or imaging follow-up. Apparent diffusion coefficients (ADCs) were estimated for lesions and normal glandular tissue. Differences in the ADC between tissue types were evaluated and the sensitivity and specificity of the method calculated by receiver operating characteristics (ROC) curves. Results: The final cohort comprised 53 patients with 59 lesions. Histopathology was obtained for 58 lesions. One lesion was validated as benign on imaging follow-up. Mean ADCs of 1.99 ± 0.27 × 10 −3  mm 2 /s, 1.08 ± 0.25 × 10 −3  mm 2 /s, and 1.74 ± 0.35 × 10 −3  mm 2 /s were obtained for normal tissue, malignant, and benign lesions, respectively. Mean ADCs of malignancies were significantly lower than those of benign lesions (p < 0.001) and normal tissue (p < 0.0001). The sensitivity and specificity for stratifying lesions, considering an ADC threshold of 1.41 × 10 −3  mm 2 /s, were 94.3% and 87.5%, respectively; accuracy was 91.5%. Conclusion: DWI proved useful for the detection and characterization of breast lesions in the present sample. ADC values provide a high diagnostic performance for differentiation between benign and malignant lesions

  3. Diffusion weighted imaging in cystic fibrosis disease: beyond morphological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ciet, Pierluigi [Erasmus Medical Center, Department of Radiology, Rotterdam (Netherlands); Erasmus Medical Center - Sophia Children' s Hospital, Department of Paediatrics, Respiratory Medicine and Allergology, P.O. Box 2060, Rotterdam, Zuid-Holland (Netherlands); Ca' Foncello - General Hospital, Department of Radiology, Treviso (Italy); Serra, Goffredo; Catalano, Carlo [University of Rome ' ' Sapienza' ' , Department of Radiology, Rome (Italy); Andrinopoulou, Eleni Rosalina [Erasmus Medical Center, Department of Biostatistics, Rotterdam (Netherlands); Bertolo, Silvia; Morana, Giovanni [Ca' Foncello - General Hospital, Department of Radiology, Treviso (Italy); Ros, Mirco [Ca' Foncello Hospital, Department of Pediatrics, Treviso (Italy); Colagrande, Stefano [University of Florence - Azienda Ospedaliero-Universitaria Careggi, Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, Florence (Italy); Tiddens, Harm A.W.M. [Erasmus Medical Center, Department of Radiology, Rotterdam (Netherlands); Erasmus Medical Center - Sophia Children' s Hospital, Department of Paediatrics, Respiratory Medicine and Allergology, P.O. Box 2060, Rotterdam, Zuid-Holland (Netherlands)

    2016-11-15

    To explore the feasibility of diffusion-weighted imaging (DWI) to assess inflammatory lung changes in patients with Cystic Fibrosis (CF) CF patients referred for their annual check-up had spirometry, chest-CT and MRI on the same day. MRI was performed in a 1.5 T scanner with BLADE and EPI-DWI sequences (b = 0-600 s/mm{sup 2}). End-inspiratory and end-expiratory scans were acquired in multi-row scanners. DWI was scored with an established semi-quantitative scoring system. DWI score was correlated to CT sub-scores for bronchiectasis (CF-CT{sub BE}), mucus (CF-CT{sub mucus}), total score (CF-CT{sub total-score}), FEV{sub 1}, and BMI. T-test was used to assess differences between patients with and without DWI-hotspots. Thirty-three CF patients were enrolled (mean 21 years, range 6-51, 19 female). 4 % (SD 2.6, range 1.5-12.9) of total CF-CT alterations presented DWI-hotspots. DWI-hotspots coincided with mucus plugging (60 %), consolidation (30 %) and bronchiectasis (10 %). DWI{sub total-score} correlated (all p < 0.0001) positively to CF-CT{sub BE} (r = 0.757), CF-CT{sub mucus} (r = 0.759) and CF-CT{sub total-score} (r = 0.79); and negatively to FEV{sub 1} (r = 0.688). FEV{sub 1} was significantly higher (p < 0.0001) in patients without DWI-hotspots. DWI-hotspots strongly correlated with radiological and clinical parameters of lung disease severity. Future validation studies are needed to establish the exact nature of DWI-hotspots in CF patients. (orig.)

  4. Diffusion weighted imaging in cystic fibrosis disease: beyond morphological imaging

    International Nuclear Information System (INIS)

    Ciet, Pierluigi; Serra, Goffredo; Catalano, Carlo; Andrinopoulou, Eleni Rosalina; Bertolo, Silvia; Morana, Giovanni; Ros, Mirco; Colagrande, Stefano; Tiddens, Harm A.W.M.

    2016-01-01

    To explore the feasibility of diffusion-weighted imaging (DWI) to assess inflammatory lung changes in patients with Cystic Fibrosis (CF) CF patients referred for their annual check-up had spirometry, chest-CT and MRI on the same day. MRI was performed in a 1.5 T scanner with BLADE and EPI-DWI sequences (b = 0-600 s/mm 2 ). End-inspiratory and end-expiratory scans were acquired in multi-row scanners. DWI was scored with an established semi-quantitative scoring system. DWI score was correlated to CT sub-scores for bronchiectasis (CF-CT BE ), mucus (CF-CT mucus ), total score (CF-CT total-score ), FEV 1 , and BMI. T-test was used to assess differences between patients with and without DWI-hotspots. Thirty-three CF patients were enrolled (mean 21 years, range 6-51, 19 female). 4 % (SD 2.6, range 1.5-12.9) of total CF-CT alterations presented DWI-hotspots. DWI-hotspots coincided with mucus plugging (60 %), consolidation (30 %) and bronchiectasis (10 %). DWI total-score correlated (all p < 0.0001) positively to CF-CT BE (r = 0.757), CF-CT mucus (r = 0.759) and CF-CT total-score (r = 0.79); and negatively to FEV 1 (r = 0.688). FEV 1 was significantly higher (p < 0.0001) in patients without DWI-hotspots. DWI-hotspots strongly correlated with radiological and clinical parameters of lung disease severity. Future validation studies are needed to establish the exact nature of DWI-hotspots in CF patients. (orig.)

  5. Utility of echo-planar gradient-echo T2*-weighted MR images in patients with primary intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Yokoe, Toshio; Yoshida, Tazuka; Kobayashi, Nozomu; Nakamura, Yukihiro; Kubota, Kazuyuki

    2005-01-01

    Magnetic resonance imaging (MRI) has the potential to reveal residues of intracerabral hemorrhage (ICH) throughout life because of the high sensitivity for iron-containing compounds. Gradient-echo T2 * -weighted MR imaging (T2 * MRI) requiring short times for complete acquisition is known to detect small areas of signal loss without surrounding edema representing microbleeds (MBs). MBs in the basal ganglia including the thalami are suggested to be closely related to intracerebral atherosclerotic microangiopathy. We looked for more than 3 MBs in basal ganglia or thalamus of patients with and without episodes of previous ICH. Twelve patients with previous hemorrhagic stroke and 82 without were studied. Multiple MBs in those regions were significantly more frequent in patients with recurrent ICH. In addition, a 76-year-old woman with a history of hypertension was transferred to our hospital for treatment of head injury. She had multiple incidental old basal ganglionic and thalamic MBs. The patient had an asymptomatic primary ICH on computed tomography (CT) 3 months later. In conclusion, MR evidence of multiple MBs in the basal ganglia and thalamus might identify patients at a risk for new and recurrent ICH. Therefore, patients with multiple MBs in those regions should be treated for cerebrovascular risk factors, especially hypertension. Our results appear to confirm the utility of T2 * MRI in hemorrhagic stroke. (author)

  6. Multi-slice echo-planar spectroscopic MR imaging provides both global and local metabolite measures in multiple sclerosis

    DEFF Research Database (Denmark)

    Mathiesen, Henrik Kahr; Tscherning, Thomas; Sorensen, Per Soelberg

    2005-01-01

    MR spectroscopy (MRS) provides information about neuronal loss or dysfunction by measuring decreases in N-acetyl aspartate (NAA), a metabolite widely believed to be a marker of neuronal viability. In multiple sclerosis (MS), whole-brain NAA (WBNAA) has been suggested as a marker of disease...... progression and treatment efficacy in treatment trials, and the ability to measure NAA loss in specific brain regions early in the evolution of this disease may have prognostic value. Most spectroscopic studies to date have been limited to single voxels or nonlocalized measurements of WBNAA only......, measurements of metabolites in specific brain areas chosen after image acquisition (e.g., normal-appearing white matter (NAWM), gray matter (GM), and lesions) can be obtained. The identification and exclusion of regions that are inadequate for spectroscopic evaluation in global assessments can significantly...

  7. Role of diffusion weighted imaging in musculoskeletal infections: Current perspectives

    International Nuclear Information System (INIS)

    Kumar, Yogesh; Khaleel, Mohammad; Boothe, Ethan; Awdeh, Haitham; Wadhwa, Vibhor; Chhabra, Avneesh

    2017-01-01

    Accurate diagnosis and prompt therapy of musculoskeletal infections are important prognostic factors. In most cases, clinical history, examination and laboratory findings help one make the diagnosis, and routine magnetic resonance imaging (MRI) is useful to identify the extent of the disease process. However, in many situations, a routine MRI may not be specific enough especially if the patient cannot receive contrast intravenously, thereby delaying the appropriate treatment. Diffusion-weighted imaging (DWI) can help in many such situations by providing additional information, accurate characterization and defining the extent of the disease, so that prompt treatment can be initiated. In this article, we illustrate the imaging findings of the spectrum of musculoskeletal infections, emphasizing the role of DWI in this domain. (orig.)

  8. Role of diffusion weighted imaging in musculoskeletal infections: Current perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Yogesh [Yale New Haven Health System at Bridgeport Hospital, Department of Radiology, Bridgeport, CT (United States); Khaleel, Mohammad [UT Southwestern Medical Center, Department of Orthopaedic Surgery, Dallas, TX (United States); Boothe, Ethan; Awdeh, Haitham [UT Southwestern Medical Center, Department of Radiology, Dallas, TX (United States); Wadhwa, Vibhor [University of Arkansas for Medical Sciences, Department of Radiology, Little Rock, AR (United States); Chhabra, Avneesh [UT Southwestern Medical Center, Department of Orthopaedic Surgery, Dallas, TX (United States); UT Southwestern Medical Center, Department of Radiology, Dallas, TX (United States)

    2017-01-15

    Accurate diagnosis and prompt therapy of musculoskeletal infections are important prognostic factors. In most cases, clinical history, examination and laboratory findings help one make the diagnosis, and routine magnetic resonance imaging (MRI) is useful to identify the extent of the disease process. However, in many situations, a routine MRI may not be specific enough especially if the patient cannot receive contrast intravenously, thereby delaying the appropriate treatment. Diffusion-weighted imaging (DWI) can help in many such situations by providing additional information, accurate characterization and defining the extent of the disease, so that prompt treatment can be initiated. In this article, we illustrate the imaging findings of the spectrum of musculoskeletal infections, emphasizing the role of DWI in this domain. (orig.)

  9. Diffusion-weighted whole-body MR imaging with background body signal suppression: a feasibility study at 3.0 Tesla

    International Nuclear Information System (INIS)

    Muertz, Petra; Krautmacher, Carsten; Traeber, Frank; Schild, Hans H.; Willinek, Winfried A.; Gieseke, Juergen

    2007-01-01

    The purpose was to provide a diffusion-weighted whole-body magnetic resonance (MR) imaging sequence with background body signal suppression (DWIBS) at 3.0 Tesla. A diffusion-weighted spin-echo echo-planar imaging sequence was combined with the following methods of fat suppression: short TI inversion recovery (STIR), spectral attenuated inversion recovery (SPAIR), and spectral presaturation by inversion recovery (SPIR). Optimized sequences were implemented on a 3.0- and a 1.5-Tesla system and evaluated in three healthy volunteers and six patients with various lesions in the neck, chest, and abdomen on the basis of reconstructed maximum intensity projection images. In one patient with metastases of malignant melanoma, DWIBS was compared with 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET). Good fat suppression for all regions and diagnostic image quality in all cases could be obtained at 3.0 Tesla with the STIR method. In comparison with 1.5 Tesla, DWIBS images at 3.0 Tesla were judged to provide a better lesion-to-bone tissue contrast. However, larger susceptibility-induced image distortions and signal intensity losses, stronger blurring artifacts, and more pronounced motion artifacts degraded the image quality at 3.0 Tesla. A good correlation was found between the metastases as depicted by DWIBS and those as visualized by FDG-PET. DWIBS is feasible at 3.0 Tesla with diagnostic image quality. (orig.)

  10. Diffusion-weighted magnetic resonance imaging of the abdomen

    International Nuclear Information System (INIS)

    Schmid-Tannwald, C.; Reiser, M.F.; Zech, C.J.

    2011-01-01

    Diffusion-weighted magnetic resonance imaging (DW-MRI) provides qualitative and quantitative information of tissue cellularity and the integrity of cellular membranes. Since DW-MRI can be performed without ionizing radiation exposure and contrast media application, DW-MRI is a particularly attractive tool for patients with allergies for gadolinium-based contrast agents or renal failure. Recent technical developments have made DW-MRI a robust and feasible technique for abdominal imaging. DW-MRI provides information on the detection and characterization of focal liver lesions and can also visualize treatment effects and early changes in chronic liver disease. In addition DW-MRI is a promising tool for the detection of inflammatory changes in patients with Crohn's disease. (orig.) [de

  11. Diagnostic performance of conventional diffusion weighted imaging and diffusion tensor imaging for the liver fibrosis and inflammation

    International Nuclear Information System (INIS)

    Tosun, Mesude; Inan, Nagihan; Sarisoy, Hasan Tahsin; Akansel, Gur; Gumustas, Sevtap; Gürbüz, Yeşim; Demirci, Ali

    2013-01-01

    Objective: To evaluate the diagnostic accuracy of liver apparent diffusion coefficient (ADC) measured with conventional diffusion-weighted imaging (CDI) and diffusion tensor imaging (DTI) for the diagnosis of liver fibrosis and inflammation. Materials and methods: Thirty-seven patients with histologic diagnosis of chronic viral hepatitis and 34 healthy volunteers were included in this prospective study. All patients and healthy volunteers were examined by 3 T MRI. CDI and DTI were performed using a breath-hold single-shot echo-planar spin echo sequence with b factors of 0 and 1000 s/mm 2 . ADCs were obtained with CDI and DTI. Histopathologically, fibrosis of the liver parenchyma was classified with the use of a 5-point scale (0–4) and inflammation was classified with use of a 4-point scale (0–3) in accordance with the METAVIR score. Quantitatively, signal intensity and the ADCs of the liver parenchyma were compared between patients stratified by fibrosis stage and inflammation grade. Results: With a b factor of 1000 s/mm 2 , the signal intensity of the cirrhotic livers was significantly higher than those of the normal volunteers. In addition, ADCs reconstructed from CDI and DTI of the patients were significantly lower than those of the normal volunteers. Liver ADC values inversely correlated with fibrosis and inflammation but there was only statistically significant for inflammatory grading. CDI performed better than DTI for the diagnosis of fibrosis and inflammation. Conclusion: ADC values measured with CDI and DTI may help in the detection of liver fibrosis. They may also give contributory to the inflammatory grading, particularly in distinguishing high from low grade

  12. Diagnostic performance of conventional diffusion weighted imaging and diffusion tensor imaging for the liver fibrosis and inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Tosun, Mesude, E-mail: mesude.tosun@kocaeli.edu.tr [Department of Radiology, School of Medicine, University of Kocaeli (Turkey); Inan, Nagihan, E-mail: inannagihan@ekolay.net [Department of Radiology, School of Medicine, University of Kocaeli (Turkey); Sarisoy, Hasan Tahsin, E-mail: htssarisoy@yahoo.com [Department of Radiology, School of Medicine, University of Kocaeli (Turkey); Akansel, Gur, E-mail: gakansel@gmail.com [Department of Radiology, School of Medicine, University of Kocaeli (Turkey); Gumustas, Sevtap, E-mail: svtgumustas@hotmail.com [Department of Radiology, School of Medicine, University of Kocaeli (Turkey); Gürbüz, Yeşim, E-mail: yesimgurbuz2002@yahoo.com [Department of Pathology, School of Medicine, University of Kocaeli (Turkey); Demirci, Ali, E-mail: alidemirci@kocaeli.edu.tr [Department of Radiology, School of Medicine, University of Kocaeli (Turkey)

    2013-02-15

    Objective: To evaluate the diagnostic accuracy of liver apparent diffusion coefficient (ADC) measured with conventional diffusion-weighted imaging (CDI) and diffusion tensor imaging (DTI) for the diagnosis of liver fibrosis and inflammation. Materials and methods: Thirty-seven patients with histologic diagnosis of chronic viral hepatitis and 34 healthy volunteers were included in this prospective study. All patients and healthy volunteers were examined by 3 T MRI. CDI and DTI were performed using a breath-hold single-shot echo-planar spin echo sequence with b factors of 0 and 1000 s/mm{sup 2}. ADCs were obtained with CDI and DTI. Histopathologically, fibrosis of the liver parenchyma was classified with the use of a 5-point scale (0–4) and inflammation was classified with use of a 4-point scale (0–3) in accordance with the METAVIR score. Quantitatively, signal intensity and the ADCs of the liver parenchyma were compared between patients stratified by fibrosis stage and inflammation grade. Results: With a b factor of 1000 s/mm{sup 2}, the signal intensity of the cirrhotic livers was significantly higher than those of the normal volunteers. In addition, ADCs reconstructed from CDI and DTI of the patients were significantly lower than those of the normal volunteers. Liver ADC values inversely correlated with fibrosis and inflammation but there was only statistically significant for inflammatory grading. CDI performed better than DTI for the diagnosis of fibrosis and inflammation. Conclusion: ADC values measured with CDI and DTI may help in the detection of liver fibrosis. They may also give contributory to the inflammatory grading, particularly in distinguishing high from low grade.

  13. A variational image-based approach to the correction of susceptibility artifacts in the alignment of diffusion weighted and structural MRI.

    Science.gov (United States)

    Tao, Ran; Fletcher, P Thomas; Gerber, Samuel; Whitaker, Ross T

    2009-01-01

    This paper presents a method for correcting the geometric and greyscale distortions in diffusion-weighted MRI that result from inhomogeneities in the static magnetic field. These inhomogeneities may due to imperfections in the magnet or to spatial variations in the magnetic susceptibility of the object being imaged--so called susceptibility artifacts. Echo-planar imaging (EPI), used in virtually all diffusion weighted acquisition protocols, assumes a homogeneous static field, which generally does not hold for head MRI. The resulting distortions are significant, sometimes more than ten millimeters. These artifacts impede accurate alignment of diffusion images with structural MRI, and are generally considered an obstacle to the joint analysis of connectivity and structure in head MRI. In principle, susceptibility artifacts can be corrected by acquiring (and applying) a field map. However, as shown in the literature and demonstrated in this paper, field map corrections of susceptibility artifacts are not entirely accurate and reliable, and thus field maps do not produce reliable alignment of EPIs with corresponding structural images. This paper presents a new, image-based method for correcting susceptibility artifacts. The method relies on a variational formulation of the match between an EPI baseline image and a corresponding T2-weighted structural image but also specifically accounts for the physics of susceptibility artifacts. We derive a set of partial differential equations associated with the optimization, describe the numerical methods for solving these equations, and present results that demonstrate the effectiveness of the proposed method compared with field-map correction.

  14. Diffusion weighted MR imaging of transient ischemic attacks

    International Nuclear Information System (INIS)

    Chung, Jin Il; Kim, Dong Ik; Lee, Seung Ik; Yoon, Pyung Ho; Heo, Ji Hoe; Lee, Byung In

    2000-01-01

    To investigate the findings of diffusion-weighted MR imaging in patients with transient ischemic attacks (TIA). Between August 1996 and June 1999, 41 TIA patients (M:F =3D 28:13, mean age 57 (range, 27-75) years) with neurologic symptoms lasting less than 24 hours underwent diffusion-weighted MR imaging. The time interval between the onset of symptoms and MR examination was less than one week in 29 patients, from one week to one month in eight, and undetermined in four. Conventional MR and DWI were compared in terms of location of infarction and lesion size (less than 1 cm, 1-3 cm, greater than 3 cm), and we also determined the anatomical vascular territory of acute stroke lesions and possible etiologic mechanisms. The findings of DWI were normal in 24/41 patients (58.5%), while 15 (36.6%) showed acute ischemic lesions. The other two showed old lacunar infarcts. All acute and old DWI lesions were revealed by conventional MR imaging. Among the 15 acute stroke patients, seven had small vessel lacunar disease. In three patients, the infarction was less than 1 cm in size. Six patients showed large vessel infarction in the territory of the MCA, PCA, and PICA; the size of this was less than 1 cm in three patients, 1-3 cm in two, and more than 3 cm in one. In two patients, embolic infarction of cardiac origin in the territory of the MCA and AICA was diagnosed. The possible mechanism of TIA is still undetermined, but acute lesions revealed by DWI in TIA patients tend, in any case, to be small and multiple. (author)

  15. Pilot Assessment of Brain Metabolism in Perinatally HIV-Infected Youths Using Accelerated 5D Echo Planar J-Resolved Spectroscopic Imaging.

    Science.gov (United States)

    Iqbal, Zohaib; Wilson, Neil E; Keller, Margaret A; Michalik, David E; Church, Joseph A; Nielsen-Saines, Karin; Deville, Jaime; Souza, Raissa; Brecht, Mary-Lynn; Thomas, M Albert

    2016-01-01

    To measure cerebral metabolite levels in perinatally HIV-infected youths and healthy controls using the accelerated five dimensional (5D) echo planar J-resolved spectroscopic imaging (EP-JRESI) sequence, which is capable of obtaining two dimensional (2D) J-resolved spectra from three spatial dimensions (3D). After acquisition and reconstruction of the 5D EP-JRESI data, T1-weighted MRIs were used to classify brain regions of interest for HIV patients and healthy controls: right frontal white (FW), medial frontal gray (FG), right basal ganglia (BG), right occipital white (OW), and medial occipital gray (OG). From these locations, respective J-resolved and TE-averaged spectra were extracted and fit using two different quantitation methods. The J-resolved spectra were fit using prior knowledge fitting (ProFit) while the TE-averaged spectra were fit using the advanced method for accurate robust and efficient spectral fitting (AMARES). Quantitation of the 5D EP-JRESI data using the ProFit algorithm yielded significant metabolic differences in two spatial locations of the perinatally HIV-infected youths compared to controls: elevated NAA/(Cr+Ch) in the FW and elevated Asp/(Cr+Ch) in the BG. Using the TE-averaged data quantified by AMARES, an increase of Glu/(Cr+Ch) was shown in the FW region. A strong negative correlation (r 0.6) were shown between Asp/(Cr+Ch) and CD4 counts in the FG and BG. The complimentary results using ProFit fitting of J-resolved spectra and AMARES fitting of TE-averaged spectra, which are a subset of the 5D EP-JRESI acquisition, demonstrate an abnormal energy metabolism in the brains of perinatally HIV-infected youths. This may be a result of the HIV pathology and long-term combinational anti-retroviral therapy (cART). Further studies of larger perinatally HIV-infected cohorts are necessary to confirm these findings.

  16. Diffusion weighted imaging with circularly polarized oscillating gradients

    DEFF Research Database (Denmark)

    Lundell, Henrik; Sønderby, Casper Kaae; Dyrby, Tim B

    2015-01-01

    presented. One major hurdle in practical implementation is the low effective diffusion weighting provided at high frequency with limited gradient strength. THEORY: As a solution to the low diffusion weighting of OGSE, circularly polarized OGSE (CP-OGSE) is introduced. CP-OGSE gives a twofold increase...

  17. Clinical usefulness of diffusion-weighted imaging using low and high b-values to detect rectal cancer

    International Nuclear Information System (INIS)

    Hosonuma, Tomonori; Tozaki, Mitsuhiro; Ichiba, Noriatsu; Sakuma, Tohru; Hayashi, Daichi; Yanaga, Katsuhiko; Fukuda, Kunihiko

    2006-01-01

    The purpose of this study was to assess the potential role of diffusion-weighted imaging (DWI) using low and high b-values to detect rectal cancer. The subjects were 15 patients diagnosed endoscopically with rectal cancer (m in 1 patient, sm in 0, mp in 3, ss in 7, se in 1, a in 3) and 20 patients diagnosed endoscopically with colon cancer and no other lesions (control group). Magnetic resonance imaging was performed using a 1.5T system. DWI was performed in the axial plane using echo planar imaging sequence (repetition time/echo time 1200/66, field of view 306 X 350 mm, reconstruction matrix 156 x 256, pixel size 2.0 x 1.4 x 8.0 mm) and acquired with 2 b-values (50 and 800 s/mm 2 ). Low and high b-value DW images were analyzed visually. A lesion was positive by detection of a focal area of high signal in the rectum in high b-value images. The apparent diffusion coefficient (ADC) values of areas of high signal in high b-value images were calculated from the low and high b-value images. High b-value images enabled visualization of all 15 rectal cancers. In the control group, 13 cases were classified as negative and 7 cases as positive for rectal cancer. Sensitivity for detection of rectal cancer was 100% (15/15), and specificity was 65% (13/20). The mean ADC values in 7 patients with false-positive lesions and in 15 patients with rectal cancer were 1.374 x 10 -3 mm 2 /s (standard deviation [SD]: 0.157) and 1.194 x 10 -3 mm 2 /s (SD: 0.152), respectively (P=0.026). DWI with low and high b-values may be used to screen for rectal cancer. (author)

  18. Three-dimensional reconstruction of brain surface anatomy: technique comparison between flash and diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Sun Jianzhong; Wang Zhikang; Gong Xiangyang

    2006-01-01

    Objective: To compare two methods 3D flash and diffusion-weighted images (DWI) in reconstructing the brain surface anatomy, and to evaluate their displaying ability, advantages, limitations and clinical application. Methods: Thrity normal cases were prospectively examined with 3D flash sequence and echo-planar DWI. Three-dimensional images were acquired with volume-rendering on workstation. Brain surface structures were evaluated and scored by a group of doctors. Results: Main structures of brain surface were clearly displayed on three-dimensional images based on 3D flash sequence. Average scores were all above 2.50. For images based on DWI, precentral gyrus, postcentral gyrus, superior parietal lobule, superior frontal gyrus, precentral sulcus, central sulcus, postcentral sulcus, intraparietal sulcus and superior frontal sulcus were best shown with average scores between 2.60-2.75, However, supramarginal gyrus, angular gyrus, middle frontal gyrus, inferior frontal gyrus, superior temporal gyrus, lateral sulcus, inferior frontal sulcus could not be well shown, with average scores between 1.67-2.48. Middle temporal gyrus, inferior temporal gyrus, superior temporal sulcus and inferior temporal sulcus can only get scores from 0.88 to 1.27. Scores of images based on 3D flash were much higher than that based on DWI with distinct differentiations, P values were all below 0.01. Conclusion: Three-dimensional images based on 3D flash can really display brain surface structures. It is very useful for anatomic researches. Three-dimensional reconstruction of brain surface based on DWI is a worthy technique to display brain surface anatomy, especially for frontal and parietal structures. (authors)

  19. Cerebral Fat Embolism: Diffusion-weighted Magnetic Resonance Imaging Findings

    International Nuclear Information System (INIS)

    Ryu, C.W.

    2005-01-01

    PURPOSE: To demonstrate the diffusion-weighted (DWI) magnetic resonance imaging (MRI) findings, and the follow-up MRI findings, of cerebral fat embolism in the acute stage. MATERIAL AND METHODS: The initial DWI and clinical findings of six patients with cerebral fat embolism were retrospectively evaluated. The finding of DWI with a b-value of 1000 s/mm 2 (b=1000) was compared with that of DWI with a b-value of 0 s/mm 2 (b=0). In three patients who underwent follow-up MRI, the interval change of the lesion on T2-weighted images was investigated. RESULTS: The characteristic DWI finding of cerebral fat embolism in the acute stage was multiple, hyperintense, dot-like lesions disseminated in the brain. These lesions were distributed dominantly in the bilateral border-zone areas. Some lesions had an ancillary location including the cortex, deep white matter, basal ganglia, and cerebellum. The lesions were more intense and numerous in DWI (b=1000) than in DWI (b=0). The findings on the follow-up T2-weighted images were multiple confluent hyperintense lesions in the white matter with progression since the initial MRI. CONCLUSION: DWI could be a sensitive tool for detecting cerebral fat embolism in the acute phase. It is recommended that DWI be included in the initial evaluation of cerebral fat embolism with MRI

  20. Diffusion-weighted imaging in acute bacterial meningitis in infancy

    International Nuclear Information System (INIS)

    Jan, W.; Zimmerman, R.A.; Bilaniuk, L.T.; Hunter, J.V.; Simon, E.M.; Haselgrove, J.

    2003-01-01

    Bacterial meningitis is frequently fatal or leads to severe neurological impairment. Complications such as vasculitis, resulting in infarcts, should be anticipated and dealt with promptly. Our aim was to demonstrate the complications of meningitis by diffusion weighted imaging (DWI) in patients who deteriorated despite therapy. We studied 13 infants between the ages of 1 day and 32 months who presented with symptoms ranging from fever and vomiting to seizures, encephalopathy and coma due to bacterial meningitis, performing MRI, including DWI, 2-5 days after presentation. Multiple infarcts were found on DWI in 12 of the 13, most commonly in the frontal lobes (in 10). Global involvement was seen in four children, three of whom died; the fourth had a very poor outcome. In one case abnormalities on DWI were due to subdural empyemas. We diagnosed vasculitis in three of five patients studied with MRA. We think DWI an important part of an MRI study in infants with meningitis. Small cortical or deep white-matter infarcts due to septic vasculitis can lead to tissue damage not easily recognized on routine imaging and DWI can be used to confirm that extra-axial collections represent empyemas. (orig.)

  1. Diffusion-weighted imaging in acute bacterial meningitis in infancy

    Energy Technology Data Exchange (ETDEWEB)

    Jan, W.; Zimmerman, R.A.; Bilaniuk, L.T.; Hunter, J.V.; Simon, E.M.; Haselgrove, J. [Department of Radiology, Children' s Hospital of Philadelphia, 34th Street and Civic Center Boulevard, PA 19104, Philadelphia (United States)

    2003-09-01

    Bacterial meningitis is frequently fatal or leads to severe neurological impairment. Complications such as vasculitis, resulting in infarcts, should be anticipated and dealt with promptly. Our aim was to demonstrate the complications of meningitis by diffusion weighted imaging (DWI) in patients who deteriorated despite therapy. We studied 13 infants between the ages of 1 day and 32 months who presented with symptoms ranging from fever and vomiting to seizures, encephalopathy and coma due to bacterial meningitis, performing MRI, including DWI, 2-5 days after presentation. Multiple infarcts were found on DWI in 12 of the 13, most commonly in the frontal lobes (in 10). Global involvement was seen in four children, three of whom died; the fourth had a very poor outcome. In one case abnormalities on DWI were due to subdural empyemas. We diagnosed vasculitis in three of five patients studied with MRA. We think DWI an important part of an MRI study in infants with meningitis. Small cortical or deep white-matter infarcts due to septic vasculitis can lead to tissue damage not easily recognized on routine imaging and DWI can be used to confirm that extra-axial collections represent empyemas. (orig.)

  2. Diffusion-weighted MR imaging in transient ischaemic attacks

    Energy Technology Data Exchange (ETDEWEB)

    Lamy, C.; Calvet, D.; Domigo, V.; Mas, J. [de l' Hopital Sainte-Anne, Service de Neurologie, Paris Cedex 14 (France); Oppenheim, C.; Naggara, O.; Meder, J.F. [Hoepital Sainte-Anne, Departement d' Imagere Morphologique et Fonchonnille, Paris (France)

    2006-05-15

    The purpose of this study was to determine frequency and the characteristics of diffusion-weighted imaging (DWI) abnormalities in patients with transient ischaemic attack (TIA). We analysed data of 98 consecutive patients (mean age: 60.6{+-}15.4 years, 56 men) admitted between January 2003 and April 2004 for TIA. Age, gender, symptom type and duration, delay from onset to magnetic resonance imaging (MRI), probable or possible TIA and cause of TIA were compared in patients with (DWI+) and without (DWI-) lesions on DWI. Volume and apparent diffusion coefficient (ADC) values of DWI lesions were computed. DWI revealed ischaemic lesions in 34 patients (34.7%). Lesions were small (mean volume: 1.9 cm{sup 3}{+-}3.3), and ADC was moderately decreased (mean ADC ratio: 79.5%). The diagnosis of TIA was considered as probable in all DWI+ patients. A multiple logistic regression model demonstrated that TIA duration greater than or equal to 60 min (OR, 7.6; 95% CI, 2.3-25.7), aphasia (OR, 9.2; 95% CI, 2.7-31.4) and motor deficit (OR, 5.1; 95% CI, 1.5-17.8) were independent predictors of DWI lesions. Prolonged TIA duration, aphasia and motor deficits are associated with DWI lesions. More than half of TIA patients with symptoms lasting more than 60 min have DWI lesions. (orig.)

  3. Diffusion-weighted MR imaging in transient ischaemic attacks

    International Nuclear Information System (INIS)

    Lamy, C.; Calvet, D.; Domigo, V.; Mas, J.; Oppenheim, C.; Naggara, O.; Meder, J.F.

    2006-01-01

    The purpose of this study was to determine frequency and the characteristics of diffusion-weighted imaging (DWI) abnormalities in patients with transient ischaemic attack (TIA). We analysed data of 98 consecutive patients (mean age: 60.6±15.4 years, 56 men) admitted between January 2003 and April 2004 for TIA. Age, gender, symptom type and duration, delay from onset to magnetic resonance imaging (MRI), probable or possible TIA and cause of TIA were compared in patients with (DWI+) and without (DWI-) lesions on DWI. Volume and apparent diffusion coefficient (ADC) values of DWI lesions were computed. DWI revealed ischaemic lesions in 34 patients (34.7%). Lesions were small (mean volume: 1.9 cm 3 ±3.3), and ADC was moderately decreased (mean ADC ratio: 79.5%). The diagnosis of TIA was considered as probable in all DWI+ patients. A multiple logistic regression model demonstrated that TIA duration greater than or equal to 60 min (OR, 7.6; 95% CI, 2.3-25.7), aphasia (OR, 9.2; 95% CI, 2.7-31.4) and motor deficit (OR, 5.1; 95% CI, 1.5-17.8) were independent predictors of DWI lesions. Prolonged TIA duration, aphasia and motor deficits are associated with DWI lesions. More than half of TIA patients with symptoms lasting more than 60 min have DWI lesions. (orig.)

  4. Diffusion-weighted MR imaging of transplanted kidneys: Preliminary report.

    Science.gov (United States)

    Wypych-Klunder, Katarzyna; Adamowicz, Andrzej; Lemanowicz, Adam; Szczęsny, Wojciech; Włodarczyk, Zbigniew; Serafin, Zbigniew

    2014-01-01

    An aim of this study was to assess the feasibility of DWI in the early period after kidney transplantation. We also aimed to compare ADC and eADC values in the cortex and medulla of the kidney, to estimate image noise and variability of measurements, and to verify possible relation between selected labolatory results and diffusion parameters in the transplanted kidney. Examinations were performed using a 1.5 T MR unit. DWI (SE/EPI) was performed in the axial plane using b-values of 600 and 1000. ADC and eADC measurements were performed in four regions of interest within the renal cortex and in three regions within the medulla. Relative variability of results and signal-to-noise ratio (SNR) were calculated. The analysis included 15 patients (mean age 52 years). The mean variability of ADC was significantly lower than that of eADC (6.8% vs. 10.8%, respectively; p30 ml/min./1.73 m(2) (p<0.05). Diffusion-weighted imaging of transplanted kidneys is technically challenging, especially in patients in the early period after transplantation. From a technical point of view, the best quality parameters offer quality ADC measurement in the renal cortex using b1000. ADC and eADC values in the renal cortex measured at b1000 present a relationship with eGFR.

  5. Diffusion-weighted imaging in normal fetal brain maturation

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J.F. [University Children' s Hospital UKBB, Department of Pediatric Radiology, Basel (Switzerland); Confort-Gouny, S.; Le Fur, Y.; Viout, P.; Cozzone, P. [UMR-CNRS 6612, Faculte de Medecine, Universite de la Mediterranee, Centre de Resonance Magnetique Biologique et Medicale, Marseille (France); Bennathan, M.; Chapon, F.; Fogliarini, C.; Girard, N. [Universite de la Mediterranee, Department of Neuroradiology AP-HM Timone, Marseille (France)

    2007-09-15

    Diffusion-weighted imaging (DWI) provides information about tissue maturation not seen on conventional magnetic resonance imaging. The aim of this study is to analyze the evolution over time of the apparent diffusion coefficient (ADC) of normal fetal brain in utero. DWI was performed on 78 fetuses, ranging from 23 to 37 gestational weeks (GW). All children showed at follow-up a normal neurological evaluation. ADC values were obtained in the deep white matter (DWM) of the centrum semiovale, the frontal, parietal, occipital and temporal lobe, in the cerebellar hemisphere, the brainstem, the basal ganglia (BG) and the thalamus. Mean ADC values in supratentorial DWM areas (1.68 {+-} 0.05 mm{sup 2}/s) were higher compared with the cerebellar hemisphere (1.25 {+-} 0.06 mm{sup 2}/s) and lowest in the pons (1.11 {+-} 0.05 mm{sup 2}/s). Thalamus and BG showed intermediate values (1.25 {+-} 0.04 mm{sup 2}/s). Brainstem, cerebellar hemisphere and thalamus showed a linear negative correlation with gestational age. Supratentorial areas revealed an increase in ADC values, followed by a decrease after the 30th GW. This study provides a normative data set that allows insights in the normal fetal brain maturation in utero, which has not yet been observed in previous studies on premature babies. (orig.)

  6. Diffusion-weighted imaging in characterization of cystic pancreatic lesions

    Energy Technology Data Exchange (ETDEWEB)

    Sandrasegaran, K., E-mail: ksandras@iupui.edu [Department of Radiology, Indiana University School of Medicine, Indianapolis, IN (United States); Akisik, F.M.; Patel, A.A.; Rydberg, M. [Department of Radiology, Indiana University School of Medicine, Indianapolis, IN (United States); Cramer, H.M.; Agaram, N.P. [Department of Pathology, Indiana University School of Medicine, Indianapolis, IN (United States); Schmidt, C.M. [Department of Surgery, Indiana University School of Medicine, Indianapolis, IN (United States)

    2011-09-15

    Aim: To evaluate whether apparent diffusion coefficient (ADC) measurements from diffusion-weighted imaging (DWI) can characterize or predict the malignant potential of cystic pancreatic lesions. Materials and methods: Retrospective review of the magnetic resonance imaging (MRI) database over a 2-year period revealed 136 patients with cystic pancreatic lesions. Patients with DWI studies and histological confirmation of cystic mass were included. In patients with known pancreatitis, lesions with amylase content of >1000 IU/l that resolved on subsequent scans were included as pseudocysts. ADC of cystic lesions was measured by two independent reviewers. These values were then compared to categorize these lesions as benign or malignant using conventional MRI sequences. Results: Seventy lesions were analysed: adenocarcinoma (n = 4), intraductal papillary mucinous neoplasm (IPMN; n = 28), mucinous cystic neoplasm (MCN; n = 9), serous cystadenoma (n = 16), and pseudocysts (n = 13). There was no difference between ADC values of malignant and non-malignant lesions (p = 0.06), between mucinous and serous tumours (p = 0.12), or between IPMN and MCN (p = 0.42). ADC values for low-grade IPMN were significantly higher than those for high-grade or invasive IPMN (p = 0.03). Conclusion: ADC values may be helpful in deciding the malignant potential of IPMN. However, they are not useful in differentiating malignant from benign lesions or for characterizing cystic pancreatic lesions.

  7. Diffusion-weighted imaging of the musculoskeletal system in humans

    International Nuclear Information System (INIS)

    Baur, A.; Reiser, M.F.

    2000-01-01

    This article reviews the principles of diffusion-weighted imaging (DWI) and recent results in DWI of the musculoskeletal system. The potential of DWI in the diagnosis of pathology of the musculoskeletal system is discussed. DWI is a relatively new MR imaging technique that has already been established in neuroradiology, especially in the early detection of brain ischemia. The random motion of water protons on a molecular basis can be measured with DWI. To date DWI of the abdomen and of the musculoskeletal system has only been employed in scientific studies, but first results indicate that it may also be beneficial in these fields. Different diffusion characteristics have been found in normal tissues such as muscle, fat and bone marrow. Also, pathologic entities such as neoplasms, post-therapeutic soft tissue changes and inflammatory processes can be differentiated. Normal muscle shows significantly higher diffusion values than subcutaneous fat and bone marrow, due to a higher mobility of water protons within muscle. Soft tissue tumors exhibit a significantly lower diffusion value compared with post-therapeutic soft tissue changes and inflammatory processes. Necrotic tumor tissue can be distinguished from viable tumor due to significantly higher diffusion of water protons within necrotic tissue. (orig.)

  8. In vivo high angular resolution diffusion-weighted imaging of mouse brain at 16.4 Tesla.

    Directory of Open Access Journals (Sweden)

    Othman I Alomair

    Full Text Available Magnetic Resonance Imaging (MRI of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T1 and shorter T2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imaging (DWI sequence is often used in high-field rodent brain MRI due to its immunity to these artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high angular resolution diffusion imaging (HARDI with strong diffusion weighting (b >3000 s/mm2 and at least 30 diffusion-encoding directions are required. However, this results in long image acquisition times unsuitable for live animal imaging. In this study, we describe the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner sequence with echo-planar imaging (EPI readout. EPI segmentation and partial Fourier encoding acceleration were applied to reduce the echo time (TE, thereby minimizing signal decay and distortion artefacts while maintaining a reasonably short acquisition time. The final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI, b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 μm2 in-plane resolution, 0.6 mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffusion tensor imaging (DTI derived parameters were measured. High-quality images with high spatial and angular resolution, low distortion and low variability in DTI-derived parameters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of white

  9. Diffusion Weighted Imaging in Acute Attacks of Multiple Sclerosis

    International Nuclear Information System (INIS)

    Davoudi, Yasmin; Foroughipour, Mohsen; Torabi, Reza; Layegh, Parvaneh; Matin, Nassim; Shoeibi, Ali

    2016-01-01

    Multiple sclerosis (MS) is one of the most common autoimmune disorders of the central nervous system. In spite of various imaging modalities, the definitive diagnosis of MS remains challenging. This study was designed to evaluate the usefulness of diffusion weighted imaging (DWI) in the diagnosis of acute MS attack and to compare its results with contrast enhanced MRI (CE-MRI). In this cross sectional study, seventy patients with definite diagnosis of relapsing-remitting MS were included. CE-MRI using 0.1 mmol/kg gadolinium as well as DWI sequences were performed for all patients. The percentage of patients with positive DWI was compared with the results of CE-MRI and the consistency between the two imaging modalities was evaluated. Moreover, the relationship between the time of onset of patient’s symptoms and test results for both methods were investigated. CE-MRI yielded positive results for 61 (87%) patients and DWI yielded positive for 53 (76%) patients. In fifty patients (71.42%), both tests were positive and in six cases (8.57%), both were negative. The test results of three patients turned out to be positive in DWI, while they tested negative in CE-MRI. There was no significant relationship between the results of CE-MRI as well as DWI and the time of imaging from the onset of symptoms. These data indicate that while CE-MRI will depict more positive results, there are cases in which DWI will show a positive result while CE-MRI is negative. We suggest that the combination of these two imaging modalities might yield more positive results in diagnosing acute MS attack giving rise to a more accurate diagnosis

  10. High signal in bone marrow at diffusion-weighted imaging with body background suppression (DWIBS) in healthy children

    Energy Technology Data Exchange (ETDEWEB)

    Ording Mueller, Lil-Sofie; Avenarius, Derk [University Hospital North Norway, Department of Radiology, Tromsoe (Norway); Olsen, Oeystein E. [Great Ormond Street Hospital for Children, Department of Radiology, London (United Kingdom)

    2011-02-15

    In our experience, diffusion-weighted imaging with body background suppression (DWIBS) is hard to interpret in children who commonly have foci of restricted diffusion in their skeletons unrelated to pathology, sometimes in an asymmetrical pattern. This raises serious concern about the accuracy of DWIBS in cancer staging in children. To describe the signal distribution at DWIBS in the normal developing lumbar spine and pelvic skeleton. Forty-two healthy children underwent an MR DWIBS sequence of the abdomen and pelvis. An axial short-tau inversion-recovery (STIR) echo-planar imaging (EPI) pulse sequence was used. Two radiologists did a primary review of the images and based on these preliminary observations, separate scoring systems for the lumbar spine, pelvis and proximal femoral epiphyses/femoral heads were devised. Visual evaluation of the images was then performed by the two radiologists in consensus. The scoring was repeated separately 2 months later by a third radiologist. Restricted diffusion was defined as areas of high signal compared to the background. Coronal maximum intensity projection (MIP) reformats were used to assess the vertebral bodies. For the pelvis, the extension of high signal for each bone was given a score of 0 to 4. Cohen's Kappa interobserver agreement coefficients of signal distribution and asymmetry were calculated. All children had areas of high signal, both within the lumbar vertebral bodies and within the pelvic skeleton. Three patterns of signal distribution were seen in the lumbar spine, but no specific pattern was seen in the pelvis. There was a tendency toward a reduction of relative area of high signal within each bone with age, but also a widespread interindividual variation. Restricted diffusion is a normal finding in the pelvic skeleton and lumbar spine in children with an asymmetrical distribution seen in 48% of normal children in this study. DWIBS should be used with caution for cancer staging in children as this could

  11. High signal in bone marrow at diffusion-weighted imaging with body background suppression (DWIBS) in healthy children

    International Nuclear Information System (INIS)

    Ording Mueller, Lil-Sofie; Avenarius, Derk; Olsen, Oeystein E.

    2011-01-01

    In our experience, diffusion-weighted imaging with body background suppression (DWIBS) is hard to interpret in children who commonly have foci of restricted diffusion in their skeletons unrelated to pathology, sometimes in an asymmetrical pattern. This raises serious concern about the accuracy of DWIBS in cancer staging in children. To describe the signal distribution at DWIBS in the normal developing lumbar spine and pelvic skeleton. Forty-two healthy children underwent an MR DWIBS sequence of the abdomen and pelvis. An axial short-tau inversion-recovery (STIR) echo-planar imaging (EPI) pulse sequence was used. Two radiologists did a primary review of the images and based on these preliminary observations, separate scoring systems for the lumbar spine, pelvis and proximal femoral epiphyses/femoral heads were devised. Visual evaluation of the images was then performed by the two radiologists in consensus. The scoring was repeated separately 2 months later by a third radiologist. Restricted diffusion was defined as areas of high signal compared to the background. Coronal maximum intensity projection (MIP) reformats were used to assess the vertebral bodies. For the pelvis, the extension of high signal for each bone was given a score of 0 to 4. Cohen's Kappa interobserver agreement coefficients of signal distribution and asymmetry were calculated. All children had areas of high signal, both within the lumbar vertebral bodies and within the pelvic skeleton. Three patterns of signal distribution were seen in the lumbar spine, but no specific pattern was seen in the pelvis. There was a tendency toward a reduction of relative area of high signal within each bone with age, but also a widespread interindividual variation. Restricted diffusion is a normal finding in the pelvic skeleton and lumbar spine in children with an asymmetrical distribution seen in 48% of normal children in this study. DWIBS should be used with caution for cancer staging in children as this could lead

  12. Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging

    International Nuclear Information System (INIS)

    Zonari, Paolo; Baraldi, Patrizia; Crisi, Girolamo

    2007-01-01

    Diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI) and MR spectroscopy (MRS) provide useful data for tumor evaluation. To assess the contribution of these multimodal techniques in grading glial neoplasms, we compared the value of DWI, PWI and MRS in the evaluation of histologically proven high- and low-grade gliomas in a population of 105 patients. Independently for each modality, the following variables were used to compare the tumors: minimum apparent diffusion coefficient (ADC) and maximum relative cerebral blood volume (rCBV) normalized values between tumor and healthy tissue, maximum Cho/Cr ratio and minimum NAA/Cr ratio in tumor, and scored lactate and lipid values in tumor. The Mann-Whitney and Wilcoxon tests were employed to compare DWI, PWI and MRS between tumor types. Logistic regression analysis was used to determine which parameters best increased the diagnostic accuracy in terms of sensitivity, specificity, and positive and negative predictive values. ROC curves were determined for parameters with high sensitivity and specificity to identify threshold values to separate high- from low-grade lesions. Statistically significant differences were found for rCBV tumor/normal tissue ratio, and NAA/Cr ratio in tumor and Cho/Cr ratio in tumor between low- and high-grade tumors. The best performing single parameter for group classification was the normalized rCBV value; including all parameters, statistical significance was reached by rCBV tumor/normal tissue ratio, NAA/Cr tumor ratio and lactate. From the ROC curves, a high probability for a neoplasm to be a high-grade lesion was associated with a rCBV tumor/normal tissue ratio of >1.16 and NAA/Cr tumor ratio of <0.44. Combining PWI and MRS with conventional MR imaging increases the accuracy of the attribution of malignancy to glial neoplasms. The best performing parameter was found to be the perfusion level. (orig.)

  13. Contrast-enhanced CT and diffusion-weighted MR imaging: Performance as a prognostic factor in patients with pancreatic ductal adenocarcinoma

    International Nuclear Information System (INIS)

    Fukukura, Yoshihiko; Takumi, Koji; Higashi, Michiyo; Shinchi, Hiroyuki; Kamimura, Kiyohisa; Yoneyama, Tomohide; Tateyama, Akihiro

    2014-01-01

    Objective: To determine whether contrast enhancement of CT and apparent diffusion coefficient on diffusion-weighted MR imaging are important parameters that can predict outcomes for patients with pancreatic ductal adenocarcinoma. Materials and methods: Ninety-two patients with histologically confirmed pancreatic ductal adenocarcinoma who underwent quadriphasic CT (including unenhanced, pancreatic parenchymal, portal venous and delayed phases) and fat-suppressed single-shot echo-planar diffusion-weighted MR imaging at 3.0 T were retrospectively analyzed to investigate prognostic factors. Overall survival curves were drawn using the Kaplan–Meier method. Effects on survival of variables including age, sex, tumor location, tumor size, TNM stage, carbohydrate antigen 19-9, carcinoembryonic antigen, treatment, tumor contrast enhancement and apparent diffusion coefficient values were analyzed in univariate analysis using the log-rank test. Variables were analyzed in multivariate analyses using the Cox proportional hazards regression model. Results: Median survival for the entire patient population was 18.2 months. Higher contrast enhancement during all phases was associated with significantly longer overall survival (P < 0.001 for all phases). The difference in overall survival between groups divided by median apparent diffusion coefficient value was not significant (P = 0.672). TNM stage (P = 0.026) and tumor contrast enhancement on CT (P = 0.027) were significantly related to survival in multivariate analysis. Conclusions: Poor enhancement of pancreatic adenocarcinomas on enhanced CT is associated with reduced patient survival

  14. Contrast-enhanced CT and diffusion-weighted MR imaging: Performance as a prognostic factor in patients with pancreatic ductal adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fukukura, Yoshihiko, E-mail: fukukura@m.kufm.kagoshima-u.ac.jp [Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544 (Japan); Takumi, Koji [Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544 (Japan); Higashi, Michiyo [Department of Human Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544 (Japan); Shinchi, Hiroyuki [Department of Surgical Oncology and Digestive Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544 (Japan); Kamimura, Kiyohisa; Yoneyama, Tomohide; Tateyama, Akihiro [Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544 (Japan)

    2014-04-15

    Objective: To determine whether contrast enhancement of CT and apparent diffusion coefficient on diffusion-weighted MR imaging are important parameters that can predict outcomes for patients with pancreatic ductal adenocarcinoma. Materials and methods: Ninety-two patients with histologically confirmed pancreatic ductal adenocarcinoma who underwent quadriphasic CT (including unenhanced, pancreatic parenchymal, portal venous and delayed phases) and fat-suppressed single-shot echo-planar diffusion-weighted MR imaging at 3.0 T were retrospectively analyzed to investigate prognostic factors. Overall survival curves were drawn using the Kaplan–Meier method. Effects on survival of variables including age, sex, tumor location, tumor size, TNM stage, carbohydrate antigen 19-9, carcinoembryonic antigen, treatment, tumor contrast enhancement and apparent diffusion coefficient values were analyzed in univariate analysis using the log-rank test. Variables were analyzed in multivariate analyses using the Cox proportional hazards regression model. Results: Median survival for the entire patient population was 18.2 months. Higher contrast enhancement during all phases was associated with significantly longer overall survival (P < 0.001 for all phases). The difference in overall survival between groups divided by median apparent diffusion coefficient value was not significant (P = 0.672). TNM stage (P = 0.026) and tumor contrast enhancement on CT (P = 0.027) were significantly related to survival in multivariate analysis. Conclusions: Poor enhancement of pancreatic adenocarcinomas on enhanced CT is associated with reduced patient survival.

  15. Evaluation of dual-source parallel RF excitation for diffusion-weighted whole-body MR imaging with background body signal suppression at 3.0 T.

    Science.gov (United States)

    Mürtz, Petra; Kaschner, Marius; Träber, Frank; Kukuk, Guido M; Büdenbender, Sarah M; Skowasch, Dirk; Gieseke, Jürgen; Schild, Hans H; Willinek, Winfried A

    2012-11-01

    To evaluate the use of dual-source parallel RF excitation (TX) for diffusion-weighted whole-body MRI with background body signal suppression (DWIBS) at 3.0 T. Forty consecutive patients were examined on a clinical 3.0-T MRI system using a diffusion-weighted (DW) spin-echo echo-planar imaging sequence with a combination of short TI inversion recovery and slice-selective gradient reversal fat suppression. DWIBS of the neck (n=5), thorax (n=8), abdomen (n=6) and pelvis (n=21) was performed both with TX (2:56 min) and with standard single-source RF excitation (4:37 min). The quality of DW images and reconstructed inverted maximum intensity projections was visually judged by two readers (blinded to acquisition technique). Signal homogeneity and fat suppression were scored as "improved", "equal", "worse" or "ambiguous". Moreover, the apparent diffusion coefficient (ADC) values were measured in muscles, urinary bladder, lymph nodes and lesions. By the use of TX, signal homogeneity was "improved" in 25/40 and "equal" in 15/40 cases. Fat suppression was "improved" in 17/40 and "equal" in 23/40 cases. These improvements were statistically significant (p3.0 T with respect to signal homogeneity and fat suppression, reduced scan time by approximately one-third, and did not influence the measured ADC values. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Diffusion-weighted MR imaging of the normal fetal lung

    International Nuclear Information System (INIS)

    Balassy, Csilla; Kasprian, Gregor; Weber, Michael; Hoermann, Marcus; Bankier, Alexander; Herold, Christian J.; Prayer, Daniela; Brugger, Peter C.; Csapo, Bence; Bammer, Roland

    2008-01-01

    To quantify apparent diffusion coefficient (ADC) changes in fetuses with normal lungs and to determine whether ADC can be used in the assessment of fetal lung development. In 53 pregnancies (20-37th weeks of gestation), we measured ADC on diffusion-weighted imaging (DWI) in the apical, middle, and basal thirds of the right lung. ADCs were correlated with gestational age. Differences between the ADCs were assessed. Fetal lung volumes were measured on T2-weighted sequences and correlated with ADCs and with age. ADCs were 2.13 ± 0.44 μm 2 /ms (mean ± SD) in the apex, 1.99 ± 0.42 μm 2 /ms (mean ± SD) in the middle third, and 1.91 ± 0.41 μm 2 /ms (mean ± SD) in the lung base. Neither the individual ADC values nor average ADC values showed a significant correlation with gestational age or with lung volumes. Average ADCs decreased significantly from the lung apex toward the base. Individual ADCs showed little absolute change and heterogeneity. Lung volumes increased significantly during gestation. We have not been able to identify a pattern of changes in the ADC values that correlate with lung maturation. Furthermore, the individual, gravity-related ADC changes are subject to substantial variability and show nonuniform behavior. ADC can therefore not be used as an indicator of lung maturity. (orig.)

  17. Diffusion-weighted MR imaging of the normal fetal lung

    Energy Technology Data Exchange (ETDEWEB)

    Balassy, Csilla; Kasprian, Gregor; Weber, Michael; Hoermann, Marcus; Bankier, Alexander; Herold, Christian J.; Prayer, Daniela [Medical University of Vienna, Department of Radiology, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Center of Anatomy and Cell Biology, Vienna (Austria); Csapo, Bence [Medical University of Vienna, Department of Obstetrics and Gyneocology, Vienna (Austria); Bammer, Roland [University of Stanford, Department of Radiology, Stanford, CA (United States)

    2008-04-15

    To quantify apparent diffusion coefficient (ADC) changes in fetuses with normal lungs and to determine whether ADC can be used in the assessment of fetal lung development. In 53 pregnancies (20-37th weeks of gestation), we measured ADC on diffusion-weighted imaging (DWI) in the apical, middle, and basal thirds of the right lung. ADCs were correlated with gestational age. Differences between the ADCs were assessed. Fetal lung volumes were measured on T2-weighted sequences and correlated with ADCs and with age. ADCs were 2.13 {+-} 0.44 {mu}m{sup 2}/ms (mean {+-} SD) in the apex, 1.99 {+-} 0.42 {mu}m{sup 2}/ms (mean {+-} SD) in the middle third, and 1.91 {+-} 0.41 {mu}m{sup 2}/ms (mean {+-} SD) in the lung base. Neither the individual ADC values nor average ADC values showed a significant correlation with gestational age or with lung volumes. Average ADCs decreased significantly from the lung apex toward the base. Individual ADCs showed little absolute change and heterogeneity. Lung volumes increased significantly during gestation. We have not been able to identify a pattern of changes in the ADC values that correlate with lung maturation. Furthermore, the individual, gravity-related ADC changes are subject to substantial variability and show nonuniform behavior. ADC can therefore not be used as an indicator of lung maturity. (orig.)

  18. Diffusion-weighted magnetic resonance imaging for the detection of lipid-rich necrotic core in carotid atheroma in vivo

    International Nuclear Information System (INIS)

    Young, Victoria Eleanor; Patterson, Andrew J.; Sadat, Umar; Bowden, David J.; Tang, Tjun Y.; Gillard, Jonathan H.; Graves, Martin J.; Priest, Andrew N.; Skepper, Jeremy N.; Kirkpatrick, Peter J.

    2010-01-01

    Research has shown that knowing the morphology of carotid atheroma improves current risk stratification for predicting subsequent thrombo-embolic events. Previous magnetic resonance (MR) ex vivo studies have shown that diffusion-weighted imaging (DWI) can detect lipid-rich necrotic core (LR/NC) and fibrous cap. This study aims to establish if this is achievable in vivo. Twenty-six patients (mean age 73 years, range 54-87 years) with moderate to severe carotid stenosis confirmed on ultrasound were imaged. An echo-planar DWI sequence was performed along with standard high-resolution MR imaging. Apparent diffusion coefficient (ADC) maps were evaluated. Two independent readers reported the mean ADC values from regions of interest defining LR/NCs and fibrous caps. For subjects undergoing carotid endarterectomy (n = 19), carotid specimens were obtained and stained using Nile red. The mean ADC values were 1.0 x 10 -3 mm 2 /s (±SD 0.3 x 10 -3 mm 2 /s) and 0.7 x 10 -3 mm 2 /s (±SD 0.2 x 10 -3 mm 2 /s) for fibrous cap and LR/NC, respectively; the difference was significant (p < 0.0001). The intra-class correlation coefficients summarising the agreement between the two independent readers were 0.84 and 0.60 for fibrous cap and LR/NC, respectively. Comparison of quantitative ADC values and histology (by subjective grading of lipid content) showed a significant correlation: heavier lipid staining matched lower ADC values (r = -0.435, p = 0.005). This study indicates that DWI can be used to distinguish LR/NC and the fibrous cap. The study also suggests that the mean ADC value may be linearly related to subjective graded LR/NC content determined by histology. (orig.)

  19. Diffusion-weighted magnetic resonance imaging for the detection of lipid-rich necrotic core in carotid atheroma in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Young, Victoria Eleanor; Patterson, Andrew J.; Sadat, Umar; Bowden, David J.; Tang, Tjun Y.; Gillard, Jonathan H. [Addenbrooke' s Hospital, University Department of Radiology, Box 218, Cambridge (United Kingdom); Graves, Martin J.; Priest, Andrew N. [Addenbrooke' s Hospital, University Department of Radiology, Box 218, Cambridge (United Kingdom); Addenbrooke' s Hospital, Department of Medical Physics, Cambridge (United Kingdom); Skepper, Jeremy N. [University of Cambridge, Multi-imaging Centre, Cambridge (United Kingdom); Kirkpatrick, Peter J. [Addenbrooke' s Hospital, Department of Neurosurgery, Cambridge (United Kingdom)

    2010-10-15

    Research has shown that knowing the morphology of carotid atheroma improves current risk stratification for predicting subsequent thrombo-embolic events. Previous magnetic resonance (MR) ex vivo studies have shown that diffusion-weighted imaging (DWI) can detect lipid-rich necrotic core (LR/NC) and fibrous cap. This study aims to establish if this is achievable in vivo. Twenty-six patients (mean age 73 years, range 54-87 years) with moderate to severe carotid stenosis confirmed on ultrasound were imaged. An echo-planar DWI sequence was performed along with standard high-resolution MR imaging. Apparent diffusion coefficient (ADC) maps were evaluated. Two independent readers reported the mean ADC values from regions of interest defining LR/NCs and fibrous caps. For subjects undergoing carotid endarterectomy (n = 19), carotid specimens were obtained and stained using Nile red. The mean ADC values were 1.0 x 10{sup -3} mm{sup 2}/s ({+-}SD 0.3 x 10{sup -3} mm{sup 2}/s) and 0.7 x 10{sup -3} mm{sup 2}/s ({+-}SD 0.2 x 10{sup -3} mm{sup 2}/s) for fibrous cap and LR/NC, respectively; the difference was significant (p < 0.0001). The intra-class correlation coefficients summarising the agreement between the two independent readers were 0.84 and 0.60 for fibrous cap and LR/NC, respectively. Comparison of quantitative ADC values and histology (by subjective grading of lipid content) showed a significant correlation: heavier lipid staining matched lower ADC values (r = -0.435, p = 0.005). This study indicates that DWI can be used to distinguish LR/NC and the fibrous cap. The study also suggests that the mean ADC value may be linearly related to subjective graded LR/NC content determined by histology. (orig.)

  20. Apparent diffusion coefficient value of gastric cancer by diffusion-weighted imaging: Correlations with the histological differentiation and Lauren classification

    International Nuclear Information System (INIS)

    Liu, Song; Guan, Wenxian; Wang, Hao; Pan, Liang; Zhou, Zhuping; Yu, Haiping; Liu, Tian; Yang, Xiaofeng; He, Jian; Zhou, Zhengyang

    2014-01-01

    Highlights: • Gastric cancers’ ADC values were significantly lower than normal gastric wall. • Gastric adenocarcinomas with different differentiation had different ADC values. • Gastric adenocarcinomas’ ADC values correlated with histologic differentiations. • Gastric cancers’ ADC values correlated with Lauren classifications. • Mean ADC value was better than min ADC value in characterizing gastric cancers. - Abstract: Objective: The purpose of this study was to evaluate the correlations between histological differentiation and Lauren classification of gastric cancer and the apparent diffusion coefficient (ADC) value of diffusion weighted imaging (DWI). Materials and methods: Sixty-nine patients with gastric cancer lesions underwent preoperative magnetic resonance imaging (MRI) (3.0T) and surgical resection. DWI was obtained with a single-shot, echo-planar imaging sequence in the axial plane (b values: 0 and 1000 s/mm 2 ). Mean and minimum ADC values were obtained for each gastric cancer and normal gastric walls by two radiologists, who were blinded to the histological findings. Histological type, degree of differentiation and Lauren classification of each resected specimen were determined by one pathologist. Mean and minimum ADC values of gastric cancers with different histological types, degrees of differentiation and Lauren classifications were compared. Correlations between ADC values and histological differentiation and Lauren classification were analyzed. Results: The mean and minimum ADC values of gastric cancers, as a whole and separately, were significantly lower than those of normal gastric walls (all p values <0.001). There were significant differences in the mean and minimum ADC values among gastric cancers with different histological types, degrees of differentiation and Lauren classifications (p < 0.05). Mean and minimum ADC values correlated significantly (all p < 0.001) with histological differentiation (r = 0.564, 0.578) and Lauren

  1. Diffusion-weighted imaging of the pancreas; Diffusionsbildgebung des Pankreas

    Energy Technology Data Exchange (ETDEWEB)

    Gruenberg, K. [Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Abteilung Radiologie, E010, Heidelberg (Germany); Grenacher, L.; Klauss, M. [Universitaetsklinikum Heidelberg, Abt. Diagnostische und Interventionelle Radiologie, Heidelberg (Germany)

    2011-03-15

    Diffusion-weighted imaging (DWI) has increasingly gained in importance over the last 10 years especially in cancer imaging for differentiation of malignant and benign lesions. Through development of fast magnetic resonance imaging (MRI) sequences DWI is not only applicable in neuroradiology but also in abdominal imaging. As a diagnostic tool of the pancreas DWI enables a differentiation between normal tissue, cancer and chronic pancreatitis. The ADC values (apparent diffusion coefficient, the so-called effective diffusion coefficient) reported in the literature for healthy pancreatic tissue are in the range from 1.49 to 1.9 x 10{sup -3} mm{sup 2}/s, for pancreatic cancer in the range from 1.24 to 1.46 x 10{sup -3} mm{sup 2}/s and for autoimmune pancreatitis an average ADC value of 1.012 x 10{sup -3} mm{sup 2}/s. There are controversial data in the literature concerning the differentiation between chronic pancreatitis and pancreatic cancer. Using DWI-derived IVIM (intravoxel incoherent motion) the parameter f (perfusion fraction) seems to be advantageous but it is important to use several b values. In the literature the mean f value in chronic pancreatitis is around 16%, in pancreatic cancer 8% and in healthy pancreatic tissue around 25%. So far, DWI has not been helpful for differentiating cystic lesions of the pancreas. There are many references with other tumor entities and in animal models which indicate that there is a possible benefit of DWI in monitoring therapy of pancreatic cancer but so far no original work has been published. (orig.) [German] Die Diffusionsbildgebung (''diffusion-weighted imaging'', DWI) gewann in den letzten 10 Jahren insbesondere in der Tumorbildgebung zur Unterscheidung zwischen malignen und benignen Laesionen zunehmend an Bedeutung. Durch Entwicklung schnellerer MR-Sequenzen ist sie nicht nur in der Neuroradiologie, sondern auch in der Abdomenbildgebung einsetzbar. In der Pankreasdiagnostik ermoeglicht sie

  2. Clinical study of diffusion weighted imaging in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Chen Yunbin; Mao Yu; Pan Jianji; Hu Chunmiao

    2009-01-01

    Objective: To determine the diagnostic value of diffusion weighted imaging (DWI) for primary nasopharyngeal carcinoma(NPC) and metastatic lymph nodes, and to establish the diagnostic threshold of apparent diffusion coefficients(ADCs). Methods: Conventional MR scans and DWI scans were continuously performed in 56 patients with newly diagnosed NPC and 55 healthy volunteers. All patients received primary tumor biopsy and MR image-guided cervical lymph node fine-needle biopsy. ADC and eADC values of both primary lesions and lymph nodes were calculated and compared. Results: According to the pathological diagnosis, all the 56 patients had non-keratinizing carcinoma and 51 had lymph node metastasis. In the control group, 75 cervical lymph nodes were found. ADC values of both primary NPC and metastatic lymph nodes were significantly lower, while eADC values were higher than those of normal controls. Setting the ADC value threshold at 0.809 x 10 -3 mm 2 /s, the sensitivity and specificity for primary NPC detection were 80.4% and 74.5%, respectively. The negative and positive predictive values were 79.2% and 77.6%, respectively. The accuracy was 78.4%. Setting the ADC value threshold at 0.708 x 10 -3 mm 2 /s, the sensitivity and specificity in the detection of metastatic cervical lymph nodes were 43.1% and 93.3%, respectively. The negative and positive predictive values were 70.7% and 81.5%, respectively. The accuracy was 73.0%. Conclusions: DWI might be a new diagnostic approach in the detection of primary NPC as well as metastatic lymph nodes. (authors)

  3. Diffusion weighted EPI in early cerebral infarction and intracerebral hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Susumu; Cho, Keiichi; Hosaka, Sumio; Ito, Koichiro; Tajima, Natsuki; Kobayashi, Shiro [Nippon Medical School (Japan). Chiba-Hokuso Hospital; Kumazaki, Tatsuo; Takahashi, Yoshiyuki

    1997-11-01

    Fifteen cases of early cerebral infarction and 14 cases of cerebral hemorrhage underwent diffusion weighted echo planar imaging. Increased intensity area was detected only 2 in 5 cases less than 3 hours from ictus, whereas infarction was correctly diagnosed in all cases over 3 hours. Infarcted area was increased on the follow-up study in 2 cases. Hematoma showed mixed intensity in hyper acute phase, very hypo in acute, mixed in subacute and very hyper in the chronic stage. High intensity area surrounded the hematoma. (author)

  4. Diffusion-weighted imaging in patients with progressive multifocal leukoencephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Cosottini, M. [University of Pisa, Department of Neuroscience, Pisa (Italy); Service of Neuroradiology AO, Pisa (Italy); Tavarelli, C.; De Cori, S.; Bartolozzi, C. [University of Pisa, Department of Radiology, Pisa (Italy); Del Bono, L.; Doria, G. [Unit of Infectious Diseases AO, Pisa (Italy); Giannelli, M. [Unit of Medical Physics, Pisa (Italy); Michelassi, M.C. [Service of Neuroradiology AO, Pisa (Italy); Murri, L. [University of Pisa, Department of Neuroscience, Pisa (Italy)

    2008-05-15

    Progressive multifocal leukoencephalopathy (PML) is a severe demyelinating disease of the central nervous system due to JC polyoma virus infection of oligodendrocytes. PML develops in patients with impaired T-cell function as occurs in HIV, malignancy or immunosuppressive drugs users. Until now no imaging methods have been reported to correlate with clinical status. Diffusion-weighted imaging (DWI) is a robust MRI tool in investigating white matter architecture and diseases. The aim of our work was to assess diffusion abnormalities in focal white matter lesions in patients with PML and to correlate the lesion load measured with conventional MRI and DWI to clinical variables. We evaluated eight patients with a biopsy or laboratory-supported diagnosis of PML. All patients underwent MRI including conventional sequences (fluid attenuated inversion recovery-FLAIR) and DWI. Mean diffusivity (MD) maps were used to quantify diffusion on white matter lesions. Global lesion load was calculated by manually tracing lesions on FLAIR images, while total, central core and peripheral lesion loads were calculated by manually tracing lesions on DWI images. Lesion load obtained with the conventional or DWI-based methods were correlated with clinical variables such as disease duration, disease severity and survival. White matter focal lesions are characterized by a central core with low signal on DWI images and high MD (1.853 x 10{sup -3} mm2/s), surrounded by a rim of high signal intensity on DWI and lower MD (1.1 x 10{sup -3} mm2/s). The MD value of normal-appearing white matter is higher although not statistically significant (0.783 x 10{sup -3} mm2/s) with respect to control subjects (0.750 x 10{sup -3} mm2/s). Inter-rater correlations of global lesion load between FLAIR (3.96%) and DWI (3.43%) was excellent (ICC =0.87). Global lesion load on FLAIR and DWI correlates with disease duration and severity (respectively, p = 0.037, p = 0.0272 with Karnofsky scale and p = 0.0338 with

  5. Diffusion-weighted MR imaging of transplanted kidneys: Preliminary report

    International Nuclear Information System (INIS)

    Wypych-Klunder, Katarzyna; Adamowicz, Andrzej; Lemanowicz, Adam; Szczęsny, Wojciech; Włodarczyk, Zbigniew; Serafin, Zbigniew

    2014-01-01

    An aim of this study was to assess the feasibility of DWI in the early period after kidney transplantation. We also aimed to compare ADC and eADC values in the cortex and medulla of the kidney, to estimate image noise and variability of measurements, and to verify possible relation between selected labolatory results and diffusion parameters in the transplanted kidney. Examinations were performed using a 1.5 T MR unit. DWI (SE/EPI) was performed in the axial plane using b-values of 600 and 1000. ADC and eADC measurements were performed in four regions of interest within the renal cortex and in three regions within the medulla. Relative variability of results and signal-to-noise ratio (SNR) were calculated. The analysis included 15 patients (mean age 52 years). The mean variability of ADC was significantly lower than that of eADC (6.8% vs. 10.8%, respectively; p<0.0001). The mean variability of measurements performed in the cortex was significantly lower than that in the medulla (6.2% vs. 11.5%, respectively; p<0.005). The mean SNR was higher in the measurements using b600 than b1000, it was higher in ADC maps than in the eADC maps, and it was higher in the cortex than in the medulla. ADC and eADC measured at b1000 in the cortex were higher in the group of the patients with eGFR ≤30 ml/min./1.73 m 2 as compared to patients with eGFR >30 ml/min./1.73 m 2 (p<0.05). Diffusion-weighted imaging of transplanted kidneys is technically challenging, especially in patients in the early period after transplantation. From a technical point of view, the best quality parameters offer quality ADC measurement in the renal cortex using b1000. ADC and eADC values in the renal cortex measured at b1000 present a relationship with eGFR

  6. Diffusion-weighted MR imaging of non-complicated hepatic cysts: Value of 3T computed diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Nakamura, Yuko; Higaki, Toru; Akiyama, Yuji; Fukumoto, Wataru; Kajiwara, Kenji; Kaichi, Yoko; Honda, Yukiko; Komoto, Daisuke; Tatsugami, Fuminari; Iida, Makoto; Ohmoto, Toshifumi; Date, Shuji; Awai, Kazuo

    2016-01-01

    To investigate the utility of computed 3T diffusion-weighted imaging (c-DWI) for the diagnosis of non-complicated hepatic cysts with a focus on the T2 shine-through effect. In 50 patients with non-complicated hepatic cysts we acquired one set of DWIs (b-value 0 and 1000 s/mm 2 ) at 1.5T, and two sets at 3T (b-value 0 and 1000 s/mm 2 , TE 70 ms; b-value 0 and 600 s/mm 2 , TE 60 ms). We defined the original DWIs acquired with b = 1000 s/mm 2 at 1.5T and 3T as “o-1.5T-1000” and “o-3T-1000”. c-DWIs were calculated with 3T DWI at b-values of 0 and 600 s/mm 2 . c-DWI with b = 1000 and 1500 s/mm 2 were defined as “c-1000” and “c-1500”. Radiologists evaluated the signal intensity (SI) of the cysts using a 3-point score where 1 = not visible, 2 = discernible, and 3 = clearly visible. They calculated the contrast ratio (CR) between the cysts and the surrounding liver parenchyma on each DWIs and recorded the apparent diffusion coefficient (ADC) with a b-value = 0 and 1000 s/mm 2 on 1.5T- and 3T DWIs. Compared with o-1.5T-1000 DWI, the visual scores of all but the c-1500 DWIs were higher (p = 0.07 for c-1500- and p < 0.01 for the other DWIs). The CR at b = 1000 s/mm 2 was higher on o-3T-1000- than on o-1.5T-1000- (p < 0.01) but not higher than on c-1500 DWIs (p = 0.96). The CR at b = 0 s/mm 2 on 3T images with TE 70 ms was higher than on 1.5T images (p < 0.01). The ADC value was higher for 3T- than 1.5T images (p < 0.01). Non-complicated hepatic cysts showed higher SI on o-3T-1000- than o-1.5T-1000 DWIs due to the T2-shine through effect. This high SI was suppressed on c-1500 DWIs

  7. Rocky Mountain spotted fever: 'starry sky' appearance with diffusion-weighted imaging in a child.

    Science.gov (United States)

    Crapp, Seth; Harrar, Dana; Strother, Megan; Wushensky, Curtis; Pruthi, Sumit

    2012-04-01

    We present a case of Rocky Mountain spotted fever encephalitis in a child imaged utilizing diffusion-weighted MRI. Although the imaging and clinical manifestations of this entity have been previously described, a review of the literature did not reveal any such cases reported in children utilizing diffusion-weighted imaging. The imaging findings and clinical history are presented as well as a brief review of this disease.

  8. Diffusion-weighted MRI of the Prostate: Advantages of Zoomed EPI with Parallel-transmit-accelerated 2D-selective Excitation Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Thierfelder, Kolja M.; Scherr, Michael K.; Weiss, Jakob; Mueller-Lisse, Ullrich G.; Theisen, Daniel [Ludwig-Maximilians-University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); Notohamiprodjo, Mike; Nikolaou, Konstantin [Ludwig-Maximilians-University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); University Hospital Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Dietrich, Olaf [Ludwig-Maximilians-University Hospital Munich, Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Munich (Germany); Pfeuffer, Josef [Siemens Healthcare, Application Development, Erlangen (Germany)

    2014-12-15

    The purpose of our study was to evaluate the use of 2D-selective, parallel-transmit excitation magnetic resonance imaging (MRI) for diffusion-weighted echo-planar imaging (pTX-EPI) of the prostate, and to compare it to conventional, single-shot EPI (c-EPI). The MRI examinations of 35 patients were evaluated in this prospective study. PTX-EPI was performed with a TX-acceleration factor of 1.7 and a field of view (FOV) of 150 x 90 mm{sup 2}, whereas c-EPI used a full FOV of 380 x 297 mm{sup 2}. Two readers evaluated three different aspects of image quality on 5-point Likert scales. To quantify distortion artefacts, maximum diameters and prostate volume were determined for both techniques and compared to T2-weighted imaging. The zoomed pTX-EPI was superior to c-EPI with respect to overall image quality (3.39 ± 0.62 vs 2.45 ± 0.67) and anatomic differentiability (3.29 ± 0.65 vs 2.41 ± 0.65), each with p < 0.0001. Artefacts were significantly less severe in pTX-EPI (0.93 ± 0.73 vs 1.49 ± 1.08), p < 0.001. The quantitative analysis yielded a higher agreement of pTX-EPI with T2-weighted imaging than c-EPI with respect to coronal (ICCs: 0.95 vs 0.93) and sagittal (0.86 vs 0.73) diameters as well as prostate volume (0.94 vs 0.92). Apparent diffusion coefficient (ADC) values did not differ significantly between the two techniques (p > 0.05). Zoomed pTX-EPI leads to substantial improvements in diffusion-weighted imaging (DWI) of the prostate with respect to different aspects of image quality and severity of artefacts. (orig.)

  9. Incidence of postangiographic silent brain infarction detected by diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Mori, Harushi; Hayashi, Naoto; Aoki, Shigeki

    2002-01-01

    We surveyed to assess for the incidence of clinically silent brain infarction after cerebral catheter angiography. Diffusion-weighted images were performed shortly after 33 cerebral catheter angiographies. We found totally 11 abnormally high intensity spots in 5 of 33 patients on diffusion-weighted images and, therefore, the incidence was calculated as 15.2%. This incidence is higher than has been estimated based on the incidence of neurological deficits (about 0.5%) after cerebral angiography. Diffusion-weighted MR imaging is suitable to monitor the safety of angiographic procedures and material. (author)

  10. Diffusion-weighted MR imaging in biopsy-proven Creutzfeldt-Jakob disease

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Cheol; Chang, Kee Hyun; Song In Chan; Lee, Sang Hyun; Kwon, Bae Ju; Han, Moon Hee; Kim, Sang Yun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2001-12-01

    To compare conventional and diffusion-weighted MR imaging in terms of their depiction of the abnormalities occurring in Creutzfeldt-Jakob disease. We retrospectively analyzed the findings of conventional (T2-weighted and fluid-attenuated inversion recovery) and diffusion-weighted MR imaging in four patients with biopsy-proven Creutzfeldt-Jakob disease. The signal intensity of the lesion was classified by visual assessment as markedly high, slightly high, or isointense, relative to normal brain parenchyma. Both conventional and diffusion-weighted MR images demonstrated bilateral high signal intensity in the basal ganglia in all four patients. Cortical lesions were observed on diffusion-weighted MR images in all four, and on fluidattenuated inversion recovery MR images in one, but in no patient on T2-weighted images. Conventional MR images showed slightly high signal intensity in all lesions, while diffusion-weighted images showed markedly high signal intensity in most. Diffusion-weighted MR imaging is more sensitive than its conventional counterpart in the depiction of Creutzfeldt-Jakob disease, and permits better detection of the lesion in both the cerebral cortices and basal ganglia.

  11. Diffusion-weighted MR imaging in biopsy-proven Creutzfeldt-Jakob disease

    International Nuclear Information System (INIS)

    Kim, Hyo Cheol; Chang, Kee Hyun; Song In Chan; Lee, Sang Hyun; Kwon, Bae Ju; Han, Moon Hee; Kim, Sang Yun

    2001-01-01

    To compare conventional and diffusion-weighted MR imaging in terms of their depiction of the abnormalities occurring in Creutzfeldt-Jakob disease. We retrospectively analyzed the findings of conventional (T2-weighted and fluid-attenuated inversion recovery) and diffusion-weighted MR imaging in four patients with biopsy-proven Creutzfeldt-Jakob disease. The signal intensity of the lesion was classified by visual assessment as markedly high, slightly high, or isointense, relative to normal brain parenchyma. Both conventional and diffusion-weighted MR images demonstrated bilateral high signal intensity in the basal ganglia in all four patients. Cortical lesions were observed on diffusion-weighted MR images in all four, and on fluidattenuated inversion recovery MR images in one, but in no patient on T2-weighted images. Conventional MR images showed slightly high signal intensity in all lesions, while diffusion-weighted images showed markedly high signal intensity in most. Diffusion-weighted MR imaging is more sensitive than its conventional counterpart in the depiction of Creutzfeldt-Jakob disease, and permits better detection of the lesion in both the cerebral cortices and basal ganglia

  12. Incidence of ischemic lesions in diffusion-weighted imaging after transbrachial digital subtraction angiography

    International Nuclear Information System (INIS)

    Aschenbach, R.; Majeed, A.; Eger, C.; Basche, S.; Kerl, J.M.; Vogl, T.J.

    2008-01-01

    Purpose: to evaluate the frequency of ischemia after transbrachial digital subtraction angiography under ambulant conditions using diffusion-weighted imaging. Materials and methods: 200 patients were included in a prospective study design and received transbrachial digital subtraction angiography under ambulant conditions. Before and after digital subtraction angiography, diffusion-weighted imaging of the brain was performed. Results: in our study population no new lesions were found in diffusion-weighted imaging after digital subtraction angiography during the 3-hour window after angiography. One new lesion was found 3 days after angiography as a late onset complication. Therefore, the frequency of neurological complications is at the level of the confidence interval of 0 - 1.5%. Conclusion: the transbrachial approach under ambulant conditions is a safe method for digital subtraction angiography resulting in a low rate of ischemic lesions in diffusion-weighted imaging. (orig.)

  13. Hemorrhagic brain metastases with high signal intensity on diffusion-weighted MR images. A case report

    Energy Technology Data Exchange (ETDEWEB)

    Mori, H.; Abe, O.; Aoki, S.; Masumoto, T.; Yoshikawa, T.; Kunimatsu, A; Hayashi, N.; Ohtomo, K. [Graduate School of Medicine, Univ. of Tokyo (Japan). Dept. of Radiology

    2002-11-01

    Diffusion-weighted MR imaging has been applicable to the differential diagnosis of abscesses and necrotic or cystic brain tumors. However, restricted water diffusion is not necessarily specific for brain abscess. We describe ring-enhancing metastases of lung carcinoma characterized by high signal intensity on diffusion-weighted MR images. The signal pattern probably reflected intralesional hemorrhage. The present report adds to the growing literature regarding the differential diagnosis of ring-enhancing brain lesions.

  14. Diffusion-Weighted Magnetic Resonance Imaging in Rhombencephalitis due to Listeria monocytogenes

    Energy Technology Data Exchange (ETDEWEB)

    Hatipoglu, H.G.; Onbasioglu Gurbuz, M.; Sakman, B.; Yuksel, E. [Dept. of Radiology, Ankara Numune Education and Research Hospital, Ankara (Turkey)

    2007-04-15

    We present diffusion-weighted imaging findings of a case of rhombencephalitis due to Listeria monocytogenes. It is a rare, life-threatening disorder. The diagnosis is difficult by clinical findings only. In this report, we aim to draw attention to the role of conventional and diffusion-weighted magnetic resonance imaging findings. To our knowledge, this is the first case report in the literature with apparent diffusion coefficient values of diseased brain parenchyma.

  15. Direct magnetic field estimation based on echo planar raw data.

    Science.gov (United States)

    Testud, Frederik; Splitthoff, Daniel Nicolas; Speck, Oliver; Hennig, Jürgen; Zaitsev, Maxim

    2010-07-01

    Gradient recalled echo echo planar imaging is widely used in functional magnetic resonance imaging. The fast data acquisition is, however, very sensitive to field inhomogeneities which manifest themselves as artifacts in the images. Typically used correction methods have the common deficit that the data for the correction are acquired only once at the beginning of the experiment, assuming the field inhomogeneity distribution B(0) does not change over the course of the experiment. In this paper, methods to extract the magnetic field distribution from the acquired k-space data or from the reconstructed phase image of a gradient echo planar sequence are compared and extended. A common derivation for the presented approaches provides a solid theoretical basis, enables a fair comparison and demonstrates the equivalence of the k-space and the image phase based approaches. The image phase analysis is extended here to calculate the local gradient in the readout direction and improvements are introduced to the echo shift analysis, referred to here as "k-space filtering analysis." The described methods are compared to experimentally acquired B(0) maps in phantoms and in vivo. The k-space filtering analysis presented in this work demonstrated to be the most sensitive method to detect field inhomogeneities.

  16. Evaluation of dual-source parallel RF excitation for diffusion-weighted whole-body MR imaging with background body signal suppression at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Muertz, Petra, E-mail: petra.muertz@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany); Kaschner, Marius, E-mail: marius.kaschner@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany); Traeber, Frank, E-mail: frank.traeber@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany); Kukuk, Guido M., E-mail: guido.kukuk@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany); Buedenbender, Sarah M., E-mail: sarah_m_buedenbender@yahoo.de [Department of Radiology, University of Bonn (Germany); Skowasch, Dirk, E-mail: dirk.skowasch@ukb.uni-bonn.de [Department of Medicine, University of Bonn (Germany); Gieseke, Juergen, E-mail: juergen.gieseke@philips.com [Philips Healthcare, Best (Netherlands); Department of Radiology, University of Bonn (Germany); Schild, Hans H., E-mail: hans.schild@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany); Willinek, Winfried A., E-mail: winfried.willinek@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany)

    2012-11-15

    Purpose: To evaluate the use of dual-source parallel RF excitation (TX) for diffusion-weighted whole-body MRI with background body signal suppression (DWIBS) at 3.0 T. Materials and methods: Forty consecutive patients were examined on a clinical 3.0-T MRI system using a diffusion-weighted (DW) spin-echo echo-planar imaging sequence with a combination of short TI inversion recovery and slice-selective gradient reversal fat suppression. DWIBS of the neck (n = 5), thorax (n = 8), abdomen (n = 6) and pelvis (n = 21) was performed both with TX (2:56 min) and with standard single-source RF excitation (4:37 min). The quality of DW images and reconstructed inverted maximum intensity projections was visually judged by two readers (blinded to acquisition technique). Signal homogeneity and fat suppression were scored as 'improved', 'equal', 'worse' or 'ambiguous'. Moreover, the apparent diffusion coefficient (ADC) values were measured in muscles, urinary bladder, lymph nodes and lesions. Results: By the use of TX, signal homogeneity was 'improved' in 25/40 and 'equal' in 15/40 cases. Fat suppression was 'improved' in 17/40 and 'equal' in 23/40 cases. These improvements were statistically significant (p < 0.001, Wilcoxon signed-rank test). In five patients, fluid-related dielectric shading was present, which improved remarkably. The ADC values did not significantly differ for the two RF excitation methods (p = 0.630 over all data, pairwise Student's t-test). Conclusion: Dual-source parallel RF excitation improved image quality of DWIBS at 3.0 T with respect to signal homogeneity and fat suppression, reduced scan time by approximately one-third, and did not influence the measured ADC values.

  17. Magnetic resonance imaging of epidermoid, including diffusion weighted images and an atypical case

    International Nuclear Information System (INIS)

    Takahashi, Shoki; Higano, Shuichi; Kurihara, Noriko

    1994-01-01

    In order to study the role of magnetic resonance imaging (MRI) in diagnosing intracranial epidermoid, we evaluated the MRI findings on five cases with such tumor, all of which were surgically verified. In addition to standard spin-echo (SE) images obtained in all cases, diffusion-weighted images were acquired in two patients. In four patients, the tumor revealed to be almost isointense relative to cerebrospinal fluid (CSF) on both T 1 -and T 2 -weighted images, while it tended to show slightly hyperintense to CSF on proton-density-weighted images; thus, based on the signal intensity on standard SE images the distinction between epidermoid and arachnoid cyst may be difficult. Furthermore, the presence of the tumor which has a tendency to grow in and along the subarachnoid space causing relatively minimal mass effect may be overlooked. Diffusion-weighted images were shown to have advantages in such cases by demonstrating the tumor unequivocally as a mass of high signal, and differentiating it from arachnoid cysts. In the remaining patient, its appearance was atypical, showing bright signal on both T 1 -and T 2 -weighted images. In conclusion free of bone artifacts, multiplanar MRI with additional diffusion-weighted images provides a clear demonstration of epidermoid, and its differentiation from arachnoid cyst, thus obviating the need for CT cisternography. (author)

  18. Diffusion-Weighted Imaging and Diffusion Tensor Imaging of Asymptomatic Lumbar Disc Herniation

    OpenAIRE

    Sakai, Toshinori; Miyagi, Ryo; Yamabe, Eiko; Fujinaga, Yasunari; Bhatia, Nitin N.; Yoshioka, Hiroshi

    2014-01-01

    Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) were performedon a healthy 31-year-old man with asymptomatic lumbar disc herniation. Althoughthe left S1 nerve root was obviously entrapped by a herniated mass, neither DWI nor DTI showed any significant findings for the nerve root. Decreased apparent diffusion coefficient (ADC) values and increased fractional anisotropy (FA) values were found. These results are contrary to those in previously published studies of symptomatic...

  19. Imaging Appearance of Human Immunodeficiency Virus Encephalitis on the Diffusion Weighted Images: A Case Report

    International Nuclear Information System (INIS)

    Lim, Hun Cheol; Yu, In Kyu; Oh, Keon Se

    2011-01-01

    Imaging finding of human immunodeficiency virus (HIV) encephalitis contain bilateral, symmetric, patchy, or diffuse increased T2WI signal intensities in the basal ganglia, cerebellum, brainstem, and centrum semiovale. In particular, the centrum semiovale is most commonly involved. Most of the HIV encephalitis cases are accompanied by brain atrophy. No previous study has reported symmetric increased signal intensity at the bilateral centrum semiovale without brain atrophy on diffusion weighted images in HIV encephalitis patients. Here, we report a case of this. We suggest that radiologists should consider the possibility of HIV encephalitis if there are symmetric increases in signal intensity at the bilateral centrum semiovale on diffusion weighted images of patients with a history of HIV infection.

  20. Malignant versus benign mediastinal lesions: quantitative assessment with diffusion weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Guemuestas, Sevtap; Inan, Nagihan; Sarisoy, Hasan Tahsin; Anik, Yonca; Arslan, Arzu; Ciftci, Ercuement; Akansel, Guer; Demirci, Ali [University of Kocaeli, Department of Radiology, School of Medicine, Umuttepe Kocaeli (Turkey)

    2011-11-15

    We aimed to evaluate the performance of diffusion-weighted magnetic resonance imaging in differentiating malignant from benign mediastinal lesions. Fifty-three mediastinal lesions were examined with T1- and T2-weighted (W) conventional images. Then, two diffusion-weighted images were obtained with b = 0 and 1000 s/mm{sup 2} values and apparent diffusion coefficients (ADC) were calculated. The statistical significance of differences between measurements was tested using the Student-t test. The mean ADC of malignant lesions was significantly lower than that of the benign masses (p < 0.001). The cut-off value of {<=} 1.39 x 10{sup -3} mm{sup 2}/s indicated a malignant lesion with a sensitivity of 95% and specificity of 87%. Diffusion-weighted imaging may be helpful in differentiating benign from malignant mediastinal masses. (orig.)

  1. A time-efficient acquisition protocol for multipurpose diffusion-weighted microstructural imaging at 7 Tesla.

    Science.gov (United States)

    Sepehrband, Farshid; O'Brien, Kieran; Barth, Markus

    2017-12-01

    Several diffusion-weighted MRI techniques have been developed and validated during the past 2 decades. While offering various neuroanatomical inferences, these techniques differ in their proposed optimal acquisition design, preventing clinicians and researchers benefiting from all potential inference methods, particularly when limited time is available. This study reports an optimal design that enables for a time-efficient diffusion-weighted MRI acquisition scheme at 7 Tesla. The primary audience of this article is the typical end user, interested in diffusion-weighted microstructural imaging at 7 Tesla. We tested b-values in the range of 700 to 3000 s/mm 2 with different number of angular diffusion-encoding samples, against a data-driven "gold standard." The suggested design is a protocol with b-values of 1000 and 2500 s/mm 2 , with 25 and 50 samples, uniformly distributed over two shells. We also report a range of protocols in which the results of fitting microstructural models to the diffusion-weighted data had high correlation with the gold standard. We estimated minimum acquisition requirements that enable diffusion tensor imaging, higher angular resolution diffusion-weighted imaging, neurite orientation dispersion, and density imaging and white matter tract integrity across whole brain with isotropic resolution of 1.8 mm in less than 11 min. Magn Reson Med 78:2170-2184, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Diffusion-weighted imaging of skeletal muscle lymphoma

    International Nuclear Information System (INIS)

    Surov, Alexey; Behrmann, Curd

    2014-01-01

    Muscle lymphoma (ML) is a relatively uncommon condition. On magnetic resonance imaging (MRI), ML can manifest with a broad spectrum of radiological features. The aim of this study was to demonstrate the features of DW images of muscle lymphoma (ML). In our database, ten patients (six women and four men) with ML were identified who were investigated by magnetic resonance imaging including acquisition of DW images. DW images were obtained using a multi-shot SE-EPI pulse sequence. Apparent diffusion constant (ADC) maps were also calculated. Furthermore, fusion images were generated manually from DW and HASTE or T2W images. On T2W images, all recognized lesions were hyperintense in comparison to unaffected musculature and on T1W images they were homogeneously hypointense. All lesions demonstrated low signal intensity on ADC images. The calculated ADC values ranged from 0.60 to 0.90 mm 2 s -1 (mean value 0.76 ± 0.10; median value 0.78). On fusion images, all lesions showed high signal intensity. ML demonstrated low ADC values and high signal intensity on fusion images suggesting high cellularity of the lesions. (orig.)

  3. Principles and implementation of diffusion-weighted and diffusion tensor imaging

    International Nuclear Information System (INIS)

    Roberts, Timothy P.L.; Schwartz, E.S.

    2007-01-01

    We review the physiological basis of diffusion-weighted imaging and discuss the implementation of diffusion-weighted imaging pulse sequences and the subsequent postprocessing to yield quantitative estimations of diffusion parameters. We also introduce the concept of directionality of ''apparent'' diffusion in vivo and the means of assessing such anisotropy quantitatively. This in turn leads to the methodological application of diffusion tensor imaging and the subsequent postprocessing, known as tractography. The following articles deal with the clinical applications enabled by such methodologies. (orig.)

  4. Diffusion tensor and diffusion weighted imaging. Pictorial mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, Tsutomu [California Univ., Davis, CA (United States)

    1995-06-01

    A new imaging algorithm for the treatment of a second order apparent diffusion tensor, D{sub app}{sup {xi}} is described. The method calls for only mathematics of images (pictorial mathematics) without necessity of eigenvalues/eigenvectors estimation. Nevertheless, it is capable of extracting properties of D{sub app}{sup {xi}} invariant to observation axes. While trace image is an example of images weighted by invariance of the tensor matrix, three dimensional anisotropy (3DAC) contrast represents the imaging method making use to anisotropic direction of tensor ellipsoid producing color coded contrast of exceptionally high anatomic resolution. Contrary to intuition, the processes require only a simple algorithm directly applicable to clinical magnetic resonance imaging (MRI). As a contrast method which precisely represents physical characteristics of a target tissue, invariant D{sub app}{sup {xi}} images produced by pictorial mathematics possess significant potential for a number of biological and clinical applications. (author).

  5. Feasibility of diffusion-weighted magnetic resonance imaging in patients with juvenile idiopathic arthritis on 1.0-T open-bore MRI

    Energy Technology Data Exchange (ETDEWEB)

    Barendregt, Anouk M.; Nusman, Charlotte M. [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands); University of Amsterdam, Department of Pediatric Hematology, Immunology, Rheumatology and Infectious Disease, Emma Children' s Hospital AMC, Amsterdam (Netherlands); Hemke, Robert; Lavini, Cristina; Maas, Mario [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands); Amiras, Dimitri [Imperial College Healthcare NHS Trust, Radiology Department, St. Mary' s Hospital, Paddington, London (United Kingdom); Kuijpers, Taco W. [University of Amsterdam, Department of Pediatric Hematology, Immunology, Rheumatology and Infectious Disease, Emma Children' s Hospital AMC, Amsterdam (Netherlands)

    2015-12-15

    To evaluate the feasibility of non-invasive diffusion-weighted imaging (DWI) of the knee of children with juvenile idiopathic arthritis (JIA) and, further, to analyze the apparent diffusion coefficient (ADC) levels to distinguish synovium from effusion. Standard magnetic resonance imaging of the knee including post-contrast imaging was obtained in eight patients (mean age, 12 years 8 months, five females) using an open-bore magnetic resonance imaging system (1.0 T). In addition, axially acquired echo-planar DWI datasets (b-values 0, 50, and 600) were prospectively obtained and the diffusion images were post-processed into ADC{sub 50-600} maps. Two independent observers selected a region of interest (ROI) for both synovium and effusion using aligned post-contrast images as landmarks. Mann-Whitney U test was performed to compare ADC synovium and ADC effusion. DWI was successfully obtained in all patients. When data of both observers was combined, ADC synovium was lower than ADC effusion in the ROI in seven out of eight patients (median, 1.92 x 10{sup -3} mm{sup 2}/s vs. 2.40 x 10{sup -3} mm{sup 2}/s, p = 0.006, respectively). Similar results were obtained when the two observers were analyzed separately (observer 1: p = 0.006, observer 2: p = 0.04). In this pilot study, on a patient-friendly 1.0-T open-bore MRI, we demonstrated that DWI may potentially be a feasible non-invasive imaging technique in children with JIA. We could differentiate synovium from effusion in seven out of eight patients based on the ADC of synovium and effusion. However, to select synovium and effusion on DWI, post-contrast images were still a necessity. (orig.)

  6. Value of diffusion weighted magnetic resonance imaging in the ...

    African Journals Online (AJOL)

    Ahmad Hafez Ahmad Alsayed Afifi

    2012-10-12

    DCE) ... nography, IVU, CT or any other imaging modality were checked. ... measuring the ADC value in different areas. The ROI is fitted ..... MR imaging of the prostate gland. PET. Clinics 2009;4(2):139–54. 14. Yu KK, Hricak H.

  7. Diagnosis of pericardial cysts using diffusion weighted magnetic resonance imaging: A case series

    Directory of Open Access Journals (Sweden)

    Mousavi Negareh

    2011-09-01

    Full Text Available Abstract Introduction Congenital pericardial cysts are benign lesions that arise from the pericardium during embryonic development. The diagnosis is based on typical imaging features, but atypical locations and signal magnetic resonance imaging sequences make it difficult to exclude other lesions. Diffusion-weighted magnetic resonance imaging is a novel method that can be used to differentiate tissues based on their restriction to proton diffusion. Its use in differentiating pericardial cysts from other pericardial lesions has not yet been described. Case presentation We present three cases (a 51-year-old Caucasian woman, a 66-year-old Caucasian woman and a 77-year-old Caucasian woman with pericardial cysts evaluated with diffusion-weighted imaging using cardiac magnetic resonance imaging. Each lesion demonstrated a high apparent diffusion coefficient similar to that of free water. Conclusion This case series is the first attempt to investigate the utility of diffusion-weighted magnetic resonance imaging in the assessment of pericardial cysts. Diffusion-weighted imaging may be a useful noninvasive diagnostic tool for pericardial cysts when conventional imaging findings are inconclusive.

  8. Diffusion-weighted MR neurography of the brachial and lumbosacral plexus: 3.0 T versus 1.5 T imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mürtz, P., E-mail: petra.muertz@ukb.uni-bonn.de [Department of Radiology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn (Germany); Kaschner, M., E-mail: Marius.Kaschner@med.uni-duesseldorf.de [Department of Radiology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn (Germany); Lakghomi, A., E-mail: Asadeh.Lakghomi@ukb.uni-bonn.de [Department of Radiology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn (Germany); Gieseke, J., E-mail: juergen.gieseke@ukb.uni-bonn.de [Philips Healthcare, Lübeckertordamm 5, 20099 Hamburg (Germany); Department of Radiology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn (Germany); Willinek, W.A., E-mail: winfried.willinek@ukb.uni-bonn.de [Department of Radiology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn (Germany); Schild, H.H., E-mail: hans.schild@ukb.uni-bonn.de [Department of Radiology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn (Germany); Thomas, D., E-mail: daniel.thomas@ukb.uni-bonn.de [Department of Radiology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn (Germany)

    2015-04-15

    Highlights: •DW MRN of brachial and lumbosacral plexus at 1.5 T and at 3.0 T was compared. •For lumbosacral plexus, nerve conspicuity on MIP images was superior at 3.0 T, also visible length and mean sharpness of the nerves. •For brachial plexus, nerve conspicuity at 3.0 T was rather inferior, nerve length was not significantly different, mean sharpness was superior at 3.0 T. -- Abstract: Purpose: To compare intraindividually the nerve conspicuity of the brachial and lumbosacral plexus on diffusion-weighted (DW) MR neurography (MRN) at two different field strengths. Materials and methods: 16 healthy volunteers were investigated at 3.0 T and 1.5 T applying optimized variants of a DW spin-echo echo-planar imaging sequence with short TI inversion recovery fat suppression. Full-volume (FV) and curved sub-volume (CSV) maximum intensity projection (MIP) images were reconstructed and nerve conspicuity was visually assessed. Moreover, visible length and sharpness of the nerves were quantitatively analyzed. Results: On FV MIP images, nerve conspicuity at 3.0 T compared to 1.5 T was worse for brachial plexus (P = 0.00228), but better for lumbosacral plexus (P = 0.00666). On CSV MIP images, nerve conspicuity did not differ significantly for brachial plexus, but was better at 3.0 T for lumbosacral plexus (P = 0.00091). The visible length of the analyzed nerves did not differ significantly with the exception of some lumbosacral nerves, which were significantly longer at 3.0 T. The sharpness of all investigated nerves was significantly higher at 3.0 T by about 40–60% for cervical and 97–169% for lumbosacral nerves. Conclusion: DW MRN imaging at 3.0 T compared to 1.5 T is superior for lumbosacral plexus, but not for brachial plexus.

  9. Diffusion-weighted MR neurography of the brachial and lumbosacral plexus: 3.0 T versus 1.5 T imaging

    International Nuclear Information System (INIS)

    Mürtz, P.; Kaschner, M.; Lakghomi, A.; Gieseke, J.; Willinek, W.A.; Schild, H.H.; Thomas, D.

    2015-01-01

    Highlights: •DW MRN of brachial and lumbosacral plexus at 1.5 T and at 3.0 T was compared. •For lumbosacral plexus, nerve conspicuity on MIP images was superior at 3.0 T, also visible length and mean sharpness of the nerves. •For brachial plexus, nerve conspicuity at 3.0 T was rather inferior, nerve length was not significantly different, mean sharpness was superior at 3.0 T. -- Abstract: Purpose: To compare intraindividually the nerve conspicuity of the brachial and lumbosacral plexus on diffusion-weighted (DW) MR neurography (MRN) at two different field strengths. Materials and methods: 16 healthy volunteers were investigated at 3.0 T and 1.5 T applying optimized variants of a DW spin-echo echo-planar imaging sequence with short TI inversion recovery fat suppression. Full-volume (FV) and curved sub-volume (CSV) maximum intensity projection (MIP) images were reconstructed and nerve conspicuity was visually assessed. Moreover, visible length and sharpness of the nerves were quantitatively analyzed. Results: On FV MIP images, nerve conspicuity at 3.0 T compared to 1.5 T was worse for brachial plexus (P = 0.00228), but better for lumbosacral plexus (P = 0.00666). On CSV MIP images, nerve conspicuity did not differ significantly for brachial plexus, but was better at 3.0 T for lumbosacral plexus (P = 0.00091). The visible length of the analyzed nerves did not differ significantly with the exception of some lumbosacral nerves, which were significantly longer at 3.0 T. The sharpness of all investigated nerves was significantly higher at 3.0 T by about 40–60% for cervical and 97–169% for lumbosacral nerves. Conclusion: DW MRN imaging at 3.0 T compared to 1.5 T is superior for lumbosacral plexus, but not for brachial plexus

  10. Role of diffusion-weighted magnetic resonance imaging in the diagnosis of extrahepatic cholangiocarcinoma

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To determine the clinical value of diffusion-weight- ed imaging (DWI) for the diagnosis of extrahepatic cholangiocarcinoma (EHCC) by comparing the diagnostic sensitivity of DWI and magnetic resonance cholan-giopancreatography (MRCP). METHODS: Magnetic resonance imaging examination was performed in 56 patients with suspected EHCC. T1- weighted imaging, T2-weighted imaging, MRCP and DWI sequence, DWI using single-shot spin-echo echoplanar imaging sequence with different b values (100, 300, 500, 800 and 1...

  11. Improving CT-guided transthoracic biopsy of mediastinal lesions by diffusion-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Marcos Duarte; TyngI, Chiang Cheng; Bitencourt, Almir Galvao Vieira; Gross, Jefferson Luiz; Zurstrassen, Charles Edouard, E-mail: marcosduarte500@gmail.com [AC Camargo Cancer Center, Sao Paulo, SP (Brazil); Hochhegger, Bruno [Universidade Federal de Ciencias da Saude de Porto Alegre (UFCSPA), RS (Brazil). Dept. de Radiologia; Benveniste, Marcelo Felipe Kuperman; Odisio, Bruno Calazans [University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Marchiori, Edson [Universidade Federal do Rio de Janeiro (UFRJ), Petropolis, RJ (Brazil)

    2014-11-15

    Objectives: to evaluate the preliminary results obtained using diffusion-weighted magnetic resonance imaging and the apparent diffusion coefficient for planning computed tomography-guided biopsies of selected mediastinal lesions. Methods: eight patients with mediastinal lesions suspicious for malignancy were referred for computed tomography-guided biopsy. Diffusion-weighted magnetic resonance imaging and apparent diffusion coefficient measurement were performed to assist in biopsy planning with diffusion/computed tomography fused images. We selected mediastinal lesions that could provide discordant diagnoses depending on the biopsy site, including large heterogeneous masses, lesions associated with lung atelectasis or consolidation, lesions involving large mediastinal vessels and lesions for which the results of biopsy using other methods and histopathological examination were divergent from the clinical and radiological suspicion. Results: in all cases, the biopsy needle was successfully directed to areas of higher signal intensity on diffusion weighted sequences and the lowest apparent diffusion coefficient within the lesion (mean, 0.8 [range, 0.6–1.1]610{sup -3} mm{sup 2}/s), suggesting high cellularity. All biopsies provided adequate material for specific histopathological diagnoses of four lymphomas, two sarcomas and two thymoma s. Conclusion: functional imaging tools, such as diffusion-weighted imaging and the apparent diffusion coefficient, are promising for implementation in noninvasive and imaging-guided procedures. However, additional studies are needed to confirm that mediastinal biopsy can be improved with these techniques. (author)

  12. Osteosarcoma subtypes: Magnetic resonance and quantitative diffusion weighted imaging criteria.

    Science.gov (United States)

    Zeitoun, Rania; Shokry, Ahmed M; Ahmed Khaleel, Sahar; Mogahed, Shaimaa M

    2018-03-01

    Osteosarcoma (OS) is a primary bone malignancy, characterized by spindle cells producing osteoid. The objective of this study is to describe the magnetic resonance imaging (MRI) features of different OS subtypes, record their attenuation diffusion coefficient (ADC) values and to point to the relation of their pathologic base and their corresponding ADC value. We performed a retrospective observational lesion-based analysis for 31 pathologically proven osteosarcoma subtypes: osteoblastic (n = 9), fibroblastic (n = 8), chondroblastic (n = 6), para-osteal (n = 3), periosteal (n = 1), telangiectatic (n = 2), small cell (n = 1) and extra-skeletal (n = 1). On conventional images we recorded: bone of origin, epicenter, intra-articular extension, and invasion of articulating bones, skip lesions, distant metastases, pathological fractures, ossified matrix, hemorrhage and necrosis. We measured the mean ADC value for each lesion. Among the included OS lesions, 51.6% originated at the femur, 29% showed intra-articular extension, 16% invaded neighboring bone, 9% were associated with pathological fracture and 25.8% were associated with distant metastases. On MRI, all lesions showed ossified matrix, 35.5% showed hemorrhage and 58% showed necrosis. The mean ADC values for OS lesions ranged from 0.74 × 10 -3  mm 2 /s (recorded for conventional osteoblastic OS) to 1.50 × 10 -3  mm 2 /s (recorded for telangiectatic OS) with an average value of 1.16 ± 0.18 × 10 -3  mm 2 /s. Conventional chondroblastic OS recorded higher values compared to the other two conventional subtypes. Osteosarcoma has different pathologic subtypes which correspondingly vary in their imaging criteria and their ADC values. Copyright © 2018. Production and hosting by Elsevier B.V.

  13. Evaluation of MR diffusion-weighted imaging in differentiating endometriosis infiltrating the bowel from colorectal carcinoma

    International Nuclear Information System (INIS)

    Busard, M.P.H.; Pieters-van den Bos, I.C.; Mijatovic, V.; Van Kuijk, C.; Bleeker, M.C.G.; Waesberghe, J.H.T.M. van

    2012-01-01

    Objective: Endometriosis infiltrating the bowel may be difficult to differentiate from colorectal carcinoma in cases that present with non-specific clinical and imaging features. The aim of this study is to assess the value of MR diffusion-weighted imaging (DWI) in differentiating endometriosis infiltrating the bowel from colorectal carcinoma. Methods: In 66 patients, MR DWI was added to the standard imaging protocol in patients visiting our outdoor MR clinic for the analysis of suspected or known deep infiltrating endometriosis (DIE). In patients diagnosed with DIE infiltrating the bowel on MR imaging, high b-value diffusion-weighted images were qualitatively assessed by two readers in consensus and compared to high b-value diffusion weighted images in 15 patients evaluated for colorectal carcinoma. In addition, ADC values of lesions were calculated, using b-values of 50, 400 and 800 s/mm 2 . Results: A total of 15 patients were diagnosed with DIE infiltrating the bowel on MR imaging. Endometriosis infiltrating the bowel showed low signal intensity on high b-value diffusion-weighted images in all patients, whereas colorectal carcinoma showed high signal intensity on high b-value diffusion-weighted images in all patients. Mean ADC value in endometriosis infiltrating the bowel (0.80 ± 0.06 × 10 −3 mm 2 /s) was significantly lower compared to mean ADC value in colorectal carcinoma (0.86 ± 0.06 × 10 −3 mm 2 /s), but with considerable overlap between ADC values. Conclusion: Only qualitative assessment of MR DWI may be valuable to facilitate differentiation between endometriosis infiltrating the bowel and colorectal carcinoma.

  14. Acute vertebral fracture: differentiation of malignant and benign causes by diffusion weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mubarak, F.; Akhtar, W.

    2011-01-01

    Objective: To evaluate the sensitivity, specificity and accuracy of diffusion weighted (DWI) magnetic resonance imaging (MRI) in the diagnosis and differentiation between benign (osteoporotic/infectious) and malignant vertebral compression fractures in comparison with histology findings and clinical follow up. Methods: The study was conducted at the Radiology Department, Aga Khan University Hospital (AKUH) Karachi. It was a one year cross-sectional study from 01/01/2009 to 01/01/2010. Forty patients with sixty three vertebral compression fractures were included. Diffusion-weighted sequences and apparent diffusion coefficient (ADC) images on a 1.5 T MR scanner were obtained in all patients to identify the vertebral compression fracture along with benign and malignant causes. Imaging findings were compared with histopathologic results and clinical follow-up. Results: Diffusion-weighted MR imaging found to have, 92% sensitivity, 90% specificity and accuracy of 85% in differentiation of benign and malignant vertebral compression fracture while PPV and NPV were 78 % and 90% respectively. Conclusion: Diffusion weighted magnetic resonance imaging offers a safe, accurate and non invasive modality to differentiate between the benign and malignant vertebral compression fracture. (author)

  15. Diffusion-weighted magnetic resonance imaging of cerebral white matter development

    International Nuclear Information System (INIS)

    Prayer, Daniela.; Prayer, Lucas

    2003-01-01

    Diffusion-weighted magnetic resonance imaging (DWI) has become a sensitive tool to monitor white matter development. Different applications of diffusion-weighted techniques provide information about premyelinating, myelinating, and postmyelinating states of white matter maturation. Mirroring maturational processes on the cellular level, DWI has to be regarded as a morphological method as well as a functional instrument, giving insight into molecular processes during the formation of axons and myelin sheets and into the steric arrangement of white matter tracts the formation of which is strongly influenced by their function

  16. Diffusion-weighted magnetic resonance imaging of cerebral white matter development

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela. E-mail: daniela.prayer@univie.ac.at; Prayer, Lucas

    2003-03-01

    Diffusion-weighted magnetic resonance imaging (DWI) has become a sensitive tool to monitor white matter development. Different applications of diffusion-weighted techniques provide information about premyelinating, myelinating, and postmyelinating states of white matter maturation. Mirroring maturational processes on the cellular level, DWI has to be regarded as a morphological method as well as a functional instrument, giving insight into molecular processes during the formation of axons and myelin sheets and into the steric arrangement of white matter tracts the formation of which is strongly influenced by their function.

  17. Tensor Based Representation and Analysis of Diffusion-Weighted Magnetic Resonance Images

    Science.gov (United States)

    Barmpoutis, Angelos

    2009-01-01

    Cartesian tensor bases have been widely used to model spherical functions. In medical imaging, tensors of various orders can approximate the diffusivity function at each voxel of a diffusion-weighted MRI data set. This approximation produces tensor-valued datasets that contain information about the underlying local structure of the scanned tissue.…

  18. Cerebral Effects of Targeted Temperature Management Methods Assessed by Diffusion-Weighted Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Grejs, Anders Morten; Gjedsted, Jakob; Pedersen, Michael

    2016-01-01

    The aim of this randomized porcine study was to compare surface targeted temperature management (TTM) to endovascular TTM evaluated by cerebral diffusion-weighted magnetic resonance imaging (MRI): apparent diffusion coefficient (ADC), and by intracerebral/intramuscular microdialysis. It is well k...

  19. Diffusion-Weighted Magnetic Resonance Imaging Early After Chemoradiotherapy to Monitor Treatment Response in Head-and-Neck Squamous Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Vandecaveye, Vincent, E-mail: Vincent.Vandecaveye@uzleuven.be [Department of Radiology, University Hospitals Leuven (Belgium); Dirix, Piet [Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven (Belgium); De Keyzer, Frederik; Op de Beeck, Katya [Department of Radiology, University Hospitals Leuven (Belgium); Vander Poorten, Vincent [Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven (Belgium); Hauben, Esther [Department of Pathology, University Hospitals Leuven (Belgium); Lambrecht, Maarten; Nuyts, Sandra [Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven (Belgium); Hermans, Robert [Department of Radiology, University Hospitals Leuven (Belgium)

    2012-03-01

    Purpose: To evaluate diffusion-weighted imaging (DWI) for assessment of treatment response in head and neck squamous cell carcinoma (HNSCC) three weeks after the end of chemoradiotherapy (CRT). Methods and Materials: Twenty-nine patients with HNSCC underwent magnetic resonance imaging (MRI) prior to and 3 weeks after CRT, including T{sub 2}-weighted and pre- and postcontrast T{sub 1}-weighted sequences and an echo-planar DWI sequence with six b values (0 to 1,000 s/mm{sup 2}), from which the apparent diffusion coefficient (ADC) was calculated. ADC changes 3 weeks posttreatment compared to baseline ( Increment ADC) between responding and nonresponding primary lesions and adenopathies were correlated with 2 years locoregional control and compared with a Mann-Whitney test. In a blinded manner, the Increment ADC was compared to conventional MRI 3 weeks post-CRT and the routinely implemented CT, on average 3 months post-CRT, which used size-related and morphological criteria. Positive and negative predictive values (PPV and NPV, respectively) were compared between the Increment ADC and anatomical imaging. Results: The Increment ADC of lesions with later tumor recurrence was significantly lower than lesions with complete remission for both primary lesions (-2.3% {+-} 0.3% vs. 80% {+-} 41%; p < 0.0001) and adenopathies (19.9% {+-} 32% vs. 63% {+-} 36%; p = 0.003). The Increment ADC showed a PPV of 89% and an NPV of 100% for primary lesions and a PPV of 70% and an NPV of 96% for adenopathies per neck side. DWI improved PPV and NPV compared to anatomical imaging. Conclusion: DWI with the Increment ADC 3 weeks after concluding CRT for HNSCC allows for early assessment of treatment response.

  20. Diffusion-weighted magnetic resonance imaging for pretreatment prediction and monitoring of treatment response of patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy

    International Nuclear Information System (INIS)

    Nilsen, Line; Olsen, Dag Rune; Seierstad, Therese; Fangberget, Anne; Geier, Oliver

    2010-01-01

    Background. For patients with locally advanced breast cancer (LABC) undergoing neoadjuvant chemotherapy (NACT), the European Guidelines for Breast Imaging recommends magnetic resonance imaging (MRI) to be performed before start of NACT, when half of the NACT has been administered and prior to surgery. This is the first study addressing the value of flow-insensitive apparent diffusion coefficients (ADCs) obtained from diffusion-weighted (DW) MRI at the recommended time points for pretreatment prediction and monitoring of treatment response. Materials and methods. Twenty-five LABC patients were included in this prospective study. DW MRI was performed using single-shot spin-echo echo-planar imaging with b-values of 100, 250 and 800 s/mm 2 prior to NACT, after four cycles of NACT and at the conclusion of therapy using a 1.5 T MR scanner. ADC in the breast tumor was calculated from each assessment. The strength of correlation between pretreatment ADC, ADC changes and tumor volume changes were examined using Spearman's rho correlation test. Results. Mean pretreatment ADC was 1.11 ± 0.21 x 10 -3 mm 2 /s. After 4 cycles of NACT, ADC was significantly increased (1.39 ± 0.36 x 10 -3 mm 2 /s; p=0.018). There was no correlation between individual pretreatment breast tumor ADC and MR response measured after four cycles of NACT (p=0.816) or prior to surgery (p=0.620). Conclusion. Pretreatment tumor ADC does not predict treatment response for patients with LABC undergoing NACT. Furthermore, ADC increase observed mid-way in the course of NACT does not correlate with tumor volume changes.

  1. Turbo-Proton Echo Planar Spectroscopic Imaging (t-PEPSI) MR technique in the detection of diffuse axonal damage in brain injury. Comparison with Gradient-Recalled Echo (GRE) sequence.

    Science.gov (United States)

    Giugni, E; Sabatini, U; Hagberg, G E; Formisano, R; Castriota-Scanderbeg, A

    2005-01-01

    Diffuse axonal injury (DAI) is a common type of primary neuronal injury in patients with severe traumatic brain injury, and is frequently accompanied by tissue tear haemorrhage. The T2*-weighted gradient-recalled echo (GRE) sequences are more sensitive than T2-weighted spin-echo images for detection of haemorrhage. This study was undertaken to determine whether turbo-PEPSI, an extremely fast multi-echo-planar-imaging sequence, can be used as an alternative to the GRE sequence for detection of DAI. Nineteen patients (mean age 24,5 year) with severe traumatic brain injury (TBI), occurred at least 3 months earlier, underwent a brain MRI study on a 1.5-Tesla scanner. A qualitative evaluation of the turbo-PEPSI sequences was performed by identifying the optimal echo time and in-plane resolution. The number and size of DAI lesions, as well as the signal intensity contrast ratio (SI CR), were computed for each set of GRE and turbo-PEPSI images, and divided according to their anatomic location into lobar and/or deep brain. There was no significant difference between GRE and turbo-PEPSI sequences in the total number of DAI lesions detected (283 vs 225 lesions, respectively). The GRE sequence identified a greater number of hypointense lesions in the temporal lobe compared to the t-PEPSI sequence (72 vs 35, pPEPSI than for the GRE sequence (pPEPSI sequence can be used as an alternative to the GRE to assess brain DAI in severe TBI patients, especially if uncooperative and medically unstable.

  2. Spin-echo Echo-planar Imaging MR Elastography versus Gradient-echo MR Elastography for Assessment of Liver Stiffness in Children and Young Adults Suspected of Having Liver Disease.

    Science.gov (United States)

    Serai, Suraj D; Dillman, Jonathan R; Trout, Andrew T

    2017-03-01

    Purpose To compare two-dimensional (2D) gradient-recalled echo (GRE) and 2D spin-echo (SE) echo-planar imaging (EPI) magnetic resonance (MR) elastography for measurement of hepatic stiffness in pediatric and young adult patients suspected of having liver disease. Materials and Methods In this institutional review board-approved, HIPAA-compliant study, 58 patients underwent both 2D GRE and 2D SE-EPI MR elastography at 1.5 T during separate breath holds. Liver stiffness (mean of means; in kilopascals) was measured by five blinded reviewers. Pooled mean liver stiffness and region-of-interest (ROI) size were compared by using paired t tests. Intraclass correlation coefficients (ICCs) were used to assess agreement between techniques. Respiratory motion artifacts were compared across sequences by using the Fisher exact test. Results Mean patient age was 14.7 years ± 5.2 (standard deviation; age range, 0.7-20.5 years), and 55.2% (32 of 58) of patients were male. Mean liver stiffness was 2.92 kPa ± 1.29 measured at GRE MR elastography and 2.76 kPa ± 1.39 at SE-EPI MR elastography (n = 290; P = .15). Mean ROI sizes were 8495 mm 2 ± 4482 for 2D GRE MR elastography and 15 176 mm 2 ± 7609 for 2D SE-EPI MR elastography (n = 290; P range, 0.91-0.95). Moderate or severe breathing artifacts were observed on 27.5% (16 of 58) of 2D GRE images versus 0% 2D SE-EPI images (P < .001). Conclusion There is excellent agreement on measured hepatic stiffness between 2D GRE and 2D SE-EPI MR elastography across multiple reviewers. SE-EPI MR elastography allowed for stiffness measurement across larger areas of the liver and can be performed in a single breath hold. © RSNA, 2016.

  3. Pediatric littoral cell angioma of the spleen: multimodality imaging including diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ertan, Gulhan; Tekes, Aylin; Huisman, Thierry A.G.M. [Johns Hopkins Hospital, Division of Pediatric Radiology, Department of Radiology and Radiological Science, Baltimore, MD (United States); Mitchell, Sally [Johns Hopkins Hospital, Division of Cardiovascular and Interventional Radiology, Department of Radiology and Radiological Science, Baltimore (United States); Keefer, Jeffrey [Johns Hopkins Hospital, Division of Pediatric Hematology, Department of Pediatrics, Baltimore, MD (United States)

    2009-10-15

    Littoral cell angioma (LCA) is a rare primary splenic vascular tumor originating from littoral cells lining the splenic red pulp sinuses. LCAs are rarely seen in children. We present the US, CT, and MRI findings including diffusion-weighted imaging (DWI) in a 2-year-old boy with histologically proven LCA. Previous studies on liver lesions have shown that DWI allows differentiation of vascular tumors from primary neoplasms and metastatic disease. The current case indicates that increased ADC values within the splenic lesions suggest a vascular etiology, which might help narrow the differential diagnosis. (orig.)

  4. Pediatric littoral cell angioma of the spleen: multimodality imaging including diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Ertan, Gulhan; Tekes, Aylin; Huisman, Thierry A.G.M.; Mitchell, Sally; Keefer, Jeffrey

    2009-01-01

    Littoral cell angioma (LCA) is a rare primary splenic vascular tumor originating from littoral cells lining the splenic red pulp sinuses. LCAs are rarely seen in children. We present the US, CT, and MRI findings including diffusion-weighted imaging (DWI) in a 2-year-old boy with histologically proven LCA. Previous studies on liver lesions have shown that DWI allows differentiation of vascular tumors from primary neoplasms and metastatic disease. The current case indicates that increased ADC values within the splenic lesions suggest a vascular etiology, which might help narrow the differential diagnosis. (orig.)

  5. Fat-saturated diffusion-weighted imaging with three-dimensional MP-RAGE sequence

    International Nuclear Information System (INIS)

    Numano, Tomokazu; Homma, Kazuhiro; Takahashi, Nobuyuki; Hirose, Takeshi

    2005-01-01

    Image misrepresentation due to chemical shifts can create image artifacts on MR images. Distinguishing the organization and affected area can be difficult due to the chemical shift artifacts. Chemical shift selective (CHESS) is a method of decreasing chemical shift artifacts. In this study we have developed a new sequence for fat-saturated three-dimensional diffusion weighted MR imaging. This imaging was done during in vivo studies using an animal experiment MR imaging system at 2.0 T. In this sequence a preparation phase with a ''CHESS-90 deg RF-Motion Proving Gradient (MPG-180 deg RF-MPG-90 deg RF pulse train) was used to sensitize the magnetization to fat-saturated diffusion. Centric k-space acquisition order is necessary to minimize saturation effects from tissues with short relaxation times. From experimental results obtained with a phantom, the effect of the diffusion weighting and the effect of the fat-saturation were confirmed. From rat experimental results, fat-saturated diffusion weighted image data (0.55 x 0.55 x 0.55 mm 3 : voxel size) were obtained. This sequence was useful for in vivo imaging. (author)

  6. Wallenberg's lateral medullary syndrome: diffusion-weighted imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Kitis, O.; Calli, C.; Yunten, N.; Kocaman, A.; Sirin, H. [Ege Univ., Izmir (Turkey). Dept. of Radiology

    2004-02-01

    To investigate the efficacy of diffusion-weighted imaging in patients with Wallenberg's lateral medullary syndrome. Thirteen patients with Wallenberg's lateral medullary syndrome were examined with conventional and echoplanar diffusion-weighted magnetic resonance (MR) imaging in a 1.5 T magnetic resonance unit. MR examinations were obtained in the acute or subacute stage of clinical syndrome, and diffusion-weighted imaging (DWI) was considered to be positive for infarction when an increase in signal was seen on b = 1000 s/mm2 images in the posterolateral medullary localization. DWIs were positive in 12 patients in the acute or subacute stages of this clinical syndrome. A false-negative result was obtained in only one patient examined within the first day, 10 h after onset of the symptoms. In the visual evaluation of the DWI, the contrast between normal and infarcted brainstem area was better in the high b-value images than in the apparent diffusion coefficient map images. DWI is a valuable technique for examining patients presenting with the signs and symptoms of Wallenberg's syndrome and high b-value images can provide complementary data to T2-weighted images. However, because most of our case group were in either the acute or subacute stage, true sensitivity of the method in the hyperacute stage of the syndrome remains unclear.

  7. Diffusion-weighted MR imaging of cystic lesions of neurocysticercosis: a preliminary study

    International Nuclear Information System (INIS)

    Raffin, Luciana S.; Bacheschi, Luiz A.; Machado, Luis R.; Nobrega, Jose P.S.; Coelho, Christina; Leite, Claudia C.

    2001-01-01

    Neurocysticercosis is an endemic disease in some developing countries. It has pleomorfic clinical and imaging findings, which are variable from patient to patient. In this preliminary note, we studied the magnetic resonance diffusion-weighted images of sixteen patients presenting with cystic lesions of this disease diagnosed by clinical and laboratorial findings. All the lesions had hypointense signal and the similar apparent diffusion coefficient values as the cerebrospinal fluid. (author)

  8. Single-shot echo-planar MR sequences in the diagnosis of intracranial infectious diseases

    International Nuclear Information System (INIS)

    Tsuchiya, Kazuhiro; Katase, Shichiro; Yoshino, Ayako; Yamakami, Norio; Hachiya, Junichi

    1998-01-01

    The purpose of this study was to present our preliminary experience in the application of echo-planar-imaging (EPI) MR sequences for the diagnosis of intracranial infectious diseases and to assess the value of these sequences. We reviewed single-shot EPI MR images obtained at 1.5 T in 17 patients and compared these images with conventional or fast spin-echo (SE) or fluid attenuated inversion-recovery (FLAIR) images. The clinical diagnoses for the 17 patients were meningitis (2 patients), encephalitis or meningoencephalitis (7 patients), brain abscess (5 patients), epidural empyema (2 patients) and Creutzfeldt-Jakob disease (1 patient). We obtained EPI-T 2 -weighted (T 2 W) images in 8 patients, EPI-FLAIR images in 13 patients and EPI-diffusion-weighted (DW) images in 14 patients. Among the 8 patients for whom EPI-T 2 W imaging was performed, EPI-T 2 W imaging yielded superior results compared with SE-T 2 W imaging in 3 patients as a consequence of patient motion and equal results compared with SE-T 2 W imaging in 5 patients. Among the 13 patients for whom EPI-FLAIR imaging was performed, the EPI-FLAIR images were superior to conventional FLAIR images in 3 unstable patients. In the remaining 10 patients for whom EPI-FLAIR imaging was performed, EPI-FLAIR images were equivalent or inferior to conventional FLAIR images. In 6 patients with encephalitis or meningoencephalitis, the encephalitic lesions showed hyperintensity in EPI-DW images to a greater extent than in images obtained with the other techniques. In 3 patients, EPI-DW images also demonstrated hyperintensity for the contents of abscesses or areas of empyema that was not seen with the other imaging techniques. The value of EPI-T 2 W and EPI-FLAIR imaging is limited in uncooperative patients. EPI-DW imaging was found to be of value for the evaluation of several intracranial infectious diseases. (author)

  9. Single-shot echo-planar MR sequences in the diagnosis of intracranial infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Kazuhiro; Katase, Shichiro; Yoshino, Ayako; Yamakami, Norio; Hachiya, Junichi [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1998-06-01

    The purpose of this study was to present our preliminary experience in the application of echo-planar-imaging (EPI) MR sequences for the diagnosis of intracranial infectious diseases and to assess the value of these sequences. We reviewed single-shot EPI MR images obtained at 1.5 T in 17 patients and compared these images with conventional or fast spin-echo (SE) or fluid attenuated inversion-recovery (FLAIR) images. The clinical diagnoses for the 17 patients were meningitis (2 patients), encephalitis or meningoencephalitis (7 patients), brain abscess (5 patients), epidural empyema (2 patients) and Creutzfeldt-Jakob disease (1 patient). We obtained EPI-T{sub 2}-weighted (T{sub 2}W) images in 8 patients, EPI-FLAIR images in 13 patients and EPI-diffusion-weighted (DW) images in 14 patients. Among the 8 patients for whom EPI-T{sub 2}W imaging was performed, EPI-T{sub 2}W imaging yielded superior results compared with SE-T{sub 2}W imaging in 3 patients as a consequence of patient motion and equal results compared with SE-T{sub 2}W imaging in 5 patients. Among the 13 patients for whom EPI-FLAIR imaging was performed, the EPI-FLAIR images were superior to conventional FLAIR images in 3 unstable patients. In the remaining 10 patients for whom EPI-FLAIR imaging was performed, EPI-FLAIR images were equivalent or inferior to conventional FLAIR images. In 6 patients with encephalitis or meningoencephalitis, the encephalitic lesions showed hyperintensity in EPI-DW images to a greater extent than in images obtained with the other techniques. In 3 patients, EPI-DW images also demonstrated hyperintensity for the contents of abscesses or areas of empyema that was not seen with the other imaging techniques. The value of EPI-T{sub 2}W and EPI-FLAIR imaging is limited in uncooperative patients. EPI-DW imaging was found to be of value for the evaluation of several intracranial infectious diseases. (author)

  10. The diagnostic value of diffusion-weighted magnetic resonance imaging in soft tissue abscesses

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Ozkan; Koparan, Halil Ibrahim [Yuezuencue Yil University, Department of Radiology, Van (Turkey); Avcu, Serhat, E-mail: serhatavcu@hotmail.com [Yuezuencue Yil University, Department of Radiology, Van (Turkey); Kalender, Ali Murat [Yuezuencue Yil University, Department of Orthopaedics, General Surgery, Van (Turkey); Kisli, Erol [Yuezuencue Yil University, Department of General Surgery, Van (Turkey)

    2011-03-15

    Purpose: To study the diagnostic value of diffusion-weighted imaging (DWI) in soft tissue abscesses. Materials and methods: Fifty patients were included in this study who were thought to have soft tissue abscess or cystic lesion as a result of clinical and radiological examinations. Localisations of the lesions were: 1 periorbital, 3 breast, 14 intraabdominal, and 32 intramuscular lesions. After other radiological examinations, DWI was performed. The signal intensity values of the lesions were evaluated qualitatively according to the hyperintensity on b-1000 DWI, using 1.5 T MR system. All of the lesions were aspirated after DWI, and detection of pus in the aspiration material was accepted as gold standard for the diagnosis of abscess. Results: In 38 of the 50 patients, hyperintensity was obtained on diffusion-weighted images. False-positive results were maintained in 2 of these patients, and true-positive results were maintained in 36 of them. In 11 of the 50 patients, hypointensity was visualised on diffusion-weighted images. False-negative results were maintained in 3 of these patients, and true-negative results were maintained in 8 of them. An abscess which was seen on post-contrast conventional MRI could not be seen on DWI, and this was regarded as false-negative. Conclusion: The sensitivity and specificity of diffusion-weighted images for detecting soft tissue abscesses were found to be 92% and 80%, respectively. DWI has a high diagnostic value in soft tissue abscesses, and is an important imaging modality that may be used for the differentiation of cysts and abscesses.

  11. The diagnostic value of diffusion-weighted magnetic resonance imaging in soft tissue abscesses

    International Nuclear Information System (INIS)

    Unal, Ozkan; Koparan, Halil Ibrahim; Avcu, Serhat; Kalender, Ali Murat; Kisli, Erol

    2011-01-01

    Purpose: To study the diagnostic value of diffusion-weighted imaging (DWI) in soft tissue abscesses. Materials and methods: Fifty patients were included in this study who were thought to have soft tissue abscess or cystic lesion as a result of clinical and radiological examinations. Localisations of the lesions were: 1 periorbital, 3 breast, 14 intraabdominal, and 32 intramuscular lesions. After other radiological examinations, DWI was performed. The signal intensity values of the lesions were evaluated qualitatively according to the hyperintensity on b-1000 DWI, using 1.5 T MR system. All of the lesions were aspirated after DWI, and detection of pus in the aspiration material was accepted as gold standard for the diagnosis of abscess. Results: In 38 of the 50 patients, hyperintensity was obtained on diffusion-weighted images. False-positive results were maintained in 2 of these patients, and true-positive results were maintained in 36 of them. In 11 of the 50 patients, hypointensity was visualised on diffusion-weighted images. False-negative results were maintained in 3 of these patients, and true-negative results were maintained in 8 of them. An abscess which was seen on post-contrast conventional MRI could not be seen on DWI, and this was regarded as false-negative. Conclusion: The sensitivity and specificity of diffusion-weighted images for detecting soft tissue abscesses were found to be 92% and 80%, respectively. DWI has a high diagnostic value in soft tissue abscesses, and is an important imaging modality that may be used for the differentiation of cysts and abscesses.

  12. Incidence of ischemic lesions by diffusion-weighted imaging after carotid endarterectomy with routine shunt usage

    International Nuclear Information System (INIS)

    Inoue, Tomohiro; Tsutsumi, Kazuo; Adachi, Shinobu; Tanaka, Shota; Yako, Kyoko; Saito, Kuniaki; Kunii, Naoto; Maeda, Keiitirou

    2006-01-01

    Temporary intraluminal shunt was used during 72 consecutive carotid endarterectomies (CEAs) in 61 patients (bilateral CEA in 11 patients) during October 2001 and September 2005. The medical records of these patients were retrospectively reviewed. All procedures were performed with routine shunt insertion without monitoring such as electroencephalography. Pre- and postoperative diffusion-weighted magnetic resonance (MR) imaging was used to detect ischemic complications. Postoperative angiography was performed in 70 cases to detect abnormalities such as major stenosis or dissection of the distal end. Symptomatic ischemic complication occurred in one patient at 1 month. Postoperative diffusion-weighted MR imaging detected new hyperintense lesions in three patients including the symptomatic patient. Postoperative angiography confirmed that the distal end was satisfactory in all cases. The incidence of ischemic lesions of embolic origin after CEA with routine shunt usage is acceptably low if the procedure of shunt device insertion and removal is meticulously conducted. (author)

  13. Diffusion-weighted imaging and diffusion tensor imaging of asymptomatic lumbar disc herniation.

    Science.gov (United States)

    Sakai, Toshinori; Miyagi, Ryo; Yamabe, Eiko; Fujinaga, Yasunari; N Bhatia, Nitin; Yoshioka, Hiroshi

    2014-01-01

    Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) were performed on a healthy 31-year-old man with asymptomatic lumbar disc herniation. Although the left S1 nerve root was obviously entrapped by a herniated mass, neither DWI nor DTI showed any significant findings for the nerve root. Decreased apparent diffusion coefficient (ADC) values and increased fractional anisotropy (FA) values were found. These results are contrary to those in previously published studies of symptomatic patients, in which a combination of increased ADC and decreased FA seem to have a relationship with nerve injury and subsequent symptoms, such as leg pain or palsy. Our results seen in an asymptomatic subject suggest that the compressed nerve with no injury, such as edema, demyelination, or persistent axonal injury, may be indicated by a combination of decreased ADC and increased FA. ADC and FA could therefore be potential tools to elucidate the pathomechanism of radiculopathy.

  14. Gadolinium-enhanced MR imaging of normal renal transplants. An evaluation of a T1-weighted dynamic echo-planar sequence

    International Nuclear Information System (INIS)

    Dupas, B.; Blancho, G.; Havet, T.; Leaute, F.

    1999-01-01

    Purpose: To evaluate the potential usefulness of dynamic MR with echoplanar imaging (EPI) in assessing the renal function in patients with renal allografts. Material and methods: Using a T1-weighted sequence, EPI was performed after injection of a Gd-chelate in 17 patients with normally functioning renal allografts. Time-intensity curves were plotted from the signal intensity (SI) measurements of the cortex and the medulla. Results: The pattern of corticomedullar differentiation (CMD) observed after constrast enhancement was divided into four phases using the T1-EPI. After a rapid decrease in the SI of cortical structures, and a subsequent return to precontrast levels, a gradual fall in the SI of the medulla was observed. The average time between the two periods of signal loss was 60 s. Conclusion: This study illustrated the potential use of dynamic T1-EPI to demonstrate contrast-induced CMD in renal allografts. (orig.)

  15. Diffusion-weighted imaging in diagnosing neurological disorders in children: a pediatric neurologist's perspective

    International Nuclear Information System (INIS)

    Benedict, Susan L.

    2007-01-01

    Diffusion-weighted imaging (DWI) has provided a way to measure early changes in cellular function in the central nervous system. It has permitted rapid, less invasive diagnosis and treatment of neurological disorders that were once thought to be untreatable. DWI has also created new avenues of research and alternative ways to measure study outcomes. Seven clinical cases illustrate how DWI enhances the ability of the pediatric neurologist to rapidly diagnose acute neurological disorders in infants and children. (orig.)

  16. Giant Vertebral Notochordal Rest: Magnetic Resonance and Diffusion Weighted Imaging Findings

    International Nuclear Information System (INIS)

    Oner, Ali Yusuf; Akpek, Sergin; Tali, Turgut; Ucar, Murat

    2009-01-01

    A giant vertebral notochordal rest is a newly described, benign entity that is easily confused with a vertebral chordoma. As microscopic notochordal rests are rarely found in adult autopsies, the finding of a macroscopic vertebral lesion is a new entity with only seven previously presented cases. We report here radiological findings, including diffusion weighted images, of a patient with a giant notochordal remnant confined to the L5 vertebra, with an emphasis on its distinction from a chordoma

  17. Diffusion-weighted imaging of tumor recurrencies and posttherapeutical soft-tissue changes in humans

    International Nuclear Information System (INIS)

    Baur, A.; Huber, A.; Reiser, M.; Arbogast, S.; Duerr, H.R.; Zysk, S.; Wendtner, C.; Deimling, M.

    2001-01-01

    The aim of this study was to examine soft tissue tumor recurrences and posttherapeutic soft tissue changes in humans with a diffusion-weighted steady-state free precession (SSFP) sequence. Twenty-four patients with 29 pathologies of the pelvis or the extremities were examined. The lesions were classified as follows: group 1, recurrent viable tumors (n = 10); group 2, postoperative hygromas (n = 7); and group 3, posttherapeutic reactive inflammatory muscle changes (n = 12). The sequence protocol in these patients consisted of short tau inversion recovery images, T2-weighted spin-echo (SE), pre- and postcontrast T1-weighted SE images and the diffusion-weighted SSFP sequence. The signal loss on diffusion-weighting was evaluated visually on a four-grade scale and quantitatively. The signal intensities were measured in regions of interest and a regression analysis was performed. Statistical analyses was performed utilizing the Student's t-test. The signal loss was significantly higher for hygromas and edematous muscle changes than for recurrent tumors (p < 0.001) indicating higher diffusion of water protons. The regression coefficient was -0.11 (mean) for tumors. Hygromas had a significantly higher signal loss than inflammatory edematous muscle changes (p < 0.01). The regression coefficients were -0.29 (mean) for hygromas and -0.22 (mean) for edematous muscle changes. The SSFP sequence seems to be a suitable method for diffusion-weighted imaging of the musculoskeletal system in humans. These preliminary results suggest that the signal loss and the regression coefficients can be used to characterize different types of tissue. (orig.)

  18. Diffusion weighted imaging of female pelvic cancers: Concepts and clinical applications

    International Nuclear Information System (INIS)

    Punwani, Shonit

    2011-01-01

    Early applications of diffusion weighted magnetic resonance imaging (DWI) were limited to neuroimaging, concentrating either on stroke or brain tumours. With recent advances in MRI hardware and software DWI is now increasingly being investigated for cancer assessment throughout the body. Clinical applications of DWI relating to female pelvic cancers have largely concentrated on detection, localisation and staging of disease. More recently investigators have started to evaluate the ability of DWI for determining tumour histology and even predicting the outcome of chemoradiation treatment. This article reviews the physical concepts of MR diffusion weighting, illustrates the biophysical basis of diffusion contrast and reports the clinical applications of DWI for cervical, endometrial, ovarian, rectal and bladder tumours.

  19. Familial Mediterranean fever mimicking septic arthritis: distinguishing with diffusion weighted imaging

    International Nuclear Information System (INIS)

    Oner, Ali Yusuf; Ucar, Murat; Akpek, Sergin; Tokgoz, Nil

    2007-01-01

    FMF arthritis is generally monoarticular in origin. The affected joint is hot, tender, red and mimics septic arthritis. Conventional imaging findings, including magnetic resonance imaging (MRI) and ultrasound, do not help differentiate between these two entities. The final diagnosis depends on culture of the synovial fluid, and therefore initiation of proper drug therapy can be delayed. Diffusion weighted imaging (DWI), with its ability to detect altered water-proton mobility, might play an important role as a fast and non-invasive problem-solving tool in this setting. We here present MRI and DWI findings of a case of FMF arthritis mimicking septic arthritis. (orig.)

  20. Diffusion-weighted MR imaging findings in a patient with herpes simplex encephalitis

    International Nuclear Information System (INIS)

    Heiner, L.; Demaerel, Ph.

    2003-01-01

    Introduction: Herpes simplex meningoencephalitis is one of the most common viral central nervous system infection in adults. Early diagnosis is essential for treatment. Case report: We present a case of a 68-year-old female patient with herpes simplex infection. On admission, she was in severe clinical condition. Diffusion-weighted (DW) magnetic resonance imaging detected brain involvement better than conventional sequences. After acyclovir therapy, the patient fully recovered. Conclusion: DW magnetic resonance imaging is expected to provide a more sensitive imaging in herpes simplex patients than conventional sequences

  1. Novel diffusion-weighted magnetic resonance imaging findings in leptomeningeal carcinomatosis: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Y.F.; Chang, F.C.; Hu, H.H.; Hsu, L.C. [Taipei Veterans General Hospital, Taiwan (China). Depts. of Internal Medicine and Radiology, and Neurological Inst.

    2006-12-15

    This report presents a rare case of leptomeningeal carcinomatosis initially presenting with mental impairment and rapidly progressing to coma without any history of malignancy. In addition to highlighting the diagnostic difficulties, the linear high signal intensity along the cortex on the diffusion-weighted imaging (DWI) sequence of magnetic resonance (MR) imaging was identified accidentally. High signal change in the corresponding areas was also noted on unenhanced fluid-attenuated inversion recovery (FLAIR) MR imaging, which may be a novel method of diagnosing leptomeningeal carcinomatosis, which should be studied further.

  2. Diffusion-weighted MR images and pineoblastoma. Diagnosis and follow-up

    International Nuclear Information System (INIS)

    Gasparetto, Emerson L.; Cruz Junior, L. Celso Hygino; Doring, Thomas M.; Domingues, Romeu C.; Araujo, Bertha; Dantas, Mario Alberto; Chimelli, Leila

    2008-01-01

    Pineoblastomas are uncommon pineal tumors, which demonstrate rapid growing and poor prognosis. We report the case of a 43-year-old man with an enhancing pineal region mass, which showed restriction of the diffusion on diffusion-weighted (DW) MR images. The surgical biopsy defined the diagnosis of pineoblastoma and the therapy was initiated with radiation and chemotherapy. Three months later, the follow-up MR imaging showed areas suggestive of necrosis and the DW images demonstrate no significant areas of restricted diffusion. The differential diagnosis of pineal region masses that could show restriction of diffusion is discussed. (author)

  3. Imaging of postthalamic visual fiber tracts by anisotropic diffusion weighted MRI and diffusion tensor imaging: principles and applications

    International Nuclear Information System (INIS)

    Reinges, Marcus H.T.; Schoth, Felix; Coenen, Volker A.; Krings, Timo

    2004-01-01

    Diffusion weighted MRI offers the possibility to study the course of the cerebral white matter tracts. In the present manuscript, the basics, the technique and the limitations of diffusion tensor imaging and anisotropic diffusion weighted MRI are presented and their applications in various neurological and neurosurgical diseases are discussed with special emphasis on the visual system. A special focus is laid on the combination of fiber tract imaging, anatomical imaging and functional MRI for presurgical planning and intraoperative neuronavigation of lesions near the visual system

  4. Diffuse axonal injury: detection of changes in anisotropy of water diffusion by diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Chan, J.H.M.; Tsui, E.Y.K.; Yuen, M.K.; Peh, W.C.G.; Fong, D.; Fok, K.F.; Leung, K.M.; Fung, K.K.L.

    2003-01-01

    Myelinated axons of white matter demonstrate prominent directional differences in water diffusion. We performed diffusion-weighted imaging on ten patients with head injury to explore the feasibility of using water diffusion anisotropy for quantitating diffuse axonal injury. We showed significant decrease in diffusion anisotropy indices in areas with or without signal abnormality on T2 and T2*-weighted images. We conclude that the water diffusion anisotropy index a potentially useful, sensitive and quantitative way of diagnosing and assessing patients with diffuse axonal injury. (orig.)

  5. Diffusion-weighted MR imaging of neuro-Behcet's disease: a case report

    International Nuclear Information System (INIS)

    Hiwatashi, Akio; Moritani, Toshio; Kinoshita, Toshibumi; Westesson, Per-Lennart; Garber, Todd

    2003-01-01

    We present a serial study of diffusion-weighted imaging (DWI) in a patient with neuro-Behcet's disease. Initial T2-weighted magnetic resonance images showed a hyperintense lesion in the brain stem. The lesion was slightly hyperintense on DWI and the apparent diffusion coefficient (ADC) was slightly increased. Ten months later, DWI showed an improvement in the abnormal signal intensity and the region of increased ADC had increased in size, especially on the left side. DWI is useful for differentiating an acute exacerbation of neuro-Behcet's disease from acute infarction. (orig.)

  6. Diffusion-weighted MR imaging of kidneys in renal artery stenosis

    International Nuclear Information System (INIS)

    Yildirim, Erkan; Kirbas, Ismail; Teksam, Mehmet; Karadeli, Elif; Gullu, Hakan; Ozer, Ismail

    2008-01-01

    Objective: The purpose of our study was to evaluate perfusion and diffusion of kidneys in renal artery stenosis (RAS) and any correlation between stenosis and ADC values and whether this imaging modality may be a noninvasive complementary assessment technique to MR angiography before interventional procedures. Materials and methods: Twenty consecutive patients suspected of having renal artery stenosis were evaluated with renal MR angiography to exclude stenosis and were then included in the study. Transverse DW multisection echo-planar MR imaging was performed. In the transverse ADC map, rectangular regions of interest were placed in the cortex on 3 parts (upper, middle, and lower poles) in each kidney. ADCs of the kidneys were calculated separately for the low, average, and high b-values to enable differentiation of the relative influence of the perfusion fraction and true diffusion. The ADC values of 39 kidneys (13 with renal artery stenosis and 26 normal renal arteries) were compared, and the relationship between stenosis degree and ADC values was calculated. Results: RAS was detected in 11 of 20 (55%) patients with MRA. Thirteen of 39 kidneys demonstrated RAS, and 26 were normal. The ADC low (1.9 ± 0.2 versus 2.1 ± 0.2; P = .020), ADC average (1.7 ± 0.2 versus 1.9 ± 0.1; P = .006), and ADC high (1.8 ± 0.2 versus 2.0 ± 0.1; P = .012) values were significantly lower in patients with kidneys with arterial stenosis than that in patients with kidneys with normal arteries. Statistical analysis revealed that stenosis degree correlated strongly with ADC low (r = -.819; P = .001), ADC average (r = -.754; P = .003), and ADC high (r = -.788; P = .001). The ADC low , ADC average , and ADC high values were significantly lower in patients with kidneys with arterial stenosis than that in patients with kidneys with normal arteries. Conclusion: We think that DW MR imaging of kidneys with RAS can help determine the functional status of a renal artery stenosis

  7. Diffusion-weighted MR imaging in postoperative follow-up: Reliability for detection of recurrent cholesteatoma

    Energy Technology Data Exchange (ETDEWEB)

    Cimsit, Nuri Cagatay [Marmara University Hospital, Department of Radiology, Istanbul (Turkey); Engin Sitesi Peker Sokak No:1 D:13, 34330 Levent, Istanbul (Turkey)], E-mail: cagataycimsit@gmail.com; Cimsit, Canan [Goztepe Education and Research Hospital, Department of Radiology, Istanbul (Turkey); Istanbul Goztepe Egitim ve Arastirma Hastanesi, Radyoloji Klinigi, Goztepe, Istanbul (Turkey)], E-mail: ccimsit@ttmail.com; Baysal, Begumhan [Goztepe Education and Research Hospital, Department of Radiology, Istanbul (Turkey); Istanbul Goztepe Egitim ve Arastirma Hastanesi, Radyoloji Klinigi, Goztepe, Istanbul (Turkey)], E-mail: begumbaysal@yahoo.com; Ruhi, Ilteris Cagatay [Goztepe Education and Research Hospital, Department of ENT, Istanbul (Turkey); Istanbul Goztepe Egitim ve Arastirma Hastanesi, KBB Klinigi, Goztepe, Istanbul (Turkey)], E-mail: cruhi@yahoo.com; Ozbilgen, Suha [Goztepe Education and Research Hospital, Department of ENT, Istanbul (Turkey); Istanbul Goztepe Egitim ve Arastirma Hastanesi, KBB Klinigi, Goztepe, Istanbul (Turkey)], E-mail: sozbilgen@yahoo.com; Aksoy, Elif Ayanoglu [Acibadem Bakirkoy Hospital, Department of ENT, Istanbul (Turkey); Acibadem Hastanesi, KBB Boeluemue, Bakirkoey, Istanbul (Turkey)], E-mail: elifayanoglu@yahoo.com

    2010-04-15

    Introduction: Cholesteatoma is a progressively growing process that destroy the neighboring bony structures and treatment is surgical removal. Follow-up is important in the postoperative period, since further surgery is necessary if recurrence is present, but not if granulation tissue is detected. This study evaluates if diffusion-weighted MR imaging alone can be a reliable alternative to CT, without use of contrast agent for follow-up of postoperative patients in detecting recurrent cholesteatoma. Materials and methods: 26 consecutive patients with mastoidectomy reporting for routine follow-up CT after mastoidectomy were included in the study, if there was loss of middle ear aeration on CT examination. MR images were evaluated for loss of aeration and signal intensity changes on diffusion-weighted sequences. Surgical results were compared with imaging findings. Results: Interpretation of MR images were parallel with the loss of aeration detected on CT for all 26 patients. Of the 26 patients examined, 14 were not evaluated as recurrent cholesteatoma and verified with surgery (NPV: 100%). Twelve patients were diagnosed as recurrent cholesteatoma and 11 were surgically diagnosed as recurrent cholesteatoma (PPV: 91.7%). Four of these 11 patients had loss of aeration size greater than the high signal intensity area on DWI, which were surgically confirmed as granulation tissue or fibrosis accompanying recurrent cholesteatoma. Conclusion: Diffusion-weighted MR for suspected recurrent cholesteatoma is a valuable tool to cut costs and prevent unnecessary second-look surgeries. It has the potential to become the MR sequence of choice to differentiate recurrent cholesteatoma from other causes of loss of aeration in patients with mastoidectomy.

  8. Diffusion weighted imaging demystified. The technique and potential clinical applications for soft tissue imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ahlawat, Shivani [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Fayad, Laura M. [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Oncology, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Orthopaedic Surgery, Baltimore, MD (United States)

    2018-03-15

    Diffusion-weighted imaging (DWI) is a fast, non-contrast technique that is readily available and easy to integrate into an existing imaging protocol. DWI with apparent diffusion coefficient (ADC) mapping offers a quantitative metric for soft tissue evaluation and provides information regarding the cellularity of a region of interest. There are several available methods of performing DWI, and artifacts and pitfalls must be considered when interpreting DWI studies. This review article will review the various techniques of DWI acquisition and utility of qualitative as well as quantitative methods of image interpretation, with emphasis on optimal methods for ADC measurement. The current clinical applications for DWI are primarily related to oncologic evaluation: For the assessment of de novo soft tissue masses, ADC mapping can serve as a useful adjunct technique to routine anatomic sequences for lesion characterization as cyst or solid and, if solid, benign or malignant. For treated soft tissue masses, the role of DWI/ADC mapping in the assessment of treatment response as well as recurrent or residual neoplasm in the setting of operative management is discussed, especially when intravenous contrast medium cannot be given. Emerging DWI applications for non-neoplastic clinical indications are also reviewed. (orig.)

  9. Diffusion weighted imaging demystified. The technique and potential clinical applications for soft tissue imaging

    International Nuclear Information System (INIS)

    Ahlawat, Shivani; Fayad, Laura M.

    2018-01-01

    Diffusion-weighted imaging (DWI) is a fast, non-contrast technique that is readily available and easy to integrate into an existing imaging protocol. DWI with apparent diffusion coefficient (ADC) mapping offers a quantitative metric for soft tissue evaluation and provides information regarding the cellularity of a region of interest. There are several available methods of performing DWI, and artifacts and pitfalls must be considered when interpreting DWI studies. This review article will review the various techniques of DWI acquisition and utility of qualitative as well as quantitative methods of image interpretation, with emphasis on optimal methods for ADC measurement. The current clinical applications for DWI are primarily related to oncologic evaluation: For the assessment of de novo soft tissue masses, ADC mapping can serve as a useful adjunct technique to routine anatomic sequences for lesion characterization as cyst or solid and, if solid, benign or malignant. For treated soft tissue masses, the role of DWI/ADC mapping in the assessment of treatment response as well as recurrent or residual neoplasm in the setting of operative management is discussed, especially when intravenous contrast medium cannot be given. Emerging DWI applications for non-neoplastic clinical indications are also reviewed. (orig.)

  10. MR imaging of hypoglycemic encephalopathy: lesion distribution and prognosis prediction by diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jeong-Hyun; Kim, Young-Joo; Yoo, Won-Jong; Ihn, Yon-Kwon; Kim, Jee-Young; Kim, Bum-Soo [The Catholic University of Korea, Department of Radiology, College of Medicine, Uijongbu, Kyunggi-do (Korea); Song, Ha-Hun [Cheju Halla General Hospital, Department of Radiology, Jeju (Korea)

    2009-10-15

    The aim of this study was to evaluate the patterns of hypoglycemic encephalopathy on diffusion-weighted imaging (DWI) and the relationship between the imaging patterns and clinical outcomes. This retrospective study included 17 consecutive patients that had hypoglycemic encephalopathy with DWI abnormalities. The topographic distributions of the DWI abnormalities of the cortex, deep gray matter, and white matter structures were assessed. In addition, possible correlation between the patterns of brain injury on DWI and clinical outcomes was investigated. There were three patterns of DWI abnormalities: involvement of both gray and white matter (n=8), selective involvement of gray matter (n=4), and selective involvement of white matter (n=5). There was no significant difference in the initial blood glucose levels among patients for each of the imaging patterns. Most patients (16/17) had bilateral symmetrical abnormalities. Among patients with bilateral symmetrical gray and/or white matter injuries, one had moderate to severe disability and 14 remained in a persistent vegetative state. The two patients with a focal unilateral white matter abnormality and a localized splenial abnormality recovered without neurological deficits. The results of this study showed that white matter was more sensitive to hypoglycemia than previously thought and there was no specific association between the patterns of injury and clinical outcomes whether the cerebral cortex, deep gray matter, and/or white matter were affected. Diffuse and extensive injury observed on the DWI predicts a poor neurologic outcome in patients with hypoglycemic injuries. (orig.)

  11. Signal intensity changes of normal brain at varying high b-value diffusion-weighted images using 3.0T MR scanner

    International Nuclear Information System (INIS)

    Lee, Jin Hee; Sohn, Chul Ho; Choi, Jin Soo

    2003-01-01

    Using diffusion-weighted MR imaging (DWI), to evaluate the signal intensity characteristics of normal adult brain as diffusion gradient strength (b value) increases from 1,000 to 3,000 s/mm 2 . Twenty-one healthy volunteers with neither neurologic symptoms nor pathologic findings at axial and sagittal T2-weighted MR imaging were involved in this study. All images were obtained with a 3.0T MR scanner. Six sets of spin-echo echo-planar images were acquired in the axial plane using progressively increasing strengths of diffusion-sensitizing gradients (corresponding to b values of 0, 1,000, 1,500, 2,000, 2,500, and 3,000 s/mm 2 ). All imaging parameters other than TE remained constant. Changes in normal white-gray matter signal intensity observed at variable b-value DWI were qualitatively analysed, and the signal-to-noise ratios (SNRs) in six anatomic regions (frontal and parietal white matter, genu and splenium corporis callosi, the posterior limb of the internal capsule, and the thalamus) quantitatively, and the ratios were averaged and compared with the average SNR of 1,000 s/mm DWI. As gradient strength increased from 1,000 to 3,000 s/mm 2 , both gray-and white-matter structures diminished in signal intensity, and images obtained at a b value of 3,000 s/mm 2 appeared very noisy. White matter became progressively hyperintense to gray matter as the diffusion sensitizing gradient increased, especially at the centrum semiovale, the posterior limb of the internal capsule, and the splenium corporis callosi, but the genu corporis callosi; showed exceptional intermediate low signal intensity. At quantitative assessment, the signal-to-noise ratio decreased as the diffusion sensitizing gradient increased. Relative to the images obtained at a b value of 1,000 s/mm 2 , average SNRs were 0.71 (b=1,500 s/mm 2 ), 0.52 (b=2,000 s/mm 2 ), 0.41 (b=2,500 s/mm 2 ), 0.33 (b=3,000 s/mm 2 ). As the diffusion sensitizing gradient increased, the signal-to-noise ratio of brain structures

  12. Diffusion-Weighted Magnetic Resonance Imaging in Monitoring Rectal Cancer Response to Neoadjuvant Chemoradiotherapy

    International Nuclear Information System (INIS)

    Barbaro, Brunella; Vitale, Renata; Valentini, Vincenzo; Illuminati, Sonia; Vecchio, Fabio M.; Rizzo, Gianluca; Gambacorta, Maria Antonietta; Coco, Claudio; Crucitti, Antonio; Persiani, Roberto; Sofo, Luigi; Bonomo, Lorenzo

    2012-01-01

    Purpose: To prospectively monitor the response in patients with locally advanced nonmucinous rectal cancer after chemoradiotherapy (CRT) using diffusion-weighted magnetic resonance imaging. The histopathologic finding was the reference standard. Methods and Materials: The institutional review board approved the present study. A total of 62 patients (43 men and 19 women; mean age, 64 years; range, 28–83) provided informed consent. T 2 - and diffusion-weighted magnetic resonance imaging scans (b value, 0 and 1,000 mm 2 /s) were acquired before, during (mean 12 days), and 6–8 weeks after CRT. We compared the median apparent diffusion coefficients (ADCs) between responders and nonresponders and examined the associations with the Mandard tumor regression grade (TRG). The postoperative nodal status (ypN) was evaluated. The Mann-Whitney/Wilcoxon two-sample test was used to evaluate the relationships among the pretherapy ADCs, extramural vascular invasion, early percentage of increases in ADCs, and preoperative ADCs. Results: Low pretreatment ADCs ( −3 mm 2 /s) were correlated with TRG 4 scores (p = .0011) and associated to extramural vascular invasion with ypN+ (85.7% positive predictive value for ypN+). During treatment, the mean percentage of increase in tumor ADC was significantly greater in the responders than in the nonresponders (p 23% ADC increase had a 96.3% negative predictive value for TRG 4. In 9 of 16 complete responders, CRT-related tumor downsizing prevented ADC evaluations. The preoperative ADCs were significantly different (p = .0012) between the patients with and without downstaging (preoperative ADC ≥1.4 × 10 −3 mm 2 /s showed a positive and negative predictive value of 78.9% and 61.8%, respectively, for response assessment). The TRG 1 and TRG 2–4 groups were not significantly different. Conclusion: Diffusion-weighted magnetic resonance imaging seems to be a promising tool for monitoring the response to CRT.

  13. Diffusion-weighted magnetic resonance imaging in monitoring rectal cancer response to neoadjuvant chemoradiotherapy.

    Science.gov (United States)

    Barbaro, Brunella; Vitale, Renata; Valentini, Vincenzo; Illuminati, Sonia; Vecchio, Fabio M; Rizzo, Gianluca; Gambacorta, Maria Antonietta; Coco, Claudio; Crucitti, Antonio; Persiani, Roberto; Sofo, Luigi; Bonomo, Lorenzo

    2012-06-01

    To prospectively monitor the response in patients with locally advanced nonmucinous rectal cancer after chemoradiotherapy (CRT) using diffusion-weighted magnetic resonance imaging. The histopathologic finding was the reference standard. The institutional review board approved the present study. A total of 62 patients (43 men and 19 women; mean age, 64 years; range, 28-83) provided informed consent. T(2)- and diffusion-weighted magnetic resonance imaging scans (b value, 0 and 1,000 mm(2)/s) were acquired before, during (mean 12 days), and 6-8 weeks after CRT. We compared the median apparent diffusion coefficients (ADCs) between responders and nonresponders and examined the associations with the Mandard tumor regression grade (TRG). The postoperative nodal status (ypN) was evaluated. The Mann-Whitney/Wilcoxon two-sample test was used to evaluate the relationships among the pretherapy ADCs, extramural vascular invasion, early percentage of increases in ADCs, and preoperative ADCs. Low pretreatment ADCs (23% ADC increase had a 96.3% negative predictive value for TRG 4. In 9 of 16 complete responders, CRT-related tumor downsizing prevented ADC evaluations. The preoperative ADCs were significantly different (p = .0012) between the patients with and without downstaging (preoperative ADC ≥1.4 × 10(-3)mm(2)/s showed a positive and negative predictive value of 78.9% and 61.8%, respectively, for response assessment). The TRG 1 and TRG 2-4 groups were not significantly different. Diffusion-weighted magnetic resonance imaging seems to be a promising tool for monitoring the response to CRT. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Diffusion-weighted MR imaging in the early diagnosis of periventricular leukomalacia

    International Nuclear Information System (INIS)

    Bozzao, Alessandro; Di Paolo, Ambrogio; Simonetti, Alessandra; Mazzoleni, Clarissa; Fasoli, Fabrizio; Floris, Roberto; Fantozzi, Luigi Maria

    2003-01-01

    Diffusion-weighted imaging (DWI) has been shown to be highly sensitive in detecting acute cerebral infarction, but its use in detecting hypoxic-ischemic encephalopathy (HIE) in neonates is still controversial. Moreover, few reports concern pre-term infants with possible periventricular leukomalacia (PVL). We examined the ability of this technique to detect cerebral changes in the acute phase of PVL. Fifteen MR examinations were performed in 11 pre-term infants (mean age 3.4 days, range 2-6 days). Conventional DWI sequences, apparent diffusion coefficient (ADC) maps, and US obtained in the acute phase were compared. All the neonates underwent US follow-up up to 4 months after delivery; those with suspected PVL also underwent MRI follow-up for up to 2 months. Qualitative and quantitative evaluations were performed to assess the presence of DW changes compatible with PVL. Diffusion-weighted MRI showed signal hyperintensity associated with decreased ADC values in 3 subjects (27%). In these patients conventional MRI sequences were interpreted as normal and US (performed at the same time) as doubtful in 2 and compatible with PVL in 1 subject. The MRI and US follow-up confirmed severe damage in all these patients. In 1 neonate hemorrhages involving the germinative matrix were identified. In 8 neonates MRI was considered normal. In these subjects US follow-up (up to 4 months) confirmed no signs of PVL. Diffusion-weighted imaging may have a higher correlation with later evidence of PVL than does conventional MR imaging and US when performed in the acute phase of the disease. (orig.)

  15. Intracranial metastatic mucinous adrenocarcinoma with characteristic features on diffusion-weighted imaging and in vivo magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Guruprasad, Ashwathnarayan S.; Chandrashekar, Hoskote S.; Jayakumar, Peruvumba N.; Srikanth, Subbamma G.; Shankar, Susarla K.

    2004-01-01

    Intracranial abscesses and metastases are common lesions that might not be differentiated on routine MR I alone. In vivo proton spectroscopy and diffusion-weighted imaging have been used as complementary investigations for improved tissue characterization. In the present report we illustrate the role of mucin and its contribution to signal characteristics on diffusion-weighted imaging in a metastatic mucinous adenocarcinoma Copyright (2004) Blackwell Publishing Asia Pty Ltd

  16. Diffusion-Weighted MR Imaging of Unusual White Matter Lesion in a Patient with Menkes Disease

    International Nuclear Information System (INIS)

    Lee, Eun Shin; Ryoo, Jae Wook; Choi, Dae Seob; Cho, Jae Min; Kwon, Soo Hyun; Shin, Hee Suk

    2007-01-01

    We report here on the diffusion-weighted imaging of unusual white matter lesions in a case of Menkes disease. On the initial MR imaging, the white matter lesions were localized in the deep periventricular white matter in the absence of diffuse cortical atrophy. The lesion showed diffuse high signal on the diffusion weighted images and diffuse progression and persistent hyperintensity on the follow up imaging. Our case suggests that the white matter lesion may precede diffuse cortical atrophy in a patient with Menkes disease. Menkes disease is an X-linked disorder that's caused by impaired intracellular transport of copper. We describe here the DWI findings of unusual and progressive white matter lesions in a case of Menkes disease. Menkes disease is an X-linked recessive disorder, and it is due to an inborn error of copper metabolism. The cause of Menkes disease has been isolated to a genetic defect in copper-transporting adenosine triphosphatase, and this results in low levels of intracellular copper. It is characterized clinically by failure to thrive, retarded mental and motor development, clonic seizure and peculiarly coarse, sparse and colorless scalp hair. These clinical findings can be explained by a dysfunction of the copper-dependent enzymes

  17. Contribution of diffusion-weighted MR imaging for predicting benignity of complex adnexal masses

    International Nuclear Information System (INIS)

    Thomassin-Naggara, Isabelle; Darai, Emile; Cuenod, Charles A.; Fournier, Laure; Toussaint, Irwin; Marsault, Claude; Bazot, Marc

    2009-01-01

    The purpose of this study was to prospectively assess the contribution of diffusion-weighted MR imaging (DWI) for characterizing complex adnexal masses. Seventy-seven women (22-87 years old) with complex adnexal masses (30 benign and 47 malignant) underwent MR imaging including DWI before surgery. Conventional morphological MR imaging criteria were recorded in addition to b 1,000 signal intensity and apparent diffusion coefficient (ADC) measurements of cystic and solid components. Positive likelihood ratios (PLR) were calculated for predicting benignity and malignancy. The most significant criteria for predicting benignity were low b 1,000 signal intensity within the solid component (PLR = 10.9), low T2 signal intensity within the solid component (PLR = 5.7), absence of solid portion (PLR = 3.1), absence of ascites or peritoneal implants (PLR = 2.3) and absence of papillary projections (PLR = 2.3). ADC measurements did not contribute to differentiating benign from malignant adnexal masses. All masses that displayed simultaneously low signal intensity within the solid component on T2-weighted and on b 1,000 diffusion-weighted images were benign. Alternatively, the presence of a solid component with intermediate T2 signal and high b 1,000 signal intensity was associated with a PLR of 4.5 for a malignant adnexal tumour. DWI signal intensity is an accurate tool for predicting benignity of complex adnexal masses. (orig.)

  18. Contribution of diffusion-weighted MR imaging for predicting benignity of complex adnexal masses

    Energy Technology Data Exchange (ETDEWEB)

    Thomassin-Naggara, Isabelle [Hopital Tenon, Assistance Publique Hopitaux de Pariss, Department of Radiology, Paris (France); Universite Rene Descartes, LRI-EA4062, Paris (France); Darai, Emile [Hopital Tenon, Assistance Publique Hopitaux de Pariss, Department of Gynecology-Obstetrics, Paris (France); Cuenod, Charles A.; Fournier, Laure [Universite Rene Descartes, LRI-EA4062, Paris (France); Hopital Europeen Georges Pompidou (HEGP), Assistance Publique Hopitaux de Paris, Department of Radiology, Paris (France); Toussaint, Irwin; Marsault, Claude; Bazot, Marc [Hopital Tenon, Assistance Publique Hopitaux de Pariss, Department of Radiology, Paris (France)

    2009-06-15

    The purpose of this study was to prospectively assess the contribution of diffusion-weighted MR imaging (DWI) for characterizing complex adnexal masses. Seventy-seven women (22-87 years old) with complex adnexal masses (30 benign and 47 malignant) underwent MR imaging including DWI before surgery. Conventional morphological MR imaging criteria were recorded in addition to b{sub 1,000} signal intensity and apparent diffusion coefficient (ADC) measurements of cystic and solid components. Positive likelihood ratios (PLR) were calculated for predicting benignity and malignancy. The most significant criteria for predicting benignity were low b{sub 1,000} signal intensity within the solid component (PLR = 10.9), low T2 signal intensity within the solid component (PLR = 5.7), absence of solid portion (PLR = 3.1), absence of ascites or peritoneal implants (PLR = 2.3) and absence of papillary projections (PLR = 2.3). ADC measurements did not contribute to differentiating benign from malignant adnexal masses. All masses that displayed simultaneously low signal intensity within the solid component on T2-weighted and on b{sub 1,000} diffusion-weighted images were benign. Alternatively, the presence of a solid component with intermediate T2 signal and high b{sub 1,000} signal intensity was associated with a PLR of 4.5 for a malignant adnexal tumour. DWI signal intensity is an accurate tool for predicting benignity of complex adnexal masses. (orig.)

  19. Preliminary study on hypoxic-ischemic encephalopathy in neonates with diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Wang Xiaoming; Chen Liying; Lin Nan; Guo Qiyong

    2005-01-01

    Objective: To evaluate hypoxic-ischemic encephalopathy (HIE) in neonates with diffusion-weighted MR imaging, and to explore the value and limitation of diffusion-weighted imaging (DWI) compared with conventional magnetic resonance imaging. Methods: Conventional magnetic resonance T 1 -weighted imaging (T 1 WI) and DWI (b=700 s/mm 2 ) were performed in 36 neonates with HIE (average age, 8.44 days; range, 3 hours to 22 days), and the cortex and subcortical white matter, deep white matter, basal ganglia and thalamus, cerebral ventricle, and extra-cerebral interspace etc were observed. Results: Signal abnormalities were shown on DWI with hypoxic-ischemic insults, which included diffuse brain damage (19.4%, 7/36): extensive high signals in the regional cortex, subcortical and deep white matter; localized brain damage: high signals along lateral ventricular wall and triangular part (27.8%, 10/36 ), and punctate high signals in the frontal deep white matter (5.6%, 2/36). On T 1 WI, the incidence of the corresponding changes were 16.7% (6/36), 36.1% (13/36), and 30.6%(11/36), respectively. Hemorrhagic lesions demonstrated high signals on T 1 WI and no signals on DWI. Conclusion: DWI was applicable for acute HIE, and T 1 WI was suitable for subacute and chronic HIE. (authors)

  20. Normal diffusion-weighted imaging in cerebral air embolism complicating angiography

    Energy Technology Data Exchange (ETDEWEB)

    Sayama, T.; Inamura, T.; Fukui, M. [Dept. of Neurosurgery, Kyushu University Hospital, Fukuoka (Japan); Mitani, M.; Yagi, H. [Dept. of Neurosurgery, Yagi Hospital, Fukuoka (Japan)

    2000-03-01

    We report a case of cerebral air embolism resulting from accidental air infection during cerebral angiography. A 60-year-old man was accidentally injected with air via the left subclavian artery. Angiography demonstrated air within the basilar artery. The patient showed signs of posterior circulation ischaemia (confusion, blindness, gaze palsy and hemiparesis). However, MRI, including diffusion-weighted imaging, showed no abnormality 4 h later. The patient was treated with hyperbaric oxygen within 5 h of the embolism. All symptoms and signs resolved completely within a week. (orig.)

  1. Measuring Restriction Sizes Using Diffusion Weighted Magnetic Resonance Imaging: A Review

    Directory of Open Access Journals (Sweden)

    Melanie Martin

    2013-01-01

    Full Text Available This article reviews a new concept in magnetic resonance as applied to cellular and biological systems. Diffusion weighted magnetic resonance imaging can be used to infer information about restriction sizes of samples being measured. The measurements rely on the apparent diffusion coefficient changing with diffusion times as measurements move from restricted to free diffusion regimes. Pulsed gradient spin echo (PGSE measurements are limited in the ability to shorten diffusion times and thus are limited in restriction sizes which can be probed. Oscillating gradient spin echo (OGSE measurements could provide shorter diffusion times so smaller restriction sizes could be probed.

  2. The evaluation of diffusion weighted imaging in acute cerebral infarction with permanent type MR scanner

    International Nuclear Information System (INIS)

    Peng Sen; Ye Wenwei; Luo Zhongrao; Yang Zenian; Zhang Zhongwei; Li Ziping

    2006-01-01

    Objective: To evaluate the value of diffusion weighted imaging (DWI) in acute cerebral infarction using permanent type MR scanner. Methods: DWI and conventional MRI sequences were done in 77 patients suspected with cerebral infarction. The sensitivity of DWI and conventional MRI was comparatively evaluated on lesion signal intensity and size. The characteristics and orderliness of lesions were studied. Results: (1) DWI has higher sensitivity than conventional MRI. (2) The higher b value was applied in the imaging, the higher signal intensity of acute cerebral infarction was revealed. The lesions were easier to identify on DWI images than on conventional MRI. Conclusion: DWI of permanent type MR imager is a feasible imaging modality, which is valuable in early diagnosis and management of acute cerebral infarction. (authors)

  3. Brain MRI diffusion-weighted imaging in patients with classical phenylketonuria

    International Nuclear Information System (INIS)

    Manara, Renzo; Citton, Valentina; Carollo, Carla; Burlina, Alessandro P.; Ermani, Mario; Vespignani, Francesco; Burlina, Alberto B.

    2009-01-01

    The aim of this study was to grade magnetic resonance white matter abnormalities (WMAs) of classical phenylketonuria (cPKU) patients treated from birth and to compare sensitivity and specificity of T2-weighted and diffusion-weighted images (DWI). Twenty early-treated cPKU patients still on a low-phenylalanine diet (12 males; mean age 21.2 years) and 26 normal subjects (ten males; mean age 25.1 years) were enrolled. Typical T2- and diffusion-weighted WMAs were semiquantitatively graded according to Thompson score (TS). Besides, a regional magnetic resonance imaging (MRI) score (mTS) was developed according to extension and intensity of WMAs. Phenylalanine and tyrosine plasma concentrations before performing MRI and the amino acid mean levels collected the year before MRI (Tyr year and Phe year ) were measured. No patient with Phe year concentration below 460 μmol/L showed WMAs. In cPKU patients, TS and mTS were significantly higher on DWI than on T2 images (3.50 vs 2.65 and 23.65 vs 15.85, respectively, p year levels. Among the different MR sequences, DWI seems to be the most sensitive and reliable in detecting and grading the typical WMAs of cPKU patients. (orig.)

  4. Diagnosis and quantification of hepatic fibrosis in children with diffusion weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Razek, Ahmed Abdel Khalek Abdel, E-mail: arazek@mans.eun.eg [Diagnostic Radiology Department, Mansoura Faculty of Medicine, 62 ElNokrasi Street Meet Hadr, Mansoura 3512 (Egypt); Abdalla, Ahmed [Pediatric Department, Mansoura Faculty of Medicine, Mansoura (Egypt); Omran, Eman [Diagnostic Radiology Department, Mansoura Faculty of Medicine, 62 ElNokrasi Street Meet Hadr, Mansoura 3512 (Egypt); Fathy, Abeer [Pediatric Department, Mansoura Faculty of Medicine, Mansoura (Egypt); Zalata, Khaled [Diagnostic Pathology Department, Mansoura Faculty of Medicine, Mansoura (Egypt)

    2011-04-15

    Purpose: To evaluate the accuracy of diffusion weighted MR imaging in diagnosis and quantification of hepatic fibrosis in children with chronic hepatitis. Materials and methods: Sixty-three consecutive children (40 boys, 23 girls, median age 9.3 years), with chronic hepatitis and thirty age matched volunteers underwent diffusion weighted MR imaging of the liver using a single shot echoplanar imaging with b-value = 0, 250, and 500 s/mm{sup 2}. Liver biopsy was obtained with calculation of METAVIR score. The ADC value of the liver was correlated with METAVIR score. Receiver operating characteristic curve was done for diagnosis and grading of hepatic fibrosis. Results: There was statistical difference in the mean ADC value between volunteers and patients with hepatic fibrosis (P = 0.001) and in patients with different grades of METAVIR scores (P = 0.002). There was correlation between the mean ADC value and METAVIR score (r = 0.807, P = 0.001). The cut off point to predict fibrosis (1.7 x 10{sup -3} mm{sup 2}/s) revealed 83% accuracy, 85% sensitivity, 82% specificity, 83% PPV, and 85% NPV. The area under the curve was 0.91 for F1, 0.85 for F2, 0.86 for F3 and 0.90 for F4. Conclusion: The apparent diffusion coefficient value is a promising quantitative parameter used for diagnosis and quantification of hepatic fibrosis in children with chronic hepatitis.

  5. Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma

    International Nuclear Information System (INIS)

    Huisman, Thierry A.G.M.

    2003-01-01

    Diffusion-weighted imaging (DWI) of the brain represents a new imaging technique that extends imaging from depiction of neuroanatomy to the level of function and physiology. DWI measures a fundamentally different physiological parameter compared with conventional MRI. Image contrast is related to differences in the diffusion rate of water molecules rather than to changes in total tissue water. DWI can reveal pathology in cases where conventional MRI remains unremarkable. DWI has proven to be highly sensitive in the early detection of acute cerebral ischemia and seems promising in the evaluation of traumatic brain injury. DWI can differentiate between lesions with decreased and increased diffusion. In addition, full-tensor DWI can evaluate the microscopic architecture of the brain, in particular white matter tracts, by measuring the degree and spatial distribution of anisotropic diffusion within the brain. This article reviews the basic concepts of DWI and its application in cerebral ischemia and traumatic brain injury. (orig.)

  6. Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma

    Energy Technology Data Exchange (ETDEWEB)

    Huisman, Thierry A.G.M. [Department of Radiology, Neuroradiology Section and MGH-NMR Center, Massachusetts General Hospital and Harvard Medical School, MA 02129, Boston (United States); Department of Radiology, University Children' s Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich (Switzerland)

    2003-10-01

    Diffusion-weighted imaging (DWI) of the brain represents a new imaging technique that extends imaging from depiction of neuroanatomy to the level of function and physiology. DWI measures a fundamentally different physiological parameter compared with conventional MRI. Image contrast is related to differences in the diffusion rate of water molecules rather than to changes in total tissue water. DWI can reveal pathology in cases where conventional MRI remains unremarkable. DWI has proven to be highly sensitive in the early detection of acute cerebral ischemia and seems promising in the evaluation of traumatic brain injury. DWI can differentiate between lesions with decreased and increased diffusion. In addition, full-tensor DWI can evaluate the microscopic architecture of the brain, in particular white matter tracts, by measuring the degree and spatial distribution of anisotropic diffusion within the brain. This article reviews the basic concepts of DWI and its application in cerebral ischemia and traumatic brain injury. (orig.)

  7. Diffusion-weighted magnetic resonance imaging in carotid angioplasty and stenting with balloon embolic protection devices

    International Nuclear Information System (INIS)

    Asakura, Fumio; Kawaguchi, Kenji; Sakaida, Hiroshi; Toma, Naoki; Matsushima, Satoshi; Kuraishi, Keita; Tanemura, Hiroshi; Miura, Yoichi; Taki, Waro; Maeda, Masayuki

    2006-01-01

    We compared the results of two procedures to protect against distal embolism caused by embolic debris from carotid angioplasty with stent deployment (CAS) using diffusion-weighted magnetic resonance imaging (MRI). The study group comprised 39 men and 3 women (42 and 3 CAS procedures, respectively) with severe carotid stenosis (average age 70.0±6.6 years). During 20 CAS procedures the internal carotid artery was protected with a single balloon. A PercuSurge GuardWire was used for temporary occlusion. During 25 CAS procedures the internal and external carotid arteries were simultaneously temporarily occluded with a PercuSurge GuardWire and a Sentry balloon catheter, respectively. Diffusion-weighted MRI was performed 1 to 3 days after CAS. Data from 26 patients undergoing conventional angiography for diagnosis of cerebral ischemic disease, cerebral aneurysm or brain tumors were included as controls. Diffusion-weighted MRI after conventional diagnostic angiography showed ischemic spots in 3 of the 26 controls (11.5%). Ischemic spots were observed during 11 of 20 CAS procedures with the internal carotid artery protected with a single balloon (55.0%), and were observed during 9 of 25 CAS procedures with both the internal and external carotid arteries protected (36.0%). This difference was significant (P=0.0068). Ischemic lesions appeared not only ipsilateral to the carotid stenosis but also in the contralateral carotid artery (31.9%) and vertebrobasilar territory (25.3%). Better protection was obtained with simultaneous double occlusion of both the internal and external carotid artery than with single protection of the internal carotid artery during CAS. (orig.)

  8. Clinical application of diffusion-weighted magnetic resonance imaging to intracranial disorders

    Energy Technology Data Exchange (ETDEWEB)

    Yanaka, Kiyoyuki; Shirai, Shizuo; Kimura, Hiroshi [Soujinkai Hospital, Ibaraki (Japan); Kamezaki, Takao; Matsumura, Akira; Nose, Tadao

    1995-09-01

    Diffusion-weighted magnetic resonance imaging was performed to determine the changes in water diffusion and to investigate the detectability of diffusion anisotropy in patients with intracranial disorders. Diffusion maps of the apparent diffusion coefficient (ADC) were created of 19 patients with cerebral infarction, five with intracerebral hematoma, four with glioma, four with meningioma, four with hydrocephalus, and five with subdural hematoma. ADC was increased in chronic cerebral infarction and glioma, and decreased in acute cerebral infarction, meningioma, and the marginal area of glioma compared with the ADC of the normal gray matter. There was a significant difference in ADC between the marginal and internal areas of glioma. Increased ADC may be due to increased vasogenic edema in infarction and a lack of significant restriction of diffusion within glioma. Decreased ADC can be attributed to restricted diffusion caused by cytotoxic edema in infarction and the underlying histological pattern of densely packed tumor cells in glioma. Diffusion anisotropy of the internal capsule was less detectable in pathological than normal hemispheres. Diffusion anisotropy was less detectable in patients with hydrocephalus and subdural hematoma. Intracranial lesions were thought to have influenced the compression of the brain structures and cells, resulting in decreased diffusion. The measurement of ADC by diffusion-weighted magnetic resonance imaging has the potential for greater understanding of the biophysical changes in various intracranial disorders, including correct diagnosis of cerebral infarction, and histological diagnosis of brain tumor. (author).

  9. Diffusion-weighted magnetic resonance imaging of symptomatic nerve root of patients with lumbar disk herniation

    International Nuclear Information System (INIS)

    Eguchi, Yawara; Ohtori, Seiji; Yamashita, Masaomi; Yamauchi, Kazuyo; Suzuki, Munetaka; Orita, Sumihisa; Kamoda, Hiroto; Arai, Gen; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Ochiai, Nobuyasu; Kishida, Shunji; Inoue, Gen; Takahashi, Kazuhisa; Masuda, Yoshitada; Ochi, Shigehiro; Kikawa, Takashi; Toyone, Tomoaki; Takaso, Masashi; Aoki, Yasuchika

    2011-01-01

    Diffusion-weighted imaging (DWI) can provide valuable structural information that may be useful for evaluating pathological changes of the lumbar nerve root. Diffusion-weighted magnetic resonance (MR) neurography has recently been introduced as an alternative way to visualize nerves, but to date, quantitative DWI and MR neurography have not been applied to evaluate the pathology of lumbar nerve roots. Our purpose was to visualize lumbar nerve roots and to analyze their morphology by MR neurography, and to measure the apparent diffusion coefficient (ADC) of lumbar nerve roots compressed by herniated disks using 1.5-T MR imaging. Ten consecutive patients (median age, 48.0 and range, 20-72 years) with monoradicular symptoms caused by a lumbar herniated disk and 14 healthy volunteers were studied. Regions of interests were placed on the lumbar roots at dorsal root ganglia (DRG) and distal spinal nerves on DWI to quantify mean ADC values. The spinal nerve roots were also visualized by MR neurography. In the patients, mean ADC values were significantly greater in the compressed DRG and distal spinal nerves than in intact nerves. MR neurography also showed abnormalities such as nerve swelling at and below the compression in the symptomatic nerve root. Increased ADC values were considered to be because of edema and Wallerian degeneration of compressed nerve roots. DWI is a potential tool for analysis of the pathophysiology of lumbar nerve roots compressed by herniated disks. (orig.)

  10. Diffusion-weighted magnetic resonance imaging of symptomatic nerve root of patients with lumbar disk herniation

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Yawara; Ohtori, Seiji; Yamashita, Masaomi; Yamauchi, Kazuyo; Suzuki, Munetaka; Orita, Sumihisa; Kamoda, Hiroto; Arai, Gen; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Ochiai, Nobuyasu; Kishida, Shunji; Inoue, Gen; Takahashi, Kazuhisa [Chiba University, Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba (Japan); Masuda, Yoshitada; Ochi, Shigehiro; Kikawa, Takashi [Chiba University Hospital, Department of Radiology, Chiba (Japan); Toyone, Tomoaki [Teikyo University Chiba Medical Center, Department of Orthopaedic Surgery, Chiba (Japan); Takaso, Masashi [Kitasato University, Department of Orthopaedic Surgery, School of Medicine, Sagamihara City, Kanagawa (Japan); Aoki, Yasuchika [Chiba Rosai Hospital, Department of Orthopedic Surgery, Ichihara, Chiba (Japan)

    2011-09-15

    Diffusion-weighted imaging (DWI) can provide valuable structural information that may be useful for evaluating pathological changes of the lumbar nerve root. Diffusion-weighted magnetic resonance (MR) neurography has recently been introduced as an alternative way to visualize nerves, but to date, quantitative DWI and MR neurography have not been applied to evaluate the pathology of lumbar nerve roots. Our purpose was to visualize lumbar nerve roots and to analyze their morphology by MR neurography, and to measure the apparent diffusion coefficient (ADC) of lumbar nerve roots compressed by herniated disks using 1.5-T MR imaging. Ten consecutive patients (median age, 48.0 and range, 20-72 years) with monoradicular symptoms caused by a lumbar herniated disk and 14 healthy volunteers were studied. Regions of interests were placed on the lumbar roots at dorsal root ganglia (DRG) and distal spinal nerves on DWI to quantify mean ADC values. The spinal nerve roots were also visualized by MR neurography. In the patients, mean ADC values were significantly greater in the compressed DRG and distal spinal nerves than in intact nerves. MR neurography also showed abnormalities such as nerve swelling at and below the compression in the symptomatic nerve root. Increased ADC values were considered to be because of edema and Wallerian degeneration of compressed nerve roots. DWI is a potential tool for analysis of the pathophysiology of lumbar nerve roots compressed by herniated disks. (orig.)

  11. Segmentation of Hyperacute Cerebral Infarcts Based on Sparse Representation of Diffusion Weighted Imaging

    Directory of Open Access Journals (Sweden)

    Xiaodong Zhang

    2016-01-01

    Full Text Available Segmentation of infarcts at hyperacute stage is challenging as they exhibit substantial variability which may even be hard for experts to delineate manually. In this paper, a sparse representation based classification method is explored. For each patient, four volumetric data items including three volumes of diffusion weighted imaging and a computed asymmetry map are employed to extract patch features which are then fed to dictionary learning and classification based on sparse representation. Elastic net is adopted to replace the traditional L0-norm/L1-norm constraints on sparse representation to stabilize sparse code. To decrease computation cost and to reduce false positives, regions-of-interest are determined to confine candidate infarct voxels. The proposed method has been validated on 98 consecutive patients recruited within 6 hours from onset. It is shown that the proposed method could handle well infarcts with intensity variability and ill-defined edges to yield significantly higher Dice coefficient (0.755 ± 0.118 than the other two methods and their enhanced versions by confining their segmentations within the regions-of-interest (average Dice coefficient less than 0.610. The proposed method could provide a potential tool to quantify infarcts from diffusion weighted imaging at hyperacute stage with accuracy and speed to assist the decision making especially for thrombolytic therapy.

  12. The diagnostic value of diffusion-weighted imaging and the apparent diffusion coefficient values in the differentiation of benign and malignant breast lesions

    International Nuclear Information System (INIS)

    Çabuk, Gonca; Duce, Meltem Nass; Özgür, Anil; Apaydin, Feramuz Demir; Polat, Ayşe; Orekici, Gülhan

    2015-01-01

    The goal of our study was to evaluate the diagnostic efficacy of diffusion-weighted imaging (DWI) in the differentiation of benign and malignant breast lesions. Between June 2012 and March 2013, 60 patients with 63 lesions (age range 29-70 years, mean age 48.6 years) were included in our study. All lesions, except complicated cysts and intra-mammary lymph nodes, were confirmed histopathologically. The patients were evaluated with a 1.5 Tesla MR scanner using dedicated bilateral breast coil. DWI images were obtained by echo planar imaging sequence and 'b' values were selected as 200, 600 and 1000 s/mm2. Apparent diffusion coefficient (ADC) values of both breast lesions and the normal fibroglandular tissue of the contralateral breast were calculated and statistically compared using Shapiro-Wilk test, Student's t-test, Mann-Whitney U test, chi-square test and the receiver operating curve. Of 63 lesions, 22 were malignant and 41 were benign. In malignant lesions, the mean ADC values were 1.40 ± 0.41 × 10 −3 mm 2 /s for b = 200, 1.05 ± 0.28 × 10 −3 mm 2 /s for b = 600 and 0.91 ± 0.20 × 10 −3 mm 2 /s for b = 1000 and in benign lesions, the mean ADC values were 2.13 ± 0.85 × 10 −3 mm 2 /s for b = 200, 1.64 ± 0.47 × 10 −3 mm 2 /s for b = 600 and 1.40 ± 0.43 × 10 −3 mm 2 /s for b = 1000. The success of ADC values in differentiation of benign and malignant lesions was statistically significant (P = 0.0001). The threshold values were determined to be 1.50 × 10 −3 mm 2 /s for b = 200, 1.22 × 10 −3 mm 2 /s for b = 600 and 0.98 × 10 −3 mm 2 /s for b = 1000 (P < 0.05). DWI can be an effective radiological method in the differentiation of benign and malignant breast lesions.

  13. The diagnostic value of diffusion-weighted imaging and the apparent diffusion coefficient values in the differentiation of benign and malignant breast lesions.

    Science.gov (United States)

    Çabuk, Gonca; Nass Duce, Meltem; Özgür, Anıl; Apaydın, Feramuz Demir; Polat, Ayşe; Orekici, Gülhan

    2015-04-01

    The goal of our study was to evaluate the diagnostic efficacy of diffusion-weighted imaging (DWI) in the differentiation of benign and malignant breast lesions. Between June 2012 and March 2013, 60 patients with 63 lesions (age range 29-70 years, mean age 48.6 years) were included in our study. All lesions, except complicated cysts and intra-mammary lymph nodes, were confirmed histopathologically. The patients were evaluated with a 1.5 Tesla MR scanner using dedicated bilateral breast coil. DWI images were obtained by echo planar imaging sequence and 'b' values were selected as 200, 600 and 1000 s/mm(2). Apparent diffusion coefficient (ADC) values of both breast lesions and the normal fibroglandular tissue of the contralateral breast were calculated and statistically compared using Shapiro-Wilk test, Student's t-test, Mann-Whitney U test, chi-square test and the receiver operating curve. Of 63 lesions, 22 were malignant and 41 were benign. In malignant lesions, the mean ADC values were 1.40 ± 0.41 × 10(-3) mm(2)/s for b = 200, 1.05 ± 0.28 × 10(-3) mm(2)/s for b = 600 and 0.91 ± 0.20 × 10(-3) mm(2)/s for b = 1000 and in benign lesions, the mean ADC values were 2.13 ± 0.85 × 10(-3) mm(2)/s for b = 200, 1.64 ± 0.47 × 10(-3) mm(2)/s for b = 600 and 1.40 ± 0.43 × 10(-3) mm(2)/s for b = 1000. The success of ADC values in differentiation of benign and malignant lesions was statistically significant (P = 0.0001). The threshold values were determined to be 1.50 × 10(-3) mm(2)/s for b = 200, 1.22 × 10(-3) mm(2)/s for b = 600 and 0.98 × 10(-3) mm(2)/s for b = 1000 (P benign and malignant breast lesions. © 2015 The Royal Australian and New Zealand College of Radiologists.

  14. Diffusion-weighted magnetic resonance imaging of femoral head osteonecrosis in two groups of patients: Legg-Perthes-Calve and Avascular necrosis.

    Science.gov (United States)

    Ozel, Betul Duran; Ozel, Deniz; Ozkan, Fuat; Halefoglu, Ahmet M

    2016-03-01

    The aim of this prospective study was to evaluate the value of diffusion-weighted magnetic resonance imaging (DW-MRI) in patients with osteonecrosis. Patients were divided into two subgroups as avascular necrosis (AVN) of femoral head for adult group and Legg-Calvé-Perthes (LCP) patients for children. Seventeen patients with femoral head AVN (mean age 42.3 years) and 17 patients with LCP (mean age 8.2 years) were included in this study. Diagnosis confirmed with clinical and other imaging procedures among the patients complaining hip pain. DW images were obtained using the single-shot echo planar sequence and had b values of 0, 500, 1000 s/mm(2). The apparent diffusion coefficient (ADC) values were measured from ADC maps in epiphysis of patients with AVN, both from metaphysis and epiphysis in patients with LCP, respectively. Mann-Whitney U test was used to compare ADC values. The mean ADC value of femoral heads (1.285 ± 0.204 × 10(-3) mm(2)/s) was increased in patients with AVN when compared to normal bone tissue (0.209 ± 0.214 × 10(-3) mm(2)/s) (p < 0.01). The mean ADC values (×10(-3) mm(2)/s) of both metaphysis (0.852 ± 0.293) and epiphysis (0.843 ± 0.332) were also increased in patients with LCP and differences were statistically significant (p < 0.01). As a result, osteonecrosis shows increased ADC values. But it is a controversial concept that DWI offers a valuable data to conventional MRI or not. However, as there are report states, there is a correlation between the stage of the disease with ADC values in the LCP disease. DWI is a fast, without-contrast administration technique and provides quantitative values additional to conventional MR techniques; we believe DWI may play an additional assistance to the diagnosis and treatment for LCP patients. Multicentric larger group studies may provide additional data to this issue.

  15. Diffusion weighted MR imaging in non-infarct lesions of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Karaarslan, E. [Department of Radiology, American Hospital, Sisli, Istanbul (Turkey)], E-mail: ercankaraarslan@yahoo.com; Arslan, A. [Department of Radiology, Kocaeli University Medical School, Kocaeli (Turkey)], E-mail: arzuarslan@netscape.net

    2008-03-15

    Diffusion weighted imaging (DWI) is a relatively new method in which the images are formed by the contrast produced by the random microscopic motion of water molecules in different tissues. Although DWI has been tried for different organ systems, it has been found its primary use in the central nervous system. The most widely used clinical application is in the detection of hyperacute infarcts and the differentiation of acute or subacute infarction from chronic infarction. Recently DWI has been applied to various other cerebral diseases. In this pictorial paper the authors demonstrated different DWI patterns of non-infarct lesions of the brain which are hyperintense in the diffusion trace image, such as infectious, neoplastic and demyelinating diseases, encephalopathies - including hypoxic-ischemic, hypertensive, eclamptic, toxic, metabolic and mitochondrial encephalopathies - leukodystrophies, vasculitis and vasculopathies, hemorrhage and trauma.

  16. Abnormalities on diffusion-weighted magnetic resonance imaging in patients with transient ischemic attack

    International Nuclear Information System (INIS)

    Nakamura, Tomomi; Shibagaki, Yasuro; Uchiyama, Shinichiro; Iwata, Makoto

    2003-01-01

    We studied abnormalities on diffusion-weighted magnetic resonance imaging (DWI) in patients with transient ischemic attack (TIA). Out of 18 consecutive TIA patients, 9 patients had relevant focal abnormalities on DWI. Among TIA patients, six patients were associated with atrial fibrillation (Af), and all of these patients had focal abnormalities on DWI as well. TIA patients with Af had significantly more frequent focal abnormalities on DWI than those without Af (p=0.009; Fisher's exact probability test). In addition, the duration of TIA symptoms was not related to the presence of focal abnormalities on DWI. These results indicate that embolic mechanism may cause focal abnormalities on DWI. DWI was more sensitive to detect responsible ischemic lesions in these patients than T2-weighted image or fluid-attenuated inversion recovery image. (author)

  17. Abnormalities on diffusion-weighted magnetic resonance imaging in patients with transient ischemic attack

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Tomomi; Shibagaki, Yasuro [Ushiku Aiwa General Hospital, Ibaraki (Japan); Uchiyama, Shinichiro; Iwata, Makoto [Tokyo Women' s Medical Coll. (Japan)

    2003-03-01

    We studied abnormalities on diffusion-weighted magnetic resonance imaging (DWI) in patients with transient ischemic attack (TIA). Out of 18 consecutive TIA patients, 9 patients had relevant focal abnormalities on DWI. Among TIA patients, six patients were associated with atrial fibrillation (Af), and all of these patients had focal abnormalities on DWI as well. TIA patients with Af had significantly more frequent focal abnormalities on DWI than those without Af (p=0.009; Fisher's exact probability test). In addition, the duration of TIA symptoms was not related to the presence of focal abnormalities on DWI. These results indicate that embolic mechanism may cause focal abnormalities on DWI. DWI was more sensitive to detect responsible ischemic lesions in these patients than T2-weighted image or fluid-attenuated inversion recovery image. (author)

  18. Marchiafava-Bignami disease with hyperintensity on late diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Iwai, Takayasu; Matsuo, Koushun; Morii-Kitani, Fukiko; Azuma, Fumiko; Matsuo, Hisayasu; Takada, Masahiko; Nakagawa, Masanori; Mizuno, Toshiki; Yamada, Kei

    2014-01-01

    A 69-year-old man with a decades-long history of chronic alcohol consumption was admitted with gait disturbance (short steps and spasticity), deterioration of activity, and stuporous consciousness. Head magnetic resonance imaging (MRI) revealed hyperintensity on fluid-attenuated inversion recovery imaging in the corpus callosum and frontal white matter. The lesion later became more apparent on diffusion-weighted imaging. The clinical diagnosis was Marchiafava-Bignami disease (MBD). As temporary treatment, refraining from alcohol consumption and administration of vitamins were prescribed. The condition of the patient gradually improved. The purposes of this study were to demonstrate the clinical and radiological variety of MBD and to identify practical methods of treatment of this pathology

  19. The use of diffusion-weighted magnetic resonance imaging in the differentiation between benign and malignant breast lesions

    International Nuclear Information System (INIS)

    Pereira, Fernanda Philadelpho Arantes; Martins, Gabriela; Domingues, Marisa Nassar Aidar; Domingues, Romeu Cortes; Figueiredo, Eduardo; Fonseca, Lea Mirian Barbosa da

    2009-01-01

    Objective: to study the utility of diffusion-weighted magnetic resonance imaging in the differentiation between benign and malignant breast lesions. Materials and methods: forty-five women (mean age, 46.1 years) with 52 focal breast lesions underwent diffusion-weighted magnetic resonance imaging. The calculation of apparent diffusion coefficient (ADC) was based on the ADC map reflecting five b values (0, 250, 500, 750, and 1000 s/mm 2 ). The mean ADC value of each lesion was correlated with imaging findings and histopathologic results. Cutoff ADC, sensitivity and specificity of diffusion-weighted imaging in the differentiation between benign and malignant lesions were calculated. P -3 mm 2 /s) as compared with benign lesions (1.50 ± 0.34 x 10 -3 mm 2 /s) (P < 0.0001). Diffusion-weighted imaging showed high sensitivity and specificity (both, 92.3%) in the differentiation between benign and malignant lesions. Conclusion: diffusion-weighted imaging is a potential resource as an adjuvant to breast magnetic resonance imaging to differentiate benign from malignant lesions. Such sequence can be easily added to the standard breast magnetic resonance imaging protocol, without implying any significant increase in examination time. (author)

  20. The use of diffusion-weighted magnetic resonance imaging in the differentiation between benign and malignant breast lesions

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Fernanda Philadelpho Arantes; Martins, Gabriela; Domingues, Marisa Nassar Aidar; Domingues, Romeu Cortes [Clinica de Diagnostico por Imagem (CDPI), Rio de Janeiro, RJ (Brazil)], e-mail: fephila@gmail.com; Figueiredo, Eduardo [GE Healthcare, Sao Paulo, SP (Brazil); Fonseca, Lea Mirian Barbosa da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Faculdade de Medicina

    2009-09-15

    Objective: to study the utility of diffusion-weighted magnetic resonance imaging in the differentiation between benign and malignant breast lesions. Materials and methods: forty-five women (mean age, 46.1 years) with 52 focal breast lesions underwent diffusion-weighted magnetic resonance imaging. The calculation of apparent diffusion coefficient (ADC) was based on the ADC map reflecting five b values (0, 250, 500, 750, and 1000 s/mm{sup 2}). The mean ADC value of each lesion was correlated with imaging findings and histopathologic results. Cutoff ADC, sensitivity and specificity of diffusion-weighted imaging in the differentiation between benign and malignant lesions were calculated. P < 0.05 was considered as statistically significant. Results: the mean ADC was significantly lower for malignant lesions (0.92 {+-} 0.26 x 10{sup -3} mm{sup 2}/s) as compared with benign lesions (1.50 {+-} 0.34 x 10{sup -3} mm{sup 2}/s) (P < 0.0001). Diffusion-weighted imaging showed high sensitivity and specificity (both, 92.3%) in the differentiation between benign and malignant lesions. Conclusion: diffusion-weighted imaging is a potential resource as an adjuvant to breast magnetic resonance imaging to differentiate benign from malignant lesions. Such sequence can be easily added to the standard breast magnetic resonance imaging protocol, without implying any significant increase in examination time. (author)

  1. Brain MRI diffusion-weighted imaging in patients with classical phenylketonuria

    Energy Technology Data Exchange (ETDEWEB)

    Manara, Renzo; Citton, Valentina; Carollo, Carla [University Hospital of Padua, Neuroradiologic Unit, Padua (Italy); Burlina, Alessandro P.; Ermani, Mario [University Hospital of Padua, Neurological Clinic, Department of Neuroscience, Padua (Italy); Vespignani, Francesco; Burlina, Alberto B. [University Hospital of Padua, Metabolic Diseases Unit, Department of Paediatrics, Padua (Italy)

    2009-12-15

    The aim of this study was to grade magnetic resonance white matter abnormalities (WMAs) of classical phenylketonuria (cPKU) patients treated from birth and to compare sensitivity and specificity of T2-weighted and diffusion-weighted images (DWI). Twenty early-treated cPKU patients still on a low-phenylalanine diet (12 males; mean age 21.2 years) and 26 normal subjects (ten males; mean age 25.1 years) were enrolled. Typical T2- and diffusion-weighted WMAs were semiquantitatively graded according to Thompson score (TS). Besides, a regional magnetic resonance imaging (MRI) score (mTS) was developed according to extension and intensity of WMAs. Phenylalanine and tyrosine plasma concentrations before performing MRI and the amino acid mean levels collected the year before MRI (Tyr{sub year} and Phe{sub year}) were measured. No patient with Phe{sub year} concentration below 460 {mu}mol/L showed WMAs. In cPKU patients, TS and mTS were significantly higher on DWI than on T2 images (3.50 vs 2.65 and 23.65 vs 15.85, respectively, p<0.002, Wilcoxon test). All controls were scored 0 on DWI, while in T2 images, TS and mTS were 0.19 and 1.70. DWI evaluated by mTS disclosed a frontotemporal, occipital, and parietal WM progressive involvement. TS and mTS, both on T2 images and on DWI, showed no correlation with tyrosine while they proved to have a strong correlation with phenylalaninemia and an excellent one with Phe{sub year} levels. Among the different MR sequences, DWI seems to be the most sensitive and reliable in detecting and grading the typical WMAs of cPKU patients. (orig.)

  2. Diffusion-weighted and diffusion tensor imaging for pediatric musculoskeletal disorders

    International Nuclear Information System (INIS)

    MacKenzie, John D.; Gonzalez, Leonardo; Hernandez, Andrea; Ruppert, Kai; Jaramillo, Diego

    2007-01-01

    Diffusion-weighted imaging (DWI) is a powerful tool that has recently been applied to evaluate several pediatric musculoskeletal disorders. DWI probes abnormalities of tissue structure by detecting microscopic changes in water mobility that develop when disease alters the organization of normal tissue. DWI provides tissue characterization at a cellular level beyond what is available with other imaging techniques, and can sometimes identify pathology before gross anatomic alterations manifest. These features of early detection and tissue characterization make DWI particularly appealing for probing diseases that affect the musculoskeletal system. This article focuses on the current and future applications of DWI in the musculoskeletal system, with particular attention paid to pediatric disorders. Although most of the applications are experimental, we have emphasized the current state of knowledge and the main research questions that need to be investigated. (orig.)

  3. Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review

    Energy Technology Data Exchange (ETDEWEB)

    Khoo, Michael M.Y.; Tyler, Philippa A.; Saifuddin, Asif [Royal National Orthopaedic Hospital, Department of Radiology, Stanmore, Middlesex (United Kingdom); Padhani, Anwar R. [Mount Vernon Cancer Centre, Paul Strickland Scanner Centre, Northwood (United Kingdom)

    2011-06-15

    Magnetic resonance imaging (MRI) is the mainstay of diagnosis, staging and follow-up of much musculoskeletal pathology. Diffusion-weighted magnetic resonance imaging (DWI) is a recent addition to the MR sequences conventionally employed. DWI provides qualitative and quantitative functional information concerning the microscopic movements of water at the cellular level. A number of musculoskeletal disorders have been evaluated by DWI, including vertebral fractures, bone marrow infection, bone marrow malignancy, primary bone and soft tissue tumours; post-treatment follow-up has also been assessed. Differentiation between benign and malignant vertebral fractures by DWI and monitoring of therapy response have shown excellent results. However, in other pathologies, such as primary soft tissue tumours, DWI data have been inconclusive in some cases, contributing little additional information beyond that gained from conventional MR sequences. The aim of this article is to critically review the current literature on the contribution of DWI to musculoskeletal MRI. (orig.)

  4. Utility of diffusion-weighted imaging in the presurgical diagnosis of an infected urachal cyst

    International Nuclear Information System (INIS)

    Chouhan, Manil; Cuckow, Peter; Humphries, Paul D.

    2011-01-01

    Urachal cysts are one of a spectrum of urachal abnormalities that occur following failure of regression of the allantois and presumptive bladder between 4 weeks and 6 weeks of gestation. Infection is the most common complication of this rare congenital anomaly. The nonspecific presentation may mimic other pathological processes, underlining their clinical and radiological significance. Imaging investigations typically include US and CT, both of which are limited in their ability to characterize lesions. We report the case of a 5-year-old presenting with macroscopic haematuria in whom diffusion-weighted MRI (DWI) suggested the diagnosis of an infected urachal cyst, which was confirmed surgically. We discuss the radiological findings in multiple imaging modalities and present the application of DWI in this context as a means of improving the radiological diagnostic yield. (orig.)

  5. Conspicuity of diffuse axonal injury lesions on diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Kinoshita, Toshibumi; Moritani, Toshio; Hiwatashi, Akio; Wang, Henry Z.; Shrier, David A.; Numaguchi, Yuji; Westesson, Per-Lennart A.

    2005-01-01

    Objective: (1) To detect diffuse axonal injury (DAI) lesions by diffusion-weighted imaging (DWI), as compared with fluid-attenuated inversion recovery (FLAIR) imaging and (2) to evaluate hemorrhagic DAI lesions by b 0 images obtained from DWI, as compared with gradient-echo (GRE) imaging. Methods: We reviewed MR images of 36 patients with a diagnosis of DAI. MR imaging was performed 20 h to 14 days (mean, 3.7 days) after traumatic brain injury. We evaluated: (1) conspicuity of lesions on DWI and FLAIR and (2) conspicuity of hemorrhage in DAI lesions on b 0 images and GRE imaging. Results: DWI clearly depicted high-signal DAI lesions. The sensitivity of DWI to lesional conspicuity in DAI lesions was almost equal to that of FLAIR. The sensitivity of b 0 images to identification of hemorrhagic DAI lesions was inferior to that of GRE. Conclusion: DWI is as useful as FLAIR in detecting DAI lesions. GRE imaging is still the superior tool for the evaluation of hemorrhagic DAI

  6. Conspicuity of diffuse axonal injury lesions on diffusion-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Toshibumi [Department of Radiology, Division of Neuroradiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY 14642 (United States)]. E-mail: kino@grape.med.tottori-u.ac.jp; Moritani, Toshio [Department of Radiology, Division of Neuroradiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY 14642 (United States); Hiwatashi, Akio [Department of Radiology, Division of Neuroradiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY 14642 (United States); Wang, Henry Z. [Department of Radiology, Division of Neuroradiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY 14642 (United States); Shrier, David A. [Department of Radiology, Division of Neuroradiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY 14642 (United States); Numaguchi, Yuji [Department of Radiology, Division of Neuroradiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY 14642 (United States); Westesson, Per-Lennart A. [Department of Radiology, Division of Neuroradiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY 14642 (United States)

    2005-10-01

    Objective: (1) To detect diffuse axonal injury (DAI) lesions by diffusion-weighted imaging (DWI), as compared with fluid-attenuated inversion recovery (FLAIR) imaging and (2) to evaluate hemorrhagic DAI lesions by b{sub 0} images obtained from DWI, as compared with gradient-echo (GRE) imaging. Methods: We reviewed MR images of 36 patients with a diagnosis of DAI. MR imaging was performed 20 h to 14 days (mean, 3.7 days) after traumatic brain injury. We evaluated: (1) conspicuity of lesions on DWI and FLAIR and (2) conspicuity of hemorrhage in DAI lesions on b{sub 0} images and GRE imaging. Results: DWI clearly depicted high-signal DAI lesions. The sensitivity of DWI to lesional conspicuity in DAI lesions was almost equal to that of FLAIR. The sensitivity of b{sub 0} images to identification of hemorrhagic DAI lesions was inferior to that of GRE. Conclusion: DWI is as useful as FLAIR in detecting DAI lesions. GRE imaging is still the superior tool for the evaluation of hemorrhagic DAI.

  7. The utility of diffusion-weighted MR imaging in differentiation of uterine adenomyosis and leiomyoma

    International Nuclear Information System (INIS)

    Yang Qiong; Zhang Lihua; Su Jing; Liu Jianyu

    2011-01-01

    Purpose: To investigate the value of diffusion-weighted MR imaging (DWI), especially apparent diffusion coefficient (ADC) in the differentiation of uterine adenomyosis and leiomyoma. Materials and methods: 17 patients with uterine leiomyoma and 22 patients with uterine adenomyosis underwent diffusion-weighted imaging (DWI) in addition to routine MR imaging. The ADC values, as well as ADC D-value (defined as the ADC value of high signal intensive foci minus the ADC value of lesion tissues the difference in value), were measured and compared to investigate whether they could help in the differentiation of uterine adenomyosis and leiomyoma. Histopathologic examination was conducted as the golden standard. Results: For high signal intensive foci within the lesions, uterine adenomyosis demonstrated significantly lower mean ADC value than uterine leiomyoma (1.582 vs. 2.122 x 10 -3 mm 2 /s, P = 0.001). For lesion tissues, uterine adenomyosis demonstrated significantly higher mean ADC value than uterine leiomyoma (1.214 vs. 0.967 x 10 -3 mm 2 /s, P = 0.001). However, there was overlap between uterine adenomyosis and leiomyoma in both measurements. Mean ADC D-value was significantly lower in uterine adenomyosis than in uterine leiomyoma (0.369 vs. 1.096 x 10 -3 mm 2 /s, P = 0.000). ADC D-value had no overlap between uterine adenomyosis and leiomyoma. Conclusion: DWI can be applied for the further differentiation of uterine adenomyosis and leiomyoma, in addition to routine MR imaging. ADC D-value may be a more useful tool than ADC value in the differentiation.

  8. The utility of diffusion-weighted MR imaging in differentiation of uterine adenomyosis and leiomyoma

    Energy Technology Data Exchange (ETDEWEB)

    Yang Qiong, E-mail: yangq1112@126.com [Department of Radiology, Peking University Third Hospital, Beijing 100191 (China); Zhang Lihua, E-mail: zhanglh04036@yahoo.com.cn [Department of Radiology, Peking University Third Hospital, Beijing 100191 (China); Su Jing, E-mail: bjmusujing@gmail.com [Department of Pathology, Peking University Health Science Center, Beijing 100191 (China); Liu Jianyu, E-mail: jyliu5791@sina.com [Department of Radiology, Peking University Third Hospital, Beijing 100191 (China)

    2011-08-15

    Purpose: To investigate the value of diffusion-weighted MR imaging (DWI), especially apparent diffusion coefficient (ADC) in the differentiation of uterine adenomyosis and leiomyoma. Materials and methods: 17 patients with uterine leiomyoma and 22 patients with uterine adenomyosis underwent diffusion-weighted imaging (DWI) in addition to routine MR imaging. The ADC values, as well as ADC D-value (defined as the ADC value of high signal intensive foci minus the ADC value of lesion tissues the difference in value), were measured and compared to investigate whether they could help in the differentiation of uterine adenomyosis and leiomyoma. Histopathologic examination was conducted as the golden standard. Results: For high signal intensive foci within the lesions, uterine adenomyosis demonstrated significantly lower mean ADC value than uterine leiomyoma (1.582 vs. 2.122 x 10{sup -3} mm{sup 2}/s, P = 0.001). For lesion tissues, uterine adenomyosis demonstrated significantly higher mean ADC value than uterine leiomyoma (1.214 vs. 0.967 x 10{sup -3} mm{sup 2}/s, P = 0.001). However, there was overlap between uterine adenomyosis and leiomyoma in both measurements. Mean ADC D-value was significantly lower in uterine adenomyosis than in uterine leiomyoma (0.369 vs. 1.096 x 10{sup -3} mm{sup 2}/s, P = 0.000). ADC D-value had no overlap between uterine adenomyosis and leiomyoma. Conclusion: DWI can be applied for the further differentiation of uterine adenomyosis and leiomyoma, in addition to routine MR imaging. ADC D-value may be a more useful tool than ADC value in the differentiation.

  9. The utility of diffusion-weighted MR imaging in cervical cancer

    International Nuclear Information System (INIS)

    Chen Jianyu; Zhang Yun; Liang Biling; Yang Zehong

    2010-01-01

    Purpose: To investigate the value of diffusion-weighted MR imaging (DWI) in detection of cervical cancer, and to determine the diagnostic accuracy of apparent diffusion coefficient (ADC) values for evaluating cervical cancer before and after chemoradiotherapy. Materials and methods: Thirty-three patients with cervical squamous carcinoma and 20 patients with other pelvic abnormalities underwent diffusion-weighted imaging (DWI) in addition to routine MR imaging. The ADC values of normal cervical tissue, cervical area before and after chemoradiotherapy were measured and compared. Receiver operating characteristic (ROC) analysis was employed to investigate whether ADC values could help in discrimination among normal cervical tissue, cervical cancer before and after therapy, and to obtain the optimal ADC threshold value. Results: Cervical cancer lesion demonstrated obviously hyperintensity on DWI images. The mean ADC value of cervical carcinoma (1.110 ± 0.175 x 10 -3 mm 2 /s) was significantly lower than that of normal cervical tissue (1.593 ± 0.151 x 10 -3 mm 2 /s) (P -3 mm 2 /s) was significantly higher than that before therapy (1.013 ± 0.094 x 10 -3 mm 2 /s) (P -3 mm 2 /s, between cervical area before and after therapy was 1.255 x 10 -3 mm 2 /s, between normal cervical tissue and cervical area after therapy was 1.525 x 10 -3 mm 2 /s. The sensitivity and specificity were 100% and 84.8%, 95.5% and 100%, 70% and 81.8%, respectively. Conclusion: DWI can be applied for the detection of cervical cancer because of its superior disease contrast with normal tissue. The measurement of the ADC values can be a useful tool to monitor the response to therapy for cervical carcinoma.

  10. Selected clinically established and scientific techniques of diffusion-weighted MRI. In the context of imaging in oncology; Ausgewaehlte klinisch etablierte und wissenschaftliche Techniken der diffusionsgewichteten MRT. Im Kontext der onkologischen Bildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, M.T.; Bickelhaupt, S.; Ziener, C.; Mosebach, J.; Schlemmer, H.P. [Deutsches Krebsforschungszentrum, Abteilung fuer Radiologie, Heidelberg (Germany); Meier-Hein, K. [Deutsches Krebsforschungszentrum, Abteilung fuer medizinische Informatik, Heidelberg (Germany); Radtke, J.P. [Deutsches Krebsforschungszentrum, Abteilung fuer Radiologie, Heidelberg (Germany); Universitaetsklinik Heidelberg, Abteilung fuer Urologie, Heidelberg (Germany); Kuder, T.A.; Laun, F.B. [Deutsches Krebsforschungszentrum, Abteilung fuer Medizinische Physik in der Radiologie, Heidelberg (Germany)

    2016-02-15

    Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) technique that was established in the clinical routine primarily for the detection of brain ischemia. In the past 15 years its clinical use has been extended to oncological radiology, as tumor and metastases can be depicted in DWI due to their hypercellular nature. The basis of DWI is the Stejskal-Tanner experiment. The diffusion properties of tissue can be visualized after acquisition of at least two diffusion-weighted series using echo planar imaging and a specific sequence of gradient pulses. The use of DWI in prostate MRI was reported to be one of the first established applications that found its way into internationally recognized clinical guidelines of the European Society of Urological Radiology (ESUR) and the prostate imaging reporting and data system (PI-RADS) scale. Due to recently reported high specificity and negative predictive values of 94 % and 92 %, respectively, its regular use for breast MRI is expected in the near future. Furthermore, DWI can also reliably be used for whole-body imaging in patients with multiple myeloma or for measuring the extent of bone metastases. New techniques in DWI, such as intravoxel incoherent motion imaging, diffusion kurtosis imaging and histogram-based analyses represent promising approaches to achieve a more quantitative evaluation for tumor detection and therapy response. (orig.) [German] Die diffusionsgewichtete Bildgebung (''diffusion-weighted imaging'', DWI), ein Verfahren aus der Magnetresonanztomographie (MRT), wurde in der klinischen Routine primaer fuer die Detektion von Schlaganfaellen etabliert. Der Einsatz dieser Methode hat in den letzten 15 Jahren auch fuer die onkologische Diagnostik stark zugenommen, da Tumoren und Metastasen aufgrund ihrer hochzellulaeren Zusammensetzung in der DWI sehr gut sichtbar gemacht werden koennen. Basis der diffusionsgewichteten Bildgebung ist das Experiment nach Stejskal-Tanner. Hier

  11. Diffusion-Weighted Magnetic Resonance Imaging in Monitoring Rectal Cancer Response to Neoadjuvant Chemoradiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Barbaro, Brunella, E-mail: bbarbaro@rm.unicatt.it [Department of Bioimaging and Radiological Sciences, Catholic University School of Medicine, Rome (Italy); Vitale, Renata; Valentini, Vincenzo; Illuminati, Sonia [Department of Bioimaging and Radiological Sciences, Catholic University School of Medicine, Rome (Italy); Vecchio, Fabio M. [Department of Pathology, Catholic University School of Medicine, Rome (Italy); Rizzo, Gianluca [Department of Surgery, Catholic University School of Medicine, Rome (Italy); Gambacorta, Maria Antonietta [Department of Bioimaging and Radiological Sciences, Catholic University School of Medicine, Rome (Italy); Coco, Claudio; Crucitti, Antonio; Persiani, Roberto; Sofo, Luigi [Department of Surgery, Catholic University School of Medicine, Rome (Italy); Bonomo, Lorenzo [Department of Bioimaging and Radiological Sciences, Catholic University School of Medicine, Rome (Italy)

    2012-06-01

    Purpose: To prospectively monitor the response in patients with locally advanced nonmucinous rectal cancer after chemoradiotherapy (CRT) using diffusion-weighted magnetic resonance imaging. The histopathologic finding was the reference standard. Methods and Materials: The institutional review board approved the present study. A total of 62 patients (43 men and 19 women; mean age, 64 years; range, 28-83) provided informed consent. T{sub 2}- and diffusion-weighted magnetic resonance imaging scans (b value, 0 and 1,000 mm{sup 2}/s) were acquired before, during (mean 12 days), and 6-8 weeks after CRT. We compared the median apparent diffusion coefficients (ADCs) between responders and nonresponders and examined the associations with the Mandard tumor regression grade (TRG). The postoperative nodal status (ypN) was evaluated. The Mann-Whitney/Wilcoxon two-sample test was used to evaluate the relationships among the pretherapy ADCs, extramural vascular invasion, early percentage of increases in ADCs, and preoperative ADCs. Results: Low pretreatment ADCs (<1.0 Multiplication-Sign 10{sup -3}mm{sup 2}/s) were correlated with TRG 4 scores (p = .0011) and associated to extramural vascular invasion with ypN+ (85.7% positive predictive value for ypN+). During treatment, the mean percentage of increase in tumor ADC was significantly greater in the responders than in the nonresponders (p < .0001) and a >23% ADC increase had a 96.3% negative predictive value for TRG 4. In 9 of 16 complete responders, CRT-related tumor downsizing prevented ADC evaluations. The preoperative ADCs were significantly different (p = .0012) between the patients with and without downstaging (preoperative ADC {>=}1.4 Multiplication-Sign 10{sup -3}mm{sup 2}/s showed a positive and negative predictive value of 78.9% and 61.8%, respectively, for response assessment). The TRG 1 and TRG 2-4 groups were not significantly different. Conclusion: Diffusion-weighted magnetic resonance imaging seems to be a promising

  12. Detection of peritoneal dissemination in gynecological malignancy: evaluation by diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Fujii, Shinya; Matsusue, Eiji; Kanasaki, Yoshiko; Nakanishi, Junko; Sugihara, Shuji; Ogawa, Toshihide; Kanamori, Yasunobu; Kigawa, Junzo; Terakawa, Naoki

    2008-01-01

    The aim of this study is to evaluate the usefulness of diffusion-weighted (DW) magnetic resonance (MR) imaging in detecting peritoneal dissemination in cases of gynecological malignancy. We retrospectively analyzed MR images obtained from 26 consecutive patients with gynecological malignancy. Peritoneal dissemination was histologically diagnosed in 15 of the 26 patients after surgery. We obtained DW images and half-Fourier single-shot turbo-spin-echo images in the abdomen and pelvis, and then generated fusion images. Coronal maximum-intensity-projection images were reconstructed from the axial source images. Reader interpretations were compared with the laparotomy findings in the surgical records. Receiver-operating characteristic (ROC) curves were used to represent the presence of peritoneal dissemination. In addition, the sensitivity and specificity were calculated. DW imaging depicted the tumors in 14 of 15 patients with peritoneal dissemination as abnormal signal intensity. ROC analysis yielded Az values of 0.974 and 0.932 for the two reviewers. The mean sensitivity and specificity were 90 and 95.5%. DW imaging plays an important role in the diagnosis and therapeutic management of patients with gynecological malignancy. (orig.)

  13. Diffusion-weighted imaging in the evaluation of odontogenic cysts and tumours.

    Science.gov (United States)

    Srinivasan, K; Seith Bhalla, A; Sharma, R; Kumar, A; Roychoudhury, A; Bhutia, O

    2012-10-01

    The differentiation between keratocystic odontogenic tumour (KCOT) and other cystic/predominantly cystic odontogenic tumours is difficult on conventional CT and MR sequences as there is overlap in the imaging characteristics of these lesions. The purpose of this study was to evaluate the role of diffusion-weighted imaging (DWI) and to assess the performance of apparent diffusion coefficients (ADCs) in the differential diagnosis of odontogenic cysts and tumours. 20 patients with odontogenic cysts and tumours of the maxillomandibular region were examined with DWI. Diffusion-weighted images were obtained with a single-shot echoplanar technique with b-values of 0, 500 and 1000 s mm(-2). An ADC map was obtained at each slice position. The cystic areas of ameloblastoma (n=10) showed free diffusion with a mean ADC value of 2.192±0.33×10(-3) mm(2) s(-1), whereas the solid areas showed restricted diffusion with a mean ADC value of 1.041±0.41×10(-3) mm(2) s(-1). KCOT (n=5) showed restricted diffusion with a mean ADC value of 1.019±0.07×10(-3) mm(2) s(-1). There was a significant difference between the ADC values of KCOT and cystic ameloblastoma (p<0.01, Mann-Whitney U-test). The cut-off with which KCOT and predominantly cystic ameloblastomas were optimally differentiated was 2.013×10(-3) mm(2) s(-1), which yielded 100% sensitivity and 100% specificity. DWI can be used to differentiate KCOT from cystic (or predominantly cystic) odontogenic tumours.

  14. The contribution of diffusion-weighted MR imaging to distinguishing typical from atypical meningiomas

    Energy Technology Data Exchange (ETDEWEB)

    Hakyemez, Bahattin [Uludag University School of Medicine, Department of Radiology, Gorukle, Bursa (Turkey); Bursa State Hospital, Department of Radiology, Bursa (Turkey); Yildirim, Nalan; Gokalp, Gokhan; Erdogan, Cuneyt; Parlak, Mufit [Uludag University School of Medicine, Department of Radiology, Gorukle, Bursa (Turkey)

    2006-08-15

    Atypical/malignant meningiomas recur more frequently then typical meningiomas. In this study, the contribution of diffusion-weighted MR imaging to the differentiation of atypical/malignant and typical meningiomas and to the determination of histological subtypes of typical meningiomas was investigated. The study was performed prospectively on 39 patients. The signal intensity of the lesions was evaluated on trace and apparent diffusion coefficient (ADC) images. ADC values were measured in the lesions and peritumoral edema. Student's t-test was used for statistical analysis. P<0.05 was considered statistically significant. Mean ADC values in atypical/malignant and typical meningiomas were 0.75{+-}0.21 and 1.17{+-}0.21, respectively. Mean ADC values for subtypes of typical meningiomas were as follows: meningothelial, 1.09{+-}0.20; transitional, 1.19{+-}0.07; fibroblastic, 1.29{+-}0.28; and angiomatous, 1.48{+-}0.10. Normal white matter was 0.91{+-}0.10. ADC values of typical meningiomas and atypical/malignant meningiomas significantly differed (P<0.001). However, the difference between peritumoral edema ADC values was not significant (P>0.05). Furthermore, the difference between the subtypes of typical meningiomas and atypical/malignant meningiomas was significant (P<0.001). Diffusion-weighted MR imaging findings of atypical/malignant meningiomas and typical meningiomas differ. Atypical/malignant meningiomas have lower intratumoral ADC values than typical meningiomas. Mean ADC values for peritumoral edema do not differ between typical and atypical meningiomas. (orig.)

  15. The utility of diffusion-weighted MR imaging for differentiating uterine sarcomas from benign leiomyomas

    International Nuclear Information System (INIS)

    Tamai, Ken; Saga, Tsuneo; Morisawa, Nobuko; Fujimoto, Koji; Togashi, Kaori; Koyama, Takashi; Mikami, Yoshiki

    2008-01-01

    The usefulness of diffusion-weighted (DW) magnetic resonance (MR) imaging for the diagnosis of uterine sarcomas was investigated, as well as whether DW images and quantitative measurement of apparent diffusion coefficient (ADC) values can facilitate differentiating uterine sarcomas from benign leiomyomas. MR images including DW images were obtained in 43 surgically treated patients with 58 myometrial tumors, including seven uterine sarcomas (five leiomyosarcomas and two endometrial stromal sarcomas) and 51 benign leiomyomas (43 ordinary leiomyomas, two cellular leiomyomas and six degenerated leiomyomas). Qualitative analysis of non-enhanced and postcontrast MR images and DW images and quantitative measurement of ADC values were performed for each myometrial tumor. Both uterine sarcomas and cellular leiomyomas exhibited high signal intensity on DW images, whereas ordinary leiomyomas and most degenerated leiomyomas showed low signal intensity. The mean ADC value (10 -3 mm 2 /s) of sarcomas was 1.17 ± 0.15, which was lower than those of the normal myometrium (1.62 ± 0.11) and degenerated leiomyomas (1.70 ± 0.11) without any overlap; however, they were overlapped with those of ordinary leiomyomas and cellular leiomyomas. In addition to morphological features on nonenhanced and postcontrast MR sequences, DW imaging and ADC measurement may have a potential ability to differentiate uterine sarcomas from benign leiomyomas. (orig.)

  16. Diffusion weighted imaging and diffusion tensor imaging in the evaluation of transplanted kidneys

    International Nuclear Information System (INIS)

    Palmucci, Stefano; Cappello, Giuseppina; Attinà, Giancarlo; Foti, Pietro Valerio; Siverino, Rita Olivia Anna; Roccasalva, Federica; Piccoli, Marina; Sinagra, Nunziata; Milone, Pietro; Veroux, Massimiliano; Ettorre, Giovanni Carlo

    2015-01-01

    The aim of this study is to investigate the relation between renal indexes and functional MRI in a population of kidney transplant recipients who underwent MR with diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) of the transplanted graft. Study population included 40 patients with single kidney transplant. The patients were divided into 3 groups, on the basis of creatinine clearance (CrCl) values calculated using Cockcroft-Gault formula: group A, including patients with normal renal function (CrCl ≥ 60 mL/min); group B, which refers to patients with moderate renal impairment (CrCl > 30 but <60 mL/min); and, finally, group C, which means severe renal deterioration (CrCl ≤ 30 mL/min). All patients were investigated with a 1.5 Tesla MRI scanner, acquiring DWI and DTI sequences. A Mann–Whitney U test was adopted to compare apparent diffusion coefficients (ADCs) and fractional anisotropy (FA) measurements between groups. Receiver operating characteristic (ROC) curves were created for prediction of normal renal function (group A) and renal failure (group C). Pearson correlation was performed between renal clearance and functional imaging parameter (ADC and FA), obtained for cortical and medullar regions. Mann–Whitney U test revealed a highly significant difference (p < 0.01) between patients with low CrCl (group C) and normal CrCl (group A) considering both medullar ADC and FA and cortical ADC. Regarding contiguous groups, the difference between group B and C was highly significant (p < 0.01) for medullar ADC and significant (p < 0.05) for cortical ADC and medullar FA. No difference between these groups was found considering cortical FA. Analyzing groups A and B, we found a significant difference (p < 0.05) for medullar both ADC and FA, while no difference was found for cortical ADC and FA. Strongest Pearson correlation was found between CrCl and medullar ADC (r = 0.65). For predicting normal renal function or severe renal impairment, highest

  17. Rosai-Dorfman Disease with Epidural and Spinal Bone Marrow Involvement: Magnetic Resonance Imaging and Diffusion-Weighted Imaging Features

    International Nuclear Information System (INIS)

    Oner, A.Y.; Akpek, S.; Tali, T.

    2007-01-01

    Sinus histiocytosis with massive lymphadenopathy (SHML), or Rosai-Dorfman disease, is a rare histiocytic disorder that typically presents with chronic, self-limiting cervical lymphadenopathy. Although this disease mainly affects histiocytes, there are a few reports of bone marrow infiltration. Diffusion-weighted imaging (DWI) is a promising technology in differentiating between various bone marrow pathologies. We here present conventional magnetic resonance imaging and DWI features of a patient with SHML and bone marrow involvement

  18. Rosai-Dorfman Disease with Epidural and Spinal Bone Marrow Involvement: Magnetic Resonance Imaging and Diffusion-Weighted Imaging Features

    Energy Technology Data Exchange (ETDEWEB)

    Oner, A.Y.; Akpek, S.; Tali, T. [Dept. of Radiology, Gazi Univ. School of Medicine. Besevler-Ankara (Turkey)

    2007-04-15

    Sinus histiocytosis with massive lymphadenopathy (SHML), or Rosai-Dorfman disease, is a rare histiocytic disorder that typically presents with chronic, self-limiting cervical lymphadenopathy. Although this disease mainly affects histiocytes, there are a few reports of bone marrow infiltration. Diffusion-weighted imaging (DWI) is a promising technology in differentiating between various bone marrow pathologies. We here present conventional magnetic resonance imaging and DWI features of a patient with SHML and bone marrow involvement.

  19. Diffusion-weighted imaging in chronic Behcet patients with and without neurological findings

    International Nuclear Information System (INIS)

    Baysal, T.; Dogan, M.; Bulut, T.; Sarac, K.; Karlidag, R.; Ozisik, H.I.; Baysal, O.

    2005-01-01

    Our aim was to investigate whether neurological impairment in chronic Behcet's disease (BD) patients with normal appearing brain can be assessed by means of diffusion-weighted imaging (DWI). The averaged apparent diffusion coefficient (ADC) values were calculated in 22 different radiologically normal appearing brain regions in 32 patients with and without neurological findings and 20 control subjects. The ADC values in bilateral frontal, temporal and occipital normal appearing white matter were significantly higher in the patient groups compared with the control subjects (p<0.05). In these brain regions, DWI revealed differences in the ADC values between patients with neurological findings (including symptomatic and neuro-Behcet patients) and the asymptomatic patient group. The similarity of the ADC values of patients without symptoms to those of the control group allowed clear discrimination between patients with and without neurological findings. DWI may serve to assess subclinical neurological involvement in BD, even when structural changes are absent. (orig.)

  20. Diffusion-weighted imaging and cognition in the leukoariosis and disability in the elderly study

    DEFF Research Database (Denmark)

    Schmidt, Reinhold; Ropele, Stefan; Ferro, José

    2010-01-01

    : Increasing WMH scores were associated with a higher frequency of hypertension, a greater WMH volume, more brain atrophy, worse overall cognitive performance, and changes in ADC. We found strong associations between the peak height of the ADC histogram of whole-brain tissue and NABT with memory performance......BACKGROUND AND PURPOSE: The mechanisms by which leukoariosis impacts on clinical and cognitive functions are not yet fully understood. We hypothesized that ultrastructural abnormalities of the normal-appearing brain tissue (NABT) assessed by diffusion-weighted imaging played a major and independent...... without previous disability. WMH severity was rated according to the Fazekas score. Multivariate regression analysis served to assess correlations of histogram metrics of the apparent diffusion coefficient (ADC) of whole-brain tissue, NABT, and of the mean ADC of WMH with cognitive functions. RESULTS...

  1. Posterior reversible encephalopathy syndrome: a case of unusual diffusion-weighted MR images.

    Science.gov (United States)

    Benziada-Boudour, A; Schmitt, E; Kremer, S; Foscolo, S; Rivière, A-S; Tisserand, M; Boudour, A; Bracard, S

    2009-05-01

    Posterior reversible encephalopathy (PRES) represents an uncommon entity related to multiple pathologies, the most common of which is hypertensive crisis. PRES is classically characterized as symmetrical parieto-occipital edema, but may affect other areas of the brain. Diffusion-weighted magnetic resonance imaging (DWI) is important for differentiating between vasogenic and cytotoxic edema. We present here the case of a 43-year-old woman, known to suffer from arterial hypertension and severe renal failure, who developed PRES with restricted apparent diffusion coefficients (ADC) in various cerebral areas, suggesting irreversible tissue damage. Nevertheless, follow-up cranial MRI revealed complete remission, indicating that restricted diffusion does not always lead to cell death in this pathology. The underlying pathophysiological mechanism is not well understood. Such reversibility of diffusion anomalies has already been reported with transient ischemia, vasospasm after subarachnoid hemorrhage and epilepsy but, to our knowledge, never before in PRES.

  2. Diffusion-weighted imaging and cognition in the leukoariosis and disability in the elderly study

    DEFF Research Database (Denmark)

    Schmidt, Reinhold; Ropele, Stefan; Ferro, José

    2010-01-01

    : Increasing WMH scores were associated with a higher frequency of hypertension, a greater WMH volume, more brain atrophy, worse overall cognitive performance, and changes in ADC. We found strong associations between the peak height of the ADC histogram of whole-brain tissue and NABT with memory performance......, executive dysfunction, and speed, which remained after adjustment for WMH lesion volume and brain atrophy and were consistent among centers. No such association was seen with the mean ADC of WMH. CONCLUSIONS: Ultrastructural abnormalities of NABT increase with WMH severity and have a strong and independent......BACKGROUND AND PURPOSE: The mechanisms by which leukoariosis impacts on clinical and cognitive functions are not yet fully understood. We hypothesized that ultrastructural abnormalities of the normal-appearing brain tissue (NABT) assessed by diffusion-weighted imaging played a major and independent...

  3. Differential diagnostic value of diffusion weighted imaging on brain abscess and necrotic or cystic brain tumors

    International Nuclear Information System (INIS)

    Zhang Xiaoya; Yin Jie; Wang Kunpeng; Zhang Jiandang; Liang Biling

    2009-01-01

    Objective: To investigate the value of diffusion weighted imaging (DWI)on brain abscess and necrotic or cystic brain tumors. Methods: 27 cases with brain abscesses and 33 cases with necrotic or cystic brain tumors (gliomas or metastases) were performed conventional MRI and DWI. Apparent diffusion coefficient (ADC) of region of interest (ROI) was measured and statistically tested. Sensitivity and specificity were calculated and compared with conventional MR and DWI. Results: Hyperintensity signal was seen on most brain abscesses. All necrotic or cystic brain tumors showed hypointensity signal on DWI. There was statistical significance on ADC of them. The sensitivity and specificity of conventional MRI was lower than that of DWI. Conclusion: DWI and ADC were useful in distinguishing brain abscessed from necrotic or cystic brain tumors, which was important in addition to conventional MRI. (authors)

  4. Diffusion-weighted imaging in transient global amnesia exposes the CA1 region of the hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Yun; Kim, Jae Hyoung; Weon, Young-Cheol; Youn, Sung Won; Kim, Sung Hyun [Seoul National University Bundang Hospital, Department of Radiology, Seoul National University College of Medicine, Seongnam-si (Korea); Lee, Jung Seok; Kim, Sang Yun [Seoul National University Bundang Hospital, Department of Neurology, Seoul National University College of Medicine, Seongnam-si (Korea)

    2007-06-15

    Transient global amnesia (TGA) is characterized by a sudden onset of anterograde amnesia without alteration of consciousness or personal identity. Interestingly, recent studies have reported a high frequency of small high-signal abnormalities in the hippocampus with diffusion-weighted (DW) imaging, and ischemia has been proposed as an etiology of TGA. We hypothesized that TGA lesions occur preferentially in the CA1 region of the hippocampus, known to be susceptible to ischemia. Over a 30-month period 34 patients with TGA underwent MRI including DW imaging within 4 days of symptom onset. Patients with high-signal abnormalities in the hippocampus on the initial DW images underwent subsequent DW and T2-weighted imaging in the coronal plane to identify the precise lesion locations. Fourteen patients had small (1-3 mm) high-signal abnormalities in the hippocampus unilaterally on DW images. One of these patients had two lesions in one hippocampus and therefore in total 15 lesions were identified: four in the hippocampal head, and 11 in the body. Eleven lesions in ten patients with available coronal images were clearly demonstrated on both coronal DW and T2-weighted images and were localized to the lateral portion of the hippocampus, corresponding to the CA1 region. Lesions associated with TGA were localized exclusively to the lateral portion of the hippocampus corresponding to the CA1 region. This finding supports the ischemic etiology of TGA; however, the pathophysiological mechanism involved requires further study. (orig.)

  5. Diffusion-weighted imaging in transient global amnesia exposes the CA1 region of the hippocampus

    International Nuclear Information System (INIS)

    Lee, Ho Yun; Kim, Jae Hyoung; Weon, Young-Cheol; Youn, Sung Won; Kim, Sung Hyun; Lee, Jung Seok; Kim, Sang Yun

    2007-01-01

    Transient global amnesia (TGA) is characterized by a sudden onset of anterograde amnesia without alteration of consciousness or personal identity. Interestingly, recent studies have reported a high frequency of small high-signal abnormalities in the hippocampus with diffusion-weighted (DW) imaging, and ischemia has been proposed as an etiology of TGA. We hypothesized that TGA lesions occur preferentially in the CA1 region of the hippocampus, known to be susceptible to ischemia. Over a 30-month period 34 patients with TGA underwent MRI including DW imaging within 4 days of symptom onset. Patients with high-signal abnormalities in the hippocampus on the initial DW images underwent subsequent DW and T2-weighted imaging in the coronal plane to identify the precise lesion locations. Fourteen patients had small (1-3 mm) high-signal abnormalities in the hippocampus unilaterally on DW images. One of these patients had two lesions in one hippocampus and therefore in total 15 lesions were identified: four in the hippocampal head, and 11 in the body. Eleven lesions in ten patients with available coronal images were clearly demonstrated on both coronal DW and T2-weighted images and were localized to the lateral portion of the hippocampus, corresponding to the CA1 region. Lesions associated with TGA were localized exclusively to the lateral portion of the hippocampus corresponding to the CA1 region. This finding supports the ischemic etiology of TGA; however, the pathophysiological mechanism involved requires further study. (orig.)

  6. MR diffusion weighted imaging detecting cerebral infarction: a meta-analysis

    International Nuclear Information System (INIS)

    Yang Junle; Xu Min; Wang Peng; Zhang Qiujuan; Guo Youmin; Liu Min

    2008-01-01

    Objective: To determine the diagnostic value of diffusion-weighted imaging(DWI) in hyperacute and acute cerebral infarction by using Meta-analysis. Methods: Based on validity criteria for diagnostic research published by the Cochrane Methods Group on Screening and Diagnostic, studies in English and Chinese from 1997 to 2007 were selected from Medline, Cochrane, Springer, Ovid, Elsevier, LWW and CNKI( China National Knowledge Infrastructure). The characteristics of the included articles were appraised and extracted. Statistical analysis was performed with the software Meta-test 0.6 and Comprehensive meta-analysis 2.0. Heterogeneity of the included articles was tested, which was used to select proper effect model to calculate pooled weighted values of sensitivity and specificity and the corresponding 95% CI. Summary receiver operating characteristic (SROC) curve was performed and the area under the curve (Az) was calculated. Publication bias was analyzed by Funnel Plot in Comprehensive Meta- analysis 2.0. A sensitivity analysis was performed. Results: Twelve articles meeting inclusion criteria were analyzed for the value of DWI in hyperacute cerebral infarction. The pooled sensitivity, specificity and diagnostic odds ratio was 92%, 87%, 180.37 respectively, Az=0.9717. Novice is a main factor for total diagnostic effect (Q=4.34, P>0.05). Non-asymmetric funnel plot suggested the publication bias. Fifteen articles meeting inclusion criteria were analyzed for the value of DWI in both hyperacute and acute cerebral infarction (≤ 24 h). The pooled sensitivity, specificity diagnostic odds ratio was 92%, 91%, 623.62 respectively, Az=0.9659. Fixed effects model used in Meta-analysis for database suggested homogeneity (Q=2.70,P>0.05). Nonasymmetric funnel plot suggested the publication bias. Conclusions As a noninvasive method, diffusion-weighted imaging is valuable in detecting hyperacute and acute cerebral infarction. More support from multi-center prospective researches is

  7. Diffusion-Weighted Imaging for Predicting New Compression Fractures Following Percutaneous Vertebroplasty

    International Nuclear Information System (INIS)

    Sugimoto, T.

    2008-01-01

    Background: Percutaneous vertebroplasty (PVP) is a technique that structurally stabilizes a fractured vertebral body. However, some patients return to the hospital due to recurrent back pain following PVP, and such pain is sometimes caused by new compression fractures. Purpose: To investigate whether the apparent diffusion coefficient (ADC) of adjacent vertebral bodies as assessed by diffusion-weighted imaging before PVP could predict the onset of new compression fractures following PVP. Material and Methods: 25 patients with osteoporotic compression fractures who underwent PVP were enrolled in this study. ADC was measured for 49 vertebral bodies immediately above and below each vertebral body injected with bone cement before and after PVP. By measuring ADC for each adjacent vertebral body, ADC was compared between vertebral bodies with a new compression fracture within 1 month and those without new compression fractures. In addition, the mean ADC of adjacent vertebral bodies per patient was calculated. Results: Mean preoperative ADC for the six adjacent vertebral bodies with new compression fractures was 0.55x10 -3 mm 2 /s (range 0.36-1.01x10 -3 mm 2 /s), and for the 43 adjacent vertebral bodies without new compression fractures 0.20x10 -3 mm 2 /s (range 0-0.98x10 -3 mm 2 /s) (P -3 mm 2 /s (range 0.21-1.01x10 -3 mm 2 /s), and that for the 19 patients without new compression fractures 0.17x10 -3 mm 2 /s (range 0.01-0.43x10 -3 mm 2 /s) (P<0.001). Conclusion: The ADC of adjacent vertebral bodies as assessed by diffusion-weighted imaging before PVP might be one of the predictors for new compression fractures following PVP

  8. MR imaging of primary sclerosing cholangitis - Additional value of diffusion-weighted imaging and ADC measurement

    Energy Technology Data Exchange (ETDEWEB)

    Djokicc Kovac, Jelena [Center for Radiology and Magnetic Resonance Imaging, Clinical Center Serbia, Belgrade (Serbia)], e-mail: jelenadjokic2003@yahoo.co.uk; Maksimovic, Ruzica [Center for Radiology and Magnetic Resonance Imaging, Clinical Center Serbia, Belgrade (Serbia); Faculty of Medicine, Univ. of Belgrade, Belgrade (Serbia); Jesic, Rada [Clinic for Gastroenterohepatology, Clinical Center Serbia, Belgrade (Serbia); Faculty of Medicine, Univ. of Belgrade, Belgrade (Serbia); Stanisavljevic, Dejana [Inst. for Statistics, Faculty of Medicine, Univ. of Belgrade, Belgrade (Serbia); Kovac, Bojan [Military Medical Academy, Belgrade (Serbia)

    2013-04-15

    Background: Primary sclerosing cholangitis (PSC) is a cholestatic liver disease with chronic inflammation and progressive destruction of biliary tree. Magnetic resonance (MR) examination with diffusion-weighted imaging (DWI) allows analysis of morphological liver parenchymal changes and non-invasive assessment of liver fibrosis. Moreover, MR cholangiopancreatography (MRCP), as a part of standard MR protocol, provides insight into bile duct irregularities. Purpose: To evaluate MR and MRCP findings in patients with primary sclerosing cholangitis and to determine the value of DWI in the assessment of liver fibrosis. Material and Methods: The following MR findings were reviewed in 38 patients: abnormalities in liver parenchyma signal intensity, changes in liver morphology, lymphadenopathy, signs of portal hypertension, and irregularities of intra- and extrahepatic bile ducts. Apparent diffusion coefficient (ADC) was calculated for six locations in the liver for b = 800 s/mm{sup 2}. Results: T2-weighted hyperintensity was seen as peripheral wedge-shaped areas in 42.1% and as periportal edema in 28.9% of patients. Increased enhancement of liver parenchyma on arterial-phase imaging was observed in six (15.8%) patients. Caudate lobe hypertrophy was present in 10 (26.3%), while spherical liver shape was noted in 7.9% of patients. Liver cirrhosis was seen in 34.2% of patients; the most common pattern was micronodular cirrhosis (61.5%). Other findings included lymphadenopathy (28.9%), signs of portal hypertension (36.7%), and bile duct irregularities (78.9%). The mean ADCs (x10{sup -3} mm{sup 2}/s) were significantly different at stage I vs. stages III and IV, and stage II vs. stage IV. No significant difference was found between stages II and III. For prediction of stage {>=}II and stage {>=}III, areas under receiver-operating characteristic curves were 0.891 and 0.887, respectively. Conclusion: MR with MRCP is a necessary diagnostic procedure for diagnosis of PSC and

  9. Comparison and Optimization of 3.0 T Breast Images Quality of Diffusion-Weighted Imaging with Multiple B-Values.

    Science.gov (United States)

    Han, Xiaowei; Li, Junfeng; Wang, Xiaoyi

    2017-04-01

    Breast 3.0 T magnetic resonance diffusion-weighted imaging (MR-DWI) of benign and malignant lesions were obtained to measure and calculate the signal-to-noise ratio (SNR), signal intensity ratio (SIR), and contrast-to-noise ratio (CNR) of lesions at different b-values. The variation patterns of SNR and SIR were analyzed with different b-values and the images of DWI were compared at four different b-values with higher image quality. The effect of SIR on the differential diagnostic efficiency of benign and malignant lesions was compared using receiver operating characteristic curves to provide a reference for selecting the optimal b-value. A total of 96 qualified patients with 112 lesions and 14 patients with their contralateral 14 normal breasts were included in this study. The single-shot echo planar imaging sequence was used to perform the DWI and a total of 13 b-values were used: 0, 50, 100, 200, 400, 600, 800, 1000, 1200, 1500, 1800, 2000, and 2500 s/mm 2 . On DWI, the suitable regions of interest were selected. The SNRs of normal breasts (SNR normal ), SNR lesions , SIR, and CNR of benign and malignant lesions were measured on DWI with different b-values and calculated. The variation patterns of SNR, SIR, and CNR values on DWI for normal breasts, benign lesions, and malignant lesions with different b-values were analyzed by using Pearson correlation analysis. The SNR and SIR of benign and malignant lesions with the same b-values were compared using t-tests. The diagnostic efficiencies of SIR with different b-values for benign and malignant lesions were evaluated using receiver operating characteristic curves. Breast DWI had higher CNR for b-values ranging from 600 to 1200 s/mm 2 . It had the best CNR at b = 1000 s/mm 2 for the benign lesions and at b = 1200 s/mm 2 for the malignant lesions. The signal intensity and SNR values of normal breasts decreased with increasing b-values, with a negative correlation (r = -0.945, P < 0.01). The

  10. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, M.; Sakamoto, S.; Ishii, K. [Division of Neuroimaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders (Japan); Imamura, T.; Kazui, H.; Mori, E. [Division of Clinical Neurosciences, Hyogo Institute for Aging Brain and Cognitive Disorders, Hyogo (Japan)

    2002-03-01

    We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)

  11. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Matsui, M.; Sakamoto, S.; Ishii, K.; Imamura, T.; Kazui, H.; Mori, E.

    2002-01-01

    We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)

  12. MR findings of primary bone lymphoma in a 15-year-old girl: emphasis on diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Kevin M.; Kim, Hee Kyung; Emery, Kathleen H. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Stanek, Jerzy [Cincinnati Children' s Hospital Medical Center, Department of Pathology, Cincinnati, OH (United States)

    2011-05-15

    We report a case of primary bone lymphoma (PBL) in a 15-year-old girl assessed by MR imaging with diffusion-weighted imaging (DWI). DWI has been shown to help characterize the cellularity of solid tumors and this case correlates well with previous data. (orig.)

  13. Comparison of whole body MR diffusion weighted imaging and skeletal scintigraphy in detecting bone metastasis

    International Nuclear Information System (INIS)

    Xu Xian; Ma Lin; Zhang Jinshan; Cai Youquan; Cheng Liuquan; Guo Xinggao; Xu Baixuan

    2008-01-01

    Objective: To evaluate the application of whole body MR diffusion weighted imaging (DWI) in the detection of bone metastasis using skeletal scintigraphy as the reference. Methods: Forty-two healthy volunteers and 38 patients with malignant tumors were enrolled in our study. All the patients received MR examination and skeletal scintigraphy within one week. MR examination was performed on GE signa 3.0T MR scanner using a build-in body coil. The skeletal system was divided into eight regions and the images of the whole body MR DWI and skeletal scintigraphy were reviewed to compare the two modalities patient by patient and region by region. The images were reviewed separately by two radiologists and two nuclear medicine physicians, who were blinded to the results of another imaging modality. Results: A total of 169 metastatic lesions in 69 regions of 30 patients were detected by whole body MR DWI while 156 lesions in 68 regions of 29 patients were identified by skeletal scintigraphy. There were two cases negative in scintigraphy but positive in whole body MR DWI and one case positive in scintigraphy only. There were eight lesions negative in scintigraphy but positive in whole body MR DWI, mainly located in the spine, pelvis and femur. Seven lesions were only detected by scintigraphy, mainly located in the skull, sternum, clavicle and scapula. Conclusion: The whole body MR DWI reveals excellent consistency with skeletal scintigraphy regarding bone metastasis, and the two modalities are complementary for each other. (authors)

  14. The significance of diffusion weighted imaging for the diagnosis of pyogenic ventriculitis

    Energy Technology Data Exchange (ETDEWEB)

    Ihn, Yon Kwon; Hwang, Seong Su [College of Medicine, The Catholic University of Korea, Suwon (Korea, Republic of); Kim, Tae You [Willis Hospital, Seoul (Korea, Republic of)

    2007-08-15

    To evaluate the significance of diffusion weighted imaging (DWI) for the diagnosis of pyogenic ventriculitis. In this retrospective study, 9 patients with pyogenic ventricultis underwent a set of imaging sequences that included DWI, T1-and T2-weighted imaging. FLAIR and enhanced T1 weighted imaging. DWI consisted of an axial single shot spine echo EPI pulse sequence with b values of 0 and 1000 sec/mm{sup 2}. We evaluated the presence and signal intensity of ventricular debris, hydrocephalus, periventricular signal abnormality, and ependymal enhancement. The apparent diffusion coffiecient values of ventricular debris and cortical gray matter were calculated from the ADC map. In all patients, ventricular debris was hyperintense on the DWIs. A periventricular hyperintense signal was present in all cases on FLAIR and T2WI. Ependymal enhancement was detected in eight (89%) of 9 cases. A hydrocephalus was observed in 6 (67%) of 9 cases. The mean ADC value of ventricular debris was 0.735 {+-} 0.117 (10{sup -3} mm{sup 2}/sec). These ADC values were significantly lower than those for cortical gray matter (1.052 {+-} 0.149 (10{sup -3} mm{sup 2}/sec)). Ventricular debris was most conspicuous findings of ventriculitis on DWI. Areas of intraventricular hyperintensity on DWI corresponded to the decreased ADC values.

  15. Clinical value of diffusion-weighted MR imaging in acute contusion of spinal cord

    International Nuclear Information System (INIS)

    Zhang Jinsong; Huan Yi; Sun Lijun; Zhao Haitao; Ge Yali; Chang Yingjuan; Yang Chunmin

    2005-01-01

    Objective: To study the clinical value of diffusion-weighted MR imaging (DWI) in acute contusion of spinal cord. Methods: Eighteen cases with acute contusion of spinal cord were examined with routine MRI and DWI, including single-shot DWI (ssh-DWI) in 2 cases and multi-shot DWI (msh-DWI) in 16 cases, on a 1.5-tesla MR system within 72 h post-trauma. Results: Two cases examined by ssh-DWI showed local lesions with significant high signals, but ssh-DWI images could not be used to measure apparent diffusion coefficient (ADC) value due to its weak resolution. Other 16 cases examined by msh-DWI showed better images and were classified into three categories depending on different degrees of tissue injury and characteristics of DWI: (1) Edema-type: ten cases presented DWI high signals with different degree in local lesions. There were significant difference of ADC values between lesions and normal parts (t=7.515, P 2 WI heterogeneous high signals and T 1 WI low signals due to prominent hemorrhage. Conclusion: DWI of the spinal cord provided satisfactory images and was a useful method for visualizing the injury cord in the super-early stage, helping determine integrity and compression degree of spinal cord and detecting hemorrhage. (authors)

  16. Diffusion-weighted imaging of brain metastases: their potential to be misinterpreted as focal ischaemic lesions

    Energy Technology Data Exchange (ETDEWEB)

    Geijer, B. [Department of Radiology, University Hospital, Lund (Sweden); Holtaas, S. [Department of Diagnostic Imaging, King Fahd Hospital, Riyadh (Saudi Arabia)

    2002-07-01

    Small focal ischaemic brain lesions are said to be easy to identify in the acute stage and to differentiate from older lesions using diffusion-weighted imaging (DWI). Brain metastases are common and the aim of this study was to evaluate the risk of misinterpretation as ischaemic lesions in a standard MRI protocol for clinical stroke. Of 26 patients investigated with MRI for possible metastases, 12 did have metastatic brain lesions, including most of the common tumours. On a 1.5 tesla imager, we obtained DWI, plus T2- and T1-weighted images, the latter before and after triple-dose contrast medium. Well-circumscribed brain lesions with a decreased apparent diffusion coefficient and a slightly or moderately increased signal on T2-weighted images were found in patients with metastases from a small-cell bronchial carcinoma and a pulmonary adenocarcinoma. The same features were also found in metastases from a breast carcinoma but the lesions were surrounded by oedema. With a standard DWI protocol, the features of common brain metastases may overlap with those of small acute and subacute ischaemic lesions. (orig.)

  17. MRI of paraventricular white matter lesions in amyotrophic lateral sclerosis. Analysis by diffusion-weighted images

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Fuminori; Kinoshita, Masao (Toho Univ., Tokyo (Japan). Ohashi Hospital); Kishibayashi, Jun; Kamada, Kazuhiko; Sunohara, Nobuhiko

    1994-09-01

    Magnetic resonance images in some cases of amyotrophic lateral sclerosis (ALS) revealed abnormal signals in both the paraventriculer white matter and in the posterior limbs of the internal capsule. We examined T[sub 2]- and diffusion-weighted MR images of these lesions in 18 cases of ALS. There were symmetrical high-signal areas in the posterior limbs of the internal capsule in all of the cases. The high-signal areas in the internal capsule corresponded to the pyramidal tracts in the anatomical atlas by Talairach. In 5 of the cases of ALS, T[sub 2]-weighted MR images showed discrete paraventricular white matter lesions as well. The mean age of the ALS patients with paraventricular white matter lesions was higher than that of the ALS patients without such lesions. Proton densities calculated from the conventional MR images were higher in both the capsular and paraventricular lesions. The diffusion coefficients perpendicular to the pyramidal tract in the internal capsular lesions were within the normal range, where as the diffusion coefficients in the paraventricular lesions were increased in all directions. Thus, diffusion anisotropy was lost in the paraventricular lesions. These findings are similar to those observed in the white matter lesions of cerebro-vascular origin. As a result, the pathology of the paraventricular lesions in ALS was confirmed to be different from that of the internal capsular lesions. (author).

  18. MRI of paraventricular white matter lesions in amyotrophic lateral sclerosis. Analysis by diffusion-weighted images

    International Nuclear Information System (INIS)

    Segawa, Fuminori; Kinoshita, Masao; Kishibayashi, Jun; Kamada, Kazuhiko; Sunohara, Nobuhiko.

    1994-01-01

    Magnetic resonance images in some cases of amyotrophic lateral sclerosis (ALS) revealed abnormal signals in both the paraventriculer white matter and in the posterior limbs of the internal capsule. We examined T 2 - and diffusion-weighted MR images of these lesions in 18 cases of ALS. There were symmetrical high-signal areas in the posterior limbs of the internal capsule in all of the cases. The high-signal areas in the internal capsule corresponded to the pyramidal tracts in the anatomical atlas by Talairach. In 5 of the cases of ALS, T 2 -weighted MR images showed discrete paraventricular white matter lesions as well. The mean age of the ALS patients with paraventricular white matter lesions was higher than that of the ALS patients without such lesions. Proton densities calculated from the conventional MR images were higher in both the capsular and paraventricular lesions. The diffusion coefficients perpendicular to the pyramidal tract in the internal capsular lesions were within the normal range, where as the diffusion coefficients in the paraventricular lesions were increased in all directions. Thus, diffusion anisotropy was lost in the paraventricular lesions. These findings are similar to those observed in the white matter lesions of cerebro-vascular origin. As a result, the pathology of the paraventricular lesions in ALS was confirmed to be different from that of the internal capsular lesions. (author)

  19. Diffusion weighted magnetic resonance imaging: ischemic and traumatic injury of the central nervous system

    International Nuclear Information System (INIS)

    Huisman, T.A.G.M.; Sorensen, A.G.; Hawighorst, H.; Benoit, C.H.

    2001-01-01

    Diffusion weighted magnetic resonance imaging (DWI) represents a recent development that extends imaging from the depiction of the neuroanatomy into the field of functional and physiologic processes. DWI measures a fundamentally different physiologic parameter than conventional MRI. Image contrast is related to differences in the microscopic motion (diffusion) of water molecules within brain tissue rather than a change in total tissue water. Consequently, DWI can reveal pathology where conventional T1- and T2-weighted MR images are negative. DWI has clinically proven its value in the assessment of acute cerebral stroke and trauma by showing cerebral injury early due to its ability to discriminate between lesions with cytotoxic edema (decreased diffusion) from lesions with vasogenic edema (increased diffusion). Full tensor DWI allows to calculate a variety of functional maps, the most widely used maps include maps of apparent diffusion coefficients and isotropic diffusion. In addition maps of anisotropic diffusion can be calculated which are believed to give information about the integrity and location of fiber tracts. This functional-anatomical information will most probably play an increasingly important role in the early detection of primary and secondary tissue injury from various reasons and could guide and validate current and future neuroprotective treatments. (orig.) [de

  20. Analysis of longitudinal diffusion-weighted images in healthy and pathological aging: An ADNI study.

    Science.gov (United States)

    Kruggel, Frithjof; Masaki, Fumitaro; Solodkin, Ana

    2017-02-15

    The widely used framework of voxel-based morphometry for analyzing neuroimages is extended here to model longitudinal imaging data by exchanging the linear model with a linear mixed-effects model. The new approach is employed for analyzing a large longitudinal sample of 756 diffusion-weighted images acquired in 177 subjects of the Alzheimer's Disease Neuroimaging initiative (ADNI). While sample- and group-level results from both approaches are equivalent, the mixed-effect model yields information at the single subject level. Interestingly, the neurobiological relevance of the relevant parameter at the individual level describes specific differences associated with aging. In addition, our approach highlights white matter areas that reliably discriminate between patients with Alzheimer's disease and healthy controls with a predictive power of 0.99 and include the hippocampal alveus, the para-hippocampal white matter, the white matter of the posterior cingulate, and optic tracts. In this context, notably the classifier includes a sub-population of patients with minimal cognitive impairment into the pathological domain. Our classifier offers promising features for an accessible biomarker that predicts the risk of conversion to Alzheimer's disease. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how to apply/ADNI Acknowledgement List.pdf. Significance statement This study assesses neuro-degenerative processes in the brain's white matter as revealed by diffusion-weighted imaging, in order to discriminate healthy from pathological aging in a large sample of elderly subjects. The analysis of time

  1. The experimental study on liver VX-2 tumor by using MR diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Yuan Youhong; Xiao Enhua; Jin Ke; Yan Ronghua; He Zhong; Shang Quanliang; Hu Weizhou; Yuan Shiwen; Xiang Jun; Tang Keli; Yi Shijian; Yin Qiang

    2005-01-01

    Objective: To study the imaging characteristics of rabbit's liver VX-2 tumor on MR diffusion-weighted imaging. Methods: Of the 35 New Zealand rabbits, 14 were implanted under the skin while 6 were implanted in liver with VX-2 tumor in preparing experiment, and 12 were implanted in liver and 3 as controls in formal experiment. Before and after the implantation, MR diffusion-weighted imaging (DWI), T 1 -weighted and T 2 -weighted images were performed respectively and periodically in 15 tumors including 12 liver tumor implantations in formal experiment. DWI parameters including apparent diffusion coefficient (ADC) value were acquired and statistically analyzed by SPSS 10.0. Results: (1) The successful rate of implantation was 29% (4/14) under the skin and 33% (2/6) in the liver in preparing experiment. And the successful rate of formal experiment was 83% (10/12). (2) DWI signal of VX-2 tumor was high and the signal became lower and lower with b value increased step by step. The signal of VX-2 tumor on ADC map was low. The ADC value of normal group was (2.57 ± 0.26) mm 2 /s (b=100 s/mm 2 ) and (1.73 ± 0.31) mm 2 /s (b=300 s/mm 2 ), and ADC value of VX-2 tumor group was (1.87 ± 0.25) mm 2 /s (b=100 s/mm 2 ) and (1.57 ± 0.23) mm 2 /s (b=300 s/mm 2 ), respectively.The F value of analysis of variance was 43.26 (P<0.001). The distinction of tumor ADC value in different b values was significant (P<0.05), and the distinction of ADC value between VX-2 tumor and normal liver was also significant (P<0.01). (3) VX-2 tumor developed quickly and metastasized early to all parts of the body, especially to the lung, the liver, the lymph nodes of mediastinum and so on. Conclusion: DWI signal of VX-2 tumor has its characteristic and DWI has important value in reflecting the movement of water molecules, discovering the VX-2 tumor, and tracking its progress. (authors)

  2. Signal-shot echo-planner diffusion-weighted MR imaging at 3T and 1.5T for differentiation of benign vertebral fracture edema and tumor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Jin; Lee, So Yeon; Rho, Myung Ho; Chung, Eun Chul; Kim, Mi Sung; Kwon, Heon Ju; Youn, In Young [Dept. of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2016-09-15

    To compare the apparent diffusion coefficient (ADC) value using single-shot echo-planar imaging sequences at 3T and 1.5T for differentiation of benign fracture edema and tumor infiltration of the vertebral body. A total of 46 spinal examinations were included in the 1.5T MRI group, and a total of 40 spinal examinations were included in the 3T MRI group. The ADC values of the lesion were measured and calculated. The diagnostic performance of the conventional MR image containing sagittal T2-weighted fat saturated image and each diffusion weighted image (DWI) with an ADC value with different b values were evaluated. The mean ADC value of the benign lesions was higher than that of the malignant lesions on 1.5T and 3T (p < 0.05). The sensitivity of the diagnostic performance was higher with an additional DWI in both 1.5T and 3T, but the sensitivities were similar with the addition of b values of 400 and 1000. The specificities of the diagnostic performances did not show significant differences (p value > 0.05). The diagnostic accuracies were higher when either of the DWIs (b values of 400 and 1000) was added to routine MR image for 1.5T and 3T. Statistical differences between 1.5T and 3T or between b values of 400 and 1000 were not seen. The ADC values of the benign lesions were significantly higher than those of the malignant lesions on 1.5T and 3T. There was no statistically significant difference in the diagnostic performances when either of the DWIs (b values of 400 and 1000) was added to the routine MR image for 1.5T and 3T.

  3. Heroin-induced leukoencephalopathy: characterization using MRI, diffusion-weighted imaging, and MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Offiah, C. [Department of Neuroradiology, St Bartholomew' s and the London Hospitals NHS Trust, London (United Kingdom); Hall, E. [Department of Neuroradiology, St Bartholomew' s and the London Hospitals NHS Trust, London (United Kingdom)], E-mail: curtis.offiah@bartsandthelondon.nhs.uk

    2008-02-15

    Aim: To describe the magnetic resonance imaging (MRI) characteristics of heroin-induced leukoencephalopathy or 'chasing the dragon syndrome' and, in particular, the diffusion-weighted imaging (DWI) and MR spectroscopy (MRS) features. Material and methods: Six patients with a clinical or histopathological diagnosis of heroin-induced leukoencephalopathy were identified and MRI examinations, including DWI and single-voxel MRS, reviewed. Results: Cerebellar white matter was involved in all six cases demonstrating similar symmetrical distribution with sparing of the dentate nuclei. Brain stem signal change was evident in five of the six patients imaged. Supratentorial brain parenchymal involvement, as well as brain stem involvement, correlated anatomically with corticospinal tract distribution. None of the areas of signal abnormality were restricted on DWI. Of those patients subjected to MRS, the areas of parenchymal damage demonstrated reduced N-acetylaspartate, reduced choline, and elevated lactate. Conclusion: Heroin-induced leukoencephalopathy results in characteristic and highly specific signal abnormalities on MRI, which can greatly aid diagnosis. DWI and MRS findings can be explained by known reported neuropathological descriptions in this condition and can be used to support a proposed mechanism for the benefit of current recommended drug treatment regimes.

  4. Chronic kidney disease: Pathological and functional evaluation with intravoxel incoherent motion diffusion-weighted imaging.

    Science.gov (United States)

    Mao, Wei; Zhou, Jianjun; Zeng, Mengsu; Ding, Yuqin; Qu, Lijie; Chen, Caizhong; Ding, Xiaoqiang; Wang, Yaqiong; Fu, Caixia

    2018-05-01

    Because chronic kidney disease (CKD) is a worldwide problem, accurate pathological and functional evaluation is required for planning treatment and follow-up. Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) can assess both capillary perfusion and tissue diffusion and may be helpful in evaluating renal function and pathology. To evaluate functional and pathological alterations in CKD by applying IVIM-DWI. Prospective study. In all, 72 CKD patients who required renal biopsy and 20 healthy volunteers. 1.5T. All subjects underwent IVIM-DWI of the kidneys, and image analysis was performed by two radiologists. The mean values of true diffusion coefficient (D), pseudo diffusion coefficient (D*), and perfusion fraction (f) were acquired from renal parenchyma. Correlation between IVIM-DWI parameters and estimated glomerular filtration rate (eGFR), as well as pathological damage, were assessed. One-way analysis of variance (ANOVA), paired sample t-test and Spearman correlation analysis. The paired sample t-test revealed that IVIM-DWI parameters were significantly lower in medulla than cortex for both patients and controls (P Imaging 2018;47:1251-1259. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Diffusion-weighted imaging and the skeletal system: a literature review.

    Science.gov (United States)

    Yao, K; Troupis, J M

    2016-11-01

    Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) sequence that has a well-established role in neuroimaging, and is increasingly being utilised in other clinical contexts, including the assessment of various skeletal disorders. It utilises the variability of Brownian motion of water molecules; the differing patterns of water molecular diffusion in various biological tissues help determine the contrast obtained in DWI. Although early research on the clinical role of DWI focused mainly on the field of neuroimaging, there are now more studies demonstrating the promising role DWI has in the diagnosis and monitoring of various osseous diseases. DWI has been shown to be useful in assessing a patient's skeletal tumour burden, monitoring the post-chemotherapy response of various bony malignancies, detecting hip ischaemia in patients with Legg-Calvé-Perthes disease, as well as determining the quality of repaired articular cartilage. Despite its relative successes, DWI has several limitations, including its limited clinical value in differentiating chondrosarcomas from benign bone lesions, as well as osteoporotic vertebral compression fractures from compression fractures due to malignancy. This literature review aims to provide an overview of the recent developments in the use of DWI in imaging the skeletal system, and to clarify the role of DWI in assessing various osseous diseases. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  6. Ischemic lesion volume determination on diffusion weighted images vs. apparent diffusion coefficient maps.

    Science.gov (United States)

    Bråtane, Bernt Tore; Bastan, Birgul; Fisher, Marc; Bouley, James; Henninger, Nils

    2009-07-07

    Though diffusion weighted imaging (DWI) is frequently used for identifying the ischemic lesion in focal cerebral ischemia, the understanding of spatiotemporal evolution patterns observed with different analysis methods remains imprecise. DWI and calculated apparent diffusion coefficient (ADC) maps were serially obtained in rat stroke models (MCAO): permanent, 90 min, and 180 min temporary MCAO. Lesion volumes were analyzed in a blinded and randomized manner by 2 investigators using (i) a previously validated ADC threshold, (ii) visual determination of hypointense regions on ADC maps, and (iii) visual determination of hyperintense regions on DWI. Lesion volumes were correlated with 24 hour 2,3,5-triphenyltetrazoliumchloride (TTC)-derived infarct volumes. TTC-derived infarct volumes were not significantly different from the ADC and DWI-derived lesion volumes at the last imaging time points except for significantly smaller DWI lesions in the pMCAO model (p=0.02). Volumetric calculation based on TTC-derived infarct also correlated significantly stronger to volumetric calculation based on last imaging time point derived lesions on ADC maps than DWI (pdetermined lesion volumes on ADC maps and DWI by both investigators correlated significantly with threshold-derived lesion volumes on ADC maps with the former method demonstrating a stronger correlation. There was also a better interrater agreement for ADC map analysis than for DWI analysis. Ischemic lesion determination by ADC was more accurate in final infarct prediction, rater independent, and provided exclusive information on ischemic lesion reversibility.

  7. The preliminary study of MR diffusion weighted imaging with background body signal suppression on pulmonary diseases

    International Nuclear Information System (INIS)

    Wu Huawei; Cheng Jiejun; Xu Jianrong; Lu Qing; Ge Xin; Li Lei

    2008-01-01

    Objective: To evaluate maximum intensity projection (MIP) images and apparent diffusion coefficient (ADC) values of MR diffusion weighted imaging with background body signal suppression (DWIBS) on pulmonary diseases. Methods: Sixty-one patients with pulmonary diseases underwent DWlBS. The findings in three dimensional(3D) MIP image were observed and the ADC values of diseased region were measured. The diagnostic value of DWIBS on pulmonary diseases was evaluated. Results: Lung cancer and inflammatory disease were all demonstrated as dense intensity area on DWIBS. The mean ADC value of central lung cancer was (1.05±0.23) x 10 -3 mm 2 /s. The mean ADC value of peripheral lung cancer was (1.10 ± 0.17) x 10 -3 mm 2 /s. The mean ADC value of the inflammatory disease was (1.69 ± 0.29) x 10 -3 mm 2 /s. The mean ADC value had significant difference between peripheral lung cancer and the inflammatory disease (P<0.05). The MR sensitivity, specificity and accuracy in diagnosing the pulmonary diseases with DWIBS (86.84%, 82.60%, 85.24%, respectively) was higher than conventional MRI(78.94%, 78.26%, and 78.68%, respectively). Conclusion: DWIBS can demonstrate clearly the lesion's shape with 3D display. The quantitative measurement of ADC values is feasible. DWIBS may be a potential diagnostic method for differentiation on pulmonary diseases. (authors)

  8. Comparison of qualitative and quantitative evaluation of diffusion-weighted MRI and chemical-shift imaging in the differentiation of benign and malignant vertebral body fractures.

    Science.gov (United States)

    Geith, Tobias; Schmidt, Gerwin; Biffar, Andreas; Dietrich, Olaf; Dürr, Hans Roland; Reiser, Maximilian; Baur-Melnyk, Andrea

    2012-11-01

    The objective of our study was to compare the diagnostic value of qualitative diffusion-weighted imaging (DWI), quantitative DWI, and chemical-shift imaging in a single prospective cohort of patients with acute osteoporotic and malignant vertebral fractures. The study group was composed of patients with 26 osteoporotic vertebral fractures (18 women, eight men; mean age, 69 years; age range, 31 years 6 months to 86 years 2 months) and 20 malignant vertebral fractures (nine women, 11 men; mean age, 63.4 years; age range, 24 years 8 months to 86 years 4 months). T1-weighted, STIR, and T2-weighted sequences were acquired at 1.5 T. A DW reverse fast imaging with steady-state free precession (PSIF) sequence at different delta values was evaluated qualitatively. A DW echo-planar imaging (EPI) sequence and a DW single-shot turbo spin-echo (TSE) sequence at different b values were evaluated qualitatively and quantitatively using the apparent diffusion coefficient. Opposed-phase sequences were used to assess signal intensity qualitatively. The signal loss between in- and opposed-phase images was determined quantitatively. Two-tailed Fisher exact test, Mann-Whitney test, and receiver operating characteristic analysis were performed. Sensitivities, specificities, and accuracies were determined. Qualitative DW-PSIF imaging (delta = 3 ms) showed the best performance for distinguishing between benign and malignant fractures (sensitivity, 100%; specificity, 88.5%; accuracy, 93.5%). Qualitative DW-EPI (b = 50 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.50]) and DW single-shot TSE imaging (b = 100 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.18]; b = 400 s/mm(2) [p = 0.18]; b = 600 s/mm(2) [p = 0.39]) did not indicate significant differences between benign and malignant fractures. DW-EPI using a b value of 500 s/mm(2) (p = 0.01) indicated significant differences between benign and malignant vertebral fractures. Quantitative DW-EPI (p = 0.09) and qualitative opposed-phase imaging (p = 0

  9. Human cerebral cortices: signal variation on diffusion-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Asao, Chiaki [Kumamoto Regional Medical Center, Department of Radiology, Kumamoto (Japan); National Hospital Organization Kumamoto Medical Center, Department of Radiology, Kumamoto (Japan); Hirai, Toshinori; Yamashita, Yasuyuki [Kumamoto University Graduate School of Medical Sciences, Department of Diagnostic Radiology, Kumamoto (Japan); Yoshimatsu, Shunji [National Hospital Organization Kumamoto Medical Center, Department of Radiology, Kumamoto (Japan); Matsukawa, Tetsuya; Imuta, Masanori [Kumamoto Regional Medical Center, Department of Radiology, Kumamoto (Japan); Sagara, Katsuro [Kumamoto Regional Medical Center, Department of Internal Medicine, Kumamoto (Japan)

    2008-03-15

    We have often encountered high signal intensity (SI) of the cingulate gyrus and insula during diffusion-weighted magnetic resonance imaging (DW-MRI) on neurologically healthy adults. To date, cortical signal heterogeneity on DW images has not been investigated systematically. The purpose of our study was to determine whether there is regional signal variation in the brain cortices of neurologically healthy adults on DW-MR images. The SI of the cerebral cortices on DW-MR images at 1.5 T was evaluated in 50 neurologically healthy subjects (34 men, 16 women; age range 33-84 years; mean age 57.6 years). The cortical SI in the cingulate gyrus, insula, and temporal, occipital, and parietal lobes was graded relative to the SI of the frontal lobe. Contrast-to-noise ratios (CNRs) on DW-MR images were compared for each cortical area. Diffusion changes were analyzed by visually assessment of the differences in appearance among the cortices on apparent diffusion coefficient (ADC) maps. Increased SI was frequently seen in the cingulate gyrus and insula regardless of patient age. There were no significant gender- or laterality-related differences. The CNR was significantly higher in the cingulate gyrus and insula than in the other cortices (p <.01), and significant differences existed among the cortical regions (p <.001). There were no apparent ADC differences among the cortices on ADC maps. Regional signal variation of the brain cortices was observed on DW-MR images of healthy subjects, and the cingulate gyrus and insula frequently manifested high SI. These findings may help in the recognition of cortical signal abnormalities as visualized on DW-MR images. (orig.)

  10. Human cerebral cortices: signal variation on diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Asao, Chiaki; Hirai, Toshinori; Yamashita, Yasuyuki; Yoshimatsu, Shunji; Matsukawa, Tetsuya; Imuta, Masanori; Sagara, Katsuro

    2008-01-01

    We have often encountered high signal intensity (SI) of the cingulate gyrus and insula during diffusion-weighted magnetic resonance imaging (DW-MRI) on neurologically healthy adults. To date, cortical signal heterogeneity on DW images has not been investigated systematically. The purpose of our study was to determine whether there is regional signal variation in the brain cortices of neurologically healthy adults on DW-MR images. The SI of the cerebral cortices on DW-MR images at 1.5 T was evaluated in 50 neurologically healthy subjects (34 men, 16 women; age range 33-84 years; mean age 57.6 years). The cortical SI in the cingulate gyrus, insula, and temporal, occipital, and parietal lobes was graded relative to the SI of the frontal lobe. Contrast-to-noise ratios (CNRs) on DW-MR images were compared for each cortical area. Diffusion changes were analyzed by visually assessment of the differences in appearance among the cortices on apparent diffusion coefficient (ADC) maps. Increased SI was frequently seen in the cingulate gyrus and insula regardless of patient age. There were no significant gender- or laterality-related differences. The CNR was significantly higher in the cingulate gyrus and insula than in the other cortices (p <.01), and significant differences existed among the cortical regions (p <.001). There were no apparent ADC differences among the cortices on ADC maps. Regional signal variation of the brain cortices was observed on DW-MR images of healthy subjects, and the cingulate gyrus and insula frequently manifested high SI. These findings may help in the recognition of cortical signal abnormalities as visualized on DW-MR images. (orig.)

  11. Diffusion-Weighted Magnetic Resonance Imaging as a Cancer Biomarker: Consensus and Recommendations

    Directory of Open Access Journals (Sweden)

    Anwar R. Padhani

    2009-02-01

    Full Text Available On May 3, 2008, a National Cancer Institute (NCI-sponsored open consensus conference was held in Toronto, Ontario, Canada, during the 2008 International Society for Magnetic Resonance in Medicine Meeting. Approximately 100 experts and stakeholders summarized the current understanding of diffusion-weighted magnetic resonance imaging (DW-MRI and reached consensus on the use of DW-MRI as a cancer imaging biomarker. DW-MRI should be tested as an imaging biomarker in the context of well-defined clinical trials, by adding DW-MRI to existing NCI-sponsored trials, particularly those with tissue sampling or survival indicators. Where possible, DW-MRI measurements should be compared with histologic indices including cellularity and tissue response. There is a need for tissue equivalent diffusivity phantoms; meanwhile, simple fluid-filled phantoms should be used. Monoexponential assessments of apparent diffusion coefficient values should use two b values (> 100 and between 500 and 1000 mm2/sec depending on the application. Free breathing with multiple acquisitions is superior to complex gating techniques. Baseline patient reproducibility studies should be part of study designs. Both region of interest and histogram analysis of apparent diffusion coefficient measurements should be obtained. Standards for measurement, analysis, and display are needed. Annotated data from validation studies (along with outcome measures should be made publicly available. Magnetic resonance imaging vendors should be engaged in this process. The NCI should establish a task force of experts (physicists, radiologists, and oncologists to plan, organize technical aspects, and conduct pilot trials. The American College of Radiology Imaging Network infrastructure may be suitable for these purposes. There is an extraordinary opportunity for DW-MRI to evolve into a clinically valuable imaging tool, potentially important for drug development.

  12. High b-value diffusion-weighted MR imaging of normal brain at 3 T

    International Nuclear Information System (INIS)

    Cihangiroglu, Mutlu; Ulug, Aziz Muefit; Firat, Zeynep; Bayram, Ali; Kovanlikaya, Arzu; Kovanlikaya, Ilhami

    2009-01-01

    Introduction: The purpose of this study was to determine the normative apparent diffusion coefficient (ADC) values at 3 T using high b-value (3000 s/mm 2 ) diffusion-weighted images (DWI) and compare the signal characteristics of the high b value with standard b-value (1000 s/mm 2 ) DWI. Methods: Institutional review board approval was obtained for this prospective study which included 20 volunteers (10 M, 10 F, mean age: 38.7 ± 14.9) without any known clinical disease or radiological findings. All brain examinations were performed with 3 T MR by using similar parameters of b1000 and b3000 DWI sequences. DWI and ADC maps were obtained. Signal intensity, noise, signal to noise ratio (SNR), contrast to noise (CNR), contrast ratio (CR), and ADC values of bilateral posterior limb of internal capsule, frontal white matter, parietal gray matter, pons, thalamus, splenium of corpus callosum were measured on b1000 and b3000 DW images. Results: In all anatomic locations, MR signal intensity, SNR and ADC values of b3000 images were significantly lower than MR signal intensity, SNR and ADC values of b1000 images (p < 0.001). The CNR and CR values at the posterior limb of internal capsule and pons were significantly increased on b3000 images (p < 0.001) and decreased in the other regions measured. Conclusion: The ADC values calculated from standard b-value DWI were significantly higher than those calculated from high b-value DWI. These results agree with the previous studies. In the regions where CNR values increase with high b value, b3000 DWI images may provide additional clinical information.

  13. Diffusion-weighted magnetic resonance imaging of the abdomen; Diffusionsgewichtete Magnetresonanztomographie des Abdomens

    Energy Technology Data Exchange (ETDEWEB)

    Schmid-Tannwald, C.; Reiser, M.F.; Zech, C.J. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Campus Grosshadern, Institut fuer Klinische Radiologie, Muenchen (Germany)

    2011-03-15

    Diffusion-weighted magnetic resonance imaging (DW-MRI) provides qualitative and quantitative information of tissue cellularity and the integrity of cellular membranes. Since DW-MRI can be performed without ionizing radiation exposure and contrast media application, DW-MRI is a particularly attractive tool for patients with allergies for gadolinium-based contrast agents or renal failure. Recent technical developments have made DW-MRI a robust and feasible technique for abdominal imaging. DW-MRI provides information on the detection and characterization of focal liver lesions and can also visualize treatment effects and early changes in chronic liver disease. In addition DW-MRI is a promising tool for the detection of inflammatory changes in patients with Crohn's disease. (orig.) [German] Die diffusionsgewichtete (DW-)MRT ermoeglicht die Erfassung qualitativer und quantitativer Informationen bzgl. der Gewebezellularitaet und Membranintegritaet. Die DW-MRT ist insbesondere bei Patienten mit einer Allergie gegen gadoliniumhaltige Kontrastmittel oder eingeschraenkter Nierenfunktion attraktiv, da ihr Einsatz nicht mit Strahlenexposition oder Kontrastmittelgabe verbunden ist. Durch technische Weiterentwicklungen ist die robuste Anwendung der DW-MRI in der Bildgebung des Abdomens seit einiger Zeit moeglich geworden. In der Leberdiagnostik lassen sich Zusatzinformationen zur Detektion und Charakterisierung von Leberlaesionen gewinnen, aber auch Therapieerfolge dokumentieren und fruehe chronische Leberveraenderungen visualisieren. Neben ihrer Rolle bei hepatologischen und onkologischen Fragestellungen erscheint der Einsatz der DW-MRT zudem bei entzuendlichen Fragestellungen wie dem Morbus Crohn sehr viel versprechend. (orig.)

  14. A semi-quantitative study of transient ischemic attacks by diffusion weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wen Feng; Guo Liang

    2007-01-01

    Objective: To explore the incidence and morphological findings of transient ischemic attacks (TIA) related-focus by diffusion weighted magnetic resonance imaging(DWI), and the semi-quantitative characteristics of TIA related-focus on DWI manifestation were researched. Methods: A prospective analysis was performed on 39 TIA patients who were admitted to the Pudong New Area People Hospital and who had also undergone DWI scan 3 , and rADC ratio of the lesion was (-25.8 ± 9.01)%, and rAI ratio was(59.9 ± 12.9)% and compared with that of the contralateral side there was significant difference. Conclusion: The incidence of positivity rate of DWI is more than that obtained by conventional MR imaging. The related focus of TIA are very small and the ADC value of the lesion is decreased slightly, but averge intensity is increased highly. These data may be of value in identifying those TIA patients for whom MRI evaluation with DWI is of great clinical utility. (authors)

  15. Assessment of patency capsule retention using MR diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Klang, Eyal; Rozendorn, Noa; Amitai, Michal Marianne [Sheba Medical Center, Department of Diagnostic Imaging, Ramat Gan (Israel); Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv (Israel); Kopylov, Uri; Ben-Horin, Shomron; Lahat, Adi; Yablecovitch, Doron; Eliakim, Rami [Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv (Israel); Sheba Medical Center, Department of Gastroenterology, Ramat Gan (Israel)

    2017-12-15

    Evaluate the ability of MR diffusion-weighted imaging (DWI) to predict patency capsule retention in Crohn's disease (CD). Clinical and imaging data were prospectively reviewed for 80 CD patients following patency capsule administration and MR-DWI under institutional review board (IRB) approval with informed consent. Two radiologists separately assessed the presence/absence of restricted diffusion in the distal ileum. Apparent diffusion coefficients (ADC) from three regions of interest on the ileal wall were averaged. The association between restricted diffusion and retention, and sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated. Ability of ADC to predict retention was assessed with receiver operating characteristic (ROC) curve analysis. Restricted diffusion in the distal ileum was associated with capsule retention (p = 0.001, p < 0.0001). Sensitivity, specificity, PPV and NPV of restricted diffusion for capsule retention were 100.0%, 46.2%, 30.0%, 100% and 100.0%, 56.9%, 34.9%, 100%, respectively, for two radiologists. Accuracy of ADC to predict retention was high (area under the curve = 0.851, p < 0.0001). An ADC of 1.47 mm{sup 2}/s showed 90.0% sensitivity and 50.0% specificity for retention. Sensitivity and NPV of restricted diffusion for patency capsule retention were 100%, suggesting that DWI may predict gastrointestinal tract capability to pass video camera endoscopy. (orig.)

  16. Comparisons of carotid artery stenting and carotid endoarterectomy in terms of diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Mitsuoka, Hiroshi; Shintani, Tsunehiro; Masuda, Mikio; Higashi, Shigeki

    2009-01-01

    The objective of this study was to compare two methods of treatment for carotid arterial stenosis, carotid endarterectomy (CEA) and carotid artery stenting (CAS), by means of diffusion-weighted MR imaging (DWI). Nineteen treatments in 18 cases during the 2007 academic year were included in this study. CAS was performed for 9 cases with 10 lesions (10 procedures), while 9 cases with 9 lesions (9 procedures) were treated by CEA. Patients were examined by a neurologist before and after the procedure, and had pre- and post-procedural DWI. No strokes or transient ischemic attacks (TIAs) were observed in these cases. New DWI lesions were found in 7 out of the 10 procedures of CAS imaged 24 hours postprocedure, (average: 2.0 lesions). No new lesions were detected on DWI of CEA cases (χ 2 =8.33, p=0.0039). Certain high-risk subsets may respond well to CAS with a very low incidence of clinically-evident neurologic events, but with significantly higher incidence of periprocedural micro-brain embolism. Currently, CEA should be the first choice of treatment for atherosclerotic carotid artery stenosis. (author)

  17. The research on distinguishing benign from malignant breast lesions by diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Zhao Bin; Peng Hongjuan; Cai Shifeng; Gao Peihong

    2005-01-01

    Objective: To investigate the value of apparent diffusion coefficient (ADC) of diffusion- weighted magnetic resonance imaging (DW-MRI) in distinguishing benign from malignant breast lesions. Methods: ADC in 26 normal breasts, 24 malignant breast lesions, and 30 benign breast lesions confirmed by operation and pathology were calculated, respectively, and their differentiations in statistics were compared. The differentiations of different ADCs (b=1000-0, 500-0, 1000-500 s/mm 2 ) were also compared. EPI (TR 2900 ms, TE 84 ms, thickness 5 mm) was used in order to acquire the imaging. Results: There were significant differences among the ADC values of normal breast tissue, benign, and malignant lesions. The ADC of malignant lesions was lower than those of normal breast tissue and benign lesions, and the ADC of benign lesions was lower than that of normal breast tissue. There were significant differences among the ADC value of b=1000-0, 1000-500, and 500-0 s/mm 2 . The lower the b value, the higher the ADC. The sensitivity and specificity of ADC for the diagnosis of malignant lesion were 64% and 96.7% if the upper bound of 95% confidence interval was set as a differential level. Conclusion: The differentiation of benign from malignant breast lesions by ADC is applicable, although the sensitivity is low, the specificity is high. (authors)

  18. Diagnostic value of MR diffusion weighted imaging in prostate cancer of central glands

    International Nuclear Information System (INIS)

    Xiao Lihua; Zheng Xiaolin; He Qiang; Luo Daosheng; Zhang Kunlin; Zou Yujian

    2010-01-01

    Objective: To discuss the diagnostic value of diffusion weighted imaging (DWI) in prostate cancer of central glands (CGPca) and differentiate from benign hyperlasia (BHP). Methods: All patients included 15 cases of prostate cancer of central glands and 20 cases of benign prostatic hyperplasia. DWI were obtained with factor b of 800 s/mm 2 . DWI and ADC map appearances were reviewed in all patients. ADC values of CGPca and PBH tissues were measured and analysed statistically. Results: All of 15 CGPca cases showed markedly markedly high-signal on DWI and low-signal on ADC map, both could clearly demonstrate the area of CGPca. But 6 cases were misdiagnosed as PBH by conventional imaging because of the tumors limited to central glands. The mean ADG values of CGPca cases and BPH cases were (0.93±0.13) x 10 -3 mm 2 /s and (11.53±0.12) x 10 -3 mm 2 /s respectively. There were significant differences in CGPca and BPH. Conclusion: It has an important clinical value in diagnosing prostate cancer of central glands and differentiating from BHP with DWI and ADC values. (authors)

  19. Intravoxel Incoherent Motion Diffusion-weighted Imaging: Evaluation of the Differentiation of Solid Hepatic Lesions

    Directory of Open Access Journals (Sweden)

    Ma Luo

    2017-10-01

    Full Text Available PURPOSE: To evaluate whether intravoxel incoherent motion (IVIM–related parameters could be used to differentiate malignant from benign focal liver lesions (FLLs and to improve diagnostic efficiency. METHODS: Seventy-four patients with 75 lesions, including 51 malignant FLLs and 24 benign FLLs, underwent liver 3.0-T magnetic resonance imaging for routine examination sequences. IVIM diffusion-weighted imaging (DWI with 11 b values (0-800 s/mm2 was also acquired concurrently. Apparent diffusion coefficient (ADCtotal and IVIM-derived parameters, such as the pure diffusion coefficient (D, the pseudodiffusion coefficient (D⁎, and the perfusion fraction (f, were calculated and compared between the two groups. A receiver operating characteristic curve analysis was performed to assess their diagnostic value. RESULTS: ADCtotal, D, and f were significantly lower in the malignant group than in the benign group, whereas D⁎ did not show a statistical difference. D had a larger area under the curve value (0.968 and higher sensitivity (92.30% for differentiation. CONCLUSION: IVIM is a useful method to differentiate malignant and benign FLLs. The D value showed higher efficacy to detect hepatic solid lesions.

  20. False-negative diffusion-weighted imaging findings in acute stroke

    International Nuclear Information System (INIS)

    Ishikawa, Tatsuya; Yuasa, Naoki; Otomo, Takashi; Shiramizu, Hideki; Matsuda, Hiroshi; Kitagawa, Yasuhisa; Takagi, Shigeharu

    2006-01-01

    The utility of DWI (diffusion-weighted imaging) has been established in acute ischemic stroke. However, some patients with acute stroke show no abnormal signals on DWI, despite the presence of infarction (false-negative DWI). We analyzed the relationship between false-negative DWI and the clinical manifestations of acute ischemic stroke in 151 DWI-positive (89%) and 19 false-negative DWI (11%) patients. We performed MRI within 24 hours after onset at our hospital. Non-specific clinical manifestations, including vertigo and nausea, were frequently observed in false-negative DWI patients. As regards the vascular territory, false-negative DWI was noted in 15.3% of 59 patients with infarctions within the territory of the vertebrobasilar artery. Concerning the duration from onset to initial imaging, 73.7% of the patients with false-negative DWI findings underwent MRI examination within 6 hours after onset. Of the patients with false-negative DWI, 84.2% had lacunar infarction (χ 2 =16.4, P<0.001). In conclusion, false negative DWI is more frequently observed in lacunar infarction than in atherothrombotic infarction or cardiogenic embolism. It is important to examine carefully the neurological changes occurring in patients who present with acute stroke, but have negative DWI findings. (author)

  1. Value of diffusion-weighted MR imaging in the diagnosis of Creutzfeldt-Jakob disease

    International Nuclear Information System (INIS)

    Xu Quangang; Wu Weiping; Huang Dehui; Zhang Jiatang; Lang Senyang; Pu Chuanqiang

    2005-01-01

    Objective: To assess the diagnosis value of diffusion- weighted imaging (DWI) in Creutzfeldt-Jakob disease (CJD). Methods: 8 cases of sporadic CJD who underwent MRI were reported. 4 cases were definite, 3 cases were probable and 1 case was possible. The sensitivity of DWI and conventional MRI were compared. Results: T 1 WI and T 2 WI revealed no abnormal signals except nonspecific diffuse brain atrophy in 4 cases, whereas DWI detected hyperintense abnormalities in all cases. 2 cases showed linear lesions only in the cerebral cortex, and 6 cases showed lesions in both the cerebral cortex and the striatum. The lesions were symmetric in 5 cases, but were asymmetric in the other 3 cases. Although fluid- attenuated inversion recovery (FLAIR) imaging also showed cortical hyperintensity in 1 case, the high signal changes were more evident and extensive on DWI. Conclusions: The hyperintense changes in the cerebral cortices and/or striata on DWI are considered characteristic of CJD. DWI is more sensitive than conventional MRI in depicting lesions of CJD and may be an essential tool for the early diagnosis of this disease. (authors)

  2. Assessment of patency capsule retention using MR diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Klang, Eyal; Rozendorn, Noa; Amitai, Michal Marianne; Kopylov, Uri; Ben-Horin, Shomron; Lahat, Adi; Yablecovitch, Doron; Eliakim, Rami

    2017-01-01

    Evaluate the ability of MR diffusion-weighted imaging (DWI) to predict patency capsule retention in Crohn's disease (CD). Clinical and imaging data were prospectively reviewed for 80 CD patients following patency capsule administration and MR-DWI under institutional review board (IRB) approval with informed consent. Two radiologists separately assessed the presence/absence of restricted diffusion in the distal ileum. Apparent diffusion coefficients (ADC) from three regions of interest on the ileal wall were averaged. The association between restricted diffusion and retention, and sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated. Ability of ADC to predict retention was assessed with receiver operating characteristic (ROC) curve analysis. Restricted diffusion in the distal ileum was associated with capsule retention (p = 0.001, p < 0.0001). Sensitivity, specificity, PPV and NPV of restricted diffusion for capsule retention were 100.0%, 46.2%, 30.0%, 100% and 100.0%, 56.9%, 34.9%, 100%, respectively, for two radiologists. Accuracy of ADC to predict retention was high (area under the curve = 0.851, p < 0.0001). An ADC of 1.47 mm 2 /s showed 90.0% sensitivity and 50.0% specificity for retention. Sensitivity and NPV of restricted diffusion for patency capsule retention were 100%, suggesting that DWI may predict gastrointestinal tract capability to pass video camera endoscopy. (orig.)

  3. MR diffusion weighted imaging experimental study on early stages of articular cartilage degeneration of knee

    International Nuclear Information System (INIS)

    Dai Jingru; Dai Shipeng; Pang Jun; Xu Xiaokun; Wang Yuexin; Zhang Zhigang

    2008-01-01

    Objective: To study the appearance of MR diffusion weighted imaging in early stages of cartilage degeneration and to detect its values. Methods: In 20 goat left knees, intra- articular injection of 5 units of papain was performed causing a loss of cartilage proteoglycan. Twenty right knees were used as control group. MR diffusion weighted imaging was performed at 24 hours after intra-articular injection of papain. ADC of each part of articular cartilage was measured and compared with each other. The proteoglycan content was measured biochemically and histochemically. Routine MRI and DWI were performed in 100 patients with osteoarthritis and 20 healthy people. The ADC of each interested part of articular cartilage was measured and compared with each other. Results: In experimental control group, the ADCav of articular cartilage was (14.2±2.3) x 10 -4 mm 2 /s. In early stages of cartilage degeneration group, the ADCav of articular cartilage was (17.5±4.2) x 10 -4 mm 2 /s. The ADCav of the control group was lower than that of the early stages of cartilage degeneration group (t=2.709; P=0.016). The proteloglycan content of articular cartilage was 4.22 x 10 6 μg/kg in control group, and 0.82 x 10 6 μg/kg in experimental group at 24 hours after injection of papain. The difference between control group and experimental group was significant (t=2.705, P=0.018). In healthy people, the ADCav of articular cartilage was (7.6±2.2) x 10 -4 mm 2 /s. In osteoarthritis group, the ADCav of articular cartilage was (10.3±4.2) x 10 -4 mm 2 /s. The ADCav in the healthy group was significantly lower than that in the osteoarthritis group (t=2.609,P=0.014). Conclusion: DWI is an useful method in detecting early stages of cartilage degeneration which can not be showed on routine sequences. (authors)

  4. Transient Splenial Lesion of Corpus Callosum Associated with Antiepileptic Drug: Conventional and Diffusion-weighted Magnetic Resonance Images

    Energy Technology Data Exchange (ETDEWEB)

    Hakyemez, B.; Erdogan, C.; Yildirim, N.; Gokalp, G.; Parlak, M. [Uludag Univ. Medical School, Bursa (Turkey). Dept. of Radiology

    2005-11-01

    Transient focal lesions of splenium of corpus callosum can be seen as a component of many central nervous system diseases, including antiepileptic drug toxicity. The conventional magnetic resonance (MR) findings of the disease are characteristic and include ovoid lesions with high signal intensity at T2-weighted MRI. Limited information exists about the diffusion-weighted MRI characteristics of these lesions vanishing completely after a period of time. We examined the conventional, FLAIR, and diffusion-weighted MR images of a patient complaining of depressive mood and anxiety disorder after 1 year receiving antiepileptic medication.

  5. Diffusion-weighted MR imaging in benign and malignant orbital masses

    International Nuclear Information System (INIS)

    Guo Jian; Wang Zhenchang; Xian Junfang; Niu Yantao; Zhao Bo; Yan Fei; Liu Zhonglin; Yang Bentao

    2007-01-01

    Objective: To analyse the characteristics of orbital benign and malignant masses on diffusion weighted imaging in combination with conventional MR imaging and evaluate the diagnostic value of apparent diffusion coefficient in distinguishing benign and malignant orbital lesions. Methods: Seventy- seven cases with orbital masses, including fifty-five benign lesions and twenty-two malignant tumors, who underwent conventional MRI and diffusion imaging scanning were studied with use of a 1.5 T magnetic resonance system. Quantitative ADC measurements of masses (ADCM) and of the white matter of contralateral temporal lobe (ADC w ) were made with two different b-values of 0 and 1000 s/mm 2 . The ADC ratio (ADCR) of the lesion to the control was calculated. The receiver operating characteristic curves(ROC) were constructed using various cut points of ADCM and ADCR for different parameters to differentiate between benign and malignant masses. The area under the ROC curve for each parameter was also calculated. Results: All cases were proved by histopathology. The mean ADCM and ADCR of benign orbital masses were (1.56 ± 0.75) x 10 -3 mm 2 /s and 1.85 ± 0.91, respectively. The mean ADCM and ADCR of malignant orbital masses were (1.09 ± 0.42) x 10 -3 mm 2 /s and 1.28 ± 0.53, respectively. There were significant difference both between ADCM and ADCR of benign and malignant masses (t=2.803, 2.735, P -3 mm 2 /s for ADC M of the tumor, the sensitivity, specificity and accuracy were 59.1%, 78.2% and 72.7%, respectively. And by using cut point of 1.24 for ADCR, the sensitivity, specificity and accuracy were 59.1%, 76.4%, 71.4%, respectively. Conclusion: Diffusion MR imaging and ADC value could provide additional information for conventional magnetic resonance imaging in distinguishing benign and malignant orbital masses. (authors)

  6. Respiratory syncytial virus-related encephalitis: magnetic resonance imaging findings with diffusion-weighted study

    International Nuclear Information System (INIS)

    Park, Arim; Suh, Sang-il; Seol, Hae-Young; Son, Gyu-Ri; Lee, Nam-Joon; Lee, Young Hen; Seo, Hyung Suk; Eun, Baik-Lin

    2014-01-01

    Respiratory syncytial virus (RSV) is a common pathogen causing acute respiratory infection in children. Herein, we describe the incidence and clinical and magnetic resonance imaging (MRI) findings of RSV-related encephalitis, a major neurological complication of RSV infection. We retrospectively reviewed the medical records and imaging findings of the patients over the past 7 years who are admitted to our medical center and are tested positive for RSV-RNA by reverse transcriptase PCR. In total, 3,856 patients were diagnosed with RSV bronchiolitis, and 28 of them underwent brain MRI for the evaluation of neurologic symptoms; 8 of these 28 patients had positive imaging findings. Five of these 8 patients were excluded because of non-RSV-related pathologies, such as subdural hemorrhage, brain volume loss due to status epilepticus, periventricular leukomalacia, preexisting ventriculomegaly, and hypoxic brain injury. The incidence of RSV-related encephalitis was as follows: 3/3,856 (0.08 %) of the patients are positive for RSV RNA, 3/28 (10.7 %) of the patient underwent brain MRI for neurological symptom, and 3/8 (37.5 %) of patients revealed abnormal MR findings. The imaging findings were suggestive of patterns of rhombenmesencephalitis, encephalitis with acute disseminated encephalomyelitis, and limbic encephalitis. They demonstrated no diffusion abnormality on diffusion-weighted image and symptom improvement on the follow-up study. Encephalitis with RSV bronchiolitis occurs rarely. However, on brain MRI performed upon suspicion of neurologic involvement, RSV encephalitis is not infrequently observed among the abnormal MR findings and may mimic other viral and limbic encephalitis. Physicians should be aware of this entity to ensure proper diagnosis and neurologic care of RSV-positive patients. (orig.)

  7. Respiratory syncytial virus-related encephalitis: magnetic resonance imaging findings with diffusion-weighted study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Arim; Suh, Sang-il; Seol, Hae-Young [Korea University College of Medicine, Department of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Son, Gyu-Ri; Lee, Nam-Joon [Korea University College of Medicine, Department of Radiology, Korea University Anam Hospital, Seoul (Korea, Republic of); Lee, Young Hen; Seo, Hyung Suk [Korea University College of Medicine, Department of Radiology, Korea University Ansan Hospital, Gyeonggi-do (Korea, Republic of); Eun, Baik-Lin [Korea University College of Medicine, Department of Pediatrics, Korea University Guro Hospital, Seoul (Korea, Republic of)

    2014-02-15

    Respiratory syncytial virus (RSV) is a common pathogen causing acute respiratory infection in children. Herein, we describe the incidence and clinical and magnetic resonance imaging (MRI) findings of RSV-related encephalitis, a major neurological complication of RSV infection. We retrospectively reviewed the medical records and imaging findings of the patients over the past 7 years who are admitted to our medical center and are tested positive for RSV-RNA by reverse transcriptase PCR. In total, 3,856 patients were diagnosed with RSV bronchiolitis, and 28 of them underwent brain MRI for the evaluation of neurologic symptoms; 8 of these 28 patients had positive imaging findings. Five of these 8 patients were excluded because of non-RSV-related pathologies, such as subdural hemorrhage, brain volume loss due to status epilepticus, periventricular leukomalacia, preexisting ventriculomegaly, and hypoxic brain injury. The incidence of RSV-related encephalitis was as follows: 3/3,856 (0.08 %) of the patients are positive for RSV RNA, 3/28 (10.7 %) of the patient underwent brain MRI for neurological symptom, and 3/8 (37.5 %) of patients revealed abnormal MR findings. The imaging findings were suggestive of patterns of rhombenmesencephalitis, encephalitis with acute disseminated encephalomyelitis, and limbic encephalitis. They demonstrated no diffusion abnormality on diffusion-weighted image and symptom improvement on the follow-up study. Encephalitis with RSV bronchiolitis occurs rarely. However, on brain MRI performed upon suspicion of neurologic involvement, RSV encephalitis is not infrequently observed among the abnormal MR findings and may mimic other viral and limbic encephalitis. Physicians should be aware of this entity to ensure proper diagnosis and neurologic care of RSV-positive patients. (orig.)

  8. Medulloblastoma: correlation among findings of conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fonte, Mariana Vieira de Melo da; Otaduy, Maria Concepcion Garcia; Lucato, Leandro Tavares; Reed, Umbertina Conti; Leite, Claudia da Costa [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Inst. de Radiologia]. E-mail: mvmfonte@uol.com.br; Costa, Maria Olivia Rodrigues; Amaral, Raquel Portugal Guimaraes [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Radiologia; Reed, Umbertina Conti [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Neurologia; Rosemberg, Sergio [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Dept. de Patologia

    2008-11-15

    To correlate imaging findings of medulloblastomas at conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy, comparing them with data in the literature. Preoperative magnetic resonance imaging studies of nine pediatric patients with histologically confirmed medulloblastomas (eight desmoplastic medulloblastoma, and one giant cell medulloblastoma) were retrospectively reviewed, considering demographics as well as tumors characteristics such as localization, morphology, signal intensity, contrast-enhancement, dissemination, and diffusion-weighted imaging and spectroscopy findings. In most of cases the tumors were centered in the cerebellar vermis (77.8%), predominantly solid (88.9%), hypointense on T 1-weighted images and intermediate/hyperintense on T 2-FLAIR-weighted images, with heterogeneous enhancement (100%), tumor dissemination/extension (77.8%) and limited water molecule mobility (100%). Proton spectroscopy acquired with STEAM technique (n = 6) demonstrated decreased Na a / Cr ratio (83.3%) and increased Co/Cr (100%) and ml/Cr (66.7%) ratios; and with PRESS technique (n = 7) demonstrated lactate peak (57.1%). Macroscopic magnetic resonance imaging findings in association with biochemical features of medulloblastomas have been useful in the differentiation among the most frequent posterior fossa tumors. (author)

  9. Medulloblastoma: correlation among findings of conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Fonte, Mariana Vieira de Melo da; Otaduy, Maria Concepcion Garcia; Lucato, Leandro Tavares; Reed, Umbertina Conti; Leite, Claudia da Costa; Costa, Maria Olivia Rodrigues; Amaral, Raquel Portugal Guimaraes; Reed, Umbertina Conti; Rosemberg, Sergio

    2008-01-01

    To correlate imaging findings of medulloblastomas at conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy, comparing them with data in the literature. Preoperative magnetic resonance imaging studies of nine pediatric patients with histologically confirmed medulloblastomas (eight desmoplastic medulloblastoma, and one giant cell medulloblastoma) were retrospectively reviewed, considering demographics as well as tumors characteristics such as localization, morphology, signal intensity, contrast-enhancement, dissemination, and diffusion-weighted imaging and spectroscopy findings. In most of cases the tumors were centered in the cerebellar vermis (77.8%), predominantly solid (88.9%), hypointense on T 1-weighted images and intermediate/hyperintense on T 2-FLAIR-weighted images, with heterogeneous enhancement (100%), tumor dissemination/extension (77.8%) and limited water molecule mobility (100%). Proton spectroscopy acquired with STEAM technique (n = 6) demonstrated decreased Na a / Cr ratio (83.3%) and increased Co/Cr (100%) and ml/Cr (66.7%) ratios; and with PRESS technique (n = 7) demonstrated lactate peak (57.1%). Macroscopic magnetic resonance imaging findings in association with biochemical features of medulloblastomas have been useful in the differentiation among the most frequent posterior fossa tumors. (author)

  10. Diffusion-weighted magnetic resonance imaging in the prostate transition zone: histopathological validation using magnetic resonance-guided biopsy specimens

    NARCIS (Netherlands)

    Hoeks, C.M.A.; Vos, E.K.; Bomers, J.G.R.; Barentsz, J.O.; Kaa, C.A. van de; Scheenen, T.W.J.

    2013-01-01

    OBJECTIVES: The objective of this study was to evaluate the apparent diffusion coefficient (ADC) of diffusion-weighted magnetic resonance (MR) imaging for the differentiation of transition zone cancer from non-cancerous transition zone with and without prostatitis and for the differentiation of

  11. Assessment of the link between quantitative biexponential diffusion-weighted imaging and contrast-enhanced MRI in the liver

    NARCIS (Netherlands)

    Dijkstra, Hildebrand; Oudkerk, Matthijs; Kappert, Peter; Sijens, Paul E.

    Purpose: To investigate if intravoxel incoherent motion (IVIM) modeled diffusion-weighted imaging (DWI) can be linked to contrast-enhanced (CE-)MRI in liver parenchyma and liver lesions. Methods: Twenty-five patients underwent IVIM-DWI followed by multiphase CE-MRI using Gd-EOB-DTPA (n = 20) or

  12. Diffusion-weighted imaging in the diagnosis of enterovirus 71 encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Zhou-yang; Huang, Biao; Liang, Chang-hong (Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong (China)), Email: cjr.huangbiao@vip.163.com; He, Shaoru; Guo, Yuxiong (Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong (China))

    2012-03-15

    Background. In the early phase of viral encephalitis, conventional MRI may appear normal. Diffusion-weighted imaging (DWI) is a sensitive tool for detecting early changes in cellular function in the central nervous system. Purpose. To investigate the usefulness of DWI in the diagnosis of enterovirus 71 (EV71) encephalitis, and to determine whether DWI is superior to conventional MR sequences. Material and Methods. MRI scans in 26 patients were retrospectively evaluated for distribution of lesions on T1-weighted images (T1WI), T2-weighted images (T2WI), fluid-attenuated inversion recovery (FLAIR), and DWI. Contrast-to-noise ratios (CNRs) were calculated for all regions on each sequence and differences in the four MRI sequences were assessed using CNRs. Apparent diffusion coefficient (ADC) values were measured for all regions to look for true restriction of diffusion. Results. Fifteen out of 26 cases showed positive findings on MR imaging. The brain stem was involved in 11 patients, cortex and subcortical white matter in four patients. DWI was more sensitive in detecting the abnormalities (89.7%) compared to T2WI (48.7%), FLAIR (41.0%), and T1WI (35.9%), and the positive ratio of DWI was significantly higher compared to other sequences. Furthermore, no significant difference was found between T2WI and FLAIR (P 0.649). The corresponding mean CNRs were 8.73 +- 2.57, 83.59 +- 29.28, 24.22 +- 6.22, and 132.27 +- 78.32 on T1WI, T2WI, FLAIR, and DWI, respectively. The absolute values of CNRs of lesions on DWI were significantly greater than those on other sequences. Conclusion. DWI appears to be more sensitive in detecting EV71 encephalitis than conventional MRI sequences. This capability may improve the accuracy in diagnosing EV71 encephalitis, especially at the early stage

  13. Diffusion-weighted imaging in the diagnosis of enterovirus 71 encephalitis

    International Nuclear Information System (INIS)

    Lian, Zhou-yang; Huang, Biao; Liang, Chang-hong; He, Shaoru; Guo, Yuxiong

    2012-01-01

    Background. In the early phase of viral encephalitis, conventional MRI may appear normal. Diffusion-weighted imaging (DWI) is a sensitive tool for detecting early changes in cellular function in the central nervous system. Purpose. To investigate the usefulness of DWI in the diagnosis of enterovirus 71 (EV71) encephalitis, and to determine whether DWI is superior to conventional MR sequences. Material and Methods. MRI scans in 26 patients were retrospectively evaluated for distribution of lesions on T1-weighted images (T1WI), T2-weighted images (T2WI), fluid-attenuated inversion recovery (FLAIR), and DWI. Contrast-to-noise ratios (CNRs) were calculated for all regions on each sequence and differences in the four MRI sequences were assessed using CNRs. Apparent diffusion coefficient (ADC) values were measured for all regions to look for true restriction of diffusion. Results. Fifteen out of 26 cases showed positive findings on MR imaging. The brain stem was involved in 11 patients, cortex and subcortical white matter in four patients. DWI was more sensitive in detecting the abnormalities (89.7%) compared to T2WI (48.7%), FLAIR (41.0%), and T1WI (35.9%), and the positive ratio of DWI was significantly higher compared to other sequences. Furthermore, no significant difference was found between T2WI and FLAIR (P 0.649). The corresponding mean CNRs were 8.73 ± 2.57, 83.59 ± 29.28, 24.22 ± 6.22, and 132.27 ± 78.32 on T1WI, T2WI, FLAIR, and DWI, respectively. The absolute values of CNRs of lesions on DWI were significantly greater than those on other sequences. Conclusion. DWI appears to be more sensitive in detecting EV71 encephalitis than conventional MRI sequences. This capability may improve the accuracy in diagnosing EV71 encephalitis, especially at the early stage

  14. The role of diffusion-weighted magnetic resonance imaging in the classification of hepatic hydatid cysts

    Energy Technology Data Exchange (ETDEWEB)

    Çeçe, Hasan, E-mail: hasan_cece@yahoo.com [Harran University, Faculty of Medicine, Department of Radiology, 63300 Şanlıurfa (Turkey); Gündoğan, Mehmet, E-mail: drgundogan@hotmail.com [Harran University, Faculty of Medicine, Department of Radiology, 63300 Şanlıurfa (Turkey); Karakaş, Ömer, E-mail: dromerkarakas@hotmail.com [Harran University, Faculty of Medicine, Department of Radiology, 63300 Şanlıurfa (Turkey); Karakaş, Ekrem, E-mail: karakasekrem@yahoo.com [Harran University, Faculty of Medicine, Department of Radiology, 63300 Şanlıurfa (Turkey); Boyacı, Fatıma Nurefşan, E-mail: drnurefsan@yahoo.com [Harran University, Faculty of Medicine, Department of Radiology, 63300 Şanlıurfa (Turkey); Yıldız, Sema, E-mail: drsemayildiz@yahoo.com [Harran University, Faculty of Medicine, Department of Radiology, 63300 Şanlıurfa (Turkey); Özgönül, Abdullah, E-mail: drozgonul@yahoo.com.tr [Harran University, Faculty of Medicine, Department of General Surgery, Şanlıurfa (Turkey); Karakaş, Emel Yiğit, E-mail: e.ygtkarakas@yahoo.com.tr [Şanlıurfa Training and Research Hospital, Department of Internal Medicine, Şanlıurfa (Turkey); and others

    2013-01-15

    The aim of the study was to classify different types of hepatic hydatid cysts (HHCs) by measuring the mean apparent diffusion coefficient (ADC) using diffusion-weighted magnetic resonance imaging (DWI). This prospective study comprised 44 patients. The 44 HHCs were classified using Gharbi ultrasonographic classification (GUC) and then T2WIs and DWIs were obtained. The ADC values were measured of the hydatid cyst (HC) subtypes. The distribution of the ADC values in the cyst groups was compared using the Kruskal–Wallis test for multi groups and the Mann–Whitney U test for paired groups. To evaluate the efficacy of ADC values in cyst diagnosis, receiver operating characteristic (ROC) analysis was performed. According to the GUC, there were 15 type 1, 11 type 2, 7 type 3, 5 type 4 and 6 type 5 HHCs. According to the ADC values in the paired comparisons, while types 1, 2 and 5 HCs were statistically differentiated from all other groups except the type 3 group, the type 4 group was differentiated from all other groups and the type 3 group was only differentiated from the type 4 group. When two groups were formed from the HHC subtypes with types 1, 2, and 3 in one group and types 4 and 5 in the other, a statistically significant difference was determined in the mean ADC values of these new groups. In conclusion the measurement of ADC values can be considered a promising parameter as an alternative to ultrasonography in the determination of subtypes of HHCs.

  15. Clinico-radiological features of subarachnoid hyperintensity on diffusion-weighted images in patients with meningitis

    International Nuclear Information System (INIS)

    Kawaguchi, T.; Sakurai, K.; Hara, M.; Muto, M.; Nakagawa, M.; Tohyama, J.; Oguri, T.; Mitake, S.; Maeda, M.; Matsukawa, N.; Ojika, K.; Shibamoto, Y.

    2012-01-01

    Aim: To investigate the clinical and radiological features of meningitis with subarachnoid diffusion-weighted imaging (DWI) hyperintensity. Materials and methods: The clinical features, laboratory data, and radiological findings, including the number and distribution of subarachnoid DWI hyperintense lesions and other radiological abnormalities, of 18 patients seen at five institutions were evaluated. Results: The patients consisted of eight males and 10 females, whose ages ranged from 4 months to 82 years (median 65 years). Causative organisms were bacteria in 15 patients, including Haemophilus influenzae, Streptococcus pneumoniae, Streptococcus agalactiae, Staphylococcus aureus, Klebsiella pneumoniae, and Listeria monocytogenes. The remaining three were fungal meningitis caused by Cryptococcus neoformans. Subarachnoid DWI hyperintense lesions were multiple in 16 of the 18 cases (89%) and predominantly distributed around the frontal lobe in 16 of the 18 cases (89%). In addition to subarachnoid abnormality, subdural empyema, cerebral infarction, and intraventricular empyema were found in 50, 39, and 39%, respectively. Compared with paediatric patients, adult patients with bacterial meningitis tended to have poor prognoses (7/10 versus 1/5; p = 0.1). Conclusion: Both bacterial and fungal meningitis could cause subarachnoid hyperintensity on DWI, predominantly around the frontal lobe. This finding is often associated with poor prognosis in adult bacterial meningitis.

  16. Bright intracranial lesions on diffusion-weighted images: a pictorial review

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Dae Seob [Gyeongsang National University College of Medicine, Jinju (Korea, Republic of)

    2006-06-15

    Diffusion-weighted imaging (DWI) is a MR sequence that is used to evaluate the rate of microscopic water diffusion within the tissues. The ability to measure the rate of water diffusion is important because this is frequently altered in various disease processes. Generally, the lesions with restricted water diffusion show bright intensity on DWI, but the lesions without restricted water diffusion can also show bright intensity on DWI, which is called the 'T2 shine through effect'. With DWI, we can sensitively detect hyperacute infarction (within 6 hours after symptom onset), and this is difficult to detect with using CT and the conventional MR sequenced. The acute and subacute lesions of hypoxic-ischemic encephalopathy and carbon monoxide intoxication also show bright intensity on the DWI. The other diseases that can show bright intensity on the DWI include acute and subacute diffuse axonal injury lesion, hyperacute and late subacute hematomas, cerebral abscess, subdural empyema, acute herpes encephalitis, various tumors and such degenerative and demyelinating diseases as multiple sclerosis, posterior reversible encephalopathy syndrome, Wilson's disease and Wernicke's encephalopathy.

  17. Comparison of breast cancer detection by diffusion-weighted magnetic resonance imaging and mammography

    International Nuclear Information System (INIS)

    Yoshikawa, Miho I.; Kikuchi, Keiichi; Mochizuki, Teruhito; Ohsumi, Shozo; Sugata, Shigenori; Kataoka, Masaaki; Takashima, Shigemitsu

    2007-01-01

    Breast cancer-detecting ability of diffusion-weighted magnetic resonance imaging (DW-MRI) was investigated by comparing the breast cancer detection rates of DW-MRI and mammography (MMG). The subjects were 48 women who had breast cancer (53 cancer lesions) who underwent DW-MRI before surgery. Altogether, 41 lesions were invasive ductal carcinoma (IDC), 7 were noninvasive ductal carcinoma (NIDC) and 5 were ''others.'' The breast cancer detection rates by MMG and DW-MRI were 84.9% and 94.3% (P -3 , 1.50±0.24 x 10 -3 , 1.12±0.25 x 10 -3 , and 2.01±0.29 x 10 -3 mm 2 /s for IDC, NIDC, others, and normal breast, respectively, showing that the values of IDC and NIDC were significantly different from that of the normal breast (P<0.001 each). A significant difference was also noted between IDC and NIDC (P<0.001). DW-MRI may be useful for detecting breast cancer in a wide age group of women, including young women with dense mammary glands. (author)

  18. Bright intracranial lesions on diffusion-weighted images: a pictorial review

    International Nuclear Information System (INIS)

    Choi, Dae Seob

    2006-01-01

    Diffusion-weighted imaging (DWI) is a MR sequence that is used to evaluate the rate of microscopic water diffusion within the tissues. The ability to measure the rate of water diffusion is important because this is frequently altered in various disease processes. Generally, the lesions with restricted water diffusion show bright intensity on DWI, but the lesions without restricted water diffusion can also show bright intensity on DWI, which is called the 'T2 shine through effect'. With DWI, we can sensitively detect hyperacute infarction (within 6 hours after symptom onset), and this is difficult to detect with using CT and the conventional MR sequenced. The acute and subacute lesions of hypoxic-ischemic encephalopathy and carbon monoxide intoxication also show bright intensity on the DWI. The other diseases that can show bright intensity on the DWI include acute and subacute diffuse axonal injury lesion, hyperacute and late subacute hematomas, cerebral abscess, subdural empyema, acute herpes encephalitis, various tumors and such degenerative and demyelinating diseases as multiple sclerosis, posterior reversible encephalopathy syndrome, Wilson's disease and Wernicke's encephalopathy

  19. Diffusion-weighted magnetic resonance imaging (MRI) in acute brain stem infarction

    International Nuclear Information System (INIS)

    Narisawa, Aya; Shamoto, Hiroshi; Shimizu, Hiroaki; Tominaga, Teiji; Yoshimoto, Takashi

    2001-01-01

    Diffusion-weighted magnetic resonance imaging (DWI) provides one of the earliest demonstrations of ischemic lesions. However some lesions may be missed in the acute stage due to technical limitation of DWI. We therefore conducted the study to clarify the sensitivity of DWI to acute brain stem infarctions. Twenty-eight patients with the final diagnosis of brain stem infarction (midbrain 2, pons 9, medulla oblongata 17) who had been examined by DWI within 24 hours of onset were retrospectively analyzed for how sensitively the initial DWI demonstrated the final ischemic lesion. Only obvious (distinguishable with DWI alone without referring clinical symptoms and other informations) hyperintensity on DWI was regarded to show an ischemic lesion. Sixteen (57.1%) out of 28 patients had brain stem infarctions demonstrated by initial DWI. In the remaining 12 cases, no obvious ischemic lesion was evident on initial DWI. Subsequent MRI studies obtained 127 hours, on average after the onset showed infarction in the medulla oblongate in 11 cases and in the pons in one case. Negative findings of DWI in the acute stage does not exclude possibility of the brain stem infarction, in particularly medulla oblongata infarction. (author)

  20. Diffusion-Weighted Magnetic Resonance Imaging of Cerebrospinal Fluid in Patients with and without Communicating Hydrocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Nasel, C.; Gentzsch, S.; Heimberger, K. [Cerebrovascular Imaging Workgroup of the Div. of Neuroradiology, Dept. of Radiology, Medical Univ. Vienna, Vienna (Austria)

    2007-09-15

    Background: Recent concepts about cerebrospinal fluid (CSF) circulation in communicating hydrocephalus (CoHy), which is also termed 'restricted arterial pulsation hydrocephalus,' suggest reduced arterial pulsations of subarachnoid vessels with a smaller amount of CSF shifted in subarachnoid spaces during the early systole. The postulated restriction of subarachnoid arterial pulsations in CoHy should induce a smaller motion artifact and reduced local stream effects in CSF in magnetic resonance (MR) diffusion-weighted imaging (DWI). Purpose: To investigate the maximum diffusivity in CSF in patients with and without CoHy using DWI. Material and Methods: 12 patients without CSF circulation disturbances and six cases with proven CoHy were assessed. Diffusion was measured in six non collinear directions without triggering the arterial pulse wave (scan time 6:45 min, voxel size 2x2x2 mm). Due to expected artifacts, the calculated maximum diffusivity was called apparent diffusivity. Regional high and low apparent diffusivity was assessed in CSF spaces on newly created 3D CSF motion maps. Results: Patients with regular CSF circulation exhibited high apparent diffusivity in CSF in basal subarachnoid spaces, whereas apparent diffusivity was low there in patients with CoHy. Conclusion: DWI opens a feasible approach to study CSF motion in the neurocranium. Restricted arterial pulsations seem to be involved in CoHy.

  1. Diffusion-Weighted Magnetic Resonance Imaging of Cerebrospinal Fluid in Patients with and without Communicating Hydrocephalus

    International Nuclear Information System (INIS)

    Nasel, C.; Gentzsch, S.; Heimberger, K.

    2007-01-01

    Background: Recent concepts about cerebrospinal fluid (CSF) circulation in communicating hydrocephalus (CoHy), which is also termed 'restricted arterial pulsation hydrocephalus,' suggest reduced arterial pulsations of subarachnoid vessels with a smaller amount of CSF shifted in subarachnoid spaces during the early systole. The postulated restriction of subarachnoid arterial pulsations in CoHy should induce a smaller motion artifact and reduced local stream effects in CSF in magnetic resonance (MR) diffusion-weighted imaging (DWI). Purpose: To investigate the maximum diffusivity in CSF in patients with and without CoHy using DWI. Material and Methods: 12 patients without CSF circulation disturbances and six cases with proven CoHy were assessed. Diffusion was measured in six non collinear directions without triggering the arterial pulse wave (scan time 6:45 min, voxel size 2x2x2 mm). Due to expected artifacts, the calculated maximum diffusivity was called apparent diffusivity. Regional high and low apparent diffusivity was assessed in CSF spaces on newly created 3D CSF motion maps. Results: Patients with regular CSF circulation exhibited high apparent diffusivity in CSF in basal subarachnoid spaces, whereas apparent diffusivity was low there in patients with CoHy. Conclusion: DWI opens a feasible approach to study CSF motion in the neurocranium. Restricted arterial pulsations seem to be involved in CoHy

  2. Optimising diffusion weighted MRI for imaging metastatic and myeloma bone disease and assessing reproducibility

    International Nuclear Information System (INIS)

    Messiou, C.; Collins, D.J.; Morgan, V.A.; DeSouza, N.M.

    2011-01-01

    To establish normal bone marrow values of apparent diffusion coefficient (ADC) over an age range, compare them with metastatic and myelomatous involvement, to establish reproducibility and to optimise b values. The ADCs of bone marrow in 7 volunteers (mean age 29.7 years), 34 volunteers (mean age 63.3 years) and 43 patients with metastatic and myelomatous involvement (mean age 65.5 years) were measured. In 9 volunteers diffusion weighted MRI was repeated within 7 days. b values were derived to optimise contrast between normal and pathological marrow. The mean ADC of bone marrow in younger volunteers was significantly higher than that of older volunteers. The coefficient of reproducibility was 14.8%. The ADC mean of metastatic and myeloma bone disease was 1054+/-456 x 10 -6 mm 2 s -1 . An ADC threshold of 655 x 10 -6 mm 2 s -1 separated normal and abnormal marrow with a sensitivity and specificity of 90% and 93% respectively. Contrast between normal and abnormal marrow was optimal at b = 1389 smm -2 . The reproducibility of ADC measurements in bone is equivalent to published data for soft tissue with a high sensitivity and specificity for separating abnormal from age matched normal bone marrow. A b value of around 1,400 smm -2 is optimal for imaging bone marrow. (orig.)

  3. Optimization of b-value distribution for biexponential diffusion-weighted MR imaging of normal prostate.

    Science.gov (United States)

    Jambor, Ivan; Merisaari, Harri; Aronen, Hannu J; Järvinen, Jukka; Saunavaara, Jani; Kauko, Tommi; Borra, Ronald; Pesola, Marko

    2014-05-01

    To determine the optimal b-value distribution for biexponential diffusion-weighted imaging (DWI) of normal prostate using both a computer modeling approach and in vivo measurements. Optimal b-value distributions for the fit of three parameters (fast diffusion Df, slow diffusion Ds, and fraction of fast diffusion f) were determined using Monte-Carlo simulations. The optimal b-value distribution was calculated using four individual optimization methods. Eight healthy volunteers underwent four repeated 3 Tesla prostate DWI scans using both 16 equally distributed b-values and an optimized b-value distribution obtained from the simulations. The b-value distributions were compared in terms of measurement reliability and repeatability using Shrout-Fleiss analysis. Using low noise levels, the optimal b-value distribution formed three separate clusters at low (0-400 s/mm2), mid-range (650-1200 s/mm2), and high b-values (1700-2000 s/mm2). Higher noise levels resulted into less pronounced clustering of b-values. The clustered optimized b-value distribution demonstrated better measurement reliability and repeatability in Shrout-Fleiss analysis compared with 16 equally distributed b-values. The optimal b-value distribution was found to be a clustered distribution with b-values concentrated in the low, mid, and high ranges and was shown to improve the estimation quality of biexponential DWI parameters of in vivo experiments. Copyright © 2013 Wiley Periodicals, Inc.

  4. Evaluation of diffusion weighted imaging in differentiating prostate cancer and benign hyperplasia

    International Nuclear Information System (INIS)

    Wang Ximing; Guo Liang; Zhang Yu; Bai Renju; Zhao Xin

    2006-01-01

    Objective: To describe diffusion weighted imaging (DWI) and apparent diffusion coefficient (ADC) map appearance of benign hyperplasia (BPH) and prostate cancer(PCa), and to evaluate DWI and ADC map and ADC values in differential diagnosis of PCa. Methods: DWI and ADC map findings were reviewed in 18 BPH cases and 25 PCa cases. ADC values of PCa and ADC values of peripheral zone (PZ) and central glands (CG) voxels in BPH were retrospectively measured. Results: On DWI, PZ of BPH demonstrated homogenous slightly signal intensity (SI), CG appeared heterogeneous SI. Twenty-two PCa showed markedly high-signal on DWI and obviously low-signal on ADC map, which both could clearly demonstrate the area of PCa. The invaded seminal vesicles and bone metastases of pelvis also appear similar SI as PCa on DWI and ADC map. ADC values of PCa were significantly lower than PZ(t=-52.46, P -3 mm 2 /s] and PZ in BPH [(1.27±0.14) x 10 -3 mm 2 /s], only minimal overlap (1/127, 0.7%) existed between ADC values of PCa and CG in BPH[(0.96±0.14) x 10 -3 mm 2 /s]. Conclusion: Both DWI and ADC map can well display PCa location and area, which also can show the involvement of seminal vesicles and bone metastases. BPH and PCa can be differentiated by Both DWI and ADC map and ADC values. (authors)

  5. Diffusion-weighted imaging of the kidneys in haemolytic uraemic syndrome

    International Nuclear Information System (INIS)

    Herrmann, Jochen; Wenzel, Ulrich; Galler, Stephanie; Schoennagel, Bjoern P.; Bannas, Peter; Yamamura, Jin; Groth, Michael; Adam, Gerhard; Busch, Jasmin D.; Tozakidou, Magdalini; Petersen, Kay U.; Joekel, Michaela; Habermann, Christian R.

    2017-01-01

    To evaluate the kidneys of patients with haemolytic uraemic syndrome (HUS) using diffusion-weighted imaging (DWI) and Doppler ultrasound (US) compared with healthy controls. Fifteen patients (mean age 33.3 years; three male; 12 female) with diarrhoea-positive HUS and 15 healthy volunteers were prospectively evaluated with DWI and Doppler US. A total apparent diffusion coefficient (ADC TOT ), and ADCs predominantly reflecting microperfusion (ADC LOW ) and diffusion (ADC HIGH ) were calculated. Doppler US evaluated renal vascularity and flow. When compared with controls, kidneys affected by HUS showed reduced cortical ADC values (ADC TOT 1.79±0.22 vs. 2.04±0.1x10 -3 mm 2 /s, P 0.001), resulting in either low corticomedullary differences (11/15 patients) or an inverted corticomedullary pattern (4/15 patients). Reduction of cortical ADC values was associated with a decrease of cortical vascularity on Doppler US (ADC TOT , P<0.001; ADC LOW , P 0.047). Kidneys with complete absence of the cortical vasculature on Doppler US (four patients) also demonstrated limited diffusion (ADC HIGH , P 0.002). Low glomerular filtration rate, requirement for haemodialysis during hospitalization, and longer duration of haemodialysis were associated with decreased cortical diffusivity (ADC TOT: P 0.04, 0.007, and <0.001, respectively). DWI shows qualitative and quantitative abnormalities in kidneys affected by HUS, thereby extending the non-invasive assessment of renal parenchymal damage. (orig.)

  6. Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Eisenberger, Ute; Frey, Felix J.; Thoeny, Harriet C.; Binser, Tobias; Boesch, Chris; Gugger, Mathias; Vermathen, Peter

    2010-01-01

    To determine the inter-patient variability of apparent diffusion coefficients (ADC) and concurrent micro-circulation contributions from diffusion-weighted MR imaging (DW-MRI) in renal allografts early after transplantation, and to obtain initial information on whether these measures are altered in histologically proven acute allograft rejection (AR). DW-MRI was performed in 15 renal allograft recipients 5-19 days after transplantation. Four patients presented with AR and one with acute tubular necrosis (ATN). Total ADC (ADC T ) was determined, which includes diffusion and micro-circulation contributions. Furthermore, diffusion and micro-circulation contributions were separated, yielding the ''perfusion fraction'' (F P ), and ''perfusion-free'' diffusion (ADC D ). Diffusion parameters in the ten allografts with stable function early after transplantation demonstrated low variabilities. Values for ADC T and ADC D were (x 10 -5 mm 2 /s) 228 ± 14 and 203 ± 9, respectively, in cortex and 226 ± 16 and 199 ± 9, respectively, in medulla. F P values were 18 ± 5% in cortex and 19 ± 5% in medulla. F P values were strongly reduced to less than 12% in cortex and medulla of renal transplants with AR and ATN. F P values correlated with creatinine clearance. DW-MRI allows reliable determination of diffusion and micro-circulation contributions in renal allografts shortly after transplantation; deviations in AR indicate potential clinical utility of this method to non-invasively monitor derangements in renal allografts. (orig.)

  7. Acute hyperammonemic encephalopathy with features on diffusion-weighted images: Report of two cases

    International Nuclear Information System (INIS)

    Kim, Ja Young; Yu, In Kyu

    2015-01-01

    Acute hyperammonemic encephalopathy is a rare toxic encephalopathy caused by accumulated plasma ammonia. A few literatures are reported about MRI findings of acute hyperammonemic encephalopathy. It is different from the well-known chronic hepatic encephalopathy. The clinical symptom and MRI findings of acute hyperammonemic encephalopathy can be reversible with proper treatment. Acute hepatic encephalopathy involves the cingulate cortex, diffuse cerebral cortices, insula, bilateral thalami on diffusion-weighted imaging (DWI), and fluid-attenuated inversion-recovery. Acute hepatic encephalopathy might mimic hypoxic-ischemic encephalopathy because of their similar predominant involving sites. We experienced 2 cases of acute hyperammonemic encephalopathy consecutively. They showed restricted diffusion at the cingulate cortex, cerebral cortices, insula, and bilateral dorsomedial thalami on DWI. One patient underwent acute fulminant hepatitis A, the other patient with underlying chronic liver disease had acute liver failure due to hepatotoxicity of tuberculosis medication. In this report, we presented the characteristic features of DWI in acute hyperammonemic encephalopathy. In addition, we reviewed articles on MRI findings of acute hyperammonemic encephalopathy.

  8. Optimising diffusion weighted MRI for imaging metastatic and myeloma bone disease and assessing reproducibility

    Energy Technology Data Exchange (ETDEWEB)

    Messiou, C. [Institute of Cancer Research and Royal Marsden, NHS Foundation Trust, Cancer Research UK Clinical Magnetic Resonance Research Group, Surrey (United Kingdom); Institute of Cancer Research and Royal Marsden, NHS Foundation Trust, MRI Department, Surrey (United Kingdom); Collins, D.J.; Morgan, V.A.; DeSouza, N.M. [Institute of Cancer Research and Royal Marsden, NHS Foundation Trust, Cancer Research UK Clinical Magnetic Resonance Research Group, Surrey (United Kingdom)

    2011-08-15

    To establish normal bone marrow values of apparent diffusion coefficient (ADC) over an age range, compare them with metastatic and myelomatous involvement, to establish reproducibility and to optimise b values. The ADCs of bone marrow in 7 volunteers (mean age 29.7 years), 34 volunteers (mean age 63.3 years) and 43 patients with metastatic and myelomatous involvement (mean age 65.5 years) were measured. In 9 volunteers diffusion weighted MRI was repeated within 7 days. b values were derived to optimise contrast between normal and pathological marrow. The mean ADC of bone marrow in younger volunteers was significantly higher than that of older volunteers. The coefficient of reproducibility was 14.8%. The ADC mean of metastatic and myeloma bone disease was 1054+/-456 x 10{sup -6} mm{sup 2}s{sup -1}. An ADC threshold of 655 x 10{sup -6} mm{sup 2}s{sup -1} separated normal and abnormal marrow with a sensitivity and specificity of 90% and 93% respectively. Contrast between normal and abnormal marrow was optimal at b = 1389 smm{sup -2}. The reproducibility of ADC measurements in bone is equivalent to published data for soft tissue with a high sensitivity and specificity for separating abnormal from age matched normal bone marrow. A b value of around 1,400 smm{sup -2} is optimal for imaging bone marrow. (orig.)

  9. Value of diffusion-Weighted imaging in evaluating the cellularity density of prostate cancer

    International Nuclear Information System (INIS)

    Liu Jingang; Wang Xizhen; Wang Bin; Niu Qingliang; Liu Qiang

    2008-01-01

    Objective: To study the cellularity density of prostate cancer (PCa) with diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC). Methods: 38 patients with histologically proven prostate cancer (PCa) underwent DWI with a 1.5 T MR scanner using a pelvic phased array multi-coil. The ADC values of PCa, benign prostatic hyperplasia (BPH), and peripheral zone (PZ) were calculated. The cellularity density of PCa was recorded according to hematoxylin and eosin (HE) staining. The relationship between ADC value and cellularity density of PCa was analyzed with Pearson correlation coefficient. Results: The ADC values of PCa, BPH, and PZ were (49.32±12.68)×10 -5 mm 2 /s, (86.73±26.75)×10 -5 mm 2 /s and (126.25±27.21)×10 -5 mm 2 /s, respectively. The ADC value of PCa was significantly lower than that of BPH and PZ (P<005). The cellularity density of PCa was 12.9%. The ADC value reversely related to the cellularity density of prostate cancer (r=-0.646, P<005). Conclusion: The ADC value can reflect the cellularity density of PCa. (authors)

  10. High b-value diffusion-weighted imaging in progressive multifocal leukoencephalopathy in HIV patients

    International Nuclear Information System (INIS)

    Godi, Claudia; De Vita, Enrico; Davagnanam, Indran; Tombetti, Enrico; Haddow, Lewis; Jaeger, Hans Rolf

    2017-01-01

    An ill-defined hyperintense edge and hypointense core on diffusion-weighted imaging (DWI) is typical of progressive multifocal leukoencephalopathy (PML). We aimed to investigate whether a b-value of 3,000 s/mm"2 (b3000) can improve visualisation of PML, or provide different structural information compared to 1,000 s/mm"2 (b1000). We retrospectively identified HIV-positive patients with confirmed PML studied under a clinical protocol including both b1000 and b3000 DWI. The rim and core of each PML lesion and normal-appearing white matter (NAWM) were outlined on trace-weighted DWI. Signal intensities, apparent diffusion coefficient (ADC) values and volumes were measured and compared between b1000 and b3000. Nine lesions from seven patients were analysed. The rim and core were better visualised on b3000, with higher signal of the rim and lower signal of the core compared to NAWM. The hyperintense rim had non-restricted average ADCs, but included foci of low ADC on both b3000 and b1000. Despite similar total lesion volumes, b3000 displayed significantly larger core and smaller rim volumes than b1000. b3000 improves visualisation of this important PML hallmark. Moreover, b3000 partly reclassifies tissue from rim into core, and might provide potentially more accurate biomarkers of PML activity and prognosis. (orig.)

  11. High b-value diffusion-weighted imaging in progressive multifocal leukoencephalopathy in HIV patients

    Energy Technology Data Exchange (ETDEWEB)

    Godi, Claudia [San Raffaele Scientific Institute, Neuroradiology Department, Milan (Italy); The National Hospital for Neurology and Neurosurgery, Lysholm Department of Neuroradiology, London (United Kingdom); UCL Institute of Neurology, Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, London (United Kingdom); De Vita, Enrico; Davagnanam, Indran [The National Hospital for Neurology and Neurosurgery, Lysholm Department of Neuroradiology, London (United Kingdom); UCL Institute of Neurology, Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, London (United Kingdom); Tombetti, Enrico [Vita-Salute San Raffaele University, Milan (Italy); Haddow, Lewis [University College London, Centre for Sexual Health and HIV Research, Research Department of Infection and Population Health, London (United Kingdom); Jaeger, Hans Rolf [The National Hospital for Neurology and Neurosurgery, Lysholm Department of Neuroradiology, London (United Kingdom); UCL Institute of Neurology, Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, London (United Kingdom); University College Hospital, Centre of Medical Imaging, London (United Kingdom)

    2017-09-15

    An ill-defined hyperintense edge and hypointense core on diffusion-weighted imaging (DWI) is typical of progressive multifocal leukoencephalopathy (PML). We aimed to investigate whether a b-value of 3,000 s/mm{sup 2} (b3000) can improve visualisation of PML, or provide different structural information compared to 1,000 s/mm{sup 2} (b1000). We retrospectively identified HIV-positive patients with confirmed PML studied under a clinical protocol including both b1000 and b3000 DWI. The rim and core of each PML lesion and normal-appearing white matter (NAWM) were outlined on trace-weighted DWI. Signal intensities, apparent diffusion coefficient (ADC) values and volumes were measured and compared between b1000 and b3000. Nine lesions from seven patients were analysed. The rim and core were better visualised on b3000, with higher signal of the rim and lower signal of the core compared to NAWM. The hyperintense rim had non-restricted average ADCs, but included foci of low ADC on both b3000 and b1000. Despite similar total lesion volumes, b3000 displayed significantly larger core and smaller rim volumes than b1000. b3000 improves visualisation of this important PML hallmark. Moreover, b3000 partly reclassifies tissue from rim into core, and might provide potentially more accurate biomarkers of PML activity and prognosis. (orig.)

  12. Ischemic lesions related to cerebral angiography: Evaluation by diffusion weighted MR imaging

    International Nuclear Information System (INIS)

    Kato, Koki; Tomura, Noriaki; Takahashi, Satoshi; Sakuma, Ikuo; Watarai, Jiro

    2003-01-01

    We examined the incidence of ischemic lesions occurring after cerebral angiography by means of diffusion weighted MR imaging (DWI). Fifty patients were included in this study. Balloon occlusion tests of the internal carotid artery were performed in 9 of the 50 patients. DWI was performed on the same day as the cerebral angiography or on the following day. No new neurological deficits were found after cerebral angiography. However, 13 of the 50 cases revealed new ischemic lesions after cerebral angiography. The incidence of ischemic lesions was significantly different between patients who underwent balloon occlusion tests and patients who did not. The incidence of ischemic lesions was not influenced by the duration of the procedure, use of additional catheters, total amount of contrast material or the type of contrast material. The incidence of clinically silent ischemic lesions related to cerebral angiography is greater than the incidence of neurological complications. In patients who underwent occlusion tests of the internal carotid artery, the incidence of silent lesions was significantly higher than in patients who did not. (orig.)

  13. The role of diffusion weighted MR imaging for differentiation between Graves' disease and Hashimoto thyroiditis.

    Science.gov (United States)

    Ozturk, T; Bozgeyik, Z; Ozturk, F; Burakgazi, G; Akyol, M; Coskun, S; Ozkan, Y; Ogur, E

    2015-08-01

    The aim of this study was to evaluate the usefulness of diffusion-weighted magnetic resonance imaging (DWMRI) for differentation between Graves' disease and Hashimoto's thyroiditis. Fifty patients (27 Graves diseases and 23 Hashimoto thyroiditis) and twenty healthy volunteers were examined using T1, T2 and DWMRI. The patients were diagnosed on the basis of physical findings and the results of thyroid function tests and serological tests. Circular ROIs were positioned on the bilateral thyroid lobes and isthmus. All measurements were repeated three different b values including 100, 600 and 1000 s/mm2 in all cases. ADC (Apparent diffusion coefficient) maps were calculated automatically with the MR system. Mean ADC values were 2.93 × 10-3, 1.97 × 10-3 and 1.62 × 10-3 mm2/s in the healthy volunteers; 3.47 × 10-3, 2.25 × 10-3 and 1.64 × 10-3 mm2/s in Graves' disease; 2.53 × 10-3, 1.76 × 10-3, 1.28 × 10-3 mm2/s in Hashimoto thyroiditis for b100, b600 and b1000, respectively. The ADC values of the Graves diseases were higher than healty volunteers and Hashimoto thyroiditis. ADC values were statistically significant for differentation between Hashimoto thyroiditis and Graves' disease all b values (p Hashimoto thyroiditis and Graves' disease.

  14. Acute hyperammonemic encephalopathy with features on diffusion-weighted images: Report of two cases

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ja Young; Yu, In Kyu [Dept. of Radiology, Eulji University Hospital, Daejeon (Korea, Republic of)

    2015-02-15

    Acute hyperammonemic encephalopathy is a rare toxic encephalopathy caused by accumulated plasma ammonia. A few literatures are reported about MRI findings of acute hyperammonemic encephalopathy. It is different from the well-known chronic hepatic encephalopathy. The clinical symptom and MRI findings of acute hyperammonemic encephalopathy can be reversible with proper treatment. Acute hepatic encephalopathy involves the cingulate cortex, diffuse cerebral cortices, insula, bilateral thalami on diffusion-weighted imaging (DWI), and fluid-attenuated inversion-recovery. Acute hepatic encephalopathy might mimic hypoxic-ischemic encephalopathy because of their similar predominant involving sites. We experienced 2 cases of acute hyperammonemic encephalopathy consecutively. They showed restricted diffusion at the cingulate cortex, cerebral cortices, insula, and bilateral dorsomedial thalami on DWI. One patient underwent acute fulminant hepatitis A, the other patient with underlying chronic liver disease had acute liver failure due to hepatotoxicity of tuberculosis medication. In this report, we presented the characteristic features of DWI in acute hyperammonemic encephalopathy. In addition, we reviewed articles on MRI findings of acute hyperammonemic encephalopathy.

  15. Clinico-radiological features of subarachnoid hyperintensity on diffusion-weighted images in patients with meningitis

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, T., E-mail: madarafuebuki@yahoo.co.jp [Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Sakurai, K.; Hara, M. [Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Muto, M. [Department of Radiology, Okazaki City Hospital, Okazaki, Aichi (Japan); Nakagawa, M. [Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Tohyama, J. [Department of Radiology, Toyota-kai Medical Corporation Kariya Toyota General Hospital, Kariya, Aichi (Japan); Oguri, T. [Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Mitake, S. [Department of Neurology, Tosei General Hospital, Seto-shi, Aichi (Japan); Maeda, M. [Department of Radiology, Mie University School of Medicine, Tsu, Mie (Japan); Matsukawa, N.; Ojika, K. [Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Shibamoto, Y. [Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan)

    2012-04-15

    Aim: To investigate the clinical and radiological features of meningitis with subarachnoid diffusion-weighted imaging (DWI) hyperintensity. Materials and methods: The clinical features, laboratory data, and radiological findings, including the number and distribution of subarachnoid DWI hyperintense lesions and other radiological abnormalities, of 18 patients seen at five institutions were evaluated. Results: The patients consisted of eight males and 10 females, whose ages ranged from 4 months to 82 years (median 65 years). Causative organisms were bacteria in 15 patients, including Haemophilus influenzae, Streptococcus pneumoniae, Streptococcus agalactiae, Staphylococcus aureus, Klebsiella pneumoniae, and Listeria monocytogenes. The remaining three were fungal meningitis caused by Cryptococcus neoformans. Subarachnoid DWI hyperintense lesions were multiple in 16 of the 18 cases (89%) and predominantly distributed around the frontal lobe in 16 of the 18 cases (89%). In addition to subarachnoid abnormality, subdural empyema, cerebral infarction, and intraventricular empyema were found in 50, 39, and 39%, respectively. Compared with paediatric patients, adult patients with bacterial meningitis tended to have poor prognoses (7/10 versus 1/5; p = 0.1). Conclusion: Both bacterial and fungal meningitis could cause subarachnoid hyperintensity on DWI, predominantly around the frontal lobe. This finding is often associated with poor prognosis in adult bacterial meningitis.

  16. Utility of diffusion-weighted imaging in the diagnosis of acute appendicitis

    Energy Technology Data Exchange (ETDEWEB)

    Inci, Ercan; Hocaoglu, Elif; Aydin, Sibel; Bayramoglu, Sibel; Cimilli, Tan [Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Department of Radiology, Istanbul (Turkey); Kilickesmez, Ozgur [Yeditepe University, School of Medicine, Department of Radiology, Istanbul (Turkey)

    2011-04-15

    To evaluate the value of diffusion-weighted MRI (DWI) in the diagnosis of acute appendicitis. 119 patients with acute appendicitis and 50 controls were enrolled in this prospective study. DWI was obtained with b factors 0, 500 and 1000 s/mm{sup 2} and were assessed with a visual scoring system by two radiologists followed by quantitative evaluation of the DW images and ADC maps. Histopathology revealed appendicitis in 79/92 patients (78%) who had undergone surgery. On visual evaluation, except for one patient with histopathologically proven appendicitis all inflamed appendixes were hyperintense on DWI (98.7%). Quantitative evaluation with DW signal intensities and ADC values revealed a significant difference with normal and inflamed appendixes (p < 0.001). The best discriminative parameter was signal intensity (b 500). With a cut-off value of 56 for the signal intensity the ratio had a sensitivity of 99% and a specificity of 97%. The cut-off ADC value at 1.66 mm{sup 2}/s had a sensitivity of 97% and a specificity of 99%. DWI is a valuable technique for the diagnosis of acute appendicitis with both qualitative and quantitative evaluation. DWI increases the conspicuity of the inflamed appendix. We recommend using DWI to diagnose acute appendicitis. (orig.)

  17. Utility of diffusion-weighted imaging in the diagnosis of acute appendicitis

    International Nuclear Information System (INIS)

    Inci, Ercan; Hocaoglu, Elif; Aydin, Sibel; Bayramoglu, Sibel; Cimilli, Tan; Kilickesmez, Ozgur

    2011-01-01

    To evaluate the value of diffusion-weighted MRI (DWI) in the diagnosis of acute appendicitis. 119 patients with acute appendicitis and 50 controls were enrolled in this prospective study. DWI was obtained with b factors 0, 500 and 1000 s/mm 2 and were assessed with a visual scoring system by two radiologists followed by quantitative evaluation of the DW images and ADC maps. Histopathology revealed appendicitis in 79/92 patients (78%) who had undergone surgery. On visual evaluation, except for one patient with histopathologically proven appendicitis all inflamed appendixes were hyperintense on DWI (98.7%). Quantitative evaluation with DW signal intensities and ADC values revealed a significant difference with normal and inflamed appendixes (p 2 /s had a sensitivity of 97% and a specificity of 99%. DWI is a valuable technique for the diagnosis of acute appendicitis with both qualitative and quantitative evaluation. DWI increases the conspicuity of the inflamed appendix. We recommend using DWI to diagnose acute appendicitis. (orig.)

  18. Sequential Magnetic Resonance Imaging Finding of Intramedullary Spinal Cord Abscess including Diffusion Weighted Image: a Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Jae Eun; Lee, Seung Young; Cha, Sang Hoon; Cho, Bum Sang; Jeon, Min Hee; Kang, Min Ho [Chungbuk National University College of Medicine, Cheongju (Korea, Republic of)

    2011-04-15

    Intramedullary spinal cord abscess (ISCA) is a rare infection of the central nervous system. We describe the magnetic resonance imaging (MRI) findings, including the diffusion-weighted imaging (DWI) findings, of ISCA in a 78-year-old man. The initial conventional MRI of the thoracic spine demonstrated a subtle enhancing nodule accompanied by significant edema. On the follow-up MRI after seven days, the nodule appeared as a ring-enhancing nodule. The non-enhancing central portion of the nodule appeared hyperintense on DWI with a decreased apparent diffusion coefficient (ADC) value on the ADC map. We performed myelotomy and surgical drainage, and thick, yellowish pus was drained

  19. Utility of diffusion-weighted MR imaging in the diagnosis of placenta accreta spectrum abnormality.

    Science.gov (United States)

    Sannananja, Bhagya; Ellermeier, Anna; Hippe, Daniel S; Winter, Thomas C; Kang, Stella K; Lee, Susanna I; Kilgore, Mark R; Dighe, Manjiri K

    2018-04-17

    The aim of this study was to evaluate the utility of added DWI sequences as an adjunct to traditional MR imaging in the evaluation of abnormal placentation in patients with suspicion for placenta accreta spectrum abnormality or morbidly adherent placenta (MAP). The study was approved by local ethics committee. The subjects included pregnant women with prenatal MRI performed between July 2013 to July 2015. All imaging was performed on a Philips 1.5T MR scanner using pelvic phased-array coil. Only T2-weighted and diffusion-weighted imaging (DWI) series were compiled for review. Two randomized imaging sets were created: set 1 included T2-weighted series only (T2W); set 2 included T2W with DWI series together (T2W + DWI). Three radiologists, blinded to history and pathology, reviewed the imaging, with 2 weeks of time between the two image sets. Sensitivity, specificity, and overall accuracy for MAP were calculated and compared between T2W only and T2W + DWI reads. Associations between imaging findings and invasion on pathology were tested using the Chi-squared test. Confidence scores, inter-reader agreement, and systematic differences were documented. A total of 17 pregnant women were included in the study. 8 cases were pathologically diagnosed with MAP. There were no significant differences in the diagnostic accuracy between T2W and T2W + DWI in the diagnosis of MAP in terms of overall accuracy (62.7% for T2W vs. 68.6% for T2W + DWI, p = 0.68), sensitivity (70.8% for T2W vs. 95.8% for T2W + DWI, p = 0.12), and specificity (55.6% for T2W vs. 44.4% for T2W + DWI, p = 0.49). There was no significant difference in the diagnostic confidence between the review of T2W images alone and the T2W + DWI review (mean 7.3 ± 1.8 for T2W vs. 7.5 ± 1.8 for T2W + DWI, p = 0.37). With the current imaging technique, addition of DWI sequence to the traditional T2W images cannot be shown to significantly increase the accuracy or

  20. The analysis of pathogenesis in the hypertensive encephalopathy using diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Shim, Dong Jae; Lim, Myung Kwan; Kim, Hyung Jin; Cho, Young Kook; Suh, Chang Hae

    2001-01-01

    To investigate the nature of edematous lesions seen on MR images during acute episodes of hypertensive encephalopathy(HTE) with particular attention to the findings of diffusion-weighted imaging (DWI). A total of 17 MR examinations in fourteen patients with hypertensive encephalopathy were performed. The diagnoses were idiopathic HTE in eight cases, eclampsia in three, and cyclosporin-induced HTE in three. The apparent diffusion coefficients(ADCs) of edematous lesions and normal white matter revealed by DWI were assessed and compared, and the changes observed at follow-up MR imaging were analysed. DWI obtained within one week of the appearance of acute neurological symptoms revealed the edema as iso-intense in all patients with eclampsia and cyclosporin-induced HTE, and in five of eight patients with idiopathic HTE. In the other three patients with idiopathic HTE, DWI demonstrated slightly hyperintense edema. The ADCs of edematous lesion in patients with idiopathic HTE, eclampsia and cyclosporin-induced HTE were 1.21±0.34, 1.08±0.28, and 1.28±0.22 mm 2 /ms, respectively, while for normal white matter the corresponding figures were 0.77±0.25, 0.71±0.22, and 0.68±0.27mm 2 /ms The differences in ADCs between edema and normal white matter were thus significantly different between the three patient groups (p<0.05), while the ADCs of edematous lesions showed no significant variation between these groups (p<0.05). Follow-up MRI revealed that in three cases, edematous lesions were reversible and there were no residual signal changes. Vasogenic rather than cytotoxic edema is present during the acute stage of HTE

  1. Analysis of Multiple B-Value Diffusion-Weighted Imaging in Pediatric Acute Encephalopathy

    Science.gov (United States)

    Tachibana, Yasuhiko; Aida, Noriko; Niwa, Tetsu; Nozawa, Kumiko; Kusagiri, Kouki; Mori, Kana; Endo, Kazuo; Obata, Takayuki; Inoue, Tomio

    2013-01-01

    Acute encephalopathy is a disease group more commonly seen in children. It is often severe and has neurological sequelae. Imaging is important for early diagnosis and prompt treatment to ameliorate an unfavorable outcome, but insufficient sensitivity/specificity is a problem. To overcome this, a new value (fraction of high b-pair (FH)) that could be processed from clinically acceptable MR diffusion-weighted imaging (DWI) with three different b-values was designed on the basis of a two-compartment model of water diffusion signal attenuation. The purpose of this study is to compare FH with the apparent diffusion coefficient (ADC) regarding the detectability of pediatric acute encephalopathy. We retrospectively compared the clinical DWI of 15 children (1–10 years old, mean 2.34, 8 boys, 7 girls) of acute encephalopathy with another 16 children (1–11 years old, mean 4.89, 9 boys, 7 girls) as control. A comparison was first made visually by mapping FH on the brain images, and then a second comparison was made on the basis of 10 regions of interest (ROIs) set on cortical and subcortical areas of each child. FH map visually revealed diffusely elevated FH in cortical and subcortical areas of the patients with acute encephalopathy; the changes seemed more diffuse in FH compared to DWI. The comparison based on ROI revealed elevated mean FH in the cortical and subcortical areas of the acute encephalopathy patients compared to control with significant difference (Pencephalopathy may be superior in FH compared to ADC. PMID:23755112

  2. Capabilities of diffusion-weighted and fresh blood imaging in depicting fresh thrombus. Presidential award proceedings

    International Nuclear Information System (INIS)

    Ando, Ritsuko; Manabe, Tsutomu; Tazawa, Satoru

    2007-01-01

    We examined the capabilities of diffusion-weighted (DWI) and fresh-blood imaging (FBI) in depicting thrombus. A paper-clay phantom holding test syringes of various sizes filled with either contrast medium or fresh human blood were scanned using a 1.5T magnetic resonance (MR) imaging unit, and apparent diffusion coefficient (ADC) values and signal intensities on DWI and FBI of the specimens were obtained. FBI depicted all the specimens regardless of syringe diameter, but DWI failed to image the syringe measuring 0.5 cm in diameter. B-factors and/or number of acquisitions (NAQ) seemed responsible for DWI's depiction capability. ADC values and signal intensities on DWI and FBI correlated with the viscosity of the contrast medium samples. Clotted blood, the most viscous of the samples, had the smallest ADC value and no relationship with signal intensities on DWI and FBI. Larger b-factors reduced signal intensity in contrast medium on DWI, but signals decreased only minimally in clotted blood. The result suggested that although viscosity was the influential factor for signal intensities on DWI in contrast medium, other factors, such as particle sizes of fibrin and hemoglobin, accounted for the low ADC values in clotting blood. T 2 relaxation time seemed to play a significant role in making signal intensities on DWI irrelevant to b-factors. Despite lapsed time, the clots were persistently hyperintense on FBI with a tendency to decrease only gradually. On DWI, there was a certain period when signal intensities were high and ADC values were low. The signal intensities on DWI and ADC values were considered to be influenced by the process of clot formation, and disappearance of signal seemed likely attributable to degeneration of protein and organization of the clot. (author)

  3. Diffusion-weighted MR imaging of salivary glands with gustatory stimulation - Comparison before and after radiotherapy

    International Nuclear Information System (INIS)

    Zhang, Yunyan; Gu, Yajia; Peng, Weijun; Mao, Jian; Lei, Yue; Shen, Xigang; Ou, Dan; He, Xiayun

    2013-01-01

    Background: Xerostomia is the most prominent complication in patients with head and neck carcinoma after radiotherapy (RT). Diffusion-weighted magnetic resonance imaging (DWI) with gustatory stimulation may contribute to the evaluation of salivary gland function. Purpose: To investigate the value of DWI for quantifying physiological changes of the parotid gland during gustatory stimulation in patients before and after RT. Material and Methods: Magnetic resonance imaging (MRI) was performed in 28 consecutive patients with nasopharyngeal carcinoma before and after RT and clinical xerostomia was also assessed. A DWI sequence was performed once at rest and continually repeated seven times during stimulation with ascorbic acid. Apparent diffusion coefficient (ADC) maps for parotid glands at different time points and the range of increase with stimulation were calculated. Paired two-tailed Student t tests were used to compare the ADC values before and after stimulation, and before and after RT. Results: Before RT, the ADC showed an initial increase (P<0.001) and then fluctuated during stimulation. After RT, as the clinical xerostomia changed from Grade 0 to Grade 2, the mean ADC at rest increased compared with the pre-RT value (P<0.001). A similar response to stimulation was observed, but the range of increase between the maximum ADC during stimulation and the baseline value at rest was higher post-RT than pre-RT (P=0.022). The minimum ADC during stimulation was higher than the baseline value post-RT (P=0.028), but there was no difference pre-RT (P=0.603). Conclusion: DWI combined with gustatory stimulation seems to display the physiological changes of the parotid gland following RT and may be a potential tool for non-invasively assessing salivary gland function

  4. Diffusion-weighted MR imaging of salivary glands with gustatory stimulation - Comparison before and after radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yunyan; Gu, Yajia; Peng, Weijun; Mao, Jian; Lei, Yue; Shen, Xigang [Dept. of Radiology, Fudan Univ. Shanghai Cancer Center, Shanghai (China); Dept. of Oncology, Shanghai Medical College, Fudan Univ., Shanghai (China); Ou, Dan; He, Xiayun [Dept. of Radiation Oncology, Fudan Univ. Shanghai Cancer Center, Shanghai (China); Dept. of Oncology, Shanghai Medical College, Fudan Univ., Shanghai (China)

    2013-10-15

    Background: Xerostomia is the most prominent complication in patients with head and neck carcinoma after radiotherapy (RT). Diffusion-weighted magnetic resonance imaging (DWI) with gustatory stimulation may contribute to the evaluation of salivary gland function. Purpose: To investigate the value of DWI for quantifying physiological changes of the parotid gland during gustatory stimulation in patients before and after RT. Material and Methods: Magnetic resonance imaging (MRI) was performed in 28 consecutive patients with nasopharyngeal carcinoma before and after RT and clinical xerostomia was also assessed. A DWI sequence was performed once at rest and continually repeated seven times during stimulation with ascorbic acid. Apparent diffusion coefficient (ADC) maps for parotid glands at different time points and the range of increase with stimulation were calculated. Paired two-tailed Student t tests were used to compare the ADC values before and after stimulation, and before and after RT. Results: Before RT, the ADC showed an initial increase (P<0.001) and then fluctuated during stimulation. After RT, as the clinical xerostomia changed from Grade 0 to Grade 2, the mean ADC at rest increased compared with the pre-RT value (P<0.001). A similar response to stimulation was observed, but the range of increase between the maximum ADC during stimulation and the baseline value at rest was higher post-RT than pre-RT (P=0.022). The minimum ADC during stimulation was higher than the baseline value post-RT (P=0.028), but there was no difference pre-RT (P=0.603). Conclusion: DWI combined with gustatory stimulation seems to display the physiological changes of the parotid gland following RT and may be a potential tool for non-invasively assessing salivary gland function.

  5. Sandwich sign of Borrmann type 4 gastric cancer on diffusion-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Peng, E-mail: zxp@bjcancer.org [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiology, Peking University School of Oncology, Beijing Cancer Hospital and Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142 (China); Tang, Lei; Sun, Ying-Shi [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiology, Peking University School of Oncology, Beijing Cancer Hospital and Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142 (China); Li, Zi-Yu; Ji, Jia-Fu [Department of Gastrointestinal Surgery, Peking University School of Oncology, Beijing Cancer Hospital and Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142 (China); Li, Xiao-Ting [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiology, Peking University School of Oncology, Beijing Cancer Hospital and Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142 (China); Liu, Yi-Qiang [Department of Pathology, Peking University School of Oncology, Beijing Cancer Hospital and Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142 (China); Wu, Qi [Department of Endoscopy, Peking University School of Oncology, Beijing Cancer Hospital and Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142 (China)

    2012-10-15

    Objective: To assess the appearance of Borrmann type 4 (BT-4) gastric cancer on diffusion-weighted magnetic resonance imaging (DWI) and to investigate the potential of qualitative and quantitative DW images analysis to differentiate BT-4 gastric cancer from poorly distended normal stomach wall. Materials and methods: DWI was performed on 23 patients with BT-4 gastric cancer and 23 healthy volunteers. The signal characteristics and correlated histopathological basis of the cancers on DWI were investigated. The contrast-to-noise ratios (CNR) of cancer were compared between DWI and T1WI/T2WI{sub .} The thickness and apparent diffusion coefficient (ADC) of cancer and normal stomach wall were compared. Results: All of the gastric cancers displayed hyperintensity compared to the nearby normal gastric wall on DWI. A three-layer sandwich sign that demonstrated high signal intensity in the inner and outer layer, and low signal intensity in the intermediate layer was observed in 69.6% of cancers on DWI. The low signal intensity represents the muscularis propria through the comparison with pathology, and it is postulated that scattering distribution of the cancer cells in this layer causes less damage and subsequently less restriction of water movement, which causes the low signal intensity on DWI. The CNR obtained with DWI was higher than that with T1WI and T2WI (P < 0.001). The mean ADC value of BT-4 gastric cancer was significantly lower than the poorly distended normal stomach wall (1.12 ± 0.23 × 10{sup −3} mm{sup 2}/s vs. 1.93 ± 0.22 × 10{sup −3} mm{sup 2}/s, P < 0.01). Conclusion: DWI can highlight the signals of BT-4 gastric cancer which may present a characteristic three-layer sandwich sign, and ADC values are helpful in the discrimination of gastric cancer from poorly distended stomach wall.

  6. Role of magnetic resonance diffusion-weighted imaging in evaluating response after chemoembolization of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Yuan Zheng; Ye Xiaodan; Dong Sheng; Xu Lichao; Xu Xueyuan; Liu Shiyuan; Xiao Xiangsheng

    2010-01-01

    Objective: To investigate the value of hepatocellular carcinoma pretreatment apparent diffusion coefficients (ADCs) and its ADCs changes after treatment in predicting and early monitoring the response after chemoembolization. Materials and methods: Twenty-five responding and nine nonresponding hepatocellular carcinoma lesions were prospectively evaluated with magnetic resonance diffusion-weighted imaging in 24 h before and in 48 h after chemoembolization. Quantitative ADC maps were calculated with images with b values of 0 and 500 s/mm 2 . Results: Nonresponding lesions had a significantly higher pretreatment mean ADC than did responding lesions (1.726 ± 0.323 x 10 -3 mm 2 /s vs.1.294 ± 0.185 10 -3 mm 2 /s, P ≤ 0.001). The results of receiver operator characteristic (ROC) analysis for identification of nonresponding lesions showed that threshold ADC value of 1.618 x 10 -3 mm 2 /s had 96.0% sensitivity and 77.8% specificity. After transarterial chemoembolization, responding lesions had a significant increase in %ADC values than did nonresponding lesions (32.63% vs. 5.24%, P = 0.025). The results of ROC analysis for identification of responding lesions showed that threshold %ADC value of 16.21% had 72% sensitivity and 100% specificity. No significant change was observed in normal liver parenchyma (P = 0.862) and spleen (P = 0.052). Conclusion: High pretreatment mean ADC value of hepatocellular carcinoma was predictive of poor response to chemoembolization. A significant increase in %ADC value was observed in lesions that responded to chemoembolization.

  7. Can diffusion-weighted imaging distinguish between benign and malignant pediatric liver tumors?

    Science.gov (United States)

    Caro-Domínguez, Pablo; Gupta, Abha A; Chavhan, Govind B

    2018-01-01

    There are limited data on utility of diffusion-weighted imaging (DWI) in the evaluation of pediatric liver lesions. To determine whether qualitative and quantitative DWI can be used to differentiate benign and malignant pediatric liver lesions. We retrospectively reviewed MRIs in children with focal liver lesions to qualitatively evaluate lesions noting diffusion restriction, T2 shine-through, increased diffusion, hypointensity on DWI and apparent diffusion coefficient (ADC) maps, and intermediate signal on both, and to measure ADC values. Pathology confirmation or a combination of clinical, laboratory and imaging features, and follow-up was used to determine final diagnosis. We included 112 focal hepatic lesions in 89 children (median age 11.5 years, 51 female), of which 92 lesions were benign and 20 malignant. Interobserver agreement was almost perfect for both qualitative (kappa 0.8735) and quantitative (intraclass correlation coefficient [ICC] 0.96) diffusion assessment. All malignant lesions showed diffusion restriction. Most benign lesions other than abscesses were not restricted. There was significant association of qualitative restriction with malignancy and non-restriction with benignancy (Fisher exact test Pbenign and malignant lesions, with wide range for each diagnosis. Receiver operating characteristic (ROC) analysis revealed an area under the curve (AUC) of 0.63 for predicting malignancy using an ADC cut-off value of ≤1.20x10 -3  mm 2 /s, yielding a sensitivity of 78% and a specificity of 54% for differentiating malignant from benign lesions. Qualitative diffusion restriction in pediatric liver lesions is a good predictor of malignancy and can help to differentiate between benign and malignant lesions, in conjunction with conventional MR sequences. Even though malignant lesions demonstrated significantly lower ADC values than benign lesions, the use of quantitative diffusion remains limited in its utility for distinguishing them because of the

  8. Sandwich sign of Borrmann type 4 gastric cancer on diffusion-weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Zhang, Xiao-Peng; Tang, Lei; Sun, Ying-Shi; Li, Zi-Yu; Ji, Jia-Fu; Li, Xiao-Ting; Liu, Yi-Qiang; Wu, Qi

    2012-01-01

    Objective: To assess the appearance of Borrmann type 4 (BT-4) gastric cancer on diffusion-weighted magnetic resonance imaging (DWI) and to investigate the potential of qualitative and quantitative DW images analysis to differentiate BT-4 gastric cancer from poorly distended normal stomach wall. Materials and methods: DWI was performed on 23 patients with BT-4 gastric cancer and 23 healthy volunteers. The signal characteristics and correlated histopathological basis of the cancers on DWI were investigated. The contrast-to-noise ratios (CNR) of cancer were compared between DWI and T1WI/T2WI . The thickness and apparent diffusion coefficient (ADC) of cancer and normal stomach wall were compared. Results: All of the gastric cancers displayed hyperintensity compared to the nearby normal gastric wall on DWI. A three-layer sandwich sign that demonstrated high signal intensity in the inner and outer layer, and low signal intensity in the intermediate layer was observed in 69.6% of cancers on DWI. The low signal intensity represents the muscularis propria through the comparison with pathology, and it is postulated that scattering distribution of the cancer cells in this layer causes less damage and subsequently less restriction of water movement, which causes the low signal intensity on DWI. The CNR obtained with DWI was higher than that with T1WI and T2WI (P −3 mm 2 /s vs. 1.93 ± 0.22 × 10 −3 mm 2 /s, P < 0.01). Conclusion: DWI can highlight the signals of BT-4 gastric cancer which may present a characteristic three-layer sandwich sign, and ADC values are helpful in the discrimination of gastric cancer from poorly distended stomach wall

  9. Diffusion-weighted perinatal postmortem magnetic resonance imaging as a marker of postmortem interval

    Energy Technology Data Exchange (ETDEWEB)

    Arthurs, Owen J. [Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Radiology, London (United Kingdom); UCL Institute of Child Health, Imaging and Biophysics, London (United Kingdom); Price, Gemma C. [Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Radiology, London (United Kingdom); Carmichael, David W. [UCL Institute of Child Health, Imaging and Biophysics, London (United Kingdom); Jones, Rod; Norman, Wendy; Taylor, Andrew M. [Great Ormond Street Hospital for Children NHS Foundation Trust, Cardiorespiratory Division, London (United Kingdom); UCL Institute of Cardiovascular Science, Centre for Cardiovascular Imaging, London (United Kingdom); Sebire, Neil J. [Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Histopathology, London (United Kingdom); UCL Institute of Child Health, Histopathology, London (United Kingdom)

    2015-05-01

    To evaluate perinatal body organ apparent diffusion coefficient (ADC) values at postmortem magnetic resonance imaging (PMMR) in order to evaluate postmortem changes. Postmortem diffusion-weighted imaging (DWI) of the thorax and abdomen were performed with diffusion gradient values b = 0, 500, and 1000 s/mm{sup 2} on 15 foetal and childhood cases (mean 33.3 ± 7.8 weeks gestation) compared to 44 live infants (mean age 75.5 ± 53.4 days). Mean ADC values were calculated from regions of interest (ROIs) for the lungs, liver, spleen and renal cortex, compared to normative live infantile body ADC values of similar gestational age. Mean ADC values were significantly lower in postmortem cases than in normal controls for liver (0.88 10{sup -3} mm{sup 2}/s ± SD 0.39 vs. 1.13 ± 0.13; p < 0.05) and renal cortex (0.85 ± 0.26 vs. 1.19 ± 0.13; p < 0.05) but not spleen or muscle. Mean lung ADC values were significantly higher than normal controls (1.06 ± 0.18 vs. 0 ± 0; p < 0.001), and there was a significant correlation between postmortem interval and lung ADC (R{sup 2} = 0.55). Lung PMMR ADC values are related to postmortem interval, making them a potential marker of time since death. Further research is needed to understand the organ-specific changes which occur in the postmortem period. (orig.)

  10. Role of magnetic resonance diffusion-weighted imaging in evaluating response after chemoembolization of hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Zheng, E-mail: yuanzheng0404@163.co [Department of Radiology, Affiliated Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai 200003 (China); Ye Xiaodan [Department of Radiology, Affiliated Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai 200003 (China); Department of Radiology, Affiliated Shanghai Chest Hospital, Shanghai Jiaotong University, 241 West Huai Hai Road, Shanghai 200030 (China); Dong Sheng, E-mail: dongsheng2828@hotmail.co [Department of Radiology, Affiliated Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai 200003 (China); Xu Lichao; Xu Xueyuan; Liu Shiyuan; Xiao Xiangsheng [Department of Radiology, Affiliated Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai 200003 (China)

    2010-07-15

    Objective: To investigate the value of hepatocellular carcinoma pretreatment apparent diffusion coefficients (ADCs) and its ADCs changes after treatment in predicting and early monitoring the response after chemoembolization. Materials and methods: Twenty-five responding and nine nonresponding hepatocellular carcinoma lesions were prospectively evaluated with magnetic resonance diffusion-weighted imaging in 24 h before and in 48 h after chemoembolization. Quantitative ADC maps were calculated with images with b values of 0 and 500 s/mm{sup 2}. Results: Nonresponding lesions had a significantly higher pretreatment mean ADC than did responding lesions (1.726 {+-} 0.323 x 10{sup -3} mm{sup 2}/s vs.1.294 {+-} 0.185 10{sup -3} mm{sup 2}/s, P {<=} 0.001). The results of receiver operator characteristic (ROC) analysis for identification of nonresponding lesions showed that threshold ADC value of 1.618 x 10{sup -3} mm{sup 2}/s had 96.0% sensitivity and 77.8% specificity. After transarterial chemoembolization, responding lesions had a significant increase in %ADC values than did nonresponding lesions (32.63% vs. 5.24%, P = 0.025). The results of ROC analysis for identification of responding lesions showed that threshold %ADC value of 16.21% had 72% sensitivity and 100% specificity. No significant change was observed in normal liver parenchyma (P = 0.862) and spleen (P = 0.052). Conclusion: High pretreatment mean ADC value of hepatocellular carcinoma was predictive of poor response to chemoembolization. A significant increase in %ADC value was observed in lesions that responded to chemoembolization.

  11. Can MRI diffusion-weighted imaging identify postoperative residual/recurrent soft-tissue sarcomas?

    Directory of Open Access Journals (Sweden)

    Mai Maher ElDaly

    2018-01-01

    Full Text Available Purpose: The aim of this study was to evaluate contrast-enhanced magnetic resonance imaging (CE-MRI and quantitative diffusion-weighted imaging (DWI with apparent diffusion coefficient (ADC mapping in the detection of recurrent/residual postoperative soft tissue sarcomas. Materials and Methods: This study included 36 patients; 27 patients had postoperative recurrent/residual soft tissue sarcomas and 9 patients had postoperative and treatment-related changes (inflammation/fibrosis. The DWI was obtained with 3 b values including 0, 400, and 800 s/mm2. Calculation of the ADC value of the lesion was done via placing the region of interest (ROI to include the largest area of the lesion. ADC values were compared to histopathology. Results: Our results showed that including CE-MRI improved the diagnostic accuracy and sensitivity in recurrence detection compared to conventional non-enhanced sequences. However, it showed low specificity (55.56% with a high false-positive rate that may lead to an unnecessary biopsy of a mass such as region of postoperative scar tissue. Conclusion: The joint use of gadolinium-enhanced MRI and quantitative DWI with ADC mapping offer added value in the detection of recurrent/residual postoperative soft tissue sarcoma. This combined use increased both the diagnostic sensitivity and specificity with a cut-off average ADC value for detecting nonmyxoid recurrent/residual lesions ≤1.3 × 10−3 mm2/s (100% specificity and 90.48% sensitivity. Our results showed limited value of DWI with ADC mapping in assessing myxoid sarcomatous tumor recurrences.

  12. The contribution of diffusion-weighted MR imaging in multiple sclerosis during acute attack

    International Nuclear Information System (INIS)

    Yurtsever, Ismail; Hakyemez, Bahattin; Taskapilioglu, Ozlem; Erdogan, Cuneyt; Turan, Omer Faruk; Parlak, Mufit

    2008-01-01

    Purpose: The aims of the study are firstly, to determine the difference in diffusion-weighted imaging (DWI) in normal appearing white matter (NAWM) between patients with acute multiple sclerosis (MS) and controls; secondly, to determine whether there is a correlation between EDSS scores and DWI in acute plaques and also NAWM. Materials and method: Out of 50 patients with acute MS attack, 35 patients had active plaques with diffuse or ring enhancement on postcontrast images. Eighteen healthy volunteers constituted the control group. While 26 of 35 had relapsing-remitting, 9 had secondary progressive MS. Apparent diffusion coefficients (ADC) of the active plaques, NAWM at the level of centrum semiovale and occipital horn of lateral ventricle in the patients and NAWM in control group were measured. ADC values of active plaques were compared with WM of the patients and the control group. The relationship of ADC value of active plaques and WM in MS with expanded disability status scale (EDSS) was investigated by using Mann-Whitney U-test. Results: Of 63 plaques totally, 26 and 37 of the active plaques had diffuse and ring enhancement, respectively. There was no statistically significant difference between ADC value of active plaques and EDSS (p > 0.05). However, there was a statistically significant difference between ADC value of WM occipital horn and EDSS (p 0.05). Conclusion: Apparently normal tissue in MS patients may show early abnormalities when investigated carefully enough, and there is an even though moderate correlation between EDSS and ADC values and early alterations of ADC value are starting in the occipital white matter along the ventricles. This has to be verified in larger series

  13. Preoperative diffusion-weighted imaging of single brain metastases correlates with patient survival times.

    Directory of Open Access Journals (Sweden)

    Anna Sophie Berghoff

    Full Text Available BACKGROUND: MRI-based diffusion-weighted imaging (DWI visualizes the local differences in water diffusion in vivo. The prognostic value of DWI signal intensities on the source images and apparent diffusion coefficient (ADC maps respectively has not yet been studied in brain metastases (BM. METHODS: We included into this retrospective analysis all patients operated for single BM at our institution between 2002 and 2010, in whom presurgical DWI and BM tissue samples were available. We recorded relevant clinical data, assessed DWI signal intensity and apparent diffusion coefficient (ADC values and performed histopathological analysis of BM tissues. Statistical analyses including uni- and multivariate survival analyses were performed. RESULTS: 65 patients (34 female, 31 male with a median overall survival time (OS of 15 months (range 0-99 months were available for this study. 19 (29.2% patients presented with hyper-, 3 (4.6% with iso-, and 43 (66.2% with hypointense DWI. ADCmean values could be determined in 32 (49.2% patients, ranged from 456.4 to 1691.8*10⁻⁶ mm²/s (median 969.5 and showed a highly significant correlation with DWI signal intensity. DWI hyperintensity correlated significantly with high amount of interstitial reticulin deposition. In univariate analysis, patients with hyperintense DWI (5 months and low ADCmean values (7 months had significantly worse OS than patients with iso/hypointense DWI (16 months and high ADCmean values (30 months, respectively. In multivariate survival analysis, high ADCmean values retained independent statistical significance. CONCLUSIONS: Preoperative DWI findings strongly and independently correlate with OS in patients operated for single BM and are related to interstitial fibrosis. Inclusion of DWI parameters into established risk stratification scores for BM patients should be considered.

  14. Inter-individual, inter-vendor comparison of diffusion-weighted MR imaging of upper abdominal organs at 3.0 tesla with an emphasis on the value of normalization with the spleen

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ji Soo; Hwang, Seung Bae; Chung, Gyung Ho; Jin, Gong Yong [Dept. of Radiology, Chonbuk National University Medical School and Hospital, Jeonju (Korea, Republic of)

    2016-04-15

    To compare the apparent diffusion coefficient (ADC) values of upper abdominal organs with 2 different 3.0 tesla MR systems and to investigate the usefulness of normalization using the spleen. Forty-one patients were enrolled in this prospective study, of which, 35 patients (M:F, 27:8; mean age ± standard deviation, 62.3 ± 12.3 years) were finally analyzed. In addition to the routine liver MR protocol, single-shot spin-echo echo-planar diffusion-weighted imaging using b values of 0, 50, 400, and 800 s/mm{sup 2} in 2 different MR systems was performed. ADC values of the liver, spleen, pancreas, kidney and liver lesion (if present) were measured and analyzed. ADC values of the spleen were used for normalization. The Pearson correlation, Spearman correlation, paired sample t test, Wilcoxon signed rank test and Bland-Altman method were used for statistical analysis. For all anatomical regions and liver lesions, both non-normalized and normalized ADC values from 2 different MR systems showed significant correlations (r = 0.5196-0.8488). Non-normalized ADC values of both MR systems differed significantly in all anatomical regions and liver lesions (p < 0.001). However, the normalized ADC of all anatomical regions and liver lesions did not differ significantly (p = 0.065-0.661), with significantly lower coefficient of variance than that of non-normalized ADC (p < 0.009). Normalization of the abdominal ADC values using the spleen as a reference organ reduces differences between different MR systems, and could facilitate consistent use of ADC as an imaging biomarker for multi-center or longitudinal studies.

  15. Diffusion-weighted imaging in assessing renal pathology of chronic kidney disease: A preliminary clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qinghai; Li, Jinning; Zhang, Lan; Chen, Ying; Zhang, Minming [Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Yan, Fuhua, E-mail: zemylife@163.com [Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China)

    2014-05-15

    Objective: To investigate the clinical potential of diffusion-weighted imaging (DWI) in assessing renal pathology of chronic kidney disease (CKD). Methods: Seventy-one CKD patients and twelve healthy volunteers were examined using DWI with prospective acquisition correction. Renal biopsy specimens from the CKD patients were scored based on the severity of renal pathology and to confirm pathology type. CKD patients were divided into three groups according to pathology scores: mild, moderate, or severe. The association between renal apparent diffusion coefficient (ADC) values and pathology scores was investigated using Pearson's correlation and single factor analysis of variance. Multiple linear regression analysis was performed to explore associations between renal ADC values and pathology score, glomerular filtration rate, serum creatinine, and age. The Kruskal–Wallis H test was conducted to compare ADC values and pathology type. Results: Renal ADC values correlated negatively with pathology scores (r = −0.633, P < 0.001). The ADC values among the four groups (mild, moderate, severe impairment, and controls) were significantly different (F = 19.512, P < 0.001). However, when patients were stratified by pathology type, no significant differences were found in ADC values among these groups (χ{sup 2} = 9.929, P = 0.270). Further multiple linear regression analysis showed that only the pathology score and ADC values were related (t = −4.586, P = 0.000). Conclusions: DWI has clinical potential in assessing the severity of renal pathology in CKD and shows promise as a non-invasive and effective technique to guide therapy and follow-up.

  16. Diffusion-weighted imaging of the kidneys in haemolytic uraemic syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Jochen [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg (Germany); University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Section of Pediatric Radiology, Hamburg (Germany); Wenzel, Ulrich [University Medical Center Hamburg-Eppendorf, III. Department of Internal Medicine, Hamburg (Germany); Galler, Stephanie; Schoennagel, Bjoern P.; Bannas, Peter; Yamamura, Jin; Groth, Michael; Adam, Gerhard [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg (Germany); Busch, Jasmin D.; Tozakidou, Magdalini [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Section of Pediatric Radiology, Hamburg (Germany); Petersen, Kay U. [University Hospital of Tuebingen, Department for Psychiatry and Psychotherapy, Section for Addiction Research and Therapy, Tuebingen (Germany); Joekel, Michaela [Siemens AG Healthcare, Hamburg (Germany); Habermann, Christian R. [Katholisches Marienkrankenhaus Hamburg, Department of Diagnostic and Interventional Radiology, Hamburg (Germany)

    2017-11-15

    To evaluate the kidneys of patients with haemolytic uraemic syndrome (HUS) using diffusion-weighted imaging (DWI) and Doppler ultrasound (US) compared with healthy controls. Fifteen patients (mean age 33.3 years; three male; 12 female) with diarrhoea-positive HUS and 15 healthy volunteers were prospectively evaluated with DWI and Doppler US. A total apparent diffusion coefficient (ADC{sub TOT}), and ADCs predominantly reflecting microperfusion (ADC{sub LOW}) and diffusion (ADC{sub HIGH}) were calculated. Doppler US evaluated renal vascularity and flow. When compared with controls, kidneys affected by HUS showed reduced cortical ADC values (ADC{sub TOT} 1.79±0.22 vs. 2.04±0.1x10{sup -3} mm{sup 2}/s, P 0.001), resulting in either low corticomedullary differences (11/15 patients) or an inverted corticomedullary pattern (4/15 patients). Reduction of cortical ADC values was associated with a decrease of cortical vascularity on Doppler US (ADC{sub TOT}, P<0.001; ADC{sub LOW}, P 0.047). Kidneys with complete absence of the cortical vasculature on Doppler US (four patients) also demonstrated limited diffusion (ADC{sub HIGH}, P 0.002). Low glomerular filtration rate, requirement for haemodialysis during hospitalization, and longer duration of haemodialysis were associated with decreased cortical diffusivity (ADC{sub TOT:} P 0.04, 0.007, and <0.001, respectively). DWI shows qualitative and quantitative abnormalities in kidneys affected by HUS, thereby extending the non-invasive assessment of renal parenchymal damage. (orig.)

  17. Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Eisenberger, Ute; Frey, Felix J. [University Hospital of Bern, Department of Nephrology and Hypertension, Bern (Switzerland); Thoeny, Harriet C. [University Hospital of Bern, Department of Radiology, Neuroradiology and Nuclear Medicine, Bern (Switzerland); Binser, Tobias; Boesch, Chris [University Hospital of Bern, Department of Clinical Research, Bern (Switzerland); Gugger, Mathias [University Hospital of Bern, Department of Pathology, Bern (Switzerland); Vermathen, Peter [University Hospital of Bern, Department of Clinical Research, Bern (Switzerland); University Bern, Department of Clinical Research/AMSM, Pavillon 52, Inselspital, P.O. Box 35, Bern (Switzerland)

    2010-06-15

    To determine the inter-patient variability of apparent diffusion coefficients (ADC) and concurrent micro-circulation contributions from diffusion-weighted MR imaging (DW-MRI) in renal allografts early after transplantation, and to obtain initial information on whether these measures are altered in histologically proven acute allograft rejection (AR). DW-MRI was performed in 15 renal allograft recipients 5-19 days after transplantation. Four patients presented with AR and one with acute tubular necrosis (ATN). Total ADC (ADC{sub T}) was determined, which includes diffusion and micro-circulation contributions. Furthermore, diffusion and micro-circulation contributions were separated, yielding the ''perfusion fraction'' (F{sub P}), and ''perfusion-free'' diffusion (ADC{sub D}). Diffusion parameters in the ten allografts with stable function early after transplantation demonstrated low variabilities. Values for ADC{sub T} and ADC{sub D} were (x 10{sup -5} mm{sup 2}/s) 228 {+-} 14 and 203 {+-} 9, respectively, in cortex and 226 {+-} 16 and 199 {+-} 9, respectively, in medulla. F{sub P} values were 18 {+-} 5% in cortex and 19 {+-} 5% in medulla. F{sub P} values were strongly reduced to less than 12% in cortex and medulla of renal transplants with AR and ATN. F{sub P} values correlated with creatinine clearance. DW-MRI allows reliable determination of diffusion and micro-circulation contributions in renal allografts shortly after transplantation; deviations in AR indicate potential clinical utility of this method to non-invasively monitor derangements in renal allografts. (orig.)

  18. Diffusion-weighted imaging in assessing renal pathology of chronic kidney disease: A preliminary clinical study

    International Nuclear Information System (INIS)

    Li, Qinghai; Li, Jinning; Zhang, Lan; Chen, Ying; Zhang, Minming; Yan, Fuhua

    2014-01-01

    Objective: To investigate the clinical potential of diffusion-weighted imaging (DWI) in assessing renal pathology of chronic kidney disease (CKD). Methods: Seventy-one CKD patients and twelve healthy volunteers were examined using DWI with prospective acquisition correction. Renal biopsy specimens from the CKD patients were scored based on the severity of renal pathology and to confirm pathology type. CKD patients were divided into three groups according to pathology scores: mild, moderate, or severe. The association between renal apparent diffusion coefficient (ADC) values and pathology scores was investigated using Pearson's correlation and single factor analysis of variance. Multiple linear regression analysis was performed to explore associations between renal ADC values and pathology score, glomerular filtration rate, serum creatinine, and age. The Kruskal–Wallis H test was conducted to compare ADC values and pathology type. Results: Renal ADC values correlated negatively with pathology scores (r = −0.633, P < 0.001). The ADC values among the four groups (mild, moderate, severe impairment, and controls) were significantly different (F = 19.512, P < 0.001). However, when patients were stratified by pathology type, no significant differences were found in ADC values among these groups (χ 2 = 9.929, P = 0.270). Further multiple linear regression analysis showed that only the pathology score and ADC values were related (t = −4.586, P = 0.000). Conclusions: DWI has clinical potential in assessing the severity of renal pathology in CKD and shows promise as a non-invasive and effective technique to guide therapy and follow-up

  19. Diffusion-weighted imaging for the cellularity assessment and matrix characterization of soft tissue tumour.

    Science.gov (United States)

    Robba, Tiziana; Chianca, Vito; Albano, Domenico; Clementi, Valeria; Piana, Raimondo; Linari, Alessandra; Comandone, Alessandro; Regis, Guido; Stratta, Maurizio; Faletti, Carlo; Borrè, Alda

    2017-11-01

    To evaluate whether apparent diffusion coefficient (ADC) of diffusion-weighted imaging (DWI) is able to investigate the histological features of soft tissue tumours. We reviewed MRIs of soft tissue tumours performed from 2012 to 2015 to calculate the average ADCs. We included 46 patients (27 male; mean age: 57 years, range 12-85 years) with histologically proven soft tissue tumours (10 benign, 2 intermediate 34 malignant) grouped into eight tumour type classes. An experienced pathologist assigned a semi-quantitative cellularity score (very high, high, medium and low) and tumour grading. The t test, ANOVA and linear regression were used to correlate ADC with clinicopathological data. Approximate receiver operating characteristic curves were created to predict possible uses of ADC to differentiate benign from malignant tumours. There was a significant difference (p < 0.01) in ADCs between these three groups excluding myxoid sarcomas. A significant difference was also evident between the tumour type classes (p < 0.001), grade II and III myxoid lesions (p < 0.05), tumour grading classes (p < 0.001) and cellularity scores classes (p < 0.001), with the lowest ADCs in the very high cellularity. While the linear regression analysis showed a significant relationship between ADC and tumour cellularity (r = 0.590, p ≤ 0.05) and grading (r = 0.437, p ≤ 0.05), no significant relationship was found with age, gender, tumour size and histological subtype. An optimal cut-off ADC value of 1.45 × 10 -3 mm 2 /s with 76.8% accuracy was found to differentiate benign from malignant tumours. DWI may offer adjunctive information about soft tissue tumours, but its clinical role is still to be defined.

  20. Intraparenchymal epidermoid cysts in the brain: diagnostic value of MR diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hu, X.-Y. [Medical Imaging Center, The First Affiliated Hospital of Suzhou, Jiangsu Province (China); Hu, C.-H. [Imaging Center, Soochow University (China)], E-mail: wpdrhxy@hotmail.com; Fang, X.-M.; Cui, L.; Zhang, Q.-H. [Medical Imaging Center, The First Affiliated Hospital of Suzhou, Jiangsu Province (China)

    2008-07-15

    Aim: To evaluate the value of magnetic resonance (MR) diffusion-weighted imaging (DWI) and apparent diffusion coefficients (ADC) maps in the diagnosis of intraparenchymal epidermoid cysts (ECs). Materials and methods: Six cases of histopathologically proven intraparenchymal ECs were studied. All patients were examined with conventional MR (T1WI, T2WI, contrast-enhanced T1WI) and DWI sequences. Along with the mean ADC values (mADC) of the ECs, the cerebrospinal fluid (CSF) and grey matter (GM) were measured. Qualitative and quantitative assessments, as well as MRI findings, were retrospectively analysed using a double blind method by three radiologists in consensus. Results: Four lesions were located in the cerebellum, among them, one was accompanied by an arachnoid cyst; one huge lesion crossed the parenchyma of the frontal and temporal lobes; the other was located in the left temporal lobe. Two lesions had a homogeneous CSF-like intensity on both T1WI and T2WI. The other four were of mixed-intensity on both T1WI and T2WI. All lesions were strikingly hyperintense on DWI, and iso- or slightly hypointense on ADC (relative to the brain). The mADCs of the ECs were significantly higher than that of GM, but significantly lower than that of CSF. Three cases (3/6) were accurately diagnosed using conventional MR sequences without DWI, but in the remaining three cases, correct diagnosis could only be made with help of DWI. Conclusion: DWI sequences can facilitate the diagnosis of intraparenchymal ECs, thus alerting surgeons of the risk of chemical meningitis at surgery. The MR findings of intraparenchymal ECs are basically as the same as those of extracerebral ECs, but the former is likely to have a mixed signal. The hyperintense signal of ECs on DWI is probably caused by the T2 shine-through effect in tumour tissue.

  1. Management of severe subarachnoid hemorrhage (SAH) with diffusion-weighted imaging in acute stage

    International Nuclear Information System (INIS)

    Shamoto, Hiroshi; Shimizu, Hiroaki; Matsumoto, Yasushi; Fujiwara, Satoru; Tominaga, Teiji

    2007-01-01

    Determining the treatment strategy of severe subarachnoid hemorrhage (SAH) (Hunt and Kosnik Grade 4 and 5) requires objective evaluation to represent severity. In the present study, we investigated the role of diffusion-weighted imaging (DWI) in the acute stage as an objective tool. DWI was performed within 48 hours after the onset and preoperatively in 36 patients who fulfilled following the inclusion criteria: admission Hunt and Kosnik Grade 4 or 5, and Fischer Group 3. Twelve of 14 patients without abnormal findings in DWI underwent surgery in the acute stage. Although 2 of 14 patients with high age were supposed to undergo surgery in the chronic stage, 1 patient died in aneurysmal re-rupture. Glasgow outcome scales (GOS) were good recovery (GR) in 5, moderate disability (MD) in 6, standard deviation (SD) in 1 and D in 2 patients. Thirteen of 22 patients with DWI abnormality had small lesions less than 10 mm in diameter. Twelve of 13 patients underwent surgery in the acute stage, and 1 died of aneurysmal re-rupture while waiting for surgery in the chronic stage. GOS were GR in 3, MD in 4, SD in 3 and D in 3 patients. Although 5 patients with diffuse DWI lesions underwent surgery in the acute stage, 2 were SD and 3 were D. Four patients were supposed to undergo delayed surgery. However, 2 of them died of recurrent hemorrhage while waiting. GOS were SD in 2 and D in 2 patients. The present study indicates that DWI may provide objective evaluation of brain damage in severe SAH. However, since there were varieties of DWI findings and clinical courses, careful decisions must be taken in management of severe SAH patients. (author)

  2. Usefulness of diffusion-weighted images in the evolving stroke: correlation with clinical findings

    International Nuclear Information System (INIS)

    Kim, Hyun Sook; Yoon, Yong Kyu; Kim, Dong Ik; Yoon, Pyeong Ho; Lee, Seung Ik; Lee, Byung In; Suh, Bum Chun

    2000-01-01

    To determine the usefulness of repeat diffusion-weighted imaging (DWI) during the acute ischemic stroke stage for the prediction of evolving stroke and clinical course. Fifteen patients with acute ischemic stroke in MCA territory (less than 24 hours, 5 patients; greater than 24 hours, 10 patients; M:F =3D (:6; age 28-75 (mean, 61) years) were involved in this prospective study. All patients underwent initial DWI, follow-up DWI (within two weeks of the first attack) and T2WI (2-5 months later to assess final infarction territory). The National Institute of Health Stroke Scale (NIHSS) was used for clinical evaluation. 'Evolving stroke' was defined as progression NIHSS after admission. For statistical analysis, Fisher's exact test was used and a p value less than 0.05 was considered significant.In six patients (40%), the diagnosis was evolving stroke. In four of these (67%), follow-up DWI showed that the infarction territory was more extensive. Evolving stroke occurred 24-72 hours after the onset of symptoms. DWI obtained 72 hours after onset showed that one patient had developed new infarction. Patients in whom enlarged infarction territory was seen on follow-up DWI showed progression of NIHSS within three days of onset, while those in whom follow-up DWI demonstrated no change showed an improved NIHSS (p less than 0.05). Those who underwent initial DWI within 24 hours of onset showed larger infarction territory on follow-up DWI than those who underwent initial DWI later than this (p greater than 0.05). Repeat DWI during the acute ischemic stroke stage might be useful for the evaluation of evolving stroke. (author)

  3. Biexponential signal attenuation analysis of diffusion-weighted imaging of breast

    International Nuclear Information System (INIS)

    Tamura, Takayuki; Naito, Kumiko; Usui, Shuji; Akiyama, Mitoshi; Murakami, Shigeru; Arihiro, Koji; Akiyama, Yuji

    2010-01-01

    In vivo, the attenuation of diffusion-weighted imaging (DWI) signal at high b-values is sometimes nonlinear when plotted with semilogarithmic function and is fit well by a biexponential function. Previous reports have indicated that the fast and slow component fractions of the apparent diffusion coefficient (ADC) can be derived by biexponential fitting and that these fractions correspond to the actual diffusion components in the extra- and intracellular space. In this study, we investigated the clinical utility of DWI for the breast by performing DWI using multiple b-factors on healthy volunteers and clinical subjects, analyzing the signal by fitting it with a biexponential equation, and comparing the fitting parameters of breast lesions. We investigated 8 healthy women as normal cases and 80 female patients with a total of 100 breast tumors (42 benign, 58 malignant tumors) as clinical cases. We performed DWI using 12 b-values for the healthy cases and 6 b-values for the clinical cases, up to a maximum b-value of 3500 s/mm 2 . Decay of DWI signal of normal mammary glands, most cysts, and some fibroadenomas showed a monoexponential relationship, and conversely, that of intraductal papilloma (IDP) and malignant tumors was well fitted by a biexponential function. Comparison of parameters derived from biexponential fitting demonstrated no significant difference between benign and malignant lesions. For malignant tumor subtype, the fast component fraction of noninvasive ductal carcinoma was statistically greater than that of invasive ductal carcinoma. Although the parameters from biexponential fitting may reflect the character of tumor cellularity, because pathological diagnosis was performed with an emphasis on cell configuration or shape rather than cellularity, it was difficult to distinguish malignant from benign tumors, including many IDPs, or to distinguish tissue types using DWI signal attenuation alone. (author)

  4. MR diffusion-weighted imaging in differential diagnosis of intracranial cystic lesions

    International Nuclear Information System (INIS)

    Ji Xueman; Lu Guangming; Wang Zhongqiu; Zhang Zongjun; Zhang Zhiqiang; Wang Junpeng

    2007-01-01

    Objective: To evaluate the value of diffusion-weighted imaging (DWI) on differential diagnosis of intracranial cystic lesions. Methods: Seventy-six patients with surgically and pathologically confirmed intracranial cystic lesions undergone conventional MRI, DWI and contrast enhanced MRI examination. The signal characteristics of intracranial cystic lesions on DWI were analysed retrospectively, the apparent diffusion coefficient (ADC) values of cystic areas were measured quantitatively. Results: Nineteen brain abscesses showed hyperintense signal on DWI. Among 34 brain tumors, 3 brain gliomas were hyperintense signal, 1 brain glioma was isointense signal and 1 metastasis was hyperintense signal; the other 29 brain tumors showed hypointense signal on DWI. The ADC values of all lesions were: (0.62 ± 0.15) x 10 -3 mm 2 /s in brain abscesses, (2.39 ± 0.78) x 10 -3 mm 2 /s in brain gliomas, (2.68 ± 0.40) x 10 -3 mm 2 /s in brain hemangioblastomas, (2.79 ± 0.79) x 10 -3 mm 2 /s in brain metastases, respectively. There were significant differences between the ADC values of brain abscess and the cystic or necrotic portions of brain glioma, hemangioblastoma, metastasis (P 0.05). Seven intracranial arachnoid cysts showed hypointense signal and 16 epidermoid cysts strikingly hyperintense signal on DWI. The ADC values of arachnoid cysts and epidermoid cysts were (2.96 ± 0.36) x 10 -3 mm 2 /s and (0.94 ± 0.13) x 10 -3 mm 2 /s respectively. There was significant difference between the ADC values of arachnoid cysts and epidermoid cysts (P<0.01). Conclusion: DWI and ADC values have important contribution to the differentiation of brain abscesses from cystic or necrotic tumors, intracranial cystic lesions showing hypointense signal on DWI can exclude brain abscess. (authors)

  5. Diffusion weighted imaging in patients with rectal cancer: Comparison between Gaussian and non-Gaussian models.

    Directory of Open Access Journals (Sweden)

    Georgios C Manikis

    Full Text Available The purpose of this study was to compare the performance of four diffusion models, including mono and bi-exponential both Gaussian and non-Gaussian models, in diffusion weighted imaging of rectal cancer.Nineteen patients with rectal adenocarcinoma underwent MRI examination of the rectum before chemoradiation therapy including a 7 b-value diffusion sequence (0, 25, 50, 100, 500, 1000 and 2000 s/mm2 at a 1.5T scanner. Four different diffusion models including mono- and bi-exponential Gaussian (MG and BG and non-Gaussian (MNG and BNG were applied on whole tumor volumes of interest. Two different statistical criteria were recruited to assess their fitting performance, including the adjusted-R2 and Root Mean Square Error (RMSE. To decide which model better characterizes rectal cancer, model selection was relied on Akaike Information Criteria (AIC and F-ratio.All candidate models achieved a good fitting performance with the two most complex models, the BG and the BNG, exhibiting the best fitting performance. However, both criteria for model selection indicated that the MG model performed better than any other model. In particular, using AIC Weights and F-ratio, the pixel-based analysis demonstrated that tumor areas better described by the simplest MG model in an average area of 53% and 33%, respectively. Non-Gaussian behavior was illustrated in an average area of 37% according to the F-ratio, and 7% using AIC Weights. However, the distributions of the pixels best fitted by each of the four models suggest that MG failed to perform better than any other model in all patients, and the overall tumor area.No single diffusion model evaluated herein could accurately describe rectal tumours. These findings probably can be explained on the basis of increased tumour heterogeneity, where areas with high vascularity could be fitted better with bi-exponential models, and areas with necrosis would mostly follow mono-exponential behavior.

  6. Relationship between cortex and pulvinar abnormalities on diffusion-weighted imaging in status epilepticus.

    Science.gov (United States)

    Nakae, Yoshiharu; Kudo, Yosuke; Yamamoto, Ryoo; Dobashi, Yuichi; Kawabata, Yuichi; Ikeda, Shingo; Yokoyama, Mutsumi; Higashiyama, Yuichi; Doi, Hiroshi; Johkura, Ken; Tanaka, Fumiaki

    2016-01-01

    The aim of this study was to analyze the pattern of magnetic resonance diffusion-weighted imaging (DWI) findings in status epilepticus in terms of clinical characteristics. Participants comprised 106 patients with status epilepticus who were admitted to our hospital and underwent DWI. Forty-five patients (42.5 %) showed abnormal findings on DWI and were divided into two groups, comprising 26 patients (24.5 %) with cortex lesions alone and 19 patients (17.9 %) with cortex and pulvinar lesions in the same hemisphere. A long duration of status epilepticus (>120 min) tended to be more prevalent among patients with cortex and pulvinar lesions (57.9 %) than among patients with cortex lesions alone (30.8 %) by univariate and multivariate analyses. Todd's palsy tended to be more frequent in patients with abnormalities on DWI (24/45, 53.3 %) than in patients with normal DWI (21/61, 34.4 %). Six of the 26 patients with cortex lesions alone (23.1 %) had taken anti-epileptic drugs before the attack compared to none of the 19 patients with both cortex and pulvinar lesions. The trend toward a longer duration of status epilepticus in patients with both cortex and pulvinar lesions favors a spreading pattern of seizure discharge from cortex to pulvinar via cortico-pulvinar pathways, and anti-epileptic drugs might, to some extent, prevent spreading of seizure discharge from cortex to pulvinar. In addition, existence of high-intensity areas on DWI at the onset of epilepsy may be a predictive factor for the occurrence of Todd's palsy.

  7. Diffusion-weighted MR imaging for liver cancer follow-up after transcatheter arterial chemoembolization

    International Nuclear Information System (INIS)

    Yuan Zheng; Xiao Xiangsheng; Liu Shiyuan; Dong Sheng; Dong Weihua; Jia Ningyang; Sun Zhichao; Ye Xiaodan; Yan Bing

    2007-01-01

    Objective: To investigate prospectively the apparent diffusion coefficient (ADC)in evaluating the capability of diffusion-weighted imaging (DWI) technique for detecting viable tumor tissue after transarterial chemoembolization (TACE) of liver cancer. Methods: Institutional review board approval was obtained, and all patients were provided with informed consent. DWI, enhanced CT and DSA examinations were performed in 16 patients with liver cancer after TACE. Qualitative evaluations of the capability for detecting the remaining or recurrent viable tumor with DWI were performed by comparing enhanced-CT and DSA. ADCs and maximum CT enhancement value(HU) were measured(in 14 of the 16 patients)for lesions after TACE. And their relationships were investigated by comprehension correlative analysis. Results: Liver cancer after TACE presented variable signal intensities on DWI. The homogeneous accumulation of iodized oil observed on CT in 2 of 16 patients with liver cancer after TACE showed no tumor stain observed on DSA but with corresponding homogeneous hypointensity on DWI. The partial defects shown in accumulation of iodized oil in 2 of 16 patients represented the tumor stain on DSA corresponding to hyperintensities on DWI. None or faint accumulation of iodized oil areas in 12 of all patients, showed striking tumor stains corresponding to hyperintensities on DWI, and tumor necrosis had none or sight tumor stain on DSA, corresponding to hypointensities on DWI. A correlation between ADCs and maximum CT enhancement value (HU) of lesions after TACE was found (r=-0.76490, <0.05). Conclusion: Diffusion MRI is an useful method for detecting tumor remnant or recurrence of liver cancer after TACE, and can be used for the follow-up. (authors)

  8. Biexponential analysis of diffusion-weighted imaging: comparison of three different calculation methods in transplanted kidneys.

    Science.gov (United States)

    Heusch, Philipp; Wittsack, Hans-Jörg; Pentang, Gael; Buchbender, Christian; Miese, Falk; Schek, Julia; Kröpil, Patric; Antoch, Gerald; Lanzman, Rotem S

    2013-12-01

    Biexponential analysis has been used increasingly to obtain contributions of both diffusion and microperfusion to the signal decay in diffusion-weighted imaging DWI of different parts of the body. To compare biexponential diffusion parameters of transplanted kidneys obtained with three different calculation methods. DWI was acquired in 15 renal allograft recipients (eight men, seven women; mean age, 52.4 ± 14.3 years) using a paracoronal EPI sequence with 16 b-values (b = 0-750 s/mm(2)) and six averages at 1.5T. No respiratory gating was used. Three different calculation methods were used for the calculation of biexponential diffusion parameters: Fp, ADCP, and ADCD were calculated without fixing any parameter a priori (calculation method 1); ADCP was fixed to 12.0 µm(2)/ms, whereas Fp and ADCD were calculated using the biexponential model (calculation method 2); multistep approach with monoexponential fitting of the high b-value portion (b ≥ 250 s/mm(2)) for determination of ADCD and assessment of the low b intercept for determination of Fp (calculation method 3). For quantitative analysis, ROI measurements were performed on the according parameter maps. Mean ADCD values of the renal cortex using calculation method 1 were significantly lower than using calculation methods 2 and 3 (P < 0.001). There was a significant correlation between calculation methods 1 and 2 (r = 0.69 (P < 0.005) and calculation methods 1 and 3 (r = 0.59; P < 0.05) as well as calculation methods 2 and 3 (r = 0.98; P < 0.001). Mean Fp values of the renal cortex were higher with calculation method 1 than with calculation methods 2 and 3 (P < 0.001). For Fp, only the correlation between calculation methods 2 and 3 was significant (r = 0.98; P < 0.001). Biexponential diffusion parameters differ significantly depending on the calculation methods used for their calculation.

  9. Comparison of Diffusion-Weighted Imaging in the Human Brain Using Readout-Segmented EPI and PROPELLER Turbo Spin Echo With Single-Shot EPI at 7 T MRI.

    Science.gov (United States)

    Kida, Ikuhiro; Ueguchi, Takashi; Matsuoka, Yuichiro; Zhou, Kun; Stemmer, Alto; Porter, David

    2016-07-01

    The purpose of the present study was to compare periodically rotated overlapping parallel lines with enhanced reconstruction-type turbo spin echo diffusion-weighted imaging (pTSE-DWI) and readout-segmented echo planar imaging (rsEPI-DWI) with single-shot echo planar imaging (ssEPI-DWI) in a 7 T human MR system. We evaluated the signal-to-noise ratio (SNR), image distortion, and apparent diffusion coefficient values in the human brain. Six healthy volunteers were included in this study. The study protocol was approved by our institutional review board. All measurements were performed at 7 T using pTSE-DWI, rsEPI-DWI, and ssEPI-DWI sequences. The spatial resolution was 1.2 × 1.2 mm in-plane with a 3-mm slice thickness. Signal-to-noise ratio was measured using 2 scans. The ssEPI-DWI sequence showed significant image blurring, whereas pTSE-DWI and rsEPI-DWI sequences demonstrated high image quality with low geometrical distortion compared with reference T2-weighted, turbo spin echo images. Signal loss in ventral regions near the air-filled paranasal sinus/nasal cavity was found in ssEPI-DWI and rsEPI-DWI but not pTSE-DWI. The apparent diffusion coefficient values for ssEPI-DWI were 824 ± 17 × 10 and 749 ± 25 × 10 mm/s in the gray matter and white matter, respectively; the values obtained for pTSE-DWI were 798 ± 21 × 10 and 865 ± 40 × 10 mm/s; and the values obtained for rsEPI-DWI were 730 ± 12 × 10 and 722 ± 25 × 10 mm/s. The pTSE-DWI images showed no additional distortion comparison to the T2-weighted images, but had a lower SNR than ssEPI-DWI and rsEPI-DWI. The rsEPI-DWI sequence provided high-quality images with minor distortion and a similar SNR to ssEPI-DWI. Our results suggest that the benefits of the rsEPI-DWI and pTSE-DWI sequences, in terms of SNR, image quality, and image distortion, appear to outweigh those of ssEPI-DWI. Thus, pTSE-DWI and rsEPI-DWI at 7 T have great potential use for clinical diagnoses. However, it is noteworthy that both

  10. Superselective intra-arterial fibrinolysis for acute cerebral ischemic infarct : usefulness of diffusion weighted MR imaging

    International Nuclear Information System (INIS)

    Byun, Woo Mok; Lee, Se Jin; Kim, Yong Sun; Han, Gun Soo; Bae, Won Kyong

    1999-01-01

    To evaluate the efficacy of superselective intra-arterial fibrinolysis for acute cerebral stroke and the usefulness of pre-and postfibrinolysis diffusion-weighted MRI (DWI). In 41 patients with acute ischemic stroke whose treatment involved intra-arterial fibrinolysis, the occlusion site, degree of recanalization, and clinical results were compared. In 12 patients, diffusion weighted MRI was performed before fibrinolysis, and eight of these also underwent diffusion-weighted MRI after fibrinolysis. Using diffusion-weighted MRI, neurological outcomes were compared with signal intensity ratio (SIR, or the average signal intensity within the region of interest divided by that in the contralateral, nonischemic, homologous region). Twenty patients showed complete recanalization, nine partial recanalization, and in twelve there was no recanalization. Fourteen patients (34%) improved neurologically. No relationship existed between occlusion sites, degree of recanalization, and clinical outcome. Among 12 patients who underwent DWI before fibrinolysis, complete recanalization was noted in eight. Neurological improvement was seen in four patients with low SIR( 1.7), neurological outcome was poor despite complete recanalization. Although superselective intra-arterial fibrinolysis for acute cerebral stroke is a good therapeutic method for recanalization, the clinical outcome can be disappointing. We therefore suggest that in cases of acute cerebral ischemic infaret, SIR-as seen on DWI-might be useful for predicting the benefits of recanalization. In such cases, further investigation of the use of DWI prior to fibrinolysis is therefore needed

  11. Evaluation of gastric cancer detectability on respiratory triggered-diffusion weighted image

    International Nuclear Information System (INIS)

    Ichiba, Noriatsu; Fukuda, Kunihiko; Takahashi, Naoto; Nikaido, Takashi; Urashima, Mitsuyoshi; Kitagawa, Hisashi

    2007-01-01

    The objective of this study was to assess the ability of respiratory triggered diffusion-weighted image (RT-DWI) to detect gastric cancer and to determine whether there is any correlation between the detectability of RT-DWI and the location of cancerous tissues. Sixty-nine gastric cancer patients (71 lesions) underwent pre-operative magnetic resonance (MR) imaging and total or partial gastrectomy. Scans of the stomach were acquired using a 1.5T MR scanner. Our protocol consisted of T1WI, T2WI and DWI (b value=800 sec/mm 2 ). The location of gastric cancer was classified into three areas -U, M and L. The condition of the gastric contents and the relation between the location of intraluminal gas and gastric lesions were also evaluated. There were 42 early gastric cancers and 29 advanced cancers in a total of 71 lesions. In early gastric cancers, 15 lesions were detected out of 42 lesions (35.7%) and, in advanced gastric cancers, 27 lesions were detected out of 29 lesions (93.0%). Pathological volumes of the detected lesions ranged between 12 mm x 8 mm x 1 mm and 190 mm x 135 mm x 10 mm (median 57 mm x 35 mm x 5 mm), and those of the undetected lesions ranged between 5 mm x 2 mm x 1 mm and 67 mm x 47 mm x 1.5 mm (median 23 mm x 17 mm x 1 mm). Detectability of the lesions appeared to be higher in the following three conditions when the gastric lumen was filled with mainly fluid rather than gas when there was no intraluminal gas adjacent to the lesion when the imaging quality of RT-DWI was good. RT-DWI was found to have a high detection (93.0%) rate of advanced gastric cancers. To improve the detectability of early gastric cancers, we should endeavor to minimize the susceptibility artifact from intraluminal gas in the stomach and select higher resolution protocols. (author)

  12. A prospective study of diffusion weighted magnetic resonance imaging abnormalities in patients with cluster of seizures and status epilepticus.

    Science.gov (United States)

    Jabeen, S A; Cherukuri, Pavankumar; Mridula, Rukmini; Harshavardhana, K R; Gaddamanugu, Padmaja; Sarva, Sailaja; Meena, A K; Borgohain, Rupam; Jyotsna Rani, Y

    2017-04-01

    To study the frequency, imaging characteristics, and clinical predictors for development of periictal diffusion weighted MRI abnormalities. We prospectively analyzed electro clinical and imaging characteristic of adult patients with cluster of seizures or status epilepticus between November 2013 and November 2015, in whom the diffusion weighted imaging was done within 24h after the end of last seizure (clinical or electrographic). There were thirty patients who fulfilled the inclusion and exclusion criteria. Twenty patients (66%) had periictal MRI abnormalities. Nine patients (34%) did not have any MRI abnormality. All the patients with PMA had abnormalities on diffusion weighted imaging (DWI). Hippocampal abnormalities were seen in nine (53%), perisylvian in two (11.7%), thalamic in five (30%), splenium involvement in two (11.7%) and cortical involvement (temporo-occipital, parieto-occipital, temporo-parietal, fronto-parietal and fronto-temporal) in sixteen (94.1%) patients. Complete reversal of DWI changes was noted in sixteen (80%) patients and four (20%) patients showed partial resolution of MRI abnormalities. Mean duration of seizures was significantly higher among patients with PMA (59.11+20.97h) compared to those without MRI changes (27.33+9.33h) (pstatus epilepticus and were highly concordant with clinical semiology and EEG activity. Patients with longer duration of seizures/status were more likely to have PMA. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. New asymptomatic ischemic lesions on diffusion-weighted imaging after cerebral angiography

    International Nuclear Information System (INIS)

    Shibazaki, Kensaku

    2006-01-01

    Conventional cerebral angiography (CAG) is relatively low risk for neurological complications. However, diffusion-weighted imaging (DWI) after CAG occasionally reveal an asymptomatic ischemic lesion on the brain. The aim of this study was to investigate the frequency of new asymptomatic or symptomatic DWI lesions after CAG and to clarify the factors associated with them. Fifty-six patients with acute ischemic stroke and transient ischemic attack were prospectively enrolled. Magnetic resonance imaging (MRI) studies including DWI were studied twice, within 48 hours before and after CAG. The following factors were assessed; age, gender, history of stroke, history of ischemic heart disease, vascular risk factors, National Institutes of Health Stroke Scale (NIHSS) score on admission, stroke subtype, treatment before stroke or transient ischemic attack (TIA) (antiplatelets or warfarin), approach for catheters (transbrachial or femoral artery), amount of contrast medium used, length of the angiographic procedure, and fluoroscophy time. We divided the patients into two groups according to the presence of new DWI lesions after CAG; Positive group had new DWI lesions, whereas the Negative group had none. After CAG, no patients had new neurological deficits. New asymptomatic DWI lesions were observed in 24 patients (42.9%). The significant differences observed between two groups were as follows; age (69.8±11.3 for the Positive group versus 61.9±11.3 for the Negative group, p=0.043), female (54% versus 28%, p=0.048), non-small vessel occlusion (100% versus 66%, p=0.009), catheter approach for transfemoral artery (63% versus 13%, p<0.001), mean length of the angiographic procedure (63.1±21.6 min versus 43.7±14.2 min, p<0.001), mean fluoroscopy time (26.5±13.0 min versus 14.9±5.9 mm, p<0.001). Sensitivity and specificity analysis to discriminate the positive and negative groups revealed 17 minutes to be the critical threshold point (sensitivity 66.6% and specificity 68

  14. Diffusion-weighted MR imaging and ADC mapping in differentiating benign from malignant thyroid nodules

    International Nuclear Information System (INIS)

    Khizer, A.T.; Slehria, A.U.R.

    2015-01-01

    To determine the diagnostic accuracy of Diffusion-Weighted Imaging (DWI) and Apparent Diffusion Coefficient (ADC) mapping in differentiating benign from malignant thyroid nodules by taking histopathology as the gold standard. Study Design:Across-sectional analytical study. Place and Duration of Study: Department of Radiology at Combined Military Hospital (CMH), Lahore, from August 2012 to July 2013. Methodology: Thirty-five patients, who were referred to radiology department of CMH, Lahore, for ultrasound or Fine Needle Aspiration Cytology (FNAC) of thyroid gland, fulfilling the inclusion and exclusion criteria, were included in the study. They were evaluated on 1.5 Tesla MRI machine with T1- and T2-weighted imaging as well as fat-suppressed technique. DWI was done using b-values of 0 and 1000 s/mm2 and ADC values were calculated for the thyroid nodules. All of these patients were subjected to ultrasound guided core biopsy and histopathology results were correlated with ADC values. Results: The benign nodules showed facilitated diffusion while malignant nodules showed restricted diffusion. T-test was used to assess the difference in mean ADC values between benign and malignant nodules. The mean ADC value of the malignant thyroid nodules (0.94 ± 0.16 x 10/sup -3/mm2/s) was significantly lower than that of the benign thyroid nodules (1.93 ±0.13 x 10/sup -3/mm2/s) (p-value < 0.05). ADC value of 1.6 x 10/sup -3/mm2/s was used as a cut-off, for differentiating benign from malignant thyroid nodules. The sensitivity, specificity, PPV, NPV and diagnostic accuracy of DWI and ADC values in differentiating benign from malignant thyroid nodules were 93%, 95%, 93%, 95% and 92.3%, respectively. Conclusion: DWI is a non-invasive diagnostic tool for characterization and differentiation between benign and malignant thyroid nodules. It not only decreases the burden of unnecessary surgeries when pre-operative FNAC and biopsy are inconclusive, but is also helpful in reaching a

  15. Diffusion weighted imaging and estimation of prognosis using apparent diffusion coefficient measurements in ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Gonen, Korcan Aysun, E-mail: aysunbalc@yahoo.com [Department of Radiology, State Hospital, Eski Cami district, Hastane street, N:1, 59300, Tekirdag (Turkey); Simsek, Mehmet Masum, E-mail: radyoloji@haydapasanumune.gov.tr [Department of Radiology, Haydarpasa Numune Training and Research Hospital, Tibbiye street, Uskudar 34200, Istanbul (Turkey)

    2010-11-15

    Objective: Estimation of the prognosis of infarction by using diffusion weighted imaging (DWI) and quantitative apparent diffusion coefficient (ADC) measurements. Methods: 23 patients having acute stroke symptoms with verified infarction in magnetic resonance imaging (MRI) were included in this study. Their MRI studies were performed between 6 and 12 h after the onset of their symptoms and were repeated on the fifth day. The infarction volumes were calculated by using DWI and the patients were divided into two groups as the ones having an expansion in the infarction area (group 1, n = 16) and the others having no expansion in the infarction area (group 2, n = 7). Quantitative ADC values were estimated. The groups were compared in terms of the ADC values on ADC maps obtained from DWI, performed during the between 6 and 12 h from the onset of the symptoms, referring to the core of the infarction (ADC{sub IC}), ischemic penumbra (ADC{sub P}) and the nonischemic parenchymal tissue (ADC{sub N}). P values < 0.05 were accepted to be statistically significant. Results: During the between 6 and 12 h mean infarction volume calculated by DWI was 23.3 cm{sup 3} for group 1 patients (ranging from 1.1 to 68.6) and this was found to be 40.3 cm{sup 3} (ranging from 1.8 to 91.5) on the fifth day. For the group 2 patients these values were found to be 42.1 cm{sup 3} (ranging from 1 to 94.7) and 41.9 (ranging from 1 to 94.7) for the same intervals respectively. A significant statistical result was failed to be demonstrated between the mean ADC{sub IC} and ADC{sub N} values (p = 0.350 and p = 0.229 respectively). However the comparison of the ADC{sub P} values between the groups was found to be highly significant (p < 0.001). When the differences between the ADC{sub P} and ADC{sub IC} and ADC{sub N} and ADC{sub P} were compared the results proved to be statistically significant (p = 0.038 and p < 0.001 respectively). Conclusions: We believe that ADC results that would be obtained from

  16. Diffusion weighted imaging and estimation of prognosis using apparent diffusion coefficient measurements in ischemic stroke

    International Nuclear Information System (INIS)

    Gonen, Korcan Aysun; Simsek, Mehmet Masum

    2010-01-01

    Objective: Estimation of the prognosis of infarction by using diffusion weighted imaging (DWI) and quantitative apparent diffusion coefficient (ADC) measurements. Methods: 23 patients having acute stroke symptoms with verified infarction in magnetic resonance imaging (MRI) were included in this study. Their MRI studies were performed between 6 and 12 h after the onset of their symptoms and were repeated on the fifth day. The infarction volumes were calculated by using DWI and the patients were divided into two groups as the ones having an expansion in the infarction area (group 1, n = 16) and the others having no expansion in the infarction area (group 2, n = 7). Quantitative ADC values were estimated. The groups were compared in terms of the ADC values on ADC maps obtained from DWI, performed during the between 6 and 12 h from the onset of the symptoms, referring to the core of the infarction (ADC IC ), ischemic penumbra (ADC P ) and the nonischemic parenchymal tissue (ADC N ). P values 3 for group 1 patients (ranging from 1.1 to 68.6) and this was found to be 40.3 cm 3 (ranging from 1.8 to 91.5) on the fifth day. For the group 2 patients these values were found to be 42.1 cm 3 (ranging from 1 to 94.7) and 41.9 (ranging from 1 to 94.7) for the same intervals respectively. A significant statistical result was failed to be demonstrated between the mean ADC IC and ADC N values (p = 0.350 and p = 0.229 respectively). However the comparison of the ADC P values between the groups was found to be highly significant (p P and ADC IC and ADC N and ADC P were compared the results proved to be statistically significant (p = 0.038 and p < 0.001 respectively). Conclusions: We believe that ADC results that would be obtained from the core and the penumbra of the infarction area will be beneficial in the estimation of the infarction prognosis and in the planning of a treatment protocol.

  17. Diffusion-weighted imaging helps differentiate multiple sclerosis and neuromyelitis optica-related acute optic neuritis.

    Science.gov (United States)

    Wan, Hailin; He, Huijin; Zhang, Fang; Sha, Yan; Tian, Guohong

    2017-06-01

    To evaluate the apparent diffusion coefficient (ADC) values between multiple sclerosis (MS) and neuromyelitis optica (NMO)-related acute optic neuritis (ON) patients and predict their optic nerve atrophy of optic coherence tomography (OCT) parameters. Nineteen MS and 15 NMO-related acute ON patients who underwent a diffusion-weighted imaging sequence in 3.0 Tesla MR scanner and a follow-up OCT examination after 6 months were included. The ADC values, thickness of the retinal nerve fiber layer (RNFL) and the macular ganglion cell complex (GCC) between MS and NMO related ON were assessed. The mean ADC value of the NMO-ON, (0.691 ± 0.195[SD]) × 10 -3 mm 2 /s, was significantly smaller (P = 0.0133) than that of MS-ON. The mean ADC value of MS-ON, (0.879 ± 0.144) × 10 -3 mm 2 /s, was significantly smaller (P < 0.0001) than that of control group, (1.025 ± 0.067) × 10 -3 mm 2 /s. Using an ADC value smaller than 0.830 × 10 -3 mm 2 /s as the threshold value for differentiating MS-ON from NMO-ON patients, the highest accuracy of 76.7%, with 75.0% sensitivity and 78.3% specificity, was obtained. The ADC value measured at the acute stage of ON was correlated with the thickness of the RNFL (r = 0.441; P = 0.006) and the GCC (r = 0.526; P < 0.0001) after 6 months. The ADC value might be helpful for differentiating MS-ON from NMO-ON patients. The decreased ADC value was correlated with optic nerve atrophy on OCT. 3 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;45:1780-1785. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Can diffusion-weighted imaging distinguish between benign and malignant pediatric liver tumors?

    Energy Technology Data Exchange (ETDEWEB)

    Caro-Dominguez, Pablo; Chavhan, Govind B. [University of Toronto, Department of Diagnostic Imaging, The Hospital for Sick Children, Medical Imaging, Toronto, ON (Canada); Gupta, Abha A. [The Hospital for Sick Children, Department of Hematology and Oncology, Toronto, ON (Canada)

    2018-01-15

    There are limited data on utility of diffusion-weighted imaging (DWI) in the evaluation of pediatric liver lesions. To determine whether qualitative and quantitative DWI can be used to differentiate benign and malignant pediatric liver lesions. We retrospectively reviewed MRIs in children with focal liver lesions to qualitatively evaluate lesions noting diffusion restriction, T2 shine-through, increased diffusion, hypointensity on DWI and apparent diffusion coefficient (ADC) maps, and intermediate signal on both, and to measure ADC values. Pathology confirmation or a combination of clinical, laboratory and imaging features, and follow-up was used to determine final diagnosis. We included 112 focal hepatic lesions in 89 children (median age 11.5 years, 51 female), of which 92 lesions were benign and 20 malignant. Interobserver agreement was almost perfect for both qualitative (kappa 0.8735) and quantitative (intraclass correlation coefficient [ICC] 0.96) diffusion assessment. All malignant lesions showed diffusion restriction. Most benign lesions other than abscesses were not restricted. There was significant association of qualitative restriction with malignancy and non-restriction with benignancy (Fisher exact test P<0.0001). Mean normalized ADC values of malignant lesions (1.23 x 10{sup -3} mm{sup 2}/s) were lower than benign lesions (1.62 x 10{sup -3} mm{sup 2}/s; Student's t-test, P<0.015). However, there was significant overlap of ADC between benign and malignant lesions, with wide range for each diagnosis. Receiver operating characteristic (ROC) analysis revealed an area under the curve (AUC) of 0.63 for predicting malignancy using an ADC cut-off value of ≤1.20 x 10{sup -3} mm{sup 2}/s, yielding a sensitivity of 78% and a specificity of 54% for differentiating malignant from benign lesions. Qualitative diffusion restriction in pediatric liver lesions is a good predictor of malignancy and can help to differentiate between benign and malignant lesions

  19. Diffusion-weighted imaging and proton MR spectroscopy in the characterization of acute disseminated encephalomyelitis

    International Nuclear Information System (INIS)

    Balasubramanya, K.S.; Kovoor, J.M.E.; Jayakumar, P.N.; Ravishankar, S.; Kamble, R.B.; Panicker, J.; Nagaraja, D.

    2007-01-01

    Acute disseminated encephalomyelitis (ADEM) is usually a monophasic illness characterized by multiple lesions involving gray and white matter. Quantitative MR techniques were used to characterize and stage these lesions. Eight patients (seven males and one female; mean age 19 years, range 5 to 36 years) were studied using conventional MRI (T2- and T1-weighted and FLAIR sequences), diffusion-weighted imaging (DWI) and proton magnetic resonance spectroscopy (MRS). Apparent diffusion coefficient (ADC) values and MRS ratios were calculated for the lesion and for normal-appearing white matter (NAWM). Three patients were imaged in the acute stage (within 7 days of the onset of neurological symptoms) and five in the subacute stage (after 7 days from the onset of symptoms). ADC values in NAWM were in the range 0.7-1.24 x 10 -3 mm/s 2 (mean 0.937 ± 0.17 mm/s 2 ). ADC values of ADEM lesions in the acute stage were in the range 0.37-0.68 x 10 -3 mm/s 2 (mean 0.56 ± 0.16 mm/s 2 ) and 1.01-1.31 x 10 -3 mm/s 2 (mean 1.24 ± 0.13 mm/s 2 ) in the subacute stage. MRS ratios were obtained for all patients. NAA/Cho ratios were in the range 1.1-3.5 (mean 1.93 ± 0.86) in the NAWM. NAA/Cho ratios within ADEM lesions in the acute stage were in the range 0.63-1.48 (mean 1.18 ± 0.48) and 0.29-0.84 (mean 0.49 ± 0.22) in the subacute stage. The ADC values, NAA/Cho and Cho/Cr ratios were significantly different between lesions in the acute and subacute stages (P < 0.001, P < 0.027, P < 0.047, respectively). ADC values were significantly different between lesions in the acute (P < 0.009) and subacute stages (P < 0.005) with NAWM. In addition, NAA/Cho and Cho/Cr ratios were significantly different between lesions in the subacute stage and NAWM (P < 0.006, P < 0.007, respectively). ADEM lesions were characterized in the acute stage by restricted diffusion and in the subacute stage by free diffusion and a decrease in NAA/Cho ratios. Restricted diffusion and progressive decrease in NAA

  20. Diffusion-weighted imaging and proton MR spectroscopy in the characterization of acute disseminated encephalomyelitis

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanya, K.S.; Kovoor, J.M.E.; Jayakumar, P.N.; Ravishankar, S.; Kamble, R.B. [National Institute of Mental Health and Neurosciences, Department of Neuroimaging and Interventional Radiology, Bangalore, Karnataka (India); Panicker, J.; Nagaraja, D. [National Institute of Mental Health and Neurosciences, Department of Neurology, Bangalore (India)

    2007-02-15

    Acute disseminated encephalomyelitis (ADEM) is usually a monophasic illness characterized by multiple lesions involving gray and white matter. Quantitative MR techniques were used to characterize and stage these lesions. Eight patients (seven males and one female; mean age 19 years, range 5 to 36 years) were studied using conventional MRI (T2- and T1-weighted and FLAIR sequences), diffusion-weighted imaging (DWI) and proton magnetic resonance spectroscopy (MRS). Apparent diffusion coefficient (ADC) values and MRS ratios were calculated for the lesion and for normal-appearing white matter (NAWM). Three patients were imaged in the acute stage (within 7 days of the onset of neurological symptoms) and five in the subacute stage (after 7 days from the onset of symptoms). ADC values in NAWM were in the range 0.7-1.24 x 10{sup -3} mm/s{sup 2} (mean 0.937 {+-} 0.17 mm/s{sup 2}). ADC values of ADEM lesions in the acute stage were in the range 0.37-0.68 x 10{sup -3} mm/s{sup 2} (mean 0.56 {+-} 0.16 mm/s{sup 2}) and 1.01-1.31 x 10{sup -3} mm/s{sup 2} (mean 1.24 {+-} 0.13 mm/s{sup 2}) in the subacute stage. MRS ratios were obtained for all patients. NAA/Cho ratios were in the range 1.1-3.5 (mean 1.93 {+-} 0.86) in the NAWM. NAA/Cho ratios within ADEM lesions in the acute stage were in the range 0.63-1.48 (mean 1.18 {+-} 0.48) and 0.29-0.84 (mean 0.49 {+-} 0.22) in the subacute stage. The ADC values, NAA/Cho and Cho/Cr ratios were significantly different between lesions in the acute and subacute stages (P < 0.001, P < 0.027, P < 0.047, respectively). ADC values were significantly different between lesions in the acute (P < 0.009) and subacute stages (P < 0.005) with NAWM. In addition, NAA/Cho and Cho/Cr ratios were significantly different between lesions in the subacute stage and NAWM (P < 0.006, P < 0.007, respectively). ADEM lesions were characterized in the acute stage by restricted diffusion and in the subacute stage by free diffusion and a decrease in NAA/Cho ratios

  1. Diffusion-weighted magnetic resonance imaging - a new instrument in the diagnosis of Creutzfeldt-Jacob's disease

    International Nuclear Information System (INIS)

    Romi, Fredrik; Smivoll, Alf Inge; Moerk, Sverre; Tysnes, Ole-Bjoern

    2000-01-01

    Creutzfeldt-Jacob's disease (CID) is characterised by rapidly progressive dementia, ataxia, myoclonus and several other neurological deficits. It generally affects older adults and occurs in sporadic, genetic and iatrogenic forms. Death occurs usually within one year after onset of the disease. The diagnosis is based on clinical criteria, neuro physiological and radiological findings and confirmed by post mortal histopathology. During the last two years several cases of CID have been reported with diffusion-weighted magnetic resonance imaging (MR) abnormalities represented by increased signal intensity indicating reduced diffusion in basal ganglia and/or cortex cerebric. These abnormalities seem to be characteristic of CID. We report a case of CID in a 54 year old woman who developed vertigo, nystagmus, ataxia, myoclonus and dementia over a period of eight months. Diffusion-weighted magnetic resonance imaging showed increased signal intensity in corpus striatum and gyrus conguli. The diagnosis was post mortally confirmed with histopathology. (Author) 7 figs., 15 refs

  2. USE OF DIFFUSION-WEIGHTED MAGNETIC RESONANCE IMAGING FOR REVEALING HYPOXIC-ISCHEMIC BRAIN LESIONS IN NEONATES

    Directory of Open Access Journals (Sweden)

    E. V. Shimchenko

    2014-01-01

    Full Text Available The article presents advantages of use of diffusion-weighted magnetic resonance imaging (DW MRI for revealing hypoxic-ischemic brain lesions in neonates. The trial included 97 neonates with perinatal brain lesion who had been undergoing treatment at a resuscitation department or neonatal pathology department in the first month of life. The article shows high information value of diffusion-weighted images (DWI for diagnostics of hypoxic-ischemic lesions in comparison with regular standard modes. In the event of no s